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ABSTRACT 

An extraction and analysis technique of succinate 
using the face fly, Musea autumnalis De Geer, is presented. 
The fly tissue is homogenized in perchloric acid and cleaned 
up by ether elution from silica gel. The recovered succin¬ 
ate is esterified with boron-trifiuoride in methanol. Quan¬ 
titation is made on a dual flame ionization gas chromato¬ 
graph with glutarate used as the internal standard. The 
succinate concentrations found in the major stages are 48-60 
pg/gm during the larval period, 92-277 pg/gm during the 
pupal period, 53-149 jag/gm for the adult female and 50-163 
jug/gm for the adult male. 

The possible correlations between succinate concentra¬ 
tions and published values for the activity of succinate 
dehydrogenase and the respiratory rate reported during the 
pupal period of the face fly are discussed. 
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I. INTRODUCTION 

Succinate is the substrate for the enzyme succinic 

dehydrogenase which exists in the mitochondria of insects. 

It is known that the activity of this enzyme changes during 

development (Rousell, 1967) and recent work has indicated 

that inhibition of this enzyme may explain the mode of 

action of CO2 in producing knockdown in insects (Edwards, 

1971). It is a reasonable assumption that the succinate 

concentration might vary as the insect develops since 

succinic dehydrogenase is one of several enzymes in inter¬ 

mediary metabolism which catalyze the release of energy for 

endergonic processes. If a “pool'’ or reserve of succinate 

is available for the enzyme, this may rise or fall during 

activity and during development. Also, inhibition of the 

enzyme for whatever reason may lead to an accumulation of 

succinate (Webb, 1966) which can be detected. ‘ Thus, the 

effects of inhibitors in vivo upon succinic dehydrogenase 

might be realized with an effective method of succinate 

analysis. 

1 



II. OBJECTIVES 

A. Develop a succinic acid analysis technique for use with 

insects. 

B. Measure succinic acid levels during development. 

C. Interpret the significance of these levels during 

development. 

As will be explained in the thesis only succinate was 

subjected to extensive analysis, as the other acids did not 

lend themselves to the analytical method used. 
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III. LITERATURE REVIEW 

A. Rearing and Breeding Habits 

The face fly, Musea autumnalis De Geer, was used for 

all work in this thesis. The duration of the life.cycle 

from egg to adult is llJ-12 days at temperatures of 25°- 

30°C and 50^-70^ relative humidity (Wang, 1964). Adults 

fed blood, sugar, and milk will mate and oviposite 4-5 

days after emergence. The three active larval stages total 

3-4 days and the pupal stage approximately days. The 

adults lay eggs in fresh manure where the developing larvae 

live and feed. The third instar crawls from the manure pat 

to form the puparium in the soil. 

B. Metamorphic Development 

Holometabolous development is the most dramatic form 

of development occurring in insects. Wang's study (1964) 

illustrates the obscure use of terms that are used to 

describe developmental events. In cyclorrhaphous Diptera, 

the pupa should not be called one instar as is frequently 

done. A search of the literature for information clarify¬ 

ing the events of the pupal period reveals a more concise 

picture. Following are some of the terms with appropriate 

definitions. Molting is the process through which an 

3 



4 

insect goes from one instar to the next (Jenkin, 1965; 

Jenkin and Hinton, 1966). The molting process is divided 

into two distinct events, Apolysis is the actual separation 

of the epidermis from the previous instar*s cuticle. 

Following apolysis is the partial digestion of the old 

cuticle and deposition of the new one. After apolysis, 

ecdysis occurs (Jenkin, 1965; Jenkin and Hinton, 1966). 

The pharate stage is the phase of the insect existing 

between apolysis and ecdysis within the old cuticle (Hinton, 

19^6). The duration of the pharate phase is variable depend- 
* 

ing on juvenile age, stage of development, and species, 

Fraenkel and Bhaskaran (1973) suggest reserving the term 

"pharate" to describe the adult stage after the pupal-adult 

apolysis and "cryptocephalic pupa" instead of "pharate pupa" 

for the stage following the larval-pxipal apolysis in cyclor- 

rhaphous diptera. "Pupariation" should be used distictly 

from "pupation" (Fraenkel and Bhaskaran, 1973), Pupariation 

is the formation of a hardened case from the cuticle of the 

third instar larva. After pupariation the face fly has a 

larval-pupal apolysis and a pupal-adult apolysis followed by 

ecdysis of the adult. Table 1 presents a summary of develop¬ 

mental events observed for the face fly. The terminology is 

that of Jenkin (1965). Jenkin and Hinton (1966), and Fraenkel 

and Bhaskaran (1973). The symbols at the left are used for 

consistent reference to age of flies throughout the thesis. 
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TABLE 1 

SEQUENCE OP STAGES AND DEVELOPMENTAL EVENTS. 

Day Stage Molting Landmark 
event event 

Li 
T 

egg 
hatching 

oviposition 

L2 first instar 
apolysis-ecdysis 

second instar 
j 

third instar 
apolysis-ecdysis 

L5 

l6 crawl into the 
pupariation sand 

pl 
cryptocephalic apolysis 

p2 pupa 
■ 

P3 

p4 insertion of the 
prothoracic 

pharate 
horns 

J apolysis 

P6 adult 

P7 
- 

P8 
ecdysis 

A1 
adult 

emergence from 
puparium 
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C. Developmental Physiology 

The literature contains many reports of biochemical 

research in the area of insect development* The emphasis in 

this area is on respiratory fluctuations and enzyme patterns. 

Oxygen consumption during the pupal stage of insects follows 

a U-shaped pattern (Wigglesworth, 1965)# Face fly respira¬ 

tion also follows the U-shaped pattern during the pupal 

stage (Guerra and Cochran, 1970)* Succinic dehydrogenase 

activity during the face fly pupal period follows this same 

graphic pattern (Rousell, 1967). A U-shaped enzyme activity 

pattern with the low occurring near the end of the pupa 

stage and at the beginning of the pharate adult stage occurs 

in the blowfly, Calliphora erythrocephala (Agrell, 1949), the 

Mediterranean flour moth (Diamantis,. 1962) and the mealworm 

and house fly (Ludwig and Earsa, 1956, 1959; Sacktor, 1951). 

