University of Massachusetts Amherst
ScholarWorks@UMass Amherst

A speech intelligibility test for young deaf children.

Bill G. Blevins
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

Blevins, Bill G., "A speech intelligibility test for young deaf children." (1960). Masters Theses 1911 -
February 2014. 2935.
Retrieved from https://scholarworks.umass.edu/theses/2935

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

POFYOUNODEABCHHRREN

BISVINS - 1960

A. Spesce Inrwhicibility Test FOR YOUNG DEAF CHILDREN

by
Billy G. Blevins

A problem prasented in partial fultillment
of the requirements for the
Master of Education Degree
School of Education
Univarsity of Massachusetts
1960

table of contents

Page
table of conients $11 i$
LIST OF TABLES vi
CHAPIER
I-- INTRODUCTION 1
II-- REVIEN OF LITERATURE 4
III-- DESIGN OF THE STUDY 13
Subjects 13
Pupils Tested
Listeners to Appraise the Speech
Method of Testing Pupils 14
Method of Appratsing the Speech. 15
Explanation of the Categories 15
A Typical Listening Session 18
Mathod of Scoring the Test 19
The Tests For Reliability 19
IV-- PRESENLATION AND AMALYSIS OF DATA. 22
Comparison of The Over-all Speech Scores for
for rest I and Test II. 22
kacings of the Speech Samples on the Basis of
Individualscategories by the Six Listenare 24
Ratings of the Speech Samples on the Basis of
Individual Categories by Individual Listeners. 33
The Relationthip of the Rating categoriea
to Intelligibility 37
Results of Additional Groups of Listeners 39
V-- SUMMARY AND CONCLUSIONS 43
BIBLIOGRAPHY 49
ACKNOWLEDGMENIS 52
Page
TABLE 1 Over-all Speech Scores obtained by pupils on the firet and second test 23
TABLE 2 Summary of the differences between the over-all speech scores for Test 1 and 2. 24
TABLE 3 (3A to 3G) Summary ratings of each speech rating category by the six listeners for Test 1 and rest 2 25
TABLE 4 Summary of correlations between listenors' scores for Test 1 and Test 2 for each speech rating category 32
TABLE 5 Summary of the correlations of individual listeners for Test 1 and Test 2 for each speech rating category 34
TABLE 6 Summary of the correlations of the ratings of individual listeners and those of the group of listeners for each speech rating category 35
TABLE 7 Inter-category correlations showing the relationship between the intelligibility category and the remaining categories 37
TABLE 8 Sumary of over-all speech scores given to ten pupils by the three test groups of listeners and the original group 40

CHAPTER I
MMRODUCTION

CHAPTER I

INIRODUCTION

This papar describes an attempt to find a reliable means for characterizing the speech of young deaf children in terms of the essential qualities that render it a functional tool of communication. The problem was to determine with what degree of consistency it is possible for agroup of 1 isteners to assess the speech of young deaf children for its voice quality, inflection, rhythm, phrasing, fluency, precision of articulation, and intelligibility.

It is important in gauging the success of teaching methods to be able to evaluate the speech of deaf children. Also, school officials are concerned with the value of different types of hearing aids employed in this instruction. At present, we are not aware of a satisfactory way of determining the speech intelligibility of young deaf children. It is the primary objective of this paper to develop a test that can be used in evaluating the speech methods and equipment employed in the education of deaf children.

Very little work has been done along the lines of this problem. Bjuggren ${ }^{1}$ has been working on a test in Sweden that is quite similar to the one deseribed in this study. As yet, only a preliminary report has been published. Few other studies have been made. There are several methods available to test the seech of older deaf children who have acquired some reading skill and sufficient language to enable them to take teat of different nature.

[^0]The test being reported in this paper involved the use of pictures to elicit samples of the child's spontaneous speech. The samples were tape-recorded and later appraised by a group of listeners who were qualified to rate the speech according to the seven categories mentioned previously. It was assumed that a group of listeners would be much more reliable than one or two individuals and that they could agree on the rating of a child's speech.

At the Clarke School for the Deaf, where this study was conducted, the facilities needed for the development of a test of this nature were available. Schools without a research department or person trained to conduct such tests should consider the time involved and the number of listeners needed before undertaking to use this test. It would be possible, for schools without recording equipwent, to use this test by having the listeners present at the testing session.

CHAPTER II

REVIEN OF LITERATURE

In the past, relatively few studies have been made concerning the teating of the peech of young deaf children. While there have been several work done on testing older deaf pupils, the test auitable for young children hasn't been found. The teste designed for older children involve reading and young deaf children don't read well enough for these tests to be useful in testing them.

Gunnar Bjuggren ${ }^{2}$ conducted atudy to find an intelligibility test that does not depend upon the ability to read. Only a preliminary report has been published on this study. In the report, the author used sixteen subjecte--all deaf or hard of hearing young children. The author got spontaneous apeech from the children by having them talk about pictures that were shown to them. Two listeners took down the apeech as it was spoken, or used tape recording when necessary. They attempted to determine the number of words and sentences spoken and the amount of speech underatood and thus give per cent intelligibility score using the formula:

$$
\begin{aligned}
& \text { Intelligibility }=\frac{\text { Sentences (or words) apprehensible }}{\text { Sentences (or words) intelligible }} \times 100 \% \\
& \text { Preliminary results showed: }
\end{aligned}
$$

1) The general trend shown by the results was that the better the vocabulary used, the more intelligible the speech beceme.
2) There wa an almost direct ralationohip between the vocabulary and the length of the sentence.

[^1]3) The results indicated that the degree of hearing loss had an effect on speech intaliigibility. Those with severe impaiment fell under the 30 per cent level of inteliigibility.
4) The greater the facility for uning language, the greater the chances of understanding the speech. That is, the longer the centences, the better the vocabulary and the better the intelligibility rating.
5) The results indicate that several factors influence the intelligibility of spench.

Hudgins ${ }^{2}$ described a method of testing epeech intelligibility that he thinks is simple, asoy to adniniater and to score, and at the same time has proved successful and efficiont. This method involvee using speakers (those to be teeted), test materials (phoneticelly balanced familiar word liste (PBF), and a jury of listeners or judges to score the speech. Ench speaker read a 50 -word liat of PBF words that were recorded. They were taught the unfumiliar worde before the teet. Using a recorder oliminates any undu tension in the test situation that might be created by having the ilateners present at the time of tosting. Recordinge also aliow the material to be available for further leloure ute.

The author states that the listenare or judgee should be coapromiee between okilied experienced listener and strangers to the speech of the deaf. College juniors were selected for thi job and trained to the problems involved in interpreting the epeech of the deaf.

All the children in the chool. excopt the primary classee, were teated in this manar. The ceat eceand to be worthohile and valumble. It was found that there was a high correlation between the reeulte when

[^2]word lists were used and the results when sentences were used as test materials. This method is currently in use at the Clarke School in the routine testing program.

