A study of the external morphology of the larva of Rhynchophorus palmarum (L.) family, Curculionidae; order, Coleoptera.

William Hunton Ziener
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Ziener, William Hunton, "A study of the external morphology of the larva of Rhynchophorus palmarum (L.) family, Curculionidae; order, Coleoptera." (1961). Masters Theses 1911 - February 2014. 2950.
Retrieved from https://scholarworks.umass.edu/theses/2950

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Qwha, comompan
синаям

Whalimivi H. Wallan
1961

A Study of the sxternal Morphology of the Larva of Ehrnchophoris nalmarum (L_{o}) Family, Curculionidae; Order, Coleoptera

Villiam H. Ziener

Pasante de Agronomo
 Esouele Particular de Agrioultura
 Giudad Juarez, Chihuahua, Mexico

Agronomo

Escuela Particular de Agricultura Ciuded Juarez, Chihuahua, Mexico

> "Thesis submitted to the Graduate Faculty
> in partial fulfillment of the requirements for the degree of Master of Science." "University of Massachusette, Amherst." May, 1951.

TABLA OF CONTOMTS

AGMOHLEDMENRS. 1.
DEDICATEOM 2
INGRODUCTION 3
naview of Litigraturs 5

Specimons examined 7
Colloctine procedures, 7
wothods of laboratory oxamination. 8
KKTERNAL MORPHOLOOY.
Head 11
0 eel11 14
Prons. 14
Antonnae 15
Clypous. 15
Labrum 15
Tptpharynx 17
Handibles. 18
Labium 1.9
Hypopharynx. 22
Maxil1ae 23
Tentorium. 24

TABLE OR COMYKNE COMT.

Pege

Hypopharyngeal Bracon. 25
Prothorax. 26
Hesothorax 26
Wotathoraz 28
rust Abdominal serment............. 26
socond to Sixth Abdominal Segmont........ 29
Seventh Abdominal Segraent 29
Eighth Abdominal Sogment 30
Winth Abdominal Segment 30
Tenth Abdominal Sogment 32
SUMARY AWD CONCLUSIONS. 34
BIBLITORMATHY 36
ABBREVITRIONS. 46
FIOUTKS.

ACKNOMLEDCHENTS

Bincerest thank are due to Drs. Marion Enaith, Eoward E. Bigelow, and John F. Fanson for their valuable guidanco and encouragement throwhout the coumse of this thesis. The heaviest load of directing this work and oorrecting this manusoript fell on Dr. John F. Fanson, who ovez and aiways gave ne unfinchincly all the help and time I wantod; I em fully aware ond highiy appreciative of all the help he gave me, Furthermore, many thenks should go aso to my profeseors and olassmates for kindness and encouragoment, whi oh hevo mado possiblo a plecisent and profitable stay at the University of Massachusetts.

IMTRODUCTIOR

One of the ehief justifications for study of worpholoEy of eny organism ie the signifieance of form and structure in olessification and blolocical rolationsh1ps. Parpholocy is basic in classifioation because it supplios a reliable index to the rolationships between indiviauala. The diacovery and evaluation of these relationships can contribute not only to the field if taxonomy but also to such rioles as genetice, physiology, and patholocy.

The Larrae of the genus Rhynohanhorus Herbst (2795) have neoded a stuad of oxternal morphology for some time. Many aotails of their structure and varintion have never been investicated, for early workers were concerned with dostructive cayacity and distribution. The two spocies and one variety of this genus that have beon cescribed from the aubrican continents have been distingulshed onis by their coocraphical distribution.

The conus ghynchophorus is of economic importanco as weal as of acedomic interect becauso ㅌ. primarum (I.), K. cruontatus (y.) and \& cruentritue vaxioty zhmermand (Fahr) are pasts of the coconut palm (Cooos nucifera $L_{\text {, }}$) and other palms in tropioal and subtropical America. The larvac are rosponsiblo for damagine the palm by destroying the vasculer theane. Once the larvae have gained accoss, the death of the palri generally ensues. Damars may resuit in another inshion, for the adult

Was ohown by Martyn (1953) to bo able to trangmit the nemsiode Anholencoldes coconhilus (Cobb) which causos Hed ting aiseaso on pelms. It is impossible to assess accurately the actuel lose of the palm aaused by the species of Phynchophorus, but undoubtediy tho cost to plentation owners is sizablo.

The writar inset beoam interested in theso insecte while witine his thesis (2iener, 1957) for the degree of Agronomo in Yexico. That thesis dealt with the oultivation of the soconut paim. Ky intorest in this fiold led to the discovery of the paucity of information on the larva of \mathbb{R}. palmarum. A detalled morpholosical study seemed a worthy contribution to olacsilioation in myynohophoms and was therefore selected as the subjoet for a raster's decroe thesis.

The purpose of this thesis is to presont a dotailed morpholocical stuay of R. palmarum and to compare it with \mathbb{E}. oruentatus and E. cruontatus varioty zimmergannt, a foundation for a bettor understandine of their classirication.

In a roview of the ifterature relative to the momyoiogy of phynohophorus larvae, it is unnegessary to go bhok boyond Cotion's (1924) morphologic and taxonomio study of E Eruontatus. previous to his paper, publications on these insects wore ounc oorned with recarte of distribution or damage. In 1936. Junt and Schentring cified all the publishod infomation on Ehynchophorus in the "Coleoptororum Catalogua".

A rolovant contribution was made by Andexson(1947), who proposer a termanology for the anetomical charactere userul in the texonowy of weovil larvae, using the inrve of Pissodes strobi as an example (Peck). These terms are uaed in the presont thoais. In tho rollowing yoar, Andorson (1943) publishod a key to the subfamily Caiendrinae separatinc the two species of mbynohonhorus occuring on the Amerioan continonts only on the basis of thoir goographical distribution.

In 1925 Plerce publishod a comprehensivo taxononio history of the cenus Rhynchophorus and related genera. In this publication, he usad the opalling "Rychophoms" as ald Herbst In 1795. Apparentiy, this spolling was a lapous aelami of Herbst. Aocording to Miss Rose Blla Warner of the U.S. Mational Kusoum (foy 5, 1961, in 11tt.): mho oricinal apeiling by Eorbot in his text was Eynchophorus but the plates and ficures are labelled Ihymohophorus. The two volumes of plates do not
caryy any date but in all probability they were, or we can assume they were published along with the text." At present the accepted spelling by all recent authors is Rhynohophorus.