A U-shaped pattern occurs in the activity of the glycolytic 

enzymes during the pupal period in the blowfly, Lucilia 

cuprina (Crompton and Birt, 1969). The route taken by 

injections of labelled glucose during the pupal stage of 

the blowfly, indicates that the drop in concentration of 

the glycolytic substrates is due to their incorporation into 

the cuticle of the developing pharate adult (Crompton and 

Polakis, X969). This would seem to set a, precedent for a 

low level concentration to occur inithe Krebs cycle 
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components during pupation of the face fly. There is not, 

however, any literature that examines this point. 

D. Organic Acid Analysis Techniques 

Chromatographic procedures have been widely used for 

separating and quantifying compounds of a similar biochemi¬ 

cal nature. Below is a summary of some of the basic proce¬ 

dures . 

chromatography. Thin-layer cellulose 

plates are spotted with a prepared sample containing the 
# 

organic acids. Using the flow of mixtures of solvents and 

aqueous solutions in two dimensions, the respective acids 

separate into defined areas on the plate. With an appropri¬ 

ate indicator, usually an acid-base reaction, the acids 

appear as individual spots which can be compared with stand¬ 

ards for identification. This is primarily a qualitative 

test as acid concentrations must be in the area of 10 milli¬ 

moles (Myers and Huang, 1969). 

2* Ion-exchange chromatography. Organic acid analysis 

by ion-exchange chromatography is based on an acid gradient 

elution system. The columns are composed of inert resins 

containing either cationic or anionic groups that attract 

functional groups of compounds having the opposite ionic 

form. The elution order is a function of the pK*s of the 

individual acids. Indicators are generally acid-base 
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titrations. Unless large quantities of the acids are present, 

sample loss is a constant problem with the large volumes of 

elutants that are used. The acid content of the samples 

must be in the area of 5 to 200 micromoles (Yon Korff, 1969). 

3. Partition column chromatography. Partition column 

chromatography is not unlike ion-exchange. It is also based 

on a gradient elution system but in this case the gradient is 

formed from the changing composition of chloroform and t-arayl 

alcohol in the elutant used on acidified, hydrated silica 

gel. Photometric recordings of an indicator changed to the 

hydrogen form by the acids are compared with a standard to 

give a quantitative measure of the organic acids present. 

Sample content of the acids requires concentrations of 0.05 

to 3 micromoles (Kesner and Muntwyler, 1969). 
. 

Both ion-exchange and partition column chromatography 

can take extended periods of time (less than 5 hours) to 

analyze one sample not including the tissue preparation time 

preceding the analysis. 

4. Gas chromatography. Gas chromatography is based 

on the separation of compounds in the gaseous state. An 

inert carrier gas moves the volatile components through a 

column packed with a solid support coated with a liquid 

stationary phase that has the characteristics necessary for 

separating the sample's components. The thermal or ionic 

change that occurs at the detector as a component elutes 
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from the column is electrically and graphically recorded* 

The sensitivity of ionization detectors permits analysis of 

samples containing acids in the nanomole levels (Alcock, 

19^9)* Analytical use of gas chromatography on biological 

material presents two immediate advantages over any of the 

other procedures. First, large numbers of samples may be 

analyzed in a relatively short period of time. Second, 

analysis of low levels of organic acids that occur are 

easily accomplished by the sensitive nature of gas chromato¬ 

graphic detectors. 

E. Application of Gas Chromatography 
to the Organic Acids of the 
Tricarboxylic Acid Cycle 

Extraction of acids. When working with biological 

material, a homogenizing media that extracts all of the 

available organic acids is needed. Burchfield and Storrs 

(1962) found extraction of non-volatile acids from plant 

material possible using aqueous alkali or hot 80^ ethanol 

with vigorous homogenization. Rumsey et al. (1966) extract¬ 

ing metabolic organic acids from forage and silage samples 

used only distilled water during homogenization. On ruminal 

fluid samples they used a 1*1 mixture of acetone and ethanol. 

On animal tissues Kuksis and Prioreschi (1967) used 0.6 N 

perchloric acid. 
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2. Clean-up of extracts. Crude acid extracts which 

contain material other than the organic acids need to be 

further purified. Kuksis and Prioreschi (1967) made a com¬ 

parative study of five procedures. The use of perchlorate in 

tissue homogenization followed by sample elution from an 

anion exchange resin was the most satisfactory procedure 

followed by ether elution from silicic acid. 

3. Esterification. In the acid form the tricarboxylic 

acids will decompose before the necessary temperatures are 

reached for volatilization. Gas chromatographic analysis of 

the acids requires conversion to their more volatile ester 

form. Consideration of the temperatures used is still im¬ 

portant since the esters dimethyl-succinate and dimethyl- 

malonate, show increasing thermal decomposition as tempera¬ 

tures rise above 140^C (Ackman et al., I960). 

Esterification with diazomethane is the most expedient 

procedure but the literature contains contradictory findings 

over its use. The yield of succinate, malate and citrate 

methyl esters from diazomethylation is reported to be quanti¬ 

tative at 25°C and -?0°C (McKeown and Read, 1965)* Low 

yields occur in etheral solutions but the presence of meth¬ 

anol in the reagent mixture enhances the yields. McKeown 

and Read (1965) report that fumarate esterification with 

diazomethane at 25°C does not form the dimethyl ester but an 

addition product, 4,5-dicarbometh;oxy -pyrazoline, which has 
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a retention time longer than citrate. When esterification 

is conducted at -70°C and with limited exposure to excess 

diazomethane, the loss of the methyl ester of fumarate is 

halted. This last result is in contrast to the comparable 

yield of both dimethy1-fumarate and dimethyl-succinate using 

diazomethane found by Estes and Bachmann (1966) with no 

special treatment. Their reactions are run in etheral solu¬ 

tions devoid of methanol. They state that the low yield of 

the fumarate methyl ester that occurs is not due to side 

reactions or addition products across the ethylene bond. 

The observed loss of fumarate is probably the result of its 

thermal decomposition when the column temperature rises above 

90°C as indicated by the increased area of the methanol peak 

(Estes and Bachmann, 1966). 

Despite the ease in the use of diazomethane, other 

procedures have been found to display more consistent 

results. Alcock (1965) and Kuksis and Prioreschi (1967) 

using boron trifluoride in methanol obtained consistent 

methylations of most of the acids of the tricarboxylic acid 

cycle, but Alcock (1969) recommended selective procedures 

for the different acids owing to their variable nature of 

esterification. 