Farman and Phillips ${ }^{3}$ constructed a test as a means of formally evaluating the speech of the pupils in the Oregon State School for the Deaf. Their primary objectives were to determine:

1) Which studants have intelligible or unintelligible speech.
2) What factors, and to what degree, lead to speech intelligibility or unintelligibility.
3) What specific pathological defects each individual might possens that affect his or her speech.
4) Where weaknesses in the speech teaching program might be.
5) An individual's ability to produce the various units of speech, i.e., to compare his ability to produce an isolated sound and a word; a word and sentence.

The test was divided into the following five parts in order to thoroughly evaluate and diagnose each student's speech:

1) A test of isolated sounds (including all of the voiced and selected unvoiced sounds).
2) PB words - a list of twenty phoneticelly bslanced words selected from total of 200 PB words.
3) Sponded words - list of twenty words selected from a totel of 200 spondee words.
4) Unassorted words - List of twenty unassorted words selected from a cotal of 100 words devised by the test authors and assumed to be familiar to the students.
5) Sentences - a list of twenty sentences selacted from total of 200 sentences devised by the test authors.
[^3]For the first part, two liste of isolated sounds were read by the pupil. Ratings of one to three; representing poor, fair, and good were assigned for each effort. The other parte of the test were scored In a imilar maner. The other parts; the PB words, the spondees, the unassorted words and che sentences, were rated on the basis of aix attributes which influence speech, namaly; pitch, loudness, vocal quality, articulation, pronunciation, and rhythm. A rating scale of one to five, one being the lowest and Iive the highest rating, was used. Space was provided for comments concerning the speech by the judges. To Ind the intelligibility score, the rank scores were converted into percentages for 111 categories and avaraged. Three auditors ware used and the mean was taken as the rank score.

The test scems to be falrly adequate mathod of analyzing the speech of deaf boye and girls. The test has diagnostic value, and its usefulness is increased, to tome degres, by the remarks recorded on the score sheet by the auditors. The test was used for students in the fourth to the tenth grades.

Templin ${ }^{4}$ conttructed a short non-diagnostic test which would be a satisfactory meanure of achievement in spech sound articulation. The test applies when the chief purpose of teating is to ecreen acceptable from unaccoptable speech.

Several speech samples were analyzed to determine a diecrimination value for each sound. The fifty sound elemante which were found to be

[^4]most discriminating were selected as the items to be used in this nondifgnostic test.

The fifty sounds were presented in both word and sentence tests in order toccompare the rasults of the same sounds under two conditions. Word tents could be administered more quickly but sentences wer included since it was believed that sentence test might be more interesting to some of the children. The word test presented the fifty sound elemants in forty words and the sentence test presented them in ninetcen sentences. The score is the number of sounds that are articulated correctly.

Three groups of twenty-two, fifty-seven, and twenty reopectively, were given the tests. Ages of the subjects varied from two years to eight years.

In the administration of the word test the children repeated the word after the exuminar or responded to a picture - whichever wathod ceemed best adapted to the particular child. The author felt that the ame resulte would be obtained with either mathod. Pictures ware used more frequantly with the younger children. In the administration of the sentence teat, the children repeated the sentonces after the examiner.

The usefulnees of a test is defined in terms of its validity and rellability. The raliability of the non-diagnostic test is datermined by (1) the correlation of the word and sentence teste given at the ame teat session, (2) the test-retest correlation of the tests, and (3) - comparison of the means on the word and sentence tests.

The coefficients of reliebility as computed from the raw test
scores were very high, being above .93 in all cases. The test-retest coefficients were above .97 for the total group. The reliability of the word and sentence temts was about equal. The use of the sentences is questionable with the two-ytar old group due to memory epan factors. In no instance vere the differences in mean core between any of the mensures at single age or for total group statisticelly significant.

In another work, Templin ${ }^{5}$ sought to find out if in eliciting epech sounds for the test material, the test words or phrases should be elicited sponteneously or repeated in imitation of pettern provided by the examiner. The author wanted to find out:

1) If there is any difference in measured articulation when a sound is tested in word sponteneously uttered or in a word repeated after the axaminer.
2) If there is any difference in measured axticulation when the sume sound is tested in different words.

One hundred children, presumably with normil hearing, eges two years to 8 ix years were included in the study. Three tests were admin. istered at six-month intervals. The picture articulation tent construc ted for this study consisted of seventy-three words; each illustrated by picture, and measured 113 sound elements in the initisi, medial, and Einal positions.

Three mestures of the child's articulation were obtained at ench test session. (1) The firat measure, deeignated as the picture Test, is his articulation of epecific sounds in words uttered spontanmounly

[^5]In response to the pictures. (2) The second measure, Aural Test A, is his rasponse whan he has the word pattern of the examiner to imitate and the picture is atill before him. (3) The third measure, Aural Test B, made at the and of the test session, is his repetition of each of the words after the examiner, with the picture no longer before him.

Instruction for the test were, "I are going to show you some pictures and I want you to tall what the pictures are. After you tell the name of the picture, I'm going to say it again. Then you say it right after me so I am sure to hear it just right." For Aural Test B, the children were asked again to repeat the words so that the examiner would be cartain she had heard exactly what was said. One examiner did all the testing.

The reault indicated that there was very little difforence between the pontaneous and imitated vocalizations, with or without the pictures. Similar results for specific sounde were obtained when the same sound was presented in diffarent words.

The method employed in the two studies reported on above are not applicable to the young deaf child. While the deaf child may name a picture without difficulty, if he has been taught the name of the object, the task of imitating and repeating the word or phrase after the examiner is practically impossible, st least with speech that could be judged as belonging to the child. Thus, it would be practically worthless as a sample to be used for evaluating purposes.

Perrin ${ }^{6}$ made atudy of the rating of defective speech by trained and untrained observers. She wanted to determine if an opinion of opeech by a lay person was valid.

Two groups of students served as raters. An untrained group which had had no courses in speech therapy and trained group composed of graduate majore in speech therapy and speech correction.

Disc recordinge of defective speech were analyzed. The resulte showed (1) that trained and untrained judges do not differ significantly In their evaluation of functional articulation defects, (2) both groups showed aignificant amount of agreement within their respective groups in their rankinge, (3) there were many inconsistencies in rankings shown by members of both groups, and (4) the correlation coefficient between the number of sounds misarticulated and the judges' rankinge was significant at the four per cent lovel for the untrained judgee and ignificant at better than the one per cent level for the trained judges.

The present study utilized some of those methods and findings deacribed in the above atudies that are best adapted to the use of young deaf children. The material of the study consisted of speech stmples of deaf children elicited spontaneously by the use of pictures.

It was the purpose of this tudy to determine the degree of reliability with which group of listeners could evaluate these samples.