Jandeino (1941) reponted Rhynchonhoms politus Gyll. as a new pest of the coconut palm in Brazil, using the synonym of Dynamis politus Gyl1. According to Leng (1920, 1927, 1933), Blackwelder (1939, 1948), and Anderson (1948) Drnamis is a closely related but separate genus of the tribe Rhynchophorini, however Anderson (1948) comments: Withe genera Dymamis and Rhynchophorus are doubtfully distinct on the basis of the observed characters of their larvae, and the differences indicated below are probably of no more than specific importance".

Spocimons axumrad.
The larvae of ㄹ. palmarum (I.) whioh were examined in this study inolude: (1) five specimens colloctod by Canles Ballardo in Tecoman, Colima, Woxico, in April, 1959; (2) twonty specimens collected by iliguel Alonso Bautista in Veracruz, Veracruz, Mexico, in April, 1959; (3) four spocimens Collected by S. Majaraj in Saint Aucustine, Trinidad, West Indes, in April, 1959; (4) fous specimons collected by faul Mac Grocor in Acapulco, Cuerrero, Kaxico, in April. 1959; (5) four spocimons furnished by Raul liac Gregor collectod in Cozumel, Quintana Roo, Mexico, in March, 1931; (6) oight specimens collected by Luis Campa Santos in Tecoraan, Colima, Mexico, in July, 1959; (7) and seventy-nine specimens collocted by William Ziener in Barra de Navidad, Jalisco, Liexico, in Aucust, 1959.

Bleven larvao of E . aruentatus (F.) wore furnished by John T. Creighton, collected in Gainesville, Florida, in April. 1959.

Collectine procedures.
The specimens cited above wore located inftially in the field by searchins for palin trees with characteristic syaptoms
of infestation by Raynchoghorus spy. The bud leaves of the palm show witins and the leaves of the outer whorl show premature Crying. It is possibla to conflrm the presence of lexves in the palm by listenine for the scuna of their feedine. Dy placIne one's car to the trunk of an infosted palm, one can hear. the crunchinc of tho tissue by the actively foedins larvae. The infostod palm is out com and inspectod for callerios. The trunk is split longthase in order to trace the gelleries. Usualiy the collootor oas locato tho weovil Larvae alons these pothways.

Whter romoval from the wood, tho larvac ero bolled in wator for five minutes, then preserved in 7o\% alcohol.

Rothods of 1aboratosy eramination.

As a first step in the morpholocical study, the width of the head capsule was measured in thousandths of an inch with a micrometer (Starrett). These data are shown in ifecure 1.

The lervee were next exemined for conepicuous structures by moans of a stereo-mieroscope (Amorican optical Sponcor Modal 26 IJ) with a $12 X$ ocular and $I X, 2 X$ and $3 X$ objectives. For inconspieuous structures that required higher magnifleation for their study, the mothod of preparation aiscussed bolow was used. A spocimen was boiled in allute kor for approximately three minutes, then transferrod to 70% alcohol for several minutes.

The strueture in quostion wes aut out from the whole specimen, arraned in a arop of Hoyer's rounting medium on a slide and covered with a cover clacs. The specimen wes thon oxamned through a compound microscope (Amerioan Optical Spencor Mierostar) with a 15 X ooular and $5 \mathrm{X}, 20 \mathrm{x}, 43 \mathrm{x}$, and 37X objootives and a builit-in base 11 mminator, and observations reoorded.

In an attenyt to observe acitional details of R. palmarum, elcht head capsules wro imbedded in colloldin following the tathod discussed by Konnody (1932). It was found that by puncturing several parto of the vertex with a needie complote penetration of colloiain took place. The colloiain blooks thus obtained were cut at sixty to ninety microns in thicknoss. The soctions wero stained in hematoxylin and oosin and mounted in the manner describod by Guyer (1930).

Photographs were taken from slices of the opipharyax, hypopharynx, posterior opicranial seta number two, the antennae, and tho ocellus with a Kodak Pony IV 35 millimoter camoro mounted on the Morostar compound nieroscops. The Iilm used was Kodachrone for flash type F. Exposuren wore of one tenth and one quarter of a second duretion. The latoral view of the larva and the dorsomiatal end of the abdomen wero photographed with o. 4 X 5 Linhof press camera usine Royal Fan fila.

Results of observations are recordoc in the following

discussiom。

Drawincs were nade frooluad from observations of struetures through the aforenantioned hicroscopos. Certain parts of the Aravings wexe made by ito Joseph Fallasola.

The head eapaule of Phynohophorus palmarum (L.) is hoavily sciorotizod and dark brown in color. Whon viowod from above it is rouchly somiciroular, but when viewed frontaly it is obovate.

From a frontal view, the posterior portion of the coronal suture, which diviaes the vertex into two equel parts, is approximated by two sliehtly elevated bends extending anterioriy about two thirds the length of tho suture. Those bands are the external evidence of a huce median sagittal invagination. The frontal sutures or, acccraine to Cook (2943) the clypoofrontal suture, follow a highly variable course. At timos they may form a distinct anglo with eech other, while othor times their course is irregular. Wach suture extends anterio-laterad approximately to the point of attachment of the abductor tondon of the mandible, where it becomes incompleta (Anderson, 1947); It ends laterad of the antenna. The point of union between esoh frontal suturo and the adrrontal suture (Cotton, 1924) ocurs approximately mialength of the frontal suture. From this point the adrrontal suture oxtends posteriorly, converging toward the coronal suture, and disaypears before reaching the posterior end of the head capsule.

The two adrontal sutures latorally ablinit the so-called adfrontal remion at cotton (1924). Each pariotal rogion boars five corsel onicranial setee, four posterior opioranial petac and seven rovoclac. Anderson (1947) da not number the posterior oploranial sotae; I am numborine these sotae on this recion of tho pariotinle to recilitato thelr cescription and location within this thseis, but do not necessarily expoct it to be used for any future tazonomic purpose.

Tho doral epicraninl sotae are looated as follows: (1) Sota number one is large and is located on the adirontal euture, allchtly below the level of the anterior ond of the elovated bands, whioh border the coronal auture. (2) Seta number two is relatively small and is located laterad and basad of sota number one. (3) Sote number three is lerce and is looatece at the exterior angle fomod by tho irontal and adrrontal sutures. (4) Sota number four is rolatively smoll and is looated laterad, and alicitly anterior to seta number three. (5) Sota number five is large in sizo and is located latorad, and slighty anterior to seta number rour.

The posterior apioranlal setaeare located aubparallel to the adrrontal suture, alsted of corsal opioranial seta mumber two. Sota number one (the unteriomott of this (froup) is very smail, and is sometimos bifurcato, othor timas almpio, Sotso numbers two (seo Piguro 5), three and four are niso very small
and are birurcete (vimivio ons undar compound microstone, 150xplus).