4. Chromatographic conditions. The liquid phase most 

widely used for acids of the tricarboxylic acid cycle is 
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diethylene glycol succinate (DEGS) (Estes and Bachmann, 

1966? Alcock, 1965; Rumsey et al., 1964), Comparable reso¬ 

lution of these acids can be obtained by mixing 6% DEGS with 

Carbowax 20M, a slightly more apolar coating (Kuksis and 

Prioreschi, 1967), If one or even two acids with similar 

boiling points are tested, isothermal oven temperatures are 

used. When more are tested in one sample, the oven tempera¬ 

tures must be programmed to start near 100°C and finish near 

200°C. 

5. Quantitation. Two means of sample quantitation 

are commonly used. Comparing the chromatograms of test 

samples with chromatograms of acids mixed in standard solu¬ 

tions (Rumsey and Noller, 1966), and direct comparison of 

the sample components to an internal standard added near the 

beginning of the sample preparation (Salminen and Koivis- 

toinen, 196?; Kuksis and Vishwakarma, 1963)* Methyl esters 

of the tricarboxylic acids show a linear relationship for 

concentrations of 0,01 to 10 jug (Kuksis and Vishwakarma, 

1963). However, quantitations between chromatograms do not 

assure a way of measuring the amount of acids lost during 

preparation before GC analysis. 

Salminen and Koivistoinen (1967) show that a relative 

detector response value, calculated from peak area and weight 

ratio comparisons to the internal standard, can be used, 

provided the standard curve of a particular ester is linear. 
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They report a linear regression with fumarate, succinate, 

malate, and citrate, but not with qxalacetate and trans- 

aconitate. The lowest responses come from malate and 

oxalacetate. This variability in response by the detector 

seems to be the result of the varying oxygen content in each 

ester. 

. ( 

* 
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IV. MATERIALS AND METHODS 

A. Analytical Procedure for Succinate 

1, Introduction. The numerous procedures reported in 

the literature were examined for their suitability for 

analyzing succinate in flies. The reader who is familiar 

with such may wish to go on to section IV. 3. (p. 24), 

"Succinate Levels in the Face Fly," which deals directly 

with the quantitative tests made on the face fly. 

2. Face fly rearing. The stock and experimental 

populations are maintained in a culture room fitted with 

three 8-foot banks of fluorescent lights set on a 16j8 

light-dark cycle. The temperature is kept between 23°-26°C 

by a thermostatically controlled space heater and an air 

conditioner. An automatic humidifier keeps the relative 

humidity between 40^-60^. 

Fresh cow manure is offered to the flies one to three 

times a week. The adult flies are permitted access to the 

manure in plastic half-gallon ice cream containers for no 

more than 4 hours. 

Three days after egg laying, the manure pat is trans¬ 

ferred to one end of a porcelain pan and dry sand is placed 

at the other end. At age L^, the larvae burrow into the 

sand and pupariate (p. 4). One day later the puparia are 

sifted from the sand and transferred to clear plastic 

14 
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containers until the adults emerge. The young flies are 

transferred to cages 2x3x3 feet in ^size and are constantly 

supplied with water wicks, dry powdered milk and sugar. 

Besides serving as an egg laying medium, the manure supplies 

supplemental nutrients for the adults, 

3. Reagents and apparatus, 

a. Succinate, fumarate and glutarate (Sigma) as 

pure acids are used as powders of known weight and as aqueous 

or etheral solutions of standard concentrations, 

b. Organic solvents* ether, methanol, ethanol, 

iso-propanol, n-propanol, acetonitrile, and chloroform 

(Fisher, Baker, Matheson, Coleman & Bell, and Mallinckrodt). 

c. Perchloric acid (Mallinckrodt) in 2 N concen¬ 

trations and sodium or potassium hydroxide (Baker) in 10$ 

concentrations. Saturated aqueous ammonium sulfate (Fisher). 

d. Silicic acid powder, 100 mesh, (Sigma) prepared 

for etheral elution with acid (HC1) wash. Elution column 

is 15 mm (i.d.) by 400 mm overall length with sintered glass 

disc, 

e. Diazomethane generated-from Diazald (Aldrich, 

1968) and boron trifluoride in methanol (10$, Matheson-Cole- 

man & Bell? 14$, Applied Science Laboratories, Inc.), 

f. Fly tissues are homogenized on Ten Broech 

ground glass or smooth glass-teflon homogenizers. A rheostat 
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controlling a low torque fan motor is used to drive the 

pestles, 

g. Rotary evaporator with temperature controlled 

water bath (Buchi). Automatic refrigerated centrifuge 

RC2-3 (Sorvall). 

h. Research gas chromatograph 5750B equipped with 

a dual flame ionization detector (Hewlett-Packard), Stain¬ 

less steel columns l/8-inch o,d, by 6 or 8 feet in length, 

• i. Sample injections into the gas chromatograph 

are made using 10 ul gas tight syringes (Hamilton), The 

injection technique involves flushing the syringe with 

several rinses of ether leaving approximately 1 jul remaining 

on the last draw followed by a draw of 3 to 6 pi of sample, 

j. Chromatographic conditions. All of the analy¬ 

ses are conducted using the dual flame ionization detector 

on the gas chromatograph. The columns are packed with 

diethylene glycol succinate (DEGS) in percentages of 3, 6, 

or 15$ by weight alone or in combination with Silicone 

Gum Rubber (0V-1?), coated on Diatoport-S 80-100 mesh or 

Chromosorb WAWDMCS (High Performance) 80-100 mesh and 

conditioned at 200°C for 2-4 hours (Hewlett-Packard). The 

carrier gas is helium set for an inlet flow rate of 30-50 

cc/min. under 45-4? p.s.i. The injection port temperature 

is held at 180°-195°C and the flame detector at 280°C with 

a hydrogen flow rate of 25 cc/min. at 10 p.s.i. and an air 
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flow rate of 500 cc/min, at 33 p.s.i. 

Range and attenuation settings, and oven temperatures 

(programmed or isothermal) vary with the needs of the speci¬ 

fic tests. 

The chart speed is run at .25 inch per minute, 

4. Standard curve. Standard concentrations of suc¬ 

cinate and glutarate in aqueous solutions are used for the 

detector-response determinations in establishing the linear 

calibration curve. The various mixtures of the two acids 

are evaporated to dryness and the acid residue methylated 

with boron trifluoride in methanol adapted from the procedure 

of Kuksis and Prioreschi (1967). 