[^6]
CHAPTER III

DESIGN OF THE STUDY

A simple speach intelligibility test that would be appropriate for young deaf children was sought. Since young deaf children have very Little language and thair reading ability has not yet been developed, it was decided that spontaneous speech evoked by presenting simple pictures to the children would provide the bast speech samples. Satisfactory epeech samples can be obtained from older deaf children by having them read selected word-1iats and sentence materials.

Subjecte--Pupils Tested -- Two types of subjects were involved in the study. The pupils to be tested for speech intelligibility ware fifty pupils at the Clarke School for the Deaf. The pupils ranged in age from six years, nine months to eleven years, seven months. There were twenty-four boys and twenty-six girls in the group. This group consisted of the youngest class in the Middle School and all of the pupila in the Lowar School except those in the preparatory classes. The children were asked to talk about aet of pictures and their speech was recorded for later evaluation by the group of listeners. Genorally, the children in the preparatory classes do not have enough language to be given a test of this type.

Listeners To Appraise The Speech -- After the peech samples were obtained, the task of determining whether the apeech could be avaluated and scored with fair mount of consistency was approached. It was decided that a panel of judges or listeners would be used for this purpose. A group of six listenars was used to rate the speech. This group was composed of two man and four woman who were familiar with the speech of the deaf. The background of the listeners ranged in experience
from vary skilled to beginning teachers of the deaf. The group was a compromise between skilled workers with the deaf and people unfamiliar with their speech. A group with similar background to the one used in this study could be found in most schools for the deaf.

Method of Testing Pupils -- Pictures were used to elicit spontancous speech samples from the children. A teat consisted of ten pictures selected at random from group of thirty-five pictures. The pupil was told to talk about each picture while the speech was recorded on magnetic tape.

Experience with picture tests indicates that they are not ideal for 11 pupils--some are stimulated by pictures and speak easily while others have difficulty and are inclined to merely name objects in the pictures. Older pupils seem willing to talk, while younger ones are not so voluble. There is also a wide range of individual differences with respect to spontandity.

The routine for recording the speech samples was as follows: As the recorder tarted, the pupil's full name, the date, and an identifying test number for the particular group of pictures to be used was announced. Then the pupil' name and the number of the picture to be talked about was given. The pupil then began to talk about the picture. Each picture was spaced on the record to allow an adequete interval for the listeners to score the sample. The child's teacher or the teacher-incharge of the department conducted the teat. When the child hesitated, she silontly pointed to objects of relationships in the pictures in an effort to elicit speech. A trained person wae in the test room to handle
the recording equipment and to supervise the teating. This procedure was followed for the ten pictures.

Mathod of Appraising The Speech -- The tape recorded speech samples were played back to the listeners by high-fidelity equipment through paire of dynamic headphones. A rating sheet, thown in Figure 1, was devised in order to aid the listeners in evaluating the speech samples. The rating sheet contained seven rating categories to be scored on a scale ranging from normal to very poor. Space was provided for the pupil's name, the picture test number, the date, and the name of the listener who scored the test.

The listeners were given a practice period to discuss the categories and the rating scales and to compare their own ratinge of practice samples of speech with thome of the group. The seven categories were: voice quality, pitch-inflection, rhythm, phrasing, fluency, precision of articulation and intelligibility.

Explanation of the Categories -- Voice quality was defined as the pleasantnese of the voice to our ars and its similarity or comparison to "normal" voices. The rating scale for voice quality was a five-point scale with the ratingt of (1) normal, (2) good, (3) fair, (4) poor, and (5) very poor. This takes into account such things as naselity, high or low pitched voices, and "breathy" voices.

Inflection was defined as changes of pitch or the rise and fall of the voice indicating expreseive meanings given to word or phrase. The rating seale for this category was aive-point acale rating (1) natural,

CIGURE 1
 THE RATHG SHEET

Speech Intelligibility Picture Test

trame

Teat No.

Caterories

1. Volen quality
2. Natural
3. Good
4. Fair
5. Poor
6. Very poor

Scorer \qquad
Date \qquad
7. Intelifgibility

1. Natural
2. Good
3. Fair
4. Poor
5. None
6. Phrauling
7. Fivency
8. Pracision of Articulation
9. Rhythe
10. Normal
11. Near Rormal
12. Abnoxmal
13. Non-Rhythmical
14. Natural
15. Good
16. Poor
17. Single Word

Normal
2. Good
3. Eair
4. Very llow

1. Very high
2. High
3. Medium
4. L.ON
5. Vary low
6. Normal
7. High
8. Faix
9. Low
10. Jargon

(2) good, (3) fair, (4) poor, and (5) none. Natural inflection indicated the speech was similar to that of a normal person, while "none" indicated utterances of speech that were a complete monotone.

Rhythm was defined es the way the syllables ware grouped in unit groups with accents properly placed. This was rated on a four-point scale rating (1) normal, (2) near normal, (3) abnormal, and (4) nonrhythmical. In this case, bnormal would mean grouping syllables in an abnormal manner, such as "MoTHER went (pause) home." A nonrhythmical rating would indicate that speech was uttered in a monotonous maner as "Mother-went-to-the-store."

Phrasing was defined as the way the speaker controlled or used his breath. That is, did the speaker say one word per breath, two words per breath, or did he uttor the number or words in a breath that a "normal" speaker would? The rating scale for phrasing rated the speaker as (1) normal, (2) good (meaning good use of breath), (3) poor, and (4) single word (meaning that the apeaker took a breath before each word).

Fluency was defined es the rate of utterance. The scale rated
(1) normal rate of speech, (2) good, (3) fair, and (4) very slow.

Preciaion of articulation was defined as the ability to put the spesch components together to make syllables, words, or phrases. Or more simply, the quality of the enunciation of the speech. This category takes into consideration the control and use of the articulatory organs and the control of pressures. The rating scale was a five-point scale, rating the apeakers at (1) vexy high, (2) high, (3) medium, (4) low, or
(5) very low.

Intelligibility was dafined as the general ase with which the listener could understand the speech. The child was rated on his ability to make himself understood. The rating scale for general intelligibility ranged from normal to "jargon" on aive-point acale. The scale was (1) normal, (2) high, (3) fair, (4) low, and (5) jargon (completely unintelligible).

A Typical Listening Seasion -- Aftor an adequate explanation of the job to be done and upon the completion of a practice seseion to prepare them for the job, the listoners rated the speech samples of the children.

The group assembled in classroom after the school day and listened to the speech of approximetely eight children per hour. Each IIstening seseion was approsimately $1 \frac{1}{2}$ hours.