The positions of the foveolee are as rollows: (1) A fovoola is located about two thiras the dietume fron corsal apleranial meta numer throe to dorsal epicrantal sata number one. (2) inother fovoola is locatod leterad, and sishtiy basad to corsal epleranial seta mumber four. (3) one roveola is Locatad botwoon enrsal spioronial seta number two and posterior epheranial seta mubor ono. (4) Throe roveclac are looate in a line aprozinataiy porpenalcular to the aufrontal Enture; this line is locatod botwoan postorlor apleranial geta number two and postoriox oplaranial sote numbr three.

Jah conal rocion has threc fovoolae, and beara Rorsal opicranial sotee one and fwo, rnd ventral epleramial sotao ono and two.

The parietal, genal and adrontal zestons have a consplcuous roticulated pattern. The shape of the colle on tho conal and poatarion recton of the pariatals de more olonato ms oompered to the fackal part. The aumber of colls has boon
 and 3. These fleures show that tho rence in variation in one claas is esoentially similar to the ranco in variation in another; theroforo afferent ingtars cennot bo soycrated by tifforanoes in number of celis. It is evident thet tho colis onlargo in alze wits each inster but apparantly do not algnifioantiy incroase in number.

The 0cel11 (5isure 6)
There are two yellow oolored ocollar apots, one of whith is located laterad of eachantenna.

In taxonomic woric, ccoordine to Anderson (1947): "Unless a convex lens is clcariy discerniblo, even thouch auboutanoous plgment spot may be Visible, the ocelius is considered to be absent." Thareroze, sinoo no lons is olearly aiscorniblo, tho ocel11 in the genus Mhynchophorus are considored by Andorson to be absent.

Hosever, because of thoir location, structure, and external appearance, the two yollow colored apots ere considered by the writor morphologically as ocolli.

Celloldin lmbedas hosd carsules wore sootionod to stualy the yollow colored spots internelly; but apperently due to aging of the preserved specimens, the internal tissue wes found to be deterioratea.

The rrons (Figure 4)
The frons is darkey solorotizod, subtrianculer in shape, with two ilnoex, longitudinel, convergent, rugose dopressions. These deprossions are the oxternal evicence of the attachinento of the dorsal arms of the tentorium. The frons beara rive palra of rrontal setae. Between rrontal setac one and two thare is a rovoola.

Tho Antennae (IIruxe 2)
The antennae aro palo yellow in color; they are located on the apleos of the lateral ancles of the frons. Bach antenne consists of membranous besal article, which beara soveral minute hatrs and an acoessory sensory appendace.

The cippous (inure 4)

The olypeus is trapezoidal in outline; the basal half is darkiy selerotised, while the djstal haif is much paler* It boars at oach basel lateral angle a pair of sotae, called clypeal sotee numbers one and two by Anderson (1947). Cuypoel seta number two ia looated within a small trensverse eroove or pit.

The Labrum (gicure 4)

Trom a frontal view the labxum appeers unevenly aemicircular, with the froe oafe trilobate. It is darkly sclorotized oxcept for the marginal area of tho frea adge whioh is lishter in color. The union of the labrum with the olypeus is strons but allows some movenent.

The frontal surface is dividod into thxeo neariy oqual areas by two lonsitudinal prooves which staxt noar the baeal marcin of the labrum, aiverge alichtly aistelly, and extend
over the anterior elke (producing the trilobation) onto the epipharyngeal uriace. Alone these grooves the darironed internal labral rods of anderson (1948) are extornally visible. In sctuality these are the greatly strencthoned inveginations of a outure lying in the grooves, at on be seon in xor-treated specimens.

Sach lateral lobe of the labrum beers aight to thirteen mareinal sotico and two submarcinal satno. Anabrson (2948) considers the mareinal setne es beins loceted on tho antorom Lateral portion of the eplpharynx and round a minimum of nine. Ono submareinal seta (10s 2) is locatod on the anterior portion of the lateral lobe olose to the labral rods; the senond (10s 3) is looated approxinstaly midvay betweon the first sota (1ms 2) and the basal lateral angle of the labrum.

The midde lobe is ovenly rounded at marein and bears two large setae (les 1) which are located in the line botween the postoriomost gubmercinal setas of the lateral lobes. These midiabral setae are dietinotly soparatea, at leest in this species, from the marginal setae. The latter are six in number, four of thom being nearly equally apaced and easily seen from the front. The romining two are concoalod by and lie cloaely bohind the mildie two of the four rentioned above. About midway botween aoh mid-iabral sets ond tho outarnost mareinel sota on the samo sido is a sensil1um (Andorson, 1948). The 31ze of the sensilium is approximately the same as the basal
dinmeter of any of the aforementionod sotae.

The Enipharynx (F1cure 8)

The oplpharynx is the adoral surface of the labxura and the alypeus; it is composed of hairy papillate and bare ereas. Invaginated beneath the opipharyngeal surface is a pair of dark, conspicuous, loncitudinal opipharyngeal rods (Cotton, 1924). These are the adoral continuation of the so-called labral rods. Covoring the middle third of the surfaces between the epipharyngeal rods is an elerated surface. Located lateral to the epipharyngeal rods are two longituainal pale bands converging toward the base of the epipharyngeal rods. Those and other color features do not necessarily bear any rolationship to the distribution of hairs and papillae.

The distribution of hairy, papillate and bare areas, Cescribing first the central region, is as follows; (1) The basel third of the aroa between the oplpharyngeal rods is bare. (2) Tho lateral areas of tho olevated surface, oxcept distally, are also bare. (3) The top of the elevated surface is densely oovered with long hairs. (4) The distilatoral areas of the elevated surface and the oreas laterad of these boor papillae. (5) Inmediately anterior to the distal ond of the olevated surface is located a small panillato area. (6) Just anterior to the above (numbor 5) lies the apex of a subtriangular bare
area the base of whith is the free anterior ode of tho madele love of the eptpherynx. (7) The surfoces bounding the aforementioned trianclo laterally bear papilias. (8) The alatal thira of each longltudinal pale band boars papiliee. (9) The basal two thirata of the pale loncitudinal bande exe bere. (10) Lateral to the yaie loncitudinal bands the opipharynx is haixy.

Between the distal onds of the oplpherymceal rods are two poirs of oonsplouous setae callea modian spinea of epipharynx by finderson (2947), of which the anteriormost pair is the larger. A pair of similarly spaced light-colored apots, which ore probably sencory in function (calied senclilae by hayos, 1928, and opipharyngeal sonsory pores by Ancerson, 1947), is located about riluway betwoon the arorementioned paixs of seteo (F1gure 9). Each of these light-colored apots la divided into three oompartinents. Two more light-colored syots (sensillae) are locetel on enoh side of the elevated surface close to the inner margin of tho opipharyngea rods (ficure 10) at about midlanctis of theso rods. Thess sensillae are at varginc distances from one another in dirfarent specimens.