Quantitations are based on area ratios from triangula¬ 

tions of eluting peaks using glutaric acid as the internal 

standard (Barbato, et al., 1966s Salminen and Koivistoinen, 

1967). 

5* Extraction and clean-up. The determination of a 

suitable organic acid extraction procedure from insect 

tissues centers around three types of-homogenizing media* 

acid (HCIO^), base (NaOH or KOH), and organic solvent 

(acetone). Groups of individuals from the metamorphic or 

adult stages are the tissue sources. Following are the 

particular steps followed in each of the major types of 

extraction. In the hyphenated phrases, the first term indi¬ 

cates the extracting solution, the second indicates the 
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clean-up procedure. 

a. Perchloric acid-silioic acid, ether elution. 

1) Fly tissue homogenized in 0,6 M or 2 M 
HC104 (20-30 ml). 

2) Homogenate centrifuged at 5000-10,000xG 
for 10 minutes (pH 1.1). Discard 
particulate matter. 

3) Supernatant neutralized to pH 5*5 with 
2 N K0H. 

4) Supernatant centrifuged at 5000-10, OOOxG' 
for 10 minutes. KC104 precipitate discarded. 

5) Supernatant evaporated to 1 ml in vacuo at 
40°-60°C. Water discarded. 

6) Residue acidified with 9 N H2SQ4 (1-2 ml). 

7) Acid residue combined with 6 g of silicic 
acid and eluted with 100-250 ml of ether. 

8) Ether evaporated to dryness,residue esteri- 
fied, and esters chromatographed. 

b. Sodium hydroxide - no clean-up. 

1) Fly tissue homogenized in ho.t 0.05 N NaOH 
(15-50 ml). 

2) Homogenate centrifuged at 3500xG for 20 
minutes, pH 10.5* Particulate matter dis¬ 
carded. 

3) Supernatant acidified to pH 1 with 9 N HC1. 

4) Supernatant evaporated to dryness in vacuo 
at 60°C. Water discarded. 

5) Dried residue esterified and esters 
chromatographed. 

c. Sodium hydroxide - ether liquid-liquid extrac¬ 
tion. 
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1) Fly tissue homogenized in hot 0.05 N NaOH 
(15 ml). 

** 

2) Homogenate centrifuges at 3500xG l*01* 30 
minutes, pH 10.5. Discard particulate 
matter. 

3) Supernatant extracted with 2x25 ml ether. 
Solvent phase discarded. 

4) Supernatant acidified with 9 N HC1, pH 1.1. 

5) Acid solution extracted with 2x50 ml ether. 
Aqueous phase discarded. 

6) Ether evaporated to dryness, residue 
esterified and esters chromatographed. 

d. Acetone - no clean-up. 

1) Fly tissue homogenized in acetone (100 ml). 

2) Homogenate centrifuged at 5000xG for 10 
minutes. Particulate matter discarded. 

3) Supernatant evaporated to dryness in vacuo. 

4) Residue esterified and esters chromato¬ 
graphed. 

e. Acetone and H^O - hexane liquid-liquid extrac¬ 
tion. 

1) Fly tissue homogenized in a mixture of 40 ml 
acetone and 40 ml HgO. 

2) Homogenate centrifuged at 8000xG for 10 
minutes. 

3) Particulate matter dried in vacuo; esteri¬ 
fied and chromatographed. 

4) Acetone evaporated from supernatant in 
vacuo at 30°C, pH 6.7. 

5) pH lowered to 2.9 with 9 N HC1 and the 
supernatant extracted with 3x175 ml hexane. 
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6) Hexane evaporated in vacuo, residue 
esterified and esters chromatographed. 

7) Aqueous phase evaporated in vacuo t residue 
esterified and esters chromatographed. 

f. Hot perchloric acid - silicic acid, ether 

elution check. Fly tissues are processed by the procedure 

described under 5.a. In addition, the perchloric acid 

homogenate is heated to 100°C for 1 hour. One sample is not 

purified with the ether elution of silicic acid. Another . 

sample receives an additional 100 ml ether elution of the 

silicic acid. The prepared samples are esterified and 

chromatographed. 

g. Perchloric acid - anion exchange compared to 

silicic acid. Fifty, third instar larvae, age P^, are 

processed to the centrifugation step preceding evaporation 

in v-acuo in the perchloric acid procedure described in 5.a. 

One half of the supernatant (36 ml) is continued through the 

remainder of the perchloric acid procedure. The second half 

of the supernatant is passed through 25 ml of a strong anion 

exchange resin (Dowex 1x8-200) that had been generated to the 

formate form with 1 N formic acid and rinsed with distilled 

water. After application of the supernatant, the resin is 

washed with 25 ml of distilled water followed by elution with 

100 ml of 6 N formate solution. The elutant is dried and both 

sample preparations esterified and chromatographed. 
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None of the extraction and clean-up procedures 

eliminate an unidentified compound which elutes near or 

overlapping the point expected for fumarate on a GC 

chromatogram. The results for this are not reported. If 

fumarate does occur, it is usually in much lower concentra¬ 

tions than succinate, 

6. Esterification procedures. 

a. Description of procedures, 

1) Acid-methanol methylation* samples 

containing the prepared organic acids are dissolved in 5 ml 

of 1.9% hydrochloric acid in methanol or sulfuric acid in 

methanol set in screw cap test tubes. The reaction mixtures 

are placed in varying temperature conditions for varying 

time periods. At the end of the reaction period the mix¬ 

tures are evaporated in vacuo at 22°C to 1 ml. Five ml of 

distilled water is added to the aqueous phase and extracted 

with 5x5 ml volumes of ether. The combined extracts are 

evaporated to dryness and the esters collected in a defined 

volume of solvent (acetonitrile or ether). 

2) Diazomethane methylationj prepared organic 

acid samples are dissolved in 3-5 ml of methanol or ether and 

enough ethereal diazomethane added until the yellow color 

persists (2 to 5 ml). The temperature of the reaction mix¬ 

ture and the length of time the acids are exposed to diazo¬ 

methane varies with each test. After the reaction 
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conditions, the volume is reduced by evaporation in vacuo or 

by a stream of nitrogen and brought- back to a defined volume 

with solvent (acetonitrile or ether), 

3) Boron-trifluoride-methanol methylationj 

prepared organic acid samples are dissolved in 1 ml of 10% 

or lk% boron-trifluoride in methanol. The mixtures are 

allowed to stand overnight at 24°C or incubated at 100°C for 

10 minutes. Four ml of saturated ammonium sulfate are added 

to the mixture after the reaction conditions. The esters 

are extracted with 1 ml of ether and reduced, to a small 

volume by a stream of nitrogen. 

b. Esterification experiments, 

1) Effect of time and temperature on acid- 

methanol and diazomethane. The acid-methanol solutions (HC1 
« 

or HgSO^ in methanol following the procedure IV.A.6.a.1), 

p, 21-) are run for either long duration (4 hours) and low 

temperatures (55°C) or short duration (10 minutes) and high 

temperature (100°C). Succinate methylation with diazomethane 

following the procedure IV.A.6.a.2) is conducted for a 

duration of 3 hours and room temperature (22°C) in both the 

presence or absence of methanol in the etheral solution, 

2) Effect of time on diazomethane-methanol. 

Esterification with diazomethane following the procedure a,2) 

are run at room temperature (22°C) and exposure times of 

3 minutes or Q0 minutes. 
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3) effect of evaporation temperatures on esters. 

Methylations of succinate following procedure a,2) at 22°C 

and 30 minutes are subjected to evaporation in vacuo at 

temperatures of 24°c or 65°C. 

Effect of time and temperature on diazo- 

methylation. The test samples contain 3 mg of succinate and 

fumarate. Reaction conditions with diazomethane using the 

procedure a.2) are run for short durations of 0 to 8 minutes 

and temperatures of either 25°C or -60°C. The reactions are 

halted by evaporation with a stream of nitrogen. Exposure 
9 

time is taken to be 0 minutes when evaporation with a stream 

of nitrogen is initiated the moment after diazomethane has 

been added. A reference mixture of the succinate and fumar¬ 

ate methyl esters is included using the boron-trifluoride- 

methanol procedure IV.A.l.a.3). 

Organic acid analysis of manure - procedure. All 

of the larval stages up to age L6 contain observable quanti¬ 

ties of manure in the gut. As a source of error in the abso¬ 

lute levels of succinate that might be present during this 

stage, an analysis of 4 grams of manure is made using the 

extraction and clean-up procedure of 5,e. and esterification 

procedure 6,a.l) using sulfuric acid at 22°c standing over¬ 

night . 
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B, Succinate Levels in the Face Fly 

1. Introduction, Presented here is a listing of the 

procedures from IV,A, which give the most consistent results 

for succinate. These procedures are used to obtain the data 

of the succinate levels in Musca autumnalis. 

2. Rearing and collecting samples. Larvae, pupae and 

adults are collected as described in IV.A,2, to get samples 

of insects the same age for analyses. Each test culture 

originates from a single batch of eggs collected from stock 

cultures. Fresh weights of all the samples are taken before 

treatment. The larvae are pretreated before weighing by 

placing them in a beaker filled with moist tissue paper 

where they crawl actively, consequently, washing off adher¬ 

ing manure liquids and solids, Puparia are gently rubbed 

with dry tissue paper prior to weighing to scrape off adher¬ 

ing substrate particles. For adults no pretreatment prior to 

weighing is done. 

3. Extraction and clean-up. Intact organisms in 

groups of 25, 50, or 75 are processed in Experiment I using 

hot perchloric acid as described in IV.A,5.f. and using per¬ 

chloric acid as in IV.A.5.a. for Experiments II-V. 

4. Esterification. Boron-trifluoride-methanol 

IV.A.6.a,3)• 

5« Gas chromatographic analysis. Conditions as in 
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IV,A.3•j• with variations according to test. 

6, Internal standard. Immediately prior to homogeniza- 

tion, glutarate in standard concentrations with a final 

amount of 250 or 500 ^g is added to the fly-reagent media. 

This amount is based on succinate levels found in earlier 
« 

experiments and allows the chromatograph to run without change 

in attenuation. 

?. Calculations. , 

a. Fly weight during the pupal period. A biochem¬ 

ical component takes on value when compared to its original 

source. The succinate level in the face fly compared to the 

body weight will present a clearer picture by knowing the 

changes that occur and difference between the fresh and dry 

weight over the developmental period. 

Round, plastic, half gallon, ice cream contain¬ 

ers with lids are used as chambers for the tests. Drierite 

crystals spread on the bottom are used to maintain a dry 

atmosphere in one container and a half-inch layer of water 

with Kimwipe tissues adhering to the inside walls to serve as 

wicks maintain a wet atmosphere in the other. In the lids a 

2-inch hole is made and loosely plugged with Kimwipes to 

allow passage of fresh air, to keep out flies and dust, and 

to prevent a sudden surge of moisture into or out of the 

containers. The prepared chambers are kept in the rearing 

room under the temperature and lighting conditions 
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established there. No attempt was made to measure the rela¬ 

tive humidity in the containers, 

1) Determination of the change in weight 

during the pupal period consists merely of weighing groups 

of individuals contained in plastic disposable petri dishes. 

No group of individuals is out of its chamber for more than 

three minutes while being weighed. 

2) Determination of the water content during 

the pupal period consists of taking the fresh weight of 

groups of individuals followed by 60 minutes of drying at 

100°C and cooling to 25°C in a desiccator for 30 minutes. 

Then, the weight of each test group is taken. 

b. Conversion of chromatogram peak area to jag/gm 

fresh weight. Below is a sample determination of succinate 

concentration from the values of Experiment I, Samples 1 and 

2, age from Table 7. 

Signal ratio. 

qarnTllp = succinate (peak height x width at half height) 
p glutarate (peak height x width at half height) 

= ^ (64ths of an inch) = .179 

Sample 2 = ,183 

Succinate content. 

Sample 1 = signal ratio x weight I.S, (jag) 

= ,179 x 500 = 89.5 jig 

Sample 2 = 9I.5 /ag 
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Succinate per unit fresh weight (pg/gm). 

Sample 1 = 
succinate content 
fresh weight of pupa"e 

= §2^ 
1759S = 56 yg/gm 

Sample 2 = J75-J2 = ^8 >*s/em 

Average for age P^. 

57 ^g/gm 



V. RESULTS 

IV. A. Analytical Procedure for Succinate 

4. Standard Curve. The detector response data for 

succinate with glutarate as the internal standard is pre¬ 

sented in Table 2. There is less than a 1:1 response as 

indicated by the signal ratio. However, a linear ratio seems 

to be retained (Figure 1) between the signal ratio and the 

weight ratio over the range of values found for the fly 

assays. 