The tape recorded apeech samples were played back through the group hearing aid equipment available in the classroom. The listeners used individual headphones instead of a loud speaker ance the headphones reduced outside noisee and helped the listener concentrate on the speech. As the recorded speech was replayed, the corresponding picture was placed in view of the listeners. The picture halped make the speech more intelligible since tape-recording the speech had entirely eliminated the lipreading factor. Complete unfamiliarity with the topic made the speech samples of the poorer speakers extremely difficult to interpret. Thus, knowing the topic helped wake up for the sbsence of facial
expressions and other clues.
Mathod of Scoring the Test -- To determine an over-all score for each child, the listeners ratings were totaled for the seven categories and the average score for the six listeners was used as the child's over-all speech score. The range for the test was twenty-five. The best possible score was seven and the poorest score possible was thirty-two. Hence, the amaller the child's score the higher his intelligibility. A careful study of the score for each category would make this score more meaningful, however.

The Teste For Reliability -- In order to determine the reliability of the test, the speech samples of each of the fifty children were rated twice. The second ratings were made after a waiting period of approximately six weeks. This made it almost impossible to remember a rating from the first time until the second. The total time involved to rate the speech of fifty children once was approximately seven hours.

Coefficients of correlation between the various scores obtained from Test I and Test II were determined. These correlations were found for the pupils' scores on each rating category and for the pupils' over-all test scores. The scores given by the group of listeners and the scores given by individual ifsteners were also correlated. A high correlation between the two tests should indicate a high degree of reliability among the listeners in reting the peech.

An attempt was made to determine the relative importance of each
rating category on the test rating sheet. The ratings of each category ware correlated with the rating of the intelligibility category. These inter-category correlations should indicate the relative importance of each category in determining intelligibility.

CHAPTER IV

PRESENLATION AND ANALYSIS OF DATA

CHAPTRA IV

RRESENTATION ANB AMALYSIS OR BATA

According to gent ${ }^{2}$ a teat to anid to be valid if it mooouroc what it is supposed to menoure, or if it proven to be useful in accompliahing ite dealred purpose. A test ie coneldered reliable if it masures accurately and consiotently, yfelding comparable zesuite whan adentatered a number of times. The degree of reliablitity may be establiohed by corrolating the reaulte when che same individuals take duplicate or equivalent form of the tent. The dagree of sollability may also be cateblithed by corralating the scores on two or more successive adninistrations of the same test, putting the scores on the elrat adainiatration of the test against scores mado by the same atudents on a repeat performance. The lattor method vee ubed in this atudy.

In ordor to develop thit teat, it was nocescary to determine the reliability of a group of liskenars in evaluating the speech samples of young deaf childrea. The tape-recordad apeach samplea wore rated by a group of six listoners whe were fawiliar with the apewch of the denf. After a kim lapse of approzimately alx weakt, this mame group of liatonore rated the same spesch sampler a second time, though not in the sume order as the first. The resuite indicate that this mathod of ceating and seoring the speach of young deaf children is a relleble ons.

Comparicon of the over-all spench scoree for rest I and rest II -The over-all speech seorea asaigned to asch pupil by the liftenore on Teet I ware correlated with those asetgred on ruet II. The scores of

[^7]all fifty pupils were used. The coefficients of correlation between the scores on these tests was .89 . Table 1 shows the over-all speech scores given on the first and second test.

TABLE 1

OVER-ALL SPEECH SCORES OBTAINED BY PUPILS ON THE FIRST AND SECOND TEST.

Pupil	Test		Pupil	Teet		Pupil	Test	
	1	2		1	2		1	2
J A	19	17	JF	25	23	RRP	27	25
S A	25	25	S F	24	21	S P	21	21
G B	24	22	L F	26	23	R P	24	22
GJB	23	26	M G	23	25	J Q	25	23
P B	25	24	DG	26	25	S F	27	27
J B	14	13	N H	28	27	R S	30	30
A B	24	22	P H	26	26	N S	17	17
E B	24	24	J H	23	20	D S	20	20
S C	26	26	L H	25	25	RMS	21.	23
D C	27	26	C	15	15	J S	27	24
J C	15	16	K L	19	18	H T	29	28
E D	19	19	D L	27	24	$J T$	18	19
JD	19	18	P L	14	15	S T	17	16
EAD	20	19	T L	21	21	D V	27	26
RE	20	19	B L	22	21	C V	25	2.2
W E	13	13	M M	22	24	c W	25	23
F F	16	15	G M	28	24			

The listeners showed a tendency to rate the samples more critically on the first than on the second teat.

Table 2 show the differences between the over-all speech scores for Test I and Test II.

TABLE 2
SUMMARY OF THE DIFFERENCES BETWEEN THE OVER-ALL SPEECH INTELLIGIBILITY SCORES FOR TEST ONE AND TWO.

Difference	Number of cases	Percent of cases
0	14	28%
1	17	34%
2	11	22%
3	7	14%
4	1	2%

There was no difference in the two scores for fourteen of the Eifty children or 28% of the cases. There was a difference of one point between the two scores for seventeen children or 34%. There was a difference of two for eleven children of 22%. In summary, there was a difference of two or less in 84% of the cases. The remaining 16% was divided into difference of three, seven times or 14%, and a difference of four once or 2%.

Ratings of the Speech Samples on the Basis of Individual Categories By the Six Listaners -- The listeners' ratings on Test I and Test If were correlated for each rating category in order to determine the ability of the ilstenors to repeat a judgment. A correlation for each category was obtained from scores representing the sum of the ratinge of each of six listeners. The sum of the individual ratings were considered to be as meaningful as the mean rating or other derived Eigure.

Tables 3A through 3G show a sumary of the ratings or cores made by aix listeners for each rating category.

TABLE 3 B
SUMMARY RATINGS OF IWFLECTION BY THE SIX LISTENERS

J A	20	18	J F	24	22	RRP	26	27
S A	23	26	S F	25	20	5 P	17	17
C B	23	24	L.	28	21	R P	25	23
GJB	25	27	M 6	22	23	J Q	25	23
P $\mathrm{B}^{\text {B }}$	26	24	DG	27	24	S R	27	28
3 B	13	13	N H	29	28	R S	30	28
A B	23	25	P \boldsymbol{H}	27	27	N 5	19	16
E 8	26	26	J H	19	19	D S	19	18
S C	27	27	L 11	22	24	nus	22	24
D C	25	25	C ${ }^{\text {百 }}$	14	13	3 S	27	26
J C	14	15	K L	15	16	H 7	29	29
ED	21	20	D 1	26	25	J 5	19	20
30	18	19	P L	13	14	ST	26	16
EAD	19	18	T L	20	23	D V	26	26
RE	19	18	8 L	18	20	C V	26	18
WE	12	12	M ${ }^{\text {M }}$	21	24	c W	23	24
F F	14	14	G M	27	25			

TABLE 3C

SUMMARY RATINGS OF RHYTHM BY THE SIX LISTENERS.

