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CHAPTER 1 

TRAPPING THE APPLE MAGGOT FLY - AN INTRODUCTION 

1.1 Description and Habitat 

The apple maggot fly, Rhagoletis pomonella (Walsh), is a serious dipteran 

(Family: Tephritidae) pest of apples in eastern and western North America. R. 

pomonella is native to North America and its original host is hawthorn fruit (Crataegus 

sp.). Approximately 150 years ago, R. pomonella shifted its host range to include 

cultivated apples, a fruit introduced to North America from Europe (Prokopy and Bush 

1993). To a lesser extent, apple maggot flies also infest cherries, plums, apricots, and 

pears. 

Adult flies emerge from overwintering puparia beneath host trees beginning in 

June. Females become sexually mature within ten days and will oviposit eggs 

individually under the skin of developing fruit. A single female is capable of laying 

between 300 - 400 eggs over its lifetime. Larvae feed inside fruit, creating damaging 

tunnels that eventually cause the fruit to fall from the tree. Pupation occurs after larvae 

exit the fallen fruit and burrow into the soil below the tree (Dean and Chapman 1973). 

Current conventional control of R. pomonella relies upon 3-4 insecticide sprays 

during the fly season (Reissig et al. 1982). However, the development of a number of 

effective apple maggot fly traps has created the opportunity to reduce excessive chemical 

applications. These traps have become useful in integrated pest management programs as 

tools for monitoring or controlling fly populations. 
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1.2 Trap Types 

There have been three major trap designs that have been used for R. pomonella in 

commercial orchards. The first of these designs is a yellow panel coated with sticky 

adhesive. These yellow panels provide a visual stimulus that resembles tree foliage, the 

place where flies are likely to find food, including protein. Therefore, these traps should 

be attractive to flies foraging for protein sources to complete reproductive development 

(Prokopy 1968). 

The second major trap design has been a red sphere coated with sticky adhesive. 

Red spheres visually mimic fruit host stimuli in both shape and dark color and are 

attractive to flies seeking oviposition or mating sites (Prokopy 1968). Studies have 

shown that spheres 8 cm in diameter capture the greatest numbers of flies. Unfortunately, 

a serious drawback of sticky coated spheres is that they require substantial maintenance 

(including cleaning and retreatment every two weeks) to maintain peak effectiveness 

(Duan and Prokopy 1992). In response to this concern, an alternate sphere design has 

been developed in which pesticide (incorporated into red paint) replaces the sticky 

adhesive as the killing agent. These pesticide treated spheres must be coated with a 

feeding stimulant (sugar solution) to entice alighting flies to feed and ingest a lethal dose 

of pesticide. This feeding stimulant, however, is likely to be washed away during periods 

of rainfall (Duan and Prokopy 1995b). 

A third trap design for R. pomonella is a combination of the yellow panel and red 

sphere traps. This trap design (commonly referred to as the Ladd trap) combines two red 
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hemispheres at the center of a yellow panel and has shown promise with R. pomonella in 

a number of studies (Kring 1970, AliNiazee et al. 1987, Jones and Davis 1989). 

1.3 Odor Lures 

There are two types of volatile odor baits that have been used with traps for R. 

pomonella. These lures are either “food” type baits that emit volatiles characteristic of 

protein food sources or “fruit” type odors consisting of attractive host fruit volatiles. 

Regarding “food” type odors, compounds containing ammonia have long been known to 

be attractive to flies (Hodson 1943, 1948). Food odors (ammonium acetate and soy 

hydrolysate) are commonly used with yellow panel traps to create a trap with visual and 

chemical stimulus attractive to food seeking R. pomonella. With red spheres, protein 

odor usage has been less frequent. Studies by Prokopy (1968) and Moore (1969) in 

unmanaged orchards found that spheres baited with ammonium acetate generally 

increased fly captures over unbaited spheres although the results were somewhat 

inconclusive. 

In terms of fruit odor, Prokopy et al. (1973) observed that the odor of mature 

apples was attractive to foraging R. pomonella. In subsequent work, an attractive mixture 

of seven volatile compounds was identified and isolated from Red Delicious and Red 

Astrachan apples (Fein et al. 1982). Red sphere traps baited with this mixture (termed the 

Fein blend) have been shown to capture significantly more flies than unbaited spheres 

(Reissig et al. 1985). Later, the Fein blend was refined to a single component, butyl 

hexanoate, which was shown to be as attractive as the entire blend (Averill et al. 1988). 
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In a recent study, Duan and Prokopy (1992) combined both fruit (butyl hexanoate) 

and food (ammonium carbonate) odors with red sphere traps. The combination of odors 

captured more flies than either odor type alone, although the study was limited in its 

scope. In chapter two, the optimal usage of food and fruit odor with red sphere traps is 

further investigated. 

1.4 Trap Usage 

In orchards, R. pomonella traps have functioned as tools for monitoring fly 

populations and as agents for direct control of fly numbers. 

1.4.1 Monitoring R. pomonella Populations 

Both yellow panel traps and red spheres have been used to monitor R. pomonella 

in the United States. In the eastern states, sticky coated red spheres have been primarily 

used for this purpose. Pesticide treatment thresholds have been established as two fly 

captures per trap for unbaited spheres and 5 fly captures per trap for volatile-baited 

spheres (Stanley et al. 1987; Agnello et al. 1990). In the western states, the Ladd trap (a 

combination of a yellow panel and red sphere traps) baited with synthetic fruit odor has 

been shown to outperform red spheres and yellow panels as a monitoring trap in 

commercial orchards (AliNiazee et al. 1987). Other comparisons of red spheres and 

yellow panels in western states have been inconclusive as to which is superior for 

monitoring R. pomonella. Host habitat, fly density, and fly maturity may all play a role 

in the efficacy of each type of monitoring trap (AliNiazee 1990). 
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1.4.2 Control of R. pomonella with Traps 

Research has shown that sticky coated red spheres can successfully trap out R. 

pomonella in orchards. In smaller orchards, the deployment of at least one unbaited 

sticky sphere per tree has been used to effectively control fly populations (Prokopy 1975, 

1991; Reissig et al. 1984, 1985). Recent studies in larger orchards have demonstrated 

that sticky red spheres baited with butyl hexanoate and deployed 5 m apart on the 

perimeter of an orchard efficiently intercept migrating flies and prevent fruit injury 

(Prokopy et al. 1990a, Prokopy and Mason 1996). Chapter three further investigates 

optimal trap deployment strategies for red spheres within an orchard. 

While red spheres have proven to be an effective fly control agent, they are 

impractical for most growers to use, given the cost of maintaining the traps throughout 

the season. The solution to this problem may lie in the design of a pesticide treated 

sphere that requires little or no maintenance. At present, however, pesticide treated 

spheres must be retreated with feeding stimulant (sugar solution) after each rainfall to 

ensure effectiveness (Duan and Prokopy 1995b). Chapter four discusses an alternative 

trap design in which pesticide, feeding stimulant, and odor attractants are placed inside 

perforated spheres to protect against rainfall. 

5 



CHAPTER 2 

EVALUATION OF ODOR LURES FOR USE WITH RED STICKY SPHERES TO 
TRAP APPLE MAGGOT FLIES 

2.1 Introduction 

The apple maggot fly, Rhagoletis pomonella (Walsh), is an economically 

significant pest of apples in eastern North America. As a substitute for pesticide 

applications, sphere traps coated with sticky adhesive have been used to control fly 

numbers and prevent fruit injury in orchards (Prokopy 1975; MacCollom 1987; Prokopy 

1991; Prokopy et al. 1996). In the east, the most successful trap has been an 8 cm red 

sphere coated with Tangletrap adhesive (Prokopy 1968; Reissig 1975; Duan and 

Prokopy 1992). Such spheres, when baited with odor volatiles and deployed at the 

perimeter of orchards to intercept immigrating flies, have provided a level of protection 

nearly comparable to pesticide usage (Prokopy et al. 1990; Prokopy and Mason 1996). 

However, despite some successes and a substantial amount of research on the trapping of 

R. pomonella, there are still gaps in our knowledge regarding optimal odor attractants for 

red sphere traps. 