5. Extraction and clean-up. The major problem 

encountered in the extraction procedures is the presence of 

high levels of fatty acids. In the procedures which yield 

high levels of fatty acid esters, there is often no indica¬ 

tion of the presence of the desired organic acids. 

a. Perchloric acid-silicic acid, ether elution. 

This procedure leaves succinate and glutarate free of any 

interfering compounds. In addition the long chain fatty 

acids which elute after glutarate are cleaned from the 

resulting sample (Figure 2). 

b. Sodium hydroxide - clean-up. The saponifying 

action of NaOH releases large quantities of myristate, a 

palmitate derivative, and stearate. Organic acids do not 

appear in the preparation (Figure 3)* 

28 
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FIGURE 1 

LINEAR CALIBRATION CURVE FOR SUCCINATE ANALYSIS 
WITH GLUTARATE AS THE INTERNAL STANDARD. 
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c. Sodium hydroxide - ether liquid-liquid extrac¬ 

tion. Ether extraction of the acidic aqueous phase reduces 

the fatty acid carry over. Malate is the only organic acid 

collected in any quantity (Figure 4), 

d. Acetone - no clean-up. High molecular weight 

fatty acids but not organic acids are obtained with this 

technique (Figure 5)« 

e. Acetone and H20 - hexane liquid-liquid extrac¬ 

tion. Neither fatty acids nor the organic acids are ex¬ 

tracted with this procedure (Figure 6). 

f. Hot perchloric acid r silicic acid, ether 

elution. Hot acid incubation does not increase the yield of 

succinate (Figure 7). Comparison with Figure 2 reveals the 

production of another peak which interferes with the resolu- 
« 

tion of succinate. Although the results are not presented, 

the first 200 ml volume of ether used to elute the silicic 

acid preparation draws off nearly all of the succinate and 

glutarate. 

g. Perchloric acid - anion exchange compared to 

silicic acid. The silicic acid preparation contains three 

additional compounds not determined as components or impuri¬ 

ties. The anion exchange preparation contains a lesser 

amount of succinate relative to glutarate by approximately 

40$ (Figure 8). 
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FIGURE 2 

PERCHLORIC ACID-SILICIC ACID, ETHER ELUTION IV.A.5.a. 

Chromatographic conditions, 6% DECS 3g OV-17 0£02/*i°P°[oS’SS 
column oven temperature, programmed#80 -1»0 C, 6 C/min, 
min post injection interval; injection port temperature, 2 

°C; flame detector temperature, 280 G; range, 10 to 10 ; 19°UC 
attenuation, 32 to 
peak 3, glutarate. 

8. Peak 1, fumarate; peak 2, succinate; 

FIGURE 3 

SODIUM HYDROXIDE-NO CLEAN-UP IV.A.5*i>* 

Chromatographic conditions, 15* D2GS on Diatoports-S; column 

oven temperature, programmed 82 -180 C, 4 !^%c6°c''fLme 
infection interval; injection port temperature, 19 * 
detector temperature, 283°C; range, 10? to 102, attenuation, 
32 to 8# Peak 1, malate; peak 2, myristate; peak ^, palmitate 
derivative; peak 4, stearaxe. 

FIGURE 4' 

SODIUM HYDROXIDE-ETHER LIQUID-LIQUID EXTRACTION IV.A.5.C. 

renditions, 155S DEGS on Diatoports-S! column 

oven^temferature, programmed 91 -195°C, 236°<>nflame 
iniection interval; injection port temperatur^, 236 C, flame 
doctor temperature, 288°C, range, 10> to 10-, attenuation, 

16 to 8. Peak 1, malate. 
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FIGURE 5 

ACETONE-NO CLEAN-UP IV.A.5.U. 

Chromatographic conditions: 157° DEGS on Diatoports-S; column 
oven temperature, programmed 83°-180°C, 4°C/min, 10 min post 
injection interval? injection port temperature, 190°C* flame 
detector temperature, 281°C; range 10^ to 10^; attenuation, 8, 
Peak 1, myristatej peak 2, palmitate derivative; peak 3» 
stearate• 

FIGURE 6 

ACETONE AND WATER-HEXANE LIQUID-LIQUID 
EXTRACTION IV.A.5«e. 

Chromatographic conditions: 6fo DEGS, 37° 0V-1? on Diatoports-S; 
column oven temperature, programmed 83o-180°C, 6°C/min, 10 min 
post injection interval; injection port temperature, 191°C; 
flame detector temperature, 282°C; range, lO^tolO^; attenuation, 
8. 

FIGURE 7 

HOT PERCHLORIC ACID-SILICIC ACID, 
ETHER ELUTION CHECK IV.A.'5»f* 

Chromatographic conditions: 6% DEGS, 3% 0V-17 on Diatoports-S; 
column oven"temperature, programmed, ?0o-180°C, 6°C/min. 10 min 
post injection interval; injection port temperature, 180°C; 
flame detector temperature, 280°C; range, 10-> to 10* j attenuation 
8. Peak 1, succinate; peak 2, glutarate. 
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FIGURE 8 

PERCHLORIC ACID-ANION EXCHANGE COMPARED TO 
SILICIC ACID PURIFICATION IV.A.5»g.* 

Anion exchange Silicic acid 

* Chromatographic conditions: 6% DEGS, 3% OV-l? on Diatoports 
S; column oven temperature, programmed 80°- 180°C, 6°C/min; 
injection port temperature, 18Q°C; flame detector temper¬ 
ature, 275°C; range, lO^tolO2; attenuation, J2 to 4. 
Peak 1, fumarate; peak 2, succinate; peak 3, glutarate; 
peak 4, fumarate; peak 5» succinate; peak 6, glutarate. 



3? 

6. Esterification procedures, 

b. 1) Effect of time and temperature on acid- 

methanol and diazomethane (Table 3» Experiment I), High 

temperatures drastically reduce the yield of succinate 

di-methyl ester when HCl-MeOH is the esterifying agent. 