Pupil	Test		Test				Test	
	1	2	Pupil	1	2	Pupil	1	2
J A	15	14	$J \mathrm{~F}$	21	19	RRP	22	20
S A	22	20	S F	20	16	S P	16	15
G B	23	18	L F	23	19	R \mathbf{P}	20	16
GJB	18	21	M G	19	21	J Q	19	21
P B	23	19	D G	22	19	S R	21	22
J B	12	11	NH	24	22	R S	24	24
A B	19	16	P H	23	22	N S	12	12
E B	24	. 18	J H	20	13	D S	17	15
S C	22	22	L H	20	19	RMS	17	19
D \mathbf{C}	23	21	C ${ }^{\text {H }}$	11	12	J S	23	20
${ }^{\text {J }}$ C	14	11	KL	13	17	H T	24	20
E D	17	13	D L	23	20	J T	13	14
J D	17	12	P L	11	12	S T	14	12
EAD	17	15	T L	17	17	D V	21	21
R E	16	15	B L	18	16	C V	22	16
WE	10	10	M M	16	18	C W	22	17
F F	14	12	G M	22	20			

TABLE 3D

SUMMARY RATINGS OF PHRASING BY THE SLX LISTENERS.

Pupil	Test		Test				Test	
	1	2	Pupil	1	2	Pupil	1	2
J A	13	14	3 F	18	18	RRP	22	18
S A	19	20	S F	19	16	S \mathbf{p}	16	16
G B	20	15	L F	18	16	R \mathbf{P}	18	17
GJB	15	19	M G	19	19	J Q	18	15
P B	19	19	D G	21	18	S R	21	20
J B	12	10	$\mathrm{NH}^{\text {H }}$	21	19	R S	24	23
A B	19	13	P H	22	18	N S	12	12
E B	17	17	JH	17	11	D S	16	16
S C	18	21	L H	18	18	RMS	13	16
D C	20	20	C H	12	12	J S	23	17
J C	11	11	K L	15	13	H T	23	22
E D	18	17	D L	22	18	J T	13	14
J D	13	12	PL	11	12	S T	14	13
EAD	14	15	T L	15	15	D V	22	20
R E	14	13	BL	17	16	C V	19	17
W E	11	10	M M	17	17	c W	18	16

SUMMARY RATINGS OF FLUENCY BY THE SIX LISTENERS.

Pupil	Test		Test				Test	
	1	2	Pupil	1	2	Pupil	1	2
J A	16	14	J F	18	17	RRP	19	15
S A	19	21	S F	16	15	S P	20	18
G B	18	17	L F	21	18	R P	19	17
GJB	12	14	M G	18	18	J Q	17	16
P B	19	18	D G	20	17	5 R	21	22
J B	12	9	NH	23	22	R S	24	24
A B	18	14	P H	15	14	N S	12	12
E B	16	17	J H	17	14	D S	15	16
S C	16	16	L H	21	20	RMS	13	14
D C	19	20	C H	12	12	J S	20	16
J C	12	11	K L	15	13	H	23	23
E D	19	19	D L	21	16	J T	10	10
J D	15	12	P L	11	13	S T	16	14
EAD	15	14	T L	13	14	D V	19	17
RE	14	14	3 L	17	16	D V	19	17
W E	11	10	M M	15	17	C W	18	16
F F	12	14	G M	17	14			

SUMMARY RATINGS OF PRECISION OF ARTICULATION BY THE SIX LISTENERS.

Pupil	Test		Test				Test	
	1	2	Pupil	1	2	Pupil	1	2
J A	18	13	J F	24	23	RRP	28	24
S A	24	23	S F	21	20	S P	20	20
G B	21	18	L F	21	21	R P	22	20
GJB	24	26	M G	24	24	$J Q$	23	20
P B	22	23	D G	25	24	S R	26	24
J B	14	12	N H	27	24	R S	30	29
A B	21	20	P H	26	26	N S	16	16
E B	21	23	JH	21	19	D S	17	18
S C	25	23	L H	23	23	RMS	22	21.
D C	25	23	C H	13	12	J S	25	21
J C	16	18	K L	20	18	H T	26	26
E D	16	14	D L	24	21	J T	18	20
J D	17	17	P L	13	12	S T	16	16
EAD	20	16	T L	21	19	D V	26	24
R E	19	17	B L	22	22	C V	22	20
WE	13	12	M M	22	23	CW	23	21
FF	14	13	G M	29	22			

TABLE 36

SUMMARY RATINGS OF INTELLIGIBILITY BY THE SIX LISTENERS.

Pupil	Test		Test				Test	
	1	2	Pupil	1	2	Pupil	1	2
J A	16	13	J F	24	22	RRP	24	22
S A	23	23	S F	20	17	S P	19	18
G B	20	15	L F	19	20	R P	20	20
GJB	19	24	M G	21	24	J Q	20	19
P B	21	22	D G	25	24	S R	24	23
J B	9	10	N H	24	23	R S	30	28
A B	19	18	PH	24	24	N S	13	12
E B	19	21	J H	20	19	D S	17	16
S C	20	23	L H	21	20	RMS	19	21
D C	23	22	C H	12	12	J S	24	20
J C	9	11	K L	18	15	$\mathrm{H}^{\text {T }}$	26	24
E D	12	13	D L	22	20	JT	17	18
J D	15	17	P L	12	11	S T	12	11
EAD	17	15	T L	19	17	D V	24	21
R E	17	17	B L	20	20	C V	20	21
W E	10	12	M M	19	22	C W	20	19
F F	15	12	G M	25	22			

Ratings for Test I and Test IL are included in the tables. Pupils are listed in alphabetical order. A single rating or score for a given pupil is the total of the ratings of six listenors for each category.

The scores of the first test were paired with the scores on the second test. The Pearmon Product-Moment method ${ }^{2}$ for finding correlation was used. Table 4 shows the correlations between listeners scores on Test I and Test II for each rating category.

TABLE 4

SUMMARY OF CORRELATIONS BEIWEEN LISTENERS SCORES FOR TEST 1 AND TEST 2 TOR EACH SPEECH RATING CATEGORY.

Category	Correlation	Category	Corralation
Votce quality	.77	Fluency	.86
Inflection	.89	Precision of articulation	.93
Rhythm	.82	Intelligibility	.91
Phrasing	.80		

The correlations ranged from a low of .77 for voice quality to a high of .93 for precision of articulation. Correlations for voice quality, rhythm, and phrasing were among the lower ones, while fluency, inflection, precieion of articulation, and intelligibility had somewhat higher correlations, being above .86 in all cases. Throughout the test,

[^8]the listenars had a slight tendency to rate a little wore critically on the firet teat than on the sacond.

The lover corrolations found for voice quality, rhytha, and phrasing indicate that the categories themelves were harder to ovaluate. This could be due to the make-up of che particular rating acale for the categorien and aluo to the type of mpeach sumplet that were being rated. It it probobly more difficule to rato a child's epontaneoue apeach for the chythe and phrasing than to rate hie speset offorte while reading selected apech memplits, since the latter containe seereotyped phrusee. Another aspect is that theee categorias themalves may not play at important a role in determining intelifgibility som of the othare.