The Mendibles (Pieure 4)

The mandibles are of the typical chewing type; thoy are heavily selerotized and black in color. When viawod frontally each manaible appoara subtriancular in shape. On the frontal
surfaos each has a large tuberosity, where the abductor tendon is applied, and bears two sotae, called mandibular setae num bers ono and two by Andorson (1947). Wandibular seta number one is situatod within a round pit; number two is situated within a longituainal pit. Laterad of mandibular sota nuraber one is located a foveola. Distally the randibles usually terminate in a single blunt tooth, yet sometimes they are bifld. Aborally, Böving (1921) has termed the proximal recion the manductorial region, or the arinding area (also called the molar area), and the distal part, the scissorial region, or outtine area. The rolar area appears to be flat except for a mosally olevated sure face and two longitudinal grooves (igure 11). The scissorial area has two longitudinal concave areas. When the mandible is removed from the heed capsule, one can see the abductor and aductor tendons, and a dicondylic hinge joint. The anterior part of the dicondylic hinge joint is a socket and its posterior part, a condylo.

The Labium (Elgure 12)

The labium of insecte in its simplest genoralized form consists of two major divisions, the basilabium and the distilabium, soperated by a suture, The basilabium is a singla selerite; the distilabium bears the palpi and the 1igula. The criteria to separate these aroas are location, shape, color, and
presence or absence of sutures.
The hasilabium or submentum, which is sclerotized and Iight yellow in color, is the largest part of the lebium. The basal margin assumes the shape of an obtuse angle, its apox boinc approxinateiy on the midline of the lebium and pointing in the direction of the thorax. The lateral mareins of the basilablum converge slightly anterioriy. The aistel margin is subparallel to the base. The submentum has two equally spreed, longitudinal, paramedel depressions which run approximately two thirds of the distance from the base to the distal end. Basally, these loncitudinal paremaitel depressions are white, but they gradually shede toward a darker color distally. Their aistal halves are derkly sclerotized. Approximately the aistal third of the basilabium is divided mesally by on inconspicuous suturg. There are threo pairs of basilebial setee and one pair of foveolae. The setae are located on each side as follows: Seta number one is located about midway botween the mid-line of the basilabium and the longitudinal depressions and approximately two thirds the distance from the base to the distal margin. Seta number two is located about midway botwoen the longitudinal depressions and the lateral margin of the basilablum at about the level of the basal tip of the distilabium. Seta number three is locsted about midway between seta number two and the lateral oxtremity of the plica described below. Tach foveola is located slightly mesad and distad of seta number
three. Distally, each lateral area has transverse plioa, which is incomplete mesally. The arees of the basilabium which border with the maxiliae aro whitish with darkly plgmented spots.

Tho distilabium is solerotized, baselly brown and distally yellow in color. The lino delimitine the junction of these two colors is highly variable. Axially the brown colorod area protrudes both forward and backward. Both of these mesal secm tions vary in shape and in length in different specimens, but always within cortain limits. The distal acute protrusion is always longer and more acute then the basal protrusiom. On each side of the baso of the distal acute protrusion thore is. either on the brown or on the yellow area, a fovoola. The yellow colored area bears one pair of large setae. These are locatod basad of the latoral edges of the 11gula. Between the twomsegmented labial palpi, the distilebiun bosrs a unipartite 11cula. Distally the 1igula bears a pair of setee on each side. About midway between the setae of each pair is a "sensory" spot (Cotton, 1924). Tho small two-secmented labial palpi are borne on a mombranous base. The proximal segment in each is oylindricel and darkly sclerotized, and has a foveola on the aboral surface. The distal segment is much the smaller in size and is also darkly sclerotized. It is ovoid in shape and has a round membranous pepillate portion distally on the aboral surrace.

The liypopharyax (Figure 13)

The hypopherynx is sclerotized although lightiy colored, distally bilobed and mesally bare. Both aplcal lobes are donsely covered with dark halrs. There are two aubparallel rows of dark hairs on each side of the axis on the basal half of the hypopharynx. On each sice, the two halry rows converge and meet basally; distally they join tho heiry areas of the apioal lobes. The haixs in the subparallel rows are of variable size, but always longer than the hairs on the apical lobes. The apical portions of the hairs of both pairs of subparallel rows overlap each other mesally. This is especially so at the base of the rows where they overlap so densely that it appears as though the rows of one side of the hypopherynx converee basully and meet those of the opposite side (Figure 14). Although the tips of most of the hairs are blunt, a few terminate sharply. Two small, slightly darkened areas are located on the base of the hypopharynx; on each of these are two light-colored spots (sensillae). The mouth (Snoderass, 1935 p.114) is subcylindrical, and is surrounded by lieht-colored hairs. Bach side of the hypopharynx is strengthened by two darily sclerotized bars (Snoderass, 1935). One bar is looated trensversely on the lateral surface, alightly basad of tho hairy aplcal area. For a complete view of $1 t$, one sust observe the hypopharynx lateral1y. The other bar is lonegr, with one end located basad of the
lower end of the aforementioned bar; it extenas posterioriy to the groove that separates the lobium from the maxillae. The postorior wall of the hypopharynz is extensively fused to the lablum, with a small salivary pocket or salivarium being formed.

The Max111a0 (F1gure 12)

When viewed aborally each maxilis is seen to be composed of a cardo, a stipes, a two-secmented palpus, and a mala. The cardo is light brown, with darkly pigmonted spots, except for the areas bordering the submentum and the stipes which are whitish. The stipes is derkly sclerotized, havine many darker piesmented spots on the areas bordering the cardo. It has two foveolae and three setac; the bases of these setae are surrounded by pale rinss. One foreola is located near the bese of the stipes, while the other is located near the base of the palpus. One of tho setae is located about one third the distance from the base of the stipes to the palpus, and the other two are located beside each other near the base of the palpus. The two-segmentea labial palpus is borne on a raembranous base. Its proximal secment is cylindrical in whape and darkly sclerotized; it has two foveolae and bears one small seti. The foveolae are variousiy located but always on the aboral surface. The small seta is located between the two eforementioned foveolae distad of the line joining them. The distal segment
of the paipus is much smaller in size and is also darky sclerotized. It is ovoid in shape and has a round merbranous papillate portion distaliy, on the aboral surface. The mala is distally truncate with subparallelsides. It has two fovoolae, one relatively small seta, and two large ones, One of the foveolae and the small seta are located in a line slighty below the level of the membranous bese of the palpus, with the seta mesad. The othor foveola and the two lare setae are located on the distal portion of the mala, with the foveola more latorad. The tips of some of the adoral simple and branched seteo described below are visible.