Temperature does not effect the yield with HgSO^ drastical¬ 

ly, but the yield at either 55° or 100°C is well below the 

possible maximum. Methanol in the presence of diazomethane 

reduces the yield of the succinate ester. 

b. 2) Effect of time on diazomethane-methanol 

(Table 3» Experiment II). Increasing the incubation period 

from 3 to 90 minutes reduces the yield of the succinate 

ester by approximately 50%, 

b. 3) Effect of evaporation temperatures on 

esters (Table 3, Experiment III). There is little loss of 

the succinate ester when evaporated in vacuo at 24°c. How¬ 

ever, nearly all of the ester is lost at 65°C. 

b. 4) Effect of time and temperature on diazo- 

methylation (Table 4, Test I). Yields of succinate ester 

are increased with lower temperature but not with increased 

time. Fumarate ester is not synthesized except at the 

lowest temperature and time (Table 4, Test II). At -60°C 

the yield of the succinate ester increases with increasing 

time while that of the fumarate ester decreases. At 25°C 

the fumarate ester is produced only at the 1 minute reaction 
jr 
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time. The BF^MeOH treatment served as a check a 

nearly equal amounts of the two aeids* procedure 
pnaivsis of manure. me pj- 

7• organic acid anaiy-__-- 

.... - glv, „u».««- — - 

in spite of * Urge — »' < S") ““ me 
. . „n+prial is present (Figure 9). Tne 

test. Fatty acid material p 

lure contains thr.e »«, aci« 1. stout 

tions as the fly tissues (Figure 5). however, the J»rB P ^ 

in Figure 9. palmitate ester, is not founa m t e y rig 

ure 5). There is a large, lower boiling point compound 

the fly of equal proportion. Experiments performed by 

Dr. U J., Edwards on the organic acids in manure are pre¬ 

sented in the discussion section. 

IV. B. Succinate Levels in the Face Fly 

The results of the tests on the changes.in the fresh 

body weight (Table 5) indicate that a severe decline in 

_ . the drv environment, but not in the moist 
weight occurs in the ary 

, theSe tests. Adults fail to emerge 
conditions employed m these 

pupari. .»««*•■> « «» « •"“'“““t- ” 19 *1“ 

that th. ary anviro—nt ha, no on the pup. i 

• t -n However, pupae in a dry environ- 
not begun until age P4. However, p p 

roent seem to take up water when transferred to a moist one. 

Although the data for the succinate concentration in 

of the fly are reported on a fresh weight 
the various stages of the ny 



FIGURE 9 

RESULTS OF GAS CHROMATOGRAPHIC 
ANALYSIS OF MANURE IV.A.7.* 

Chromatographic conditions: 6^ LEGS on diatoports-S; 
column oven temperature, programmed 83°-180°C, 4°C/min 
injection port temperature * 
perature, 282°C; range, 10-5 
Peak 1, myristatej peak 2, palmitate; peak 3* stearate 

191°Ci flame detector tem- 
to 10^j attenuation, 8. 
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basis, the data in Table 6 will allow readers to make a 

reasonable calculations based on the dry weight. 

Experiment I. From a low of 57 Mg/gra in 'the suc¬ 

cinate level more than triples to 179 J^g/g™ in From 

there a gradual decline occurs over the remainder of' the 

pupal stage to about 120 }ig/gm. The dip to 91 J^g/gm and the 

rise to 141 }xg/gm on days P^ and P^, respectively, are cor¬ 

related with the time for the pharate adult (Table 1). The 

level rises to 143 pig/gm in the adult stage (Table 7» P* 45). 

Experiment II. The rise'from to P2 and the gradual 

decline after P2 seen in Experiment I is confirmed (Table 7» 

P. 45). 

Experiment III. The mixed adults reveal a gradual rise 

from age A^ to followed by a decline to A^• The initial 

adult value of 131 pg/gm agrees closely with that in Experi¬ 

ment I, 142 jag/gm (Table 8, p. 46)-. 

Experiment IV. In both the males and females there is 

a rise from A1 to A^• After this time there is considerable 

fluctuation in the values. The value for A-^ is considerably 

below that of the previous experiments, being 81 and 92 for 

the males and females, respectively (Table 8, p. 46), 

Experiment V. The gradual decline during the pupal 

stage and the gradual rise during the early days of the adult 

stage seen in the other experiments is also seen here. The 

larval values for and are nearly equal to the adult 

values for A^ (Table 9, p. 47), 
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YI. DISCUSSION 

It became apparent very early in the study that the 

techniques employed by other workers for the extraction of 

organic acids from plant tissues would not be satisfactory 

for the extraction of organic acids from insect tissues. 

The high levels of fatty acids in the fly tissues for the 

most part probably masked the organic acids. Thus, while 

the perchloric acid technique may not yet be the best proce¬ 

dure for obtaining the most complete extraction of the 

acids, it is possible to obtain consistent results with it. 

The same is true for the esterification procedure 

using diazomethane. It is demonstrated in this thesis, as 

well as by other workers, that the technique is extremely 

dependent on time and temperature. Such variability has not 

been reported in the literature for BFyMeOH, and the 

constant conditions of time and temperature used throughout 

this work assured constant esterification. 

A great source of variation results from the nutrition 

of the flies. It is not possible to feed each batch of 

flies on identical media. The manure is highly variable in 

terms of water content, solids, color, and odor. The great 

differences seen in the succinate concentrations between 

experiments further confirms the dietary irregularity. 

The manure itself is considered as a source of organic 

48 
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acids which might have some effect on the results for the 

larvae since a large portion of th^e larva is occupied by a 

manure-filled gut. Subsequent to my experiments, Dr. L. J. 

Edwards used my procedures established for the face fly and 

ion exchange chromatography for clean-up to determine the 

levels of organic acids in manure. This is analyzed in 

Table 10. 

TABLE 10 

EFFECT OF MANURE IN GUT ON 
THE SUCCINATE VALUES OF 

FACE FLY LARVAE 

Source of Succinate Concentration 

larvae (L^ from Table 9) 48 pg/g 

manure 15-9 yg/g 

larval gut* 4 yg/g 

Affecting levels 8 % 

Twenty-five percent is the assumed part by weight but is 
likely to be a high approximation because glutarate, the 
internal standard, is also present at a level of 21.4 pg/g in 
manure. During tests to determine a feasible internal 
standard, there are no peaks at this elution time in the 
chromatograms of the face fly extracts. 

The precise value in determining the succinate 
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quantities in animals in terms of its physiological signi¬ 

ficance is not yet clear* Some obvious possibilities are 

the detection of succinate pools; its significance in terms 

of ion balance; correlation with enzyme activity, physio¬ 

logical state, behavior, and age; and further elucidation 

of the role of succinate in metabolism through comparative 

study* 

A comparison of succinate concentration found in this 

study with the oxygen consumption (Guerra and Cochran, 1970) 

and succinic dehydrogenase activity (Rousell, 1967) (Figure 

10) reveals some apparent correlations that bear further 

study. Succinate concentration seems to be inversely 

correlated with both oxygen consumption and succinate dehy¬ 

drogenase activity, and in the pupal stage is best correlated 

with the latter* A gradual decline in succinate is accom¬ 

panied by a gradual rise in succinate dehydrogenase activity. 

In fact, the correlation between these two factors is better 

than the correlation of either one of them with oxygen con¬ 

sumption, which remains essentially unchanged over the 

entire pupal period. 

Whether the succinate concentrations found in this 

study are high enough to serve as a significant pool or 

reserve during periods of high metabolic demand is analyzed 

in Table 11. Making the assumption, unrealistic as it is, 



51 

FIGURE 10 

COMPARISON OF SUCCINATE CONCENTRATION, OXYGEN CONSUMPTION, 
AND SUCCINATE DEHYDROGENASE ACTIVITY IN THE FACE FLY*. 
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* Succinate concentrations from Table 9; succinate dehydro 
genase activity from Rousell (1967)1 oxygen consumption 
from Guerra and Cochran (1970). Succinate dehydrogenase 
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that succinate is the only route to the electron transport, 

we obtain a time for the disappearance of succinate where 

succinate is not being replaced by other enzymatic reactions. 

Since the respiratory value is for the fly at rest, and the 

succinate would disappear in 3.3 seconds, this does not seem 

to represent a significant energy reserve. 

Very little information on the succinate concentra¬ 

tions in animals is readily available. Rat tissues have the 

following in pg/gms liver, 260; kidney, 71; muscle, 118; 

spleen, brain, thymus, lung, heart, and blood, 0 (Webb, 

1966). The horse bot fly, Gasterophilus intestinalis, has 

240 mg/100 ml of blood (Spector, 1956). The plasma of human 

blood has 0.5 mg/100 ml (Altman and Dittmer, I96I). The 

values for vertebrate tissues are in reasonably good agree¬ 

ment with the face fly values. The bot fly value converts 

to 2400 pg/gm and might be correlated with its unique 

environment in the stomach of a horse where the carbon 

dioxide concentration may reach 75^. Analyses of other 

insects were made in the Research Methods Course at the 

University of Massachusetts in Fall,- 19?2 under the direc¬ 

tion of Dr. L. J. Edwards. These are compared in Table 12 

with the face fly from Table 9, 

These values are all based upon one analysis without 

an internal standard. In general, there does seem to be a 
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positive correlation between the activity of the insect and 

its succinate concentration. These" data should prompt fur¬ 

ther comparative study to verify this hypothesis. Also, it 

would not be unscientific to hypothesize a correlation 

between succinate and mitochondrial content. 

._.TABLE 12 

SUCCINATE CONCENTRATION IN 
SEVERAL INSECT SPECIES 

Species Stage Succinate 
Concentration (jug/gm) 

Musea autumnalis adult 85 

Phormia regina larva 
pupa 
adult 

300 
no 

1695 

Musca domestica adult 5018 

Apis mellifera worker 6680 

Gromphadorhina portentosa adult 49 

Blaberous discoidalis adult 933 

Tuberolachnus salignus apterae 50 

In order to make this kind of study complete, an exam¬ 

ination of all the major Krebs cycle components is necessary. 

From the work of this thesis and literature reports it is 

obvious that no one procedure will enable a simultaneous 

determination of all the components, The ideal procedures 
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are possibly the use of perchloric acid extraction, silicic 

acid and/or ion-exchange purification, trimethylsilyl ester 

esterification (Dalgliesh, e_t al., 1966) and analysis by gas 

chromatography combined with mass spectrometry. 

The procedure outlined in this thesis appears to be 

basically sound for the quantitative determination of suc¬ 

cinate in the face fly. Other species might require more or 

less concentration of the final analysis sample. Analysis- 

of malate appears to offer no particular difficulty but may 

be facilitated by an increase in the pH of the extraction 

medium. 

Citrate is a large molecule and is further increased 

in size by methylation. This characteristic causes longer 

retention time during analysis and, subsequently, a drop in 

the accuracy of citrate analysis. A possible solution might 

be the use of a slightly less polar liquid stationary phase 

rather than trying to increase the temperature of the pro¬ 

gram. As indicated earlier, this would decrease the loss of 

some of the other sample components, as well as, citrate due 

to thermal decomposition. 

Fumarate with its electrophore group has given diffi¬ 

culty in analysis due to the formation of pyrazole deriva¬ 

tives when using diazomethylation for esterification. The 

resulting ring derivatives are very hard to chromatograph 
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using the common liquid stationary phases, Simmonds et al. 

(I967) studying the Krebs cycle keto acids during esterifica¬ 

tion found that oxalacetate formed a fumarate derivative 

retaining the same electrophore group. He suggests exploit¬ 

ing the use of electron absorption detectors on the gas 

chromatograph which are suited to detecting double bonds, 

Fumarate, esterified with a less rigorous reagent, could 

also be examined with the same detector and with little 

change in the tissue extraction procedure, 

Simmonds* study indicates the need of investigating 

the derivatives formed no matter what esterifying reagent is 

used. Any work designed to quantitate the levels of oxal¬ 

acetate, alpha-ketoglutarate and pyruvate will require the 

combined quantitation of two or more peaks for each compound. 



VII. CONCLUSIONS 

A. An organic acid analysis technique has been developed 

for the quantitation of succinate from the face fly, 

Musea autumnalis De Geer. The procedure includes: 

extraction with a strong protein-precipitating acid, 

perchloric acids sample purification with ether elution 

of the organic acid components off silicic acid; methyl 

esterification to the more volatile form with boron- 

trifluoride In methanol; and gas chromatographic 

analysis with glutarate used as an internal standard. 

B. During the major stages of face fly development, 

succinate occurs at levels of 48-60 pg/gm fresh weight 

during the larval period, 92-277 pg/gm fresh weight 

during the pupal period and 53-149 ^ug/gm fresh weight 

for the adult female, and 50-163 pg/gm fresh weight for 

the adult male. 

C. Succinate concentration in the face fly shows a slight 

correlation with the major stages during metamorphic 

development. Also, succinate concentrations show an 

inversely related correlation with the succinic dehydro¬ 

genase enzyme and respiratory activity found during the 

pupal stage. 
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