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A STUDY OF LUXURY ABSORPTION OF IRON AND 

MANGANESE IN INSOLUBLE GLASSY FRITS 

BY HORTICULTURAL PLANTS 

INTRODUCTION 

Much ii to bt found scattered through literature on the 

effect of the addition of iron to aoii on plant growth. Some 

reference# indicate very decided beneficial effects from appli¬ 

cations of Iron in one form or another, others indicate that 

benefits are derived from the addition of small amounts of iron 

and toxicity from larger applications. Literature contains still 

other references explaining seemingly contradictory results. 

Some experimenters have explained such differences in results 

as due to solubility of iron caused by variability in pH of the 

soil solution, or in the chemical composition of the soil com¬ 

plex. In many cases, chlorosis is considered as a symptom 

of lack of Iron, while green color is taken as indication of 

satisfactory iron supply. However, a supply of iron, which 

may be necessary to maintain green color, may not necessarily 

be sufficient to result in optimum growth. This may be more 
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especially the case where plants are grown intensively in green¬ 

houses and hence nutrient levels of soil may be much higher 

than in farm soil. 

There is nothing in the literature* so far as the author 

has been able to discover* that indubitably places a limit as 

to the amounts of all nutrient elements that must be available 

for optimum growth in horticultural plants. There is some 

evidence that optimum plant growth can be obtained at various 

nutrient levels* provided that a proper balance of various ele¬ 

ments Is maintained. One may then question what effects in¬ 

creasing amounts of iron and manganese will have upon plant 

growth if proper balance of all other essential nutrients is 

maintained. The presence in a plant of an amount of an ele¬ 

ment greater than that required for normal needs is called 

"luxury absorption" or "luxury consumption." It is difficult 

to ascertain at what point the absorption of a mineral element 

becomes luxury absorption. 

In the past it has been a practical impossibility to study 

the effects of luxury absorption of iron and manganese because 

of the well-known fact that in normal agricultural soils a very 

small amount of the total iron is in a form available to plants* 
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When iron salt* are applied to auch soils they quickly become 

unavailable, so that applying Iron salts directly to the soil in 

large amounts cannot possibly give an answer to the problem 

of luxury consumption of iron. 

Manganese similarly Is affected by composition and pH 

of the soil, by its interactions with other elements and more 

especially by its relationships with iron and calcium. For 

these reasons, serious difficulties are experienced in attempt¬ 

ing to study luxury consumption. 
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STATEMENT OF PROBLEM 

In order to determine if luxury consumption of iron ie 

beneficial to plants, it was decided to find out what values 

might be obtained by the use of iron in an insoluble but avail¬ 

able form, applied to the soil in quantities above the amounts 

normally found in greenhouse soils* 

Iron in such insoluble form, but available to plants, is 

to be found in the experimental product frit, as described on 

page 44, at present under investigation in the Department of 

Botany, Michigan State College, in cooperation with the Ferro 

Enamel Corporation of Cleveland, Ohio. Experimental work 

already completed, Wynd (128, 129) shows to what extent plant 

roots can obtain iron from glassy frit without iron becoming 

soluble in nutrient solutions* 

The object of the present work is to determine whether 

(1) plant roots can obtain iron from frit when this material is 

mixed with soil and (2) whether additional amounts of such iron 

added to the soil will produce better plant growth. 

In general, the problem is to detect to what extent lux¬ 

ury absorption of iron and manganese affects plants. It is 
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impossible to study luxury absorption by using soluble com¬ 

pounds, because of the fact that iron commonly is soluble in 

soil, or available to plants in relatively small amounts, although 

large amounts of iron may be present in insoluble or unavail¬ 

able forms. Joffe and McLean (60), Monnier and Kucsraski 

(89), Morison and Doyne (91) and Wynd (128) concluded that 

iron is relatively insoluble in normal soil solution. The use 

of frit offers a means of supply of luxury amounts, without 

involving soil reactions. Preliminary experiments by Wynd 

and Bowden (130) with Antirrhinum and by the same authors 

(131) with blueberries, and by Wynd and Stromme (132) with 

beans, suggest the value of applying this principle to commer¬ 

cial production of plants. 

Experimental work previously completed by Wynd (128, 

129) showed the availability of iron contained in frit, but noth¬ 

ing is known as to the rates of application or the physiology 

of luxury absorption. 



6 

REVIEW OF LITERATURE 

Function of iron 

It has long boon known that green plants cannot produce 

normal growth if deprived of iron. As early as 1844, Oris 

(39) noted that plants normally do not produce chlorophyll if 

deprived of iron. Other investigators, Crawford (21), Hopkins 

(48), Haas (41) and Olsen (94), have reported similarly. 

While Willstatter and Stoll (126) proved that iron does 

not enter into the composition of chlorophyll, it seems to be 

generally accepted that it does have some function in the for¬ 

mation of chlorophyll. 

Wolff (127) thought that iron acts as a catalyzer in 

plants. 

Warburg (123) suggested that the iron in the plant acts 

as the oxygen-carrying component of the respiration ferment. 

Oddo and Follacci (98) believed that iron serves as the 

catalytic agent in the formation of the pyrrole nucleus and 

therefore, if the pyrrole nucleus is present, iron is no longer 

needed to complete the formation of chlorophyll. Demidenko 

(27) similarly found that the magnesium salt of alpha-pyrrole- 



T 

carboxylic acid failed to replace Iron functionally in corn 

eeedlinge. Deuber (29), Aronoff and MacKinney (3), and others, 

have been unable to confirm the theory that pyrrole derivatives 

may replace iron in the synthesis of chlorophyll. 

Hopkins (48) thought that iron plays an important role 

In the cellular processes involving biological oxidation. 

Oskerkowsky (96) found that a specific kind of iron, 

designated as "active iron" is concerned in chlorophyll forma¬ 

tion. It is usual to consider "active iron" as being reduced 

iron, ferrous iron or mobile iron. Whatever the details may 

be as regards the function of iron on chlorophyll formation, 

either directly or indirectly, the reaction results in oxidation 

of the iron. This would indicate a release of kinetic energy 

in the change of the iron from the ferrous to the ferric form. 

In the latter form, the iron is inactive or immobile and is not 

translocated to other parts of the plant. Perhaps the energy 

released is utilised in and necessary to the formation of chlor~ 

ophyll. 

Forms of iron 

Investigators have reported variously on the form of 

iron required by plants. 
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Jones (66) noted that given forma of iron in fixed small 

amounts are not equally efficient for plant growth. 

KUsnan (75) asserted that plants absorb and utilize iron 

only as ferrous cations. Ferric iron must first be reduced 

before absorption by the plant. This may be accomplished 

variously (l) by decomposition of soil organic matter, (2) by 

micro-organisms, (3) by reducing substances in the epidermis 

of the plant roots. This is in general agreement with present 

i 

day thought on the subject. However, In this connection atten¬ 

tion should be directed to the findings of various investigators 

(54, 86) on the effect of various organic acids in preventing 

oxidation of iron or perhaps in causing the reduction of iron. 

Other investigators (6, 45, 114) have demonstrated the effect 

of certain organic acids in Inhibiting fixation of phosphorus by 

iron or other cations. It is well-known that some plants can 

obtain iron from the soil when other plants growing in the same 

soil show iron deficiency. Whether such plants can take in 

iron in ferric form, or whether such plants are more active 

in giving off carbon dioxide or other reducing substance that 

will convert ferric iron to ferrous iron, or perhaps are better 

able to absorb the iron through contact absorption, seems to 

be an unsettled matter. Possibly reduction of iron occurs in 
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the rhiaosphere ms * result of biologic activity. It has been 

i 

pointed out by some investigators that the rhizosphere carries 

a large concentration of micro-organisms, or at least a more 

active microflora than the body of the soil. The suggestion 

has been made that this population of microflora, utilising in 

part waste products or excretions of the roots, may make 

available to the plants difficultly available compounds. 

Demidenko (27) in a study of iron nutrition of sunflower 

and oats, concluded that higher plants assimilate iron sulfate 

and ferric and ferrous iron in equal measure. There seems, 

however, to be little proof anywhere that iron in the ferric 

form is assimilated by higher plants. It is more probable 

that ferric iron is reduced in some manner, possibly in the 

rhiaosphere, through biologic activity, or chemical reaction 

under the influence of organic matter, organic acids, salts of * 

organic acids, respiration of roots with release of carbon di¬ 

oxide, or excretion of other organic substances. 

Ignatieff (55) found that ferrous iron is strongly adsorbed 

by soil and that, therefore, reduction of iron has not been a 

major cause of its downward movement in podsol soils. Re¬ 

gardless, it seems to be generally accepted that under conditions 
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of ample rainfall eventually all soluble eoll materials must 

pass downward through the soil. 

Hopkins and Wann (52, 53) studied the effect of H-ion 

on availability of iron for Chlorella sp. Ferric citrate seemed 

to be the most favorable source of iron generally. If calcium 

is omitted and sodium citrate added, iron can be maintained 

in available form for growth of Chi orella in alkaline solutions. 

Hopkins and Wann (54) believed that iron is active in growth 

only in ionized form. 

Bastisse (6) found that activity of iron is favorably af¬ 

fected by traces of other elements, particularly manganese and 

that ferrous iron appeared more reactive than ferric iron. 

Amount of iron 

Regarding the amount of iron necessary for plant growth, 

Miller (89) states HAU the directions for nutrient solutions 

stated that only a trace of iron was necessary and that it mat¬ 

tered little in what form it was presented to the plant, provided 

it was soluble in water. Quite recently, however, much work 

has been done on the question of iron nutrition which shows that 

not only the quantity of iron available but the form in which it 

is presented to the plant, can exert a marked influence upon 
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plant growth and development. These two factors in turn are 

dependent upon the composition of the medium or nutrient 

solution—its hydrogen-ion concentration, the nature of the 

general environment—and to some extent upon the kind of plant 

under consideration. There is at the present time no criterion 

by which to determine whether a plant is receiving sufficient 

iron except by its general appearance of health and vigor.H 

That the amount of iron found in plants varies greatly, 

has been noted by many investigators. 

Stiebaling (113) noted great variation in iron content of 

plants as between different kinds of plants. 

Crawford (21) noted that only a small amount of mag¬ 

nesium and iron are necessary to produce a green color of 

leaves and that lack of iron in the plant is generally produced 

in so-called calcareous soils. 

Cile and Carrero (37) noted that a slight deficiency of 

iron may diminish yield of rice without affecting the appearance 

of the plant. Rice plants grown in acid solution contained 

highest percentages of iron, while plants grown in neutral 

solutions had higher concentrations than those grown in alkaline 

solutions when some forms of iron were used, but contained 
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equal percentages when other forms were used. Variations of 

iron found by Gile and Carrero in the plant ash were in ail 

probability due to variations in availability of the iron in the 

various culture solutions. At least certain investigators believe 

this to be the case. Barnette (4) noted that higher average 

yields in different solution cultures were probably due to higher 

availability of iron. 

Jones and Shive (68), in a study of the influence of iron 

as ferric phosphate and as ferrous sulfate on growth of wheat 

in nutrient solutions, found that dry weight of plants increased 

with increase in amount of available iron up to 2 mg. per 

liter, although in the highest amounts (5 mg. per liter), the 

ferrous sulfate was somewhat toxic to plants. Further, these 

experiments show that ferrous sulfate increased dry weight 

more than did ferric phosphate. 

Shive (108, 109) noted that concentrations of iron in the 

solution, slightly in excess of that required for normal plant 

growth, may cause a chlorotic condition characteristic of iron 

deficiency. 

Marsh and Shive (85) found large, healthy plants of 

soybean, were produced when there was a continuous supply 
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of «v»llabi« iron. They suggested that the supply of soluble 

iron (in the cultural solution) must be kept at as low a con* 
/ 

centration as possible without inducing chlorosis from lack of 

available iron. 

Olsen (95) obtained optimum growth of maize grown in 

modified Knopf solution pH 4.0, when small amounts of iron 

were added, while larger amounts acted toxically. On the 

other hand, at pH 7.0, optimum growth was obtained with the 

larger amounts of iron. 

Oeuber (30) grew soybeans and Spiradella polyrhisa 

using potassium ferrocyanide and ferric ferrocyanide as sources 

of iron. He found that the higher concentrations of iron pro¬ 

duced retarded growth. 

Fuechini (34) believed that application of iron sulfate to 

the soil before planting may prevent rusts through increased 

vigor of the plants. 

Kinzerskaya (73) found beneficial effects on the yield 

of grain from additions of ferric sulfate and fresh manure, 
\ 

whereas fresh manure alone was injurious. 

Korolev (76) found that yields were halved when iron 

and aluminum phosphates were used, instead of superphosphate 

or precipitate. 
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Leclercq (78) undertook plot experiments to determine 

the fertilising value of iron sulfate. It was found that 250 

kilograms of iron sulfate per hectare produced an effect on 

oats as great as was produced by 150 kilograms of nitrate of 

soda. 

The belief of many investigators (68, 85, 95, 108, 109) 

that concentrations of iron greater than that required for nor- 

mai green color may be toxic, is based on solution culture for 

the most part. However, some investigators have found bene¬ 

ficial effects from relatively large applications of iron in soil 

culture* This may be due to the different culture media, to 

differences in availability of the iron, to differences in nutrient 

levels, or to differences in response of different kinds of plants 

to greater concentrations of iron. 

Effect of calcium on iron 

Crawford (21) has noted that lack of iron in plants is 

produced by peculiar soil conditions which make iron unavail¬ 

able. This condition is most frequently found in calcareous 

soils, although such soils may contain just as much iron as 

do normal soils, but iron is kept insoluble by the large amount 

of lime present. Many investigators have noted chlorosis in 
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plants growing in calcareous soils and have generally ascribed 

the chlorosis to the fact that nutritive elements, more particu¬ 

larly iron, have become unassimilable. JDauthenay (24) has so 

explained a chlorosis of fruit trees in calcareous soils. 

Demetriados (26) grew Polichos sinensis, Vitis vinifera 

and Evonymus pulchellus in pots in a silico-calcareous soil to 

which excessive amounts of iron were added and decided that 

excess of Iron under these conditions does not cause chlorosis. 

Various toxic effects were observed and there was increased 

iron in the tissues. 

Dennis (28) studied chlorosis in fruit trees and found 

iron chlorosis most serious in soils where faulty irrigation 

methods prevail and in soils having accumulations of lime and 

chlorides. However, possibly Dennis misinterpreted the symp¬ 

toms for iron chlorosis. The chlorosis may very well have 

been due to toxic amounts of nitrites, chlorides or calcium or 

these may have accentuated iron chlorosis symptoms. The 

possibility of phosphate or sulfate deficiency should also be 

considered. 

Clapp (17) noted that roses, growing in alkaline soils 

at pH 8.5, exhibited chlorosis which could be temporarily 
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corrected by spraying at lour to six week intervals with fer¬ 

rous sulfate. The condition was permanently overcome by 

neutralising the soil with sulfur or with aluminum sulfate. 

Coste-Floret (20) claimed that favorable results with 

sulfate of iron have always been obtained on calcareous soils. 

Monnier and Kucaynski ($0) found that addition of a 

small quantity of "calcium carbonate of magnesia'* precipitated 

the compounds of soluble iron in silicious calcium-free soil 

of Angers, France. Monnier and Kucsraski (89) reporting on 

later work, concluded that iron normally present in soils is 

insoluble and that this explains the marked effect of adding 

small amounts of iron compounds to the soil. 

Gile and Carrero (37) believed that lime-induced chlor¬ 

osis is caused by lack of iron and the only action of calcium 

carbonate is in diminishing availability of iron. 

Hiltner (46) found that spraying lupine plants grown in 

lime soils with iron sulfate, was decidedly beneficial, as was 

the case for peas and vetches. When these plants were after¬ 

wards sprayed with milk of lime, they became chlorotic again. 