Both host fruit volatiles (synthetic fruit odor) and proteinaceous food odor have 

been used as baits for attracting R. pomonella. These odor types are associated with 

different behavioral responses based on the physiological state of the fly. Fruit odor is 

attractive to R. pomonella seeking fruit resources for oviposition and/or mating (Carle et 

al. 1987), while food odor is attractive to flies seeking a protein source for reproductive 

development (Hendrichs et al. 1990 a). 
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Regarding fruit odor, Fein et al. (1982) found that a mix of seven volatile esters 

from Red Delicious and Red Astrachan apples were attractive to R. pomonella. 

Subsequent work by Reissig et al. (1982, 1985) showed that red spheres baited with this 

mixture captured significantly more flies than unbaited spheres. One component of this 

mixture, butyl hexanoate, was later determined to be as attractive as the entire blend 

(Averill et al. 1988). 

Proteinaceous ammonia-based compounds have long been known to be attractive 

to R. pomonella (Hodson 1943, 1948). Ammonia lures have been used extensively in 

orchards to monitor R. pomonella with yellow rectangle traps (Reissig 1974, 1975; 

AliNiazee et al. 1987; Jones and Davis 1989; Warner and Smith 1989). With red sphere 

traps for the apple maggot, ammonia use has had more limited success. Prokopy (1968) 

found that baiting spheres with a mixture of ammonium acetate and protein hydrolysate 

increased fly captures over unbaited traps in unmanaged trees, although the difference 

was not significant. Moore (1969) demonstrated in unmanaged orchards that spheres 

baited with ammonium acetate were superior to unbaited traps earlier in the season, but 

not so later in the year. This result presumably reflects a behavioral trend of immature R. 

pomonella to seek food sources early in the season, followed by a switch in response to 

fruit odor as flies and fruit mature later in the season. 

Until recently, the combined use of butyl hexanoate and ammonia-based 

compounds with red sphere traps had not been evaluated. In a study of limited scope, 

Duan and Prokopy (1992) found that the addition of ammonium carbonate to butyl 

hexanoate increased fly captures on red spheres over butyl hexanoate alone in a 
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commercial orchard. However, as the authors pointed out, the work was limited to a 

short time period in a single orchard and required further study to elucidate the effects of 

ammonium carbonate on sphere trap captures. 

Here, experiments were performed to evaluate the power of butyl hexanoate and 

ammonium carbonate when alone or combined to attract R. pomonella to red sphere traps. 

The response of flies of three physiological states (14-day-old high egg load, 14-day-old 

no egg load, and 4-day-old no egg load flies) to odor-baited spheres were first tested in an 

artificial orchard. Odor- baited spheres were then evaluated in several commercial 

orchards throughout the active season of R. pomonella (early July to mid September). 

These studies allowed for the determination of the types of flies (physiological states) 

responding to odor attractants and the measurement of any changes in the pattern of trap 

captures during the growing season. 

2.2 Materials And Methods 

2.2.1 Odor Lures 

All tests were conducted in the summer of 1995. Butyl hexanoate lures were 

constructed from capped 15 ml polyethylene vials filled with the liquid. The release rate 

from these vials has been determined to be approximately 500 pg/h (Averill et al. 1988). 

Ammonium carbonate lures were a “commerciar type (produced by R. Heath, 

Gainesville, FL). Each lure consisted of a sealed, clear, plastic container with 1.7 g of 

ammonium carbonate dispensed from a 1.0 mm hole (a plastic flap covered the hole to 

protect against rainfall). The release rate from these lures was 650 - 700 pg/h. Although 
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these particular ammonia lures are not available for widespread commercial use, they 

represent a prototype lure that could easily be used by growers. 

2.2.2 Artificial Orchard Assays 

Ammonium carbonate and butyl hexanoate were first evaluated in an artificial 

orchard created from potted hawthorn trees (each ~ 2.0 m in height and ~ 1.5 m in canopy 

diam.). Four patches of nine trees each were positioned approximately 100 m apart in a 

large (300 x 300 m) open field. Patches were set up with one central tree, an inner ring of 

four trees (at the cardinal directions) at 3 m from center, and an outer ring of four trees at 

6 m from center. On test days, each patch was assigned one of four odor treatments: no 

odor, butyl hexanoate, ammonium carbonate, or both butyl hexanoate and ammonium 

carbonate. A single red sphere was placed in each of the four outer trees along with the 

designated odor lure(s). The spheres were positioned within the trees so that there was no 

foliage or tree branches within 10 cm. Odor lures were positioned within 10 cm of a 

sphere, usually on the same branch. The middle trees were left free of lures and traps to 

serve as a resting point between the central and outer trees. Spheres were 8 cm diam. 

(obtained from Pest Management Supply Inc., Hadley, MA) and were coated with a layer 

of Tangletrap adhesive (Tanglefoot Co., Grand Rapids, MI). For testing, flies of three 

physiological states were evaluated separately: 14-day-old protein-fed flies, 14-day-old 

protein-starved flies, and 4-day-old protein-starved flies. Protein-fed flies were fed a diet 

consisting of sugar and enzymatic yeast hydrolysate in a 3:1 ratio, while protein-starved 

flies were fed a sugar-only diet. Flies eclosed from pupae that were collected from apple 

drops the previous year and overwintered in a cold storage room. At the start of test days, 
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ten females (of a single physiological state) were released on the central tree in each patch 

and allowed to forage for 4 h. To insure that wild or stray flies from another patch would 

not be included in the data, released flies were painted with colored Liquid Paper® prior 

to release (each patch was assigned one of four colors). Once each hour and at the end of 

the test period, spheres were checked and cleaned of captured R. pomonella. In addition, 

flies from each physiological state were set aside for dissection to determine egg load. 

2.2.3 Commercial Orchard Assays 

The four odor treatments tested above were also evaluated in four commercial 

orchards in central and western Massachusetts. In each orchard, replicates consisted of 

four orchard plots, selected for homogeneity in tree size and spacing (in all, eight 

replicates across the four orchards were used). The plots were located at the comers of 

larger orchard blocks and encompassed ~ 50 trees. Within each replicate, one of the four 

odor treatments was assigned at random to each plot. Red spheres and lures were 

deployed on perimeter trees of each plot at a spacing of 5 m between traps (~ 14 traps per 

plot). Traps were hung about 1.5 m above ground (depending on tree size) so that there 

was no fruit or foliage within 20 cm of a trap (but as much as possible outside of 20 cm). 

Odor lures were placed within 20 cm of the spheres (usually on the same branch). Traps 

were initially deployed the first week in July and were maintained through mid 

September. Once every 2 wks, the traps were checked and cleaned of captured R. 

pomonella and other insects. Odor baits were replaced if necessary. During the first 

three trapping periods, captured females were brought back to the laboratory for 

dissection to determine egg load and the proportion of sexually mature females (flies with 
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at least one developed egg). Since captured flies desiccated quickly on spheres, 

dissections were restricted to recently captured females, limiting n values in all cases. 

2.2.4 Data Analysis 

For both the artificial and commercial orchard experiments, sphere capture data 

were analyzed with two way analysis of variance in which odor type and replicates were 

tested as main effects. Replicates consisted of test days in the artificial orchard assay and 

block pairings in the commercial orchard study. With the commercial orchards, capture 

data from each trapping period were analyzed separately. Egg load data from dissections 

of flies captured in commercial orchards were tested with one way analysis of variance. 

Multiple comparisons were done using the least significant difference (LSD) test 

criterion. Regression analysis was used to examine ratios (across sampling periods) of 

captures on butyl hexanoate baited spheres to captures on unbaited spheres. The level of 

significance for all tests was set at a < 0.05. All analyses were carried out with Statistix 

4.0 software (Analytical Software 1992). 