Ratinge of the Spuch Samples on the Basta of Individual Catagories By Individual Listenere -- Coefficiente of correlation vere also datermined for each of the alx listeners for each rating category. Table 5 show the correlation betwean rest 1 and rest II of individual ifstonere for each speech rating category. The individuil coafficients of correlacion were calculated by means of tive"raw meore mothodi" which is derived from the pearson Product-Morent method.

John W. Beet, op. Cit. p. 236

SUMMARY OF THE CORRELATIONS OF INDIVIDUAL LISTENERS FOR TEST I AND TEST II FOR EACH SPEECH RATING CATEGORY.

Category	Listener					
	A	B	c	D	E	F
Voice quality	. 60	. 59	.68*	. 50	. 31	. 67
Inflection	:70	. 61	. 72	.74*	. 63	. 60
Rhythes	.52*	. 47	. 40	. 42	. 45	. 29
Phrasing	. 39	. 62	..65*	. 50	. 59	. 52
Fluency	. 58	. 73	. 55	. 56	. 67	.87*
Precision of Articulation	.73*	. 70	. 66	. 71	. 56	. 54
Intelligibility	. 78	.88*	. 74	. 83	. 69	. 74
*Indicates	high	correl	for	categ		

The six listeners had reliability coefficients of correlation for the voice quality category ranging from low of .31 to high of .68 . Four of the listeners vere within an eight point range of each other, having $.59, .60,67$, and .68 respectively. The other listener had a correlation of .50 .

The ratinge of Individual listeners showed correlations of $.60,61$, .63, $70, .72$, and .74 for inflection; correlations of $.29, .40, .42$, .45, 47 , and .52 for rhythm; correlationt of $.39, .50, .59, .62$, and .65 for phrasing; correlations of $.55, .56, .58, .67, .73$, and .87 for
fluency; correlations of $.54, .56, .66, .70, .71$, and .73 for articulation; and for intelligibility, correlations of $.69, .74, .78, .83$, and .38.

The rhythm, phrasing, and voice quality categories appeared more difficult than the others to rate and gave smaller correlations. The correlations for the group of six listeners and the correlations of the individual Iisteners bear this out (Sce rable 6.).

TABLE 6

SUMMARY OF THE CORREIATIONS OF THE RATINGS OF INDIVIDUAZ LISTERERS AND THOSE OF THE GROUP OF LISTENERS FOR EACH SPEECH CATEGORY.

Category	A	B	$\begin{aligned} & \text { Listener } \\ & \text { C } \end{aligned}$		E	F	Group of Listener
Voice quality	. 60	. 59	. 68	. 50	. 31	. 67	. 77
Inflection	. 70	. 61	. 72	. 74	. 63	. 60	. 89
Rhythm	. 52	. 47	. 40	. 42	. 45	. 29	. 82
Phresing	. 39	. 62	. 65	. 50	. 59	. 52	. 82
Fluency	. 58	. 73	. 55	. 56	. 67	. 87	. 86
Precision of Articulation	. 73	. 70	. 66	. 71	. 56	. 54	. 93
Intelligibility	. 78	. 88	. 74	. 83	. 69	. 74	. 91

Teble 5 shows that the corrolations of Individual listeners were not conelatently high or low. The numbers marked with an asteriak show
the highest correlation for each rating category.
This variation between the high and low scores of the listeners indicates that each listener found certain categories easier than others. However, it should be noted that all listeners were lower on cartain categories than on others. For example, the low correlation (.54) for preciaion of articulation is higher than the higheet corrolation (.52) for rhythm. Thus, it can be concluded that certain rating categorie wore easier to rate consiotently than others, and no one listener was consistently high or low for all categories.

Table 6 shows the correlations between the ratings of speech camples made by individual listeners and those made by the group of six Insteners on Test I and Test II. Table 6 shows that in almost every case the individual correlations were maller than those for the group of listeners. This was expected and at the beginning it was decided that group rather than one or two individuals must rate the speech. The higher correlation for the group of listeners are due primarily to the fact that as group the listeners tend to maintain a more consistent leval of rating than it is possible for an individual to maintain. The group reduces the effect of the random errors of the individual.

From the data presented thus far, it appeare that a group of listeners can repeat ratings of the speech of deaf children on the basis of the four categories: inflection, fluency, precioion of articulation, and intelligibility with an aceptable amount of consistency. There is some question as to the value of ratinge based on voice quality, rhythm, and phrasing as they now stand. Perheps with some changes in the
rating scale and with more detailed instructions for rating theae categories they can be made to yield more consistent results.

As the resulte thus far are considered, it appears that, with minor changen, the test can be used to avaluate the speach efforts of young deaf children.

The Relationship of the Rating Catagories to Intelligibility --Inter-category correlations were worked out in an attempt to determine the relative importance of each category to intelligibility. The importance of the intelligibility category was self-evident and so the correlation between each of the other categories and intelligibility was found. Table 7 show the inter-category correlations.

TABLE 7

INTER-CATEGORY CORRELATIONS SHOWING THE RELATIONSHIP BETWEEN THE IMEELLIGIBILITY CATEGORX AND THE REMAINING CATEGORIES.

Category
Voice quality ve intelligibility $\quad 69$
Inflection ve intelligibility . 85
Rhythm ve intelligibility 83
Phresing ve intelligibility . 86
Fluency vs intelligibility $\quad .72$
Precision of articulation vs intelligibility . 99

The correlation between voice quality and intelligibility was . 69. The correlation between inflection and intelligibility was .85 , for rhythm and intelligibility .83 . Ptrasing and intelligibility had a correlation of .86 , fluency and intelligibility was .72 , and precision of articulation and inteligibility correlated almost parfectly, having a correlation above. 99 .

The correlations for voice quality vs intelligibility and fluency ve intelligibility are low enough to indicate that they are not very important factors in determining intelligibility. However, there are inter-relations between these categories and others that make us hesitate before eliminating them from the rating sheat. For example, if voice quality was eliminated as a category, then the voice might become a factor in the rating of another category such as precioion of articu lation. If the listener had not already rated the voice quality, then he might let a poor voice influence hie rating of good articulation.

The remaining five categories, with correlations of .83 to .99 , appear to be rather closely related to intelligibility. It appeare that precision of articulation is 30 closely related to intelligibility that the rating of one can be predicted from the other. This does not always hold true, however, especially when a child that is only hard-of-hearing is considered. It is possible for him to have low precision of articulation, yet have high intelligibility due to the naturalness of his voice quality, rhythe, phrasing, fluency, and inflection. In discuseing this problem, Bell said, "Ordinary people who know nothing of phonatics or elocution have difficulty in underetanding slow speech
composed of perfect elementary sounds, while they have no difficulty in comprehending an imperfect gabble if only the eccent and rhythm are natural." ${ }^{4}$

Results of Additional Groups of Listeners -- The question arises as to whether or not another group of listeners under the same test conditions would yield similar resulte. The answer to this question was sought by teating three other groups of listeners.

Eighteen college graduater who were engeged in teacher training program at the Clarke School for the Deaf were divided randomly inte three groups of six listeners. These tudents were considered to have approximately the same background for understanding the speech of deaf children as beginning teachers of the deaf.

These three groupt were given identical instructions and prectice periods and followed the same technique for rating the speech as the original group of listeners. They did the rating in the same room at: the same time and so conditions for these three groups of listeners were identical. These three groups of Ifstenere rated ten of the fifty pupils chosen at rancom. Table 8 showe the over-all speech scores given to the ten pupils by the original group of listeners and the three test groups of listeners. These scores were determined by the method mentioned carlier for finding a child's over-all speech score (p. 19).

[^9]
TABLE 8

SUMMARY OF OVER-ALL SPEECH SCORES GIVEN TO TEN PUPILS BY THE THREE TEST GROUPS OF LISTENERS AND THE ORIGINAI GROUP.

Pupils	Original group Test 1 Test 2	A	Test groups B	C	
GB	23	26	24	26	25
E B	24	24	23	24	25
RE	20	19	22	22	21
WE	13	13	14	14	14
JH	23	20	22	25	25
TL	21	21	19	20	20
PL	14	15	16	15	16
MM	22	24	24	23	24
RS	21	23	21	25	24
JT	18	19	20	23	20

The three test groups of listener showed alight tendency to rate the speech samplet more critically than the original group of listeners. However, the scores of the three test groups compare very favorably with each other and with those of the original group, as Table 8 shows. It is believed that if these groups had been somewhat selected for the

Abstract

task and if they had been able to rate wore than ten pupils, thus giving them practice, the results would have been even nearer to the original group. However, from this limited bit of information, this author is encouraged to believe thet group of listeners can be selected and trained to rate the speech with a high degree of consistency.

Careful analyois of the data presented indicates that it is possible for a test of this type to be administered to young deaf children and scored by group of listeners with satisfactory and reliable results.

CHAPTER V

CHAPTER V

SUMMARY AND CONCLUSIONS

The purpose of this paper was to determine the reliability of a group of listeners in evaluating speech samples of young deaf children. At present, we are not aware of satisfactory way of determining the speech intelligibility of young deaf children. The problem was to determine with what consietency it is poseible for a group of listeners to assess the epech for its voice quality, inflection, rhythm, phracing, fluency, precision of articulation, and intelligibility. The final objective of this study was to standardize tect that could be used with young deaf children.

Fifty pupils in the Lower and Middle Departments of the Clarke School for the Deaf were used in the study. There were twenty-four boye and twenty-six girls ranging in ge from six yeare, nine monthe to eleven years, seven months.

Spontaneous speech samples were gathered from this group of fifty children and were appraised and mcored by a group of six listeners who were considered qualified for this job.

The spontaneout mpeech was stimulated by presenting groups of ten eimple pictures to the children. The ten pictures were chosen at random from aroup of thirty-five pictures. As a child talked about the picture, the teacher silently pointed out items in the picture that might otimulate speech. It was nececcary to encourage some of the younger pupile. The speech samples were tape recorded to enable them to be scored at a later and more convenient time.

The listeners were teachers of the deaf who were familiar

With the spech of deaf children. Some of the listenerv vere beginning teachers and on had considarable experience with the speach of the deaf.

After a training period and a practice session, the speach samples were played back to the listeners through high-fidolity equipment and Individual headphones.

A ruting shout (Figure I, $p \cdot 16$) consiating of seven speach rating categories and arting seale for each was doviaed to aid in the rating of child's intelifgibility, The seven epeech rating cetegorios were: voice quality, inflection, rhythm, phrasing, fluency, preciaion of articulation, and intelligibility.

The child's over-all speeh seore was coneidered to be the average score given by the six listeners. The score given by a single listenar wae the of individual ratinge on each of the seven categories.

In order to determine the reliability of the test, each of the fifty children wat rated twice. The tecond ratings were made after a waiting period of approximately ix weoke.

The date ware analyzed as follow: (1) Corralation were detormined for the over-all speech scores of reat 1 and Test 2; (2) correletions were detexnined for the scores given by ach individual Listencr on Test 1 and rest 2 for anch rating category; (4) corrolations vore detormined between the ocored for intelligibility versue the score for the reaning categoxieg to determine the relationship betwaen intelligibility and the other categories; and (5) comparison of scores given by additional groups of listenera for sample group of pupils and the original group of lietener were made.

The coefficient of correlation between the over-all speech scores given by the listeners on the first test and on the second test was .89 . There was a possible range of twenty-five points on the test. There was no difference betwean the two scores for 28% of the cases. There was a difference of two or less for 84% of the cases. Table 2 p. 24 shows these results.

The coafficiente of correlation for the ratings of the six listeners for each rating category was .77 for voice quality, .89 for inflection, .82 for rhythm, .80 for phrasing, .86 for $\mathbb{E l u e n c y , ~} .93$ for precision of articulation and .91 for intelligibility.

The correlations between the two tests for each individual listener for each speech rating category ranged from .31 to .68 for voice quality, .60 to .74 for inflection, .29 to .52 for rhythm, .39 to .65 for phrasing,
.55 to .87 for fluency, .54 to .73 for precision of articulation, and .69 to .88 for intelligibility.

The data showed that no single listener was consistently high or low in his ratings. This indicates that one listener may be superior in rating one category and not quite as good as another listener in rating another category.

From an examination of this information, we can predict that the use of group of listeners for scoring is acceptable and will yield reliable results. The coefficients of corralation for the ratinge of individual Listeners leaves considerable doubt as to the reliability of individual listeners to rate the speech. Homever, as agroup, the
listeners do an acceptable job and this method should be maintained. An attempt to determine the relative importance of ach speech rating category in relationehip to intelligibility was made. This was determined by inter-category correlations. The correlation for voice quality vs intelligibility was . 69 . Correlations were . 85 for inflection vs intelligibility, . 83 for phreaing vs inteliigibility, .72 for fluancy ve inteliigibility, and . 99 for precision of articula tion ve intelligibility.

The data indicates that probably all of the speech rating categories except, possibly, voice quality nd fluency, are closely ralated to intelligibility and deserve consideretion in the evaluation of spech. However, voice quality and fluency are felt to be so involved with the speech procese that, even though the correlations between them and intelligibility were lower than for the othere, they are important and should be considered as factors that determine the intelligibility of speech.

An additional test was made to determine if similar groups of listeners would yield similar results. Three groups composed of teachers-in-training at the Clarke School for the Deaf were used for this purpose. These test groups rated ten pupils, chosen at random, under imilar conditions the oxiginal group of listeners.