Adorally tho maxilla is pele yollow. The mela bears two irregular rows of setae which are branched unlass otherwise spocified below. These irregular rows of setae converge and reet basally. The setae in both rows are hiehly variable in number and in eize. One of the rows divides the mala mesally. Some of the setre on the distal end of this row are simple. Along the above mentioned row of setae the mala boars small heirs. The other irregular row of setae runs to the base of the palpus. The adoral surface of the stipes is pepillate.

The Tentorium

The inner rramework or tentorium of the head capsule is of the specialized type discussed by Anderson (1936) in whach
the chief structures are: posterior rarms anterior amas, dorsal arms, and the body of the tentorium,

When a head capsule is cleared with ailluted Kof and subsequently viewed posteriorly, one san see that the posterior tentorial aras and the body of the tentorium have fused into a flattened structure. The base of this structure is straicht and subparallel to the hypopharyageal bracon, while its apex is crescent-shaped. The anterior tentorial axms branch from the anterobasal portion of the tentorium and are vestigial. The dorsal arras branch from the anterior tentorial arms and co to the frons, where they are attached.

The posterior tentorial pits are very large, and are located transversely on the postgena. The anterior wall of ach posterior tentorial pit is continuous with the postgena, while its posterior wall is continuous with the prothorax.

Hypopharynceal Bracon

The hypopharyngeal bracon is a pliablo chitinous cora, whitish in appearance, and oylindrical in shape. It is locatad in a transverse position in front of the tentorium and imraediately bohind the cavity of the mandibles. Its oxtremities are attachod to the cenee internally. The hypopharyngeal bracon is visible in a ventral fiow of the head capsule, after removal of the labium.

The Prothorax (rigure 15)

Dorsally the prothorax is composed of a transverse scerite. Its posterior margin emarginates mesally by about forty percent, and terminates laterally at the mid-lateral line. This sclerite bears five large and six srall setae on each side.

Laterally, the pronotal sclerite exhibits a conspicuous curved spiracle, which has been studied in detail by Cotton (1924). Around this spiracle there are nine small setae which are variously located. Anterior to the lateral euge of the pronotal sclerite there are two small, nearly horizontel lobes. Below the lateral edge of the pronotal sclerito are three horizontal lobes. The first, and second lobes are pleural lobes, the third is the pedal lobe. The first pleural lobe is sclerotized, and bears two pleural setae; the second pleural lobe is membranous and bears one pleural seta. The pedal lobe is sclerotized and bears six setae.

The prosternum is divided into two transverse, membranous lobes. The anterior lobe bears one sternal seta on esch side, the posterior lobe none.

The Mesothorax (Figure 15)

The mesonotum is divided by a transverse groove into two transverse folds, the prodorsum a nd postdorsum. The prodorsum, bears three prodorsal setae on each side.

Prodorsel sotae two and three are sometimes concealed anterioriy. The prodorsum is subequal to the postcorsum in length midm dorsally; laterally it tapora acutely and terminates mesad of the lateral edge of the postdorsum. The second fold, of postcorsum, extends lateraily to the mid-latoral lines; this area $1 s$ slichtiy expended laterally. It bears four postdorsal setae on each side. Postdorsal setwe numbers one, two, and three are rolatively large in sizo, while postdorsal seta number four is very small.

Bolow the lateral edee of the expanded postdorsal fold, the latoral region is dividoú by five loncituainal grooves, produoing six longitudinal lobes. Except for the second, these lobos are nearly square in shape. The upper (prosumably the alar 1000 of Andorson, 1947, 1946) 10 be is membranous, anc. bears one seta, The second or spiracular lobe is sclerotized, and is larger then the other ifve lobos; it is subtriangular in shape, and bears one large seta of spiracular area surrounded by six smaller setae. Postero-laterad of thia lobe is a spiracle. The third, fourth and fifth lobes make up the nieural region. The third and fifth lobes are membranous, and boar no sotae; the Pourth lobe 1 s sclerotized and bears one pleuzal seta. The sixth or pedal lobe, is also sclerotized in part, and bears rour sotac.

The mososternum is divided into two transverse lobea. The anterior lobe bears one sternal seta on sach side; the
posterior lobe is normally concended and boars none.

The Hetathorax (F faure 15)

The motathorax is aimisar to the mesothorex with recard to its doran folds, Lataral and stomal rolds and lobes, and number and location of setae.

The notathoreole pleural recion alffore from the nesethoracio pleural rocion only in the shape of the socond leteral or mpiraculer lobe whioh, on this part of the thorat, io neariy rectangular instead of triangulor.

The TIrst Mbioninal Secment (PIcure 15)
Dorsally, the first abdominal gegmont is divided by throe erooves, producine four folds. On each side tho anteriomast or rold II bears two or three prodoreal setiae; rold III laterally bears two setae; fola IV bears five postdorsal sotae; rold v is the smallest and boars no sotao.

Laterally, a mall, transvorso, abcominal soiracie "without air tubes" (Anderson, 1948) is locnted noar the antorior margin of tho segment. The gmizacuiar ares beers two sotac of spiraculer area. Basad of these on poorly aistinguisheble cocond ploural iobe are locatod two pleural gotro. Tho podal grea bears ono neta.

When viewed ventrally the itist abdominel segnent is sean to be divided into throe trancyorge folas. The anterior of these, or eusternum, is the largest and boars two sternal set20 on each sice. The sternolum and poststernollum are gmaller in size, and bear no setao.

Second to the 3ixth Abaominal Serment
Tho second to the sixth abdominel eormonts are similar to the first abdominal sogment with regard to number and location of atteo, transverse dorsal and phtral erooves, transverse dorsal and vontral folds, and sizo and location of spiraclos.

Seventh Abdominal Serment (rigures 16 and 17)
At its mid-dorsal line the seventh abdaminal serment is aivided by two transverse grooves, producing three folds. Fold II bears two or three prodorsel setae: fola III bears latorelly two setae, while roll IV which is fused with the eighthabdominal secment, bears rive postcorsal sotso. The arows surrounaine the aforementioned seteo are sclerotized.