In a later report (47)» he concluded that sensitiveness of lupines 

to lime is due to an injurious effect of lime on the nodule bac¬ 

teria. 
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Milad (87) observed that the susceptibility of pears, 

apples, white lupines and rice, to chlorosis on calcareous 

soils, was related to the comparatively slow rate of carbon 

dioxide production from their roots. Those plants which did 

not develop chlorosis, showed a much higher rate of carbon 

dioxide production. That solubility of iron in calcareous soils 

was affected by carbon dioxide was shown by analysis: by sup¬ 

plying carbon dioxide to the root system it was found possible 

to prevent chlorosis in white lupine. 

Schols (104) studied the chlorosis of Hydrangea. He 

believed that the most common cause of such chlorosis was 

excess calcium oxide which makes iron unavailable to the plant. 

Addition of an iron salt to the soil may prevent chlorosis with¬ 

out being of benefit to the plant growth. He reached the same 

conclusions in further experiments (105) with Primula obconica. 

Hence. 

Vyunov (122) found chlorosis in plants growing in soils 

with high calcium carbonate content, was due to change of iron 

Into insoluble, unassimilable compounds, liaising alkalinity of 

the soil aggravates the condition, while greater acidity relieves 

it. Further, he noted that plants having acid root secretions 

were immune to chlorosis* 
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White (124) in a study of factors affecting iron chlorosis 

in Gardenias, found that the foliage became green when treated 

with iron compounds. The corrective effect of iron applied to 

the soil was very slow; sulfur applied to the soil prevented 

chlorosis; supplementary light failed to correct the trouble; 

low temperatures resulted in chlorosis and nematodes and stem 

cankers accentuated the chlorosis. However* Demidenko (27) 

found that plants absorbing iron through the leaves or stems, 

gave lower yields than those absorbing it through the roots. 

Lindner and Harley (82) thought that calclum~induced 

chlorosis is probably brought about by a complex of causes 

not yet fully established. 

Bennett (8) concluded that chlorosis is a disturbance of 

nitrogen metabolism as well as of iron metabolism and the two 

are intimately related. 

Gile and Carrero (36) grew rice in nutrient solutions. 

They concluded from observations on cultures of rice and of 

pineapples that iron after once being transported to the leaves 

becomes immobile. 

It is apparent that raising the alkalinity of a soil some* 

what above neutrality, or increasing the calcium content, may 
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result In a chlorosis of the leaves of plants. This chlorosis 

may be due to lack of iron in the leaves, which in turn is due 

to the lack of assimilable iron in the soil. Excess calcium or 

high alkalinity, results in the oxidation of the iron. Not all 

plants, however, are similarly affected. Some plants, in 

some manner or under some conditions, are able to obtain 

sufficient iron for normal green color. Chlorosis of plant 

foliage may result from other causes such as disturbance of 

nitrogen metabolism, or of manganese metabolism, or of defi~ 

ciencles in the availability of nutrient elements, or from other 

causes. Excesses of absorbed elements more commonly cause 

necrosis, although slight excesses may affect growth only, 

while moderate excesses may result in varying degrees of 

chlorosis. Further, the outward manifestation of chlorosis 

varies with the cause and may vary as between different kinds 

of plants. 

Effect of nH of the solution on solubility of iron 

Jones (66) substituted ammonium sulfate for potassium 

nitrate in Tottlngham solution and observed this resulted in 

greater acidity of the solution and growth of wheat plants that 

were not chlorotic, as compared to chlorotic wheat plants grown 
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in Tottingham solution with potassium nitrate* He noted that 

in the latter case ferric phosphate was insoluble while in the 

former case, one-half the amount of ferric phosphate was suf¬ 

ficient to prevent chlorosis. Substitution of ferrous sulfate 

for ferric phosphate in Tottingham solution gave non-chlorotic 

growth, but in modified solution the same amount of ferrous 

sulfate was toxic. 

Jones and Shive (67) showed that ammonium sulfate in¬ 

creased H-ion of Tottingham solution when substituted for po¬ 

tassium nitrate and that iron in ferric phosphate form was suf¬ 

ficiently available for plant needs in modified Tottingham solu¬ 

tion. 

Deuber (30) noted that ferric ferrocyanide was a satis¬ 

factory source of iron when the solution had a reaction of pH 

5.01 but when more alkaline, chlorophyll development was re¬ 

stricted. 

Barnette and Shive (5) believed that availability of iron 

is determined mainly by H-ion concentration of the solution. 

Halvorson and Starkey (42) concluded that at pH values 

above 5.0, very small concentrations of ferrous iron and still 

smaller concentrations of ferric iron appear to be soluble in 

solutions under atmospheric conditions. 
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Sideris, Young and Kraus* (110) studied effect of iron 

on growth of pineapple, Ananaa comosus (L.) Merr. They found 

precipitation of iron and decrease of its availability to plants 

was caused by rising pH values. 

Davis (25) studied the effect of iron and aluminum chlor¬ 

ides on retention of phosphorus in a virgin Hammond very fine 

sandy loam and concluded that formation of iron and aluminum 

phosphates is not the major form of fixation at soil reactions 

above pH 4.5. It is the author's opinion that at least in some 

soils and at pH values above 6, phosphates increasingly appear 

as calcium phosphates, while at pH values below 6 the phos¬ 

phates combine with such mineral elements as iron, aluminum 

and manganese. 

Franceschi (33) found in Toa silt loam of Puerto Rico, 

that solubilities of iron and manganese were increased by addi¬ 

tions of acid, manganese more so than iron. 

The effect of pH of the solution on solubility is probably 

due to oxidation-reduction reactions. It is well established 

that decrease in pH has a reducing effect and iron is changed 

to the reduced or ferrous form. Increase in pH results in 

oxidation of the iron to the ferric form, which may be 



precipitated and is inactive or unavailable. In general, the 

same reactions occur with certain other mineral elements, as 

manganese and aluminum. However, it should again be pointed 

out that under certain conditions, even at high pH, iron or at 

least some of the iron, may be inhibited or retarded from 

changing to the ferric form. 

Effect of organic acids 

That organic ions influence the state of mineral ele¬ 

ments in the soil is evident. It is well known that in very 

acid soils iron and phosphate ions combine to form iron phos¬ 

phate, 

A number of investigators have demonstrated the action 

of organic matter in inhibiting precipitation of iron as iron 

phosphate. 

Lafon (77) has found a prepared citro-iron sulfate effec¬ 

tive in combating chlorosis. 

Tottingham and Rankin (119) investigated solubility of 

’’ • 

ferric citrate, ferric phosphate, ferric sulfate and ferrous sul¬ 

fate in Tottingham's solution at pH 4.2 and 6.0. They found 

that ferric citrate was the most favorable form of iron used 

under conditions of the experiment. 
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Gile and Carrero (37) reported, as judged by growth of 

plants, ferrous sulfate, ferric citrate and ferric tartrate af¬ 

forded sufficient iron when used in proper quantities in acid 

and neutral solutions. Ferric tartrate was the only form of 

iron (among those used) which furnished sufficient amounts of 

that element for nutrition of rice plants in alkaline solutions. 

Reed and Haas (102) found that the addition of certain 

organic compounds, such as sodium and potassium salts of 

organic acids (citrates and tartrates) and starch and sugars to 

alkaline nutrient solutions, increased soluble iron. 

Hopkins and Wann (54) observed that iron was unavail¬ 

able to Chlorella in alkaline nutrient solutions, but that the 

addition of a sufficient amount of sodium citrate kept the iron 

soluble at alkaline reactions for an indefinite period, 

Iyengar et al. (58) found that the addition of fermentable 

organic matter brought considerable ferrous iron into solution 

in acid peaty soil and neutral laterite soil, but small amounts 

only became soluble in alkaline soils. 

Joffe and McLean (62) concluded that normal soil solu¬ 

tions preclude the presence of iron and aluminum in solution. 

Iron is made available to plants probably through the solvent 
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action of organic advents. Mori son and Doyne (91) and Wynd 

(128) similarly believed that the existence of ferrous iron in 
/ 

normal soil solution is improbable. 

Prosorovskaya (100) noted increases in iron content of 

plants grown in sand cultures to which humic acid or its prep¬ 

arations were added. 

Burk et al. (12) noted that a function of the iron content 

of organic material seems to be a stimulation of growth of 

Aaotobacter. 

Mason! (86) found as a result of experiments on the 

cause of chlorosis of plants growing in limestone soils, that 

dilute citric acid dissolved considerable iron and that tartaric 

and malic acids, relatively less. 

Swenson, Cole and Sieling (115) showed that certain 

organic acids are able to prevent fixation of phosphate by 

iron and aluminum and other organic acids may possess the 

same chemical ability. 

Struthers and Sieling (114) have demonstrated the effect 

of various organic acids, all of which are to be found in the 

humic acid complex, in preventing precipitation of phosphate 

by iron or aluminum. Further, they have demonstrated that 
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there ere organic anions at any pH within the entire range of 

values, for agricultural soils, that are markedly effective in 
<• 

preventing precipitation of phosphate by iron or aluminum. It 

is known that certain of these acids, namely citric, tartaric 

and oxalic, form stable, soluble complexes with iron and alum¬ 

inum. 

Ghent and Aleem (35) found that unavailability of phos¬ 

phorus under acid conditions is due to the formation of iron 

and aluminum phosphates and the accumulation of organic phos- 
O' 

phorus. 

Hester and Shelton (45) studied soil organic matter in 

coastal plain soils. They believed that organic matter delayed 

absorption of phosphorus by iron and aluminum. 

Organic acids and their salts seem to be more or less 

effective in preventing oxidation of iron* Since these are found 

in the humic acid complex, it follows that the presence of or¬ 

ganic matter in the soil likewise prevents oxidation of iron. 

Action of iron on phosphate 

Kirsanov (74) grew barley in pots on podaols and con¬ 

cluded that phosphorus in the form at acid phosphate immobil¬ 

ises iron and the addition of lime accomplished the same result 

and increases the pH. 
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Harper and Daniel (43) examined thousands of soils, 

only a few of which contained appreciable amounts of iron sol¬ 

uble In 0.2N H^SO^. In these latter soils soluble phosphate 

fertilisers were changed into a form not readily available to 

plants. 

Byers, Anderson and Bradfield (16) noted that soils 

hold phosphates in unavailable form when soil colloids are high 

in content of iron oxide. This is probably due to the insolu¬ 

bility of iron phosphate. 

Hester and Shelton (45) grew lima beans in coastal plain 

soils and found a marked increase in yield from additions of 

superphosphate, but with the addition of organic matter, only 

one-third as much superphosphate was required. They thought 

that organic matter delayed precipitation of iron and aluminum 

phosphate and so kept it available to plants. 

Iyengar (57) found that in water-logged soils ferric iron 

is dissolved by organic acids and reduced to ferrous iron. The 

latter is reprecipitated as oxide, carbonate, phosphate and sul¬ 

fide. Soil phosphates, thus removed, need to be replenished 

by the addition of phosphate fertilizer. 

King and Perkins (72) found that large amounts of iron 

in the soil reduced the phosphorus content of wheat plants. 
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Coleman (18) found that phosphorus fixation by both 

coarse and fine clays, depends upon reaction and exchangeable 

cations only when there are free iron and aluminum oxides 

present. 

Olsen (95) believed that iron may be precipitated as iron 

phosphate in the vascular bundles of the plant and so become 

unavailable at pH 6. 0 - 7.0. The result on the plant is chlo¬ 

rosis, even though there may be an abundance of iron present. 

However, iron will remain available if furnished in complex 

organic form as citrate, or with other organic acids. It should 

be pointed out that Olsen's conclusions do not entirely agree 

with known chemical reactions. It is more probable that at 

the pH noted, the phosphate combines with calcium and the iron 

is oxidized to the ferric form, perhaps as ferric sulfate and as 

such is immobile. 

Swenson, Cole and Sieling (115) studied fixation of phos¬ 

phates by iron and aluminum. Their experiments have a direct 

bearing on the matter of iron precipitation. They found that 

maximum precipitation of basic iron phosphate occurs at pH 

value of 2.5 to 3.5, and for aluminum phosphate at a pH value 

of 3.5 to 4.0. At this range phosphorus predominates as 
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and there is little HPG^ and virtually no PO^ 

Tlda agrees with known facts regarding f&osphorus-calcium 

relationships. One iron- or one aluminum-ion combined with 

one phosphate-ion (H^PO^*") and in no case, regardless of 

amount of phosphate present, was the ratio of iron or alum¬ 

inum to phosphate greater than unity. Hydrous oxides of 

aluminum and iron combin. ch.mic.lly with at low 

pH values because the stability of basic metal phosphate is 

greater than that of hydrous oxide at lower pH. When, how¬ 

ever, pH value of soil is increased, there is a change toward 

greater stability of hydrous oxide and release of phosphate. 

Several organic anions, humus and lignin, are effective in 

preventing phosphate from combining with aluminum and iron 

or in replacing the chemically combined phosphate and thus 

release the latter to the soil solution. 

Manganese and iron 

The relationship of manganese and iron in soil and in 

plants has been noted by some investigators. 

In 1913, Pugliese (101) reported on his investigations 

regarding antagonism between iron and manganese that "such 

antagonism exists." Johnson (b3) found that pineapple plants 
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recover from the toxic effects of manganese when supplied with 

iron through the leaves by means of sprays. Rippel (103) sim¬ 

ilarly noted that chlorosis, caused by the addition of manganese 

sulfate to water cultures of barley, could be remedied by ad¬ 

ministration of iron. He found that the iron content of normal 

and chlorotic plants is the same and therefore it is not iron 

assimilation that is restrained, but rather that its action in 

leaf tissues is unfavorably affected by manganese. On the 

other hand, Johnson (b4) thought his investigations on pineapple 

indicated that chlorosis is due to depression of assimilation of 

Iron by the plant. Manganese dioxide in the soil oxidises iron 

into the ferric form which is assimilated with difficulty by the 

plant. Bishop (9) claimed that the manganese effect is not 

due to reduction of iron absorption by plants, but is rather 

related to chlorophyll formation. 

Hopkins (49, 50) reported that both manganese and iron 

were essential to growth of Chlorelia and found that no other 

element can replace manganese in nutrition of Chlorelia. Haas 

(41) investigated injurious effects of manganese and iron on 

growth of Citrus. He noted that excessive concentrations of 

manganese brought about chlorosis even though iron was added 

in similarly large amounts. 
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Kapp (71) suggested that the control of soil reaction in 

such a manner as to regulate the amount of calcium in solu- 
/ 

tion, or possibly the relationship between iron and manganeee( 

or both* with calcium and nitrogen* appears to be partially the 

solution of the rice problem. 

A study of the literature as cited above allows one to 

make certain generalisations. 

1. Manganese is an essential element for plant growth. 

2. The amount of manganese required is very small (less 

than a pound per acre may sometimes be sufficient). This 

Indicates that the ultimate role of manganese may be as a 

catalyser of certain reactions and since green color of the 

plant is absent when there is no manganese available* it is 

probable that it has some role la chlorophyll synthesis. 

3. Manganese is a reducing-oxidising agent and as such 

is variously affected by factors such as temperature* presence 

of other ions* and motstute* as well as being affected by its 

concentration and the concentrations of other ions. Likewise* 

it can variously affect other ions both in the soil and in the 

plant. 

4. While a very few investigators have pointed to the 

possibility of a more or less definite ratio between manganese 
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and iron aa being necessary, the work of many investigators 

would seem to point to such a necessary balance. 