The over-all speech score for pupil as determined by esch of the three test groupe of listeners were very close to each other. These score compared very favorably to those aseigned by the original group of listeners, elso. The scores given to pupils by any one group were
similar enough to those of any other group, except in a very few cases, to indicate that they are reliable scores. It is believed that if the test groups of listeners had had practice equal to the original group, the scores would have been even closer together. This indicates that any group of listener with similar backgrounds and training can be trained and used to rete the apeech of young deaf children with a relisble degree of consistency.

From the information learned from this study, it can be concluded that, with some minor revisions, this test can be used to evaluate the speech of young deaf children with satiafactory and reliable results.

A change in the rating sheet is recommended for firture use. The categories would be easier to rate, in certain instances, if there were broader scales with either more definite, descriptive terms to aid in judging or merely a number acale ranking from excellent or normal to very poor.

Whenever we scratch the surface of a body of information, we always find that there is a great deal more to be learned. This is especially true in the field of speech teaching, speech testing, and definitely, seech evaluation.

BIBLIOGRAPHY

Bell, Alexander Graham. The Mechaniem of Speech. New York \& London: Funk \& Wagnalle Co., 1906. 129 pp.

Best, John W. Research in Education. Englewood Cliffe, N.J.: Prentice-Hall, Inc., 1959. 320pp.

Bjuggren, Gunnar, "A Method To Test The Intelligibility of The Speech of Pre-School Children With Severe Hearing Impairment. A Preliminary Report." Stockholm: Acta-Oto-LaryngologicaSupplementum 110. 1954. pp. 83-88.

Diehl, Charles F. and MeDonald, Eugane T. "Effect of Voice Quality On Communication." Journal of Speech and Hearing Disorders, Vol. 21 (June 1956), pp. 233-237.

Diehl, Charles F. and Stinnett, Charlee D., "Efficiency of Teacher Referrals In a School Speech Testing Program." The Journal of Speech and Hearing Disorders, Vol. 24 (Feb. 1959) PP. 34-37.

Dieh1, Charlee F., White, Richard, and Burk, Kenneth W., "Voice Quality and Anxiety," Journal of Spaech and Hearing Research, Vol. 2 (Sept. 1959) pp. 282-285.

Egan, James P., "Articulation Testing Mothods." The Laryngoscope, Vol. 58 (1948) pp. 955-991.

Farman, J. Jay and Phillips, Betty, "The Farman-Phillips Speach Intelligibility Diagnostic Test." The Volta Review, Vol. 56 (Apr. 1954) pp. 168-170.

Garrett, Henry E. Statistics In Paychology and Education. New York: Longmans, Grean \& Co.. 1926. 317 pp .

Hudgins, C. V., "A Method of Appraising the Speech of the Deaf." The Volta Review, Vol. 51 (Dec. 1949) pp. 597-601.

Larr, Alfred L. and Stockwell, Robert P., "A Test of Speech Inteliigi bility." The Volta Reviaw, Vol. 61 (Nov. 1959) pp. 403-407.

Oyer, Herbert J. "Speech Error Recognition Ability." Journal of Speech and Hearing Dieorders, 24 (Nov. 1959) pp. 391-395.

Perrin, Elinor Horwitz, "The Reting of Defective Speech By Trained And Untrained Observers.". The Journal of Speech and Hearing Disorders, Vol. 19 (March 1954) Pp. 48-52.

Sherman, Dorothy and Morrison, Sheila, "Reliability of Individual Ratings of Severity of Defective Articulation." The Journal of Speech and Hearing Disorders, Vol. 20 (Dec. 1955) Pp. 347-359.

Templin, Mildred C., "A Non-Diagnostic Articulation Test." The Journal of Speech Disorders, Vol. 21 (Dec. 1947) pp. 392-396.

Templin, Mildred C. "Spontaneous Versus Imitated Verbalization In Testing Articulation In Preschool Children." The Journal of Speech Disorders, Vol. 12 (Sept. 1947) pp. 293-300.

Tolhurst, Gilbert C. "What Are The Jobs The Therapist Will Do?" The Bulletin of the National Association of Secondary School Principale, Vol. 34 (Nov. 1950) pp. 73-79.

Wood, Kenneth Scott, "Measurement of Progress in the Correction of Articulatory Speech Defects." The Journal of Speech and Hearing Disorders, Vol. 14 (June 1949) PP. 171-174.

ACKNOWLEDGMENTS

This study was carried on at The Clarke School for the Deaf, Northampton, Massachusetts, during the school year of 1959-1960. I take this opportunity for expreseing my incere appreciation to Dr. C. V. Hudgins, Director of the Research Dapartment of Clarke School, for the valuable time and ready assistance generously given. Dr. Hudgins uggested the problem and the work was carried out under his direction. Grateful appreciation is also expressed to the teachers who gave of their time to serve as listeners for this study.

PROBLEM APPROVED BY:

[^0]: $1_{\text {Gunnar }}$ Bjuggren, "A Method To Test The Intelligibility of The Speech of Pre-School Children With Severe Hearing Impairment. A PreIIminary Report." Stockholm: Acte-Oto-Laryngologica - Supplementum 110. 1954. Pp. 83-88.

[^1]: ${ }^{1}$ Gunnar Bjuggren, "A Method To Test The Intelligibility of The Speech of Pre-School Children With Severe Hearing Impeirment. A Preiminary Raport," Stockholm: Acta-0to-Laryngologica - Supplementum 110. 1954. pp. 83-88.

[^2]: ${ }^{2} \mathrm{C}$. V. Hudsins, "A Mothod of Appraising the Speach of the Deaf." The Volta Review, Vol. 51 (Dec. 1949) pp. 597-601.

[^3]: ${ }^{3}$ Jay J. Farman and Betty Phillips, "The Farman-Phillips Speech Intelligibility Diagnostic Test." The Volta Review, Vol. 56 (Apr. 1954) pp. 168-170.

[^4]: 4Mildred C. Templin, "A Non-Diagnostic Articulation Test." The Journal of Speech Disordere, Vol. 21 (Dec. 1947) pp. 392-396.

[^5]: 5mildred C. Templin, "Spontancous Versue Imitated Verbalization In resting Articulation In Preschool Children." The Journal of Speech Disordare. Vol. (Sept. 1947) pp. 293-300.

[^6]: GElinor H. Perrin, "The Rating of Dafective Speech By Trained and Untrained Observers." The Journal of Speech and Hearing Disorders, Vol. 19 (March 1954) pp. 48-52.

[^7]: John W. seat, Resourch In Educetion (Englewood CLiffe, M, J.: Prentice-ma11, Inc., 1959). Pp. 242-243.

[^8]: ${ }^{2}$ Henry E. Garrett, Statistics In Pgychology and Education (New York: Longmans, Green \& Co., 1926) p. 163.

[^9]: 4Alexander G. Bell, The Mechanism of Speech (New York and London: Funk \& Wagnall: Co., 1.906) p. 15.