Laterally the sevonth abdorinal secment has the somo structure as discussed for the first abdoninal segmont.

gichth Gadoning sermont (Figuren 26 and 17)

A dorsal view of tho oighth abtomingl socmont is shown In Figure 16. Its most conepicnous feature is tho elevated crescent-ghapod posteriox marcin which io darldy selorotizod and aistinctiy divided meselly. On oach of those diviaions can be found amall seta, two large setae, and a distinctly curved sniracle surrounded by variously looated winute seteo. The lettex are not constant in number, varying from olght to twelve with usually a mean of ten for ang givon instar as shown in teble number one. Recossed in the mesal aras is a flat sclerotized plate. The base of the segmont has a transverse rold.

Latorally this segment boars the two setae of spiraculer ares, and one seta on the pedel aroa.

In the ventral recion the segment narrowa meselly by fifty poreont or more, has a transvorae stoxmal fold, which Invarinateo mesally, and bears two stornal sothe on oach side.

IInth Abdom1nal Segmont (Figures 16 and 17)

The ninth ebaominal secmont, when viowed from above, appoars as a flattoned plate, merkedy concave; its outer edec is darkiy solarotized and undulated, producinc four lobes, ach of which bears two laree setae (ono dorsul ana one ventral) surrounded by smaller ones. The number of gmaller setae on

```
Table I. Number of 3mall setao on spiraculex areas of elghth
    abcominal secmont.
```

```
Head capsule wicth
    (in inches)
```

.128	12	10
$.128^{*}$	9	10
.351	8	9
	9	8
	11	10
.385	10	11
	8	12
	10	9
.404	11	8
$.404^{*}$	12	10
.410	9	12
	8	12
	9	10
	12	11
411	10	10
	10	8
	11	9
		12
	10	8

* R. cruertatus
** Spiraculax area from lert to right。
each lobe varies from one to seven with usually a mean of five, recaraless of instar, as shown in table number two. (It is assumed that insects with identical head capsule width are in the same instar).

Ventrally the base of the segment has two sternal transverse folds. The anteriox fold bears two sternal setae on each side. The posterior fold tapers mesally and bears no setae. On the caudal darkened sclerotized edge one cen distinguish the same characters as are seen from dorsal view.

Tenth Abdominal Segment (Tigure 17)

The tenth abdominal segment is highly atrophied; it is located ventrally basad of the ninth abdominal segment, and consists of two transverse anal lobes which are separated by the anus. The anterior lobe is invaginated mesally, and bears two setae on each side. The posterior fold is usually subdivided into three lobes, one mesal and two lateral.

Table II. Number of snail setae on loves of niath abdominal segment

* R. cruontatus.
** Lobe number from left to right (dorsal view).

SUMMARY ATD COMOLUSIONS

1.- It has not been possible to distinguish the larvae of ․ palmarus, Es cruentatue, and E. cruentatus variety zimmermanni by means of the external anatomical charaoters aiscussed within this thesis.
2.- Stable structures which might be of taxonomic significence for Curculionid larvae and have not been aiscussed by previous workers include:
(a) Number and location of foveolae on the head capsule and mouthparts.
(b) Bifurcation of posterior epscranial sotae numbers three, rour, and ifve.
(c) Shape of the groove or pit in which the mandibular setae are located.
(d) Longitudinal rows of hairs on the hypopharynx.
(e) Sensory spots on the base of the hypopharynx.
(f) Small seta on the basal segment of each maxillary palpus.
3.- The following features are subject to variation:
(a) Number of cells on the adrrontal and parietal regions.
(b) Structure of posterior epicranial seta number one (bifid or simple).
(o)* Numbor of marginel sotae on the labrum.
(d)* Number of setae on the sboral surface of the mala.
(e) Distance vetween the licht colored spots on the epfpharynx.
(f) Shape of the dark area of the distilabium.
(E) Location of setac on prothoracic spiracle.
(h) Number of soteo on dorsel abáominal fold IX.
(1) Number of small setao on tho spiracular sclerotized area of the eighth abdominal segment.
(j) Number of small setae on each lobe of the caudal edge of the ninth abdominal segment.

* (variations reported by prior workers)

BIBLTOCRATEX

Anderson, W. $_{\text {H. }}$
1936. A comparative study of the labium of coleopterous Iarvae. Smiths, IIsc. Coll. 95(13): 1-29, हf pls.
1947. A terminology for tho anatomical characters uaerul In the taxonomy or weevil larvae. Froc. Ent. So0. Wasnington 49: 123-132, 11 f1gs.
1948. Larvae of some genera of Calonarinae (o Rhynchorphorinae) and Stromboscerinso. Ann. Snt. SOc. Amer. 41: 413-437. 19 text rigs.

Anonymous.

1913. Sucar-cane pest in British Guiana. Agric. Newe, 16th and 30th Aug., pp. 226 and 282.
1914. Algumas pracas do coqueiro. Charcaras equintaes 19(5): 403, 1 118.
1915. Os insectos daminhos. Charcaras Quintaes 23(6): 467-468, 2 text Iies.

1922a. os insectos daminhos. Charcaras equintees 26(3): 197-200, 3 text fige.

1922b. Plant diseases and pests.
Buil. Dopt. Agric. Trinidad and Tobago 19(4): 169-187, 11 text fies.
1935. Plant protaction ordinance. Govt. Gaz. St. Vincent, Aug., Vol. 68, pp. 249-250. Ballou, H. A.
19130. Wory connected with insect and fungus pests and their control.
Report Agric. Dept. St. Vincent ror 1912-1913, pp. 11-17.

Ballou, H. A. (cont.)

1913b. Report on the prevalence of some pests and diseases in the West Inaies during 1912. West Ind. Bul: 13(4): 333-357.
1915. Report on the prevalence of some pests and diseases in the West Indies during 1914. West Ind. Bul. Part I. Insect Pests 15(2): 121-147.
1916. Report on the prevalence of some pests and diseases in the West Indies during 1915.
West Ind. Bul. Paxt I. Insect Pests $16(1): 1-30$.
Bare, C. 0 .
1929. Scientific notes. Rhynchophorus cruentatus Fab., the Pelmetto Weevil, attracted to automobile paint. J. Econ. Int. 22: 986.

Barrett, R. $\mathbb{R}^{(}$

1930. A study of the immature forms of some Curculionidae (Coleoptera).
Univ. of Calif. Publ. in Ent. 5(5): 89-104, 28 text figs.
Berry, P. A. and L. Abrego.
1931. Insects and diseases arfecting some crops in El Salvador. FAO Plant Prot. Bul. I(10): 151-153.

Blackwelder, R.I.
1936. Morphology of the coleopterous family Staphylibidae. Smiths. Misc. Col1. 94(13): 1-102, 30 text figs.
1939. The Leng catalogue of the Coleoptera of America, north of Mexico.
John D. Sherman, Jr., Nount Vernon, N.Y., pp. 1-146. (fourth supplement).