Pugliese (101) seems to have been the first to suggest 

a definite ratio. He stated that "optimum ratio for these two 

elements (Mn and Fe) seems to be in the neighborhood of 

1:2. 5.,# Johnson (63) seems to have reached a similar con* 

elusion without specifically mentioning a definite ratio. He 

thought the indications were that chlorosis of pineapple in soils 

with excessive manganese is due to manganese dioxide in the 

soil changing iron to ferric form. Therefore, chlorosis was 

due to the unavailability of iron. Spraying plants with iron 

would supply iron in sufficient amounts temporarily, but perm* 

anent benefit must necessarily be accomplished by supplying 

sufficient ferrous iron to the soil to overbalance the effect of 

manganese dioxide on changing iron to ferric form. The amount 

of iron that would have to be applied would depend on the amount 

of manganese and its form. As long as reducible manganese 

was present in the soil, ferrous iron would be quickly oxidised 

to ferric iron. The problem is further complicated by biologic 

oxidation of manganese in the soil. Mann and Quastel (84) 

stated that manganese undergoes a metabolic cycle in soils. 
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the kinetic* of which is determined by the nature of micro¬ 

organism* and organic matter present. The first product of 

biological oxidation of MnO is Mn^O^ which undergoes a dis- 

mutatlon to MnO and MnO^. 

senJo3 MnO - MnO^ 

The velocity of this reaction decreases rapidly with 

decrease in H-ion concentration and ceases almost completely 

at a pH of 8,0. 

Biol, oxidation 

(MnO) Mn + ♦ 

diemulation and biologic 

reduction 

Mn + ♦ + (Mn^Oj) 

t 

d 
i 
s 
m 
u 
t 
a 
t 
i 
o 
n 

Biol, reduction MnO. 
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Bishop (9) suggested that since manganese concentrations 

in plants are found in regions of most active chemical change, 

this indicates that it is essential to plant development, but that 

manganese concentration must be carefully controlled. Hop- 

kins (49) found that sufficient manganese must be present in 

solution for growth of Chlorella to insure reosddation of iron 

after its reduction by the organism. A large amount of man¬ 

ganese either results in too high a concentration of ferric ions 

or prevents its reduction by Chlorella. Haas (41) found that 

small concentrations gave quick response in growth of Citrus 

cuttings, but excessive concentrations caused chlorosis even 

though iron was added in similarly large amounts. It would 

seem that he had an indication of a more or less definite ratio 

of amounts of iron and manganese, in which iron would be re¬ 

quired in greater amount than manganese. 

Scharrer and Schropp (104) conducted water and sand 

culture experiments with manganese, using it in various pro¬ 

portions with iron. They found that root growth was better 

with 5 Fe i 3 Mn than with 8 Fe t 0 Mn and that maximum 

growth was obtained with T Fe t 1 Mn. As manganese was 

used in greater proportion there was a progressive decrease 

of growth. 
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Hopkins and Silva (51) found that in soils in Puerto Rico, 

chlorosis_, necrosis, sunscald and decreased growth of plants are 

strikingly associated with low iron and high manganese, while nor¬ 

mal growth and recovery from chlorosis are markedly associated 

with low manganese and high iron. They reported that tops are 

more affected than roots by differences in iron-manganese relation¬ 

ship. They found a 20 manganese i 2 iron ratio prevented phototropic 

movement of the seed leaves of bean. This led them to suggest that 

iron acts as a protective agent against light and that interaction of 

iron, manganese and light are important determinants controlling 

the oxidation potential of green plants. When there is proper balance 

of iron, manganese and light, a normal range of oxidation potential 

results; but when not in proper balance, oxidation is too high or too 

low and toxicity appears. 

Sherman and Harmer (107) in a study of the role of man¬ 

ganese in crop production, stated that ability of the soil to supply 

available manganous manganese is determined by the state of oxida¬ 

tion of the manganous-manganic system in the soil. Manganese 

plays an important role in plants by maintaining the oxidation- 

reduction level necessary for proper activation of iron for its 

function in synthesis of chlorophyll. 

Kakehi and Baba (70) found that manganous sulfate has a 

stimulating effect on the growth of wheat. 
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Cook and Millar (19) stated that manganese deficiency 

usually occurs in alkaline soils. 

Johnson (65) reported on fertiliser experiments with 

rice in nutrient solutions. With very low amounts of iron, 

manganous oxide and manganous sulfate caused depression of 

growth. As the amounts of iron were increased, the injurious 

effects of the manganese were overcome. 

JLynd and Turk (83) found that overtiming injury on an 

acid, sandy soil can be partially, although not completely, 

prevented by the application of phosphorus and manganese. 

Somers, Gilbert and Shive (111) grew soybeans in a 

study of iron and manganese ratios. They concluded that nor¬ 

mal plants were produced only when the iron-manganese ratio 

in the substrate was between 1.5 and 2.5. Somers and Shive 

(112), working with soybeans in nutrient solution at three dif¬ 

ferent levels of iron at each of which manganese concentrations 

were varied, noted that the symptoms of excessive iron were 

the same as those from deficiency of manganese. Good growth 

was obtained within a narrow range around 2 for the iron-man¬ 

ganese ratio, regardless of total concentration. 

Mulder (92) states '’there are two main problems to con¬ 

sider in manganese nutrition of plants. The relation (antagonism) 
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between manganese and other elements, particularly iron, and 

function of manganese-nit rate reduction and photosynthesis. The 

importance of a certain iron-manganese ratio has been empha¬ 

sized by some investigators." 

Pearse (9?) studied iron and manganese in culture solu¬ 

tions using Physalis peruvina, L. and Fragaria vesca, L. He 

found that these plants could be grown free from either man¬ 

ganese or iron deficiency symptoms at widely different levels 

of manganese and iron, provided correct balance between the 

two is maintained. He suggested that in the absence of man¬ 

ganese, iron may be present in toxic amounts, but when there 

is sufficient manganese present, ferrous iron is oxidized and 

becomes physiologically inactive. If there is enough manganese 

present, ail iron may be oxidized and there is then not enough 

ferrous iron for growth. 

Relation of manganese to nitrogen nutrition 

Investigators have reported variously on the effects of 

manganese on nitrification, ammonification and nitrate assimi¬ 

lation. 

Leoncini (80) reported that amounts of manganese beyond 

0.184% retarded nitrification. Brown and Minges (11) reported 
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that applications of 100 lbs. of manganous sulfate par acre 

appreciably increased ammonification and nitrification. Addi¬ 

tion of manganous sulfate at rates of 100 to 2,000 lbs. per 

acre. Increased ammonification to a lesser extent, and caused 

no significant change in nitrification. Applications of 2, 000 lbs. 

or more of manganous sulfate per acre inhibited nitrification 

and ammonification. He concluded that benefits from the ap¬ 

plication of small amounts of manganese to soil may in part 

be due to the effect on ammonification and nitrification. 

Burstrom (13, 14, IS) concluded that there can be no 

assimilation of nitrate or ammonia in the absence of iron and 

manganese. Bertrand (7) believed that manganous sulfate im¬ 

proved assimilation of soil nitrogen by plants and had some 
•» 

effect on translocation of nitrogen within the plant. 

Therond (117) found that manganese stimulates the as¬ 

similation of nitrogen in the soil and the migration of nitrog¬ 

enous substances within the plant. 

Pichard (98) found that manganese favored absorption 

of nitrogen by crops. 

Vlasyuk (120) reported that manganese increased decom¬ 

position of organic matter through stimulation of microbial 
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activity and increased the water soluble forms of nitrogen, 

phosphorus and potash. Within the plant manganese governs 

activation of nitrogen, phosphorus and potash, accelerates 

photosynthesis and improves nitrogen metabolism. In a later 

report, Vlasyuk (121) concluded that manganese regulated de¬ 

composition and synthesis of carbohydrates within the plant. 

Leeper (79) found that marked manganese deficiency 

symptoms were related to accumulation of nitrates. 

Alberts -Die tert (1) grew Chlorella in nutrient solutions 

and found that iron had no effect on nitrate assimilation, but 

that manganese was important as a catalyst for nitrate assim¬ 

ilation. 

Leeper (79) and Whitehead and Olson (125) found that 

nitrates accumulate in the plant when the culture medium is 

low in manganese. 

Jones et al. (69) found that when oxygen supply of the 

nutrient solution was low, nitrates were converted to nitrites, 

but that manganese prevented this reaction. They concluded 

that this indicated that manganese acted as a catalyst in nitrate 

assimilation particularly in the nitrite reduction phase. 
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Summary of investigation* on iron nutrition 

In summing up the findings of investigators, it can be 

stated that plants vary in their ability to obtain iron from the 

soil. Iron may be present in the soil as undecomposed sili¬ 

cates, sulfates or phosphates, adsorbed on clay colloids or 

organic matter, as hydrated or anhydrous oxides, or in sol¬ 

uble or insoluble compounds, tt may be obtained by plants 

from the soil solution, from soil colloids or organic matter as 

an exchange phenomenon or directly from soil or rock particles 

through contact exchange, without necessarily passing through 

a soluble phase. Commonly, iron may be in the form of fer¬ 

rous iron or of ferric iron in the soil. The amount of iron 

in ferrous form may be commonly very small, since ferrous 

iron may quickly be oxidised to ferric form. In ferrous form, 

iron is said to be soluble, available or "active," while the re¬ 

verse is true of ferric iron. In very acid soil conditions, 

iron is likely to be soluble in relatively large amounts, but 

in the presence of phosphate it quickly combines to form iron 

phosphate. This may result in either iron deficiency or phos¬ 

phate deficiency symptoms in the plant, depending upon which 

is in lesser amount. On the other hand, organic acids or or¬ 

ganic matter inhibit the precipitation of iron phosphates. 
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In alkaline soils, iron is oxidised to unavailable ferric 

form and as a result plants may show symptoms of iron de¬ 

ficiency, depending very largely upon the kind of plant, since 

some plants seem to be able to obtain sufficient iron to main¬ 

tain green color, even in alkaline soils. This is thought to 

be due perhaps to the greater production of carbon dioxide 

from the roots of some plants, which results in reduction of 

ferric to ferrous iron, in the Immediate vicinity of the root. 

Further, organic acids and organic matter, tend to inhibit the 

complete oxidation of ferrous iron, or reduce ferric iron, even 

in alkaline soils and under some conditions at least, there may 

be sufficient available iron for immediate needs of the plant. 

Within the plant iron seems to become immobile, at least 

after its function has been performed. This has led some 

investigators to advance the hypothesis that ferrous iron acts 

somehow as a regulator of chlorophyll formation and in the 

process is oxidised to ferric iron. In that form it is immobile 

and cannot be moved to other parts of the plant. 

There seems also to be some relationship between iron 

and manganese. At high iron and low manganese content there 

Is normal green growth, while at low iron and high manganese 
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content, chlorosis may occur in the plant. Such chlorosis may 

be iron deficiency or manganese toxicity. On the other hand, 

when manganese is deficient, even though there is an ample 

supply of Iron present, chlorosis results, which may be iden¬ 

tified as manganese deficiency, but could logically perhaps be 

noted as Iron toxicity. It is generally thought that if there is 

sufficient manganese present, all the iron may be oxidised and 

therefore unassimilabie. The relationship between manganese 

and iron has lead some investigators to theorise on the possi¬ 

bility that manganese within the plant regulates or controls 

iron in its function in chlorophyll formation. (Perhaps man¬ 

ganese is oxidised to manganic form and reused by iron in its 

change to the ferric form, thereby reducing manganese. Thus 

manganese might be used over again. Such reaction might ex¬ 

plain the fact that iron is immobile within the plant.) 

Manganese also affects the action of other elements. It 

seems to inhibit formation of nitrites from nitrates and may 

have some effect on nitrate assimilation. 

Both manganese and iron may be biologically oxidised 

or reduced. Under certain conditions biological competition 

may be so great as to cause a deficiency of these elements 



42 

for assimilation by higher plant*. Such biologic activity has 

been found to b« the cause sometimes of non-pathogenic plant 

disease. The grey-speck disease of oats and perhaps franch¬ 

ing of tobacco are examples. Manganese may also be reduced 

without the aid of micro-organisms. 

Contact exchange 

According to Mulder (92), nutrient elements may occur 

in the soil (a) in aqueous solution, (b) adsorbed on organic or 

inorganic soil colloids, (c) in the form of an insoluble inorgan¬ 

ic compound, and (d) as a constituent of organic compounds, 

either as a residue of plants or animals, or in living organ¬ 

isms. 

Many investigators have believed that plants obtained 

their nutrients mainly or entirely from the soil solution. Pierre 

(99) states that "It is generally accepted that before phosphorus 

and other nutrients can be taken up by the plant roots, they 

have to be dissolved in the water of the soil, or the soil solu¬ 

tion. ** In recent years this theory has been challenged by some 

investigators. 

Jenney and Cowan (59) in 1933 suggested that inasmuch 

as plants can feed on adsorbed ions, the significance of the soil 
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solution has been overestimated. The solubility concept does 

not entirely account for plant growth under all conditions. In 

1939* Jenny and Overstreet (60) found that certain exchangeable 

cations can be absorbed by roots without necessarily passing 

through a soluble phase. Jenny, Overstreet and Ayer (61) fur¬ 

ther developed this theory and pointed out that metallic ions 

may also be absorbed from the roots by the exchange material. 

Albrecht and McCalla (2) showed that surface migration of 

cations between soil particles could take place and this must 

necessarily take place, if the contact theory is to be accepted. 

Guest (40), in sand culture experiments under neutral 

and alkaline conditions, found that plants made excellent growth 

when iron was supplied as finely ground magnetite mixed into 

the sand, but when the magnetite was less finely ground, there 

was comparatively little growth. 

Wynd, et al. (129, 130, 131, 132) using nutrient solu¬ 

tions and fused silicates impregnated with iron and manganese 

oxides, have demonstrated that roots of plants can obtain suf¬ 

ficient of these elements for normal growth, entirely through 

contact exchange. 
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EXPERIMENTAL MATERIALS 

The Frit* 

Glassy frits of various silicates fused at a temperature 

of 2, 500 F and impregnated with oxides of iron and manganese 

during fusing, are made by the Ferro Enamel Corporation. 

Such frits contain iron and manganese in an insoluble form. 

Wynd (128, 129) has tested these frits in hydroponic culture. 

They contain from 5.0 to 7.5 percent iron, calculated as fer¬ 

ric oxide. The iron was found to be only about one-half as 

soluble in water as was the iron in glass of a commercial 

soft drink bottle. 

The frits are obtainable in different sizes. Those used 

in work by Wynd (128, 129) were of a size of 1/8 to 1/16 inch, 

whereas frits used in the present experiments with soils were 

of 325 mesh. The exposed surface is thus tremendously in¬ 

creased and consequently the solubility of impregnated elements 

is increased insofar as they are at exposed surfaces of the 

particles. 

Two frits were used by the author in these experiments. 

AB frit, containing 7. 5% ferric oxide and 3% manganese trioxide; 
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AC frit, containing 7. 5% ferric oxide. Both frits contain a 

trace of phosphate. The glassy material is mostly calcium 

and sodium silicates. 

Experimental soil 

The basic soil selected was a greenhouse soil classified 

as clay loam. This soil was tested by Dr. R. D. Cook of the 

Soils Department, Michigan State College. The Spurway System 

of quick tests was the method employed. The results of the 

test in parts per million are as follows: 

Ca ’ 20 Mg ~ — P~“ ~ 0.5 

so 
4 

“ — re — K~ 1 

Cl 10 NOz” — pH’ ~ 6.8 

Mn * — NC3 15 

Where no figure is given there was no indication of the 

presence of the element in the test. This is due to the inade¬ 

quacy of the test and indicates that if the element is present, 

the quantity in parts per million is very small and not detect¬ 

able by the tests used. 
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Preparation of soil 

The eoil was screened through a 1/4 inch mesh screen 

and to it was added a Greenwood peat having a pH of 4*5 to 

5.0, at the rate of 1 part peat to 5 parts of soil. To each 

pot of soil mixture was added one level teaspoonful of 0-20-0 

superphosphate and the amount of frit required by the treat¬ 

ment. Each pot of soil was then thoroughly mixed using a 

hand operated mechanical mixer to distribute the peat, super¬ 

phosphate and frit uniformly through the soil. 

In order to obtain some information as to the optimum 

amounts of iron-containing frit and iron and manganese-con¬ 

taining frit, it was decided to use the frits at the rates of 15 

grams, 30 grams, 60 grams and 90 grams per 6-inch standard 

pot. 

The decision to use five plants in 6-inch standard pots 

for each treatment was made after consultation with Dr. C. 

Hamper and Dr. F. L. Wynd. 

Plants used 

I 
A list of the plants used in the experiments follows: 

Nicotians Tabacum, Linn. 

Cineraria cruenta. Mass (Senecio cruentus DC) ‘’Kramer*’ 
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Lobelia Erinua, Linn, 

PrimttU malacoldea, Franch. 
/.. 

Iberia tmm, Linn. 

Antirrhinum majua, Linn. Hybrid HT x RPS 

Antirrhinum majua, Linn. "Margaret" 

Phaaeolua vulgar U. Linn. 

Calendula officinalis, Linn. "Ball'a Orange11 

Im pattern Hoistii, Knglcr and Warb. 

Tagetea pa tula, Linn. 11 Butter ball11 

Tagetea pa tula, Linn. "Naughty Marietta" 

Begonia aemperflorena, Link and Otto. "Ball'a Rose" 

Phlox Drummond!, Hook. 
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EXPERIMENTAL PROCEDURE 

Each kind of plant was planted in the greenhouse soil 

to which was added superphosphate and the frit in four differ¬ 

ent amounts. Two frits were used, one containing iron, AC 

frit, the other containing iron and manganese, AB frit, as 

explained on page 44. Nine treatments were designed for each 

of the various kinds of plants used—four treatmehs with the 

AB frit and four treatments with the AC frit and one treat¬ 

ment without frit, designated as a control. In each treatment 

there were five plants, each plant in a separate 6-inch pot. 

This made a total of forty-five plants, five each in each of 

nine treatments. Eighteen plants were used as buffer plants 

along the sides and ends of the benches. 

The plants were grown in several greenhouses with 

o 
night temperatures generally in the vicinity of 60 F. 

Plants were given nutrients in solution after the first 

six weeks, on the average of once a month with exceptions in 

the case of slow growing plants. Each plant was given the 

same volume of solution at each feeding. Ammonium sulfate 

was used at the rate of 0.2 gram per plant. At alternate 
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feedings, an additional 0,1 gram of potassium sulfate was sup- 
9 

pUed to each plant. In the case of Nicotians the frequency of 

fertiliser applications had to be increased to once a week as 

the plants approached maturity. Ten to five days previous to 

harvesting the tobacco plants received a total of 1.0 gram of 

ammonium sulfate and 0.4 gram of potassium sulfate. In all 

other plants the frequency of fertiliser application in the last 

month of growth was increased to once a week. 

The plants were grown to some determined point of 

maturity for the most rapid growing plants in the test. This 

determined point of maturity varied for different plants and is 

noted in the discussion of the different plants. Then, all 

plants of a given kind were cut and fresh weights taken imme¬ 

diately. 

If plants showed marked growth differences due to their 

genetic diversity, those plants that showed a marked deviation 

from the average were discarded. Wherever this was done, it 

is so noted In the discussion of the different plants. This 

practice has been followed after consultation with Or. W. D. 

Baten, Experiment Station statistician at Michigan State Col¬ 

lege and Or. F. L». Wynd. It is well known that irregularity 
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in growth of many horticultural plants is often due to their 

genetic variability. It is presumed, therefore, that the most 

uniform plants represent the average. A dwarf plant, or an 

overly large plant, may be manifesting a factor found in its 

genetic constitution. Inclusion of such genetically variable 

plants would alter results and often make it impossible to de¬ 

termine results of an experiment with any degree of accuracy. 

The horticulturist commonly discards these "off11 plants, as 

they appear during the course of the growing season. 

Other factors of environment or accident of culture 

may result in uneven growth, even though the greatest care 

has been exercised. Among such factors are uneven uptake 

of moisture due to accidental injury to roots caused by a path¬ 

ogen or due to accidental breaking of roots at planting time. 

The cut plants selected were placed in paper bags for 

o 
drying. The plants were first dried in a dehydrator at 140 

o 
F and then cooled to room temperature at 72 F. They were 

then weighed to obtain dry weights. 

The dried plant material was finely ground preparatory 

to determining iron and manganese content. 
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Iron and manganese determinations were made accord¬ 

ing to standard methods (see appendix) and iron-manganese 
/ 

ratios computed. Data are recorded in tables. 
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RESULTS OF TESTS 

Nicotian* Tabacum, Linn. 

Seeds of Nicotians ‘’Common Havana" were obtained 

from Professor C. V. Kightlinger, Department of Agronomy, 

University of Massachusetts, through Dr. Linus H. Jones of 

the Department of Botany, University of Massachusetts. These 

seeds were sown in early October, 1950, and the young plants 

potted into 6-inch pots containing the soil mixtures, in late 

Novemfer, 1950. 

The Nicotians plants were harvested February 25, 1951, 

by cutting the stalk at ground level. Each plant was then 

weighed and placed in a bag and dried. Average height, fresh 

weights, dry weights, iron and manganese analyses and Mn/Fe 

ratio for each treatment, are shown in Table I. Iron and 

manganese analyses (see appendix) of leaves and stems were 

made in duplicate. 

It is to be noted that the frit containing iron and man¬ 

ganese (AB frit), produced growth of greater weight for each 

level used than the frit containing iron alone (AC frit), weights 

increasing with increased amounts of frit (Figure 2). The 
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same generally hold* true for height* of plant* (Figure* 1 and 

3), although there wa* no important difference in average 

height* between control and plant* grown in *oil with 15 gram* 

of AB frit. The AC frit containing iron alone, gave an aver* 

age fre*h weight of 171*34 gram* at 15 gram level wherea* 

that of the control wa* 212.12 gram*. Treatment with 30 

gram* AC frit wa* not markedly different from the control. 

However, at the 60 gram level there wa* some increase and 

there wa* a great increase in fresh weight at the 90 gram 

level (Figure 2). 

The depression of growth when 15 gram* AC frit was 

used i* interesting and i* perhaps due to low solubility of man 

gane*e occurring in the soli. This 1* perhaps due to the fact 

that the soil wa* high in phosphate; manganese in the soil may 

have combined to some extent with phosphate. .Analysis for 

manganese in these plants (Table 1) showed a relatively low 

amount of manganese present and a very high value, 29.6, for 

the ratio of iron to manganese. The lowered supply of avail* 

able manganese was sufficient to prevent chlorosis* but it may 

not have been sufficient for best growth in spite of an abundant 

supply of iron. Despite the possible limiting effect of low 
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O 

Figure 2. Effects of frits on fresh weight of Nicotiana Tabacum, 

Linn. 
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Figure 3. Effects of frits on height of plants of Nicotiana 

Tabacum, Linn. 
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Figure 4. Effects of frit on dry weight of Nicotiana Tabacum, 

Linn. 
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mtngft&cit, increased amount# of AC frit Improved growth and 

at the highest level (90 grams) was much better than the con¬ 

trol. 

Figure 1 shows (a) that frits had an effect on plant 

growth, (b) that iron-manganese frit was of greater benefit 

in promoting growth of Nicotians than was iron frit, (c) that 

increased amounts of either frit caused increased growth. 

Figure 3 shows the effect of various frits on growth 

as measured by heights of plants. Plants were measured 

from ground level to terminal bud. Heights and fresh weights 

are closely correlated. While the difference in heights does 

not appear to be statistically significant, there is a small pos¬ 

itive trend for the AC treatments. 

The treatments with iron frits showed an increasing 

amount of manganese present in the tissues with increased 

amount of frits used. The best growth with this frit was ob¬ 

tained at the 90 gram level. Analysis of plants in this treat¬ 

ment gave the lowest iron-manganese ratio value. There is no 

correlation apparent in the treatments using iron-manganese 

frit, except as already noted, as between fresh weights, iron 

and manganese analyses and ratio values. The analyses of 
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plants in all treatments do not show luxury absorption oI Iron. How¬ 

ever, lour ot the treatments, namely the 60 and 90 gram treatments 

with iron Irit and the 15 and 60 gram treatments with the iron -man¬ 

ganese frit, produced plants with much higher manganese content than 

did the control. This might be construed as being evidence of luxury 

absorption of manganese. It is noted that these treatments with the 

exception ol the 60 gram iron-manganese treatment, showed the low¬ 

est iron-manganese ratio value. There was increased growth with 

increase in the amount ol the Irits used. Any explanation ol the cause 

oI increased growth with increased amounts ol Irit used is dillicult. 

Since the analyses do not show increased uptake ol iron in the Irit 

treatments, it may well be that some unnoted lactor is responsible. 

Statistical analysis ol Iresh weights ol Nicotians Tabacum, 

Linn, was calculated in the lollowing manner. 

Analysis ol variance was used to determine the signilicance 

ol results on advice ol JDr. W. D. Baten, Statistician, Michigan Agri¬ 

cultural Experiment Station. However, it must be pointed out that the 

treatments were not randomised. Therelore, the diHerences in treat¬ 

ments are not as reliable as they would have been had they been ran¬ 

domised. On the other hand, examination ol the detail data pertaining 

to position shows no trends oI effects from environmental factors and 

there is no evidence in the observed values that they were not repre - 

sentative replications. 
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Treatments 

1SAB 30AB 60 A B 90AB Check 90AC 60 AC 30 AC 15 AC 

220.0 240.8 240.0 252.3 173.1 245.9 231.0 200.6 159.0 

220.6 170.1 246.0 334.7 221.1 272.1 217.7 230.3 162.3 

201.7 217.6 246.6 324.1 241.8 296.1 192.9 212.1 164.2 

250.4 218.8 256.0 320.1 212.6 246.3 201.2 208.3 156.1 

223.1 253.6 251.8 280.2 212.0 296.1 241.9 209.1 215.1 

*223.16 220.18 248. 08 302. 28 212.12 271.30 216.94 212.08 171.34 

The following analysis pertains to these data. 

Analysis of variance of the data on tobacco 

Source of 
Degrees 

of 
freedom 

Sum of Mean 
F 

variation squares squares 

ToUl 44 78039.4 

Between replications 
averages 4 2748.71 

Between treatment 
averages 8 58231.78 7,278.97 13.654 

Error 32 17058.91 533.09 

* Average. AB designates iron-manganese frit. AC 
designates iron frit. Numbers refer to grams of respective 
frits. 
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After computing a t-value, it was found that the differ¬ 

ence necessary for significance for the 5% probability point 

Is 36. 6 grams. By examining the treatment averages, it is 

seen that the average 90 gram AB and 90 gram AC is signif¬ 

icantly greater than the averages for all other treatments, in¬ 

cluding the control. 

The 15 gram AC treatment is significantly less than all 

other treatments including the control. The 60 gram AB treat¬ 

ment is very close to being significant. A statistical test for 

linearity of AB averages was then calculated; its analysis fol¬ 

lows. 

Analysis of variance for testing linearity of AB means 

Source of 
Degrees 

of 
freedom 

Sum of Mean 
F 

variation squares square 

Total 3 21682.90 

Linear or 
regression 1 19668.36 19668.36 37.79 

Deviation from 
regression level 2 2014.54 

Error 533.09 

There is, therefore, a significant positive and linear 

trend for the AB treatment averages. 



63 

Analysis of variance for testing linearity of AC means 

Source of 
variation 

Degrees 
of 

freedom 

Sum of 
squares 

Mean 
square 

F 

Total 3 965513 

Linear or 
regression 1 22757 22757 42.689 

Deviation from 
regression level 2 942756 

Error 533.09 

There isf for the AC means, a significant positive and 

linear trend. 

Cineraria cruenta. Mass. 

The Cineraria of the florist was developed originally 

as a hybrid between Senecio cruentus and Seneclo tussilaginls. 

Various so-called races of Cineraria have been produced. 

Among these are dwarf, large-flowered types with broad flor¬ 

ets and tall, small-flowered types with narrow florets. "Kra¬ 

mer's” type Cineraria has been developed by selection from 

original crosses between a dwarf, large-flowered type and a 

tall, small-flowered type. This variety seldom shows com¬ 

plete uniformity in habit of growth. 
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Forty-five plants from four-inch pots of "Kramer's" 

Strain of Cineraria were selected for uniformity, from one 

hundred plants available for this experiment. The soli was 

carefully washed from the roots and the plants were potted in 

6-lnch standard pots in the soil mixtures in late November, 

1950. The plants were harvested February 24, 1951, by cut¬ 

ting the stalks at ground level. 

Fresh weights were recorded, the plants dried and dry 

weights recorded (Table II) in the same manner as for Nicotians 

Tabacum. 

Data were gathered from all plants and are included 

here. However, it is the writer's opinion from years of ex¬ 

perience in the culture of horticultural plants, that more accu¬ 

rate results are obtainable in nutrition experiments, if data 

from plants that are widely different, due to genetic variation, 

are omitted. Reference to Figures 5 and 6 will illustrate the 

point. Figure 5 shows a curve that includes the data from 

five plants in each treatment. Figure 6 shows the effect of 

the treatments when irregular plants are removed. The re¬ 

moval of the irregular plants has removed a source of error. 

This is illustrated in Figure 7, which shows representative 

plants from all treatments. 
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TABLE II 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF CINERARIA CRUENTA, 

MASS. FOR EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Manganese 
p.p.m. 

Fe/Mn 

15 121.48 11.80 489 32 15.3 

5 % 30 161.78 17.70 479 34 14. 1 

Fe O 
2 3 

60 150.12 16.60 417 33 12.8 

90 140.28 15. 10 476 33 14.6 

5% 15 137.44 13. 10 489 44 11. 1 

Fc O 
2 3 

30 133.44 12.70 564 92 6.2 

60 164.74 16.80 456 136 3.4 

Mn°z 90 171.70 19.50 406 144 2.8 

Control 153.30 14.80 550 80 6.0 
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Figure 5. Effects of frits on fresh weight of Cineraria cruenta, 

Mass. 
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Figure 6. Effects of frits on fresh weight of Cineraria cruenta. 

Mass, when irregular plants are not included. 
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Statistical analysis of th« data on frssh weights was 

computed In the same manner as for Nicotians. There were 
■ / 

no significant differences between the treatment means. This 

was due to the great variability of the plants in the given 

treatment and can be attributed to genetic variability in the 

author's opinion. 

While a statistical analysis was not computed for data 

as presented in Figure 6, the curves show a significant trend 

that is positive for the treatments, except for the IS grams 

A3 treatment. 

Analyses for iron and manganese were carried out in 

duplicate. Results are recorded in Table II. Iron-manganese 

ratio values were computed and recorded in the table. Great¬ 

est growth as measured by fresh weights occurred in the soil 

receiving 90 grams of iron-manganese frit. There seems to be 

little correlation between iron in parts per million in the plant 

tissue and amount of growth in the various treatments. There 

does seem to be a relation between absorption of manganese 

and fresh weights. The treatment with 90 grams of iron-man¬ 

ganese frit gave the greatest fresh weight and the lowest iron- 

manganese ratio value. There was more manganese in parts 

per million with this treatment than with any other treatment. 
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The difference* in ratio values, iron-manganese, in 

the treatments indicates that manganese was obtained from the 

frits. Where iron frits alone were used, the ratio values are 

much higher than where the iron-manganese frits were used. 

There is no evidence from the iron analysis of the plants that 

iron was obtained from the frits or that luxury absorption oc¬ 

curred. Luxury absorption of manganese seems to have oc¬ 

curred in the two high levels of the iron-manganese frit treat¬ 

ments. However, the excess manganese was not toxic since 

these treatments resulted in greatest fresh weights. 

Lobelia Erlnus, Linn. 

Cuttings were made in late September, 1950, from a 

single plant. Forty-five of these plants were selected for uni¬ 

formity and potted in soil mixtures in 6-inch standard pots in 

late November, 1950. 

The bedding Lobelia is a much-branched, tender peren¬ 

nial. Branches are slender ascending and root abundantly at 

the nodes. Since the habit of the plant makes it difficult to 

assay differences in growth by observation, no pictures were 

obtained of this plant. Plants were harvested February 17, 

1951, by severing plants at ground level and then cutting off 
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the roots along the stems at the juncture of stem and roots. 

Data obtained are given in Table Ul. Figure 8 shows graph¬ 

ically the effects of treatments on growth as measured by 

fresh weights. Best growth was obtained where IS grams of 

iron-manganese frit was used per fc-inch pot. With higher 

amounts of iron-manganese frit there was a proportional de¬ 

crease in amount of growth* as measured by fresh weights. 

All treatments with iron-manganese frit gave better growth 

as measured by fresh weights than did the control. 

The iron frit gave best growth as measured by fresh 

weight, with treatment using 80 grams. The fresh weight 

was about the same as obtained with the treatment using 60 

grams of iron-manganese frit. Aside from this, iron frit 

gave lower average fresh weights in all cases than did iron- 

manganese frit. Treatments using IS grams and 90 grams of 

iron frit respectively showed lower average fresh weights than 

did the control. From these experiments, basing conclusions 

upon fresh weights, it appears that growth of Lobelia was in¬ 

creased approximately ZS% by addition to the soil of IS grams 

of iron-manganese frit, but that larger amounts were propor¬ 

tionally less beneficial. 
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TABLE III 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF LOBELIA ERINUS, 

LINN. FOR EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p.m. 

Manganese 
p.p.m. 

Fe/Mn 

15 64.33 6.55 588 47 12.5 

5% 30 83. 13 7.25 304 52 5.8 

Fe O 
2 3 

60 90.65 8.62 457 47 9.7 

90 76.20 6.95 

5% 15 99. 18 8.80 417 66 6.3 

F'2°3 
30 92.60 8.20 450 80 5.6 

2% 60 89.70 6.92 130 

MnO 
2 

90 84. 63 7.75 520 137 3.8 

Control 78.83 6.55 394 102 3.9 
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Figure 8. Effects of frits on fresh weight of Lobelia Erinus, 

Linn. 
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A statistical analysis of the data, however, shows no 

significant differences between the treatment averages. 

There was no correlation between fresh weights and 

iron content. In the treatments with the iron-manganese frit 

there seems to be an inverse relationship between manganese 

content and fresh weight. In general, decreased average weights 

were obtained with increased amounts of frit and the manganese 

content of the plant increased with increased amounts of the 

iron-manganese frit. This seems to indicate that these plants 

obtained manganese from the frits. 

Plants from all treatments, except the 30 gram iron 

frit treatment, analysed higher iron content than the control. 

This may indicate luxury absorption of iron although there is 

no correlation as to amount of iron and grams fresh weight 

between the treatments. 

The treatments with iron-manganese frit at the 60 and 

90 gram levels resulted in plants with much higher manganese 

content than control. This may be luxury absorption. 

Primula malacoldes, French. 

Forty-five plants of Primula malacoldcs "Erickson's 

White" in 3-inch pots were selected tor uniformity. The soil 
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was carefully washed off the roots and the plants were then 

potted in the experimental soil mixtures in 6-inch standard 

pots in late November, 1950. The plants were harvested Feb¬ 

ruary 26, 1951, by cutting off all growth above the ground 

level. The plants were in full flower at this time. 

Table IV shows the data that were collected. Figure 9 

graphically compares fresh weights. No pictures were taken 

since there was little detectable difference in the appearance 

of plants. 

An analysis of variance showed no statistical significance 

between treatment means. 

The greatest average fresh weight, 131.45 grams, was 

obtained with the use of 60 grams of iron frit per plant, while 

the next highest weight was for plants grown at 90 gram level 

of iron-manganese frit. 

The varying results in average fresh weights here are 

difficult to explain. They may have to do with complicated 

relationships between iron, manganese, phosphate, calcium 

and aluminum. 

Iron and manganese analyses are recorded in Table IV. 

There is very little relationship between the fresh weights 

and iron and manganese in the plant. There is some indication 
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TABLE IV 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF PRIMULA 

MALACOIDES, FRANCH, FOR 
EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p.p.m. 

Manganese 
p.p.m. ' 

15 106.65 8.78 927 61 15.3 

5£ 30 117.20 9.43 888 30 29.3 

Fe O 
2 3 

60 131.45 10.25 935 21 44.0 

90 111.70 8.78 782 23 34.0 

5% 15 113.00 9. 10 882 50 17. 6 

Fe O 
2 3 

30 104.00 8.93 776 31 25.0 

Z% 60 100.50 8.43 915 33 28. 1 

MnO 90 125.60 8.98 927 32 29.0 

Control 110.20 8.70 876 21 41.3 
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Figure 9. Effects of frits on fresh weight of Primula malacoides, 

Franch. 
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that the greater the ratio value of iron to manganese, the 

greater the fresh weight. The highest ratio value was found 

in the plants grown with 60 grains of iron frit and this treat- 

ment showed the highest fresh weights. There is no evidence 

from the analysis that iron was absorbed in luxury amounts or 

that iron was obtained from the frits. Treatments with the 

iron-manganese frits produced plants with higher manganese 

content than did the control. This may be luxury absorption 

of manganese. 

Iberis amara, Linn. 

This plant is a member of the Family Cruciferae, mem¬ 

bers of which family have occasionally been found to be dis¬ 

tinctive in response to soil nutrients. It is well known that 

plants in this family require sulfur as a nutrient to a greater 

extent than plants in many other families. That these plants 

differ from many other plants in uptake of nutrients may be 

deduced from the fact that plants of this family never have 

mycorrhiaa formations. Most higher plants are known to pos¬ 

sess such formations, at least under certain conditions. It 

has been suggested that plants with rapid transpiration or plants 

with relatively great root respiration (87) can absorb mineral 
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food efficiently. Conversely, plants that are weak in transpira- 

tion as well as plants that do not respire freely from the ab¬ 

sorbing roots, do not absorb mineral elements freely and 

consequently may require the assistance of symbiotic fungi in 

order to obtain a sufficient supply of minerals. Since such 

fungi have not been found, to the writer's knowledge, in asso¬ 

ciation with the roots of members of the Family Cruciferae, it 

may be inferred that these plants are especially efficient in 

their uptake of nutrients. It follows that high concentrations 

of minerals in solution or available in the soil would more 

quickly affect plant growth. The more rapid transpiration of 

such plants would be likely to result in higher concentrations 

of such elements in the plant tissues. Such higher concentra¬ 

tions could cause symptoms of toxicity. It is possible, under 

conditions of high pH, that there would be an insufficient sup¬ 

ply of sulfur available. On the other hand, at low pH there 

may be a deficiency of calcium, which could result in either 

calcium deficiency or perhaps sulfur toxicity symptoms in the 

plant. 

Eisenmenger and Kucinski (32) made a study of mag¬ 

nesium needs of seed plants. They concluded that resistance 
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to magnesium deficiency increases as one goes up the scale 

of evolutionary development. However, the members of the 

Solanaceae and Cucurbitaceae do not fit into this scheme. They 

noted that it is significant that the more highly developed seed 

plants, because of their greater sturdiness, are far more re¬ 

sistant to abnormal agencies such as disease conditions, ex¬ 

tremes of temperature, and high or low concentrations of 

elements. 

Lewis and Cisenmenger (81) studied potassium uptake 

as related to the evolutionary development of plants. They 

thought that the fact that the lower seed plants are more effi¬ 

cient than the higher species in obtaining their ions from what 

might be called unavailable sources, indicates that their direct 

ancestors lived in an environment where frugality and slow 

growth were a necessity. Statistically the percentage gain of 

potassium from both soluble and insoluble sources tended to 

decrease as the plants ascend from the lower to the higher 

order of development. Plants of the lower orders showed 

deficiency symptoms earlier than those of higher order. 

This investigator believes that the difference in uptake 

of plants is related to the evolutionary age of the plant as 
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pointed out by Eisenmenger et al. (31, 32, 81), but possibly 

the differences have evolved through evolution of cell walls 

and protoplasm from simpler more easily permeable condition 

in lower plants to more complex, less permeable condition of 

the higher plants. The symbiotic relationship in plants, with 

no such relationships in lower plants and common in higher 

plants, seems also related to uptake of moisture and mineral 

elements. 

Seeds of the variety "White Rocket" were sown Novem¬ 

ber 24, 1950. Sixty-three young plants were selected and 

potted in the soils December 20, 1950. Eighteen of these 

plants were used as buffer plants in the outside rows, on 

either side of the bench. 

Iberis was harvested February 18, 1951, by cutting 

plants off at the ground level. At this time the more advanced 

plants were in flower. All data are recorded in Table V. 

On the basis of average fresh weights, all treatments with 

iron-manganese frit depressed growth. No satisfactory expla¬ 

nation is possible. Perhaps this plant is intolerant of man¬ 

ganese, except in smallest amounts, or possibly the iron- 

manganese ratio was out of proportion to the needs of the plant. 
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TABLE V 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF IBERIS AMARA, 

LINN. FOR EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grains) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Manganese 
p.p.m. 

Fe/Mn 

15 16.40 1.93 249 34 7.3 

5% 30 14. 30 1.60 212 36 5.8 

Fe2°3 
60 14.84 1.63 171 23 7.3 

90 14. 90 1.78 165 21 7.8 

5% 15 13.83 1.50 171 20 8.4 

Fe O 
2 3 

30 11.32 1.40 136 29 4.7 

2% 60 11.43 1.18 149 11 14.1 

MnOz 90 13.76 1.83 387 80 4.8 

Control 13.90 1.88 147 30 4.9 
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According to Shive (108) there is no longer any doubt concern* 

ing the interdependence ol iron and manganese in their effects 

on plant growth. That there is a definite ratio within the plant 

necessary to maintain a proper balance between these two eie- 

msnts has been determined by investigators. Shive (109) main¬ 

tains that the ratio of Fe/Mn should be within the range of 1.5 

to 2. 5 for the species investigated, but that it is not to be ex¬ 

pected that the same range of values would be effective with 

all species either within the plant or in nutrient substrate. 

This plant seems quite different in its reaction to soil 

nutrients. This was demonstrated by growth of plants in a 

parallel series, using frits in the same amounts in a very acid 

soil, over 60 per cent of which was organic matter. Plants of 

Iberis in this soil often showed distinct symptoms of manganese 

toxicity, the plants being slightly to greatly stunted and in the 

more severely stunted plants there was a total loss of green 

color of leaves, with silver-colored drying of the furthermost 

leaf margins. Doubtless in this very acid soil, pH 4.5 to 5.0, 

some of the manganese and Iron contained in the frits became 

soluble. This, added to amounts already highly soluble in the 

very acid soil, with its high content of organic matter which 
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probably inhibited precipitation of both iron and manganese, 

appeared to cause toxicity to plants. To determine whether 

the depressive effect is due to excess iron, manganese, alum-* 

inum, sulfur or phosphate, or perhaps a deficit of calcium, 

would require a new set of experiments, limiting each of these 

factors separately and in combination. It would seem to the 

investigator that this plant would be a very good subject for 

study of manganese-4ron-aluminum~phosphorus-*calclum-H~ion 

relationships in soils. The fact that healthy as well as stunted 

plants appeared in the control in this very acid soil Is further 

confusing. 

Figure 10 shows graphically the variations in average 

fresh weight in different treatments. 

A statistical analysis of the fresh weights was calculated 

in the same manner as for Nlcotiana Tab*cum. There was no 

significant difference between treatment means. 

Analyses of iron (Table V) show less iron in the control 

plants than in any of the treatments except the 30 grams AB 

frit treatment. However, increased iron absorption with in¬ 

creased amounts of frit does not occur. The lowest average 

fresh weight was obtained in the treatment with 30 grams 
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Figure 10. Effects of frits on fresh weight of Iberis amara, 

Linn. 

r 
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iron-manganese frit and these plants also contained the least 

iron and the lowest ratio value of iron to manganese. There 

is no relationship between growth and either iron or manganese 

absorption. Strangely, the AC frit treatments show less iron 

in the plants as more of the frit was used in the treatments. 

All treatments, except the 30 gram level with iron- 

manganese frit, produced plants with higher iron content than 

) 

the control and several treatments produced plants with higher 

manganese content. There is no evidence that luxury absorp¬ 

tion in any of the treatments recorded in Table V were toxic. 

Antirrhinum majus, Linn, var. HT x RPS 

One hundred and fifty plants of hybrid snapdragon were 

obtained from Dr. Judd Haney of the Department of Horticulture, 

Michigan State College. These were in 3-inch pots and had 

been pinched twice. They were an especially uniform hybrid 

Fj generation, designated as HT x RPS. Forty-five plants 

were selected for uniformity and the soil was removed from 

their roots by washing. They were planted in the soils in 6- 

inch standard pots in late November. They were harvested 

March 5, 1951, when the most advanced plants had opened the 

last flowers. 
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The height and weight of the plants were taken as they 

were cut and the data recorded in Table VI. The plants were 

then dried in a dehydrator at a temperature ascending from 

o o 
100 F to 140 F for six days, then cooled to room tempera¬ 

ture and the total dry weights recorded. 

Plants grown in soil containing 15 grams of AC frit per 

6-inch pot, were the only plants with average fresh weights 

greater than the control (Table VI). When more than 15 grams 

of iron-frit were used, the growth as measured by fresh weights 

was decreased more or less proportionately to the amount of 

frit used. 

The iron-manganese frit in each case resulted in lower 

average fresh weights than was the case with iron frits (Fig- 
\ 

ure 13). By comparison on the basis of average fresh weights, 

it seems evident that for snapdragon there was a sufficient 

amount of manganese available in the soil for normal growth 

and that there was nearly enough iron available. Additional 

amounts of manganese added in the frit depressed growth in 

proportion to the amount used. The same depression occurred 

also when more than 15 grama of iron frit were used (Figure 

11). 
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Figure 11. Effects of frits on fresh weight of Antirrhinum majus, 

Linn. var. HT x RPS. 
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These results differ from those obtained by Wynd and 

Bowden (130). They found a positive response to the use of 

iron-manganese frit. This may possibly be explained by the 

different types of soil used. 

Generally the plants growing in the iron-manganese frit 

reached full flowering previous to those growing in the iron 

frit. 

An analysis of variance was carried out on the data on 

fresh weights (Table VI), from nine treatments and five repli¬ 

cations. 

After computing a t-value, it was found that the differ¬ 

ence between any two treatments for significance at the $ per 

cent probability point is 13.12 grams. 

Examination of the treatment averages shows that the 

treatments 60 grams AB and 90 grams A3 have average fresh 

weights significantly lower than the check. The treatment 15 

grams AC average is significantly larger than the average of 

treatments 60 grams AC, 90 grams AC, 15 grams AB, 30 

grams AB, 60 grams AB and 90 grams AB. The 90 grams AB 

and the 90 grams AC treatment averages are significantly lower 

than the check. 
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A statistic*! test for linearity of AB averages was then 

calculated. This shows no statistically significant trend. Ref¬ 

erence to Figure 11, however, appears to show a negative 

trend for the curves for both frits. 

A statistical analysis of average heights shows no sig¬ 

nificant trend for the AB means. The analysis of the AC 

means docs show a statistically significant trend (Figure 12). 

Analysis for iron. Table VI, showed no relationship be¬ 

tween growth and amounts of the mineral absorbed. However, 

the control and the treatment with 1$ grams of iron frit re¬ 

sulted in tallest growth and analysis for manganese gave no 

determinable manganese. It also appears likely that manganese 

was absorbed from the AB frit, since the amounts found in the 

plant are generally higher for plants grown in the iron-man¬ 

ganese frit than for plants grown in the iron frit. There is no 

indication of luxury absorption of iron, but there is some indi¬ 

cation of absorption of manganese in excess of the needs of the 

plant and a depressing influence on plant growth as a result. 

