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INTRODUCTION 

Insect defense mechanisms to various foreign organisms do not 

appear to be homologous to their counterparts in the vertebrate system. 

They are far less specific since antibodies are not formed and no immu¬ 

nological memory is seen as measured by an increased responsiveness to 

foreign substances as a result of prior exposure (Good and Papermaster 

1964; Saunders 1970). 

Nevertheless insects are clearly capable of protecting themselves 

from parasitic organisms. Many insects exhibit phagocytosis against var¬ 

ious microorganisms, such as viruses, bacteria, fungi and protozoans, 

wherein a single host hemocyte engulfs these foreign particles (Salt 

1970). But against foreign bodies too large to be phagocytized by a 

single cell, such as metazoan parasites, the primary mechanism of defense 

is encapsulation (Salt 1970). 

Encapsulation may be defined as the accumulation of host cells 

(usually hemocytes) around a parasite resulting in the formation of a 

capsule (Salt 1970). Often encapsulation is accompanied by the deposi¬ 

tion of a black pigment, generally referred to as melanin, on or near 

the surface of the parasite. This response is commonly referred to as 

melanotic encapsulation (Salt 1963, 1970; Shapiro 1969; Poinar 1969, 

1974), If encapsulation is successful, the parasite is killed or at 

least restricted in its movements (Salt 1970). 

The study of insect defense mechanisms to various parasites is not 

purely academic. We are in an age where we can no longer depend solely 

upon chemical agents for control of insect pests. Integrated control is 
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becoming widely accepted and the use of parasitic organisms has great 

potential. Many field studies have already been conducted utilizing 

nematode parasites as potential biological control agents (Jaques 1967; 

Israel et al. 1969; Nash and Fox 1969; Harlan et al. 1971; Benham and 

Poinar 1973)* But before we can go any farther we must develop a better 

understanding of the mechanisms involved in insect defense reactions. 

It is vital to future research to determine why certain parasites are 

encapsulated and others are not. For example, certain species of mos¬ 

quitoes have been shown to exhibit varying degrees of resistance to par¬ 

asitism by encapsulating the nematode Feesimermis nielseni (Peterson et 

al. 1968; Peterson and Willis 1972; Peterson 1973)1 while on the other 

hand these same species of mosquitoes readily encapsulate the nematode 

Neoaplectana carpocapsae. 

Biological control programs which seek to utilize entomophilic 

parasites must have a better understanding of insect defense reactions. 

This will enable them to choose the right parasite for a particular in¬ 

sect pest and hopefully lead to a more effective manipulation of insect 

pest populations. 

This thesis consists of a literature review which provides infor¬ 

mation on encapsulation and melanization of internal metazoan parasites 

and the changes that occur in host hemolymph proteins during these reac¬ 

tions. The remainder of the thesis contains all experimental work, writ¬ 

ten in manuscript form which will be submitted for publication* 
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LITERATURE REVIEW 

Defense reactions of insects to metazoan parasites 

The primary mechanism of defense in insects to metazoan parasites 

is encapsulation. It has been observed in a few hundred species of in¬ 

sects representing fifteen orders, and as more insects are investigated 

the list will undoubtedly increase (Salt 1$f'D). 

There appear to be two distinct methods of capsule formation: cel¬ 

lular and humoral, the latter occurring without the direct participation 

of hemocytes. 

Cellular encapsulation. Cellular capsules formed in different in¬ 

sects are similar in basic structure but show a good deal of variety in 

detail that is characteristic of the insect forming the capsule and the 

parasite or foreign object being encapsulated (Salt 1970). In an attempt 

to classify capsules surrounding parasites, Salt (1970) tentatively dif¬ 

ferentiated between two kinds, the cellular and sheath type. Cellular 

capsules are composed of hemocytes which adhere close to the parasite and 

form a consolidated tissue fifty cells or more thick. Melanization may 

follow but is often partial. Sheath capsules, on the other hand, are 

much thinner and consist of a tough brown inner sheath generally referred 

to as melanin, overlain by relatively few layers of cells. Melanization 

is complete. Most evidence indicates that capsules of this nature are 

formed principally, if not exclusively, by hemocytes (Salt 1970). Occa¬ 

sionally fat body, tracheoles, muscle and even malpighian tubules are 

attached to the capsule, but this is believed to be due to hemocytes ag¬ 

gregating in such a way as to include them, rather than to their own 
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active participation (Salt 1970; Stoffolano and Streams 1971)• 

Considerable literature has been written on the structure and 

development of cellular capsules. Early studies at the light microscope 

level described spherical hemocytes aggregating around a foreign object 

or parasite and gradually becoming flattened over its surface (Salt 1963)* 

It has been suggested by Nappi (197*+) that the flattening of hemocytes 

during capsule formation may represent an unsuccessful attempt by indi¬ 

vidual cells to engulf the parasite and contributes to their ability to 

adhere to the parasite and cohere to each other. 

As the reaction continues more hemocytes are continuously added 

and after a few hours to a few days, depending on the host, the capsule 

can be seen to be divided into two distinct layers: a relatively trans¬ 

parent layer next to the parasite and an outer less transparent layer 

which is composed largely but not exclusively of flattened hemocytes 

(Meyer 1926; Lartschenko 1933; Salt 1963)- Many hemocytes associated 

with the outer layer of the capsule retain their original spherical 

shape and may eventually separate from the mass and disperse into the 

hemolymph resulting in a decrease in the size of the capsule after maxi¬ 

mum development (Salt 1955i 1956, 1963)• 

While many early investigators interpreted the inner structure of 

the capsule as being syncytial, a disagreement existed whether this was 

the case (Lazarenko 1925; Meyer 1926; Chen 193*+) • 

Recent electron microscope studies of capsule ultrastructure in 

some insects have shown that cells retain their integrity with no break¬ 

down of cell membranes (Grimestone et al. 1967; Poinar et al. 1968). 
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Grimestone et al. (1967) studied the ultrastructure of hemocytic 

capsules formed around small pieces of Araldite which were implanted into 

the hemocoel of the Mediterranean flour moth, Ephestia kuehniella. 

Thick compact cellular capsules 40-50 m thick were completed by 72 

hours and were comprised of three regions. The cells in all three lay¬ 

ers retained their integrity and provided no evidence for the formation 

of a syncytium. However, the possibility that some fusion of cells may 

have occurred could not be excluded. 