Blackwelder, R. F. and Kuth M. Blackwelder.
1948. The Leng catalogue of Coleoptera of America, north of Mexico.
John D. Sherman, Jr., Mount Vernon, N.I., pp. 1-87. (fifth supplement).

Blanchard, ॠ. \#.
1937. Dipteros Argentinos nuevos o poco conocidos. Rev. Soc. Fnt. Argent. 9: 35-58, 8 text figs.
Blandford 0,1 .

Boâenhoimer, \bar{F}. S_{0}
1051. Insects as human food.
Dr. W, Junk, Publishers, The Hegue. pp. 1-352, 111us.
Boakin, G. Ts.
1913a, Report of the economic biologist of British Cuiona
for 1912, pp. 4.
1913b. Insects injurious to sugar-cane is British Cuiane,
and their natural onemies.
Board of Agric. 7(1): 29-32.
1914. Report of the eoonomite biologist of Bxitish Guiana
for $1912-1913, \mathrm{pD} .10$.
1919. Notes on the Coleoptera of British Guiana.
Ent. Honthly, Mes. $3(58-60): 217-219,264,265-272$.
Bonder, 9 .
1915a. Enemies of the coconut pain on the coast of Brazil.
Sec. de Agric., Come Obr, Pub de Est. de S. Paulo.
Bol. da Agric. 16 (5): 435-441, 6 text figs.

1915b. Bichos daraninhos an fructicultura e arborioultura. Bibl. Agric. Pop. Brazilelra 22: 52, 26 text fles.
1922. Insectos darninhos omolestias do coqueiro (Cocos nucifora) no Brasil. Bol. Inst, cent. Fom. Econ. (Ciroular), pp. 1-113, 73 toxt figs.

> 1940. Insectos noeivos o molestias do coqueiro (Cocos nuelfora) no Brasiz. Bol. Inst. Cent. Fon, zcon. s: 160,39 pis.
2941. Notas entomologicas da Bala, VII, VIII. Rev, Ent, 12(1-2): 268-303, 18 toxt figs.

Eoncier, G. (eont.)
1942. Notas entonologicas da Baia, VII, VIII. Bev. Int. 12(3): 427-470, 31 text IIEs.

Boving, A. 6.
1921. The larva of poplllia japonioa Newmen and a closely rolated unceternsed rutelino larva Apyotematio and norphologio study. Proc. Eñt. Soc. Washington 23: 52-62, p2.0. 405.
1930. Taxonomie characters for the 1dentirtcation of the naturo lervae of P1ssodos strobs Pook and Pa spmrox inatus Hoplins (ram. Curculionldae). Froc. Mit, Soe. Washington 31: 182-186, 1 p1., 3 I15s.
Boving, A. G. and P. C. Craighoad.
1930. An 111uctrated synopsis of the prinoipal larvel forms of tho order Colooptera. Bnt。Anes. 11: 1-351, 125 pls 。

Burkill, I. H .
1913. The coconut beetles, oryotes rhinoceros and Rhynchophoxus ferrueineus. Gardons Bul. 1 (6): $176-288$.

Bualk, A.
1902. Report of an investigation of diseased coconut paims in Ouba. U.S.D.A. DIV. Int. 38: 20-23.

Calderon, S.
1931. Insec conaitions in in Salvador Central America. Insect Peat Surv. Bul. 11(10): 6866688 .

Campos, R. ${ }^{\text {. }}$
1929. Dos insestos auninos a les plantas. Rev. Col. Nac. Vicente Rocaíuerto $11(38-39): 19-23,1 \mathrm{pl}$.

1902. The palr and palmetto weevils. U. S.D.A. DIT. 2nt. 38: 23-28, 1 text ife.

Chu, H. ${ }^{2}$.
1949. Eow to know the imrature insects. Wim. C. Brown Co., Dubuque, Iowa. pp. 1-244, 601 text figs.

```
Gloare, I., D.
194. Report on the entomologisal division sox tho yan 1940. Dept. Agrec. Brit. Guiana. (oircular), ppo 3 .
```

Cook, 爵.
1943. The heada of some Coleoptera.

$$
\text { Moroontomolocy } 8(2): 25 \mathrm{ml} 0, \pm 1 \mathrm{c}_{2}^{2} .7-15
$$

1944. On the morphology of the larval head of Chironomus (Diptara: Chironomidae).
Ifyemostomology $9(2): 69-77$, 14cs, $36-39$.
Cook, 0. .
1945. Hiotory of tho coconut palm 4 a Anorloa. Smiths. Inst. Contrib. ©.S. Nat. Herb. $14(2)$: $271-343,11145.52-66$.

Copeland, E. E.
1914. The Coconut.
sactillan \& Co. London. pp. 1-212, 23 pls.
1921. The Coco-nut,

Macillan \& Co. London. pp. 1-225, $27 \mathrm{pls}$.
Cotton, R. T.
1924. A contrimution toward the classiflation of the weevil larvae of tho subfarsiy Celondrinao oceurring in North Americe.
Proc. U.S. Nat. Kus. $66(5)$: 1-11, 10 pls.
De azevodo, A.
1924. Jnsoctos observados em plantas deste estado pelo servicio da vigilancia vocetal. Correio AErio. 2(11): 331-332.

Dorsey, C. C ,
1943. The musculature of the labmim, labium, and pharyngeal. negion of adult and immaturo Coleoptera.
Suiths. Misc. Coll. 103(7): 1-37, 34 p1s.
Thtringham, H ,
1933. The seases of insects. Methuen Co. Itd. London pp. 126, 25 figs.

Ewinc, 2.3 .
1924. New taryonemid mites (Ordex ncarina, Family Tarsonemidee). Proc. Knt. Soc, Washington 26: 66-69.

Imms, A. D.
1948. A general textbook of entomology. Methuen \& Co. Itd. London. 7ith Eaition, pp. 1-727, 624 text figs.

Jackson, T. P.
1925. Work connected with insect and fungus pests and their control.
Rept. Agric. Dept. St. Vincent, pp. 13-18, 20.
Jaques, $\mathrm{H}_{\text {, }} \mathrm{E}$.
1951. How to know the beetles.

Wri. C. Brown Co. Dubuquo, Iowa, pp. 1-372, 865 text fiss.

Junk, W. and S. Schenkling.
1936. Curculionidae, Rhynchophorinae, Cossoninae. Coleopterorum Catalosus 28(149): 16 .