There is further some indication that manganese exerts 

a depressing (antagonistic?) effect upon iron absorption. The 

treatments with 15 grams and 90 grams of iron frit showed 
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Figure 11* Antirrhinum mu jug, Linn. Fj hybrid designated 

as HT x KPS. A vigorous rose-pink flowered 

hybrid. From left—13, 30, 60, 90 grams AC 

frit; controlt IS, 30, 60, 90 grams AB frit. The 

picture shows the depression of growth in the frit 

treatments. The depression of growth appears 

greater for plants in the AB treatments. 
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greatest amounts of iron absorbed. The 15 gram treatment 

showed no absorption of manganese. The 30 gram and 60 

gram treatments resulted in growth with lower iron content and 

considerable manganese content. In the 90 gram treatment the 

iron content increased approximately 21 per cent over the 60 

gram treatment. It would appear, therefore, that depressing 

effect of manganese on iron absorption depended on the amount 

of manganese present and that the amount of iron available for 

plants in this treatment exceeded the maximum amount that 

could be affected by the manganese naturally present in the 

soil. If the theory is accepted that the iron is absorbed di¬ 

rectly from the frit, it is difficult to understand just how the 

manganese of the soil solution can affect the absorption of iron 

from the frit. It is possible that the effect of the manganese 

occurs within the absorbing cells of the roots or perhaps the 

manganese has an effect on permeability. It appears that 

either iron or manganese may have a depressing effect on 

growth of Antirrhinum when present in luxury amounts and that 

the two elements are closely interrelated in their effects on 

growth of Antirrhinum. 

A further possibility is that manganese absorbed by the 

roots may immobilize iron in the root cells, thus reducing the 
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amount of iron to roach the green plant. The amount of iron 

•o Immobilized would be proportional to the amount of oxygen 

that could be given up by the manganese, i.e., by the amount 

of manganese present. 

It is also possible that manganese replaces iron in the 

frit. The iron so replaced is immediately oxidised and is in¬ 

active or unavailable to the plant. 

Antirrhinum majus, Linn., variety “Margaret** 

One hundred small plants of Antirrhinum majus, "Mar¬ 

garet" in 2-1/2 inch pots were obtained December 20, 1950. 

Forty-five of these plants were selected, each having two sets 

of leaves above the seed leaves. The soil was washed from 

the roots and the plants planted in soil in the b-inch standard 

pots. The plants were grown until all were in flower and har¬ 

vested by cutting at ground level April 7th, 1951. Heights of 

plants and fresh weights were recorded and the plants dried in 

the same manner as described for other plants. Data are re¬ 

corded in Table VU. The average fresh weights for the treat¬ 

ments are graphically shown in Figure 14. The growth obtained 

from the addition of 15 grams of iron-manganese frit is greater 

than that obtained from any other treatment and is statistically 
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Figure 14. Effects of frits on fresh weight of Antirrhinum majus. 

Linn, var. "Margaret. " 
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significant from all treatment growth averages except the one 

with the 60 grams iron-manganese frit. The average heights 

of plants in all treatments was less than the control (Figure 

15). 

An analysis of the variance was carried out on the data 

on fresh weights (Table VII), from nine treatments and five 

replications. 

After computing a t-value, it was found that the differ¬ 

ences between any two treatments for significance at the 5 per 

cent probability point is 7.6 grams. 

Examination of the treatment averages shows that the 

average for 15 grams A3 is significantly greater than the av¬ 

erages for SO grams AS, 60 grams Afi, 90 grams AB, 90 

grams AC and 30 grams AC, Test for linearity of AB aver¬ 

ages was then calculated. There is a significant negative and 

linear trend for the AB treatment averages. This means that 

when the frit is increased, the fresh weight decreases. 

A similar analysis for the AC means shows no signifi¬ 

cant trend, although the 30 grams AC frit is significantly less 

than the check. 

Iron absorption is generally less and manganese absorp¬ 

tion more than for Antirrhinum HT x RPS. This results in 
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lower ratio values Iron to manganese. This variety is not as 

vigorous in growth as MT x RPS. Is this due to lower iron- 

manganese ratio values? Is manganese toxic in the quantities 

absorbed? Does this variety absorb more manganese and less 

iron than the HT x RPS variety? Is this the reason for the 

less vigorous growth of this variety? The highest average 

fresh weight was obtained with the 15 grams AB frit. The 

plants of this treatment had the lowest iron content. This 

same treatment resulted in greatest fresh weight in HT x RSP 

variety. The highest iron content of plants in the iron-man¬ 

ganese treatments was obtained at the 90 gram level and these 

plants had the lowest fresh weight. The highest iron content 

In the iron frit treatment was obtained in the plants grown in 

the 90 gram treatment and these plants had the lowest dry 

weight. There seems to be an inverse relationship between 

growth and iron content in the plants grown in the AB frit 

treatments. In these treatments the greater the quantity of 

iron-manganese frit in the treatment, the greater the amount 

of iron content in the plant and the less the average fresh 

weight. This indicates a possible toxicity of iron and, there¬ 

fore, luxury absorption. 
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Treatments with the AC frits resulted in increased iron 

absorption with increased amounts of the frit as was the case 

with the AB frits. There is no relationship between growth 

and treatments or iron content of the plants. Some treatments 

produced plants with evidence of luxury absorption of manganese. 

Fhaseolus vulgaris, Linn. 

Seeds of Phaseolus, red kidney bean, were planted 

directly into 6-inch pots in mid December, 1950. The plants 

were harvested by cutting off at ground level March 10, 1951. 

Data are recorded in Table VIII. 

Only plants grown in soil with 90 grams of iron-mangan¬ 

ese frit showed fresh weights greater than the control (Table 

VIH). In all other treatments the average fresh weights were 

less than those of the control. In general, the average fresh 

weights of plants grown in the iron-manganese frits were some¬ 

what greater than those grown in the iron frit. 

Figure 16 shows graphically the average fresh weights 

of the treatments. While the plants were growing, slight dif¬ 

ferences in growth between treatments could be noted (Figure 

17). 
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TABLE VIII 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF PHASEOLUS 

VULGARIS, LINN. FOR 
EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Mangane se 
p.p.m. 

Fe/Mn 

15 15.85 3.35 196 32 6.2 

5% 30 17. 10 3.65 168 23 7.4 

Fe O 
2 3 

60 14.70 3.40 169 23 7.4 

90 19. 15 3.82 236 23 10.4 

5% 15 17.45 4.30 144 52 2.8 

Fe O 
2 3 

30 18.22 4.05 165 46 3. 6 

2% 60 14. 15 2.45 292 41 7.5 

MnO^ 90 23.22 4.92 139 49 2.8 

4. 1 Control 19.42 3.68 186 46 
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Figure 16. Effects of frits on fresh weight of Phaseolus vulgaris, 

Linn. 



Figure IT. Fhaseolus vulgaris, Linn. From left—15, 30, 60, 

90 grams AB frit; control; 90, 60, 30, 13 grams 

AC frit. Very slight differences between treat¬ 

ments apparent. 
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A statistical analysis of the data showed no significant 

differences between the treatment means. 

There seems to be no relationship between growth and 

Iron and manganese content or ratio. Plants grown in AB frits 

generally show higher manganese content than the plants grown 

in the AC frits, but not significantly different from control 

plants. Since the only difference between the control and the 

treatments with the AC frit was the amounts of frit, data should 

show manganese absorption about the same in plants from all 

AC treatments and control. However, manganese absorption 

is less in all of the treatments than in the control. It must 

be assumed that this lower manganese absorption is due to 

some quality of the frit. Either some of the soil manganese 

is directly absorbed by the frit, or the frit exchanges some of 

the iron ions for manganese ions. Such exchange of ions prob¬ 

ably would result in oxidation of the ferrous ions to ferric ions 

which would be unavailable to plant roots. When the amount 

of iron frit is increased above a certain point at which no 

more manganese of the soil solution could be exchanged for 

iron of the frit, the remaining iron would then be available 

for absorption by the plant. Such a possibility is indicated by 
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the fact that the treatment with 90 grama of AC frit resulted 

in plant growth with higher iron content than in the control, 

while all other AC treatments had plants with iron contents 

comparable to the control. It is apparent (Table VIII) that 

there has been a depression of manganese absorption by the 

plants in the iron frit treatments. This depression is increased 

with increased amounts of the iron frit. 

There is no clear evidence of luxury absorption of iron 

except In the treatments with 60 grams AB frit and 90 grams 

AC frit. There is also no positive evidence of luxury absorp¬ 

tion of manganese in any treatment, although the 15 and 90 

gram levels of AB frits produced plants with slightly higher 

manganese content than the control. 

Calendula officinalis, Linn. 

Seeds of the variety "Ball's Orange" were sown October 

1, 1950, and selected plants were potted in the soil mixtures 

in 6-inch standard pots in late November, 1950, 

Plants of Calendula were harvested March 4, 1951, in 

the same manner as Nicotiana and Cineraria. The data col¬ 

lected are recorded in Table IX. Figure 18 shows graphically 

the effect of treatments on growth as measured by average fresh 
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TABLE IX 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF CALENDULA 

OFFICINALIS, LINN. FOR 
EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Manganese 
p.p.m. 

Fe/Mn 

15 135.18 12.82 359 0 

5% 30 134.88 10.95 410 30 13.5 

Fc O 
2 3 

60 162.10 14.15 417 0 

90 156.05 13.82 468 52 9.1 

5% 15 173.43 14.70 354 53 6.7 

Fe O 
2 3 

30 120.85 11.57 645 105 6.2 

2% 60 149.90 13.65 643 144 4.5 

MnO, 90 143.03 13.40 473 133 3.5 

Control 145.25 13.20 527 55 9.7 
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Figure 18. Effects of frits on fresh weight of Calendula officinalis. 

Linn. 
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weights. The plants receiving 15 grams of iron-manganese 

frit made the greatest growth as expressed in average fresh 

weights. Variations between treatments may be explained on 

the basis of iron-manganese ratio. When 15 grams of iron- 

manganese frit were used, the ratio between iron and manganese 

would be greater than in any other treatment, if iron and man¬ 

ganese already in the soil are added to that provided from the 

frit. In all other treatments, manganese seems to have a de¬ 

pressing effect on growth as measured by fresh weights and 

as compared to treatments using iron frit. 

A statistical analysis showed no significant differences 

between the treatment means. 

Analyses of iron and manganese in the plants in the 

different treatments show no relationship of iron or manganese 

content or ratio to growth (Table XX). It is interesting to note 

that while increased amounts of the AC frit resulted in increased 

amounts of iron in the plants, in no case did the iron content 

approach that of the plants grown in the control. It is assumed 

that soil manganese in some way immobilises part of the iron 

in the frit* The complex inter relationship between iron and 

manganese in the soil and in the plant as well as the inaccuracies 
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of any method of determining Iron content, especially in small 

amounts, may well account for the difficulty in establishing 

relationships between growth and manganese and iron in soil 

and in plant. 

Luxury absorption of iron occurred in the treatments 

with 30 and 60 grams of AB frit. Luxury absorption of man- 

ganese was obtained in plants produced by all levels of the AB 

frit except the IS gram treatment. 

impaticns Holstii, Engle r and Warb. 

A single large plant of Impaticns Holstii, growing in 

the garden, was selected and several hundred cuttings were 

made. In late November, 1950, forty-five of these plants were 

selected for uniformity and planted in the treated soils in 6-inch 

standard pots. This plant had a varied branching habit, often 

being much branched, sometimes exhibiting little branching 

(Figure 21). They were harvested March 19, 1951, by cutting 

off at ground level, weighed, dried, dry weights taken, ground 

and prepared for analysis, in the same manner as for ail other 

plants. Data are recorded in Table X. 

A statistical analysis showed no significant differences 

between treatment means of fresh weights. 
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TABLE X 

AVERAGE FRESH WEIGHT. DRY WEIGHT. IRON AND 
MANGANESE CONTENT OF IMPATIENS 

HOLSTII. ENGLER AND WARB.. 
FOR EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Manganese 
p. p. m. 

Fe/Mn 

15 90.70 6.55 150 44 3.4 

5% 30 124.10 8.78 141 35 4. 1 

Fe O 
2 3 

60 101.75 5.33 151 30 5.0 

90 66.73 4.75 198 35 5.7 

5% 15 143.18 11.05 243 58 4.2 

Fe O 
2 3 

30 143.35 10.60 193 68 2.8 

2% 60 137.15 10.23 141 74 1.9 

Mn°2 90 121.75 8. 58 193 73 2.7 

Control 144.58 10.98 210 56 3.7 
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Reference to Figures 19 end 20 shows an effect that 

although not significant, is interesting. Addition of both frits 

caused a depression of growth, more or less proportionate to 

the amount of frit in the soil. The iron frit caused greater 

depression than the iron-manganese frit and this was clearly 

noticeable in the growing plants. 

This plant exhibits rapid transpiration. It is a very 

succulent plant and with an ample supply of moisture and nu¬ 

trients grows rapidly. Evidently it takes up water and nutrients 

easily under normal soil conditions. With rapid transpiration 

the uptake of an element freely available, such as the iron in 

the frit, could be so great as to cause a concentration of the 

element in the tissues, far beyond the needs of the plant. How¬ 

ever, analysis of iron does not indicate luxury absorption of 

this element. Analysis for manganese indicates possible luxury 

absorption of this element. 

Analyses of iron and manganese (Table X) show no re¬ 

lationship between these elements and growth. However, man¬ 

ganese and iron in plants grown in the AC frits is less than 

in the control. Again the only explanation is that soil man¬ 

ganese has become absorbed by the frit and in the process iron 
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Figure 19. Effects of frits on fresh weights of Impatiens Holstii, 
> 

Engler and Warb. 
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has been released and immobilized through oxidation in the eoil 

solution* 

Tagetes pa tula, Linn. 

Tagetea patula, Linn., variety “Spry1* waa sowed In late 

October, 1950. Another variety, "Naughty Marietta," was 

sowed November 25, 1950. Forty-five plants of each variety 

were selected and planted In the treated soils, the former in 

late November, 1950, and the latter in December, 1950. 

Both varieties were harvested April 15, 1951, in the 

same way as the other plants. Data are recorded in Tables 

XI and XII. 

Statistical analysis showed no significant differences be¬ 

tween the treatments for either variety. 

Figure 22 shows the uniform growth of Tagetes patula, 

Linn., variety "Naughty Marietta." Reference to Figures 23 

and 24 graphically shows very slight differences. 

Tagetes is a member of the Compositae. This family 

is known to have many species that have a symbiotic relation 

with micro-organisms of the soil. This might imply that, 

under certain soil conditions, the plant would be less effective 

in uptake of mineral elements. The fact that the plant treatments 

\4-' 
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TABLE XI 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF TAGETES PATULA, 

LINN. , VARIETY "SPRY" FOR 
’each TREATMENT 

Type 

of 
frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry- 

weight 
(grams) 

Iron 
p.p.m. 

Manganese 
p.p.m. 

15 32.54 4.58 358 52 6.9 

5% 30 47.20 6.40 354 38 9.3 

Fe O 
2 3 

60 38.70 5.58 431 39 10.9 

90 32.76 4.82 387 61 6.4 

5% 15 33.46 4.88 548 64 8.6 

Fe O 
2 3 

30 39.96 5.56 338 77 4.4 

1% 60 41.08 5.48 419 142 2.9 

MnO 
m 

90 34.72 4. 60 348 235 1.5 

Control 36. 04 5.04 562 106 5.3 
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TABLE XII 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF TAGETES PATULA, 

LINN. , VARIETY ’'NAUGHTY MARIETTA” 
FOR EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grams) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p.p.m. 

Manganese 
p.p.m. 

Fe/Mn 

15 59.56 8.50 257 71 3.6 

30 50.96 6.80 325 71 4.6 

Fe O 
2 3 

60 53.98 7.36 325 61 5.4 

90 61.98 8.28 256 38 6.7 

5% 15 53.34 7.28 348 83 4.2 

F*2°3 
30 53.06 7. 16 387 83 4.6 

2% 60 49.82 6.86 359 102 3.5 

MnO^ 90 54.80 7.56 361 114 3.2 

Control 62.98 8.44 332 94 3.5 
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Figure 23. Effects of frits on fresh weight of Tagetes patula, 

Linn, var. "Spry." 
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Figure 24. Effects of frits on fresh weight of Tagetes patula, 

Linn, var. "Naughty Marietta. " 
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•howed no significant differences, might indicate that iron or 

iron and manganese, was not absorbed into the roots in luxury 

amounts and, therefore, additional amounts of available iron 

and manganese in the soil had no effect on plant growth. 