Poinar et al. (1968) studied the ultrastructure and formation of 

melanotic cellular capsules in Diabrotica sp. in response to parasitism 

by the nematode Filipjevivermis leipsandra. Initial hemocytes making 

contact with the parasite underwent autolysis releasing cytoplasm over 

the nematodes cuticle. Within a few hours after cell lysis, the liber¬ 

ated cytoplasm entered the cuticular folds of the nematode and was 

transformed into an electron dense layer, identified as melanin. How¬ 

ever, the majority of cells that formed the capsule did not lyse, but 

displayed various degrees of necrosis and formed dense inclusions which 

were suggested to represent intracellular stages in the production of 

melanin. 

By 72 hours, encapsulation was complete and definitive capsules 

could be seen to be comprised of four distinct regions: (l) an inner 

noncellular region composed of melanin, (2) a single irregular layer of 

entirely necrotic, partially melanized cells, (3) a- third region con¬ 

sisting of three to four layers of closely packed flattened cells, (4) 

and outer region of loosely attached cells which closely resembled 

normal circulating hemocytes. 
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With the exception of those cells involved in the formation of the 

layer of melanin, most hemocytes retained their integrity and did not 

form a syncytium (Poinar jet al. 1968). 

Humoral encapsulation. Encapsulation as defined by Salt (1970) is 

carried out exclusively by hemocytes; but, recent studies suggest that 

in insects such as chironomids and culicids, where circulating hemocytes 

are rare, encapsulation and melanization can be accomplished without the 

direct participation of hemocytes (Gotz 1969; Poinar and Leutenegger 

1971; Gotz and Vey 197*0* In this case the deposition of melanin is at¬ 

tributed to components in the noncellular portion of the hemolymph which 

precipitate or coagulate out on the surface of the nematode (Poinar and 

Leutenegger 1971)* 

Kartman (1956) reported that in Aedes aegypti an encapsulating 

pigment was deposited about microfiliariae of Dirofilaria immitis as a 

fine coating showing cuticular striations of the nematode. 

Esslinger (1962) described a case of "pigmental encapsulation" in 

Anopheles quadrimaculatus in response to parasitism by microfilariae of 

Brugia pahangi. Brown homogeneous plaques, intermingled with an acellu¬ 

lar fibrous material, could be observed to adhere to the surface of the 

microfilariae in the abdominal hemocoel of the mosquito. There was no 

indication that this response was directly associated with any specific 

type of cell. 

Bronskill (1962) studied the formation of capsules in larval 

A. aegypti parasitized by juveniles of the rhabditoid nematode 

Neoaplectana carpocapsae (formally known as DD-I36). Shortly after in¬ 

vasion of the hemocoel of the host, extremely thin, minute particles of 
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melanin began to be deposited in a continuous layer over the surface of 

the nematode. The deposition of melanin continued until the nematode 

was completely enveloped in a thinly melanized sheath. Coincident with 

melanin deposition, host hemocytes, containing cytoplasmic melanin par¬ 

ticles, accumulated about the partially melanized sheath. The proximal 

cells soon became completely melanized and were deposited as chunks of 

melanin over the nematode. 

In histological section the capsule appeared as a two layered 

structure consisting of an inner layer of melanin clumps, deposited on 

the initially melanized cuticular sheath and an outer layer of host 

hemocytes, many of which contained melanin particles in their cytoplasm. 

Similar capsule formation was also observed in larvae of Aedes 

stimulans and Aedes trichurus parasitized by the same nematode (Bronskill 

1962). 
In an ultrastructural investigation of encapsulation of N. 

carpocapsae in larval Culex pipiens, Poinar and Leutenegger (1971) re¬ 

ported the formation of a melanized sheath about the nematode without 

the direct participation of hemocytes. Soon after entry into the host's 

hemocoel an initial homogeneous matrix was deposited around the nema¬ 

tode. Within the matrix minute pigment granules began to form which 

eventually enlarged and coalesced resulting in a uniform layer of 

melanin around the parasite. Electron micrographs revealed a sheath 

composed of two regions: (1) an inner, melanized homogeneous layer ad¬ 

jacent to the nematode which failed to demonstrate any definite struc¬ 

tures or cell organelles and (2) a non-melanized or lightly melanized 

homogeneous region about the edge of the sheath. Occasionally a third 
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layer containing cellular debris and tracheole elements was observed 

along with cell organelles, which probably arose from the lysis of 

tracheoles and hemocytes (Poinar and leutenegger 1971)* 

They hypothesized three possibilities for the origin of this 

capsular matrix: (l) it could be connective tissue which adheres to 

the nematode as it brushes past the internal organs during its move¬ 

ment in the host, (2) it could arise from hemocytes liberating a de¬ 

posit on contact with the parasite, (3) it could consist of protein 

coagulating out of the non-cellular portion of the hosts hemolymph. 

Based on, (1) the uniformity of the deposit, which would be unlikely 

to occur by chance contact with host tissue, (2) the absence of any 

cellular inclusions, revealed from electron micrographs and (3) the 

relatively few circulating hemocytes in _C. pipiens, support was given to 

the third hypothesis. 

In working with Chironomus larvae Gotz (1969) reported humoral 

encapsulation against juveniles of the mermithid, Hydromermis contorta. 

Within two to three minutes after penetration of the host's hemocoel, 

deposition of a capsular substance appeared as droplets upon the nema¬ 

tode cuticle which increased in number and size until a complete envelope 

was formed. This was soon followed by melanization and thickening of 

the capsule. 

The same response was elicited when nematodes were placed in a 

drop of isolated hemolymph in vitro, and electron micrographs showed no 

difference in the ultrastructure of capsules formed in vivo and in vitro 

(Gotz 1969). The capsular substance was not secreted by hemocytes at¬ 

tached to the parasite but developed from precursors dissolved in the 
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hemolymph (Gotz 1969)* 

Knowledge of this type of humoral encapsulation has not been re¬ 

stricted to parasitic nematodes. It occurs in Chironomus larvae in re¬ 

sponse to other nematodes, Turbatrix aceti and Rhabditis sp. (Gotz 1969i 

1973)i and against certain pathogenic fungi, Aspergillus niger and Mucor 

hiemalis (Gotz and Vey 197*0 • Humoral encapsulation does not occur in 

response to inanimate substances such as glass fibers, nylon, cellulose, 

or iron particles (Gotz 19^9)- 

Although humoral encapsulation is rare and does not usually occur 

against parasites in their "natural hosts," it may be a fairly common 

response when parasites invade "foreign hosts" (Poinar 197*+)• 

Effects of encapsulation on the parasite. The effects of encap¬ 

sulation on invading parasites will vary depending on the insect forming 

the capsule and the parasite being encapsulated. 

Those effects, can be categorized as follows: 

1. No perceivable effect—Trematode metacercariae are frequently 

encapsulated but their development is normal and unrestricted (Poinar 

1969). 

2. Suppression of parasite activity—Capsules may provide a bar¬ 

rier which will restrain the movements of an active parasite through the 

hemocoel of the host (Salt 1970). 

3. Petard growth—Retardation of growth is common in parasites 

that are partially encapsulated and therefore not killed (Miller 19*+3)* 

4. Inhibition of development—Encapsulation may provide a physical 

effect by permanently imprisoning a parasite and preventing its growth 

but allowing it to remain alive for a considerable time (Muldrew 1953; 
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Bronskill I960; Welch and Bronskill 1962; Nappi and Stoffolano 1971; 

Stoffolano and Streams 1971)* It has been suggested that inhibition of 

further parasite development may be due to the capsule interfering with 

oxygen supply to the parasite (Bronskill i960, 1962). 

5. Death—Death due to encapsulation may result from a number of 

factors, none of which has proved conclusive. A good deal of evidence 

has shown oxygen tension to be low inside a capsule (Salt 1963) and many 

investigators believe that encapsulated parasites die due to asphyxia¬ 

tion (Muldrew 1953; Wigglesworth 1959; Bronskill I960; Salt 1970). This 

could explain why encapsulation must be complete to be effective (Van den 

Bosch 1964), 

The efficiency of encapsulation as a defense mechanism. Encapsu¬ 

lation in insects has been shown to be an effective method of dealing 

with many foreign organisms. Healthy insects, in general, will encapsu¬ 

late any parasite that invades their hemocoel unless the parasite has 

and uses some specific means of avoidance (Salt 1970). 

Habitual parasites have developed a variety of mechanisms which 

enable them to avoid or suppress encapsulation in their "natural hosts" 

(Salt 1965, 1966, 1968; Lewis and Vinson 1968; Nappi and Streams 1969; 

Vinson 1971)• 

Two general means of avoiding host encapsulation on the part of 

the parasite have been proposed (Nappi and Streams 1969)* One theory 

suggests that the parasite actively suppresses the host's encapsulation 

reaction (active resistance) and the second theory suggests that the 

parasite avoids recognition by the host as a foreign object (passive 

resistance). 



11 

Encapsulation does not act exclusively against alien parasites. 

The reaction is also initiated against habitual parasites if they fail 

to use the means of resistance they have evolved (Salt 1966; Poinar _et_ 

al. 1968). 

Hemocytes and encapsulation 

Changes in hemocytes as a result of encapsulation. Unfortunately, 

very few studies have been conducted on tht changes that occur in types 

and numbers of hemocytes during encapsulation reactions. This is com¬ 

plicated by the fact that qualitative and quantitative changes' may occur 

in response to injury and would repair as a result of oviposition by 

parasitic wasps or by the artificial implantation of objects or by 

activity of the parasite (Salt 19631 1970). Therefore, caution must 

be exercised in distinguishing hemocytic changes due to wound repair 

and actual parasitism (Shapiro 1969)• 

Muldrew (1953) observed that when he implanted rose thorns into 

the body cavity of the larch sawfly Pristiphora erichsonii, hemocytes 

increased fivefold during a nine-day period followed by a decline to 

the normal number on the nineteenth day. 

Nappi and Streams (1969) investigated the changes in hemocytes 

associated with the immune reaction of Drosophila melanogaster when 

parasitized by Pseudeucoila bochei. Differential hemocyte counts 

taken during the early stages of capsule formation showed an in¬ 

crease in the percentage of lamellocytes and a decrease in the per¬ 

centage of crystal cells. The increase in lamellocytes was attrib¬ 

uted to the early transformation of large numbers of plasmatocytes, 

while the decrease in crystal cells was believed to have resulted from 

the lysis of these cells and the release of phenolic substances respon- 
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sible for the melanization of the capsule. The presence of abnormally 

large numbers of lamellocytes before there was any visible evidence of 

encapsulation suggested that these cells were stimulated to react without 

making direct contact with the parasite (Nappi 1973a). This view was 

earlier rejected by Salt (1970) who proposed that cellular reactions were 

initiated by accidental contact of host hemocytes with foreign organisms 

rather than the specific attraction of these cells from a distance. 

In a different host species Drosophila euronotus, eggs and larvae 

of the same parasite are melanized but not encapsulated (Nappi 1970). 

Differential hemocyte counts showed a decrease in the percent of oenocy- 

toids (believed to be involved in phenoloxidase activity), while there 

was no significant change in the percent of lamellocytes. 

In many insects which do not elicit a host response when para¬ 

sitized either because the reaction is suppressed or the parasite avoids 

recognition, there are no significant changes in the total or differ¬ 

ential hemocyte counts (Nappi and Streams 1969; Vinson 1971)• 

Nappi and Stoffolano (197% 1972a, 1972b) investigated the hemo- 

cytic changes that occurred in Musca domestica and Orthellia caesarion 

in response to parasitism by the nematode Heterotylenchus autumnalis. 

In nonparasitized larvae the majority of hemocytes were concentrated in 

the last two segments of the body, and only in larvae ready to pupate 

could hemocytes be seen to circulate throughout the hemocoel. However, 

when larvae were parasitized, large numbers of hemocytes left this 

region, entered circulation and encapsulated parasites in various regions 

of the body. The initial reaction, which was characterized by the ag¬ 

gregation and fusion of oenocytoids and the deposition of a pigmented 
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layer of melanin, was followed by the subsequent aggregation of other 

hemocytes to form a complete capsule. 

Based on these findings, Nappi and Stoffolano (1972b) suggested 

that some stimulus in infected larvae, either coming from the parasite 

or the initial hemocytes making contact with the parasite and/or certain 
‘it 

biochemical changes due to parasitism, caused hemocytes to move out of 

the posterior areas prematurely and encapsulate the nematodes. 

Maier (1973) found that when larvae of Chironomus thummi were 

parasitized by a mermithid nematode, there was a decrease in the number 

of granular transitional hemocytes and an increase in the number of 

plasmatocytes. He suggested the lysosome rich granular hemocytes under¬ 

went autolysis releasing a substance which may have been responsible for 

the activation of a phenoloxidase. 

The hemocyte complex in mosquitoes. Examinations of hemocytes in 

mosquitoes have shown circulating hemocytes to be extremely rare or non¬ 

existent (Jones 1953). 

In an examination of living specimens, Jones (1953) reported that 

larvae of C. pipiens contained a variable number of ovoid cells which 

circulated freely in the hemocoel in the region of the perivisceral 

sinus. Anopheles quadrimaculatus larvae were shown to possess very few 

cells which rarely circulated or when they did, only for very short 

distances. They were normally found lying against the inner wall of the 

epidermis. Larvae of A. aegypti contained no free hemocytes when exam¬ 

ined but were observed to have few to numerous sessile hemocytes lying 

within the anal papillae (Jones 1958). 

In lieu of these observations it would appear to be advantageous 
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for insects with few hemocytes to shift the encapsulation reaction from 

a function of hemocytes to that of a function of free hemolymph (Gotz 

and Vey 1974). 

Melanization 

Encapsulation is often accompanied by the deposition of a dark 

pigment, generally referred to as melanin. The incidence of melaniza¬ 

tion is variable. It may or may not accompany encapsulation, and when 

it does it may occur promptly or be delayed, depending on the insect 

host (Muldrew 1953; Nappi and Streams 1969; Salt 1970). 

Melanization may also occur in the absence of cellular encapsula¬ 

tion, either as a hemocytic response (Nappi 1970) or as a purely humoral 

reaction without the apparent intervention of hemocytes (Bronskill 1962; 

Poinar and Leutenegger 1971; Gotz and Vey 197*0 • 

Where melanization accompanies encapsulation, melanization of the 

capsule is presumably caused by the disintegration of the innermost 

hemocytes. This results in the deposition of melanin particles over 

various parts of the body, which eventually cover the entire parasite 

(Salt 1970). 

On the other hand, melanization in humoral reactions is attributed 

to the non-cellular components of the hemolymph and is characterized by 

the deposition of minute melanin particles which coalesce to form a con¬ 

tinuous layer (Bronskill 1962; Poinar and Leutenegger 1971)* 

Inert objects implanted in insects usually do not induce a melanin 

reaction, presumably because they do not cause disorganization of cells 

by movement or by lysis. However, if an inert object is continuously 

moved, cells may be broken and melanin deposited (Salt 1956). 
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Evidence for melanin in the capsular matrix. Evidence to deter¬ 

mine the nature of the brownish black pigment in capsules has for the 

most part been circumstantial with only a few authors actually demon¬ 

strating the presence of melanin. Salt (1956) showed that the deposi¬ 

tion of pigment in capsules of Carausius could be inhibited by the in¬ 

jection of phenylthiourea (PTU), a known inhibitor of melanin formation. 

Nappi (1973b) demonstrated that by feeding host larvae of Drosophila 

algonquin on a diet containing PTU, the deposition of melanin on eggs of 

the parasitoid ]?. bochei could be blocked. 

Chemical tests have been conducted for melanin in cellular cap¬ 

sules formed in response to nematode parasitism (Poinar _et al. 1968) and 

in humoral capsules formed in response to fungi, nematodes and implanted 

latex particles (Poinar and Leutenegger 1971? Gotz and Vey 197*0 • Solu¬ 

bility tests showed the pigmented material was soluble in concentrated 

sodium hydroxide, was bleached in hydrogen peroxide and gave positive re¬ 

sults for melanin with ammoniacal silver nitrate (Mason-Fontana test). 

These results strongly suggested that the pigmented material surrounding 

these foreign objects was melanin. 

Enzyme substrate localization and mode of activation. Melanin 

formation in insects has frequently been investigated, but primarily in 

connection with hardening and darkening of the cuticle (Dennell 1958; 

Cottrell 1964; Hackman 1964). The actual formation of melanin results 

from the enzymatic action of phenoloxidase (also referred to as 

tyrosinase, phenolase, polyphenoloxidase, dopa oxidase and catechol oxi¬ 

dase) on tyrosine which is hydroxylated to form 3i4-dihydroxyphen- 

ylalanine (DOPA). DOPA is oxidized to dopa-quinone which undergoes 
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spontaneous ring closure and decarboxylation to form 5i6-dihydroxyindole 

which is polymerized to form melanin (Lerner and Fitzpatrick 1950; 

Gilmour 1965). 

The substrates, tyrosine and DOPA are present in insect hemolymph 

(Florkin and Jeuniaux 197*0 and in several tissues including hemocytes 

(Rizki and Eizki 1959) and fat body (Price 1972). 

The enzyme, tryrosinase is also present in insect hemolymph 

(Sussman 19^+9) hut exists as an inactive proenzyme which requires a 

specific protein activator for activation (Ohnishi 1959; Evans 19^7; 

Hackman and Goldberg 196?). In addition certain insect hemocytes 

normally synthesize and/or concentrate various amounts of phenols and 

enzymes associated with tyrosine metablism (Dennell 1958; Pizki and 

Rizki 1959; Chadwick 1966; Preston and Taylor 1970; Pye and Yendol 

1972). 

Presumably melanization is normally controlled by the structural 

isolation of either enzyme and substrate or inactive proenzyme and acti¬ 

vator (Ohnishi 1959; Rizki and Rizki 1959; Hackman and Goldberg 1967; 

Evans 1967). Crystal cells in D. melanogaster contain both substrate 

(tyrosine) in crystal inclusions and enzyme (tyrosinase) in the sur¬ 

rounding cytoplasm. Any treatment which may disrupt the structural in¬ 

tegrity of the cell will allow the enzyme and substrate to come to¬ 

gether resulting in the production of melanin (Rizki and Rizki 1959)• 

It has been suggested that this mechanism is involved in the melanization 

of certain parasites. Hemocytes, upon coming in contact with the para¬ 

site, may release substances which initiate the localized synthesis of 

melanin (Poinar et al. 1968; Nappi and Streams 1969). 
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Where hemocytes are not involved (humoral melanization), the para¬ 

site or foreign object may upset the mechanism which allows tyrosine and 

inactive tyrosinase to co-exist in the hemolymph thus resulting in mela¬ 

nin formation (Gotz 1969; Poinar and Leutenegger 1971; Gotz and Vey 

197*0. 

Injury or wounding would also upset this mechanism as melanin is 

formed when an insect’s body is opened and tissues exposed (Rizki and 

Rizki 1959). 

Melanization as a mechanism of defense and the role of the poly- 

phenol-polyphenoloxidase system. The role of melanization in defense 

reactions is unclear. In many cases it is secondary to cellular en¬ 

capsulation and appears to provide no additional protection (Salt 1970), 

However, in a few hosts, melanization is known to be essential for the 

death of the parasite which can survive cellular encapsulation but not 

subsequent melanization (Salt 1970). Melanization always occurs promptly 

in humoral encapsulation (Gotz and Vey 197*0. 

Taylor (1969) believes the polyphenol-phenoloxidase system is 

directly involved in invertebrate immunity and suggests that it may be 

one of the most primitive, nonspecific defense systems of all living 

forms, capable of killing microorganisms and parasites, isolating for¬ 

eign objects and sealing and repairing wounds. Brewer and Vinson (1971) 

have reported that injections of PTU and glutathione (known inhibitors 

of phenoloxidase) into experimental animals will inhibit not only mel¬ 

anization but also encapsulation of a parasite. 

Effects of parasitism on hemolymph proteins 

Several studies have been conducted on the changes that occur in 
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hemolymph proteins of insects when parasitized by habitual parasites 

that are not encapsulated. 

Vinson and Barras (1970) demonstrated several changes in the pro- 
i 

tein pattern of Heliothis virescens following parasitism by Cardiochiles 

nigriceps. Results of disc electrophoresis of hemolymph removed from 

parasitized larvae ten days after initial parasitism revealed the loss 

of one major band, the addition of one minor band and an overall shift¬ 

ing of banding patterns. They suggested the parasite utilized or 

destroyed certain hemolymph proteins while causing a shift in free amino 

acids to the bound state or the secretion of other proteins into the 

hemolymph. Barras et al. (1972) demonstrated changes in hemolymph pro¬ 

teins of Heliothis zea parasitized by Microplitis croceips. Electro- 

pherograms revealed one additional major and minor band, significant 

changes in banding patterns, and major changes in band intensity. They 

suggested the parasitoid broke down or utilized certain host proteins 

for its own development and caused the release or synthesis of other 

proteins by the host. 

Unfortunately, only one study has been conducted to date which has 

examined the changes in hemolymph protein when a parasite is actually 

encapsulated. Brewer et al. (1973) conducted a comparative study of 

hemolymph proteins from _H. zea when parasitized by _C. nigriceps. 

Electropherograms of hemolymph from superparasitized individuals re¬ 

vealed a reduction in the total number of protein fractions and con¬ 

tained four bands which were not detectable in control larvae. They sug- 

these additional bands might play a significant role in the encapsulating 

capacity of H. zea. It appeared that H. zea possessed a mechanism to 
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overcome the defensive coatings or secretions of the parasite and thus 

enable it to encapsulate. This mechanism may well have been represented 

by one or more of these protein bands. 
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ABSTRACT 

Changes that occur in hemocytes and hemolymph protein of larval 

Aedes aegypti during encapsulation and melanization of a nematode para¬ 

site Neoaplectana carpocapsae were investigated. Following parasitism, 

there were significant decreases in “both the total hemocyte count and in 

the number of DOPA-oxidase positive hemocyuoS within the anal papillae. 

Ligation experiments indicate these hemocytes are not necessary for suc¬ 

cessful capsule formation. The possibility of these changes resulting 

from a pathological condition created by the parasite are discussed. 

Disc electrophoresis revealed several changes in the protein 

migration pattern of A. aegypti hemolymph following encapsulation of N. 

carpocapsae. Gels stained with amido schwartz showed a shift in certain 

bands, a reduction in intensity of another and the presence of an addi¬ 

tional protein fraction. These changes appear to be specific for para¬ 

sitism and/or encapsulation. Incubation of gels in DOPA solution revealed 

an increased intensity of one protein fraction which is not specific for 

encapsulation but may be the result of a wound response. It appears that 

some protein is released by the host or by the parasite in response to 

parasitism. While the function of this protein is unknown, it may play 

a role in the defense reactions of the host. 

INDEX DESCRIPTORS: Aedes aegypti; Neoaplectana carpocapsae; encap¬ 

sulation; melanization; hemocytes; hemolymph proteins; DOPA-oxidase. 
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INTRODUCTION 

The primary mechanisms of defense in insects to invasion by nema¬ 

tode parasites are encapsulation and melanization. These responses are 

typically characterized by the aggregation of host cells (usually hemo- 

cytes) around the parasite and the disintegration of the innermost cells 

which results in the deposition of melanin and the formation of a cap¬ 

sule (Poinar et al. 1968; Salt 1970). In insects with few circulating 

hemocytes encapsulation and melanization can occur without the direct 

participation of hemocytes (Gotz 1969; Poinar and Leutenegger 1971; 

Gotz and Vey 1974). In this case the deposition of melanin and the 

capsular matrix are attributed to components in the non-cellular portion 

of the hemolymph which precipitate out on the surface of the nematode 

parasite (Poinar and Leutenegger 1971)• 

Encapsulation and melanization reactions in larval Aedes aegypti 

in response to parasitism by the nematode Neoaplectana carpocapsae have 

been reported to occur without the apparent initial intervention of host 

hemocytes (Bronskill 1962). This would appear to be advantageous as 

these insects have been reported to contain no free circulating hemo¬ 

cytes but rather have sessile hemocytes within the anal papillae (Jones 

1953, 1958). 

However, the situation in A.. aegypti may be analogous to that which 

occurs in Musca domestica and Orthellia caesarion (Nappe, and Stoffolano 

1971, 1972a, 1972b). In nonparasitized larvae the majority of hemocytes 

are concentrated in the last two segments of the body*. When parasitized, 

large numbers of hemocytes leave this region, begin to circulate, and 
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encapsulate parasites in various regions of the body. 

Unfortunately, very few studies have been conducted to demonstrate 

the changes that occur in hemocytes and hemolymph proteins during encap¬ 

sulation and melanization reactions. Nappi and Streams (1969) reported 

an increase in lamellocytes and a decrease in crystal cells in Droso¬ 

phila melanogaster following parasitism by Pseudeucoila bochei. The 

increase in lamellocytes was attributed to the early transformation of 

plasmatocytes. The decrease in crystal cells, which contain both aub- 

strate and enzyme necessary for melanin formation (Rizki and Pizki “1959)1 

was believed to have resulted from the lysis of these cells and the sub¬ 

sequent release of phenolic substances responsible for melanization of 

the capsule. 

Brewer et al. (1973) demonstrated several changes in hemolymph 

proteins of Heliothis zea when parasitized by Cardiochiles nigriceps. 

Electropherograms revealed the presence of several protein fractions 

which were not present in hemolymph from nonparasitized individuals. 

They suggested these additional protein bands may have resulted from the 

action of parasitism or the reaction of melanization and may play a role 

in the encapsulating capacity and defense of the host to the parasite. 

The present study was undertaken to demonstrate the changes that 

occur in hemocytes and hemolymph proteins of larval A* aegypti during 

encapsulation and melanization reactions and to further investigate the 

possible distribution of DOPA-oxidase within hemocytes. 
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MATERIALS AND METHODS 

Experimental animals 

Aedes aegypti used in this study were a University of Massachusetts 

strain originally obtained from Rutgers University. A standard rearing 

technique was used (Peters et_ al. 19&9) which yielded individuals of 

uniform size, age and presumably similar physiological condition. 

Neoaplectana carpocapsae nematodes were originally obtained from 

Dr. Donald Harlan of the Bioenvironmental Insect Control Laboratory, 

Stoneville, Mississippi and propagated in larvae of the wax moth 

Galleria mellonella which yielded large numbers of infective stage 

juveniles. 

Infection of mosquito larvae 

To parasitize A. aegypti, 40 fourth instar larvae were placed in 

60 x 15mm petri dishes containing approximately 500 infective stage 

juvenile nematodes per ml of distilled water. Larvae were exposed for 

three hours at 25-270C and then examined for capsules under a dissecting 

microscope. This procedure was used in all experiments. 

Total hemocyte counts 

To characterize the change in hemocytes of the anal papillae, 

total hemocyte counts (THC) were made on parasitized mosquito larvae 

containing encapsulated nematodes. Controls consisted of larvae of the 

same age that were not exposed to nematodes. All larvae were fixed in 

b% formaldehyde (buffered at pH 7-4 with 0.1M cacodylate buffer, made 

hypertonic with 0.44M sucrose)(Rodriquez and McGavran 1969) and examined 
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by phase contrast microscopy. Earlier investigations; showed that treat¬ 

ment with fixative did not destroy these cells and its use facilitated 

observations on individual mosquito larvae at approximately the same 

stage of the encapsulation procedure. Spindle shaped plasmatocytes and 

round or ovoid oenocytoids were observed but not differentiated, as 

oenocytoids comprised an insignificant percentage of the TEC in both 

treatments. Total counts were tabulated per mosquito and statistically 

analyzed. 

D0PA-oxidase activity in hemocytes 

Hemocytes were examined for DOPA-oxidase activity according to the 

method of Rodriquez and McGavran (1969)- Whole mosquito larvae were 

prefixed in Karnovsky's fixative (Karnovsky 1965) for 30 min. in an ice 

bath. Anal papillae were then excised and fixed for an additional V/z 

hrs. at ice bath temperature. Controls consisted of anal papillae from 

nonparasitized mosquitoes with: (1) no additional treatment, (2) heat 

treated to 95°C for 30 min., and (3) pre-incubated in 0.1# phenylthiourea 

(PTU) before incubation. All papillae (from parasitized and control 

larvae) were incubated at 37°0 for six hrs. in 0.1# DL-dihydroxyphenyl- 

alanine (D0PA) in 0.1M cacodylate buffer (pH 7-*0 with the exception of 

those previously treated with PTU. They were incubated in a solution of 

0.1# PTU and 0.1# D0PA. Solutions were changed every two hrs. The depo¬ 

sition of a brown-black pigment within the hemocytes was considered to 

be a positive response for DOPA-oxidase activity. 

To observe the effect of encapsulation on those hemocytes that 

elicited a positive response for DOPA-oxidase activity, THCs were made 

on D0PA incubated anal papillae from parasitized and control mosquitoes. 
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Melanized and nonmelanized cells were differentiated and counts were an¬ 

alyzed for statistical differences due to treatments. 

Ligation experiments 

Ligations were performed on larvae to isolate hemocytes in the 

anal papillae from the rest of the body and prevent their possible cir¬ 

culation in response to nematode parasitisr. This procedure involved 

tying a small piece of nylon thread around the anal segment. Larvae 

were then exposed to nematodes and examined for the presence of encapsu¬ 

lated and nonencapsulated nematodes. Capsules, when found, were dis¬ 

sected out and compared with those from mosquitoes which were not 

ligated. 

Electrophoresis of hemolymph proteins 

Hemolymph samples were obtained from parasitized, nonparasitized, 

and wounded mosquito larvae and separated using disc gel electrophoresis 

as described by Davis (196^-). Hemolymph was extracted by making a small 

incision in the side of the thorax with a fine minuten pin and collect¬ 

ing the exuding droplets with a 5 pi pipette. Thirty pi of hemolymph 

were obtained from a total of 200 mosquito larvae. Extreme care was ex¬ 

ercised so as not to puncture the gut. Wounding entailed making a small 

tear in the cuticle 30 min. before extraction of hemolymph samples. 

Samples were immediately transferred into small vials containing a few 

crystals of PTU and maintained at 0°C. Ten pi samples were mixed with 

an equal amount of bQP/o sucrose solution with bromphenol blue tracking 

dye added. Protein separation was accomplished using a Buchlar disc 

electrophoresis apparatus. The electrophoresis was conducted through a 
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7.5% separating gel (pH 8.8-9*0) at a current of 3.0 mA per gel until 

the tracking dye was approximately one cm from the bottom of the tube. 

Gels were immediately transferred to amido schwartz stain for two hrs. 

or incubated in 0.1% DOPA (pH 7*4) for three hrs. Controls for DOPA 

incubated gels consisted of gels incubated in a solution of 0.1% PTU 

and 0.1% DOPA. Gels stained with amido schwartz were electrophoreti- 

cally destained in 7% acetic acid at 10 mA per gel. All gels were 

stored in 7% acetic acid. Densities of the stained bands were analyzed 

on a Gilford 240 spectrophotometer with a gel scanning adapter. Rela¬ 

tive mobility (Rm) values for each fraction were determined from gel 

scanning graphs by measuring the distance from the origin each band 

migrated and dividing this value by the total distance the tracking dye 

migrated from the origin. The mean (N=9) and standard deviation were 

calculated for each band. 
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RESULTS 

Hemocytes were clearly visible through the transparent cuticle of 

the anal papillae when examined by phase contrast microscopy. Spindle 

shaped plasmatocytes appeared most numerous while a few ovoid cells 

were also observed (Figs. 1, 3)- 

THCs taken from the anal papillae of 25 parasitized and control 

mosquito larvae revealed a marked change due to parasitism. Nonparasi- 

tized larvae averaged 29-8+10.0 hemocytes per mosquito while parasitized 

individuals averaged only 4.2+6.4. This difference was found to be 

highly significant (Table I). While there appeared to be a wide range 

in the number of hemocytes from parasitized larvae, the statistical 

treatment showed no significant differences among individual mosquito 

larvae within each treatment. 

An examination of hemocytes from anal papillae incubated in DOPA 

solution showed a darkening of the cytoplasm of certain hemocytes while 

others appeared colorless (Fig. 2). The intense melanosis was attribu¬ 

ted to the presence of DOPA-oxidase within the cytoplasm of these hemo¬ 

cytes. Whole mount examinations revealed the presence of many cyto¬ 

plasmic extensions radiating outward from these melanized hemocytes 

which in some cases appeared to link various groups of cells together 

(Fig. 4). Heat and PTU treated controls showed an absence of any pig¬ 

ment within cells. 

The effect of parasitism on those hemocytes which contain DOPA- 

oxidase was determined by THCs. Fifty individual anal papillae each 

from parasitized and control mosquito larvae were examined. Melanized 



and nonmelanized hemocytes were differentiated. Nonparasitized mosquito 

larvae averaged 22.5+16.3 nonmelanized and 8.7+5-8 melanized hemocytes 

per papilla. There was a highly significant difference in the combined 

total hemocytes (melanized and nonmelanized) between parasitized and 

control mosquito larvae (Table II). Split plot analysis (Steel and 

Torrie i960) showed the average number of melanized hemocytes from para¬ 

sitized mosquito larvae to be significantly lower than that from nonpara¬ 

sitized mosquito larvae. Nonmelanized hemocytes showed a highly signif¬ 

icant decrease due to parasitism when compared in a similar manner 

(Table II). 

These hemocytes from the anal papillae did not appear to be neces¬ 

sary for successful capsule formation. Ligation of mosquitoes did not 

inhibit their ability to encapsulate nematodes; in all cases where nema¬ 

todes were found they were encapsulated. An examination of these cap¬ 

sules revealed no difference in structure or pigment deposition when 

compared to those which were not ligated. 

The results of electrophoretic separation of hemolymph proteins 

stained with amido schwartz are shown in Figs. 5 and 6. Seven migrating 

protein bands were observed from the hemolymph of nonparasitized mos¬ 

quito larvae (Fig. 5)- Hemolymph from parasitized mosquitoes (Fig. 6) 

showed an apparent shift in bands I and II and a significant reduction 

in band VI due to parasitism. An additional band (VII) was also detected 

from mosquito hemolymph following parasitism and appeared to be specific 

for parasitism or encapsulation. Electropherograms of hemolymph from 

wounded mosquito larvae were identical to those from nonparasitized mos¬ 

quitoes with the only major differences being those of intensity of 
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staining. 

The results of electrophoretic separation of the hemolymph proteins 

incubated in DOPA are shown in Figs. 7 and 8. Electropherograras of 

hemolymph from nonparasitized and parasitized mosquito larvae appeared 

as four migrating protein bands. The only major difference due to 

parasitism appeared to be the increased intensity of band C. This was 

also observed in electropherograms of hemolymph from wounded mosquito 

larvae and thus does not appear to be specific for parasitism but may 

represent a general wounding response. The pattern of band B was quite 

diffuse and most likely due to diffusion of product prior to polymer¬ 

ization. Unfortunately we were unable to correlate the bands of DOPA 

incubated gels with those stained in amido schwartz. 
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DISCUSSION 

Certain hemocytes from the anal papillae of A. aegypti show a dark¬ 

ening of the cytoplasm when incubated in DOPA solution. This observa¬ 

tion leads to the conclusion that DOPA-oxidase is present within the 

cytoplasm of these cells. However, the role of these and other hemo¬ 

cytes of the anal papillae, in encapsulation and melanization reactions 

is unclear. While THCs revealed a significant decrease in both types 

of hemocytes following parasitism, results from ligation experiments 

indicate that hemocytes in the anal papillae are not necessary for suc¬ 

cessful capsule formation. However, this does not rule out the pos¬ 

sible involvement of hemocytes in other parts of the body. The situa¬ 

tion in A. aegypti does not appear to be analogous to that which occurs 

in M. domestica and 0. caesarion which release a large number of encap¬ 

sulating hemocytes when invaded by a nematode parasite (Nappi and 

Stoffolano 1971, 1972a, 1972b). Hemocytes in the anal papillae may 

circulate when the host is parasitized but their involvement in the 

encapsulation reaction is not essential. Furthermore, the decrease in 

DOPA-oxidase containing hemocytes cannot be directly attributed to the 

release of phenolic substances responsible for melanization of the cap¬ 

sule as is the case with crystal cells in D_. melanogaster (Nappi and 

Streams 1969)* Melanization of the capsule in A. aegypti occurs when 

DOPA-oxidase containing hemocytes are isolated in the anal papillae. 