2.3 Results 

2.3.1 Artificial Orchard Assays 

In the artificial orchard experiment (Table 2.1), flies of all three tested R. 

pomonella physiological states (14-day-old protein-fed, 14- and 4-day old protein- 

starved) exhibited the same general response pattern to the odor types tested. With both 

protein-fed and 14-day-old protein-starved flies, the combination of butyl hexanoate and 

ammonium carbonate captured significantly more flies than the other treatments (protein 

fed flies: F = 6.89; df = 3, 33; P < 0.05; 14-day-old protein-starved flies: F = 3.90; df = 
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3,33; P < 0.05). With all fly types, spheres baited with butyl hexanoate or ammonium 

carbonate alone captured numerically more R. pomonella than unbaited spheres, although 

the difference was significant only for protein-fed flies responding to ammonium 

carbonate. There was a significant effect of test days for protein-fed flies (F = 5.33; df = 

11, 33; P < 0.05), indicating that daily weather conditions may influence fly 

responsiveness to spheres. In general, protein-fed flies were more responsive to the 

spheres and odor treatments than protein-starved flies (3.1 captures per replicate for 14- 

day-old protein-fed flies vs. 1.5 and 0.6 respectively, for 14- and 4-day-old protein- 

starved flies). Dissection analysis of the females tested revealed that protein-fed flies had 

a higher mean egg load (17.0 per female) than those deprived of protein (0.3 and 0.0 

respectively, for 14- and 4-day-old flies). 

Table 2.1: Mean egg load and number of released R. pomonella females captured on 

odor-baited or unbaited red spheres in an artificial orchard. Odor treatments 

are abbreviated: BH = butyl hexanoate; AC = ammonium carbonate. There 

were 12 replicates per treatment. 

R. Pomonella Mean Egg Mean No. Captures Per Replicate (± SEM)a 

Physiological State Load (± SEM) No Odor BH AC BH+AC 

14-day-old, protein fed 17.0 (2.7) 2.0 (0.5) c 2.9 (0.6) be 3.2 (0.5) b 4.3 (0.5) a 

14-day-old, protein starved 0.3 (0.2) 0.9 (0.3) b 1.3 (0.4) b 1.3 (0.3) b 2.4 (0.4) a 

04-day-old, protein starved 0.0 (0.0) 0.3 (0.2) a 0.7 (0.2) a 0.7 (0.3) a 0.8 (0.3) a 

a Flies of each physiological state were analyzed separately. Values in each row with 

separate letters are significantly different according to two way analysis of variance and 

the LSD criterion at the 0.05 level. 
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2.3.2 Commercial Orchard Assays 

In commercial orchards (Table 2.2), spheres baited with butyl hexanoate captured 

significantly more R. pomonella than spheres with no odor or ammonium carbonate 

alone. This trend was consistent throughout each of the trapping periods when tested by 

two way analysis of variance (Period 1: F= 16.31; Period 2: F= 20.17; Period 3: F = 

18.98; Period 4: F= 20.46; Period 5: F= 29.46; for all periods: df=3, 21; P < 0.05). 

Replicates (i.e. block pairings) were not a significant factor in any of the capture periods 

(P>0 .05). R. pomonella captures on spheres with ammonium carbonate alone did not 

differ significantly from unbaited spheres in any of the trapping periods (in most cases 

they were actually less). Additionally, captures on spheres having both butyl hexanoate 

and ammonium carbonate were not significantly different from captures on spheres with 

butyl hexanoate alone during any trapping period. Due to the low response level of flies, 

treatments with ammonium carbonate were discontinued after the third trapping period. 

Regression analysis of ratios of captures on butyl hexanoate baited spheres to captures on 

unbaited spheres over the five sampling periods revealed a progressive decline in ratio 

values (from 5.8:1 to 4.4:1) as the season progressed (y = -1.72x + 13.06). However, the 

relationship was weak (R2 = 0.09; P = 0.06). 

The dissection data from captured females (Table 2.3) were complicated by an 

oversight in which dissections from the first sampling period (Early July) were not 

separated by odor treatments. However, there was no significant variation among the 

three sampling periods in terms of the total (summed over all odor treatments) mean eggs 

per female (F= 1.53; df = 2, 190; P = 0.22) or percent sexual maturity of females (F = 
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Table 2.2: Mean number of R. pomonella flies captured on odor-baited or unbaited red 

spheres in commercial orchards. Odor treatments are abbreviated: BH = 

butyl hexanoate; AC = ammonium carbonate. There were 8 replicates per 

odor treatment. 

Mean No. Captures Per Sphere (± SEM)a 

Trapping Period b No Odor BH AC BH+AC 

Early July 2.2 (0.8) b 13.1 (2.0) a 1.7 (0.4) b 10.7 (2.3) a 

Late July 6.7 (1.5) b 38.5 (5.5) a 5.7 (1.0) b 38.8 (7.8) a 

Early August 10.2 (1.3) b 40.6 (3.3) a 6.5 (1.2) b 36.5 (7.1) a 

Late August 5.3 (1.1) b 25.1 (4.0) a 

Early September 3.5 (0.8) b 14.6 (1.9) a 

a Each trapping period was analyzed separately. Values in each row with different letters 

are significantly different according to two way analysis of variance and the LSD 

criterion at the 0.05 level. 

b For trapping periods, “Early” refers to the first two weeks of the month and “Late” 

refers to the last two weeks of the month. 

0.51; df = 3, 91; P = 0.68). For the other two periods (Late July and Early August), there 

was no significant difference among treatments in the percentage of trapped sexually 

mature females (Late July: F= 0.51; df = 3, 91; P = 0.68; Early August: F= 0.84; df = 3, 

55; P = 0.48). The mean egg load per female varied significantly only for the no odor 

treatment in the Late July period (F = 3.08; df = 3, 91; P = 0.03). There was no 

significant variation for the Early August period (F= 0.33; df = 3, 55; P = 0.80). 
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Table 2.3: Mean egg load and sexual maturity of R. pomonella flies captured on odor- 

baited or unbaited red spheres in commercial orchards. Odor treatments are 

abbreviated: BH = butyl hexanoate; AC = ammonium carbonate. 

Odor Treatment Average 

Mean of 

Trapping 

Period 

No Odor BH AC BH+AC 

all odor 

typesc 

Mean eggs/female 

(± SEM) 

— — — — 22.1 (2.2) 

Early 

July % sexually mature — — — — 89.5 

N — — — — 39 

Mean eggs/female 

(± SEM)a 

26.9 (2.9) a 17.3 (1.9) b 16.7 (2.0) b 19.1 (2.5)b 19.1 (1.2) 

Late 

July % sexually mature b 100.0 94.4 95.2 95.6 94.7 

N 15 36 21 23 95 

Mean eggs/female 

(± SEM)a 

22.5 (2.3) a 20.7 (1.9) a 24.9 (3.5) a 21.3 (2.1) a 22.0(1.1) 

Early 

August % sexually mature 100.0 94.7 90.0 100.0 96.6 

N 14 19 10 16 59 

a For the Late July and Early August trapping periods, values for mean eggs/female with 

different letters are significantly different according to one way analysis of variance and 

the least significant difference test criterion at the 0.05 level. 

b For the Late July and Early August trapping periods, the percent of sexually mature 

females for each odor treatment was not significantly different according to one way 

analysis of variance. 

c For the average mean eggs/female and percent sexually mature females summed over 

all odor treatments, values were not significantly different among trapping periods 

according to one way analysis of variance. 
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2.4 Discussion 

Taken together, our findings give two conflicting pictures of the optimal red 

sphere odor lures for trapping R. pomonella. Our initial findings, in the artificial orchard 

experiment, seemed to confirm those of Duan and Prokopy (1992), in which the use of 

ammonium carbonate with butyl hexanoate increased red sphere attractiveness to R. 

pomonella. However, our more detailed study in commercial orchards revealed the 

opposite—that ammonium carbonate had little attractive power relative to butyl 

hexanoate. 

Proteinaceous compounds (such as ammonia) have been shown to be more 

attractive to immature compared with mature R. pomonella (Hodson 1943, Hendrichs et 

al. 1990 a). Conversely, work by Duan and Prokopy (1994) showed that red spheres 

baited with butyl hexanoate generally captured more older, mature flies. Therefore, the 

combination of ammonium carbonate with butyl hexanoate should be attractive to flies of 

a broad range of age and maturity. Our artificial orchard study (Table 2.1) allowed us to 

test three separate fly physiological states that might be representative of flies in nature. 

Interestingly, the pattern of response to the odor types was the same regardless of fly age 

and maturity. Within the protein fed and protein starved categories, there was an almost 

equal response to ammonium carbonate or butyl hexanoate alone and a greater response 

to the combination of the two odors. 

Dissections of flies captured in commercial orchards (Table 2.3) revealed that 

captured females were sexually mature (> 90 %) and of high mean egg load (roughly 20 

per female). Odor treatment seemed to make little difference as to the egg load and 
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maturity of trapped females. Unfortunately, our data set was flawed when dissections 

from the first trapping period (Early July) were mistakenly pooled rather than separated 

by odor treatment. However, the fact that the mean egg load per female was high (22.1) 

and a large proportion of captured females was sexually mature (89.5 %) during this 

period would seem to indicate that mostly high egg load, mature females were being 

drawn to the spheres even at that early stage of the season. Since fly populations as a 

whole tend to be more mature later in the season, we expected to encounter a substantial 

number of immature flies in the earlier trapping periods. The high percentage of mature 

females captured on the spheres in each trapping period suggests that immature females 

were not consistently being drawn to the traps at any point in the season. These 

observations contradict findings by Agnello et al. (1990), who found that both the egg 

load and maturity of trapped females was lower earlier in the season than later, and Duan 

and Prokopy (1992), who observed more immature females on spheres with ammonia (52 

%) than on spheres with butyl hexanoate (38 %). 

Although ammonium carbonate had trapping power comparable to butyl 

hexanoate in the artificial orchard, it had little or no power in commercial orchards (Table 

2.2). In the latter, spheres with ammonium carbonate fared no better than unbaited traps 

and the addition of ammonium carbonate to butyl hexanoate did not increase R. 

pomonella captures over butyl hexanoate alone. 

Despite the results of this study, food odor use with traps has proven to be of 

definite value in commercial orchards for monitoring other tephritid pests, including the 

Queensland fruit fly, Dacus tryoni (Frogatt) (Bateman and Morton 1981), Caribbean fruit 
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fly, Anastrepha suspensa (Loew) (Heath et al. 1993), and the Mediterranean fruit fly, 

Ceratitis capitata (Wiedman) (Heath and Epsky 1995). Studies with perforated sphere 

traps and the Mediterranean fruit fly have shown that food odor (Nulure) increased fly 

captures three-fold over unbaited spheres (Katsoyannos and Hendrichs 1995). The reason 

for the discrepancy between findings in the commercial and artificial orchard experiments 

here, the findings of Duan and Prokopy (1992), and work with other tephritid species is 

not altogether clear, although there are three possible explanations. 

The first has to do with the design of the lure itself. Studies of protein lures for R. 

pomonella have shown that lure and dispenser type can have an impact on both 

performance and longevity in the field (Jones 1988). Unfortunately, the ammonium 

carbonate lures used here did not fare well under hot humid field conditions common to 

Massachusetts orchards in summer. Typically, the ammonium carbonate within the lure 

dissipated quickly, sometimes before the end of a two week trapping period. By contrast, 

lures (of the same design) used in the artificial orchard experiment, when not in use, were 

stored indoors and were replaced at the first sign of depletion. Duan and Prokopy (1992) 

experienced a similar problem with ammonium carbonate lure dissipation, but were able 

to replace the lures frequently (every three days). 

Another possible explanation is that there may have been a large amount of food 

naturally occurring in the commercial orchards studied here, sufficient to overcome the 

attractive power of ammonium carbonate lures. R. pomonella commonly feed on bird 

feces, honeydew, and diffuse food sources on foliage and fruit, all of which can be 

abundant in orchards (Hendrichs and Prokopy 1990; Hendrichs et al. 1990 b). These food 
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sources were absent from the potted trees used in the artificial orchard. Along these lines, 

Prokopy et al. (1993) showed that abundant orchard food sources may interfere with the 

effectiveness of proteinaceous bait sprays for R. pomonella. The impact of naturally 

occurring food on ammonium-baited spheres is unclear, although there is speculation that 

these lures will perform better in the absence of natural food (Hendrichs et al. 1990 a). 

A third possible explanation involves the distance range of effectiveness of 

ammonium carbonate lures. To date, there have been no studies evaluating the distance 

of response of R. pomonella to food odor volatiles. It may be that at shorter distances, 

such as those in our artificial orchard experiment, ammonia has the power to draw flies to 

spheres, but does not do so at longer distances (such as those in commercial orchards). In 

the study by Duan and Prokopy (1992), it was suggested that the majority of flies in the 

test orchard originated from pupae beneath the host trees. This meant that those flies 

were already in the vicinity of the ammonium carbonate lures upon eclosion and did not 

have to be pulled to the traps from a significant distance (e.g. 20 m or more). In our study 

here, by contrast, the majority of flies most likely immigrated from outside the orchard 

(all unmanaged host trees within 100 m of the orchard perimeter were removed), creating 

a situation where fly distance from odor source may have been an important factor in lure 

efficacy. 

While ammonium carbonate as a lure with red spheres under Massachusetts apple 

commercial orchard conditions proved ineffective, butyl hexanoate as a lure with red 

spheres was indeed successful. Perhaps the most encouraging result from the work 

reported here was the relative consistency in performance of butyl hexanoate-baited 
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spheres throughout the growing season. There has been some concern that as the season 

progresses, the increasing amount of natural attractive odor emanating from ripening fruit 

may compete with butyl hexanoate lures (Carle et al. 1987). In our experiment, the ratio 

of captures on butyl hexanoate baited versus unbaited spheres dropped slightly from 5.8:1 

over the first two trapping periods to 4.4:1 over the last two periods. However, this 

decline over time was not significant according to regression analysis. Even at its lowest 

point, the butyl hexanoate/no odor capture ratio achieved here compares favorably with 

previous findings (Reissig et al. 1985), in which the difference between spheres baited 

with a blend of synthetic apple volatiles and unbaited spheres was 2-4 fold. 

Based on the consistent performance of butyl hexanoate throughout the season, it 

would seem possible for growers using red sphere traps to forgo ammonium lures 

altogether and still maintain a high level of fly captures. Such a step could reduce the 

cost of deploying these types of traps, which could be an advantage to their more 

widespread usage. However, further work will be needed to verify the findings in 

commercial orchards reported here (particularly the value of ammonium lures). In 

practice, trapping for pest control involves two major aspects: capturing the target pests 

and preventing crop injury. Due to time and labor constraints, fruit injury was not 

evaluated here. Nevertheless, to gain a more complete understanding of the impact of 

odor lures on red sphere traps, the question of fruit injury ought to be addressed in a 

future study. 
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CHAPTER 3 

EVALUATION OF TWO TRAP DEPLOYMENT METHODS TO MANAGE THE 
APPLE MAGGOT FLY 

3.1 Introduction 

The apple maggot fly, Rhagoletispomonella (Walsh), is a major summer pest of 

apples in eastern North America. Infestations in apple orchards typically occur from flies 

immigrating from nearby unmanaged host trees outside the orchard. In some cases, 

however, they occur from flies arising within the orchard from infested dropped fruit of 

the previous year. In response to concerns over pesticide applications, some recent 

control efforts have focused on the use of red sphere traps coated with sticky adhesive to 

reduce fly numbers and prevent fruit damage. Studies in small orchards have shown that 

sphere traps deployed at the rate of at least one per tree throughout the orchard are 

capable of effectively suppressing flies (Prokopy 1975, 1991; Reissig et al. 1984, 1985). 

Unfortunately, a trapping scheme of one trap per tree is not practical in larger orchards, 

given the cost of purchasing and maintaining sphere traps. 

To minimize the number of traps needed for control of R. pomonella, it may be 

useful to view the deployment of red spheres in an apple orchard as a trap cropping 

system. Trap crops, which can be of the same or different cultivar as the main crop, are 

designed to attract and concentrate pests is a small portion of the crop where they can be 

eliminated (Hokkanen 1991). In apple orchards this could be accomplished by drawing 

flies with odor lures to trees containing red sphere traps. The location of trees containing 

traps in orchard blocks ideally should be based upon the expected source of infestation, 

whether it is from immigrating flies or flies emerging from within the orchard. 
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Regarding infestation from immigrating flies, research has shown that barriers of sphere 

traps baited with synthetic fruit odor (butyl hexanoate) spaced 5 m apart and deployed on 

perimeter trees of commercial orchards effectively intercepted incoming flies (Prokopy et 

al. 1990 a; Prokopy and Mason 1996). While this method has proven quite successful in 

practice, some of the dynamics of the system are not fully understood. For example, it is 

not clear to what extent this method provides protection, since the experiments were not 

run with a no-trap control (a treatment not feasible in commercial orchards). 

Infestation resulting from within-orchard emergence of R. pomonella presents a 

complex situation. This type of infestation can arise if flies are able to penetrate 

perimeter traps and oviposit on interior trees of the orchard. In such cases, the following 

year flies will emerge from directly beneath orchard trees in the immediate vicinity of 

host fruit and possibly a substantial distance from odor-baited spheres on perimeter trees. 

These flies may pale in number relative to immigrating R. pomonella, but considering the 

high egg load of a typical fly (a single female can lay 300 eggs over its lifetime; Dean and 

Chapman 1973), the predicament can be considerable. Presently, the only reliable 

method to deal with this sort of problem is to regularly remove apple drops as they fall, a 

laborious and impractical procedure for most growers (Hu et al. 1996). There is also 

indication that the withdrawal of daminozide (Alar) from use in orchards as a treatment to 

prevent fruit from falling prior to ripening has contributed to the problem by permitting 

excessive apple drop (Prokopy et al. 1990 b). 

To combat within-orchard emergence of R. pomonella, one can envision the 

deployment of odor-baited red spheres on a number of trees at the interior of the orchard, 
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which would serve as trap trees to draw and concentrate flies foraging inside the orchard. 

The key to the success of this method hinges upon the ability of odor lures to pull flies 

from trees containing fruit resources to trees containing spheres before significant 

oviposition is initiated. This method is analogous to a trap crop positioned at the interior 

of a field. Along these lines, a trap tree scheme has been proposed for Anastrepha fruit 

flies in Mexico, in which favored native host mango trees that are more attractive than 

commercial mangos could be planted within an orchard to draw and concentrate flies 

(Aluja and Liedo 1986). However, to my knowledge, this type of practice has not yet 

been attempted for control of R. pomonella and protection of apple fruit. 

Here, I separately evaluated both a barrier (perimeter) and trap tree (orchard 

interior) sphere deployment strategy by using similar trapping schemes in artificial 

orchards (patches of potted hawthorn trees). The use of potted tree patches allowed for 

the manipulation of variables not possible to evaluate in commercial orchards, such as a 

no-trap control and different fruit types. Each method was tested with two separate hosts: 

hawthorn (the high-ranking native host of R. pomonella) and apple (an intermediate¬ 

ranking host) with released female flies of high egg load. 

3.2 Materials and Methods 

All tests were carried out during the summers of 1994 and 1995. All flies used 

were females and of wild origin, having emerged from puparia collected from apple drops 

the previous summer. Flies were fed a diet of sugar and enzymatic yeast hydrolysate (3:1 

ratio) until testing at an age of 18-22 days. Allowing test flies to feed on a diet of protein 

insured that most females would be sexually mature and possess a high egg load. In 
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commercial orchards, it is flies of this type that have the greatest potential for causing 

fruit injury. The traps used in the experiments were 8 cm red spheres (Pest Management 

Supply Co., Hadley, MA) coated with Tangletrap™ adhesive (Tanglefoot Co., Grand 

Rapids, MI). Odor lures for the spheres consisted of butyl hexanoate (synthetic fruit 

odor, dispensed from capped 15 ml polyethylene vials) and ammonium carbonate (food 

odor, dispensed from plastic lures produced by R. Heath, Gainesville, FL). The release 

rates of the lures were approximately 500 pg/h for butyl hexanoate (Averill et al. 1988) 

and 650-700 pg/h for ammonium carbonate. Test fruit were either ripe, uninfested 

hawthorns (collected from a wild tree covered the previous summer and stored at 3° C 

until use) or young Gravenstein apples (obtained in late June from a local orchard). 

Hawthorns are the preferred (native) R. pomonella host, while apples are typically a lower 

ranking host (Prokopy et al. 1985). 

For simplification, the perimeter trapping scheme was termed the “barrier” 

method, since the objective was to create a barrier to prevent immigrating flies from 

reaching fruit resources. The within-orchard trapping scheme was designated the “pull” 

method, as the goal was to pull flies away from fruit resources they may have already 

encountered. Using patches of potted trees, it was possible to arrange trapping schemes 

of this sort for both the barrier and pull methods. 

Three patches of nine hawthorn trees each were set up 100 m apart in a large, 

open, mowed field (300 x 300 m). Each tree was fruitless, with an approximate height of 

2 m and a canopy of 1.5 m. Patches were arranged with one central tree, an inner ring of 

four trees at 4 m from center (at the cardinal directions), and an outer ring of four trees at 
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6 m from center (at the cardinal directions). The central tree served as the release point 

for test flies, while the other trees housed either spheres or test fruit. 

For the “barrier” scheme, patches were set up with red sphere traps on the inner 

ring of trees and test fruit on the outer ring. Spheres were deployed one per tree (a total 

of four per patch) and were hung so as to maximize the amount of foliage nearby a trap 

(but no closer than 10 cm). When required, each sphere was baited with four lures 

containing butyl hexanoate and four lures containing ammonium carbonate (four lures 

were used to insure a high amount of odor in the patches), each of which was placed 

within 10 cm of a trap. On each of the outer trees, five fruit (either hawthorns or apples) 

were evenly spaced throughout the tree (attached by copper wire). This design was 

analogous to a perimeter trapping scheme in a commercial orchard in that flies (released 

from the center tree) had first to penetrate trees with traps (the inner ring of trees) before 

reaching host fruit on the outer trees. 

For the “pull” scheme, patches were set up as above except that all spheres were 

placed on outer trees while all fruit were placed on inner trees. This created a situation 

where flies would be drawn through trees containing fruit before reaching trees with 

traps. 

For both the “barrier” and “pull” experiments, there were three treatments: odor- 

baited traps, unbaited traps, and no traps. The no-trap treatment was used as a baseline to 

determine the level of oviposition in the absence of any control measures. On a given test 

day, the three patches were assigned at random to the three “barrier” treatments or the 

three “pull” treatments, with only a single host type evaluated per test day. Prior to 
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testing, flies were color-coded according to patch type using colored Liquid Paper® to 

guarantee that no wild or stray flies would be included in the capture data set. At the start 

of each assay, twenty females were released in each patch on the center tree. Inspections 

of the spheres for captured flies were made hourly. After six hours, spheres were 

removed and test fruit were brought back to the laboratory. The number of eggs laid was 

determined from dissections of test fruit using a microscope. Periodically, test flies were 

dissected to determine egg load. 

Sphere capture and fruit dissection data were analyzed by two way analysis of 

variance in which columns consisted of treatments (odor-baited spheres, unbaited 

spheres, and no-trap patches) and rows consisted of replicates (test days). Where 

ANOVA indicated significant differences existed, means were separated by the least 

significant difference test criterion (a = 0.05). All analyses were carried out with 

Statistix 4.0 software (Analytical Software 1992). 

3.3 Results 

3.3.1 Perimeter Trapping Scheme 

With the “barrier” strategy (Table 3.1), amount of oviposition was significantly 

reduced in hawthorns (over the no trap control treatment) through the use of baited or 

unbaited red sphere traps (F = 5.08, df = 2, 23, P < 0.05). The difference amounted to a 

62-63 % reduction in the number of eggs laid compared with numbers laid in patches 

without traps. Odor-baited red spheres (but not unbaited spheres) reduced oviposition in 

apples (by 100 %), although the difference was not significant due to higher variance. 

For both hawthorns and apples, odor-baited spheres captured significantly more flies than 
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unbaited spheres (hawthorns: F= 18.71, df = 1, 23, P < 0.05; apples: F= 9.46, df = 1, 23, 

P < 0.05). 

3.3.2 Within-Orchard Trapping Scheme 

For the “pull” strategy (Table 3.1), odor-baited spheres significantly reduced 

oviposition (by 76 %) in hawthorns over the no trap control treatment (F = 5.71, df = 2, 

23, P < 0.05). Unbaited traps also reduced the number of eggs found (by 33 %), although 

the difference was not significant from the no-trap treatment. With apples, oviposition 

was reduced by both odor-baited (70 %) and unbaited spheres (96 %), but not 

Table 3.1. Number of released R. pomonella flies captured and amount of egglaying 

(oviposition) in tree patches where “barrier” and “pull” trapping schemes were 

deployed. There were 12 replicates per treatment. 

Fr«///Treatment 

BARRIER SCHEME 

Mean captures per Mean eggs laid per 

replicate (± SEM)a replicate (± SEM)a 

PULL SCHEME 

Mean captures per Mean eggs laid per 

replicate (± SEM)a replicate (± SEM)a 

Hawthorn 

--Baited Traps 11.2 (0.8) a 3.7 (1.6) b 8.8 (1.0) a 3.6 (1.3) b 

--Unbaited Traps 7.3 (0.9) b 3.8 (1.6) b 6.1 (0.7) b 10.0 (3.1) ab 

—No Traps —— 10.1 (1.6) a .... 14.9 (2.4) a 

Apple 

—Baited Traps 10.5 (1.1) a 0.0 (0.0) a 8.3 (1.0) a 0.7 (0.4) a 

—Unbaited Traps 7.0 (1.1) b 2.4 (1.5) a 6.0 (1.0) a 0.1 (0.1) a 

—No Traps —— 2.5 (1.3) a .... 2.3 (1.2) a 

aFor each trapping method, captures and ovipositions were analyzed by two-way analysis 

of variance. Values for each fruit type in each column with separate letters are 

significantly different by the least significant difference test at the 0.05 level. 
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significantly (P > 0.05). Sphere captures were numerically greater on baited traps than on 

unbaited traps for both hawthorns and apples, although the difference was significant 

only for hawthorns (F= 8.89, df = 1, 23, P < 0.05). 

Two way analysis of variance for the fly capture and oviposition data in both the 

“pull” and “barrier” experiments revealed that there was no significant effect of replicates 

(test days) on sphere captures or egg laying (P > 0.05). Dissections of test flies revealed 

an average egg load of 23.4 (± 2.8) per female, which did not vary among treatments. 

3.4 Discussion 

Based on the results of this study, both the perimeter (“barrier”) and within 

orchard (“pull”) trapping methods tested here would seem to have potential for managing 

R. pomonella. With both methods, the use of odor-baited red spheres significantly 

reduced oviposition in hawthorns over a no-trap situation. A similar reduction in the 

number of eggs laid was also observed with apples, although R. pomonella oviposition in 

apples was too variable (even in the no-trap treatment) to be statistically significant. 

The work here with potted trees allowed us to manipulate variables that would 

normally be impractical to alter in a commercial orchard. By using released flies of wild 

origin, it was possible to test exclusively high-egg-load females, which represent flies 

with the most potential to damage fruit in nature. It was also feasible to use hawthorns as 

a test fruit, which are a favored R. pomonella host and are analogous to the most 

susceptible cultivar of apple a grower could have in an orchard. Given these “worst 
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case” scenarios tested here, the positive effects of the trap deployment methods evaluated 

were encouraging, in terms of both capturing flies and preventing oviposition. 

The use of a barrier on the perimeter of a field to intercept immigrating pests is 

central to using a trap crop approach to pest management. Trap crops, baited with the 

pheromone grandlure and deployed at the edge of a field, have shown promise as a 

management tool for the cotton boll weevil, Anthonomus grandis Boheman (Dickerson 

1986). In cauliflower, the rape blossom beetle, Meligethes aenus F., has been 

successfully controlled with trap crops that form a barrier between the field and the 

source of infestation (Hokkanen et al. 1986). Other recent studies have demonstrated the 

effectiveness of using perimeter trap crops for controlling the olive beetle, Phloeotribus 

scarabaeoides (Bern.) (Gonzalez and Campos 1995), and the red sunflower weevil, 

Smicronyx fulvus LeConte (Brewer and Schmidt 1995). With some of these pests (cotton 

boll weevil, olive beetle), the use of odor attractants and pheromones has served to 

increase the effectiveness of trap crops. These pest insects share much in common with 

R. pomonella in that they are highly mobile and usually originate from sites away from 

target crops. 

With R. pomonella, research has demonstrated the effectiveness of odor-baited 

perimeter traps at reducing insecticide applications while maintaining an acceptable level 

of fruit injury (Prokopy et al. 1990; Prokopy and Mason 1996). However, due to the 

constraints associated with experiments conducted in commercial orchards, such efforts 

did not directly test the efficacy of perimeter traps against a no-trap treatment. The data 

obtained in this study seem to support the benefits of barrier traps observed in 
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commercial orchards, demonstrating that with high egg load flies and a very susceptible 

host fruit (hawthorn), it is still possible to significantly reduce fruit injury. These 

advantages were also observed with apples, a lower ranking host, although not 

significantly in the experiments reported here. 

Within-orchard emergence of R. pomonella presents a greater dilemma for pest 

management. Flies emerge in close proximity to fruit resources and must be pulled away 

to traps before inflicting serious damage. Here, the data suggest that this may be 

possible. The large reduction (76 %) of oviposition in hawthorns is indicative that odor 

lures were able to draw flies through trees containing favored fruit hosts to red sphere 

traps. This type of trap deployment within an orchard is comparable to a trap cropping 

situation in which pests arrive at a field early in the season, before the crop is vulnerable 

to infestation. In these cases, pests are not concentrated in trap crops on the perimeter 

(since they are not yet attractive), but rather disperse throughout the field. The placement 

of trap crops within the field becomes necessary, once the crop becomes attractive and 

vulnerable (Hokkanen 1991). 

Another analogous scenario to the “pull” method evaluated here has been tested 

with the mountain pine beetle, Dendroctonus ponderosae Hopkins. There, it was 

demonstrated that trees in the center of a forest stand baited with attractive 

semiochemicals were able to concentrate beetles and prevent tree damage to surrounding 

areas of the stand (Gray and Borden 1989). Indeed, trap trees have been a common 

approach to managing many species of bark beetles (Bakke and Lie 1989). 
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An important factor to consider in these experiments is the amount of odor used 

with each trap. Four odor lures each of butyl hexanoate and ammonium carbonate were 

used, a high amount of each type. By using this large amount, it was hoped that the trap 

trees would be made “super attractive,” surpassing the attractiveness of trees containing 

fruit. A similar approach has been envisioned for orchards, with a small number of 

optimally selected trees on the interior containing one or more traps in company with 

multiple odor baits to increase trap power. However, the use of multiple odor lures 

would increase the cost of deploying sphere traps. 

When one considers the structural differences between commercial orchards and 

the “artificial orchard” tree patches used here, it becomes clear that the extrapolation of 

findings here into real-world orchards for the purpose of predicting the precise efficacy of 

the two trapping methods is inadvisable. Rather, this research demonstrates the relative 

effectiveness of each method for preventing oviposition and the potential each has for use 

in commercial orchards. Ideally, future studies will compare these methods in orchards. 

However, this will prove difficult because growers are reluctant to tolerate unsprayed 

patches of trees without traps. 
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CHAPTER 4 

APPLE MAGGOT FLY RESPONSE TO PERFORATED RED SPHERES 

4.1 Introduction 

The apple maggot, Rhagoletis pomonella (Walsh), is a major pest of apples in 

eastern and central North America. Recently, odor-baited sticky traps have been used as 

a substitute for pesticide in controlling apple maggot in several commercial orchards 

(MacCollom 1987, Prokopy et al. 1990a). To date, the most economically effective trap 

has proven to be an 8 cm red sphere coated with Tangletrap® adhesive and baited with 

synthetic food and/or fruit odor (Duan & Prokopy 1992). One of the impediments to 

greater use of such spheres by apple growers is the laborious process of coating the 

spheres with a sticky adhesive and cleaning them of insects and debris every two weeks 

to maintain capturing effectiveness (Duan & Prokopy 1995b). 

In concept, pesticide applied to spheres could be an effective substitute for 

adhesive in killing R. pomonella. Toward this end, Duan & Prokopy (1995a) showed that 

spheres coated with a mixture containing dimethoate, sucrose as a feeding stimulant 

eliciting fly ingestion of pesticide, and latex paint as a residue-extending agent killed a 

large majority of alighting R. pomonella before exposure to rainfall. After rainfall, 

however, the spheres were less effective, largely due to loss of feeding stimulant. An 

analogous trap for the olive fruit fly, Dacus oleae (Gmelin), consisting of a plywood 

rectangle soaked in deltamethrin and sucrose, provided effective control in Greece 

(Haniotakis et al. 1991). However, no rain fell during the trapping period due to the dry 

climate. 
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There have been two principal approaches to eliminating the negative effects of 

rainfall on the residual activity of pesticide and feeding stimulant: (1) using a protective 

cover to prevent rainfall from contacting the spheres, and (2) finding a more effective 

residue-extending polymer to combine with or substitute for latex paint (Prokopy et al. 

1995). Regarding the former, to date all tested variants of protective covers placed above 

spheres have been found to reduce alightings of R. pomonella by at least 50 percent, an 

unacceptable level (Duan & Prokopy 1992). A possible alternative to a protective cover 

is the placement of pesticide, feeding stimulant, and synthetic food and fruit odor within a 

hollow, perforated sphere. The wall of the sphere would serve to protect the interior from 

rainfall. A similar perforated, cylindrical trap baited with food odor is being developed 

for the Mediterranean fruit fly, Ceratitis capitata (Weidmann) (Health & Epsky 1995). 

However, to my knowledge, spheres of this type have not yet been evaluated against R. 

pomonella or any other tephritid flies. Previously, Reissig (1974, 1975) evaluated a 

yellow hollow rectangular box with a hole on each side and food odor and pesticide on 

the interior as a potential trap for R. pomonella. Initially, it appeared to be an effective 

trap in trees harboring hungry adults, but subsequently it proved ineffective when 

evaluated under a broader range of field conditions. 

Here, I first evaluated R. pomonella response to internally and externally-baited 

red spheres perforated with holes and to internally-baited spheres with varying numbers 

of holes. Post-alighting behavior was then observed on internally-baited spheres with 

varying numbers of holes. Finally, I evaluated commercially available red sphere traps 

designed so that both feeding attractant and pesticide are contained in a liquid inside the 
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trap and are released through a sponge on the underside of the sphere, protected from 

rainfall. 

4.2 Materials and Methods 

4.2.1 Internally Versus Externally-Baited Spheres 

In the first experiment, internally and externally-baited red spheres were evaluated 

for propensity to capture R. pomonella in a commercial orchard. The spheres (obtained 

from Pest Management Supply Co., Hadley, MA) consisted of two separate, hollow 

halves (10 cm diam.), which allowed odor baits to be placed inside the trap. Odor baits 

consisted of one unit each of synthetic fruit odor (butyl hexanoate, dispensed from a 

capped 15 ml polyethylene vial) and synthetic food odor (ammonium carbonate packet, 

purchased from R. Heath, Gainesville, FL). Spheres were perforated with three 2.4 cm 

holes. Four treatments were set up: (1) internally-baited spheres with two cardboard 

strips containing dimethoate (also placed inside) as the killing agent, (2) internally-baited 

spheres coated with a layer of Tangletrap (from the Tanglefoot Co., Grand Rapids, MI), 

(3) externally-baited spheres (odors placed about 10 cm from the traps) with Tangletrap, 

and (4) externally-baited, non-perforated spheres with Tangletrap. The test was conducted 

in an orchard block of about 30 Gravenstein apple trees. Traps were positioned, one per 

tree according to methods described by Duan & Prokopy (1992). After one week, 

captured flies were counted and removed, and the trap types were rotated. Capture data 

were analyzed using a two way ANOVA, in which columns consisted of trap type and 

rows consisted of replicates. 
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4.2.2 Perforated Spheres with a Variable Number of Openings 

In the second experiment, sticky 0-, 3-, 6-, 12-, and 24-hole spheres were 

evaluated for propensity to capture R. pomonella. Holes were 2.4 cm diam. except for the 

24-hole spheres, which were 1.4 cm. The odor baits used in this test were the same as in 

the first experiment. All traps were coated with Tangletrap and internally-baited (except 

for the 0-hole sphere, which was externally-baited). One trap of each type was hung in a 

large hawthorn tree known to contain a substantial R. pomonella population. Once daily, 

the traps were checked for R. pomonella captures, cleaned, and rotated. This was done 

for one complete rotation (5 days). For each day, the total number of fly captures over all 

trap types was summed and a percentage of that total was then calculated for each trap 

type. By using this approach, any day-to-day fluctuations in R. pomonella population 

size and activity were negated. Data were analyzed using a two way ANOVA, in which 

columns consisted of trap type and rows consisted of test days (trap position). 

4.2.3 Post-Alighting Behavior on Perforated Spheres 

In the third experiment, post-alighting behavior of R. pomonella was observed on 

internally baited, red spheres with 3, 6, 12, or 24 holes. We wanted to determine fly 

inclination to enter holes to the interior of the trap (where feeding stimulant and pesticide 

could potentially be located). The same hawthorn tree and traps used in the second 

experiment were used in this test. Three traps of each type were hung and monitored for 

R. pomonella alightment, flies entering trap holes and time spent on the sphere. 

Residence times of R. pomonella on the spheres were analyzed by a one way ANOVA. 
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4.2.4 Post-Alighting Behavior on Fruitect Spheres 

In the fourth experiment, an alternative trap type (Fruitect trap, mfd. by RonPal 

Ltd., Rishpon, Israel) and red wooden spheres were evaluated for R. pomonella post¬ 

alighting behavior. The Fruitect trap consisted of a red plastic sphere (12.5 cm diam.) in 

which a feeding attractant (protein hydrolysate) and feeding stimulant (sucrose) were 

dispensed from the interior to the exterior via a sponge that formed a 1.0 cm band on the 

underside of the sphere. Red wooden spheres (8.0 cm diam.) were dipped in an aqueous 

solution of 20% sugar prior to testing. The test was conducted in an indoor field cage by 

hanging four spheres (Fruitect and wooden spheres were tested separately) in a potted fig 

tree. For each trial, 40 female R. pomonella were released and allowed to forage freely 

for up to 1 h. Test flies were of wild origin, aged 3-4 weeks, and were either starved of 

all protein or continually fed protein since eclosion. Alighting flies were monitored for 

total time on the sphere and time spent feeding. Data on residence time, percent feeding, 

and feeding time were analyzed using two sample t-tests. 

4.3 Results 

4.3.1 Internally Versus Externally-Baited Spheres 

In Experiment 1 (Table 4.1), approximately 30-40 % fewer R. pomonella were 

caught on 3-hole sticky traps internally-baited than on externally-baited sticky traps with 

or without 3 holes. Internally-baited 3-hole traps with pesticide instead of Tangletrap® as 

the killing agent failed to trap a single fly over the entire experiment. 
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4.3.2 Perforated Spheres with a Variable Number of Openings 

In Experiment 2 (Table 4.2), externally-baited traps with no holes captured the 

highest number of flies and had the highest daily percentage of fly captures. Daily 

percent fly captures were about 15-40 % less on the internally-baited spheres, although 

two way ANOVA showed that differences among all five trap types were not significant. 

4.3.3 Post-Alighting Behavior on Perforated Spheres 

In Experiment 3 (Table 4.3), 0, 0, 0 and 16 % of alighting flies, respectively, 

entered holes in 3-, 6-, 12-, and 24-hole spheres. Flies spent more time on 3- (significant) 

and 24-hole spheres than on 6- and 12-hole spheres. 

4.3.4 Post-Alighting Behavior on Fruitect Spheres 

In Experiment 4 (Table 4.4), a significantly greater proportion of alighting flies 

fed on red wooden spheres than on Fruitect traps. This was true for protein-fed flies (90 

vs. 2 %) and protein-starved flies (75 vs. 23 %). Protein-fed flies on red wooden spheres 

fed much longer than flies on Fruitect traps (although the sample size feeding on Fruitect 

traps consisted of only one fly). Protein-starved flies on Fruitect and red wooden spheres 

showed no significant difference in mean time feeding. 

4.4 Discussion 

Our findings indicate that the trap designs tested here are not an effective 

alternative to prototype pesticide-coated spheres described by Duan & Prokopy (1995a). 

To kill R. pomonella alighting on a sphere using pesticide instead of Tangletrap®, flies 

must remain on the sphere long enough to acquire a lethal dose of toxicant. This is best 

accomplished when toxicant is combined with a feeding stimulant (such as sucrose) and a 
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high percentage of alighting flies contacts the pesticide/sucrose mixture (Duan & 

Prokopy 1995a). The trap designs tested here failed in this regard. 

The perforated hollow red spheres were constructed to protect both feeding 

stimulant and pesticide from rainfall by encasing them within the sphere. Success, 

however, is contingent upon the notion that alighting R. pomonella will readily enter trap 

holes to gain access to feeding stimulant and pesticide. This did not prove to be the case. 

In Experiment 3, only a very small percentage (no more than 16%) of flies alighting on 

perforated spheres actually entered a hole, regardless of the number of holes per sphere. 

Clearly, this is inadequate, as the vast majority of flies alighting on spheres will never 

come into contact with the killing agent. Reluctance to enter openings into traps has been 

shown in other tephritid flies as well. Reissig (1976) showed that with the cherry fruit 

flies Rhagoletis fausta (Osten Sacken) and R. cingulata (Loew), traps requiring the flies 

to enter constricted openings were not effective. Prokopy & Economopoulos (1975) 

showed that non-sticky McPhail traps (which require flies to enter a port for capture) 

captured less than half of arriving olive flies. Similarly, Aluja et al. (1989) found that 

only 31 % of Anastrepha spp. flies alighting on McPhail traps were ultimately captured. 

However, tests have shown that perforated cylindrical traps baited internally with food 

odor have promise for capturing both female and male Mediterranean fruit flies, although 

the percent of alighting flies that ultimately are captured is unknown (Heath & Epsky 

1995). The reason why most R. pomonella in this study and most tephritid flies in other 

studies were not inclined to enter holes in traps containing bait on the interior is 
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uncertain. Possibly, most alighting flies do not come into contact with plumes of 

attractive odor emanating from trap holes. 

The Fruitect red spheres tested here also failed to elicit a sufficient level of fly 

feeding to be effective. As was the case with hollow perforated spheres, most R. 

pomonella alighting on Fruitect traps departed without ever contacting the site of feeding 

stimulant and potential killing agent. The problem with Fruitect spheres may be that the 

sponge containing the feeding stimulant represents only a small part of the total surface 

area of the sphere. Conversely, flies that alighted on sucrose-coated red wooden spheres 

were exposed to feeding stimulant almost immediately upon tarsal contact with the 

sphere surface. 

An additional factor to consider is trap attractiveness to foraging flies. We found 

in Experiments 1 and 2 that internally-baited red spheres were consistently slightly less 

attractive to R. pomonella than externally-baited spheres. A possible explanation for this 

is that the amount of odor released may have been reduced by positioning odors inside 

the sphere as opposed to outside. 

To date, three approaches towards the development of a pesticide-treated sphere 

for controlling R. pomonella have been evaluated. The first of these is coating the 

exterior of the sphere with both feeding stimulant and pesticide. This approach is 

represented by the 8 cm wooden spheres described by Duan & Prokopy (1995a). These 

traps have been shown to be as effective as traditional red sticky spheres in managing R. 

pomonella in commercial orchard blocks, with the major drawback being negative effects 

of rainfall (Duan & Prokopy 1995b). The second and third approaches (tested here) 
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attempted to modify sphere design so that feeding stimulant and pesticide could be 

protected from rainfall. The second approach places feeding stimulant and pesticide 

within the trap interior, thus protecting it from rain. The third approach places feeding 

stimulant on the interior which is dispensed to the surface of the trap through a sponge. 

Neither of these two designs showed promise as an alternative to the first approach. 

Future research efforts will be directed at increasing the residual effectiveness of exterior- 

coated pesticide spheres using residue extending agents. 
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Table 4.1. Mean number of R. pomonella captured per replicate on four red 

sphere trap treatments. Each treatment was baited with one unit each of butyl 

hexanoate and ammonium carbonate. There were 12 replicates (n=12). 

Trap Type Killing 

Agent 
Odor Position Mean No. Flies Captured 

Per Replicate ± SE a 

3-hole Dimethoate Internal 0.0 ± 0.0c 

3-hole Tangletrap Internal 24.3 ± 5.8b 

3-hole Tangletrap External 41.3 ± 7.6a 

0-hole Tangletrap External 36.1 ±5.8ab 

a Column values with different letters are significantly different according to two way 

ANOVA and LSD criterion at the 0.05 level. 

Table 4.2. R, pomonella captures on baited red sticky spheres with different numbers 

of holes. All traps were internally-baited except the 0-hole trap which was 

externally-baited. Results for each trap type are expressed as the mean 

percentage of total daily captures for all trap types combined. There was 

a total of 5 one-day capture periods (n=5). 

Total No. Trap Mean Percent of Total 

Trap Type Captures Daily Captures ± SE a 

0-hole 347 25.9 ±4.9 

3-hole 285 21.4 ± 3.3 

6-hole 203 15.1 ±3.2 

12-hole 193 15.3 ± 1.9 

24-hole 286 22.3 ±2.8 

a Differences in percentage captures between trap types were not significant according to 

two way ANOVA at the 0.05 level. 
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Table 4.3. Mean R. pomonella residence time and fly propensity to enter holes in red 
sphere traps with varying numbers of holes. Each trap was internally-baited 
with one unit each of butyl hexanoate and ammonium carbonate. 

Trap Type 
No. Flies 
Alighting 

Mean Time Per Fly Spent on 
Trap ± SE a 

% Alighting Flies Entering 
Trap Holes ± SE 

Exp. A 

3-hole (pesticide) 36 118.3 ± 30.7a 2.8 ±2.8 

3-hole (no pesticide) 23 163.2 ± 71.4a 0.0 ±0.0 

Exp. B 

6-hole (no pesticide) 25 18.4 ± 3.0b 0.0 ±0.0 

12-hole (no pesticide) 25 38.9 ± 11.2b 0.0 ±0.0 

24-hole (no pesticide) 25 110.2 ± 27.5a 16.3 ±7.5 

aMean times were analyzed separately for Exp. A and B. Exp. A was analyzed by a two 
sample t-test. Exp. B was analyzed by one way ANOVA. For each experiment, column 
values with different letters are significantly different at the 0.05 level. 

Table 4.4 Mean residence and feeding times of R. pomonella on Fruitect and red 
wooden sphere traps in an indoor field cage study. 

Fly type 
--Trap Type 

No. Flies 
Alighting 

Mean Time Per Fly Spent 
on Trap ± SE a 

% Feeding 
± SE a 

Mean Feeding Time Per 
Fly ± SE a 

Protein Fed 

--Fruitect 51 204.3 ± 41.5a 2.0 ± 2.0b 5.0 ± — 

—Wooden sphere 30 204.8 ± 46.2a 90.0 ± 5.6a 212.0 ± 51.2 

Protein Starved 

—Fruitect 52 240.2 ± 27.5a 23.1 ± 5.9b 162.7 ± 35.4a 

--Wooden sphere 40 161.5 ± 30.2a 75.0 ± 6.9a 172.0 ± 32.3a 

a Protein fed and protein hungry flies were analyzed separately. For each fly type, 
column values with different letters are significantly different according to a two sample 

t-test at the 0.05 level. 
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