A study of the analyses for iron and manganese in the 

tests with both varieties of Tags tea (Tables XI and XU) reveals 

no relation between growth and amounts of frits used, iron 

content, manganese content, or iron-manganese ratio. Plants 

of both varieties grown in the AC treatments showed less man¬ 

ganese and iron content than the control. The same conclusion 

regarding exchange of iron of the frit with manganese of the 

soil, as in previous cases (Impatiens, Phaseolus) seems to 

apply equally well. The analyses of the AB treatments show 

•lightly greater amounts of iron than the control for the variety 

MNaughty Marietta" and less for the variety "Spry. " 

Luxury absorption of manganese is indicated for the AB 

frit treatments at the 60 gram and 90 gram levels for both 

varieties. 

Begonia scraperflorens. Link and Otto. 

Forty-five seedlings of Ball's Bose Begonia one inch 

high were selected and planted in the treated soils in early 
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December, 1950. The plants were harvested April 15, 1951, 

in the usual maimer. Data arc recorded in Table XIII. 

An analysis of variance was carried out on the data on 

fresh weights from nine treatments and five replications. The 

difference between the averages of any two treatments, for sig¬ 

nificance at the 5 per cent probability point, is 39.2 grams. 

On examining the above averages, it is seen that the 90 grams 

AB average is significantly larger than the average for check, 

the 60 grams AC average, the 30 grams AC average and the 

15 grams AC average. 

There is no evidence of a linear trend for the AB av¬ 

erages or for the AC averages. There is a linear trend for 

the AC averages with the 15 grams AC data omitted (Figure 

25). 

There seemed to be considerable genetical variability 

in this lot of plants, as several of the plants produced white 

flowers and there was considerable color variation even in 

those with rose-colored flowers. Some plants carried distinctly 

rose-scarlet flowers. 

It is to be noted that plants of Begonia in soils to which 

AC frit was added were very slow in growth and that this is 
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TABLE XIII 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF BEGONIA 

SEMPERFLORENS, LINK. AND 
OTTO, FOR EACH 

TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grains) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Manganese . 
p.p.m. ' 

15 102.24 3.76 510 50 10.2 

5% 30 80.14 4. 10 346 44 7.9 

Fe O 
2 3 

60 93.38 4. 20 390 59 6. 6 

90 118.76 5.48 373 32 11.7 

5* 15 111.84 6.76 376 53 7. 1 

Fe O 
2 3 

30 138.98 6.56 401 68 5.9 

2% 60 120.44 5.62 475 97 4.9 

MnOz 90 148.02 6.66 332 92 3.6 

Control 108.48 5.02 381 55 7.0 
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Grams frit per 6-inch pot 

Figure 25. Effects of frits on fresh weight of Begonia semper- 

florens, Link and Otto. 
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reflected in the fresh weights. The slow growth probably was 

due to nutritional disturbance. It may have been iron toxicity 

due to excess iron or to improper iron-manganese ratio. It is 

doubtful that the slow growth could have been caused by phos¬ 

phate deficiency, first, because of the quantity of superphosphate 

added to the soil; second, because the pH rising from approx¬ 

imately 3. S was not favorable to precipitation of phosphorus by 

iron; and third, because the amount of organic matter in the 

soil would have a tendency to inhibit phosphate precipitation. 

The possibility of calcium deficiency must be eliminated due 

to the high lime content of the irrigation water. All plants 

received the same amounts of potassium sulfate and ammonium 

sulfate. That sulfates were not in excess must also be elim¬ 

inated as a possibility since all plants received equal amounts. 

Manganese content of plants is generally lower for the 

iron frits and higher for the iron manganese frits than control 

plants. 

There is no constant relationship between iron or man¬ 

ganese content and growth as represented by fresh weights or 

dry weights. 

Greatest fresh weight showed lowest iron-manganese 

ratio. This was obtained in plants grown in the 90 gram 
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iron-manganese treatment. In this treatment the iron content 

was the lowest of any treatment including the control. 

There is apparent luxury absorption of iron in the IS 

grams treatment with iron frit and in all treatments with the 

iron-manganese frit except the 15 grams treatment. There 

is luxury absorption of manganese in all treatments of the 

iron-manganese frit except the 15 grams treatment. 

Phlox Drummondii, Hook. 

Seed of Phlox Drummondii glgantea were sowed Decem¬ 

ber 1, 1950. The seedlings were transplanted into the treated 

soils in 6-inch pots December 26, 1950. A total of forty-five 

plants# five in each treatment, were grown. The plants were 

harvested May 1, 1951. Average fresh weights, average dry 

weights, iron and manganese content and iron-manganese ratio 

are recorded in Table XIV. 

Maximum growth of plants grown in the soils with iron- 

manganese frit was obtained at the 90 gram level, while with 

the soils with iron frit maximum growth occurred at the 15 

gram level. Average fresh weights for each treatment are 

graphically shown in Figure 26. 
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TABLE XIV 

AVERAGE FRESH WEIGHT, DRY WEIGHT, IRON AND 
MANGANESE CONTENT OF PHLOX DRUMMONDII. 

HOOK. , FOR EACH TREATMENT 

Type 
of 

frit 

Frit 
per 

6 inch 
pot 

(grains) 

Average 
fresh 

weight 
(grams) 

Average 
dry 

weight 
(grams) 

Iron 
p. p. m. 

Manganese 
p.p.m. ' 

15 44. 60 4. 14 408 38 10.8 

5$ 30 30.40 3.00 489 35 14. 1 

Fe O 
2 3 

60 26.30 3.04 372 38 9.8 

90 34.55 3. 60 682 38 18.0 

5% 15 42.28 5.30 550 38 14.5 

Fe O 
2 3 

30 37.90 4. 23 431 44 9.8 

2% 60 21.73 2. 17 583 59 9.9 

MnO^ 90 44.70 4.80 623 58 10.8 

Control 34.46 3.58 489 50 9.8 
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Figure Zb. Effects of frits on fresh weight of Phlox Drummondii, 

Hook. 
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Analyses lor iron and manganese content show no rela¬ 

tionship with growth nor is there any relationship between 

iron-manganese ratio and growth. Two treatments, the 90 

gram and 60 gram treatments with the iron-manganese frits, 
K, •' * 

showed evidence of luxury absorption of both iron and mangan¬ 

ese. The 15 gram level of the iron-manganese frit and the 90 

gram level of the iron frit showed luxury absorption of iron 

alone. Only in the case oI the plants grown in the 60 gram 

level ol iron-manganese frits was there any possible toxicity 

and the much depressed growth here must be due to some com¬ 

plicated relationship or some unknown factor, since even higher 

iron content and higher as well as lower ratio values had no 

such effect in other treatments. The highest manganese con¬ 

tent was obtained in these plants, but the manganese content 

was not significantly higher than in the 90 gram treatment which 

resulted in highest fresh weight. 

There is luxury absorption of iron in the 90 grams iron 

frit treatment and in all treatments with the iron-manganese 

frit except the 1$ grams treatment. There is luxury absorption 

of manganese in the 60 grams and 90 grams treatments with 

the iron-manganese frit. 



DISCUSSION 

It is common knowledge that different kind* of plants, 

grown under the same conditions, differ in their elemental 

composition. It is also well-known that plants differ in their 

power of taking up some cations from the soil, or in their 

power of transferring them into their aerial portions. The 

relationship between nutrient absorption and plant growth is 

complex. 

Kate of uptake of moisture may determine the amount 

of mineral elements absorbed by roots. The amount of mois¬ 

ture in the soil may influence the rate at which plants absorb 

moisture from the soil. Slight variations in soil moisture 

content may cause variations in leaf turgidity. Such slight 

differences of turgidity as between plants may cause variations 

in rates of photosynthesis which in turn affect growth rates. 

Thoday (118) found a great difference in photosynthesis of Heii- 

anthus annuus as between turgid and wilted leaves. Ujin (56) 

found photosynthesis of leaves of Bidens tripartita and Fhiomls 

pungens much reduced when water content was reduced. Brilliant 

(10) obtained similar results with Hedera helix and Impaticns 
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parviflora. Dastur (23) and Heinicke and Childers (44) found 

water content of apple leaves related to the process of photo¬ 

synthesis. 

The carbon dioxide respiration of plant roots aids the 

plant in obtaining phosphorus, iron, manganese and other ele¬ 

ments, by increasing acidity in the vicinity of absorbing sur¬ 

faces. Some plants may excrete organic acids that similarly 

result in making these elements available. Jcnney et al. (60, 

61) have demonstrated that direct exchange of excreted hydro¬ 

gen ions with cations held by mineral particles is another pos¬ 

sible mechanism by which plants are able to obtain mineral 

elements from the soil. Finally, biological reactions may make 

available to plant roots elements such as manganese and iron 

which otherwise would be unavailable. The fact that these 

reactions must take place in the immediate rhi&osphere of the 

root hairs greatly complicates the study of the mechanism of 

intake of mineral elements. Further, the permeability of cell 

walls and protoplasm is affected by many factors not the least 

of which may be the constituency and concentration of the soil 

solution. Changes in permeability may greatly affect the kind 

and amount of the ions absorbed, as well as the rate of 
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absorption. The plant may seam to exhibit a choice of lone, 

which ie in reality the varied manifestations of response to the 

many and complex factors governing plant growth processes. 

Under normal conditions of oxygen supply, carbon dioxide 

alone is excreted by roots. When the supply of oxygen is lim¬ 

ited, there is incomplete decomposition or oxidation and as a 

result, excretory products of respiration consist of organic 

acids. 

The respiration of root systems may vary with the ex- 
, - • : • o‘, 

tent, activity, and kind of root system. Plants with long, 

thick tap roots and few fibrous roots may excrete carbon di¬ 

oxide in small amounts. Under certain conditions wherein the 

soil has a high pH, such plants may be unable to obtain suffi¬ 

cient amounts of some elements for good green growth. Mi lad 

(87) reported that the lupine is inefficient in production of carbon 

dioxide from the roots. The root system of the lupine is typi¬ 

fied by a long tap root. Plants with an active much-branched 

fibrous root system are likely to be more efficient in obtaining 

mineral elements from the soil under adverse soil conditions. 

Csapck (22) found that absorption of potassium and phos¬ 

phorus varied as between different kinds of plants. This 
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variation was correlated directly with differences in carbon 

dioxide excretion. Others have reported similarly on the sol¬ 

vent action of excreted carbon dioxide on soil nutrients. 

It is a well-known fact that plants respond favorably to 

an increasing amount of a nutrient in the soil, provided this 

nutrient was not originally present in an amount sufficient for 

maximum growth. Beyond a certain limit the plant does not 

respond to an increasing amount, but may continue to absorb 

an increasing amount from the soil. Most plants absorb a 

greater quantity of inorganic salts than is necessary for their 

maximum growth, if there is an abundance of these in the soil. 

The occurrence in a plant of a greater quantity of an 

element than is required for its needs is called “luxury con¬ 

sumption. " The point at which absorption of mineral elements 

becomes luxury absorption is difficult to determine. JLuxury 

absorption may result in toxic effects on plant growth. Accum¬ 

ulation of mineral elements within plant tissues, when absorp¬ 

tion is greater than utilization, may reach a concentration that 

becomes toxic to plant tissues. Excesses of elements in the 

soil solution such that the osmotic pressure of the soil solu¬ 

tion becomes more than a negligible factor, may cause movement 
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of moisture and possibly nutrients from plant to soil. It is 

known that under certain conditions* at least some plants may 

lose ions to the soil. Cereals are known to lose potassium 

to the soil towards the end of the growing season. Soils high 

in certain elements may also extract ions of other elements 

from plants. Moreover* soils deficient in certain elements 

may cause movement of those elements from roots to soil. 

Yet if aeration conditions are adequate* roots can hold their 

ions against diffusion into the soil. Excesses of an element 
» 

in the soil may result in deficiency of some other element. 

Excess calcium* for example* may result in deficiency of 

potash in plants growing in such soil. Potassium deficiency 

may affect nitrogen utilisation. Similarly excess calcium may 

result in deficiency of other elements such as iron, aluminum* 

manganese and phosphorus. Excesses or deficiencies of min¬ 

eral elements within the plant may result in lowered growth 

rate or may show other toxic symptoms such as chlorosis and 

necrosis of plant tissues. Adding an element to the soil does 

not always result in absorption of that element by the plant. 

At least some elements may be adsorbed by the soil colloids 

so strongly that the plant is unable to obtain sufficient amounts 

r 
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of these elements for normal growth. Furthermore* other ele¬ 

ments may combine with the added element forming an insol¬ 

uble compound that is either precipitated or held in suspension 

in the soil solution and in either case may be unavailable to 

the plant. 

Even in hydroponics there is great difficulty in analyzing 

results of nutritional experiments because of complex factors 

that cannot entirely be controlled. There has been much nu¬ 

tritional work reported using one or two plants in a treatment. 

While much valuable information has been revealed by such 

work* the fact remains that the greatest care must be exer¬ 

cised in interpreting results. Eolations between yield and ab¬ 

sorption of a given element often may be determined by differ¬ 

ences in the amounts of elements absorbed by plants in different 

treatments* or between different plants of the same treatment. 

The time required for absorption and the time elapse for the 

absorbed elements to function in growth as between different 

plants, may similarly affect growth and yield. 

The glassy frits, manufactured by the Ferro Enamel 

Corporation, may be prepared with various minor elements 

impregnated within the frit and they can be furnished in any 
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•tae particle that may be required for hydroponic or soil cul¬ 

ture. This material offers a new field for the study of con-* 
/ 

tact absorption of mineral elements by plant roots. The ex¬ 

periments described herein were designed to show only that 

roots of plants growing in normal soil can obtain minor ele¬ 

ments sufficient for plant growth, or even in luxury amounts, 

by contact absorption. The effects of luxury absorption are 

further demonstrated. 

In each of the experiments reported, it seems evident 

that the insoluble iron and manganese contained within the frit 

have had an apparent effect on plant growth, even though these 

elements are contained in the soil used in sufficient amount 

for normal green growth of plants. 

The experiments with Nicotians showed this most clearly. 

This plant showed almost a direct proportional increased growth 

with Increased amounts of iron and manganese available in in¬ 

soluble form. Except for a depression of growth when the 

smallest amount of Iron-containing frit was used, there was an 

increase in growth for the iron-containing frit. However, for 

the equivalent amount used, there was greater growth when 

manganese was furnished with the Iron in a ratio value of 
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approximately 2.0. This closely agrees with the findings of 

"hive (109) and Somers* Gilbert and Shive (111)* who found 

that the ratio Fe/Mn was between 1.5 and 2.5 for optimum 

growth for species investigated. That this proportion may not 

be correct for all plants is indicated in experiments with other 

plants reported herein. Takeuchi (116) found that different 

species were not equally stimulated by manganese. 

Some plants seemed to show increased growth with iron 

frit* while others seemed to benefit more from the iron-man¬ 

ganese frit. Among the kinds of plants that seemed to have 

better growth with the iron frit than with the iron-manganese 

frit were Iberts, Antirrhinum and Cineraria. This may indi¬ 

cate that these plants require a higher iron-manganese ratio 

value. Among the plants that seemed to show better response 

to the iron-manganese frit were Nicotians, Lobelia, Phaseolus, 

Begonia and Impatiens, Plants that gave varied response were 

Primula and Calendula. Tagetes showed very little effect on 

growth due to either frit in any of the treatments. 

Plants varied as to the treatment that gave the greatest 

growth response (Table XV). 

Both frits seemed to have a toxic effect on the growth 

of Impatiens and Antirrhinum. 
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TABLE XV 

TREATMENT THAT RESULTED IN MAXIMUM AVERAGE 
GROWTH FOR EACH PLANT 

Type of Frit Check 554 Fe2Oj 

Grams of Frit 15 30 60 90 90 60 30 IS 

Antirrhinum 
HT x RPS 

X 

Antirrhinum 
"Margaret" 

X 

Begonia X 

Calendula X 

Cineraria X 

Iberis X 

Impatiens X 

Lobelia X 

Nicotians X 

Phaseolus X 

Phlox X 

Primula X 

Taffetas 
"Spry" 

X 

Tagetes X 

"Naughty 
Marietta" 



140 

The varied response of different plants to the treatments 

may indicate different levels of iron and manganese required 

for growth in different plants. Some plants seem to require 

small amounts of available iron and manganese or are espe¬ 

cially efficient in absorbing these elements. Other plants seem 

to be benefited by luxury amounts. Such plants either require 

additional amounts or are less efficient in obtaining these ele¬ 

ments from the soil. 

Three conclusions can be drawn from the tests. The 

first is that plants can obtain iron and manganese that are 

contained in the soil in relatively insoluble* but available form. 

Differences in growth in different treatments seemed to indi¬ 

cate this condition in all plants except Tagetes. While many 

of the differences in growth are not statistically significant* 

differences could be noted while the plants were growing. The 

second conclusion that seems important is that, in some cases 

at least* increased amounts of iron and manganese in proper 

ratio in the soil can result in increased growth. This is espe¬ 

cially demonstrated in Nicotians Tabacum. A second experi¬ 

ment with this plant showed generally the same response to 

treatments as described herein. Further, it seems to the 
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author that thasa plants might show further increased growth 

with iron-manganese frit in still larger amounts than the 90 

. / 

gram treatments described. A third point is that plants differ 

in their requirements for iron and manganese or abilities to 

absorb iron and manganese. 

Results of the manganese analyses for the different 

plants are recorded in Table XVt. It is evident that something 

approaching luxury absorptionv if not luxury absorption, has 

taken place in many plants grown in the iron-manganese treated 
' c* 

soils. This is noted in comparison with controls in all iron- 

manganese treatments for Primula and Antirrhinum "Margaret, " 

and in all except the 15 gram levels for Cineraria, Calendula 

and Impatiens. In Lobelia and Tagetes the two highest levels 

of the AS frit show manganese absorption in excess of the con¬ 

trol. In all plants except Nicotians, Primula, Iberis. Antir¬ 

rhinum, plants grown in the AC frit treatments gave lower 

manganese content than the control. It was expected that plants 

grown in the AC frits would contain approximately the same 

amounts of manganese as the control. That they did not do 

so and generally absorbed considerably less manganese than 

the control is evidence of the complex relationship between 
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TABLE XVI 

SUMMARY OF MANGANESE ANALYSIS 

Type of Frit 

Plant 
5% Fe203 
(grams) 

5% Fe„0, 
2% Mnb* 
(grams) 

Con- 
trol 

15 30 60 90 15 30 60 90 

Nicotiana 
leaf* 

21 20 66 70 54 34 47 34 35 

Cineraria 32 34 33 33 44 92 136 144 80 

Lobelia 47 52 47 — 66 80 130 137 102 

Primula 61 30 21 23 50 31 33 32 21 

Iberis 34 36 23 21 20 29 11 80 30 

Antirrhinum 
HT x RPS 

0 11 14 14 11 19 14 43 0 

Antirrhinum 
’•Margaret'1 

29 36 23 26 29 39 44 41 23 

Phase olus 32 23 23 23 52 46 41 49 46 

Calendula 0 30 0 52 53 105 144 133 55 

Impatiens 44 35 30 35 58 68 74 73 56 

Tagetes 
"Spry” 

52 38 39 61 64 77 142 235 106 

Tagetes 
"Marietta” 

71 71 61 38 83 83 102 114 94 

Begonia 50 44 59 32 53 68 97 92 55 

Phlox 38 35 38 38 38 44 59 58 50 

* Leaf tissue only. Figures in p.p.m. 
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iron and manganese existing in the soil as well as within the 

plant. 

Godden and Grimmett (38) were of the opinion that per¬ 

haps manganese is more easily taken up from the soil by the 

plant than is iron. The tests reported herein do not appear 

to support this opinion. £isenmenger and Holland (31) thought 

the H-ion concentration of the soil is probably more of a factor 

in iron assimilation than is the amount of insoluble iron com¬ 

pound present. They found that manganese gave inconsistent 

results as to amounts in plants and that there was evidence 

that applications of manganese tend to increase the amount of 

phosphorus in the plants. 

In the experiments reported herein there was much in¬ 

consistency in amounts of both iron and manganese found in the 

plants. It is the opinion of the investigator that a portion of 

the manganese in the soil has displaced some of the iron ions 

in the frit, these iron ions combining with the oxygen disso¬ 

ciated from the manganese. The oxidised iron ions become 

unavailable to the plants. Such reaction would explain the lower 

absorption of manganese and iron. 

The amount of manganese found within the plant may 

have no direct connection with growth. If the function of 
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manganese is to release oxygen for oxidation of the ferrous 

iron which in the process of oxidation furnishes energy neces¬ 

sary for the formation of chlorophyll, the amount of manganese 

required for the process might be very small since the man¬ 

ganese may easily be reoxidized and function repeatedly in the 

oxidation of iron. The more rapid the growth processes, the 

more frequent would be the changes in the state of the man¬ 

ganese, but the iron, once its function is completed, becomes 

immobilized and the rate of supply of the iron must be contin- 

ued to replenish the immobilized iron. Additional amounts of 

manganese would be required for the new growth only. There¬ 

fore, within the green leaf there could be no fixed ratio be¬ 

tween amounts of iron and manganese. Presumably ratio 

values in young leaves would be considerably lower than in 

old leaves. 

Analyses of iron for all treatments for each plant are 

recorded in Table XVII. Such analyses show no regular re¬ 

lationship to growth, but there are a few facts that should be 

noted. The Iberis plants, in all treatments except the 30 grams 

iron-manganese frit, were found to contain larger quantities 

of iron than the control. The Lobelia plants, except those in 
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TABLE XVII 

SUMMARY OF IRON ANALYSIS 

Type of Frit 

Plant 
5% Fe O 
(gram2*) 3 

5% Fe O 

2Mnb^ 
(grams)4 

Con¬ 
trol 

15 30 60 90 15 30 60 90 

Nicotiana 
leaf* 

627 298 359 301 335 402 783 443 1170 

Cineraria 489 479 417 476 489 564 456 406 550 

Lobelia 588 304 457 417 450 520 394 

Primula 927 888 935 782 882 776 915 927 876 

Iberis 249 212 171 165 171 136 149 387 147 

Antirrhinum 
HT x RPS 

183 131 167 209 136 178 127 160 144 

Antirrhinum 
’•Margaret1' 

101 161 163 175 82 96 97 149 107 

Phaseolus 196 168 169 236 144 165 292 139 186 

Calendula 359 410 417 468 354 645 643 473 527 

Impatiens 150 141 151 198 243 193 141 193 210 

Tagetes 
’’Spry” 

358 354 431 387 548 338 419 348 562 

Tagetes 
"Marietta” 

358 354 431 387 548 338 419 348 562 

Begonia 510 346 390 373 376 401 475 332 381 

Phlox 408 489 372 682 550 431 583 623 489 

* Leaf tissue only. Figures in p.p.m. 
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the 30 grams iron frit treatment, all analyzed higher in iron 

than the control. The Primula plants analyzed higher in iron 

/ 

in all treatments, except the 90 grams iron frit and the 30 

grams iron-manganese frit treatments. Antirrhinum "Margaret'1 

plants showed higher iron in all treatments with the iron frit 

except the 15 gram treatment and were also higher than the 

control in the 90 gram iron-manganese treatment. None of 

the plants of Tagetes "Spry" contained so much iron as the 

control, while the plants of Tagetes "Naughty Marietta" were 

slightly higher in iron for all treatments with iron-manganese 

frit. Plants of Nicotiana from all treatments and of Cineraria 

from all treatments except the 30 grams iron-manganese, had 

smaller amounts of iron than the control. 

The conclusions reached are: (1) it is extremely dif¬ 

ficult to obtain accurate iron determinations; (2) there is a 

complicated relationship between iron and manganese as well 

as other elements that results in a variable absorption of iron; 

(3) there is evidence of luxury absorption of iron in some 

cases in the tests; (4) there is some evidence of luxury absorp¬ 

tion of manganese in some treatments; (5) manganese affects 

iron by displacing it in some compounds and by causing its 

oxidation in the soil solution. 

r 



SUMMARY 

The effect upon plant growth of luxury amounts of iron 

and iron and manganese available to plant roots in relatively 

insoluble form was studied. 

These minor elements were supplied to the plants in 

relatively insoluble form impregnated in finely ground glassy 

frit. 

The experiments were planned to study five levels of 

iron and iron combined with manganese to determine (a) whether 

plant roots growing in soil could obtain these minor elements 

by contact absorption; (b) whether amounts of the two elements 

beyond that required for normal green growth would result in 

increased growth. 

Fourteen kinds of plants were used in the experiments. 

The growth of Nicotiana was greatly benefited by addi¬ 

tional amounts of the iron and manganese frit, and to a lesser 

extent by the iron frit, almost directly proportional to the 

amount used up to the highest amounts. 

While growth of Cineraria was benefited by additional 

amounts of both frits, the iron-manganese frit generally showed 
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slightly better results at each level, with the exception of the 

60 gram treatments. 

Lobelia and Calendula were benefited most by the smaller 

amount of iron-manganese frit. 

Iberis and Antirrhinum showed some benefit from the 

lowest level of the iron frit, but the iron-manganese frit de¬ 

pressed growth in both cases. 

Phaseolus showed most growth with the highest level 

iron-manganese frit and in general the iron-manganese frit at 

all levels gave better results than the iron frit. 

The results of the experiments with Primula showed 

most growth with the iron frit at the 60 gram level and the 

iron-manganese frit at the 90 gram level. The fact that dif¬ 

ferences in growth occurred with differences in treatments in 

many plants would indicate that the plants obtained both iron 

and manganese by contact absorption from the frits. These 

differences were often not statistically significant. 

In the case of Nicotiana Tabacum reference to Figure 4 

leaves no doubt but that the growth of Nicotiana plants was in¬ 

fluenced by the frits and that the iron-manganese frit was 

slightly more beneficial than the iron frit. 
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I ; 
These tests show that most crops can obtain iron and 

manganese from the frits used. 

> 

Analysis for iron indicates that in some treatments 

luxury absorption occurred. Similarly there were treatments 

in which luxury absorption of manganese occurred. It is ap¬ 

parent that there is close relationship between iron and man¬ 

ganese and the interaction of these elements in the soil, as 

well as within the plant, may have a considerable effect on 

plant growth. 

* 
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APPENDIX 

/ 

A, Determination of iron 

(Humraell, F. C. and Willard, H. H. Determination 
of iron in biological materials. Ind. Eng. Chem. Anal. Ed. 
10:13-15. 1938). 

Reagents 

Acetic acid. 2 N. Dilate 120 gms. of glacial acetic 

acid to 1 liter with distilled water. 
V 

Hydrochloric acid. 1:1. 

Hydrochloric acid. 1:100. 

Ammonium citrate. 1Dissolve 1 gm. of ammonium 

citrate in distilled water and dilute to 100 ml. 

Bromophenol blue indicator solution. 0.. Grind 1 

gm. of solid bromophenol blue in a mortar with 3 

ml. of 0.05 N NaOH, transfer to a volumetric flask 

and dilute to 250 ml. with distilled water. 

Buffer solutions 

1. Solution of pH 3.5—Mi* 6.4 ml. of 2M sodium 

acetate solution with 93.6 ml. of 2M acetic 

acid solution and dilute to 1 liter with dis¬ 

tilled water. 



2, Solution of pH 4.5—Mix 43 mi. of 2M sodium 

acetate solution with $7 ml. of 2M acetic 

acid solution and dilute to 1 liter. 

Hydroquinone solution. Dissolve 1 gm. of hydroquinone 

in 100 ml. of a buffer solution of pH 4.5, store In 

a refrigerator. 

O-phenanthroiine solution. Dissolve 1 gm. of ortho- 

phenanthroline monohydrate in distilled water, warm¬ 

ing if necessary to effect solution, and dilute to 

400 ml. 

Sodium acetate. 2M. Dissolve 272 gms. of sodium 

acetate (NaAc.S^O) in distilled water and dilute 

to 1 liter, 

\ 

Iron. Standard solution. Dissolve 1 gm. of electro¬ 

lytic iron in 50 mi. of 10% H^SO^, warming if 

necessary to hasten the reaction. Cool, and dilute 

to 1 liter with distilled water; 1 ml. contains 1 mg. 

of Fe. 

Procedure 

Pipette similar aliquots of digested ash solution into 

both a 25 ml. volumetric flask and a 25 ml. Erlenmeyer flask. 
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An aliquot is chosen which will fall in the range of the photo- 

meter (.01—10 mgm. of iron). To the solution in the Erlen- 

meyer flask are added 5 drops of bromophenol blue indicator; 

it is then titrated with 2M sodium acetate until the color 

matches that of an equal volume of buffer solution of pH 3.5 

containing the same quantity of indicator. Add 1 ml. of the 

hydroquinone solution and 2 ml. of O-phcnanthrolinc reagent 

to the aliquot in the volumetric flask and adjust the pH of the 

contents to 3.5 by adding the same volume of sodium acetate. 

If a turbidity develops upon adjustment of the pH of the aliquot 

in the Erlenmeyer flask, add 1 ml. of ammonium citrate so¬ 

lution to the volumetric flask before adding the sodium acetate 

solution. Make to volume, mix and let stand for 1 hour to 

assure complete color development. Compare the color in the 

Coleman spectra photometer at wave lengths of 510 mu against 

a water blank. Make a standard curve containing .01 to .10 

mgm. of Fe and develop color as above. 

B. Determination of manganese 

A. O. A. C. method for plant material. 

(Association of Official Agricultural Chemists. Official 
and Tentative Methods of Analysis. Ed. 6. pp 116, 120-121. 
Washington, D. C. 1945). 
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Reagent* 

Nitric acid. Concentrated solution. 

Potassium periodate. Salt. 

Ferric nitrate. Sait. 

Sulphuric acid. Concentrated solution. 

Procedure 

Pipette an aliquot of the silica-free solution of the plant 

ash into a beaker and evaporate to a volume of about 30 mis. 

Add from 5*10 mis. of concentrated nitric acid and continue 

the evaporation. Do not evaporate until dense fumes appear, 

otherwise ferric sulfate will become difficult to dissolve. Add 

water, a little at a time, and heat until the iron salts are dis¬ 

solved. Dilute to about 150 mis. Add potassium periodate or 

its equivalent of periodic acid in small portions, until 0.3 gm. 

has been added. Boil a few minutes or until the color of po¬ 

tassium permanganate has attained its maximum intensity. 

Cool. Determine the transmittance or optical density in a 

colorimeter, using a wave length of 530 mu, and a PC-4 

fitter. 

r 
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Standard cam 

Pipette a volume of water equal to the aliquot of the 

unknown solution to be analyzed into a 250 ml. flask. Add 

15 mis. of concentrated sulfuric acid and enough ferric nitrate 

to about equal the amount of iron In the sample. Add a known 

volume of standard 0.1 N potassium permanganate, and 0.3 gm. 

of potassium periodate and boil for a few minutes. Cool. Di¬ 

lute to volume. 

Note 

The Association of Official Agricultural Chemists (Offi¬ 

cial and Tentative Methods of Analysis. Ed. 6. p 116), rec¬ 

ommends that from 10 to 50 gms. of plant tissue be ashed in 

a platinum crucible freed of silica by filtration, and the filtrate 

made up to 200 mis. The aliquot used for the determination 

of manganese should represent from 0.12 to 0. 5 gms. of the 

plant ash. This would correspond roughly to about two to five 

gms. of the dry plant material. Nitric acid may be present, 

but hydrochloric acid must be absent. 

This procedure does not provide for the absence of iron, 

but approximately corrects the error involved by adding iron 

to the standard solution of potassium permanganate used to 
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prepare the standard curve. For approximate values of man¬ 

ganese, the procedure is satisfactory, but in order to obtain 
/ 

precise data, iron should b« absent. 
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