The decrease in hemocytes of the anal papillae following parasi¬ 

tism may be the result of a pathological condition created by the 

parasite. The active movement of the nematode through the hemocoel of 
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the host, which disrupts fat body and other tissues, may cause the re¬ 

lease of some substance that initiates a wound repair response and thus 

the breakdown or circulation of the hemocytes. Hemocyte counts should 

be done on wounded larvae to check this possibility. Quantitative and 

qualitative changes in hemocytes have been reported to occur in response 

to injury or wound repair (Salt 19&3i 1970). Cherbas (1973) has identi¬ 

fied as "injury factor" released from injured tissues of Hyalophora 

cecropia which activates hemocytes causing them to increase in mobility 

and adhesiveness and to aggregate at sites of injury. 

Disc electrophoresis revealed several changes in the protein migra¬ 

tion pattern of A. aegypti following encapsulation of N_. carpocapsae. 

Gels stained in amido schwartz showed a shift in bands I and II, a re¬ 

duction in band VI and the presence of an additional band (VII) which 

were not present in hemolymph from nonparasitized or wounded mosquito 

larvae. While these protein changes appeared to be specific for para¬ 

sitism and/or encapsulation, it is difficult to definitely state their 

origin or their role in the encapsulation response of A. aegypti. 

Brewer et al. (1973) suggested the increased number of protein fractions 

in H. zea following encapsulation might play a significant role in the 

defense mechanisms of the host and these additional bands may result 

from the reaction of melanization. 

Several possibilities exist for the origin of the additional pro¬ 

tein fraction. It may represent an activated phenoloxidase involved in 

the melanization reaction. Gotz and Vey (197*0 have demonstrated that 

in Chironomus the capsule is formed by the activity of hemolymph borne 

have been shown to normally occur in the phenoloxidases. These enzymes 
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hemolymph of insects as inactive proenzymes which require a specific ac¬ 

tivator for activation (Ohnishi *1959 5 Evans 19&7 * Hackman and Goldberg 

1967). The additional band may represent some protein released by hemo- 

cytes or fat body in response to nematode parasitism. We also cannot 

rule out the possibility of the nematode itself as the sourse of this 

protein faction. However, since there was usually only one nematode 

present in the hemocoel of the host at the time of hemolymph extraction, 

it would seem unlikely that the nematode could be responsible for such a 

large increase in a protein in such a short amount of time (3 hrs. 

exposure). 

The results of incubation of hemolymph proteins with DOPA were in¬ 

conclusive. Banding patterns were not distinct owing to diffusion of 

the product during incubation prior to polymerization to form melanin. 

Furthermore, we were unable to correlate these bands with any of those 

obtained from gels stained with amido schwartz. However, band C did 

appear more intense in hemolymph samples obtained from both parasitized 

and wounded mosquitoes and thus does not appear to be specific for para¬ 

sitism but may represent a wound repair response. 

In conclusion these results indicate that encapsulation in A. 

aegypti can occur without the direct participation of hemocytes con¬ 

tained within the anal papillae. While certain of these cells do con¬ 

tain DOPA-oxidase, their role in melanization of internal nematode para¬ 

sites is not essential. It appears that some protein is released by the 

host or by the parasite in response to parasitism. The xunction of this 

protein is unknown but it is specific for parasitism and may play a role 

in the defense reactions of the host. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

FIGURES AND TABLES 

Mosquito anal papilla containing numerous hemocytes (Phase 

contrast, X 288). 

DOPA incubated anal papilla with melanized and nonmelanized 

hemocytes (phase contrast, X 194). 

Typical spindle shaped plasmatocytes of the anal papillae 

(phase contrast, X 789)- 

Melanized hemocytes of an anal papilla after incubation in 
DOPA solution. Note cytoplasmic extensions (phase contrast, 

X 1936). 
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Fig. 5 Densitometric profile curve of the electrophoretic separation 
of hemolymph proteins (stained with amido schwartz) from non- 
parasitized mosquito larvae. Relative mobility values (Rm) 
+S.D. are given for each protein fraction. 
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Fig. 6. Densiometric profile curve of the electrophoretic separation of 

hemolymph proteins (stained with amido schwartz) from para¬ 

sitized mosquito larvae. Em +S.D. are given for each protein 

fraction and corresponding bands obtained from the electro¬ 

phoretic separation of hemolymph from nonparasitized mosquitoes 

(Fig. 5) are labeled accordingly. 
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Densitometric profile curve of the electrophoretic separation 

of hemolymph proteins (incubated in DOPA solution) from non- 

parasitized mosquito larvae. Rm +S.D. are given for each 

protein fraction. 

Fig. 7- 
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Fig. 8. Densitometric profile curve of the electrophoretic separation 

of hemolymph proteins (incubated in DOPA solution) from para¬ 

sitized mosciuito larvae. Rm +S.D. are given for each protein 

fraction and corresponding bands obtained from the electro¬ 

phoretic separation of hemolymph from nonparasitized mosquitoes 

(Fig. 7) are labeled accordingly. 
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TABLE I 

Analysis of variance for total >iemocyte counts 

parasitized vs. nonparasitized 

Source of variation df ss MS F 

Total 199 5241.99 

Treatments 1 2067.25 2067.25 117.54** 

Mosquitoes : Treatments 48 844.25 17.59 1.13 

Error 150 2300.50 15.5^ 

**p<0.01 



TABLE H 

Analysis of variance (split plot design) for hemocyte 

counts of DOPA incubated anal papillae 

parasitized vs. nonparasitized 

Source of variation df ss MS F 

Total 199 32286.00 

Treatments (T) 1 555^.58 5554.58 35.79** 

Papillae (P) : T 98 15210.92 155.21 

Hemocyte response (Hi 1 2930.22 2903.22 42.50** 

H X T interaction 1 1922.00 1922.00 28.13** 

H X P : T 98 6695.28 68.32 

**p<0.01 

Difference between 
df t 

Parasitized and nonparasitized hemocytes with a 

(+) response for DOPA-oxidase 98 2.053* 

Parasitized and nonparasitized hemocytes with a 

(_) response for DOPA-oxidase 98 7.919** 

*t<0.05 
**t<0.O1 
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