Kenneāy, c. H.
1932. Methods for the study of the internal anatomy of insects.
Dept. Ent. Ohio State Univ., pp. 1-103. (mimeo.)
Knab, ${ }^{F}$.
1915. The secretions employed by Rhynchophorus larvae in cocoon-making.
Proc. Ent. Soc. Washington 17(2): 154-158.
Landeiro, R.
1942. Dynamis politus Gyll. (Rhynchophorus politus Gyli.), uma Nova praga à coqueiro. Bol. Minist, Agric. 11: $1-6,4$ text figs.

Leermans, S.
1920. Der Palmsnuitkever (Rhynchophorus ferrugineus, 0liv.) Moded. Inst. Plantenziokten, Buitenzorg, 43: 90, 11 pls. (1 map).

Leng, C. W.
1920. Catalogue of the Coleoptera of America, north of Mexico.
John D. Shermen, Jr., Mount Vernon, N. Y. , pp. 1-470.
1927. Catalogue of the Coleoptera of Anerica, north of Noxico.
John D. Sherman, Ir., Mount V ernon, N.Y., Dp. 1-78.

Lene, C. N. (cont.)
1933. Catalogue of the Coleoptera of America, north of Merico. John D, Sherman, Jx. Wount Vernon, N. Y., ppo l-112. (second and thire supplements)

Uacedo, A.
1944. Pelo aumento da producao do coqueiro no Paraiba. Bo1. Minist. igric. 32(9): 27-li4, 4 text figs.

Martyn, B. B.
1953. Red rinc disease of coconuts in Trinided and Tobago. Trop. Afgric. 33(1-3): 43-53.

Kolestina, 0. T.
1927. La enferrandad de la palma de Coco. Bol. Subairec. Tec. Agropeountia del Litoral, 2(4): 2-3.

Murray, $\mathrm{F}_{\mathrm{F}} \mathrm{V}$. and O. W. Tlegs.
1935. The motanorphosis of calendra oryzae. Quart. J. Micr..Sc1. (n.S.) 77: 405-495, 5 pls., 20 fies.
Nirula, K. K.
1955. Investications on tho pests of coconut palm. Indian Coconut J. $8(3): 1-13$.

1956a. Investications on the pests of coconut palm Indian Coconut J. $9(4): 229-247$.

1956b. Investigations on the pests of coconut pain. Indian Coconut J. 20(1): 28-64.

Parker, V. R.
1959: The MLA style sheet. Mod. Lane. Assoc. of Amer. pp. 1-32.

Pierce, W. D.

1918. Extract from lettor of Dr. David Sharp re Rlyynchophorus palmarum.
1919. The history of the Rhynchophorid Eenera Mhynohophorus, Calendra, Spenophorus and Sitophilus (Coleoptera). Proc. Ent. Soc. Wasileton 27(5): 113-114.
```
Plank, %. E.
    1948. Lifa flotory, habita, and control of the coconut
        Fhinoceros Beetle in ruerto Rico.
        U.S.D.N. AgFiG. Roseaxoh Namin. 45: 1-34, 12 text f1gs.
Rlley, C. V. and L. O. Eloward.
    1891. Notes on the puli weovil.
        Insoct Iffe 4: 136-137.
Ritchor, P. O.
    1949* Larvee of Wololonthinae.
        Fy. Agric. Exy. 3ta. Dui. 537: 1-37, 3 pls., 2 11E.
Robler, O.
    1944. 21 meysto mrieto đol cocotero.
        Fitorilo 3(2): 4-9.
Sulth, S. N.
    1942 A comparative stuay of the labia of insects with
        particular reference to the hymonoptora.
        Unpublishea thesis, Univ. of Llass.; pp. 1-4, , 66 1iбs.
    2mith,R.C.
    195g. Guide to tho literature of the zoological Sciences.
        Gurges Fublishinc Co. #linnesota, MInr., 5th
        Edition, Dp. 1-203.
    Enodgrass, R. S.
    1928. Norphology and evolution of the insect head and
        its appondages.
                        Smiths.Misc. Col1. Sl(3): 1-155,57 toxt IIEs.
```

1935. Principles of Insect Norpholosy. Hocraw-ilill Book Co., Inc. New Yorik and London. 667 pp. . 319 text fics.
1936. The insect Cranium and the "2pioranial suture". Smiths. Misc. Coll. 107(7): 1-49, 15 text fige.
1937. Inseot metanorphosis. Smiths. Nisc. Coll. 122(9): 1-107, 26 toxt figs. Thornvaite, C.
1938. The clinates of the earth. Oeo. Rev. $23(3): 433-140$, with eeparate map pl. 50 facint p. 440 .

Tonro-Sueno, ${ }^{\text {J. }}$.
1950. A hlassaxy of Entomology. Brooklyn Bnt. SOc. 329 pp. 2-329, 9 p3s.

Urich, F. W.
1913. Beotles afrectine the coconut pelm. Proc. Agric. S00. 13(4): 164-167.

1915a. Insocts arrecting the sugar-cne in Trinidad. Bul. Dept. Agric. 14(5): 156-181.

1915b. Insects arrecting the coconut palm in Trinidad. Bul. Dept. Aexic. 14(6): 200-203.

Verano, A.
1940: Rhynoirophorus pe1marun (1.) Hov. Fsc. Wac, rerone (colomb2a) 2(4-5): 393-408, 3 pla.

Noleott, G. N.
1913. Roport on a trip to Demara, Trinided and Barbados durine the wintor of 1913. J. Jeon. Int. 6: 443-457.
ziener, Ch. T.
1957. CuItivo dal Cocotero.

Vamblished thes1s, tse. Pari. do reric., pp. 1-66.

$$
-47
$$

Ticuro 2 number of cells on perieta R. palmarum soclon of the heod onpsulo

B. cruentatus

Figure 3 Number of cells on adfrontal regions of the head capsule

Head capsule width in inches

Figure 4 Head

-51.

Figure 5 Nostarior opicranial sota number two

Pigure 6 Oroassection of ocoliua

Figure 7 Antenna

Figure 8 Epipharynx

Figuro 9 Eplpharyngoal aensory porea

Ficure 10 Kesal sons 112 of opipharyma

Figure 11 Mandible (addoral view)

Figure 12 Labium and Maxilla

F1.6ure 23 Mypophergnx

Figure 1h fow of batis on hypopharyax (besaliy)

Figure 15 Lateral view of the lerva of R. palmarum

Figure 16 Dorsal view of oaudel ond of the lerva of g. nadnaxut

Figure 17 Ventral view of caudal end of the larva of \underline{R}. palmarum

APRROVED:

Onarion co furith

DATE:

