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ABSTRACT 

EVALUATING THE EFFECTS OF SEVERAL MULTI-STAGE TESTING DESIGN 

VARIABLES ON SELECTED PSYCHOMETRIC OUTCOMES FOR 

CERTIFICATION AND LICENSURE ASSESSMENT 

MAY 2004 

APRIL L. ZENISKY, B.A, AMHERST COLLEGE 

M.Ed., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Ronald K. Hambleton 

Computer-based testing is becoming popular with credentialing agencies because 

new test designs are possible and the evidence is clear that these new designs can 

increase the reliability and validity of candidate scores and pass/fail decisions. Research 

on MST to date suggests that the measurement quality of MST results is comparable to 

full-fledged computer-adaptive tests and improved over computerized fixed-form tests. 

MST’s promise dwells in this potential for improved measurement with greater control 

than other adaptive approaches for constructing test forms. 

Recommending use of the MST design and advising how best to set up the 

design, however, are two different things. The purpose of the current simulation study 

was to advance an established line of research on MST methodology by enhancing 

understanding of how several important design variables affect outcomes for high-stakes 

credentialing. 
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Modeling of the item bank, the candidate population, and the statistical 

characteristics of test items reflect an operational credentialing exam’s conditions. 

Studied variables were module arrangement (4 designs), amount of overall test 

information (4 levels), distribution of information over stages (2 variations), strategies for 

between-stage routing (4 levels), and pass rates (3 levels), for 384 conditions total. 

Results showed that high levels of decision accuracy (DA) and decision 

consistency (DC) were consistently observed, even when test information was reduced by 

as much as 25%. No differences due to the choice of module arrangement were found. 

With high overall test information, results were optimal when test information was 

divided equally among stages; with reduced test information gathering more test 

information at Stage 1 provided the best results. 

Generalizing simulation study findings is always problematic. In practice, 

psychometric models never completely explain candidate performance, and with MST, 

there is always the potential psychological impact on candidates if test difficulty shifts 

are noticed. At the same time, two findings seem to stand out in this research: (1) with 

limited amounts of overall test information, it may be best to capitalize on available 

information with accurate branching decisions early, and (2) there may be little statistical 

advantage in exceeding test information much above 10 as gains in reliability and validity 

appear minimal. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

As computers have come to take on great prominence in many aspects of 

everyday life in recent years, so too has computerization come to the forefront of 

assessment practices at the outset of the twenty-first century. Tests from many testing 

programs now are administered exclusively by computer. For example, the Graduate 

Record Examination is a computerized test used in the context of admission to graduate 

school, the information technology field has the Microsoft and Novell certification 

examinations (among many others), and the Nurses Certification and Licensure 

Examination (NCLEX) is administered to thousands of prospective nurses annually. 

Many other testing programs are including studies of computer-based testing (CBT) in 

their ongoing research agendas (e.g., the American Institute of Certified Public 

Accountants, the College Board, and the National Assessment Governing Board). 

While the trend toward computerization is certainly present in terms of 

educational testing, CBT is particularly becoming more prevalent in the area of 

professional certification and licensure assessment, as more and more credentialing 

agencies regard CBT as an effective mechanism for test delivery. There are a number of 

reasons for this, including that 1) an increasing number of professions are becoming more 

computerized, 2) examinees want to receive their scores more quickly, and 3) 

computerization of examinee responses facilitates data management. In addition, many 

professions are redefining and expanding the constructs they are trying to measure with 

such tests, and computers c£in give them added flexibility to obtain quality measurement. 
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With these sorts of general benefits associated with CBT relative to paper-and- 

pencil assessment for certification and licensure tests, the measurement advantages to be 

realized in operational testing do differ with respect to how a computer-based test is 

implemented (Drasgow & Olson-Buchanan, 1999). Some possible sources of variation 

include the choice of item type, scoring method, the relative inclusion of multimedia and 

other technological innovations in the test administration, the procedures for item and 

item bank development, and test designs. This last issue of test designs, sometimes 

discussed as test models, refers to structural variations in test administration. To be more 

specific, it addresses how the items in a test are sequenced and presented to examinees. 

Test design is a topic of much growing interest for research among test developers 

particularly given the evidence in the psychometric literature for improved measurement 

under adaptive test designs in CBT (Van der Linden & Glas, 2000; Mills et al., 2002). 

The possibilities that 1) tests need not be exactly identical in sequence or test 

length and that 2) alternative designs could be implemented can be traced back to early 

work on intelligence testing done by Binet and Simon (1905, 1908). In these early tests, 

both starting and termination points varied across students and were dependent on the 

responses provided by individual examinees. From that work and later studies by many 

researchers including Lord (1970, 1971a, 1971b, 1971c, 197Id) came the notion of 

tailoring tests to individual examinees, and today the continuum of test designs used in 

practice with CBT ranges from linear fixed-form tests assembled well in advance of the 

test administration to tests that are adaptive by item or by sets of items and are targeted at 

the estimated ability of each examinee individually. Each of these designs possess a 

variety of benefits and drawbacks for different testing constructs, and making the choice 
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among such designs involves considerable thought and research on the part of a 

credentialing testing organization about the nature of the construct, the level of 

measurement precision necessary, and the examinee population. 

Available test designs in the measurement literature fall into three categories, one 

that is not adaptive - linear fixed form test design, and two others that are adaptive - 

multi-stage test designs and computer-adaptive test designs. The first of these, the non- 

adaptive linear fixed-form test, has been widely implemented in both paper and pencil 

and CBT. In a CBT context, Parshall, Spray, Kalohn, and Davey (2002) described the 

linear fixed-form test as a computerized fixed test, or CFT. The second and third families 

of designs, multi-stage testing (MST) and computerized-adaptive testing (CAT), are both 

adaptive and are primarily implemented in a computer-based setting. There are 

substantial differences between these families relating to the test units by which the 

adaptive algorithm works: in the former case adapting to examinee ability occurs by sets 

of items while CAT is adaptive by individual items. These three families of designs are 

described in greater detail below. 

CFT involves the case where a fixed set of items is selected to comprise a test 

form, and multiple parallel test forms may be created to maintain test security and to 

ensure ample usage of the item bank. In this approach, test forms may be constructed 

well in advance of actual test administration or assembled as the candidate is taking the 

test. This latter circumstance, commonly referred to as linear-on-the-fly testing, or 

LOFT, is a special case of CFT that uses item selection algorithms that do not base item 

selection on estimated examinee ability; rather, selection of items proceeds relative to 

other predefined content and other statistical targets (Carey, 1999). Each examinee 
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receives a unique test form under the LOFT design, but this provides benefits in terms of 

item security rather than psychometric efficiency, as noted by Folk and Smith (2002). 

Making parallel forms or introducing some randomization of items across forms can 

address item exposure and test security concerns. Some other advantages associated with 

linear fixed forms and LOFT include 1) the opportunity for examinees to review, revise, 

and omit items, and 2) the perception that such tests are familiar and easier to explain to 

candidates (Patelis, 2000). 

The linear test designs possess many clear benefits for measurement, and 

depending on the purpose of testing and the degree of measurement precision needed 

they may be wholly appropriate for many certification and licensure organizations. 

However, other agencies may be more interested in other test designs that afford them 

different advantages, such as the use of shorter tests and the capacity to obtain more 

precise measurement all along the ability distribution and particularly near the cut-score 

where pass-fail decisions are made in order to classify examinees as masters or non¬ 

masters. The remaining two families of test designs are considered to be adaptive in 

nature, though they do differ somewhat with respect to structure and format. 

The second family of test designs (MST) is often viewed as an intermediary step 

between a linear test and a CAT. As a middle ground, MST combines the adaptive 

features of CAT with the opportunity to pre-assemble portions of tests prior to 

administration as is done with linear testing (Hambleton, 2002a, 2002b). MST designs 

are generally defined by using multiple sets of items that vary on the basis of difficulty 

and routing examinees though a sequence of such sets based on performance on previous 

sets. As shown in Figure 1.1, for the more general MST design, each set of items an 
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examinee receives comprises a stage, and most of the most common MST designs use 

two or three stages, although the actual number of stages that could be implemented 

could be set higher (or lower) given the needs of different testing programs. In theory, 

with a sufficient item bank each of the sets of items administered in a given stage can be 

built to meet the specific statistical and content constraints of the test at large and yet vary 

by difficulty to ensure that the process of tailoring can proceed to a high level of 

measurement accuracy (and ultimately decision accuracy) for most candidates. 

The third family of test designs, CAT, can be viewed as a special case of the MST 

model to the extent that CAT can be thought of as an MST made up of n stages with just 

one item per stage. In both cases the fundamental principle is to target test administration 

to the estimated ability of the individual. There are differences, of course: as item 

selection in CAT is directly dependent on the responses an examinee provides to each 

item singly, no partial assembly of test forms or stages takes place for a computerized- 

adaptive test prior to test administration. Furthermore, given that CAT is adaptive at the 

item level. Lord (1980) and Green (1983) indicate that this test design provides the most 

optimal estimation of candidate proficiency all along the ability continuum relative to 

other test designs. 

However, there are limitations to the promise of CAT for credentialing 

assessment. One particular vulnerability of CAT from the perspective of examinees is 

the issue of item review (Wainer, 1993; Stone & Lunz, 1994; Vispoel, Rocklin, & Wang, 

1994; Wise, 1996). Whereas in traditional paper-based administration examinees can go 

back and change answers as they see fit, this is not an option in most implementations of 

CAT because of the nature of the adaptive algorithm. Once an answer is provided to a 
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particular question and the examinee elects to go on to the next item, that response is 

used to determine the next item to be presented. If an examinee were allowed to return to 

previously administered items and change their responses to even a few items, it would 

limit the effectiveness of the process of adapting the test to evolving estimates of 

examinee proficiency. Given this difficulty, MST is an attractive alternative, because 

individual examinees can be given the opportunity to move around and answer items 

within a stage in whatever sequence they please. After completing a stage in MST, 

however, the items within that stage are usually scored using an appropriate IRT model 

and the next stage is selected adaptively, so no return to previous sta2es can be allowed 

(though, again, item review within a module at each stage is permissible). 

Other potential difficulties associated with CAT from an implementation 

perspective include assuring proper content representation, the difficulty of using item 

sets where local dependencies may exist, the size of the item bank needed to support 

CAT while preserving low item exposure, and perceived inequities among examinees due 

to individuals receiving completely different sets of items. These drawbacks of CAT, 

when taken with the relative rigidity of linear test forms, promote continued investigation 

into alternative test designs within the broad heading of MST for certification and 

licensure assessment. 

Thus, a primary distinction between test designs that can be made concerns the 

property of being adaptive or not. Traditionally, linear forms have predominated 

operational testing (both paper-and-pencil and computer-based). However, advances in 

research into item response theory over the years (Lord & Novick, 1968; Hambleton & 

Swaminathan, 1985; Hambleton, Swaminathan, & Rogers, 1991) and the advent of 
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powerful and inexpensive desktop computers have facilitated implementation of adaptive 

test models. Such methods are described as adaptive in the sense that the sequence of 

items or sets of items administered to an individual examinee is dependent on the 

previous responses provided by the examinee (Lord, 1980). 

To the extent that the item bank to be used is wide and deep enough to provide 

items that are maximally informative about each examinee’s ability level (while 

maintaining item exposure levels sufficiently low enough to ensure test security), 

adaptive testing represents an approach to measurement that is more economical from an 

information-gathering perspective than the simple linear test form because the 

examinee’s ability is factored into item selection. After administration of an item or a set 

of items on the test, the general methodology for adaptive tests is for the computer to use 

the item statistics computed under the principles of item response theory (IRT; see 

Hambleton, Swaminathan, and Rogers, 1991) and calculate a provisional ability estimate 

for the examinee; that provisional estimate is then used in to identify an item or set of 

items that the individual examinee will have on average a 50% chance of answering 

correctly. These are the test items for which predictions about each individual 

candidate’s responses are most uncertain, and therefore, the most information about 

candidate ability is learned from administration of these items. Estimation of ability and 

administration of test items continues on in this way until some stopping rule is reached 

(such as presentation of a set number of items or the standard error of measurement for 

the examinee dropping below a pre-specified threshold). 

Thus, adaptive testing represents a considerable step toward efficiency in 

measurement because an examinee that early on in a test exhibits high ability need not be 
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presented with many items of low difficulty, and conversely, a low-ability examinee 

would not receive many very hard items. With such efficiency, test length may also be 

reduced. Other advantages associated with adaptive testing include enhanced test 

security, testing on demand, individualized pacing of test administration, immediate 

scoring and reporting of results, and easier maintenance of the item bank (Hambleton, 

Swaminathan, & Rogers, 1991). At the same time, adaptive testing is administratively 

more complex, involves a changed approach to test development that is something of a 

departure from the procedures used in paper and pencil testing, and presents its own 

security concerns. 

In sum, the choice of test design for a testing program is one that must be made 

with both measurement and practical considerations in mind. As both benefits and 

disadvantages of the different designs become clear through research, practitioners will 

be able to make appropriate decisions given the needs and peculiarities of individual 

testing programs. To that end, continued investigation into alternative test designs within 

the broad heading of MST for certification and licensure assessment is warranted. 

1.2 Statement of the Problem 

While three general families of tests designs exist, among paper-and-pencil (P&P) 

tests the linear test design is most commonly used, as in most cases implementing 

adaptive strategies for paper-based tests is not operationally feasible, although some 

recent research has explored this possibility (e.g., Zimowski, 1988,1989; Bock & 

Mislevy, 1988; Bock & Zimowski, 1989,1998; Rock, Pollack, & Quinn, 1995). With 
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respect to CBT, operational testing programs have to this point for the most part 

implemented their assessments as either CFT or in a CAT format. 

At once reflecting these trends and providing the empirical foundation for them, 

operational testing has by and large focused a great deal on linear fixed-forms and CAT 

with comparatively limited use of MST over the years, although the research base for the 

adaptive-by-stage testing method can be traced back over fifty years. Indeed, some of the 

initial research into tailored test methods was completed on tests that routed examinees 

though sets of items (rather than by each individual item) that varied by difficulty, and in 

recent years, MST has garnered increasing levels of interest by operational testing 

programs. This is made particularly evident by consideration of a number of important 

studies on MST that have been completed recently, including (but not limited to) Luecht, 

Nungester, & Hadadi (1996), Luecht andNungester (1998), Patsula (1999), Patsula and 

Hambleton (1999), Reese and Schnipke (1999), Reese, Schnipke, and Luebke (1999), 

Schnipke and Reese (1999), Xing (2001), Xing and Hambleton (2001), Jodoin (2002), 

Jodoin, Zenisky, and Hambleton (2002), and Xing and Hambleton (2002) as well as the 

continued progress with testlet research (e.g., Wainer & Kiely, 1987; Wainer & Lewis, 

1990; Wainer, Sireci, & Thissen, 1991). These studies represent important steps in 

exploring the psychometric properties of multi-stage tests relative to other test designs, 

but some research questions remain, particularly relative to MST-specific design 

variables such as how such tests are assembled in terms of structural variables and in 

light of specific examinee populations and item bank limitations. 

In particular, the interaction between several specific design variables is not well 

understood in terms of measurement precision, decision accuracy, and decision 
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consistency as well as operational matters such as item and module exposure rates. Chief 

among these is the role of test information, including 1) the extent to which it is possible 

to decrease such information and yet still obtain high levels of measurement accuracy and 

2) the distribution of such information across stages of the test. Two other issues of 

critical interest are test design structures and the routing strategy used. There are 

countless ways in which a multi-stage test can be structured with respect to both within- 

and across-stage dimensions, and the method used to identify which examinees are routed 

to which modules in stages after the first is a topic basic to the design. However, the 

MST literature to this point has been relatively ambivalent on advantages and 

disadvantages of routing strategies. Different authors have employed a variety of 

strategies to varying results, and no simulations or other operational studies have been 

undertaken to provide direct comparisons of different methods. 

Before implementation of MST can continue on a large-scale, it is clear that work 

remains to be done to advance understanding of these issues and variables. To the extent 

that testing programs are looking to use MST for high-stakes decisions, investigation of 

the properties of different implementation strategies seems appropriate and useful to the 

measurement community. 

1.3 Purpose of the Study 

In focusing the research at hand to adaptive testing using such sets of items (or 

stages), this study is intended to build on the MST findings already in the literature to 

further understanding of the measurement properties of various MST strategies. This 

study involves an investigation of the relational impact of variables such as amount of 
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target test information, different passing rates, and routing strategies in the context of 

several commonly-researched MST designs. The purpose of this research is to advance 

an established line of research on the MST methodology by enhancing understanding of 

how such variables interact for estimating ability and ultimately impact pass-fail 

decisions for individual examinees. 

1.4 Significance of the Problem 

With respect to certification and licensure assessment, the purpose of testing is to 

identify those individuals who have met a particular set of standards 'within a specified 

profession, and as such tests used to grant professional competence need to be 

particularly precise in the area around the passing score (American Educational Research 

Association, American Psychological Association, and National Council for 

Measurement in Education, 1999). This condition provides a compelling psychological 

argument for some form of targeted or adaptive testing, to ensure that the maximum 

amount of measurement information is gathered from each candidate in order to make the 

most accurate decision reasonably possible in each case. 

In a general sense, adaptive testing is defined by iteratively updating provisional 

estimates of examinee proficiency subsequent to receiving a response or set of responses 

from an examinee and then choosing the next item(s) based on the fresh estimate. 

Currently, adaptive testing methods are widely used for testing in a variety of educational 

and psychological contexts, although the most common implementation of the adaptive 

testing model in use today involves tests that are (1) constructed based on the principles 

of item response theory (IRT), (2) delivered to examinees by computer, and (3) adaptive 
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by item/ The NCLEX, used as a tool for granting professional licenses to nurses, is an 

example of one such test. 

However, given that different test designs are differently appropriate in different 

testing situations, once the purpose for testing, the construct of interest, and the examinee 

population are taken into account, it is clear that research into alternative test designs 

such as variations on the MST model as described above is critical for informing the 

decisions of test developers who must be mindful of the needs of individual testing 

programs particularly in certification and licensure assessment. While the level of 

precision afforded a testing program by fully adaptive CAT may not be needed for 

examinees that clearly pass or clearly fail, professional testing programs may have other 

reasons for wanting to obtain more individualized measurement information for all 

examinees at all points on the ability scale. For example, a credentialing or licensure 

organization might perhaps be interested in providing diagnostic information for lower- 

performing candidates or publicly recognizing the performance of particularly high- 

ability candidates, in which case the additional measurement data obtained through 

adaptive methods would likely be regarded as a decided advantage for adaptive designs 

over traditional, linear, fixed-form approaches. 

This study carries with it significant implications both for the theoretical 

underpinnings of the concept behind multi-stage testing and for operational psychometric 

practice. Ultimately, just as there are many ways of implementing CAT, there are many 

design variables that directly affect the efficacy and practicality of MST. As such, the 

* That particular sort of assessment has been extensively researched and implemented 
(see edited books by van der Linden and Glas (2000) and Wainer, et al. (2000) for 
excellent overviews of the theory and practice in that area). 
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study described here represents an effort to clarify and further advance understanding of 

the psychometric properties of MST as it may be used in operational credentialing 

assessments. 
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Figure 1.1. Three-Stage MST Design with 3 Levels of Difficulty in the 2"^ and 3^^^ Stages 

Low High 
Examinee Ability 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

2.1 Introduction 

Provided in this chapter is an overview of the theory behind MST with particular 

focus on the basic structure of a multi-stage test. This includes information about 

variations on approaches to the MST model used in operational testing given various 

measurement and practical considerations, as there are a number of design variables that 

can have significant bearing on test results. Also, as important studies about the 

usefulness of adaptive-by-stage testing techniques have been completed in both IRT and 

non-IRT contexts, in summarizing the tradition of research into MST relevant research 

findings from both of those theoretical perspectives are detailed. Lastly, this review of 

the multi-stage testing literature concludes with the consideration of some different 

special-case applications of the multi-stage methodology and the highlighting of several 

areas for research that significantly inform the design of the current study. 

2.2 Fundamentals of the MST Design 

MST can be described as an approach to testing that involves the adaptive 

administration of sets of items to examinees. As such sets vary on the basis of difficulty, 

the particular sequence of item sets that any one examinee is presented with as the test is 

administered is chosen based on the examinee’s ability estimate. After an examinee 

finishes each item set, that ability estimate is updated to reflect the new measurement 

information obtained about that examinee’s ability through administration of the item set. 

In MST terminology, these sets of items have come to be described as modules (Luecht 
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& Nungester, 1998) or testlets (Wainer & Kiely, 1987)^ and can be characterized as short 

versions of linear test forms where some specified number of individual items are 

administered together to meet particular test specifications and provide a certain 

proportion of the total test information. The individual items in a module may be all 

related to one or more common stems (such as passages or graphics) or be more generally 

discrete from one another, per the content specifications of the testing program for the 

test in question. These self-contained, carefully constructed, fixed sets of items are the 

same for every examinee to whom each set is administered, but any two examinees may 

or may not be presented with the same sequence of modules. 

The stage in multi-stage testing is an administrative division of the test that 

facilitates the adapting of the test to the examinee, and each examinee receives a 

minimum of two stages’ worth of modules (the exact number of stages is a decision for 

test development relating to content coverage and measurement precision). In each stage 

of the test, an examinee receives a module that is selected as appropriate for that 

examinee in terms of difficulty based on the ability estimate computed fi-om performance 

on the stage(s) prior. Within a stage, there are typically two or more modules that vary 

from one another on the basis of average difficulty. As candidates progress through the 

test, they are routed to the one module within each stage that is likely to be most 

informative for estimating that individual’s true ability: strong candidates receive 

modules of higher average difficulty, while less able examinees are presented with 

modules that are comparatively easier. 

‘ While testlet is sometimes taken to refer to a set of items linked by a common stem or otherwise 

dependent on one another, it has more recently referred more generally to any set of items designed to be 

administered as a group within a larger test instrument. As such, though module is used within this 

research for consistency, the terms module and testlet are interchangeable in the literature. 
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A typical administration of a multi-stage test, constructed and administered in an 

IRT context, proceeds as follows. An examinee in the first stage is typically administered 

a module of medium difficulty. As with many applications of adaptive testing, the use of 

a medium difficulty starting point is common because no prior information about 

individual candidates is known. As a starting point in MST, medium difficulty modules 

are likely to be informative from a measurement perspective for a large proportion of 

candidates and allow for highly efficient routing of many candidates to second-stage 

modules. After the first-stage module, the examinee’s responses are scored and a 

provisional ability is estimated using one of a variety of methods, primarily Bayesian or 

maximum likelihood estimation (Hambleton, Zaal, & Pieters, 1991). The examinee is 

then routed to a second-stage module based on that estimated ability, and this process 

continues through as many stages/modules as the testing program deems necessary to 

achieve a desired level of measurement precision, decision accuracy, or test length. 

In terms of implementing MST, as with CAT, there are many design variables and 

development procedures that come together and impact what the finished product of a 

multi-stage test’s ‘test form’ looks like both psychometrically and from the perspective of 

the examinees. One of the advantages of the multi-stage design is that there are 

numerous ways in which it can be implemented and so it is a highly customizable design 

for testing programs to use. At the same time, many of the practical issues that arise with 

CAT (as inventoried by Green, Bock, Humphries, Linn, and Reckase (1984), Mills and 

Stocking (1996), and Wise and Kingsbury (2000)) are directly relevant to implementation 

of MST. However, the issues that occur with the development and operational use of 

MST are different enough to warrant a review of the design variables present in MST, the 
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methods used in developing multi-stage tests, and the operational issues that must be 

reckoned with, given that the properties and features of MST for certification are 

continuing to evolve and emerge as research goes on. 

For example, in providing an overview of two-stage testing using IRT, Lord 

(1980) outlined a number of design considerations that he identified as impacting the 

nature and quality of ability estimation from tests using a two-stage procedure. His ideas, 

as abstracted below, can be generalized to a test of n stages: 

• Total number of items in test 

• Number of items in initial and each «-stage module 

• Difficulty of the initial module 

• Number (and difficulty) of alternative modules in each «-stage 

• Cut-points for routing examinees to modules, and 

• Method for scoring stages and each 12-stage test. 

While Lord suggested that it was not possible to identify truly statistical optimal 

designs for each and every operational testing context, it seems entirely reasonable to find 

combinations of these variables that would provide high-quality results as needed for a 

particular test’s use or the interpretations to be made based on the test scores. 

To Lord’s (1980) list can be added several additional considerations that have 

emerged through MST research, including the number of stages, the ability distribution of 

the candidate population, the extent of target information overlap for modules within 

stages, whether random module selection (at appropriate difficulty level) or panel-based 

administration is used, whether content-balancing is done at the module or total test level, 

choice of method for automated test assembly, the size and quality of the item bank, how 
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test information is distributed across stages, placement of cut-scores for pass-fail 

decisions, the issue of item review, and item exposure levels. To facilitate understanding 

of the issues involved, each of these considerations can be loosely clustered as related to 

either (1) basic structure variables, (2) test and module assembly issues, or (3) 

administration. Each of these clusters and its associated variables are defined and 

detailed below. 

2.2.1 Basic Structural Variables of the MST Design 

There are several MST design variables that, when taken together, help to define 

the basic structure of an MST in practice. The first of these is the total number of items 

in the test. An often-cited benefit of adaptive testing is the opportunity to shorten tests in 

terms of the number of items presented to each examinee (thereby reducing testing time) 

by targeting tests to examinee ability, a test that is adaptive either by items or by stages 

need not necessarily be as long as a linear test form (Bergstrom & Lunz (1992), but 

considerations of domain coverage and measurement precision still must be balanced. 

Research in MST specifically in a certification context has seen a wide range of 

test lengths, including studies with over 150 items administered to examinees over six 

stages (Luecht & Nungester, 1998) and with 35 items (two stages), as found in some 

information-technology testing applications (Xing & Hambleton, 2002). A recent study 

by Jodoin, Zenisky, and Hambleton (2002) found that a 40-item two-stage test performed 

nearly as well as a 60-item three-stage test (as represented by decision accuracy (DA), 

kappa, and correlations between true and estimated abilities from each design). In both 

cases the number of items per stage was held at 20. The key point to be made here is that 
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as compared to a fixed-length exam, multi-stage tests can be shorter, although the exact 

reduction in the number of items is a matter of both research and practical considerations 

such as content coverage. 

When describing test length in the context of MST, while that quantity is clearly 

defined by the total number of items in the test, it also concerns the total number of stages 

in the test. The MST literature itself is divided on how many stages provide optimal 

measurement, and as with many of the other design variables in MST that number is 

closely related to other issues such as how many items are to be included per stage. 

While.most of the MST research to date has focused on two- and three-stage tests in 

which all examinees receive the same number of stages, there are exceptions, of course. 

The literature on computerized mastery testing (CMT) which is a variation on the basic 

MST approach involves variable-length mastery tests where different examinees may 

receive different numbers of modules, and a four-stage test was the focus of a study by 

Luecht, Nungester, and Hadadi (1996; also Luecht & Nungester, 1998). The number of 

stages is also affected by policy considerations: for example, in a high-stakes context, 

stakeholders may not be comfortable using a two-stage test due to a perception of some 

candidates being unable to recover or ‘pass’ if their true abilities are at or above passing 

and they are routed to a lower-difficulty module in the second stage. Clearly, 

measurement efficiency is not the only consideration taken under advisement in the 

process of deciding the appropriate number of stages to include. 

Along with establishing the total test length and the number of stages, another 

critical consideration is of how many items per stage to administer. If ease of explanation 

to candidates and greater standardization of module development is a priority for a testing 
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agency, then it may be preferable for modules within and across stages to be of equal 

length. Some recent studies (Jodoin, 2002; Jodoin, Zenisky, & Hambleton, 2002; 

Hambleton & Xing, 2002) have implemented modules consisting of 20 items in each of 

three stages, while Luecht and Nungester (1998) worked with three-stage tests composed 

of modules that were 60 items in length (total test: 180 items). Alternatively, work by 

other researchers has explored other configurations of items, such as longer first-stage 

tests (Xing & Hambleton, 2002) or tests with more items in the stage(s) after the first 

(Loyd, 1984; Reese, Schnipke, & Luebke, 1999; Schnipke & Reese, 1999; Reese & 

Schnipke, 1999; Kim & Flake, 1993; and Castle, 1997). Patsula (1999) defined the 

rationale for longer first stages as relating to the need for more accurate measurement in 

the first stage prior to routing (the ‘Routing Test’ strategy), while extending the length of 

subsequent stages may be justified by the thinking that since the tests are more closely 

aligned with examinee ability at later points in the test, providing more items tailored to 

estimated ability in those stages is capitalizing on the information obtained from 

candidates after some routing has been done (the ‘Higher Stage’ strategy). 

One caution to module length mentioned in the literature is the need to keep 

module length consistent within stages. This is to say that for reasons of fairness testing 

programs may want to avoid routing some examinees between stages on the basis of 

more or fewer items than other examinees. This caution does not preclude longer first 

stage tests followed by shorter modules in subsequent stages (or vice versa) but is just to 

endorse uniformity for fairness within stages (Luecht & Nungester, 1998). 
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2.2.2 Test and Module Assembly 

The characteristics and methods involved with the actual construction of MST 

tests and modules are among the design considerations in MST that are particularly 

complex and which most clearly help to differentiate MST from other test designs. For 

example, the difficulty of the first-stage module in an MST is a critical decision of test 

development. The choice of a starting point for a multi-stage test is much the same as it 

is for CAT: namely, in the absence of information about an examinee, the optimal 

starting point is in the area of medium difficulty to obtain maximal information about as 

many candidates as possible at the outset. Thissen and Mislevy (2000) suggest for test 

developers to stipulate an initial estimate of ability that specifies what difficulty level of 

testlet to begin with. The notion of maximizing information from the very start in CAT is 

an even greater necessity in MST because the adaptive routing does not occur until an 

examinee has already received perhaps as much as one-third or even half of the test via 

the first stage. For this reason, in the context of testing with a relatively normal 

distribution of candidates, starting with a medium-difficulty module helps to ensure that 

the initial module presented will be informative in a measurement sense for a large 

proportion of examinees. 

Once examinees have been administered the first-stage, the critical issue of the 

MST design concerns the number of and the relative difficulty of the modules in each and 

every subsequent stage, an issue discussed at length by Lord (1980). In the prototypical 

MST presented earlier in Figure 1.1, there are three modules in both the second and third 

stages. The design process for these modules in stages subsequent to the first is 

contingent on several points, including the level of routing precision desired by the 
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testing program, the depth and breadth of the item bank, and the extent to which such 

modules should be discrete or can overlap. Notice that these differ by difficulty: for 

example termed easy, medium, and hard, they are generally aligned relative to the ability 

continuum of candidates, such that lower-ability candidates should be routed to the easier 

modules in each stage while more proficient examinees would be presented with more 

difficult modules. 

However, to the extent that easy, medium, and hard are relative terms that have 

meaning for items, these modules are actually referenced by the ability scale (which in 

IRT generally ranges from -3.0 to 3.0). An example in the case of a stage with three 

levels might involve using test assembly procedures to target the three modules at -0.5, 

0.0, and 0.5, respectively. In the process of constructing such modules, a testing program 

might want to make the modules more distinct from one another, such as in recent studies 

by Jodoin (2002) and Xing and Hambleton (2002) where the easy and hard modules were 

transformed by one full standard deviation. 

However, as module difficulty is generally defined by average Zi-parameter 

estimates, such averages can be obtained in two ways. Lord (1980) referred to these as 

either peaked or non-peaked distributions of items within modules. Peaked modules are 

those in which items are all of approximately equal difficulty, while non-peaked modules 

contain more variation and so the average difficulty is arrived via a more heterogeneous 

assemblage of items. 

Another consideration in the development of an MST is whether content¬ 

balancing should occur at the module or total test levels. As described previously, the 

absolute number of items is dependent on the complexity of the construct of interest. 
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However, a related point for test developers exploring MST as a test design is whether 

domain coverage should be achieved within stages or across the whole test (Luecht & 

Nungester, 1998; Folk & Smith, 2002). To meet elaborate content specifications within 

stages can require more items at each stage, while meeting test specifications across an 

entire test provides greater flexibility in terms of test assembly. 

A difficulty in content-balancing across the entire test, however, is that test users 

may not consider routing examinees through a limited number of stages when each of the 

stages is not reasonably representative of the domain of interest appropriate. In other 

words, if the set of items an examinee is given only covers a portion of the test 

specifications, can decisions about the rest of the test be based on data that is incomplete 

in that respect from a fairness perspective? Research is not clear on this point, but it may 

be that stages with fewer items in relatively constrained domains of interest (i.e., reading 

comprehension) may be perfectly appropriate for content-balancing within stages 

whereas more content-based and/or cognitively complex domains may require more 

items within a stage to accomplish the same goal. In some testing applications, resolving 

this dilemma may result in the administration of more items than are strictly necessary for 

precise ability estimation (Folk & Smith, 2002). 

Research into item bank size and the quality has been extensively studied in the 

specialized context of CAT, but empirically speaking this topic is only now beginning to 

be considered specifically in the context of MST, particularly as advances are made in the 

area of automated test assembly. A notable exception concerns recent studies by Xing 

(2001) and Xing and Hambleton (2002). In the Xing study (2001), varying conditions of 

item bank size and quality and placement of passing score were compared for a CAT, a 
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two-stage test, a three-stage test, and a linear form. Of the 72 possible conditions in the 

study (4 CBT designs x 2 levels of bank size x 3 levels of item quality x 3 levels of 

passing score), it was found that as item quality improved so did both decision accuracy 

(DA) and decision consistency (DC). In addition, larger item banks were found to be 

preferable. Also, because of the potential for lowering exposure levels of item and 

increasing test information, Xing noted that the benefit of larger item banks came in the 

form of greater ability to meet statistical targets such as test information functions and 

automated test assembly constraints. A subsequent study further exploring variations in 

item bank size and item quality (Xing & Hambleton, 2002) found little difference among 

different test designs (linear forms, 2-stage MST, and CAT) but the quality and size of 

the item bank did make a practically significant different in the results. 

To implement many of the design variations, item bank considerations are critical 

in that automated test assembly builds require that the item pool be of a depth and breadth 

to support such construction. For certification and licensure programs looking to move 

from paper-based to computerized-adaptive formats (such as CAT or MST), the item 

bank may have to be augmented in a substantial way because in non-adaptive pass-fail 

testing, items are often targeted to the cut-score. Given the focus of test development in 

credentialing on accuracy of pass-fail decisions rather than maximal information at the 

ends of the ability scale, there will likely be a relative dearth of items at the easy and hard 

ends of the difficulty scale. Therefore, test development for MST may be hindered in the 

process of assembling varyingly difficult modules. 

The ability distribution of the candidate population is a matter of importance in 

test development with any test design, but is a particular concern with the development of 
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MST. As explained in a study by Hambleton and Xing (2002) that included this as a 

variable, where the candidate population is located in the ability continuum has clear 

implications for measurement with regard to where target information functions are 

centered. This issue is one of efficiency: of course, cut-scores may be set independent of 

the nature of the candidate ability distribution, but the characteristics of the candidate 

pool have an effect on the process of module and test assembly (such as regard for 

average module difficulty and discrimination). Also, the shape of the ability distribution 

can impact module exposure, depending on how and where the cut-scores for routing are 

placed. 

Similarly, deciding how to distribute test information across stages involves 

weighing efficiency and using test design to maximize the information to be obtained. 

This notion of using test information in the development of tests in a panel-based 

structure has been described by Luecht (2000) as a way to provide consistent control over 

error variance of estimated scores at various regions of the proficiency scale, in contrast 

to CAT where the ‘target’ test information function (TIP) can be understood as the 

overall maximum information possible after the last item is administered to an individual 

examinee (for maximizing score precision). For MST, however, modules can be viewed 

as intermediate administration structures of the test, and thus TIPs are specified for each 

module. The issue in this attribute of the MST design focuses on the partitioning of the 

target test information function across stages: is it better for measurement to obtain 

greater test information early on in the test, or hold off and wait until some tailoring of 

the test form has taken place? This is an important area for research. 
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In large part, the literature on methods for automated assembly of modules and 

tests for MST builds on the extensive psychometric research that exists for item selection 

and test assembly for CAT, but automated test assembly (ATA) in an MST context is an 

aspect of the design that contributes substantially to differentiating MST from the other 

test designs. ATA software is designed to implement optimization algorithms or 

heuristics (or both) to satisfy certain content or statistical goals and explicit and implicit 

rules about test fairness and test content (Wightman, 1998), and it is all done in advance 

of testing, which permits human review of the modules. This systematization allows for 

the process of module development to be more standardized, particularly with respect to 

difficulty and test information, and reduces the labor-intensive task of hand-assembling 

the numerous modules needed for a large-scale, operational, high-stakes MST testing 

program. ATA software in effect requires that the constraints and goals of the modules to 

be built be specified as a mathematical optimization model made up of an optimization 

model to be maximized or minimized (Luecht & Nungester, 1998), and the task for the 

software is to solve that model using linear programming, network-flow, or some other 

such approach. 

In the context of assembling a multi-stage test, the issues are many: as described 

by Luecht and Nungester (1998), the challenges include the potential to have the 

algorithm simultaneously solve more than one objective function, the possibility of 

different specifications for different modules, and the need for multiple replications to 

ensure module security and minimize item exposure. Another consideration for ATA is 

related to test structure: multi-stage tests can be built and balanced at either the level of 

modules (bottom-up) or in the total test administered to each candidate (top-down). This 
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distinction is critical in terms of identifying how many target TIFs are necessary for the 

automated test assembly ‘builds’ and thus, with MSI test assembly being described by 

Luecht and Nungester (1998) as either a bottom-up or top-down enterprise, the 

terminology invokes a useful set of visuals for conceptualizing the ATA process. 

A significant logistical issue with the development and administration of a multi¬ 

stage test concerns whether stratified random selection of modules fat appropriate 

difficulty level) or panel-based administration is used. An issue peripherally related to 

the decision of content-balancing within or across modules is whether to establish a bank 

of modules at the requisite different difficulty levels to be selected arbitrarily as 

candidates move from stage to stage or to use what is referred to as multiple panels 

(Luecht and Nungester, 1998; Luecht, 2000). A panel can be conceptualized as a specific 

and fixed set of modules that is assembled before administration and consistently 

administered as a fixed group (Figure 2.1). In a panel, the possible pathways that any one 

examinee may be routed through during the course of administration of a multi-stage test 

are identical for every examinee receiving that panel. Just as multiple parallel forms are 

made for linear tests, for reasons of test security, multiple panels that are developed to be 

classically parallel may be constructed and used in MST. To be clear, in the panel 

structure each panel represents the complete set of unique paths through n stages’ worth 

of modules that an examinee may take, but examinees are not commonly routed through 

multiple panels. 

In contrast, stratified random module selection involves modules that are 

constructed to be more discrete units, and these modules can be assembled in any order 

and combination during the course of the test. Whereas the panel structure is defined by 
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parallelism of the panels, this method is predicated on parallel modules because of the 

process of random module selection. This approach does not lend itself to advance 

checking of pathways. 

With respect to test assembly, there are advantages to each approach. The panel 

structure gives test developers control at the ‘front end’ in terms of managing pathways 

and ensuring that the complete tests are representative of the test specifications, while 

random selection requires that such controls be built into the ‘back end’ of test 

development as they are utilized during test administration. In cases of potential 

compromise, however, testing programs might consider it preferable to be able to pull out 

individual modules rather than remove entire panels from active administration. With 

respect to test security, a testing program may have many modules created to be parallel 

at each difficulty level, or alternatively tens or hundreds of parallel panels. In either case, 

test developers can activate as many or as few modules and/or panels as are needed. 

With respect to the process of creating tests using any test design, one additional 

important consideration for test developers concerns item exposure and test security. In 

CFT, the parallel forms are used to help ensure a measure of security in terms of 

controlling item exposure by limiting the number of examinees who are presented with 
/ 

any one form, while in CAT complex item selection algorithms are used to promote 

usage of the entire bank. With respect to MST, creating multiple parallel modules at each 

difficulty level and developing numerous parallel panels helps to address these issues. In 

addition, different decision rules for routing can distribute examinees differently to 

modules in ways that lessen or increase item exposure. 
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2.2.3 Administration 

With MST modules and (if used) panels in hand, there are a number of decisions 

relative to MST administration that must be made that impact the efficacy and 

implementation of MST. One consideration for implementation of MST (and other test 

designs) is whether or not to permit examinees to return to previously administered items 

during the course of testing. In CAT, of course, this is not a practical option due to 

adaptive routing decisions (although recent work by Papanastasiou (2002) explored a 

rearrangement procedure for adaptive testing with review), and in linear testing item 

review does not negatively impact any routing of examinees. The various studies that 

have been completed to determine any empirical beneficial or detrimental effects of 

review in adaptive testing have returned mixed results. For example, while a study by 

Lunz & Bergstrom (1994) found no significant ability differences among examinees that 

did and did not use review, they did find that simply being allowed the review 

opportunity resulted in significantly better scores. 

In most MST applications, the decision to permit examinees to complete items in 

most any sequence of items within a module is trivial: however, the decision to permit 

review between modules encounters the same obstacle as is found between items in CAT. 

For this reason, review within stages is generally permitted, but not across stages. 

Ultimately, research seems to suggest that the primary benefit of item review is related to 

a psychological comfort factor, and in the context of certification and licensure using 

MST, the option to review within stages may serve to alleviate anxiety for some 

candidates (Patsula, 1999). 
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Lord (1980) cited the issue of strategies and cut-scores for routing examinees to 

modules as particularly critical, as the quality of the method by which examinees get 

routed to certain modules as opposed to others defines the usefulness of an adaptive, 

multi-stage administration. Some of the options cited in the literature for routing 

examinees to modules between stages include using number-correct (NC) scoring, 

cumulative weighted number correct, and IRT-based provisional proficiency scores such 

as maximum likelihood estimates (MLE) or estimated a priori (EAP) estimates (Luecht, 

2000; Armstrong, et al., 2000; Wise, 1999). Other approaches also considered in the 

literature include using maximum testlet information and Wald’s (1947) SPRT (Luecht, 

Nungester, & Hadadi, 1996). To implement number-correct scoring, Luecht, Brumfield, 

and Breithaupt (2002) suggested incremental computation of upper and lower bounds for 

NC scoring of various combinations of routings through the panel structure. Location of 

routing points can be done using either the approximate maximum information (AMI) or 

defined population intervals (DPI) approach. The AMI method uses cumulative TIFs to 

identify optimal decision points for module selection, while the DPI structure is used to 

specify proportional routings through the panel and module structure. 

Through Lord’s (1980) research, he suggested that the difficulty levels of the 

modules should match the estimated ability levels of the candidates who are routed to 

them. As his work was based on trial-and-error efforts in setting cut-scores, he 

recommended that the topic of empirically derived cut-scores deserved more study, and 

this today remains an important area for investigation. In terms of other recent research 

into this topic, Schnipke and Reese (1999) used number correct scoring and a simulation 

study methodology to try and determine cut-scores for classification at each level. Their 
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approach involved trying to minimize mean-squared error (MSE) of theta estimates from 

simulated examinees administered easy, medium, and hard modules in turn to figure out 

at which number-correct value MSE was lowest between low and medium modules and 

medium and hard modules. A study by Thissen (1998) explored a variation on a fixed- 

weight scoring method for testlets that allowed for standard errors of ability estimates to 

be available. Dodd and Fitzpatrick (2002), in discussing the Schnipke and Reese (1999) 

and Thissen (1998) studies, related the two in the context of advancing a routing method 

that is both number-correct and information based. This recommendation involved 

computing number-correct theta estimates and then selecting modules based on 

information at that estimate. 

Kim and Flake (1993) used a simple comparison procedure in which examinees 

were routed to the module whose average difficulty most closely matched their estimated 

ability on the ability scale. Hambleton and Xing (2002) chose to implement strategies 

anchored to the proficiency scale (related to the DPI method suggested by Luecht, 

Brumfield, and Breithaupt, 2002). Here, approximately equal numbers of candidates 

were routed to each second level module. A suggested variation on this approach is to 

have examinees within two standard errors of the value that the MST is targeted at routed 

to the middle difficulty module; examinees on either side of those cut-of values are 

routed to the easy or hard modules as appropriate. 

Another aspect of routing concerns the possible pathways for routing (Luecht & 

Nungester, 1998). To the extent that examinees are routed between modules from stage 

to stage, the number of possible pathways for routing is a variable that can also be 

controlled by the testing program. In some testing applications, examinees might not be 
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permitted to move from the easiest module in one stage to the hardest module in the 

immediately subsequent stage. Such dramatic changes in estimation of ability between 

later stages are not likely under normal testing conditions (Luecht & Nungester, 1998), 

and may well be considered a flag for score review for some testing programs. 

Closely connected to the methods for routing are the methods for scoring modules 

and the entire test. Lord (1980) suggested that in a situation with statistically equivalent 

items, simple number-correct scoring could be appropriate. In the psychometric 

literature, while relatively few studies have focused directly on this aspect of the design, 

scoring in the context of MST has involved Bayesian analysis, approaches based on 

maximum-likelihood estimation, the testlet models of Bradlow, Wainer, and Wang 

(1999) and Wainer, Bradlow, and Du (2000), and more extensive methods based on 

number-correct scoring. 

Schnipke & Reese (1999) authored an important study that explored the use of 

number-correct routing and Bayes modal estimates of ability in the context of two-stage, 

multi-stage, and maximum-information testlet-based designs. Thissen (1998) obtained 

EAP ability estimates for candidates based on a pattern of two or more summed scores, 

and also developed a method for using Gaussian approximation to EAP ability estimation 

that is in essence a weighted linear combination of such estimates from separate summed 

scores, which allows for the estimation of ability from raw score patterns obtained 

through MST. 
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2.2.4 Summary of MST Design Variables 

Clearly, there are many design considerations for the development of MST that 

can significantly affect what a multi-stage test looks like and how the results obtained fit 

in with the purposes and goals of a particular testing program. A multi-stage test as used 

in practice can run the gamut of possibilities from resembling a linear test by 

implementing just a few very long modules and stages, to resembling a CAT with many 

short stages. Fortunately, as described in the next sections, the research base for 

information about MST is considerable, and developing understandings of the 1) 

psychometric issues that arise in the construction and administration of MST and 2) 

relationships between such design variables are both particularly active areas for MST 

research of late. 

2.3 Foundation Research in Adantive-Bv-Stage Testing 

As research into assessments that were adaptive by item or by stage got underway 

in the early-to-mid twentieth century, these kinds of exams became knovm as 

programmed or branching tests. This was owing to the evolving nature of the 

relationship between examinee responses and the selection and presentation of 

subsequent items or stages. Other authors termed such tests tailored, in that the item 

selection was fit to current best estimates of examinee ability (Turnbull, 1951, as noted in 

Lord, 1980). 

In Binet and Simon’s (1905,1908) studies involving paper and pencil intelligence 

testing, they developed a series of thirty individually administered assessments in which 

tests and items were arranged sequentially (in ascending order of difficulty) with the 
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understanding that students who were unable to answer easy questions would, in most 

circumstances, be unlikely to correctly answer more difficult items. Later decision theory 

work of Wald (1947) also factored significantly in advancing this concept of 

incorporating data into the estimation process as it became available, the objective that 

underlies adaptive data analysis methods. Wald’s efforts described an approach to 

classification employing a sequential probability ratio test (SPRT) that involved 

hypothesis testing during data collection, the end result of which in testing environments 

is a classification decision (e.g., pass/fail, master/non-master, certified/not certified). 

Generally speaking, in sequential analysis, as data is collected on a case (or, in an 

assessment context, an examinee), information is compared with certain threshold values 

and conclusions about the case are iteratively updated until some stopping rule is reached. 

The theory behind these first techniques for adaptive testing clearly had 

application in the context of educational and psychological testing (Krathwohl & Huyset, 

1956; Patterson, 1962; Ferguson, 1969a, 1969b), and was also advanced in the area of 

personnel decisions through research by Cronbach and Gleser (1965). The U.S. Army’s 

Behavioral Science Research Laboratory further extended research into branched tests 

with the work of Bayroff and Seeley (1967), and Bayroff, Ross, and Fischel (1974) by 

examining the comparability of adaptive and linear test forms. Lord’s (1971a, 1980) 

description of the flexilevel test also represents a variation on the branching design. The 

flexilevel test is non-computerized approach in which test forms are printed with items 

ordered by difficulty: each answer the examinee provides is either right or wrong and the 

examinee is directed to follow the rule of responding to the next harder or easier item on 

that basis. 
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Early studies of tests that were adaptive by stages incorporated mechanical 

branching rules independent of IRT with paper and pencil tests. Angoff and Huddleston 

(1958) explored the possibility of a two-level testing system for the College Board’s 

Scholastic Aptitude Test (as it was then knovm), finding that administrative complexities 

curbed the benefits of increases in reliability and validity that could be gained through 

use of two-stage testing, while Cronbach and Gleser (1965, chapter 6) studied the idea of 

two-stage testing in personnel decision-making. 

Using classical test theory, Cleary, Linn, and Rock (1968a) developed four 

methods of constructing programmed tests in two-stage testing, which varied from one 

another in terms of how examinees were routed from the first to the second stage of 

testing. They termed the initial set of items provided to examinees the routing test, which 

was followed up by a measurement test. Their work involved simulation of the different 

routing conditions using 11 -grade student item response data for School and College 

Ability Tests (SCAT) and Sequential Tests of Educational Progress (STEP), and in this 

study they found that 40-item tests from each of the four of the routing methods looked at 

provided results (in terms of reliability) that were very much comparable with the full 

190-item linear test, although using only the 40 most discriminating items for a CFT from 

the 190-item bank provided equally reliable results. In a subsequent study, Cleary, Linn, 

& Rock (1968b) used the same data to expand on one of the four methods in the earlier 

study, finding that on average a 40-item two-stage programmed test applying what they 

called a three-group sequential method again provided results that were quite comparable 

with the 190-item CFT. 
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A third study by these researchers (Linn, Rock, & Cleary, 1969) continued the 

previous studies by focusing on the five strategies for routing examinees previously 

considered as well as two additional methods. In this case the evaluative criteria was not 

only the internal criterion of total test score on the 190-item test but also the external 

criteria of scores on two Preliminary Scholastic Aptitude Tests (Verbal and Mathematics) 

and two College Board Achievement Tests (American History and English Composition). 

Against the internal criterion, all of the programmed methods performed well, although 

the authors noted that results from a shortened 40-item linear test with highly 

discriminating items were sufficiently comparable. However, with the external criteria, 

four of the programmed testing methods evaluated (and the group-discrimination method 

in particular) did actually exhibit higher correlations than the linear tests. It was further 

recognized that the relative simplicity of the group discrimination method meant that it 

could be most readily implemented in paper and pencil testing relative to all of the other 

methods studied. 

As this research into two- and multi-stage testing based on classical test theory 

was underway, Lord and Novick (1968) were outlining the fundamental tenets of modem 

test theory. This represented a tremendous step forward for testing and adaptive test 

methods, as with the advent of IRT it was possible to simultaneously incorporate more 

item information beyond just the difficulty parameter, as was done in most of the earlier 

studies into branched tests (Kim & Plake, 1993). Furthermore, comparisons between 

examinees taking different items could be more easily made under IRT given the 

property of invariance for item and ability parameters. Using IRT as the basis for 

adaptive testing also provides improved measurement precision, the potential to 
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maximize testing efficiency for each examinee (given a sufficiently broad and deep item 

bank, to ensure that as many items targeted at the examinee’s ability level as possible can 

be administered), shorter tests, suppression of omitted response options, and enhanced 

test security (Lord, 1977; Hambleton, Swaminathan, & Rogers, 1991). Clearly, there are 

many advantages to adaptive testing strategies that are well documented and recognized 

in the psychometric literature, and such benefits have become particularly evident in light 

of widespread understanding and implementation of IRT. 

One of the first authors to provide a framework and measurement justification for 

adaptive-by-stage testing with IRT was Lord (1971b), who described two-stage testing as 

a method for providing the advantage of improved measurement for not only typical 

examinees but also those at the extremes of the ability distribution. In one design 

proposed, items were assumed to differ only with respect to difficulty, though within 

each individual second-stage test items were of more or less equal difficulty. In the other 

design, the difficulty of the second-stage tests are overlapping and each test within a 

stage (referred to by Lord as levels) should be maximally efficient for assessing 

examinees in its part of the score scale, while being economical about usage of the item 

bank. Simulation results suggested that just three or four levels of the second-stage test 

provided reasonably good measurement results. These results were consistent with later 

findings from studies of the self-routing multilevel test (Lord, 1971b, 1974, 1980; Marco, 

1977), although information at the ends of the ability distribution was slightly lower than 

as was seen in the middle range. 

An additional program of studies into adaptive-by-stage testing was undertaken 

by researchers at the University of Minnesota in conjunction with the Office of Naval 
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Research, in which the measurement properties of two-stage testing were evaluated for 

possible use in military testing. Betz and Weiss (1973) found that relative to 

conventional linear tests, the two-stage design they were studying had lower rates of 

misclassification (4%-5%) and that scores from the two-stage test were somewhat more 

variable on average. In a follow-up study designed to be a generalization of the 1973 

study, Betz and Weiss (1974) implemented two two-stage strategies where the first was 

as before but the second consisted of a routing test that was somewhat harder and a 

second-stage test with items that were more discriminating on average. The findings 

from this study showed that recovery of the true ability distribution was best with the 

improved two-stage design, and reliability of the second two-stage test was higher. 

These results are significant in that they highlight the relationship between the item 

statistics of the items grouped together in the modules and the quality of the measurement 

obtained. Similarly, a subsequent study by Larkin and Weiss (1975) reported that as 

examinees were more accurately routed to second-stage tests by improved first-stage 

tests, misclassification decreased substantially. 

2.4 Current MST Research 

Clearly, given the design variables detailed previously, what is generically 

referred to as The MST design’ in fact comprises an enormous range of theoretical and 

practical alternatives for implementation. While these variations do correspond to a high 

level of complexity for implementation, this design also represents tremendous flexibility 

for individual agencies. With such an accommodating design, MST is a very 

customizable approach to obtaining measurement precision for examinees along the 
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ability continuum. However, the measurement properties associated with the many 

possible MST variations are not yet well understood, and so research into applications of 

MST using IRT has continued in three primary directions. 

First, many studies have taken an outcomes-oriented approach with particular 

focus on the effects of various test structures and different implementation strategies, 

particularly with respect to the dimensions suggested by Lord (1977,1980). Comparing 

results from simulation studies of MST and other test designs has been a primary goal of 

such research, with two outcomes of special interest to researchers with regard to 

measurement with MST: the first of these concerns the quality of ability estimation 

across the continuum of ability and the second involves evaluating the efficacy of the 

design for classification of individuals into pass-fail categories. 

A second critical area for current MST research is the development of ATA 

algorithms for assembling forms. As computer processors become more flexible and 

better able to simultaneously consider multiple constraints for building modules, a 

number of researchers are capitalizing on such power to produce increasingly complex 

methods to meet the many such constraints quickly and efficiently. 

The third direction for MST research to this point has been on investigating 

several specialized cases of the MST methodology within the family of MST designs. 

Applications of MST that involve non-adaptive stage selection techniques and deal with 

the situation of local dependence within modules represent important variations on the 

basic MST model that are deserving of empirical investigation. In this section, the state 

of current research relating to each of these areas will be detailed. 
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2.4.1 Evaluating MST Relative to Other Test Designs 

Numerous recent studies of MST involve examination of the quality of ability 

estimates with respect to the entire continuum of candidate ability, where criteria such as 

root mean square error (RMSE), bias, and relative efficiency are used to compare true 

and estimated values for simulated candidate ability. To evaluate ability estimation 

across the entire ability scale, RMSE provides a measure of accuracy between true and 

estimated ability values by computing the square root of the mean squared difference 

between those values at different ability levels on the 6 scale. Bias refers to the 

difference between the mean of the estimates and the true ability at various levels of 6 

(when bias is positive, ability has been underestimated; conversely, negative bias is 

indicative of ability overestimation). The last index commonly used in such studies is 

relative efficiency, which provides a mechanism for comparing average standard errors 

from different test designs at different ability levels. 

In the work of Reese and Schnipke (1999), where the efficiency of a two-stage 

testlet design was compared with CAT and a paper-and-pencil linear test, ability 

estimation was evaluated using RMSE and bias. Across the entire ability distribution, the 

CAT naturally exhibited the lowest RMSE and the least bias, although the most carefully 

constructed two-stage tests were actually the most error-free in the ability range from - 

2.0 to 2.0. A subsequent study by Reese, Schnipke, and Luebke (1999) that focused on 

strategies for optimal assembly of testlets found that a carefully constructed and content- 

balanced two-stage test outperformed the CAT and the paper-and-pencil test in the 

middle portion of the ability scale with respect to both bias and RMSE, even though the 

statistical constraints for assembly were not strictly met. An additional study authored by 
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Schnipke and Reese (1999) found that several testlet-based designs (including a basic 

two-stage design, a two-stage design with the possibility of changing second-stage levels 

if misrouting was suspected, and a multi-stage test with four stages and a 1-3-4-5 design 

of modules resulted in improved measurement precision as defined by RMSE and bias 

relative to paper-and-pencil testing. The quality of the measurement from those MST 

designs was almost as good as that observed with the CAT designs under study as well. 

Studies by Kim (1993) and Kim and Flake (1993) also focused on two-stage 

testing. The purpose of the former study was to compare an IRT-based two-stage test to 

an individualized CAT to ascertain the conditions when two-stage testing might be an 

acceptably close alternative to CAT in terms of accuracy and efficiency of measurement. 

Variables of interest for the MST designs under consideration included differing the 

length of routing tests, the distributions of item difficulty parameters in the routing tests 

(peaked and rectangular), and number of modules in the second stage (6, 7, or 8). The 

results from this study indicated that a fixed-length CAT provided superior measurement 

precision for ability estimation to IRT-based two-stage tests of equivalent length. IRT- 

based two-stage tests using a rectangular distribution of item difficulty in the routing test 

and an odd number of second-stage tests produced more accurate ability estimates than 

did other two-stage test configurations studied. 

In the Kim and Flake (1993) study, which was an extension of the Kim (1993) 

work, it was found that the structure and attributes of the routing test most substantially 

influenced measurement precision, but in most cases CAT was again providing more 

accurate ability estimates than any of the two-stage designs under consideration in this 

study. The best of the two-stage designs was the one with a rectangular distribution of 

42 



items in the routing test and an odd number of second-stage modules. In investigating the 

quality of measurement associated with two two-stage designs, Lam and Foong (1991) 

and Foong and Lam (1991) found that the recovery of true abilities for multi-stage tests 

was better than for comparable linear tests. 

In Patsula (1999), 12 different MST designs were considered, also relative to 

CAT and paper-and-pencil. These designs varied with respect to the number of stages (2 

or 3), the number of modules in each second and third stage test (either 3 or 5), and the 

number of items in each stage (between 6 and 24 in Stage 1, between 12 and 24 in Stage 

2, and between 6 and 18 in Stage 3). As evaluated on the basis of RMSE, bias, and 

relative efficiency, the errors in ability estimation decreased as more stages and/or 

module per stage were added, though changes in the number of items per stage seemed to 

impact little on the quality of ability estimation. 

However, for credentialing examinations, while individual proficiency estimates 

are important, the primary outcome of consequence is the classification of candidates into 

pass-fail categories on the basis of such scores. Thus, the second approach taken in 

studies of MST designs has focused more purposefully on the making of those binary 

pass-fail decisions using different test designs including MST. These results have 

generally been evaluated in terms of decision accuracy (DA) and decision consistency 

(DC). 

DA indicates whether a decision made about a candidate reflects the truth, in that 

it is computed as a proportion of decisions that are consistent with the true decision 

classifications over all candidates. Similarly, DC reflects the consistency or stability of 

decisions for individual candidates made over parallel forms. If it were realistically 
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possible to have candidates take the same test twice or to administer parallel forms of a 

test to each candidate, DC uses proportion of decision agreement over replications to 

provide insight into reliability of the tests. Though such information is not obtainable in 

most live testing situations, in simulation research it is helpful for understanding the 

properties of the MST design given different conditions. 

With respect to DA, to evaluate whether a given test design properly categorizes 

masters and non-masters, researchers in simulation studies compare true and observed 

classification decisions for Type I and Type II errors given a particular cut-score for 

making pass-fail decisions. The Kappa coefficient is also helpful in this task, in that it 

measures the agreement between the decision based on truth and on estimated ability, 

adjusted for agreement that might be expected to be due to chance factors alone. 

Xing (2001) found that three CBT designs (linear parallel forms, MST, and CAT) 

provided essentially comparable results (as defined by DA, DC, and Kappa) in a 

simulation study investigating the effects of item quality, bank size, and placement of 

passing score. In this study, the passing score is moved but not to see where its 

placement might maximize DA and DC. Rather, the notion is that committees may want 

it set in different places. The placement of a passing score should be based on a 

consideration of content. Within each design, enhancing item quality and enlarging the 

item bank resulted in significant improvements in terms of the criteria of interest for pass- 

fail decision-making. In a follow-up study by Xing and Hambleton (2002), choice of test 

design was again found to be far less of a factor in terms of minimizing Type I and Type 

II classification errors than was bank size and quality. These authors suggest that when 

the pass-fail decisions are the primary objective of an examination, the complexity and 
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effort associated with adaptive test designs may not be entirely justified from a resource- 

allocation perspective: it may be as or more effective for test developers to administer a 

linear test and instead focus development on mechanisms for improving the item bank. 

However, given that result, another study (Hambleton and Xing, 2002) was 

undertaken to explore the issues further: in that study, the focus was on optimal and non- 

optimal designs for linear parallel forms and MST. There, optimal and non-optimal is 

defined as relative to higher measurement precision in either the region of the cut-score 

for passing or in the region of the proficiency scale where many of the examinees are 

located. It was found the distinction made little practical significance, in that all of the 

designs investigated provided measurement results that were better than random 

selection, although in the case of the linear tests matching the test to the distribution of 

examinee proficiency did deliver slightly better results in terms of DA and DC. 

In a recent study by Jodoin, Zenisky, and Hambleton (2002), a 60-item three- 

stage MST was compared with a 40-item two-stage test as well as several 60-item LOFT 

forms and the original, 60-item, operationally-used, linear test forms. The item bank 

used in this study was composed of item parameter estimates from 240 items from a 

paper-based section of a large-scale credentialing examination. While the results from all 

test designs were by and large comparable with respect to DC and DA, the three-stage 

MST and the LOFT forms provided results that were only minimally better than the 

original operational tests. This was in part due to the difficulty encountered by the ATA 

software in meeting the target information functions for the multi-stage and LOFT 

designs due to stringent content constraints. Interestingly, however, the results for the 
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two-stage MST (which, at 40 items, was two-thirds as long as the 60-item three-stage 

MST) were only very slightly lower than those observed for the three-stage MST. 

Jodoin (2002) went on to explore these same designs (LOFT and two- and three- 

stage MST) with an item bank simulated to be improved with respect to both size and 

item quality. In addition, TIFs were varied with respect to information. What this study 

found was that as before, neither of the MST designs provided sizeable measurement 

advantages over linear forms, either in terms of correlations between true and estimated 

thetas or DA, although the longer MST and linear tests did result in slightly better DA. 

2.4.2 Automated Test Assembly TATA) 

ATA is a particularly rich area for research into CBT in general and MST in 

particular. With respect to the state of ATA research, one particularly promising 

approach is the normalized weighted absolute deviations heuristic (NWADH, Luecht, 

Nungester & Hadadi, 1996; Luecht & Nungester, 1998; Luecht, 2000) that uses item- 

level information functions to manage need and availability of items in the bank to 

assemble modules and/or panels as specified by constraints. Other work by Armstrong, 

et al. (2000) and Reese, Schnipke, and Luebke (1999) has invoked a weighted deviations 

model in a process that involves the selection of items at random from the item bank to 

create modules. Berger’s 1994 work on building optimal modules either within- or 

between-modules used test information in an item selection methodology predicated on 

estimating ability as efficiently as possible. This technique is, however, limited by the 

ability-level specific meaning of optimal, in that what is optimal for one ability level 

(range) is clearly not for a different level. 
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Van der Linden and Adema (1998) presented another method for ATA using 

linear programming (LP) where they conceptualize a multiple-form assembly problem 

instead as a series of two-form assemblies. LP was also the subject of an earlier study by 

Adema (1990) in which a variation on LP referred to as mixed integer linear 

programming (MILP). Such MILP models, as noted by Adema, are comprised of both 

integer and continuous decision variables. In this paper, Adema also modified a zero-one 

linear programming (termed ZOLP) approach for use in assembling an MST. Van der 

Linden (2000) presented several alternative methods for ATA based on mixed-integer 

programming for assembling tests from a bank with an item-set structure. These methods 

were evaluated using mathematical programming feasibility and expected solution times. 

Luecht (1997), Vos (2000b), and Vos and Glas (2001) have also studied an aspect 

of ATA for MST that otherwise has not been studied previously: the case of building 

tests or modules with multidimensional constraints. As multidimensional IRT (MIRT) is 

increasingly being studied for eventual use in operational testing, its application to MST 

is a logical extension of previous research. As reported by Luecht, in the 

multidimensional case, TIFs are needed not only for total test or modules but also for 

separate content areas in which subscores are to be reported. 

With so many such approaches to ATA, finding a methodology that aligns with 

the goals of different testing programs is possible. Ideally, however, with respect to 

MST, these automated test assembly algorithms not only need to be flexible enough to 

develop modules for various MST designs but also should be capable of creating multiple 

panels that control the overlap of items or modules between panels. For test 

development, such an approach can improve efficiency with respect to the basic assembly 
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of modules and permit great attention to be paid to those aspects of test assembly that are 

not so easily automated. There are qualitative concerns (for example, sensitivity and 

fairness issues) that are not so easily managed via automation, and those aspects of a test 

or module clearly benefit from careful review by test developers. 

2.4.3 Special Applications of MST 

Though the general MST model is of adaptive by stage testing, research into MST 

does include several specialized variations on the basic design. These lines of research, 

which include situations of non-adaptive multi-stage tests and modules where items are 

associated with a common stem, are described below. 

2.4.3.1 Non-adaptive MST 

At the outset of discussing the basic multi-stage model, MST was positioned in 

the middle ground between linear fixed-form and computerized-adaptive tests that are 

adaptive by item as a test design that affords test developers with some of the advantages 

from both CFT and CAT. Within the broad framework of MST, however, there is a 

substantial body of work relating to alternative MST structures for classification that 

select modules at random rather than based on previous module performance. In 

traditional MST, module selection is presumed to be adaptive in that modules are built to 

reflect several pre-specified difficulty levels and examinees are routed to them 

accordingly based on some routing system (be it IRT-based proficiency estimates or 

another approach such as number-correct scoring). 
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However, in computerized mastery testing (CMT), as described by Lewis and 

Sheehan (1988, 1990), the methodology is a testlet-based structure that implements 

variable-length multi-stage tests with more stages (and hence more items) being 

administered to candidates as needed to fulfill the chosen stopping rule (Folk & Smith, 

2002). Candidates whose estimated ability places them far above or below the cut-score 

receive shorter tests, while those who are closer to the cut would be presented with 

additional sets of items as need to make a mastery decision. The goal in CMT is to 

minimize test length while simultaneously focusing on classification accuracy, and to do 

that all modules in CMT are constructed to be approximately equivalent to one another in 

terms of difficulty and content. Lewis and Sheehan (1988, 1990) used Bayesian decision 

theory and loss functions to minimize misclassification and test length. Because 

categorization into groups of masters and non-masters takes precedence over the quality 

of measurement along the ability scale, not all points on the scale are equally important in 

the basic CMT model. 

After administration of a predetermined number of modules, examinees are either 

1) categorized as masters or non-masters or 2) presented with additional modules if the 

desired level of precision relative to the cut-score is not met. If it is determined that 

testing should continue, this process of administering modules to an individual examinee 

keeps on until such precision is obtained or a maximum number of modules are 

presented. CMT is not, however, adaptive in terms of module selection, only with 

respect to the stopping rule. In the Lewis and Sheehan (1990) study, each examinee 

received between 2 and 6 testlets that were 10 items long (each testlet represented a 

stage). The testlets were constructed to be parallel using a variation of Lord’s (1980) 



procedure for fixed-length mastery testing, and given the decision to use random testlet 

selection the testlets were all peaked in difficulty around the score where examinees 

would be classified into master/non-master status. 

Other studies of CMT include Sheehan and Lewis (1992) focusing on 

nonequivalent testlets and Smith and Lewis (1995) with multiple cut-scores, as well as 

Smith and Lewis (1998, 2002), Vos and Glas (2001), and Yi, Hanson, Widiatmo, and 

Harris (2001). Du, Lewis, and Pashley (1993) explored an application of fuzzy set 

decision theory for determining stopping rules rather than Bayesian approaches. In this 

approach, sets are defined by masters, nonmasters, and people for whom testing should 

continue: the sets are ‘fuzzy’ in that set membership is not according to some hard-and- 

fast rule as in traditional set theory but rather are a more relationally based on degree of 

set membership. They found that fuzzy set methods in a Rasch measurement context 

provided results that were quite comparable to the earlier study by Sheehan and Lewis 

(1990). In addition, research into additional other adaptive selection strategies in mastery 

testing has been developed (e.g., Kingsbury & Weiss, 1983; Reckase, 1983; Vos, 2000a, 

b), but by and large these algorithms are designed to work at the level of individual items 

rather than sets of items. With future research it may be possible to incorporate some of 

these methods for use with in adaptive MST. 

2.4.3.2 Modules with Common-Stem Items 

The second specialized area of MST research is focused on a particular module 

structure, specifically the case where the items within the module are not conditionally 

independent from one another (Wainer & Kiely, 1987; Wainer & Lewis, 1990). In that 
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situation, the appropriateness of some IRT models for adapting the modules to examinee 

ability is directly called into question. 

By way of background, in IRT-based testing, there are two important and related 

assumptions about test items that underlie that use of IRT. The first of these is that 

individual items are locally independent from one another, and the second key 

assumption is of unidimensionality. These assumptions are related because in the case 

where the local independence assumption is violated, something other than examinee 

ability is influencing responses. That something is a dependence between responses to 

individual items that changes the dimensionality of the test form. 

Such dependence is a problem in the context of IRT-based MST where the 

modules are composed of sets of items linked in some way such as a passage or graphic, 

because research has demonstrated that in such cases reliability of the test composed of 

such sets of items tends to be overestimated, resulting in overconfidence in the precision 

of examinee scores (Sireci, Thissen, & Wainer, 1991; Wainer, 1995; Zenisky, 

Hambleton, & Sireci, 2002). In addition to problems with estimation of reliability, item 

sets based on a common stem have also been investigated for the presence of differential 

testlet functioning (a generalization on studies of differential item functioning; see 

Wainer, 1995; Wainer, Sireci, & Thissen, 1991). Lee and Frisbie (1999) also developed 

an approach to estimating the reliability of such modules using generalizability theory. 

In dealing with such testlets with respect to estimating examinee scores, the 

common approach has involved scoring methods using polytomous IRT models (e.g., 

Thissen, Steinberg, & Mooney, 1989), although such an approach was not appropriate for 

adaptive testing. While polytomous models may be useful in that conditional 
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independence between the item sets can be can be retained, the use of polytomous models 

also results in a net loss of item information because not all parameters are estimated for 

each dichotomously-scored item within the polytomous item set. For example, with the 

graded response model of Samejima (1969) a single discrimination parameter for the 

polytomous item is computed, along with a threshold value for each score point. 

However, recent research efforts have been directed toward alternative methods 

for conceptualizing and analyzing modules with items linked in this manner that do 

facilitate adaptive testing. This is an important emerging area of research for MST. 

Work by Bradlow, Wainer, and Wang (1999) and Wainer, Bradlow, and Du (2000) in 

what has come to be described as testlet response theory has brought about the 

development of modifications to the two- and three-parameter logistic IRT models which 

allow for on-the-fly construction of item sets that appropriately meet constraints 

including the minimization of local dependence. In the former case, the model actually 

includes an extra parameter to represent the interaction effect between an examinee and a 

given testlet, while the second study is a further generalization of the previous work, but 

due to added complexity in the 3PL model this methodology is more intensive 

computationally. Further work in this regard has also been done by Vos and Glas (2000) 

and Glas, Wainer, and Bradlow (2000). 

One recent study by Rotou, Patsula, Steffen, and Rizavi (2003) explored the case 

of using set-based items with MST comparing the results to the tests where set-based 

items were administered as a) CAT and as b) paper-and-pencil nonadaptive tests. In this 

study, the researchers had access to 440 items (which comprised 64 item sets) testing 

verbal reasoning ability. The first comparison entailed simulation of a 32-item CAT test 
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and a 33-item two-stage MST (16 items in Stage 1 and 17 items in each of three Stage 2 

modules), and then results from simulated administrations of a 55-item P&P test and a 

54-item two-stage MST (23 items in routing stage and 31 items in each of three Stage 2 

modules) were similarly compared. The outcomes of interest for this study were focused 

on indices of measurement precision, also as related to the choice of the 1-, 2-, or 3- 

parameter logistic IRT model for calibration and scoring. Results indicated that MST 

provided better results than the equivalent-length P&P test, and the results for the CAT 

were also of the same level of reliability as the P&P test. With respect to choice of IRT 

models, the MST design actually gave slightly better results in terms of reliability with 

the 1- and 2-PL than the CAT, while with the 3-PL CAT and MST were largely 

equivalent. 

2.5 Summary 

As the stakes associated with much educational and psychological testing 

continue to increase, more and more attention is being paid to issues such as the role of 

measurement errors and misclassification. For testing programs, particularly in the area 

of certification and licensure (where agencies have the dual responsibilities of providing 

fairness for candidates and protecting the public), obtaining highly precise measurement 

and decision accuracy are critical part of establishing test score validity. This is 

particularly the case in CRT applications such as MST and CAT where technologies for 

administration and test development are changing and being updated with incredible 

speed. In that regard, the goal of trying to identify the single ‘best’ approach or design 

structure in MST for practice even within the general domain of testing for certification 
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and licensure is not a practically viable one. However, efforts to ascertain general 

psychometric properties associated with various design variables of an MST can be 

useful as agencies interested in the use of MST go about the process of designing 

feasibility studies and assessing the costs and benefits (both measurement and otherwise) 

for their testing programs associated with instituting a computer-based multi-stage test. 

For professional credentialing assessment, multi-stage testing can be viewed as an 

effort to capitalize on the efficiency of CAT and the test form assembly controls of linear 

testing. Through this review of the MST literature, it is particularly clear that the relative 

benefits of MST are very much dependent on the characteristics, needs, and goals of 

individual testing programs. Issues such as (but not limited to) depth and breadth of the 

item bank, the selection of automated test assembly algorithms, the specific design 

structure implemented, and the placement of the cut-scores for making the critical pass- 

fail decisions are just a few of the essential variables that must be deliberated upon the 

process of developing such a test. 

Among these variables, several have emerged as potentially having a great deal of 

practical significance on results for candidates. The choice of design, the amount and 

distribution of test information, and the test length are all variables with such promise. In 

addition, routing methodologies are an important and relatively understudied aspect of 

MST. To date, the focus of MST research has been toward the ‘front-end’ of 

development, specifically toward the more structural variables and the test development 

aspects. Given that MST is not a test design widely used as yet operationally, attention to 

this aspect of the approach can be understood as the next logical direction for research 

attention. Only a relatively few strategies have been tried, including routings based on 
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number-correct scoring and population distributions, and the literature does not seem to 

reflect any studies that have empirically compared any of the proposed strategies for 

either accuracy of ability estimation or in the context of classification. While the 

methods used presently seem to work sufficiently, it seems clear that the measurement 

effectiveness of the design is predicated on the nature and defensibility of the routing 

decisions and as such it is only with additional research efforts in this design aspect that 

high-stakes decisions can be made on the basis of scores from a multi-stage test. 

To this end, it seems clear that work is cut out for continued research into MST. 

A multi-stage test is a highly complex and variable test design, but as noted previously, 

such variability can be viewed as an advantage in terms of design flexibility. A multi¬ 

stage test can be built to greater resemble a CFT or a CAT: ultimately, the design strikes 

a balance of adaptability, practicality, measurement accuracy, and control over test forms. 

With the current MST literature and the study proposed here, as the relational effects 

between different design variables are delineated, the potential exists for MST to take on 

an increasingly significant role as a viable alternative for more and more agencies 

involved with the important task of assessment for professional certification and 

licensure. 
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Figure 2.1. Illustration of Parallel Panel Structure 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview of the Study 

The purposes and methodology for the present study are described in this chapter, 

including an overview of the variables and conditions implemented. In the course of 

detailing the methodology, a step-by-step explanation of simulating a multi-stage test is 

also provided. In this regard, there are two primary components. The first of these was 

automated assembly of modules and forms using a specified item bank and test 

information fimction. Second, after assembly, the actual simulation of examinees taking 

the modules and forms was completed using a simulation program, which provides 

ability estimates and other results that are used for data analysis. 

The study was designed as a study of selected variables for implementing MST, 

and is intended to further develop previous research into the psychometric properties of 

multi-stage testing (MST) for certification and licensure, with the primary goal being to 

extend understanding of how these variables affect test scores and decisions about 

candidates. The primary design variables of interest in this study were 1) test structure, 

2) the amount of test information, 3) the distribution of test information across stages, and 

4) different between-stage routing strategies. These four variables were considered in the 

context of three passing rates (30%, 40%, and 50%), chosen for providing a range for 

interpreting results and due to relevance to the agency whose data was modeled in this 

study. The rationale for including these variables in this study is likewise provided in 

some depth below. 
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To start, one important aspect of this study involves how several MST test 

structures (specifically the 1-2-2, 1-2-3, 1-3-2, and 1-3-3 combinations of modules and 

stages) compared relative to one another with respect to ability estimation and decision 

classification. While a great deal of the MST research has looked into the 1-3-3 

structure, few studies to this point have provided feedback on what levels of accuracy 

might be expected given other designs, and the 1-2-2 approach is particularly 

understudied in this regard. 

Second, based on the previous studies of MST (Jodoin, Zenisky, & Hambleton, 

2002; Jodoin, 2002; Xing & Hambleton, 2002; Zenisky, 2002), a critical need in the MST 

literature concerns ftirther investigation of the impact of varying amounts of test 

information. In previous research, the level of test information specified was in most 

cases defined by the test information fimctions used in operational testing, and this 

resulted in high rates of decision accuracy and consistency. A reasonable direction for 

further research concerning this aspect of the design is to try and to vary the amount of 

test information called for in the test information function (with regard to both increases 

and decreases). Implementing these sorts of variations may provide insight into the 

levels of decision accuracy and consistency that can be expected with such target TIFs. 

How much practical benefit does increasing the target TIF by 50% bring, and likewise, 

what does proportional reductions of the target TIF mean for ability estimation and 

decision classification? This is a variable of interest to test developers working with the 

MST design because with lower levels of target test information, the test assembly 

mechanism has the potential for greater flexibility in putting together test forms with 

regard to the statistical characteristics of an item bank. If the algorithm can draw on 
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items with more varied discrimination and difficulty values in order to meet its target 

TIP, it may well translate into greater use of the item bank in terms of both breadth and 

depth, thereby reducing item exposure. In this way, if the ability estimation and decision 

classification results are of somewhat comparable quality to the results obtained with 

current levels of information, test security can be enhanced while still providing high- 

quality assessment results in terms of making pass-fail decisions. 

Third, additional study into how test information should be distributed across 

stages is warranted. In previous studies, such target information has generally been split 

equally among the three stages with satisfactory results, but previous research (c.f, 

Zenisky, 2002; Jodoin, Zenisky, and Hambleton, 2002) indicates that alternative 

distributions such as 1/2-1/4-1/4 may provide improved decision accuracy and 

consistency because elevated levels of measurement information are collected early in the 

test. By obtaining better ability estimates after the first stage, it may be possible to make 

routing to second- and third stage tests more efficient, thereby improving score precision 

at the conclusion of testing for many candidates. It seems clear that further research into 

this aspect of MST can substantially clarify how this variable impacts the quality of 

measurement obtained. 

The fourth goal of this study is to evaluate routing strategies in the context of 

several MST designs. Several different methods for routing can be found in the 

psychometric literature, although such methods have not yet been empirically compared 

by means of a simulation study. A description of the four methods to be implemented in 

this study can be found in Section 3.5.1. This is a variable of importance because the 

choice of method used for routing examinees between stages is fundamental to the 
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process of adapting a multi-stage test to candidate ability, and empirical determination of 

whether certain strategies provide more optimal results than others can help to ensure that 

the test design implemented is as efficient as it can be and provides test results that are 

psychometrically accurate to a very high degree. 

The last goal of this study was to consider all results in the context of three 

different passing rates. By varying passing rates on a percentage-passing scale (30%, 

40%, and 50% passing), the generalizability of this study can be enhanced. These values 

are chosen to reflect passing rates that are seen in operational testing with programmatic 

variables similar to those simulated here. Though testing programs do not generally set 

cut-scores using norm-referenced criteria, the effect of using of different passing rates as 

operationalized in this study is to permit analysis of decision classification outcomes at 

three different places on the ability scale where a criterion-referenced cut-score might be 

placed. As the cut-score moves from more (50%) to fewer (30%) passing, of interest 

was how this might impact on the probability of misclassification for candidates given 

the other variables under consideration in this study. 

In total, there are 384 conditions to be evaluated in this study (4 levels of total test 

information by 2 levels of the distribution of test information across stages by 4 levels of 

test designs by 4 levels of routing strategies by 3 levels of passing rates). The next 

sections detail the methodology for this simulation study, including a focus on the 

generation of the item bank, the creation of modules and tests for the conditions to be 

simulated in this study using the computer program CASTISEL (Luecht, 1998) for 

automated test assembly, the rationale for selecting such conditions, the simulation of the 
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multi-stage tests with MSTSIM5 (Jodoin, 2003), and the procedures taken in terms of 

data analysis. 

3.2 Simulation of the Item Bank 

A secondary finding of recent research by Jodoin, Zenisky, and Hambleton (2002) 

was that it was difficult to adequately meet target test information functions (TIFs) with a 

bank consisting of 238 operational Financial Accounting and Reporting (FAR) items 

calibrated using the three-parameter logistic model of Bimbaum (Lord & Novick, 1968) 

from recent paper-and-pencil forms of the American Institute for Certified Public 

Accountants’ (AICPA) Uniform CPA Exam. This finding was not unexpected, but 

indicated the need to expand the item bank in any subsequent research involving 

modeling of the AICPA’s tests. Even with an additional two forms’ worth of items (for a 

total of 358 items), the possibility of confounding the issues of limitations of the item 

bank and measurement information led to further reservations about using only these 358 

items for this study. For this reason, a larger item bank was generated for this study. 

In generating the item bank, the primary consideration was to develop and use a 

bank that reflected the kind of bank that would be seen in operational testing by an 

agency such as the AICPA. By building a larger item bank to reflect the statistical 

realities of the bank of 358 FAR items, it was determined that two particular statistical 

dimensions needed to be reflected in any simulated bank. The first of these was the 

means and standard deviations of the item parameter estimates and the second was the 

correlational structure among these estimates. Preliminary analyses suggested that a bank 

size of 2,500-3,000 items would provide sufficient breadth and depth for building tests 
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with the desired levels of difficulty and discrimination. Though this bank size is 

considerable, the target information functions being specified are not unusually high for a 

high-stakes test of the nature being simulated. The bank and its size were produced to 

ensure that the targets could be met to the greatest extent possible so that any results 

obtained would not be confounded by the TIFs falling short of the desired levels; hence 

the large item bank. 

To build this bank, a statistical technique to ‘clone’ the 358 current items was 

employed. This approach involved adding or subtracting a small error term (determined 

by a random number generated by a uniform distribution between 0 and 1) to each item’s 

three parameters (discrimination, difficulty, and guessing) in the current bank. The new 

parameters created through this approach closely approximate the means and standard 

deviations of the parameter estimates in the current bank as well as the inter-correlations 

between the items. This technique was repeated on the 358 items in the original bank 7 

times, thereby creating a bank totaling 3,222 items (358 original items and the 2,864 

‘cloned’ items). Descriptive statistics for the original set of items and the item bank 

generated in this way were identical across the original and generated item banks, with 

the means (and standard deviations) for the a-, b-, and c-parameters constant at 0.62 

(0.25), -0.12 (1.11), and 0.00 (0.30). In the original set of 354 items, the correlation 

between the a- and Z)-parameter estimates was 0.363, between the a- and c-parameters it 

was 0.346, and between the 6- and c-parameters the correlation was 0.308; among the 

items in the generated bank, the correlations were 0.362, 0.337, and 0.298, respectively. 

These statistical parallels ensured that the generated bank was a reasonable reflection of 

the current, operational bank, only larger. 
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3.3 MST Test Structures 

A test structure for MST was defined as a particular combination of modules and 

stages that together comprised all of the potential routes that an examinee could take in 

the course of being administered a multi-stage test. For example, in the 1-3-3 structure, 

a candidate would at first be given a medium-difficulty module, and in both of the 

subsequent stages could receive an easy, medium, or hard module. Module difficulty was 

defined by the average of the statistical characteristics of the items that comprised the 

module, and was specified in test assembly by the positioning of the module-level 

information functions. The more ‘to the left’ a module information function is located on 

the ability scale, the easier the module, and similarly the more ‘to the right’, the harder 

the module. On average, the items in an easy module are easier than those in a medium 

difficulty module, and items that are harder on average will be included in harder 

modules. Easy, medium, and hard are of course relative terms, and are given meaning by 

the positioning of the target module information function relative to the ability scale. 

Four specific test structures were of interest in this study: the 1-2-2, 1-3-3, 1-2-3, 

and the 1-3-2 (Figure 3.1). Across all four designs, the target information function for the 

first stage module was always targeted at the passing score, regardless of whether the 

condition is 30%, 40%, or 50% passing, and the modules in subsequent stages were 

positioned relative to the passing score as well. 

In the 1-2-2, design, all examinees were presented with a module of medium 

difficulty in Stage 1. There were two modules to which examinees can be routed to in the 

second and third stages respectively, either relatively easier (for weaker examinees) or 

relatively harder (for more able examinees). A similar structure was implemented in the 
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case of the 1-3-3 MST design. There, examinees were again first given a module of 

medium difficulty in Stage 1, and depending on routing strategy were routed to either 

easier, medium, or harder modules in Stages 2 and 3. 

The 1-2-3 and the 1-3-2 designs can be represented similarly. In the former case, 

all examinees receive a middle difficulty module in Stage 1, at which point examinees are 

routed to one of two modules in Stage 2, either an easier or a harder module. From there, 

examinees are sent to either an easier, medium, or harder module in Stage 3. The 1-3-2 

structure starts with a medium-difficulty module in Stage 1, and routes examinees to 

easier, medium, or harder modules in Stage 2. For Stage 3, the test structure is set up 

such that examinees receive either an easier or harder module, depending on their 

estimated ability. 

3.4 ATA using CASTISEL 

The computer program CASTISEL (Luecht, 1998) was used for ATA in the 

present study. CASTISEL is an automated test assembly program that takes statistical 

and other content constraints into account and automates the process of formulating 

modules and panels for MST using the item bank specified. With CASTISEL, MST 

modules were simulated by specifying target information functions, the number of stages 

to be included in a form or module, the number of modules per stage, the number of 

items per stage, the total test length, and the primary content specifications for content 

balancing being implemented. CASTISEL creates such forms or modules by using the 

normalized weighted absolute deviations heuristic (NWADH) described by Luecht 
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(1998) to optimize item selection for forms or modules given the target TIFs and other 

form or module-level considerations. 

By using a pre-calibrated real or simulated item pool, the NWAD heuristic as 

implemented in CASTISEL constructed one or more parallel test forms as needed by 

sequentially completing locally optimal searches to find items that meet the statistical and 

content constraints defined in the input file. In this context, test forms can be taken to 

refer to linear forms or to a set of modules as is needed for MSI. 

The NWAD heuristic can be understood in more detail as an algorithm based on 

several component parts (Boughton & Gierl, 2000). Normalization refers to the way in 

which various objective functions are selected in order that they can be met 

simultaneously, and the weighting involves prioritizing certain items with ‘poorer’ item 

statistics within content areas which allows for balancing between more and less 

discriminating items to take place. ‘Poorer’ items, in this context, were those items that 

in and of themselves may not have met certain specified minimum statistical constraints, 

but with this weighting, they could still be used in test assembly by taking those items 

into account along with items that exceed such constraints. The absolute deviation 

portion of the process describes the absolute difference between the target test 

information function and the current function. Lastly, a heuristic is an approach to 

problem-solving that iteratively evaluates and chooses the best-fitting answer or solution 

at specified points in the course of test assembly. 

In the case of a multi-stage test, CASTISEL assembled as many sets of items 

(modules) as needed for each stage, each containing a unique sequence of items designed 

and selected to reflect certain content and statistical specifications. For example, with a 
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three-stage test with three 20-item modules in each stage (three parallel medium 

difficulty modules in Stage 1 and an easy, medium, and hard module in Stages 2 and 3), 

CASTISEL builds nine modules (here, three per stage), and each of those output files 

would contain 20 unique items selected to meet both the statistical criteria of target test 

information functions and content balancing based on a primary content dimension. 

The specification of the target test information and other related aspects of 

modules were critical for automated test assembly. In the next sections are detailed the 

considerations that were taken into account with respect to this aspect of test assembly in 

this study. 

3.4.1 Obtaining the Base Target TIP 

The base target information function for this study was obtained via the TIP from 

operational tests: in this case, the average TIP from six archival forms of the American 

Institute of Certified Public Accountants’ “Pinancial Accounting and Reporting” (PAR) 

test section was computed. These forms consisted of approximately 60 items each (2 

tests had had one item deleted). Each of these forms was calibrated using the three- 

parameter logistic model, and those item statistics were then used to obtain TIPs for each 

of those forms. The average across those six forms can be taken as a reasonable 

representation of an average TIP as would be observed on this section of the AICPA 

examination. The six operational TIPs as well as the average TIP obtained are given in 

Pigure 3.2. 
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3.4.2 Targeting Test Information to the Passing Score 

The placement of the target test information function relative to the ability scale 

defined difficulty of the overall test: as an information function is moved to the left a test 

on average becomes easier, while shifting the information function to the right produces a 

harder test. Where to center the test was not an automatic decision: generally speaking, 

test information could be set to be optimal at either the passing score or where the 

majority of candidates were. In the latter case, for example, if there were a normal (0,1) 

distribution of examinees, then information could be centered at 0.0 to ensure maximal 

information for people in the middle of the ability distribution. The alternative, targeting 

test information to the passing score, means that score precision was maximized for 

candidates whose estimated ability places them in the vicinity of the cut-score for making 

pass-fail decisions, which may or may not be mapped to 0.0 on the ability scale. 

In credentialing, decision classification is the primary outcome of interest: 

accurate classification for as many candidates as possible is critical. For very able and 

very weak candidates, the decisions are likely to be correct in the majority of cases. 

However, it is candidates who are near the passing score for whom the risk of 

misclassification is the highest, and for that reason in this study the tests (as composed of 

stages and modules) were constructed to be optimally informative at the passing scores. 

In this study, passing rates of 30%, 40%, and 50% were of interest, which translated to 

values of 0.521, 0.223, and 0.000 with respect to a normal distribution centered at 0.0. 

The average target information function that this study was based on was centered 

at approximately 0.75 on the ability scale. Once this average target information function 

was obtained, it is necessary to re-align this information function to center at each of the 
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three pass rates. In Figure 3.3 are given the original and the three re-centered target TIFs 

used in this study. 

3.4.3 Amount of Target Test Information 

As noted previously, the total amount of test information used in this study was 

based on the average TIF for operational forms of a section of the AICPA’s Uniform 

CPA Exam. To the extent that such information levels could be made generalizable to 

other credentialing agencies, it was of interest to try and vary the relative amount of test 

information at different ability levels. In reducing the total amount of test information, to 

what extent was ability estimation and decisions classification impacted by less test 

information? If certain levels of reduction in test information resulted in comparable 

measurement to the case where full information is used, then it may be possible to go 

with lesser amounts of test information or reduce the number of items in the test. An 

argument for reducing test information is to make the target test information functions 

somewhat less stringent, thereby freeing the test assembly software to be more flexible in 

meeting the targets given the statistics of the items in the item bank. Alternatively, 

increasing test information provides additional context for the levels of decision accuracy 

observed with lesser amounts of test information. 

In addition to using the average target TIF at its current level of information, this 

target TIF was increased by 50% and reduced by 25% and 50% for the current study in 

order to evaluate the impact of varying target information on the outcome of interest to 

credentialing agencies. In Figure 3.4 the target test information functions at each amount 

of test information for each of the three pass rates of interest in this study are given. 

68 



These percentage reductions for the target TIF were selected as exploratory values 

by which test developers might be interested in either increasing or reducing information. 

The results of this analysis were intended to provide insight into the interaction between 

information levels and measurement accuracy. 

3.4.4 Specifying Stage-Level Information 

CASTISEL required that target TIFs be specified for each module in each panel 

to be assembled. The first step in doing this involved partitioning of the target test 

information function to create stage-level information ftmctions. These stage-level 

information functions provided the statistical information needed by the automated test 

assembly software to build modules to achieve a particular level of measurement data 

about individual candidates. 

In the general case, test developers have to decide what proportion of test 

information they wish to obtain in which stage, and portion out the overall test 

information function accordingly. One approach to this is to choose to obtain equal 

levels of information across stages, so where a three-stage multi-stage test is to be used, 

the overall target test information function is divided by three in order to provide an 

individual target level of information for each of the three stages. In aggregate, the stage- 

level information functions provide the appropriate level of test information desired after 

administration of all three stages. However, though equal information among stages does 

possess certain intuitive appeal, is only one of several possible strategies. Preliminary 

empirical results suggested that the use of alternative distributions, particularly methods 
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that provide higher test information early in the test, may additionally enhance the quality 

of routing decisions and, in the end, pass-fail decisions. 

Thus, of interest in this study were two different distributions of target 

information across each of three stages in an MST: the first was equal information across 

stages and the second was the case where 1/2 of the test information was obtained in 

Stage 1 and 1/4 information was obtained in Stages 2 and 3 respectively. These two 

different partitionings of the target TIP were thus involved in this study, based on results 

from previous studies of MST using AICPA data (Jodoin, Zenisky, and Hambleton, 

2002; Zenisky, 2002). 

To accomplish these partitionings, the average TIP obtained from the six 

operational TIPs (as described previously) was divided up as needed. These two 

variations are specified as follows: 

• To create a design with equivalent information in each of three stages (1/3- 

1/3-1/3), the average target TIP was divided by three; 

• To create a design with 1/2 of test information in Stage 1 and 1/4 information 

in stages 2 and 3, the average TIP from above was divided by 1/2 for the 

Stage 1 modules and quartered for the Stage 2 and 3 modules. 

These distributions of target test information were selected to inform practice 

about not only specific proportions of information being allotted to different stages, but 

also to provide additional insight into how increased information at different between- 

stage points in the test compared to the case where equal information across stages was 

specified in terms of the quality of ability estimation. 
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3.4.5 Quantifying Within-Stage Module Difficulty Differences 

In CASTISEL it was also necessary to use the stage-level target information 

functions to define how modules vary on the basis of difficulty. In the first stage of an 

MST, examinees are commonly presented with a module of medium difficulty, while in 

later stages there may be relatively easier and harder modules in addition to medium 

difficulty modules. 

As described in Section 3.4.1.4, the target TIFs were to be centered at 0.521, 

0.223, and 0.000 in this study. Thus, for medium-difficulty modules in any stage where 

the passing rate is to be 50%, the maximum value of the TIF was centered at that passing 

score (0.000). From there, relatively easy and hard modules can be specified using the 

stage-level TIFs translated to the right and or left by a certain quantity, such as 1/2 of a 

standard deviation. Alternatively, where the 30% pass rate was implemented, the target 

TIF was centered at 0.521, and the easy and hard modules were shifted to the left and 

right as appropriate. 

The decision of how different to make the modules within each stage is one that 

in operational testing is dependent on two basic factors, with the primary goal being to 

create modules that are appropriately targeted to candidates of different abilities. These 

are 1) the distribution of the candidate population (how dispersed or clustered together 

are the bulk of candidates) and 2) the depth and breadth of the item bank (to support 

building modules of different difficulty levels). 

For example, in a stage with three modules (relative easy, medium, and relatively 

hard) such as is found with the 1-3-3 MST design, the information function for the 

module of relatively easier difficulty can be specified by taking the stage-level TIF 
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associated with that stage and shifting it perhaps 1/2 standard deviation to the left of 

where it is placed for a module of medium difficulty. Similarly, for a relatively harder 

module, the partitioned TIP is shifted perhaps 1/2 standard deviation to the right of the 

TIP for the medium-difficulty module. 

Given in Pigure 3.5 is a visual example of what it means for such stage-level test 

information functions to correspond to modules that vary by difficulty. The dashed lines 

represent stage-level information functions, and (as is evident in Pigure 3.5) are provided 

for every module to be assembled by CASTISEL. The example provided in Pigure 3.5 is 

shown as just one of countless possibilities: of course test developers can specify 

different numbers of modules within stages, different numbers of stages, and more or less 

overlap of module difficulty as desired. 

In the context of this study, modules varied from one another by 1/2 standard 

deviation. This level of difference seemed reasonable based on two considerations. Pirst, 

the study implemented a candidate ability distribution that is normally distributed with a 

mean of 0 and a standard deviation of 1, and second, exploratory analyses using different 

item banks based on the item statistics to be implemented here supported construction of 

this level of between-module difficulty differences (Zenisky, 2002). 

3.4.6 Content-Balancing Test Porms and Modules 

The last important consideration in ATA is content balancing. Content balancing, 

in this study and in many applications of MST, involves representation of content not just 

across the entire test, but also within each stage. Thus, if the test specifications call for 

nine items of a particular content area to included across all three stages of a multi-stage 
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test, then three of those items would appear on stages 1, a different three in Stage 2, and 

yet another three items in for Stage 3. This balancing of content is consistent regardless 

of how an examinee is routed through the test: no matter what sequence of easier, 

medium, and/or harder modules an examinee sees, the number of items from a given 

content area is constant. 

In terms of content-balancing, from the original six operational forms in the 358- 

item bank, average content specifications for the primary content dimension were 

obtained. There are three primary content dimensions (called 1, 2, and 3, for 

convenience). From there, using the proportions identified in the original test forms and 

module lengths of 20 items, it was possible to calculate the number of items from each 

content dimension that should be represented on each module in each stage of a multi¬ 

stage test (Table 3.1). 

Thus, for example, in the case of the 60-item test, eight total items from 

Dimension 1 are needed across all three stages, and so three items from Dimension 1 

would be included in Stages 1 and 2, and then two items from that dimension would 

appear in all second-stage modules as well. Similarly, whereas 22 items are needed from 

Dimension 2 for the entire test, that could be achieved by integrating seven Dimension 2 

items in Stage 1, followed by eight Dimension 2 items in Stage 2 and seven Dimension 2 

items in Stage 3. In each stage, 10 items from Dimension 3 would be included. 

3.4.7 Assembling Parallel Panels 

Using the specified item banks generated for this study, along with the different 

levels of test length and distribution of target test information, automated assembly of 
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modules and panels for each of the two test structures under consideration in this study 

was then completed. 

For the 1-2-2 design, for each module shown in Figure 3.4, two identical stage- 

level target information functions were specified. In terms of MST this meant that 

CASTISEL constructed two parallel panels, each consisting of five modules in the 

arrangement specified in Figure 3.1. This results in 10 total modules being built for each 

condition with the 1-2-2 design (where conditions are defined as combinations of the 

variables of interest: item bank size, test length, passing rate, and distribution of test 

information). In this simulation, exposure of each second and third stage module could 

thus be controlled to 25%, while Stage 1 modules are exposed at 50%. To clarify: for the 

1-2-2 design, all candidates routed to Panel 1 see one common module in Stage 1, while 

all candidates receiving Panel 2 see a medium difficulty module parallel in difficulty to 

what is seen by candidates in Panel 1. From there, in both panels, examinees were routed 

to second and third stage easier or harder modules as determined by ability estimates. 

The easy modules in the second and third stages were constructed to be parallel to one 

another both within and across the two panels, and this also applies for the harder 

modules. 

For the 1-3-3 design, three parallel modules of the Stage 1 medium were built, 

and one each of the modules in Stages 2 and 3 were built. Thus a total of nine modules 

for this design were constructed by CASTISEL, and in this case, module exposure across 

all three stages is limited to 33%. In effect, in terms of the 1-3-3 design, three parallel 

panels are used. These panels only differed from one another by the first stage module, 

as three parallel medium difficulty modules were created to maintain item and module 
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exposure for the first stage at 33%. The modules in the second and third stages of the 

three panels were identical. For the 1-3-2 and 1-2-3 designs, three parallel panels of each 

involving different first-stage modules for each panel will be assembled. 

3.4.8 Meeting Target TIPS 

A critical aspect of IRT-based test construction is the concept of test information. 

As noted by Hambleton, Swaminathan, and Rogers (1991), the amount of test 

information at each point on the theta scale can be understood as relating to the level of 

measurement precision that could be expected at that point. Thus, when the information 

value at a point on the ability scale is high, that translates into highly precise 

measurement: conversely, lower information means a decrease in precision. By 

specifying target information functions for each module, and tailoring test information to 

different ability levels as is done with MST, it is possible to improve measurement 

precision at more points along the ability scale than can otherwise be done with a single 

TIF on a linear fixed-form. 

Implementing such an approach was predicated on being able to successfully 

meet target TIFs. Thus, in terms of test assembly using the NWADH (as implemented in 

CASTISEL), it is important to consider the extent to which the item bank can support the 

building of modules and panels to the prescribed test information specifications. In this 

portion of the analyses, mean TIF differences and mean square errors (MSB) of the TIF 

difference were computed by CASTISEL for each module assembled. The mean TIF 

difference was the averages of the deviations for the items in a module across a range of 

6 values from -2.0 to 2.0, and MSB for the TIF differences is the average squared 
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deviation for each module. MSE values for modules were then averaged across modules 

within an analysis condition to obtain a MSE index for each analysis condition, and these 

values were inspected for magnitude. By using this statistic, it is possible to evaluate an 

index of a rough but immediate indication of the extent to which targets were met in the 

context of the simulation. 

In this study, MSEs of the TIE differences for the various conditions ranged from 

.00 to .18, and mean TIE differences similarly ranged from .00 to -.08. These values 

across conditions in this study were in large part consistent with those reported by Patsula 

(1999). Thus, these results suggest that the process of selecting items to match the 

statistical information specified by the target TIEs in this study produced operational TIEs 

that were practically accurate for the purposes of simulation. 

3.5 Simulating a Multi-Stage Test 

The modules assembled by CASTISEL in each of the simulation conditions were 

then used to simulate MST administration by means of the computer program MSTSIM5 

(Jodoin, 2003). MSTSIM5 was designed to use the output of CASTISEL in simulating 

examinees and test designs. As input, MSTSIM5 read in the item sequence information 

for each module in a MST panel contained within the CASTISEL output files, and 

simulated examinee responses to items within modules and panels as assembled by 

CASTISEL. Sample size was set as desired, and in MSTSIM5, it was also possible to 

specify the distribution of simulated candidates. Ability estimation in MSTSIM5 is done 

by means of maximum likelihood estimation. 
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To determine the distribution of candidates for this study, analyses of the ability 

distribution of AICPA candidates were completed using examinee response data from 

archival administrations of the FAR section of the Uniform CPA Exam. An inspection of 

the results revealed that, for multiple forms, the underlying distribution of candidate 

ability was normal with a mean of about 0.0 and a standard deviation of about 1.0. Thus, 

to be consistent with what is observed in operational testing by an agency such as the 

AICPA, the distribution of candidates for this study is set at normal with a mean of 0.0 

and standard deviation 1.0. Sample size for this study is 9,000 examinees, chosen to 

eliminate sampling errors. 

3.5.1 MST Simulation with Varying Strategies for Between-Stage Routing 

The MSTSIM5 program (Jodoin, 2003) was used to simulate the multi-stage test 

administration. However, as routing strategies implemented in MSTSIM5 were a 

variable of interest in this study, the original MSTSIM5 program was modified to 

implement the four routing methods described below. 

3.5.1.1 Defined Population Intervals rPPI) 

This approach defined relative proportions in population expected to follow each 

of primary routes, and routing within each stage of the MST occurs based according to 

such proportional assignment. This method has likewise been widely used in recent 

studies of MST (i.e., Jodoin, Zenisky, and Hambleton, 2002; Jodoin, 2002; Xing, 2001; 

Xing and Hambleton, 2001; Hambleton and Xing, 2002). With this strategy, for routing 

to the second and further modules, assignment of modules was done based on previous 
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ability estimates. With a normal distribution of candidates (from a population with mean 

0 and standard deviation of 1), testing programs can empirically determine the cut-scores 

for routing to ensure certain levels of module exposure, such as equal assignment of 

candidates to modules. This method was relatively simple to implement and allowed for 

exposure rates to be known in advance of testing, but it may be inappropriate to route 

candidates through a test structure to make a criterion-referenced decision using a norm- 

referenced methodology. 

For example, it was possible with this approach to ensure that the lowest one-third 

of candidates was directed to the easy module, the highest third to the hard module, and 

the middle third could be sent to a module of intermediate difficulty. Ensuring the 

equivalence of assignment across modules was the apportioning strategy used to set the 

cut-scores for this approach in this study. In conditions where there were three modules 

in an impending stage (as in the 1-3-3 and at points in the 1-2-3 and the 1-3-2 designs), 

the simulee population was rank-ordered by provisional theta estimates from the stage 

immediately previous and split into thirds for assignment to modules in that upcoming 

stage. Given a normal distribution of ability in the simulee population, the two cut-scores 

needed for a stage with three modules were set at -0.43 and 0.43, reflecting the points on 

a normal curve that divide the area under the curve into thirds. Where there were two 

modules to a stage (as is the case for the 1-2-2 and at points in the 1-2-3, and 1-3-2) the 

simulee population was similarly rank-ordered but divided into lower and upper halves 

based on provisional ability estimates, with the cut set at 0.0. 



3.5.1.2 Matching Module Difficulty and Ability Estimates rProximitv^ 

This approach was used by Kim (1993) and Kim and Plake (1993), and involved 

assignment of «-stage modules that varied in average difficulty to candidates based on a 

proximity calculation. In this approach, the average difficulties of each module in a 

given stage were computed, and the most recent provisional theta estimate of each 

candidate was compared to those average difficulties. The candidate was routed to the 

module in that stage for which the difference between the module difficulty and 

provisional theta estimate was the smallest, thereby providing a mechanism for assigning 

candidates to modules at the (approximate) appropriate difficulty level. This comparison 

was repeated at each juncture between stages where assignment of modules in the next 

stage was required. By routing examinees in this way, it is important to note that the 

distribution of candidates across modules within stages 2 and 3 (regardless of design) 

would vary somewhat, and consequently some modules would likely be more exposed 

than others (as compared to some other routing strategies that might be used in which 

ensuring equal assignment of candidates to modules is emphasized, such as the DPI 

method). 

One advantage associated with this approach to routing candidates through an 

MST was that it was relatively simple to implement, although such a method may be 

problematic for operational use due to item and module exposure concerns. For example, 

in cases where the candidate population was normally distributed, the bulk of examinees 

would likely be assigned to modules of medium difficulty, thus resulting in the need for 

multiple parallel modules in the middle difficulty range to alleviate high levels of 

79 



exposure. If the candidate population more generally reflected a uniform distribution, 

module exposure would perhaps be less of a concern for this method. 

3.5.1.3 Number-Correct Scoring 

The third routing strategy implemented was based on a approach using number- 

correct scoring, where examinee number-correct scores for the module immediately 

previous was the ability measure used to determine module assignment in the subsequent 

stage. As with the DPI method, the simplicity of implementation for development and 

administrative vendors may be a strong point of this methodology. However, in adapting 

modules to examinee ability using number-correct as a proxy for ability estimates, the 

process did not draw as extensively on IRT information as other methods that might be 

used and in effect is an under-use of available IRT information. For comparison 

purposes, however, this approach was of considerable interest. 

To determine the number-correct cut-scores for this study, the approach used in 

this study involved test characteristic curves (TCCs) and consideration of the examinee 

ability distribution. In this strategy, for routing from Stage 1 to Stage 2, the test 

characteristic curve of the routing module was used to find the expected number-correct 

score corresponding the equal division of candidates among modules in the stage that was 

to be next. So, if the second stage had two modules (as in the 1-2-2 and 1-2-3), a single 

number-correct cut-score was needed to identify the point where approximately half of 

the candidates would be assigned to the easier second-stage module, and the other half 

would be given a harder module. A similar approach was used when the second stage 
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has three modules (the 1-3-3 and the 1-3-2), but in this case the number-correct score 

associated with dividing the simulee sample into thirds was used. 

In routing from Stage 1 to Stage 2, matters were somewhat simplified by the fact 

that all candidates are given a module of medium difficulty in all designs evaluated here. 

For routing from the second to third stage, cut-scores were not only based on number- 

correct scores but also the difficulty level of the module taken in the second stage, which 

must be taken into account. In order to do this, the TCC of each module in the second 

stage was used to find number-correct scores that correspond to the population 

proportions desired. Take for example the 1-3-3 design, and consider a candidate routed 

to the easy module in stage two. For that candidate, routing options in the third stage 

consisted of an easy or medium difficulty module (to be consistent with practice, 

candidates would not be routed from the very easiest to the very hardest module in 

consecutive stages), and thus a single cut-score dividing the sample of candidates who 

were in the easy module in stage two in half was needed. A similar approach was used 

for a candidate routed to the hard Stage 2 module in the 1-3-3 design. For the candidates 

in the medium difficulty Stage 2 module, two cuts were required which divided that 

sample into thirds for assignment to the Stage 3 modules of easy, medium, and hard. 

The use of TCCs and number-correct scoring was similarly used to determine cut- 

scores for the other design strategies under investigation in this study. Generally 

speaking, this method drew on both assumptions of model fit and the normal distribution 

of ability in the simulee population. Like other approaches, it supported the equalization 

of exposure of modules in all stages. 

81 



3.5.1.4 Random Module Assignment 

This methodology was based on the principle of assigning candidates to modules 

in the second and third stages of an MST without taking the ability of the candidate or the 

relative difficulty of the module into account. In effect, in this method the routing of 

candidates was random. As implemented in this study, after simulation of the Stage 1 

module, the candidate population was randomly divided among the number of modules in 

Stage 2. Then, again, for Stage 3, the candidate population was again randomly assigned 

to one of the two or three modules in that stage (depending on the design). Inclusion of 

this method provided a baseline for comparison of results of the other three methods 

implemented. This method represented a ‘worst-case scenario’ in which ability estimates 

were derived not through adaptation but a slight variation on a linear test in which sets of 

twenty items are selected at random for administration, although here the modules vary 

by difficulty and in linear testing that would not probably be the case. 

3.6 Computer Simulation Method 

To help clarify the procedures taken, the exact steps taken with regard to 

CASTISEL and MSTSIM5 in the course of the simulation for one condition (1-3-3 

design, 50% increase in total information, equal partition of information across stages, 

DPI method, and 30% passing) are outlined below. Following each step is the section in 

this chapter where more detailed information about the step was provided. 

1. The base target information function was specified by averaging six 

operational TIFs. (3.4.1) 
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30/o passing, the base TIF was re-centered at .521 to provide maximum 

information at the passing score. (3.4.2) 

3. To reflect a 50% increase in information, 50% more test information was 

added at all ability levels to the re-centered TIF. (3.4.3) 

4. The TIF was divided into thirds to specify the amount of information to be 

obtained in each stage from each examinee. (3.4.4) 

5. To specify the module difficulty differences within each stage, the TIF 

divided in thirds was aligned left, center, or right as needed. For Stage 1, the 

TIF centered at .521 was repeated three times to create three medium 

difficulty modules. In Stages 2 and 3, the TIF was shifted by Vi of a standard 

deviation to be centered at .021 (Easy module), .521 (Medium module), and 

1.021 (Hard module). (3.4.5) 

6. Content balancing requirements were specified in the CASTISEL input files. 

(3.4.6) 

7. CASTISEL was run to select items for modules within condition. 

8. For MSTSIM5, the input files were specified to use the appropriate output 

files from CASTISEL. In the MSTSIM5 input files, denoted were the 

examinee and response seeds, the number of examinees in the sample (9000), 

the distribution of the examinee population (~N(0,1)), the number of panels 

(here, 3), the number of stages (3), the number of modules per stage (3), the 

number of items per module (20), and the outpoints for routing* (with this 

method, -.43 and .43). (3.5) 

‘ For Proximity, means of modules in stages were computed and specified. For NC, NC cut-scores were 

noted. For Random, values were specified and compared to random numbers during simulation. 

83 



9. MSTSIM5 was run twice for each condition to provide two replications of 

each condition, which allowed for decision consistency analyses to be done. 

The difference in the two replications was in the response seed specified in the 

MSTSIM5 input file. 

10. The resulting simulation figures were analyzed for decision accuracy, 

decision consistency, ability estimation, and routing path frequency as 

specified in the next section. 

3.7 Data Analysis 

The results from the MST simulations were then analyzed with respect to several 

criteria of interest. The first and second outcomes of interest in this study were the levels 

of decision accuracy and consistency observed with these conditions at different pass 

rates are results with particular relevance for certification and licensure agencies 

interested in the measurement properties of the MST design. Thirdly, the quality of 

ability estimation after Stage 3 for each combination of conditions was evaluated with 

correlations and analysis of root mean squared errors. The fourth and last outcome of 

interest involves an analysis of the relative frequencies of the paths examinees are routed 

through, especially with regard to the different strategies for routing. These outcomes of 

interest, and the methods by which they were quantified, are described below. 

3.7.1 Decision Accuracy 

Candidates in each condition were classified as masters and non-masters based on 

their true and estimated abilities at three pass rates: 30%, 40%, and 50%. This provided a 
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range of passing rates for understanding the results of the study, and these pass rates were 

relevant to the agency on whose data the rest of the simulation study was modeled. True 

and estimated abilities above 0.521, 0.223, and 0.000 were classified as true or observed 

masters, while true and estimated abilities below these values were considered to be true 

or observed non-masters. To evaluate decision accuracy, the true and estimated 

classifications were then cross-tabulated to provide the proportions of correct and 

incorrect classifications. Within the category of incorrect classification, the proportions 

of Type I and II errors were considered for patterns and trends as well. In addition, true 

and estimated abilities after Stages 1, 2, and 3 were also correlated and reported as an 

indicator of the quality of ability estimation. 

3.7.2 Decision Consistency 

In this study, decision consistency was computed by completing two replications 

of each combination of conditions and comparing the classification decisions obtained for 

examinees across the two replications for each combination of conditions. This allowed 

for information about the stability of these designs and combinations of conditions to be 

evaluated. 

3.7.3 Accuracy of Ability Estimation 

Accuracy in terms of ability estimation involves the amount of error in the ability 

estimates observed. Such error was quantified by comparing the true abilities (which are 

known in this simulation study) to those observed estimates obtained by simulating the 

administration of a multi-stage test. As employed by Patsula (1999), the first measure of 
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accuracy implemented in this study was root mean squared error (RMSE). For each 

combination of conditions simulated in this study, the RMSEa of ability estimates was 

calculated for each examinee located at each of several ability levels. As shown in 

Equation 3.2, RMSEa was computed as: 

RMSE^ (3.2) 

A 

where Oj is the observed ability estimate for examineey, 0j is examineey’s true ability, 

and number of candidates at ability level a. In this study, the nine ability levels 

referenced by a were intervals from -2.0 to 2.0 in increments of 0.5. 

The second analysis done in the process of evaluating the quality of ability 

estimation in MST was a Pearson correlation between true and observed ability after the 

final stage of simulation for each combination of conditions. This methodology was 

intended to establish some notion of the strength of the relationship between true and 

estimated abilities for candidates in light of the different combinations of conditions 

implemented in this study. 

3.7.4 Simulee Routing Analysis 

To provide greater insight to practitioners about the nature of the routing 

decisions made in the process of estimating ability and making pass-fail decisions, an 

analysis of the proportion of candidates being routed through each possible path in each 

design structure was completed. The proportion of examinees taking each possible path 

for each of the four test structures (given each possible combination of the other 

variables) was designed to help provide agencies interested in using MST some 
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information about the specifics of the routing process and how examinees of different 

abilities might be routed. This analysis took on particular importance with the variable of 

different routing strategies, especially in exploring the ideas of module exposure and 

improving ability estimation. 

In the 1-2-2 design, for example, recall from Figure 3.4 that there were just four 

possible paths a simulee can take through the three stages. Candidates could have gone 

Medium-Easier-Easier, Medium-Easier-Harder, Medium-Harder-Easier, or Medium- 

Harder-Harder (with the understanding that labels such as Easier and Harder were 

relative). Similarly, in the 1-3-3 design (as given in Figure 3.5 earlier), there were nine 

possible paths: Medium-Easier-Easier, Medium-Easier-Medium, Medium-Easier-Harder, 

Medium-Medium-Easier, Medium-Medium-Medium, Medium-Medium-Harder, 

Medium-Harder-Easier, Medium-Harder-Medium, or Medium-Harder-Harder. Of 

course, some of these paths were much likelier to be observed than others, as it was not 

likely that many examinees routed to the Easier module for Stage 2 were sent to the 

Harder module for Stage 3 (or vice versa), but this analysis was intended to inform about 

the proportions of candidates whose performance might fit that pattern in practice. 
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Table 3.1. Guidelines for Approximate Content Balancing Within and Across Stages 

Dimension 1 Dimension 2 Dimension 3 
Original P&P forms: 

60 items total 
13% 37% 50% 

Approximate Proportional Counts of Items for 
Simulations 

Entire 60 item Q ^ A 
simulated test 

o IL 30 

stage: 20 items 3 1 10 
2"*^ stage: 20 items 2 8 10 
3*^^ stage: 20 items 3 7 10 
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Figure 3.1. Test Structures of Interest 
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Figure 3.4. Target Test Information Functions for Three Pass Rates 
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Figure 3.5. Sample Assignment of Stage-Level Information Functions to Modules 
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CHAPTER 4 

RESULTS 

4.1 Overview 

In this chapter is provided an overview of the results of the simulation study 

described in Chapter 3. These results are presented in four parts: 1) decision accuracy, 2) 

decision consistency, 3) accuracy of ability estimation, and 4) routing path analysis. 

4.2 Decision Accuracy 

Decision accuracy, as detailed in Chapter 3, is the extent to which the decisions 

made using candidates’ estimated abilities are consistent with decisions made based on 

true abilities (which are known in a simulation study). Evaluating DA with respect to the 

various conditions included in this study provides a sense of how well the designs (in 

simulation) can provide the same classification results as truth. 

Tables 4.1 through 4.4 provide decision accuracy results for each of the four 

routing methods when the passing rate is set at 30%, these results for 40% passing are 

found in Tables 4.5 through 4.8, and Tables 4.9 through 4.12 present these DA results for 

50% passing. In each table, DA results are included for each of the two replications 

completed for each condition. For each condition and replication. Tables 4.1 - 4.12 

provide the percent of classification agreement, the percent of false positives and 

negatives observed, and the Kappa coefficient of agreement. 

Overall DA results for this study were consistent with expectations in several 

respects. As the total amount of test information decreased (from a 50% increase to full 

information to 25% and 50% decreases), DA likewise decreased. Since decisions are 
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based on estimated abilities, less test information produces less precise ability estimates, 

while higher levels of test information mean that more highly informative items will be 

selected during module and test assembly to ensure that the higher target information 

functions are met, which translates into better estimation for individuals. 

However, the level of this decrease does not appear constant from level to level; 

rather, something of an important relationship can be detected. In most conditions, the 

drop in DA from a 50% increase in information to full information is on the magnitude of 

1.5 percentage points, meaning that approximately one and a half percent fewer decisions 

are consistent (between truth and the simulation) at the full information level than at the 

50% increase in information level. From full information to a 25% decrease in total test 

information, this decline in DA is generally 1.0 to 1.5 percentage points, but from a 25% 

to a 50% decrease in total test information, this drop is even larger, about 2 percentage 

points in many conditions. When these latter two decreases are combined, the drop in 

decision accuracy from full information to 50% less information is larger than the drop 

from a 50% increase in information to full information: the differences are about 3.0 

percentage points versus 1.5 percentage points. In specifying test information functions, 

the lesser amounts of information result in lowered DA levels, and as TIF levels decrease 

the decline in DA grows, but even at the 50% decrease level DA rates of 87% to 88% are 

observed. These results with respect to DA thus clearly provide test developers with 

important information about how much loss in DA could be expected with proportional 

reductions in test information functions at the overall test level. 

As the passing rate increased from 30% to 40% and 50%, the accuracy of the 

decisions made declined. The most marked decline in most cases was observed for the 
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change from 30% to 40% passing, where the magnitude of this difference for the most 

part ranged from 0.5 to 1% (in some cases this difference was even larger). The 

difference in DA from 40% to 50% passing was more modest, about 0.4 or 0.5%. No 

differences in kappa, in terms of evaluating observed and expected classification, across 

pass rates were evident. This result reflects the nature of the interaction between the 

distribution of candidates and the placement of cut-scores for making pass-fail decisions, 

with lower DA present when the cut-score is set at a point on the ability scale where most 

of the examinees are. 

Among the routing strategies, the DA results observed were revealing. By a 

slight margin, the Proximity and NC methods were associated with the highest DA levels, 

followed by the DPI method, which provided slightly lower DA levels than either of 

those routing strategies. Overall, decision accuracy was lowest for the case of Random 

routing, in that the random assignment of candidates to modules resulted in the lowest 

levels of agreement in decision classification between observed and true classifications. 

In contrast, since the Proximity and NC methods base routing decisions on simulee 

performance, they more economically use the statistical information in the adaptive test 

to advance the examinee through the stages of the test in the most difficulty-appropriate 

way. Thus, these results are significant in that it is expected that higher levels of DA 

would be observed when either of those approaches are implemented as compared to 

random or strictly population-based methods. 

However, the magnitude of the DA differences between the Random method and 

the other three strategies was generally about one-half of one percentage point. To give 

that meaning, in an operational testing setting with annual testing population of 10,000 
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examinees, such a difference translates into perhaps 50 to 60 more misclassifications than 

would be seen with other routing strategies. While test developers strive for maximal 

accuracy in decisions, in light of DA results which across routing strategies are in the 

87% to 93% range (depending on the other variables of interest), such small practical 

differences are indicative of generally high levels of DA that could be expected with 

multi-stage tests as constructed in this simulation, to the extent that many of the 

considerations and constraints that would be expected in credentialing and licensure 

practice have been integrated into this study. 

With respect to the amount of test information (either an equal split across stages 

or a 1/2-1/4-1/4 division), clear trends to the DA results were present. At high levels of 

test information (either a 50% increase or full information), the equal split of information 

outperformed the approach where more information was gained in Stage 1. However, 

with less information (either a 25% or 50% decline in the size of the TIF), the 1/2-1/4-1/4 

strategy was more in line with the results from the equal information method. It may be 

that when a greater amount of overall measurement information can be gathered, 

spreading such information out over stages results in more precise measurement and 

hence better decision-making. However, with less information overall, the results here 

suggest that the importance of the first routing may in some cases take on added 

significance in terms of the decision to be made based on observed test scores. This is to 

say that when lower levels of test information are specified, gathering most of that 

information early in the testing process from examinees may substantively improve the 

quality of the decisions being made. These differences were likewise reflected in the 

Kappa levels, whereas Kappa for higher information level conditions was higher with 
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equal information across stages and lower in the 1/2-1/4-1/4 conditions with less total test 

information. 

The last variable of concern with respect to the DA results involves the choice of 

design structure. Across and within conditions in this study, no clear differences in the 

accuracy of classification differences based on design structures could be identified. 

Generally speaking, the DA results on average were high across conditions. This 

finding is not unexpected and is likely inflated to some degree, as the model and the data 

are consistent with one another. In practice, programs would probably obtain somewhat 

lower results due to less predictable examinees, and the model-item fit would not be so 

precise. 

4.3 Decision Consistency 

The decision consistency results found in Tables 4.13, 4.14, 4.15, and 4.16 reflect 

DC results for each of the four routing methods. In general, the decision consistency 

results were found to be consistent with the findings for DA, although some interesting 

patterns emerged. 

The DC results in this study overall ranged from approximately 90% agreement in 

decision classification across the two replications in each condition when high levels of 

test information were specified to about 80% agreement when total test information was 

cut by half. The better DC results were generally associated with a 30% cut score while 

the results obtained with a 40% or 50% cut-score were slightly lower and interestingly, 

the 40% and 50% cut-score results were highly consistent with one another. For the most 
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part, the difference in DC from the 30% cut to 40% or 50% passing was in the area of 2 

to 3 percentage points. 

As seen with the decision accuracy results, elevated DC results for higher levels 

of test information were observed with an equal distribution of test information across 

stages, while with lesser information the 1/2-1/4-1/4 strategy performed equally well or 

better. This particular pattern, however, was not evident with the random routing 

strategy, although it was found with DPI, Proximity, and the number-correct methods. 

To continue with the results by routing strategy, DC for methods used in this 

simulation provided some interesting findings. Slight declines in DC were present for 

results from the Random strategy as compared to the other three methods, although the 

differences were generally small (about 1% difference). At the level of design structures, 

the results between designs were again largely consistent regardless of 1-2-2, 1-3-3, 1-2- 

3, or 1-3-2. 

4.4 Accuracy of Ability Estimation 

The accuracy of individual ability estimates from a test is always a major concern, 

even in the context of credentialing and licensure assessment where the decision outcome 

for each individual is the paramount outcome of interest. In this study, accuracy results 

for each of the 384 conditions in this study are reported with respect to 1) correlations 

between true abilities and final estimates of ability for candidates and 2) root mean square 

errors of true and estimated abilities overall and at intervals centered on nine ability 

levels ranging from -2.0 to 2.0. 
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4.4.1 Correlations between True and Estimated Abilities 

In Tables 4.17, 4.18, and 4.19 are the results for these correlations at 30%, 40% 

and 50% passing, respectively. The correlations reported here are included as simple 

indicators of the strength of the relationship between the true and final estimates of ability 

in each condition in the simulation study. Overall, the correlations observed were quite 

high, from about 0.96 to a low of 0.91 or 0.90, suggesting that even in cases where less 

information or less optimal routing is used, the final ability estimates are reasonable 

approximations of candidates’ true abilities. 

Across conditions, several informative patterns relating to the ability estimation 

process with these design variables are evident. First, with respect to the implementing 

equivalent information across stages or a strategy with 1/2 information in Stage 1 and 1/4 

information in the two subsequent stages, the results indicate that in most conditions 

small differences on the magnitude of approximately 0.01 to 0.03 are present depending 

on which division of test information was used, regardless of the other variables. This 

trend indicates that very slightly higher correlations between true and estimated abilities 

are generally associated with the practice of dividing the test information function equally 

among the number of stages in the test. 

A second trend of note concerns the differences relating to choice of routing 

strategy. The random method of assigning candidates to modules in the second and third 

stages generally provided the lowest correlations, although the differences in the 

magnitude of the correlations for this routing strategy and the others were for the most 

part equal to 0.05. A possible explanation for this is that candidates’ abilities were well 

estimated because of the length of the test alone (60 items), and therefore random 
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assignment to modules had only minimal impact on the ability estimates computed. 

Among the other routing strategies, the results were largely consistent, although, 

interestingly, the DPI method seemed to provide very slightly stronger correlations, 

especially in the conditions where total test information was decreased by either 25% or 

50%. 

Additionally, some clear differences related to the amount of test information are 

likewise apparent. From a 50% increase in information to full information to a 25% 

decrease in information, the drop in the size of the correlations at all pass rates was about 

1.0 percentage points. However, with a 50% decrease in information, the increment of 

decrease in the correlation was more sizeable, generally about 2.5%, to about 0.9 in all 

conditions. This translate into a total drop in the size of the correlations from fiill to a 

50% decrease in information of about 3 percentage points on average, which represents a 

considerable loss in the strength of the relationship, as compared to the negative change 

of about 1.0 to 1.5 % percent for the interval between a 50% increase in information and 

full information. The correlations were also slightly reduced for the case of 50% passing 

relative to 30% and 40% pass rates that were largely consistent with one another. No 

patterns relating the choice of MST design structure were found. 

4.4.2 Root Mean Square Errors 

As a second measure evaluating the accuracy of ability estimates, RMSE was 

assessed over all candidates in each condition (Tables 4.20, 4.21, and 4.22) and for nine 

ability intervals using candidates’ true abilities in each condition (Figures 4.1 through 
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4.16). In Figures 4.1 through 4.16, each figure includes the results for both replications 

of each condition. 

The overall RMSE results for the simulations indicated trends that were largely 

consistent with the correlation results. The 1/2-1/4-1/4 split of test information resulted 

in RMSEs that were generally slightly but noticeably higher, meaning that these ability 

estimates contained slightly more error than the corresponding estimates from the 

conditions with equivalent information across stages. RMSEs for ability estimates in the 

case of the highest pass rate (50%) were also slightly elevated as compared to the RMSEs 

observed for 30% or 40% passing rates. 

These results also suggested that in many cases the DPI method of routing 

candidates from stage to stage performed as well or marginally better than either the 

proximity or the NC methods (all methods were in all conditions superior to random 

routing, although the magnitude of those differences were generally 0.02 to 0.03). This is 

an interesting result in that the DPI method in effect rank-orders candidates and assigns 

modules on that basis (a very norm-referenced approach), while the other two non- 

random routing strategies are more criterion-referenced in the way that candidates are 

routed, in that simulee abilities are compared to more objective standards such as the 

mean difficulty of the modules in the upcoming stage or number-correct cut-scores that 

are empirically determined by considering the statistical characteristics of the module and 

the ability estimate of the individual. 

No consistent patterns relating to design structures were present. However, as 

with correlations, a trend relating differences in the magnitude of RMSE corresponding 

to the total amount of test information was identified. The increments from 50% increase 
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to full to a 25% decrease in information were consistent at all pass rates at 0.05, but from 

a 25% decrease to a 50% decrease in information, the size of the RMSE difference grew 

to 1.0. 

When the RMSE results were considered at for each condition stratified into nine 

ability levels (as shown by the line plots in Figures 4.1 through 4.16), the results there 

generally supported the findings from the overall RMSEs. Consistent with centering test 

information at the cut-score, for all conditions RMSE was lowest in the vicinity of the cut 

in each condition and higher at either end of the ability scale. However, in conditions 

with decreasing amounts of test information and 30% passing rates, the RMSE levels 

exhibited a slight tendency to ‘flatten out’. This is to say that at higher levels of 

information, RMSEs across the ability scale generally are relatively high on the tails and 

low in the middle region of the scale, but in many cases, when the total test information is 

a 50% decrease from full information and a 30% pass rate is implemented, the curves are 

generally much less pronounced. This has implications for practice in that if the test 

information function were reduced by some amount, while an overall decrease in the 

precision of ability estimation would be observed, such a decrease is more generally 

spread over the entire distribution of ability. 

As expected, the higher amounts of test information were associated with lower 

RMSEs, and generally, equal information resulted in slightly lower RMSEs than splitting 

information to obtain half in Stage 1. Across routing methods, no RMSE differences 

could be detected. 
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4.5 Routing Path Analysis 

In reviewing the frequencies of the paths taken across conditions, it was apparent 

that no differences were present related to the choice of pass rate. For this reason, the 

results presented in Tables 4.23 through 4.26 are averages of the percentages of 

candidates being routed in each path across pass rates and the two replications. 

These results were illuminating in several respects. Each of the four tables 

provides an average percent of candidates taking each of the possible paths for one of the 

four design structures under consideration in this study, and these results are broken out 

within each table by routing strategy. In the 1-2-2 design structure, there were four 

possible paths, and seven in the 1-3-3. Both the 1-2-3 and the 1-3-2 had six possible 

paths to which candidates could have been assigned. 

4.5.1 Routing Path Analysis for the 1-2-2 Design Structure 

In the context of the 1-2-2 design structure (Table 4.23), the Random method (as 

intended) assigned candidates to paths in equal proportions, and the DPI method resulted 

in relatively low proportions of candidates being assigned to modules of different 

difficulty levels for the second and third stages. As information decreased, for all routing 

strategies except Random the number of candidates whose module difficulty levels 

changed between stages increased. In practical terms, as module information is lessened, 

more error is present in the ability estimation process, and for candidates in the vicinity of 

the cut-scores for routing, the likelihood of their being routed to one module or another 

increased because their estimated ability is less precise (i.e., more inconsistent with the 

true ability). 
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In terms of the division of the test information function, the results here too varied 

in an interesting way, although the implications were quite different across routing 

strategies. With the DPI method, using equal information across stages resulted in 

slightly more examinees changing module difficulty between the second and third stages 

regardless of overall amount of test information, as compared to the approach where half 

of the test information is specified in the first stage and a quarter in each of the later 

stages. 

4.5.2 Routing Path Analysis for the 1-3-3 Design Structure 

As shown in Table 4.24, the general trend to the frequencies of candidates taking 

each path for this design indicated that for the DPI, Routing, and NC methods, a large 

proportion of candidates were routed to modules of equivalent difficulty in the second 

and third stages. This is to say that if they were routed to an easy module for Stage 2, 

then they similarly received an easy module in Stage 3 (and so on for medium and hard 

modules and paths). Indeed, depending on the condition, approximately 70% to 80% of 

candidates were routed in this way. Though a large proportion of examinees were routed 

in this way, 20% to 30% of examinees did receive modules of different difficulty from 

Stage 2 to Stage 3. 

In these results, no patterns relating to the conditions in the simulation could be 

detected. However, with respect to exposure of modules in each stage of the MST, 

regardless of routing strategy used, exposure levels for individual modules were largely 

consistent, which is good news for practice. 
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4.5.3 Routing Path Analysis for the 1-2-3 Design Structure 

Important to notice in this design, illustrated by the results in Table 4.25, is that 

relatively few examinees were routed from the easier Stage 2 module to the hardest Stage 

3 module, or, conversely, the harder Stage 2 module to the easiest Stage 3 module. In 

operational testing, such large ‘jumps’ in ability are often flagged as aberrant and may be 

indicative of some problem with ability estimation (either inappropriate behavior on the 

part of the examinee or a technical difficulty with the test itself). Across conditions, 

perhaps 60% of candidates were administered modules of equivalent difficulty in the 

second and third stages. 

4.5.4 Routing Path Analysis for the 1-3-2 Design Structure 

For this design, as with the 1-2-3, it is evident that proportionally many more 

candidates were routed to easy-easy or hard-hard in Stages 2 and 3. Again, fewer 

examinees seemed to have been routed to modules of different difficulties between the 

later two stages of the MST, but still on average 30% were. 

4.6 Summary 

Across analyses reported here, the results were largely consistent in their 

implications for operational multi-stage testing. The most unexpected results obtained in 

this simulation concerns the choice of how to divide test information among stages: 

across conditions and analyses, the results indicate that with high overall amounts of 

information the preferable approach is to spilt information equally. When lesser levels of 

information are to be used, better results both with respect to basic ability estimation and 
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making pass-fail decisions using those estimates are likely to be obtained through a 

strategy in which more of that information is gathered in the earlier part of the multi¬ 

stage test (translating into more efficient routing of candidates through the MST structure 

in the absence of higher levels of information). 

In addition, while clear differences in the results were observed between the 

levels of information, the most sizeable differences concerning decisions and ability 

estimation were noted in moving from full information or a 25% decrease in information 

to a 50% decrease in information. Such declines in DA, DC, and the accuracy of ability 

estimation between levels of test information have clear repercussions for individuals 

with respect to the quality of the measurement results in this high-stakes context. To the 

extent that test developers are able to specify and meet high levels of test information, the 

measurement outcomes of interest are likely to be psychometrically sound. However, 

when item development or other operational considerations constrain or negatively 

impact test assembly, then understanding the trade-off in measurement precision that can 

be expected becomes necessary. In this case, two percentage points’ worth of DA might 

be lost when information is decreased by half: if a program tests 100,000 candidates for 

certification per year, that translates into 2,000 more misclassifications. If the decrease in 

DC is 5 percentage points, that is 5,000 examinees whose decision classifications from 

one test occasion to another would vary one way or another. In high-stakes testing, it is 

these people for whom maximizing measurement precision is critical. 

Interestingly, no substantive differences between the routing strategies adopted 

were evident. Aided by the finding that even the Random strategy provided comparable 

results in all respects, the length of the test may be such that ability estimation is already 
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approaching such a high level of precision that with so many items per stage (and thus 

across the entire test) the exact approach taken may matter less than simply administering 

many items to the individual, within the general MST structure and method. 

As no differences due to routing strategy were patent, so too was there an absence 

of differences in the results due to design structure. The choice of two or three modules 

in the second and third stages seemed to have no significant impact on the results in any 

respect. 
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Table 4.1. Decision Accuracy for DPI Routing at 30% Passing 

Rep. Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K 

Agree FP FN 
K (%) (%) (%) (%) (%) 

1-2-2 50% inc. 92.8 3.8 3.4 0.829 92.7 4.1 3.2 0.829 
1-2-2 Full 92.0 3.7 4.3 0.829 90.6 4.7 4.7 0.805 
1-2-2 25% dec. 90.0 4.7 5.3 0J66 90.2 5.4 4.4 0.770 
1-2-2 50% dec. 87.8 6.8 5.5 0.714 88.0 6.7 5.3 0.719 
1-3-3 50% inc. 92.9 3.8 3.3 0.833 92.7 4.0 3.3 0.828 
1-3-3 Full 91.9 4.8 3.3 0.833 91.2 4.8 4.0 0.793 
1-3-3 25% dec. 90.4 5.2 4.4 0.775 90.1 5.4 4.5 0.768 
1-3-3 50% dec. 87.6 6.9 5.5 0.710 88.3 6.6 5.1 0.726 
1-2-3 50% inc. 93.0 3.8 3.2 0.835 92.9 3.8 3.3 0.834 
1-2-3 Full 91.7 3.8 4.2 0.835 91.7 4.7 3.7 0.804 
1-2-3 25% dec. 89.8 5.7 4.4 0.762 90.0 5.6 4.4 0.766 
1-2-3 50% dec. 88.4 6.4 5.2 0.727 87.9 7.0 5.1 0.719 
1-3-2 50% inc. 93.0 3.8 3.2 0.835 92.5 4.3 3.2 0.824 
1-3-2 Full 92.2 4.0 3.8 0.835 91.5 4.6 3.9 0.800 
1-3-2 25% dec. 90.2 5.3 4.5 0.770 90.2 5.5 4.3 0.771 
1-3-2 50% dec. 87.6 7.0 5.4 0.711 87.7 7.0 5.2 0.714 
1-2-2 50% inc. 92.7 4.3 3.1 0.828 92.6 4.0 3.3 0.827 
1-2-2 Full 91.0 5.1 3.9 0.790 89.8 5.4 4.7 0.791 
1-2-2 25% dec. 89.9 4.4 5.7 0.763 90.0 5.8 4.2 0.766 
1-2-2 50% dec. 88.1 6.8 5.1 0.722 87.6 7.2 5.1 0.713 
1-3-3 50% inc. 92.6 4.0 3.4 0.825 92.9 3.6 3.4 0.833 
1-3-3 Full 90.9 5.0 4.1 0.785 91.2 4.9 3.9 0.793 
1-3-3 25% dec. 90.2 5.6 4.2 0.770 89.8 5.7 4.5 0.762 
1-3-3 50% dec. 87.3 7.3 5.4 0.704 87.9 6.9 5.3 0.717 

1-2-3 50% inc. 92.9 3.9 3.2 0.832 92.5 4.1 3.4 0.823 
1-2-3 Full 91.0 4.9 4.1 0.788 91.0 5.1 3.9 0.790 
1-2-3 25% dec. 90.0 5.5 4.4 0.766 90.2 5.5 4.3 0.771 
1-2-3 50% dec. 87.4 7.2 5.4 0.706 87.8 6.9 5.2 0.716 

1-3-2 50% inc. 93.0 3.8 3.2 0.836 92.9 3.8 3.3 0.832 
1-3-2 Full 91.3 4.9 3.8 0.796 91.2 4.9 3.9 0.793 
1-3-2 25% dec. 89.9 5.8 4.4 0.763 89.8 5.8 4.4 0.762 
1-3-2 50% dec. 87.4 7.2 5.4 0.706 87.6 7.3 5.1 0.713 
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Table 4.2. Decision Accuracy for Proximity Routing at 30% Passing 

Rep. Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K Agree FP FN 

K (%) (%) (%) (%) (%) (%) 
1-2-2 50% inc. 93.3 3.5 3.2 0.842 93.0 3.9 3.2 0.835 
1-2-2 Full 91.9 4.1 4.0 0.808 90.1 5.5 4.5 0.796 
1-2-2 25% dec. 90.3 4.5 5.2 0.773 90.3 5.4 4.2 0.774 
1-2-2 50% dec. 88.0 6.6 5.4 0.719 88.1 6.6 5.3 0.722 
1-3-3 50% inc. 93.2 3.6 3.2 0.840 92.8 3.9 3.3 0.829 
1-3-3 Full 91.6 4.5 4.0 0.801 91.8 4.5 3.7 0.807 
1-3-3 25% dec. 90.5 5.1 4.4 0.776 90.2 5.5 4.4 0.769 
1-3-3 50% dec. 88.2 6.6 5.2 0.725 88.2 6.7 5.1 0.724 
1-2-3 50% inc. 92.9 3.7 3.4 0.833 92.8 3.8 3.4 0.831 
1-2-3 Full 91.4 4.6 4.0 0.798 91.3 4.8 3.9 0.796 
1-2-3 25% dec. 90.2 5.3 4.5 0.770 90.0 5.4 4.6 0.766 
1-2-3 50% dec. 88.1 6.9 5.0 0.722 88.3 6.5 5.2 0.727 
1-3-2 50% inc. 93.1 3.6 3.3 0.838 92.6 3.9 3.6 0.825 
1-3-2 Full 91.6 4.5 3.9 0.803 91.6 4.6 3.8 0.803 
1-3-2 25% dec. 90.4 5.2 4.5 0.773 90.2 5.6 4.2 0.771 
1-3-2 50% dec. 88.3 6.5 5.1 0.727 88.1 6.8 5.0 0.724 
1-2-2 50% inc. 92.9 4.0 3.1 0.834 92.6 4.1 3.4 0.825 
1-2-2 Full 91.3 4.8 3.9 0.797 90.4 5.1 4.5 0.803 
1-2-2 25% dec. 90.3 4.2 5.5 0.773 89.7 5.8 4.5 0.758 
1-2-2 50% dec. 88.0 6.8 5.2 0.719 88.2 6.9 4.9 0.725 

1-3-3 50% inc. 92.7 4.0 3.3 0.829 92.5 4.3 3.2 0.825 
1-3-3 Full 91.7 4.6 3.7 0.804 91.4 4.7 3.9 0.798 
1-3-3 25% dec. 90.1 5.5 4.3 0.769 89.9 5.6 4.5 0.762 
1-3-3 50% dec. 87.7 7.0 5.3 0.714 88.3 6.6 5.1 0.727 

1-2-3 50% inc. 92.9 4.0 3.1 0.833 92.5 4.2 3.3 0.823 
1-2-3 Full 91.5 4.7 3.9 0.799 91.5 4.7 3.8 0.801 

1-2-3 25% dec. 90.0 5.7 4.4 0.765 89.7 5.9 4.4 0.759 

1-2-3 50% dec. 87.7 7.0 5.2 0.715 88.1 6.8 5.1 0.723 

1-3-2 50% inc. 92.9 4.0 3.1 0.833 92.5 4.3 3.3 0.824 

1-3-2 Full 91.3 4.9 3.8 0.796 91.4 4.7 3.9 0.798 

1-3-2 25% dec. 90.0 5.6 4.4 0.766 89.9 5.7 4.4 0.765 

1-3-2 50% dec. 87.8 7.0 5.2 0.717 88.1 6.7 5.2 0.722 
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Table 4.3. Decision Accuracy for Number-Correct Routing at 30% Passing 

Rep. Design 
TIP 

Level 

Equal Information 1/2-1/4-1/4 Information 
Agree 

(%) 
FP 
(%) 

FN 
(%) 

K 
Agree 

(%) 
FP 
(%) 

FN 
(%) K 

1 

1-2-2 50% inc. 93.3 3.5 3.2 0.841 93.0 3.9 3.1 0.835 
1-2-2 Full 91.9 4.2 4.0 0.808 90.1 5.5 4.5 0.796 
1-2-2 25% dec. 90.3 4.4 5.3 0.772 90.3 5.4 4.3 0.772 
1-2-2 50% dec. 87.9 6.7 5.4 0.718 88.2 6.5 5.3 0.725 
1-3-3 50% inc. 93.1 3.7 3.2 0.837 92.8 3.8 3.4 0.830 
1-3-3 Full 91.5 4.4 4.1 0.800 91.8 4.6 3.6 0.807 
1-3-3 25% dec. 90.5 5.1 4.4 0.776 90.1 5.4 4.5 0.767 
1-3-3 50% dec. 88.1 6.6 5.2 0.722 88.2 6.6 5.2 0.725 
1-2-3 50% inc. 93.1 3.6 3.3 0.837 92.7 3.9 3.4 0.829 
1-2-3 Full 91.6 4.4 4.0 0.802 91.4 4.7 3.9 0.797 
1-2-3 25% dec. 90.3 5.3 4.4 0.772 90.0 5.5 4.5 0.765 
1-2-3 50% dec. 88.2 6.7 5.1 0.725 88.5 6.4 5.1 0.730 
1-3-2 50% inc. 93.0 3.7 3.3 0.834 92.6 3.8 3.6 0.824 
1-3-2 Full 91.7 4.4 3.8 0.805 91.7 4.5 3.8 0.804 
1-3-2 25% dec. 90.4 5.1 4.5 0.773 90.2 5.4 4.4 0.770 
1-3-2 50% dec. 88.4 6.5 5.1 0.730 88.0 6.8 5.2 0.720 

2 

1-2-2 50% inc. 93.0 4.0 3.1 0.835 92.6 4.0 3.3 0.826 
1-2-2 Full 91.4 4.8 3.8 0.798 90.5 5.1 4.3 0.805 
1-2-2 25% dec. 90.4 4.2 5.5 0.774 89.6 5.8 4.6 0.757 
1-2-2 50% dec. 88.0 6.7 5.3 0.719 88.2 6.9 4.9 0.726 
1-3-3 50% inc. 92.5 4.0 3.4 0.824 92.5 4.3 3.2 0.823 
1-3-3 Full 91.6 4.6 3.7 0.804 91.3 4.8 3.9 0.795 
1-3-3 25% dec. 90.1 5.6 4.3 0.769 89.7 5.7 4.6 0.757 
1-3-3 50% dec. 87.7 7.0 5.4 0.712 88.4 6.7 5.0 0.729 

1-2-3 50% inc. 92.9 4.0 3.1 0.833 92.5 4.2 3.4 0.823 
1-2-3 Full 91.3 4.8 3.9 0.795 91.6 4.6 3.8 0.801 
1-2-3 25% dec. 90.0 5.7 4.3 0.766 89.8 5.7 4.5 0.761 
1-2-3 50% dec. 88.0 6.9 5.1 0.721 88.1 6.7 5.1 0.723 

1-3-2 50% inc. 92.9 3.9 3.2 0.834 92.4 4.3 3.3 0.822 
1-3-2 Full 91.4 4.9 3.8 0.798 91.3 4.7 3.9 0.796 
1-3-2 25% dec. 90.0 5.6 4.3 0.767 89.7 5.7 4.5 0.760 

1-3-2 50% dec. 87.7 7.0 5.3 0.714 88.0 6.7 5.2 0.720 
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Table 4.4. Decision Accuracy for Random Routing at 30% Passing 

Rep. Design 
TIP 

Level 

Equal Information 1/2-1/4-1/4 Information 
Agree 

(%) 
FP 

--(%) 
FN 
(%) K Agree 

(%) 
FP 
(%) 

FN 
(%) K 

1 

1-2-2 50% inc. 92.3 4.2 3.5 0.820 92.9 4.0 3.1 0.832 
1-2-2 Full 91.5 4.8 3.8 0.800 90.1 5.5 4.4 0.796 
1-2-2 25% dec. 89.9 4.5 5.6 0.764 89.0 6.3 4.7 0.743 
1-2-2 50% dec. 86.9 7.3 5.8 0.694 87.7 7.0 5.3 ro.713 

1-3-3 50% inc. 92.5 4.1 3.4 0.824 92.3 4.1 3.6 0.818 
1-3-3 Full 91.0 4.7 4.3 0.788 91.2 5.0 3.9 0.793 
1-3-3 25% dec. 90.0 5.7 4.3 0.766 89.9 5.8 4.3 0.765 
1-3-3 50% dec. 87.6 7.2 5.1 0.713 87.6 7.2 5.2 0.712 
1-2-3 50% inc. 92.5 4.1 3.5 0.823 92.4 4.3 3.3 0.821 
1-2-3 Full 90.9 5.2 4.0 0.786 91.3 5.0 3.7 0.797 
1-2-3 25% dec. 89.4 6.0 4.5 0.753 89.8 5.6 4.7 0.759 
1-2-3 50% dec. 87.2 7.4 5.4 0.702 87.9 7.1 5.0 0.719 
1-3-2 50% inc. 92.6 3.9 3.5 0.826 92.7 4.0 3.3 0.829 
1-3-2 Full 90.8 5.3 3.9 0.784 90.8 5.1 4.1 0.784 
1-3-2 25% dec. 90.0 5.6 4.4 0.766 90.0 5.8 4.2 0.766 
1-3-2 50% dec. 87.4 7.3 5.4 0.706 87.7 6.8 5.5 0.712 

2 

1-2-2 50% inc. 92.3 4.1 3.5 0.819 92.4 4.1 3.4 0.822 
1-2-2 Full 91.0 5.1 3.9 0.790 90.1 5.5 4.4 0.796 
1-2-2 25% dec. 89.9 4.5 5.6 0.763 89.8 5.7 4.6 0.760 
1-2-2 50% dec. 87.7 7.0 5.4 0.712 88.1 7.0 4.9 0.723 
1-3-3 50% inc. 92.6 4.0 3.4 0.827 92.3 4.1 3.6 0.819 
1-3-3 Full 91.0 5.1 3.9 0.790 91.2 4.7 4.2 0.792 
1-3-3 25% dec. 89.5 5.7 4.8 0.753 90.0 5.7 '4.3 0.766 
1-3-3 50% dec. 87.5 7.2 5.3 0.710 87.2 7.6 5.2 0.702 

1-2-3 50% inc. 92.8 4.0 3.1 0.832 92.7 3.9 3.4 0.827 
1-2-3 Full 91.4 5.0 3.6 0.800 91.1 5.0 4.0 0.790 
1-2-3 25% dec. 89.6 5.8 4.6 0.756 90.0 5.9 4.2 0.766 
1-2-3 50% dec. 87.3 7.2 5.5 0.704 88.1 6.7 5.3 0.721 

1-3-2 50% inc. 92.5 3.9 3.6 0.823 92.7 3.9 3.4 0.828 
1-3-2 Full 90.8 5.3 3.9 0.785 91.3 4.7 4.0 0.795 
1-3-2 25% dec. 89.0 6.0 5.0 0.743 90.1 5.7 4.1 0.770 
1-3-2 50% dec. 87.0 7.5 5.5 0.697 88.1 6.8 5.1 0.722 
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Table 4.5. Decision Accuracy for DPI Routing at 40% Passing 

Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K 

Agree FP FN 
K (%) (%) (%) (%) (%) (%) 

1-2-2 50% inc. 92.5 3.8 3.7 0.845 91.7 4.1 4.2 0.829 
1-2-2 Full 89.5 4.9 5.6 0.790 89.6 5.0 5.5 0.791 
1-2-2 25% dec. 88.6 5.9 5.5 0.766 89.5 5.4 5.1 0.784 
1-2-2 50% dec. 86.7 7.0 6.3 0.727 86.7 7.0 6.3 0.726 
1-3-3 50% inc. 92.6 3.9 3.5 0.848 91.8 4.3 3.9 0.832 
1-3-3 Full 90.4 5.0 4.6 0.802 90.7 4.8 4.5 0.808 
1-3-3 25% dec. 88.5 5.9 5.6 0.762 89.4 5.6 5.0 0.781 
1-3-3 50% dec. 86.7 6.9 6.4 0.727 86.6 7.2 6.1 0.725 
1-2-3 50% inc. 92.1 4.1 3.8 0.837 91.7 4.1 4.1 0.830 
1-2-3 Full 90.5 4.7 4.9 0.803 90.8 4.8 4.5 0.810 
1-2-3 25% dec. 88.9 5.8 5.3 0.771 89.2 5.8 5.0 0.778 
1-2-3 50% dec. 87.0 6.7 6.3 0.731 87.1 6.8 6.1 0.734 
1-3-2 50% inc. 92.5 3.9 3.6 0.846 92.1 4.4 3.5 0.838 
1-3-2 Full 90.2 5.1 4.7 0.798 90.6 4.8 4.5 0.807 
1-3-2 25% dec. 88.6 6.0 5.4 0.766 89.3 5.8 4.9 0.779 
1-3-2 50% dec. 86.5 7.2 6.4 0.721 86.6 7.0 6.4 0.725 
1-2-2 50% inc. 91.9 4.4 3.7 0.833 91.6 4.6 3.8 0.828 
1-2-2 Full 89.5 5.4 5.1 0.790 89.4 5.1 5.5 0.789 
1-2-2 25% dec. 88.9 5.9 5.2 0.771 88.9 6.1 5.0 0.773 
1-2-2 50% dec. 86.8 7.1 6.1 0.728 86.8 7.1 6.1 0.728 
1-3-3 50% inc. 92.4 4.1 3.5 0.843 91.6 4.6 3.7 0.828 
1-3-3 Full 90.2 5.3 4.4 0.799 90.2 5.2 4.6 0.799 
1-3-3 25% dec. 88.7 6.0 5.3 0.767 88.8 6.0 5.2 0.770 
1-3-3 50% dec. 86.7 7.1 6.3 0.725 86.6 7.1 6.3 0.725 

1-2-3 50% inc. 91.8 4.3 3.9 0.831 91.5 4.6 3.9 0.825 
1-2-3 Full 90.4 5.2 4.4 0.802 90.3 5.3 4.4 0.801 
1-2-3 25% dec. 88.8 5.9 5.3 0.770 89.1 5.7 5.2 0.775 
1-2-3 50% dec. 86.6 7.4 6.0 0.724 86.1 7.6 6.3 0.715 

1-3-2 50% inc. 92.3 3.9 3.8 0.842 91.9 4.3 3.8 0.832 

1-3-2 Full 90.7 4.8 4.5 0.809 90.1 5.2 4.7 0.796 

1-3-2 25% dec. 88.7 6.1 5.2 0.767 88.7 6.0 5.3 0.768 

1-3-2 50% dec. 86.4 7.2 6.4 0.721 86.1 7.1 6.8 0.713 
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Table 4.6. Decision Accuracy for Proximity Routing at 40% Passing 

Rep Design 
TIP 

Level 

Equal Information 1/2-1/4-1/4 Information 
Agree 

(%) 
FP 
(%) 

FN 
(%) K Agree 

(%) 
FP 
(%) 

FN 
(%) K 

1-2-2 50% inc. 91.8 4.6 3.6 0.832 91.9 4.4 3.7 0.833 
1-2-2 Full 89.7 5.1 5.2 0.794 90.2 4.8 4.9 0.805 
1-2-2 25% dec. 88.7 6.0 5.3 0.768 88.9 5.9 5.1 0.772 
1-2-2 50% dec. 86.5 7.4 6.2 0.722 86.2 7.5 6.2 0.717 
1-3-3 50% inc. 92.4 4.2 3.4 0.843 91.6 4.5 3.9 0.826 
1-3-3 Full 90.3 5.1 4.6 0.799 90.4 5.2 4.4 0.802 
1-3-3 25% dec. 88.7 6.2 5.1 0.768 88.9 6.1 5.0 0.772 
1-3-3 50% dec. 86.7 7.3 6.0 0.727 86.6 7.2 6.3 0.724 
1-2-3 50% inc. 92.3 4.1 3.6 0.842 91.6 4.4 4.1 0.826 
1-2-3 Full 90.3 5.2 4.5 0.801 90.0 5.5 4.5 0.794 
1-2-3 25% dec. 88.7 6.0 5.3 0.768 89.0 5.8 5.2 0.773 
1-2-3 50% dec. 86.1 7.5 6.5 0.713 86.5 7.4 6.1 0.722 
1-3-2 50% inc. 92.0 4.3 3.7 0.835 91.5 4.5 4.0 0.825 
1-3-2 Full 89.9 5.3 4.7 0.793 90.2 5.3 4.5 0.799 
1-3-2 25% dec. 88.8 6.0 5.2 0.769 88.8 6.0 5.3 0.769 
1-3-2 50% dec. 86.0 7.7 6.3 0.712 86.6 7.3 6.1 0.724 
1-2-2 50% inc. 91.9 4.4 3.7 0.833 91.6 4.3 4.1 0.827 
1-2-2 Full 89.9 5.1 5.0 0.798 89.9 5.1 5.1 0.797 
1-2-2 25% dec. 88.6 6.2 5.2 0.766 88.8 6.0 5.2 0.770 
1-2-2 50% dec. 86.6 7.4 6.0 0.725 86.2 7.4 6.4 0.716 
1-3-3 50% inc. 91.7 4.4 3.9 0.830 91.8 4.3 3.9 0.830 
1-3-3 Full 90.3 5.3 4.4 0.800 90.3 5.2 4.5 0.800 
1-3-3 25% dec. 89.1 5.9 5.0 0.775 88.7 6.1 5.2 0.768 
1-3-3 50% dec. 86.3 7.5 6.2 0.719 86.2 7.8 6.0 0.717 

1-2-3 50% inc. 91.7 4.4 3.9 0.829 91.8 4.2 4.0 0.832 
1-2-3 Full 90.2 5.2 4.6 0.799 90.2 5.2 4.6 0.797 
1-2-3 25% dec. 89.0 5.9 5.1 0.775 88.6 6.2 5.2 0.765 
1-2-3 50% dec. 86.5 7.3 6.3 0.722 86.3 7.5 6.2 0.719 
1-3-2 50% inc. 92.1 4.3 3.7 0.837 91.9 4.2 3.9 0.833 
1-3-2 Full 90.4 5.3 4.3 0.802 90.3 5.2 4.5 0.800 
1-3-2 25% dec. 89.0 6.0 5.0 0.774 88.8 6.1 5.1 0.771 
1-3-2 50% dec. 86.4 7.6 6.0 0.721 86.3 7.7 6.0 0.720 
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Table 4.7. Decision Accuracy for Number-Correct Routing at 40% Passing 

Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K 

Agree FP FN 
K (%) (%) (%) (%) (%) 

1-2-2 50% inc. 91.9 4.4 3.7 0.833 91.8 4.4 3.9 0.830 
1-2-2 Full 89.5 4.9 5.5 0.791 89.9 4.9 5.2 0.798 
1-2-2 25% dec. 88.7 6.0 5.3 0.768 89.1 5.7 5.2 0.776 
1-2-2 50% dec. 86.4 7.3 6.2 0.721 86.3 7.4 6.3 0.718 
1-3-3 50% inc. 92.2 4.2 3.5 0.840 91.6 4.5 3.9 0.827 
1-3-3 Full 90.1 5.1 4.8 0.796 90.4 5.2 4.4 0.802 
1-3-3 25% dec. 88.6 6.3 5.0 0.766 89.0 6.0 5.0 0.774 
1-3-3 50% dec. 86.4 7.2 6.3 0.721 86.7 7.1 6.2 0.726 
1-2-3 50% inc. 92.1 4.2 3.7 0.837 91.6 4.4 4.0 0.826 
1-2-3 Full 90.3 5.3 4.4 0.801 89.6 5.8 4.7 0.785 
1-2-3 25% dec. 89.0 5.9 5.1 0.773 88.7 6.0 5.3 0.768 
1-2-3 50% dec. 86.0 7.4 6.6 0.712 86.6 7.3 6.1 0.724 
1-3-2 50% inc. 92.0 4.3 3.7 0.836 91.4 4.5 4.1 0.823 
1-3-2 Full 89.8 5.4 4.9 0.789 90.1 5.4 4.5 0.797 
1-3-2 25% dec. 88.5 6.1 5.4 0.763 88.9 5.9 5.2 0.772 
1-3-2 50% dec. 86.0 7.6 6.4 0.712 86.6 7.3 6.1 0.725 
1-2-2 50% inc. 91.9 4.2 3.9 0.833 91.6 4.3 4.0 0.828 
1-2-2 Full 89.9 5.1 5.0 0.798 90.0 5.1 5.0 0.799 
1-2-2 25% dec. 88.5 6.2 5.3 0.763 88.7 6.0 5.3 0.768 
1-2-2 50% dec. 86.5 7.2 6.3 0.722 86.0 7.4 6.5 0.713 
1-3-3 50% inc. 91.8 4.3 3.9 0.832 91.8 4.2 4.0 0.830 
1-3-3 Full 89.9 5.6 4.6 0.792 90.2 5.3 4.5 0.799 
1-3-3 25% dec. 88.7 6.3 5.0 0.768 88.7 6.1 5.2 0.767 
1-3-3 50% dec. 86.5 7.4 6.1 0.722 86.2 7.7 6.1 0.717 

1-2-3 50% inc. 91.8 4.2 4.0 0.831 91.9 4.1 4.0 0.832 
1-2-3 Full 90.3 5.0 4.7 0.800 90.0 5.3 4.7 0.794 
1-2-3 25% dec. 88.7 6.1 5.2 0.767 88.5 6.2 5.3 0.763 
1-2-3 50% dec. 86.1 7.7 6.2 0.715 86.0 7.7 6.3 0.712 

1-3-2 50% inc. 91.9 4.3 3.8 0.834 91.9 4.1 4.0 0.833 
1-3-2 Full 90.2 5.3 4.5 0.798 90.3 5.3 4.4 0.800 
1-3-2 25% dec. 88.7 6.2 5.1 0.769 88.9 5.9 5.2 0.771 
1-3-2 50% dec. 86.4 7.6 6.0 0.721 86.1 7.8 6.2 0.714 
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Table 4.8. Decision Accuracy for Random Routing at 40% Passing 

Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K Agree FP FN 

K (%) (%) (%) (%) (%) (%) 
1-2-2 50% inc. 92.0 4.3 3.6 0.836 91.6 4.5 3.9 0.826 
1-2-2 Full 89.3 5.4 5.2 0.786 89.8 5.3 4.9 0.796 
1-2-2 25% dec. 89.0 5.9 5.1 0.773 88.7 5.9 5.4 0.767 
1-2-2 50% dec. 85.7 7.8 6.5 0.707 86.1 7.3 6.6 0.713 
1-3-3 50% inc. 91.7 4.6 3.7 0.830 91.5 4.7 3.8 0.825 
1-3-3 Full 90.3 5.3 4.4 0.801 90.7 5.0 4.3 0.809 
1-3-3 25% dec. 88.4 6.5 5.1 0.761 89.1 5.8 5.1 0.776 
1-3-3 50% dec. 86.1 7.5 6.4 0.715 86.6 7.5 5.9 0.724 
1-2-3 50% inc. 91.8 4.4 3.8 0.832 91.8 4.5 3.8 0.831 
1-2-3 Full 90.3 5.0 4.7 0.801 90.6 5.1 4.3 0.807 
1-2-3 25% dec. 88.5 6.1 5.3 0.764 88.5 6.1 5.3 0.764 
1-2-3 50% dec. 85.8 7.8 6.4 0.709 86.1 7.5 6.4 0.715 
1-3-2 50% inc. 91.5 4.5 4.0 0.825 91.6 4.4 4.0 ^827 
1-3-2 Full 89.9 5.4 4.7 0.793 90.2 5.4 4.5 0.798 
1-3-2 25% dec. 88.2 6.4 5.4 0.758 89.1 6.0 4.9 0.775 
1-3-2 50% dec. 86.0 7.5 6.5 0.712 86.2 7.7 6.1 0.716 
1-2-2 50% inc. 92.2 4.1 3.7 0.839 91.4 4.6 4.0 0.823 
1-2-2 Full 89.2 5.6 5.2 0.783 89.8 5.3 4.9 0.796 
1-2-2 25% dec. 89.2 5.9 4.9 0.778 88.9 6.0 5.1 0.772 
1-2-2 50% dec. 85.5 7.9 6.6 0.701 86.8 7.0 6.2 0.728 
1-3-3 50% inc. 91.9 4.5 3.5 0.834 91.9 4.5 3.6 0.833 
1-3-3 Full 89.7 5.8 4.4 0.789 90.4 5.4 4.3 0.802 
1-3-3 25% dec. 88.3 6.5 5.2 0.760 88.8 6.0 5.1 0.770 
1-3-3 50% dec. 86.3 7.6 6.1 0.720 86.0 7.7 6.2 0.713 
1-2-3 50% inc. 91.9 4.3 3.8 0.833 91.4 4.8 3.8 0.824 
1-2-3 Full 90.2 5.5 4.3 0.798 90.0 5.4 4.5 0.795 
1-2-3 25% dec. 88.7 6.3 5.0 0.767 88.6 6.1 5.3 0.766 
1-2-3 50% dec. 86.1 7.5 6.4 0.715 86.5 7.5 6.0 0.722 
1-3-2 50% inc. 91.9 4.3 3.7 0.834 91.4 4.9 3.7 0.823 
1-3-2 Full 89.8 5.6 4.6 0.791 90.5 5.3 4.1 0.805 
1-3-2 25% dec. 88.3 6.2 5.5 0.759 89.2 5.6 5.1 0.778 
1-3-2 50% dec. 86.3 7.4 6.3 0.719 86.7 7.4 5.8 0.728 

Rep. 
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Table 4.9. Decision Accuracy for DPI Routing at 50% Passing 

Design 
TIP 

Level 

Equal Information 1/2-1/4-1/4 Information 
Agree 

(%) 
FP FN 

(%) K 
Agree 

(%) 
FP 
(%) 

FN 
(%) K 

1-2-2 50% inc. 91.4 4.1 4.6 0.828 91.2 4.4 4.4 0.824 
1-2-2 Full 91.4 4.6 4.1 0.797 90.0 5.3 4.7 0.766 
1-2-2 25% dec. 88.0 5.7 6.3 0.761 88.8 5.6 5.7 0.776 
1-2-2 50% dec. 85.2 7.5 7.3 0.705 85.8 6.7 7.5 0.716 
1-3-3 50% inc. 91.1 4.4 4.5 0.823 91.4 4.1 4.5 0.828 
1-3-3 Full 89.4 5.1 5.4 0.789 89.9 5.0 5.1 0.799 
1-3-3 25% dec. 88.5 5.6 6.0 0.769 88.5 5.5 6.0 0.770 
1-3-3 50% dec. 85.8 6.8 7.4 0.716 86.1 6.8 7.1 0.721 
1-2-3 50% inc. 91.8 3.9 4.3 0.836 91.7 3.9 4.4 0.834 
1-2-3 Full 89.9 5.0 5.2 0.797 90.0 4.6 5.4 0.800 
1-2-3 25% dec. 89.0 5.1 5.9 0.780 88.4 5.5 6.2 0.767 
1-2-3 50% dec. 86.3 6.4 7.2 0.727 86.9 6.1 7.0 0.737 
1-3-2 50% inc. 91.6 4.0 4.4 0.833 91.5 4.2 4.3 0.830 
1-3-2 Full 89.7 5.0 5.4 0.793 90.2 4.9 5.0 0.804 
1-3-2 25% dec. 88.0 5.8 6.2 0.760 88.8 5.5 5.7 0.776 
1-3-2 50% dec. 86.1 6.6 7.3 0.722 86.5 6.3 7.1 0.731 
1-2-2 50% inc. 91.3 4.3 4.4 0.826 91.0 4.4 4.6 0.821 
1-2-2 Full 91.2 5.0 3.8 0.795 89.9 5.7 4.4 0.763 
1-2-2 25% dec. 87.9 6.1 6.0 0.757 88.1 6.1 5.7 0.762 
1-2-2 50% dec. 85.9 7.4 6.7 0.717 85.9 6.9 7.3 0.717 
1-3-3 50% inc. 91.6 4.1 4.3 0.832 91.5 4.2 4.3 0.829 
1-3-3 Full 90.2 4.9 4.9 0.805 90.1 4.9 5.0 0.802 
1-3-3 25% dec. 88.4 5.9 5.7 0.768 88.9 5.8 5.3 0.777 
1-3-3 50% dec. 85.9 6.8 7.3 0.719 86.4 6.7 6.9 0.727 
1-2-3 50% inc. 91.6 3.9 4.5 0.833 91.1 4.7 4.2 0.822 
1-2-3 Full 90.2 4.9 4.9 0.804 .90.2 4.6 5.2 0.803 
1-2-3 25% dec. 88.6 5.8 5.7 0.771 89.3 5.3 5.4 0.786 
1-2-3 50% dec. 86.1 7.0 6.9 0.723 86.5 6.8 6.6 0.730 
1-3-2 50% inc. 91.5 3.9 4.6 0.829 91.5 4.3 4.3 0.829 
1-3-2 Full 90.2 4.8 5.0 0.804 89.8 4.6 5.5 0.797 
1-3-2 25% dec. 88.5 5.8 5.7 0.769 89.0 5.4 5.7 0.780 
1-3-2 50% dec. 86.4 6.6 7.0 0.727 86.4 6.8 6.8 0.727 
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Table 4.10. Decision Accuracy for Proximity Routing at 50% Passing 

Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K 

Agree FP FN 
K (%) (%) (%) (%) (%) (%) 

1-2-2 50% inc. 91.8 4.0 4.2 0.836 91.1 4.5 4.4 0.822 
1-2-2 Full 91.4 4.6 4.0 0.797 90.3 5.2 4.5 0.773 
1-2-2 25% dec. 87.9 6.0 6.0 0.759 88.4 5.7 5.8 0.769 
1-2-2 50% dec. 85.6 7.2 7.2 0.713 85.8 7.0 7.2 0.716 
1-3-3 50% inc. 91.8 4.2 4.1 0.835 91.3 4.4 4.3 0.826 
1-3-3 Full 89.8 5.1 5.1 0.795 89.8 5.2 5.0 0.796 
1-3-3 25% dec. 88.1 6.0 5.8 0.763 88.2 6.1 5.7 0.764 
1-3-3 50% dec. 85.9 6.9 7.2 0.718 85.9 7.1 7.0 0.717 
1-2-3 50% inc. 91.7 4.2 4.1 0.835 91.0 4.6 4.4 0.820 
1-2-3 Full 89.8 5.2 5.1 0.795 89.7 5.1 5.2 0.795 
1-2-3 25% dec. 87.8 6.2 6.1 0.755 88.2 6.1 5.7 0.764 
1-2-3 50% dec. 85.9 7.1 7.0 0.718 85.7 7.2 7.0 0.715 
1-3-2 50% inc. 91.5 4.4 4.1 0.831 91.3 4.4 4.2 0.826 
1-3-2 Full 89.7 5.1 5.2 0.794 90.0 5.0 5.0 0.800 
1-3-2 25% dec. 88.0 6.0 6.0 0.760 88.2 6.1 5.7 0.764 
1-3-2 50% dec. 86.0 6.9 7.0 0.721 85.8 7.1 7.1 0.716 
1-2-2 50% inc. 91.8 4.2 4.0 0.837 91.2 4.5 4.4 0.823 
1-2-2 Full 91.5 4.8 3.7 0.800 90.3 5.5 4.2 0.773 
1-2-2 25% dec. 88.2 6.0 5.8 0.764 88.5 5.8 5.7 0.770 
1-2-2 50% dec. 85.6 7.4 7.0 0.713 86.1 7.1 6.9 0.721 
1-3-3 50% inc. 91.6 4.1 4.4 0.831 91.1 4.4 4.5 0.822 
1-3-3 Full 90.0 5.1 4.9 0.801 89.9 5.0 5.1 0.798 
1-3-3 25% dec. 88.4 5.6 6.0 0.768 88.6 5.6 5.8 0.773 
1-3-3 50% dec. 86.4 6.8 6.8 0.728 85.9 7.1 7.0 0.718 

1-2-3 50% inc. 91.7 4.2 4.2 0.833 91.3 4.4 4.3 0.826 
1-2-3 Full 89.7 5.1 5.2 0.794 90.1 5.0 4.9 0.801 
1-2-3 25% dec. 88.3 5.8 5.9 0.766 88.3 5.8 5.9 0.766 
1-2-3 50% dec. 86.2 7.1 6.7 0.724 86.2 7.0 6.8 0.725 

1-3-2 50% inc. 91.5 4.2 4.2 0.831 91.3 4.4 4.3 0.826 
1-3-2 Full 89.9 5.1 5.1 0.797 89.9 4.9 5.2 0.799 
1-3-2 25% dec. 88.1 5.8 6.0 0.762 88.6 5.6 5.8 0.772 
1-3-2 50% dec. 86.0 6.9 7.1 0.721 85.7 7.3 6.9 0.715 
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Table 4.11. Decision Accuracy for Number-Correct Routing at 50% Passing 

Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K Agree FP FN 

(%) (%) (%) (%) (%) (%) K 

1-2-2 50% inc. 91.7 4.1 4.2 0.834 91.1 4.4 4.5 0.798 
1-2-2 Full 91.4 4.6 4.0 0.797 90.3 5.3 4.4 0.772 
1-2-2 25% dec. 87.6 6.1 6.3 0.751 88.4 5.7 5.9 0.768 
1-2-2 50% dec. 85.5 7.0 7.5 0.711 85.7 7.0 7.3 0.715 
1-3-3 50% inc. 91.5 4.1 4.4 0.831 91.3 4.3 4.4 0.826 
1-3-3 Full 89.5 5.2 5.3 0.789 89.8 5.1 5.0 0.797 
1-3-3 25% dec. 88.1 5.9 6.0 0.762 88.2 5.8 6.0 0.764 
1-3-3 50% dec. 85.7 7.0 7.3 0.714 86.0 6.9 7.0 0.721 
1-2-3 50% inc. 91.2 4.4 4.3 0.825 91.4 4.2 ^4.3 0.828 
1-2-3 Full 89.4 5.4 5.2 0.788 89.9 5.1 4.9 0.799 
1-2-3 25% dec. 87.8 6.1 6.1 0.756 88.1 6.1 5.9 0.761 
1-2-3 50% dec. 85.8 7.1 7.1 0.716 85.5 7.1 7.3 0.711 
1-3-2 50% inc. 91.5 4.2 4.3 0.829 91.1 4.5 4.4 0.822 
1-3-2 Full 89.3 5.3 5.4 0.786 89.9 5.2 4.9 0.798 
1-3-2 25% dec. 87.6 6.2 6.2 0.752 88.3 5.8 5.9 0.766 
1-3-2 50% dec. 86.0 6.9 7.1 0.719 85.7 7.3 7.0 0.714 
1-2-2 50% inc. 91.6 4.2 4.2 0.831 91.0 4.6 4.4 0.821 
1-2-2 Full 91.5 4.8 3.7 0.801 90.4 5.5 4.2 0.774 
1-2-2 25% dec. 88.1 5.9 6.0 0.762 88.2 6.0 5.8 0.764 
1-2-2 50% dec. 85.9 7.0 7.1 0.718 86.0 6.8 7.2 0.719 
1-3-3 50% inc. 91.4 4.3 4.3 0.829 91.1 4.4 4.4 0.823 
1-3-3 Full 89.9 5.2 4.9 0.798 89.8 5.2 5.0 0.795 
1-3-3 25% dec. 88.3 5.8 5.9 0.765 88.4 5.8 5.8 0.769 
1-3-3 50% dec. 86.4 6.9 6.7 0.728 85.8 7.0 7.2 0.716 

1-2-3 50% inc. 91.9 4.2 3.9 0.838 91.1 4.5 4.4 0.822 
1-2-3 Full 90.1 5.0 4.9 0.802 89.9 5.0 5.1 0.798 
1-2-3 25% dec. 88.3 5.7 5.9 0.767 88.5 5.7 5.7 0.771 
1-2-3 50% dec. 86.0 7.3 6.7 0.719 85.9 7.1 7.0 0.717 

1-3-2 50% inc. 91.6 4.2 4.3 0.831 91.2 4.5 4.3 0.824 
1-3-2 Full 89.7 5.4 4.9 0.794 89.8 5.1 5.1 0.797 
1-3-2 25% dec. 87.9 5.9 6.1 0.759 88.6 5.6 5.8 0.771 
1-3-2 50% dec. 86.1 7.0 6.9 0.722 85.9 7.1 7.0 0.718 
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Table 4.12. Decision Accuracy for Random Routing at 50% Passing 

Design 
TIP Equal Information 1/2-1/4-1/4 Information 

Level Agree FP FN 
K Agree FP FN 

K (%) (%) (%) (%) (%) (%) 
1-2-2 50% inc. 91.1 4.4 4.4 0.823 91.0 4.4 4.5 0.821 
1-2-2 Full 91.3 4.9 3.8 0.796 89.9 5.6 4.5 0.764 
1-2-2 25% dec. 88.2 6.0 5.9 0.763 88.4 5.8 5.8 0.767 
1-2-2 50% dec. 85.2 7.5 7.3 0.704 86.1 7.2 6.7 0.722 
1-3-3 50% inc. 91.7 4.3 4.0 0.834 91.4 4.5 4.1 0.829 
1-3-3 Full 89.8 5.1 5.2 0.796 89.5 5.3 5.2 0.790 
1-3-3 25% dec. 87.6 6.2 6.2 0.752 88.0 6.1 5.9 0.760 
1-3-3 50% dec. 86.5 6.6 6.9 0.729 86.2 7.2 6.7 0.723 
1-2-3 50% inc. 91.2 4.5 4.3 0.825 91.2 4.7 4.1 0.823 
1-2-3 Full 89.6 5.4 5.0 0.791 89.7 5.4 5.0 0.794 
1-2-3 25% dec. 88.1 6.0 5.9 0.763 88.8 5.9 5.4 0.776 
1-2-3 50% dec. 86.2 7.2 6.6 0.723 85.7 7.5 6.9 0.713 
1-3-2 50% inc. 91.5 4.4 4.1 0.830 91.2 4.5 4.3 0.824 
1-3-2 Full 89.5 5.7 4.8 0.791 89.5 5.5 5.0 0.791 
1-3-2 25% dec. 87.7 6.1 6.2 0.754 88.4 6.0 5.6 0.768 
1-3-2 50% dec. 85.2 7.8 7.0 0.704 86.2 6.7 7.1 0.723 
1-2-2 50% inc. 91.2 4.5 4.3 0.824 91.0 4.7 4.3 0.820 
1-2-2 Full 90.8 5.0 4.2 0.783 89.9 5.6 4.5 0.763 
1-2-2 25% dec. 88.3 6.0 5.7 0.766 88.0 5.8 6.1 0.761 
1-2-2 50% dec. 85.8 7.3 6.9 0.716 86.2 7.0 6.8 0.723 
1-3-3 50% inc. 91.5 4.4 4.1 0.829 91.1 4.5 4.4 0.823 
1-3-3 Full 89.6 5.4 5.0 0.791 89.6 5.3 5.1 0.793 
1-3-3 25% dec. 87.9 6.1 6.1 0.757 88.4 5.9 5.7 0.768 
1-3-3 50% dec. 85.4 7.6 7.0 0.707 85.7 7.3 7.0 0.713 
1-2-3 50% inc. 91.3 4.6 4.1 0.826 91.1 4.4 4.4 0.823 
1-2-3 Full 89.5 5.4 5.1 0.789 89.8 5.0 5.2 0.796 
1-2-3 25% dec. 88.5 5.9 5.6 0.770 88.3 5.9 5.7 0.767 
1-2-3 50% dec. 86.0 6.9 7.1 0.720 85.4 7.6 7.0 0.708 

1-3-2 50% inc. 91.5 4.3 4.2 0.831 90.8 5.0 4.2 0.817 
1-3-2 Full 89.4 5.3 5.3 0.789 89.9 5.2 4.9 0.797 
1-3-2 25% dec. 87.6 6.3 6.1 0.752 88.3 5.8 6.0 0.765 
1-3-2 50% dec. 86.7 6.9 6.4 0.734 85.6 7.3 7.1 0.713 
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Table 4.13. Decision Consistency for DPI Routing at Three Pass Rates 

Pass 
Rate Design TIP 

Level 
E( qual Information 1/2-1/4-1/4 Information 

Agree FP(%) FN(%) K Agree FP(%) FN(%) K 

30% 

1-2-2 50% inc. 89.8 5.5 4.7 0.762 89.4 5.2 5.4 0.752 
1-2-2 Full 88.5 6.1 5.4 0.731 87.8 6.4 5.8 0.716 
1-2-2 25% dec. 85.6 7.5 6.9 0.665 85.8 7.3 6.8 0.672 
1-2-2 50% dec. 83.1 8.6 8.3 0.610 82.9 8.9 8.2 0.606 
1-3-3 50% inc. 90.1 5.0 4.9 0.767 89.6 5.0 5.4 0.755 
1-3-3 Full 88.3 6.0 5.7 0.726 87.9 6.1 6.0 0.717 
1-3-3 25% dec. 86.6 7.0 6.5 0.688 86.2 7.1 6.8 0.678 
1-3-3 50% dec. 82.6 9.0 8.5 0.599 83.5 8.3 8.2 0.620 
1-2-3 50% inc. 90.0 5.0 5.0 0.766 89.8 5.2 5.1 0.760 
1-2-3 Full 88.6 5.9 5.6 0.733 87.2 6.5 6.3 0.703 
1-2-3 25% dec. 85.4 7.2 7.4 0.660 86.3 6.8 6.9 0.682 
1-2-3 50% dec. 82.8 8.9 8.3 0.602 82.9 8.5 8.6 0.607 
1-3-2 50% inc. 90.1 4.9 5.0 0.769 89.5 4.9 5.6 0.755 
1-3-2 Full 88.5 6.0 5.5 0.731 88.0 6.2 5.8 0.719 
1-3-2 25% dec. 85.9 7.4 6.7 0.672 85.7 7.2 7.0 0.670 
1-3-2 50% dec. 82.4 8.8 8.8 0.596 82.8 8.8 8.4 0.606 

40% 

1-2-2 50% inc. 88.7 5.9 5.4 0.768 88.1 6.4 5.5 0.756 
1-2-2 Full 85.7 7.4 6.9 0.706 86.5 7.1 6.4 0.722 
1-2-2 25% dec. 84.4 7.9 7.7 0.679 84.8 7.9 7.3 0.687 
1-2-2 50% dec. 80.8 9.8 9.4 0.606 81.4 9.5 9.1 0.618 

1-3-3 50% inc. 89.3 5.5 5.3 0.780 88.1 6.2 5.7 0.755 
1-3-3 Full 86.2 7.1 6.7 0.717 86.5 6.9 6.6 0.722 

1-3-3 25% dec. 83.9 8.3 7.8 0.668 84.6 7.8 7.6 0.684 

1-3-3 50% dec. 81.9 9.2 8.9 0.628 81.3 9.2 9.5 0.616 

1-2-3 50% inc. 88.9 5.6 5.5 0.771 88.4 6.2 5.5 0.760 

1-2-3 Full 86.4 7.3 6.3 0.720 86.9 6.9 6.3 0.730 

1-2-3 25% dec. 84.3 7.9 7.8 0.677 84.8 7.5 7.7 0.688 

1-2-3 50% dec. 81.3 9.9 8.9 0.616 81.4 9.6 9.0 0.618 

1-3-2 50% inc. 89.1 5.4 5.6 0.774 88.1 5.7 6.2 0.756 

1-3-2 Full 86.7 6.6 6.7 0.726 86.6 6.8 6.6 0.725 

1-3-2 25% dec. 84.3 8.1 7.7 0.677 84.9 7.4 7.7 0.690 

1-3-2 50% dec. 81.5 9.3 9.3 0.619 81.3 9.2 9.5 0.615 

50% 

1-2-2 50% inc. 88.0 6.2 5.8 0.760 87.7 6.0 6.3 0.754 

1-2-2 Full 85.8 7.6 6.7 0.716 85.9 7.1 7.0 0.719 

1-2-2 25% dec. 84.1 8.3 7.6 0.681 84.3 8.1 7.6 0.687 

1-2-2 50% dec. 80.2 10.2 9.6 0.603 81.1 9.7 9.2 0.622 

1-3-3 50% inc. 88.2 5.8 6.0 0.764 87.9 6.2 5.9 0.758 

1-3-3 Full 86.0 7.1 6.8 0.720 86.1 6.9 6.9 0.722 

1-3-3 25% dec. 84.0 8.3 7.6 0.680 84.7 8.1 7.2 0.694 

1-3-3 50% dec. 80.6 9.8 9.6 0.611 80.6 9.8 9.6 0.612 

1-2-3 50% inc. 88.3 5.8 5.9 0.767 87.6 6.7 5.6 0.753 

1-2-3 Full 86.3 6.9 6.8 0.726 86.2 7.0 6.8 0.725 

1-2-3 25% dec. 84.3 8.3 7.4 0.686 85.3 7.6 7.0 0.707 

1-2-3 50% dec. 80.7 10.0 9.2 0.615 81.5 9.8 8.7 0.630 

1-3-2 50% inc. 88.6 5.6 5.9 0.771 87.9 6.0 6.0 0.759 

1-3-2 Full 86.5 6.8 6.6 0.731 86.4 6.4 7.2 0.727 

1-3-2 25% dec. 83.8 8.4 7.8 0.676 84.9 7.5 7.6 0.698 

1-3-2 50% dec. 80.8 9.7 9.5 0.616 81.3 9.7 9.0 0.626 
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Table 4.14. Decision Consistency for Proximity Routing at Three Pass Rates 

Pass 
Rate Design TIP 

Level 
I iqual Information 1/2-1/4-1/4 Information 

Agree FP(%) FN(%) K Agree FP(%) FN(%) K 

30% 

1-2-2 50% inc. 90.2 5.2 4.6 0.769 89.4 5.3 5.3 0.752 
1-2-2 Full 88.0 6.4 5.6 0.719 88.0 6.3 5.7 0.719 
1-2-2 25% dec. 86.1 7.2 6.6 0.678 85.4 7.4 7.2 0.662 
1-2-2 50% dec. 82.7 8.9 8.5 0.600 83.2 8.8 8.1 0.613 
1-3-3 50% inc. 90.1 5.1 4.8 0.769 89.4 5.5 5.1 0.753 
1-3-3 Full 88.1 6.1 5.8 0.723 88.1 6.0 5.9 0.723 
1-3-3 25% dec. 86.3 7.1 6.6 0.680 85.5 7.3 7.3 0.662 
1-3-3 50% dec. 82.7 8.8 8.5 0.602 83.1 8.4 8.5 0.610 
1-2-3 50% inc. 90.1 5.2 4.7 0.768 89.6 5.4 5.0 0.757 
1-2-3 Full 87.6 6.3 6.1 0.710 87.9 6.0 6.1 0.718 
1-2-3 25% dec. 86.2 7.1 6.6 0.680 85.5 7.6 6.9 0.663 
1-2-3 50% dec. 82.7 8.6 8.7 0.603 83.3 8.6 8.1 0.615 
1-3-2 50% inc. 90.3 5.1 4.6 0.773 89.4 5.6 4.9 0.753 
1-3-2 Full 87.8 6.3 5.9 0.715 88.0 6.0 6.0 0.720 
1-3-2 25% dec. 86.2 7.2 6.6 0.680 85.7 7.1 7.2 0.670 
1-3-2 50% dec. 83.3 8.6 8.2 0.615 82.6 8.6 8.8 0.600 

40% 

1-2-2 50% inc. 88.3 5.7 6.0 0.760 88.3 5.6 6.1 0.760 
1-2-2 Full 86.4 6.8 6.9 0.720 86.3 6.7 7.1 0.718 
1-2-2 25% dec. 84.1 8.1 7.8 0.674 84.2 7.9 7.9 0.676 
1-2-2 50% dec. 80.7 9.8 9.5 0.605 80.6 9.5 9.9 0.602 
1-3^3 50% inc. 88.7 5.5 5.8 0.769 88.1 5.9 6.0 0.756 
1-3-3 Full 86.3 7.1 6.6 0.718 86.1 6.9 6.9 0.715 
1-3-3 25% dec. 84.3 7.8 8.0 0.677 84.3 7.8 7.9 0.679 
1-3-3 50% dec. 80.7 9.6 9.6 0.606 80.7 10.0 9.2 0.606 

1-2-3 50% inc. 88.3 5.9 5.9 0.759 88.4 5.8 5.8 0.761 
1-2-3 Full 86.1 6.9 7.0 0.714 85.7 7.0 7.3 0.707 
1-2-3 25% dec. 84.0 8.1 7.9 0.672 84.2 8.0 7.8 0.676 
1-2-3 50% dec. 80.0 10.0 10.0 0.590 81.0 9.5 9.4 0.612 

1-3-2 50% inc. 88.7 5.6 5.7 0.768 88.3 5.7 6.0 0.759 
1-3-2 Full 86.2 7.1 6.7 0.717 86.0 6.9 7.1 0.714 
1-3-2 25% dec. 84.1 8.0 7.8 0.675 84.3 8.0 7.7 0.678 
1-3-2 50% dec. 80.5 9.9 9.6 0.602 81.1 9.7 9.2 0.614 

50% 

1-2-2 50% inc. 88.4 6.0 5.7 0.768 91.2 4.5 4.4 0.823 
1-2-2 Full 85.3 7.4 7.3 0.705 86.3 6.9 6.8 0.725 
1-2-2 25% dec. 83.7 8.3 8.0 0.674 84.1 8.1 7.8 0.683 
1-2-2 50% dec. 79.9 10.2 9.9 0.597 80.1 10.1 9.7 0.603 

1-3-3 50% inc. 88.1 5.7 6.1 0.763 87.7 6.1 6.3 0.753 

1-3-3 Full 85.2 7.5 7.3 0.704 85.5 7.1 7.4 0.710 

1-3-3 25% dec. 83.8 7.8 8.4 0.677 83.7 7.9 .8.4 0.675 

1-3-3 50% dec. 80.5 9.9 9.6 0.610 80.4 9.8 9.8 0.607 

1-2-3 50% inc. 87.8 6.0 6.2 0.756 87.3 6.2 6.5 0.746 

1-2-3 Full 85.4 7.2 7.4 0.708 85.8 7.2 7.0 0.716 

1-2-3 25% dec. 83.3 8.2 8.5 0.666 83.6 7.9 8.5 0.672 

1-2-3 50% dec. 80.7 9.7 9.5 0.615 80.3 9.8 9.8 0.606 

1-3-2 50% inc. 87.6 6.0 6.3 0.753 87.7 6.1 6.2 0.753 

1-3-2 Full 85.2 7.4 7.3 0.705 85.7 7.0 7.3 0.713 

1-3-2 25% dec. 84.0 7.9 8.1 0.681 83.6 7.9 8.4 0.672 

1-3-2 50% dec. 80.3 9.8 9.9 0.606 80.4 10.0 9.6 0.607 
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Table 4.15. Decision Consistency for Number-Correct Routing at Three Pass Rates 

Pass 
Rate Design 

TIP 
Level 

Equal Information 1/2-1/4-1/4 Information 
Agree FP(%) FN(%) K Agree FP(%) FN(%) K 

30% 

1-2-2 50% inc. 90.2 5.3 4.6 0.769 89.4 5.3 5.3 0.752 
1-2-2 Full 87.9 6.5 5.7 0.716 87.9 6.3 5.8 0.718 
1-2-2 25% dec. 86.1 7.2 6.7 0.678 85.3 7.4 7.3 0.660 
1-2-2 50% dec. 82.7 8.8 8.6 0.600 83.0 8.9 8.1 0.610 
1-3-3 50% inc. 89.8 5.1 5.0 0.762 89.3 5.6 5.0 0.751 
1-3-3 Full 88.0 6.3 5.7 0.718 88.0 5.9 6.0 0.721 
1-3-3 25% dec. 86.2 7.2 6.6 0.679 85.4 7.4 7.2 0.660 
1-3-3 50% dec. 82.8 8.7 8.5 0.603 83.0 8.7 8.4 0.607 
1-2-3 50% inc. 90.3 5.1 4.6 0.772 89.7 5.3 5.0 0.758 
1-2-3 Full 87.5 6.5 6.0 0.708 87.8 6.1 6.1 0.715 
1-2-3 25% dec. 86.4 7.0 6.6 0.685 85.5 7.3 7.2 0.663 
1-2-3 50% dec. 82.8 8.7 8.5 0.605 83.3 8.5 8.2 0.615 
1-3-2 50% inc. 90.0 5.1 4.8 0.766 89.4 5.7 4.9 0.751 
1-3-2 Full 87.9 6.3 5.8 0.717 87.8 6.1 6.1 0.715 
1-3-2 25% dec. 86.2 7.2 6.6 0.679 85.7 7.2 7.1 0.669 
1-3-2 50% dec. 83.1 8.6 8.3 0.610 82.6 8.7 8.7 0.599 

40% 

1-2-2 50% inc. 88.2 5.7 6.1 0.757 88.4 5.7 5.9 0.761 
1-2-2 Full 86.2 6.8 7.0 0.716 86.4 6.7 6.9 0.721 
1-2-2 25% dec. 83.7 8.3 8.0 0.665 84.0 8.1 7.9 0.671 
1-2-2 50% dec. 80.3 9.7 9.9 0.597 80.5 9.6 9.9 0.601 
1-3-3 50% inc. 88.7 5.5 5.8 0.768 88.1 5.8 6.2 0.755 
1-3-3 Full 85.9 7.4 6.7 0.711 86.4 6.8 6.8 0.721 
1-3-3 25% dec. 84.0 8.0 8.0 0.672 84.6 7.6 7.8 0.684 
1-3-3 50% dec. 81.0 9.7 9.3 0.611 81.1 9.8 9.1 0.614 

1-2-3 50% inc. 88.2 5.8 6.0 0.758 88.1 5.8 6.1 0.755 
1-2-3 Full 85.8 6.8 7.4 0.708 85.7 6.9 7.4 0.706 
1-2-3 25% dec. 84.0 8.0 8.0 0.672 83.9 8.2 8.0 0.669 
1-2-3 50% dec. 80.0 10.4 9.7 0.589 80.6 9.7 9.6 0.604 

1-3-2 50% inc. 88.6 5.7 5.7 0.765 88.1 5.8 6.1 0.755 
1-3-2 Full 85.9 7.2 6.9 0.711 86.1 7.0 7.0 0.714 
1-3-2 25% dec. 83.8 8.3 8.0 0.667 84.5 7.8 7.7 0.582 
1-3-2 50% dec. 80.4 10.0 9.6 0.600 81.0 9.7 9.3 0.611 

50% 

1-2-2 50% inc. 88.3 5.9 5.8 0.766 87.1 6.6 6.3 0.742 
* 1-2-2 Full 85.3 7.7 7.0 0.706 85.9 7.3 6.9 0.718 

1-2-2 25% dec. 83.2 8.5 8.3 0.664 84.0 8.2 7.8 0.680 

1-2-2 50% dec. 80.0 10.2 9.8 0.599 79.9 10.0 10.1 0.597 

1-3-3 50% inc. 87.8 6.3 6.0 0.755 87.6 6.2 6.1 0.753 

1-3-3 Full 85.3 7.5 7.2 0.706 85.7 7.2 7.1 0.714 

1-3-3 25% dec. 83.8 8.1 8.1 0.677 83.6 8.3 8.1 0.672 

1-3-3 50% dec. 80.6 9.9 9.5 0.612 80.7 9.6 9.7 0.614 

1-2-3 50% inc. 88.0 6.1 5.9 0.760 87.5 6.3 6.2 0.750 

1-2-3 Full 85.5 7.2 7.3 0.710 86.0 6.8 7.2 0.720 

1-2-3 25% dec. 83.4 8.2 8.4 0.668 83.9 7.9 8.2 0.677 

1-2-3 50% dec. 80.8 10.0 9.2 0.616 79.8 10.2 10.0 0.596 

1-3-2 50% inc. 87.6 6.2 6.2 0.752 87.7 6.2 6.1 0.754 

1-3-2 Full 85.4 7.6 7.0 0.707 85.5 7.1 7.4 0.709 

1-3-2 25% dec. 83.3 8.3 8.4 0.666 83.9 8.0 8.1 0.678 

1-3-2 50% dec. 80.3 10.0 9.7 0.606 80.1 9.9 10.0 0.602 
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Table 4.16. Decision Consistency for Random Routing at Three Pass Rates 

Pass 
Rate Design TIP 

Level 
Equal Information 1/2-1/4-1/4 Information 

Agree FP(%) FN(%) K Agree FP(%) FN(%) K 

30% 

1-2-2 50% inc. 89.1 5.4 5.5 0.745 89.8 5.0 5.2 0.762 
1-2-2 Full 87.7 6.3 6.1 0.713 87.3 6.2 6.5 0.705 
1-2-2 25% dec. 85.5 7.2 7.3 0.663 85.4 7.1 7.5 0.663 
1-2-2 50% dec. 82.0 9.0 9.0 0.585 82.8 8.8 8.4 0.607 
1-3-3 50% inc. 89.1 5.4 5.5 0.745 89.0 5.5 5.5 0.742 
1-3-3 Full 87.8 6.5 5.7 0.715 87.8 5.8 6.4 0.714 
1-3-3 25% dec. 85.5 7.0 7.5 0.663 85.8 7.0 7.2 0.672 
1-3-3 50% dec. 82.9 8.4 8.6 0.610 82.6 8.9 8.5 0.602 
1-2-3 50% inc. 89.5 5.4 5.1 0.755 89.5 5.0 5.5 0.754 
1-2-3 Full 87.2 6.5 6.3 0.705 87.6 6.1 6.3 0.713 
1-2-3 25% dec. 85.0 7.3 7.7 0.653 85.4 7.7 6.9 0.662 
1-2-3 50% dec. 81.7 9.0 9.3 0.582 83.1 8.2 8.8 0.611 
1-3-2 50% inc. 89.6 5.2 5.2 0.756 90.1 4.8 5.1 0.767 
1-3-2 Full 87.4 6.3 6.4 0.709 87.5 6.1 6.4 0.709 
1-3-2 25% dec. 85.7 7.1 7.2 0.668 86.0 7.1 7.0 0.676 
1-3-2 50% dec. 82.6 8.8 8.6 0.602 82.6 8.9 8.4 0.600 

40% 

1-2-2 50% inc. 89.2 5.3 5.5 0.777 88.0 6.0 6.0 0.753 
1-2-2 Full 85.6 7.2 7.1 0.705 86.3 6.9 6.8 0.719 
1-2-2 25% dec. 84.3 7.9 7.8 0.678 84.1 8.1 7.8 0.674 
1-2-2 50% dec. 80.7 9.6 9.7 0.605 81.3 9.5 9.2 0.617 
1-3-3 50% inc. 88.2 6.0 5.8 0.758 88.0 6.0 6.0 0.754 
1-3-3 Full 85.9 7.3 6.8 0.711 86.3 7.0 6.6 0.720 
1-3-3 25% dec. 83.9 8.0 8.1 0.671 84.5 7.8 7.7 0.681 
1-3-3 50% dec. 80.3 10.1 9.6 0.597 81.0 9.5 9.5 0.611 

1-2-3 50% inc. 88.2 5.8 6.0 0.758 88.5 5.9 5.6 0.765 
1-2-3 Full 85.5 7.7 6.9 0.701 86.2 7.0 6.8 0.717 
1-2-3 25% dec. 83.9 8.3 7.8 0.670 84.1 7.9 7.9 0.674 
1-2-3 50% dec. 80.8 9.5 9.8 0.606 81.1 9.6 9.3 0.614 

1-3-2 50% inc. 88.6 5.8 5.6 0.765 88.5 6.1 5.4 0.764 
1-3-2 Full 85.6 7.3 7.1 0.704 86.3 7.0 6.7 0.719 
1-3-2 25% dec. 84.0 7.9 8.1 0.672 84.5 7.5 8.1 0.681 
1-3-2 50% dec. 80.6 9.7 9.7 0.603 80.9 9.6 9.5 0.609 

50% 

1-2-2 50% inc. 87.6 6.3 6.0 0.753 87.8 6.4 5.9 0.756 

1-2-2 Full 84.9 7.7 7.5 0.697 85.6 7.2 7.2 0.712 

1-2-2 25% dec. 83.4 8.4 8.2 0.668 83.7 8.0 8.3 0.674 

1-2-2 50% dec. 80.1 10.0 9.8 0.603 80.4 9.6 9.9 0.609 

1-3-3 50% inc. 88.0 6.0 6.0 0.761 87.9 5.9 6.2 0.758 

1-3-3 Full 85.3 7.6 7.1 0.706 85.9 7.0 7.0 0.719 

1-3-3 25% dec. 83.4 8.4 8.3 0.667 84.1 7.9 8.0 0.682 

1-3-3 50% dec. 80.3 10.3 9.4 0.606 80.5 9.7 9.8 0.610 

1-2-3 50% inc. 88.0 6.1 5.9 0.759 87.8 5.8 6.4 0.756 

1-2-3 Full 85.8 7.1 7.1 0.716 85.8 6.8 7.4 0.716 

1-2-3 25% dec. 83.5 8.4 8.1 0.670 84.4 7.6 7.9 0.688 

1-2-3 50% dec. 80.4 9.3 10.2 0.608 80.1 9.9 10.0 0.601 

1-3-2 50% inc. 88.3 5.8 6.0 0.765 87.6 6.5 6.0 0.751 

1-3-2 Full 85.2 7.0 7.9 0.703 86.0 6.9 7.1 0.709 

1-3-2 25% dec. 82.9 8.7 8.4 0.657 84.0 7.7 8.3 0.680 

1-3-2 50% dec. 81.1 9.3 9.7 0.621 80.1 10.2 9.7 0.603 
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Table 4.17. Correlations Between True and Estimated Abilities at 30% Passing 

Rep. Design 
TIE 

Level 

Equal Information 1/2-1/4-1/2 Information 
DPI 
r 

final 

Prox. 

final 

NC 

^^'^fimal 

Ran. 

^‘'^fiinal 

DPI 

^*'^final 

Prox. 

^*'^final 

NC 

^‘■efinal 

Ran. 

final 

1 

1-2-2 50% inc. 0.960 0.960 0.960 0.953 0.959 0.958 0.957 0.955 
1-2-2 Full 0.944 0.946 0.946 0.942 0.946 0.943 0.943 0.940 
1-2-2 25% dec. 0.933 0.931 0.931 0.929 0.930 0.929 0.929 0.927 
1-2-2 50% dec. 0.904 0.904 0.904 0.898 0.903 0.903 0.902 0.900 

1-3-3 50% inc. 0.961 0.959 0.959 0.955 0.958 0.957 0.956 0.952 
1-3-3 Full 0.943 0.945 0.945 0.942 0.947 0.945 0.945 0.940 

1-3-3 25% dec. 0.934 0.932 0.932 0.927 0.931 0.929 0.929 0.927 

1-3-3 50% dec. 0.907 0.904 0.905 0.899 0.907 0.901 0.901 0.900 

1-2-3 50% inc. 0.959 0.959 0.959 0.955 0.959 0.957 0.957 0.954 

1-2-3 Full 0.945 0.946 0.946 0.943 0.947 0.944 0.943 0.941 

1-2-3 25% dec. 0.933 0.932 0.932 0.926 0.932 0.927 0.928 0.926 

1-2-3 50% dec. 0.910 0.905 0.905 0.900 0.905 0.900 0.900 0.902 

1-3-2 50% inc. 0.960 0.959 0.959 0.956 0.959 0.956 0.956 0.952 

1-3-2 Full 0.944 0.946 0.945 0.943 0.948 0.944 0.944 0.940 

1-3-2 25% dec. 0.933 0.931 0.931 0.927 0.932 0.929 0.929 0.929 

1-3-2 50% dec. 0.906 0.905 0.906 0.900 0.906 0.901 0.900 0.899 

2 

1-2-2 50% inc. 0.960 0.959 0.959 0.953 0.958 0.959 0.959 0.953 

1-2-2 Full 0.949 0.947 0.947 0.941 0.944 0.945 0.946 0.941 

1-2-2 25% dec. 0.934 0.932 0.932 0.927 0.932 0.929 0.929 0.927 

1-2-2 50% dec. 0.908 0.905 0.905 0.903 0.905 0.903 0.902 0.902 

1-3-3 50% inc. 0.961 0.958 0.959 0.954 0.958 0.957 0.957 0.952 

1-3-3 Full 0.948 0.948 0.948 0.941 0.947 0.946 0.946 0.941 

1-3-3 25% dec. 0.934 0.934 0.934 0.928 0.932 0.929 0.929 0.926 

1-3-3 50% dec. 0.906 0.903 0.904 0.902 0.906 0.904 0.903 0.900 

1-2-3 50% inc. 0.961 0.960 0.960 0.956 0.958 0.957 0.957 0.953 

1-2-3 Full 0.947 0.947 0.947 0.942 0.946 0.946 0.946 0.940 

1-2-3 25% dec. 0.935 0.934 0.934 0.928 0.929 0.928 0.929 0.928 

1-2-3 50% dec. 0.909 0.905 0.905 0.900 0.907 0.904 0.903 0.902 

1-3-2 50% inc. 0.961 0.959 0.959 0.955 0.958 0.957 0.957 0.954 

1-3-2 Full 0.947 0.947 0.947 0.940 0.946 0.946 0.945 0.941 

1-3-2 25% dec. 0.934 0.934 0.934 0.926 0.931 0.929 0.929 0.926 

1-3-2 50% dec. 0.904 0.905 0.906 0.900 0.906 0.903 0.902 0.903 
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Table 4.18. Correlations Between True and Estimated Abilities at 40% Passing 

Rep. Design 
TIE 

Level 

Equal Information 1/2-1/4-1/2 Information 
DPI Prox. 

^ ^final 

NC 

final 

Ran. 

final 

DPI 

^'^final 

Prox. 
r 

final 

NC 

final 

Ran. 
r 

final 

1 

1-2-2 50% inc. 0.960 0.957 0.957 0.954 0.958 0.957 0.957 0.952 
1-2-2 Full 0.946 0.945 0.945 0.941 0.947 0.943 0.943 0.938 
1-2-2 25% dec. 0.934 0.932 0.932 0.928 0.932 0.930 0.930 0.927 
1-2-2 50% dec. 0.902 0.904 0.903 0.902 0.903 0.903 0.902 0.899 

1-3-3 50% inc. 0.960 0.958 0.959 0.954 0.958 0.955 0.955 0.952 

1-3-3 Full 0.947 0.947 0.947 0.942 0.947 0.944 0.944 0.942 

1-3-3 25% dec. 0.933 0.932 0.932 0.926 0.932 0.929 0.929 0.929 

1-3-3 50% dec. 0.906 0.904 0.903 0.898 0.905 0.902 0.901 0.899 

1-2-3 50% inc. 0.960 0.957 0.959 0.954 0.958 0.956 0.956 0.953 

1-2-3 Full 0.948 0.946 0.946 0.940 0.947 0.944 0.943 0.941 

1-2-3 25% dec. 0.935 0.933 0.933 0.926 0.933 0.928 0.928 0.929 

1-2-3 50% dec. 0.907 0.904 0.903 0.899 0.904 0.902 0.901 0.898 

1-3-2 50% inc. 0.961 0.959 0.959 0.954 0.958 0.956 0.956 0.952 

1-3-2 Full 0.947 0.946 0.946 0.940 0.947 0.943 0.943 0.941 

1-3-2 25% dec. 0.932 0.932 0.932 0.926 0.932 0.929 0.929 0.928 

1-3-2 50% dec. 0.906 0.904 0.903 0.898 0.903 0.903 0.902 0.901 

2 

1-2-2 50% inc. 0.959 0.958 0.958 0.953 0.957 0.957 0.957 0.953 

1-2-2 Full 0.946 0.946 0.946 0.940 0.945 0.945 0.944 0.940 

1-2-2 25% dec. 0.934 0.932 0.932 0.927 0.933 0.930 0.930 0.930 

1-2-2 50% dec. 0.906 0.904 0.904 0.897 0.905 0.902 0.902 0.902 

1-3-3 50% inc. 0.960 0.960 0.960 0.953 0.958 0.957 0.957 0.951 

1-3-3 Full 0.947 0.947 0.946 0.941 0.945 0.946 0.946 0.940 

1-3-3 25% dec. 0.933 0.933 0.933 0.927 0.932 0.931 0.931 0.928 

1-3-3 50% dec. 0.907 0.902 0.902 0.899 0.904 0.900 0.900 0.899 

1-2-3 50% inc. 0.961 0.958 0.959 0.954 0.957 0.958 0.958 0.952 

1-2-3 Full 0.948 0.947 0.947 0.941 0.947 0.946 0.946 0.939 

1-2-3 25% dec. 0.934 0.933 0.933 0.928 0.933 0.930 0.930 0.928 

1-2-3 50% dec. 0.908 0.904 0.905 0.901 0.902 0.901 0.900 0.899 

1-3-2 50% inc. 0.961 0.960 0.960 0.954 0.959 0.958 0.958 0.954 

1-3-2 Full 0.949 0.947 0.947 0.940 0.945 0.945 0.945 0.940 

1-3-2 25% dec. 0.934 0.933 0.932 0.926 0.931 0.930 0.930 0.929 

1-3-2 50% dec. 0.905 0.903 0.903 0.900 0.904 0.901 0.901 0.902 
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Table 4.19. Correlations Between True and Estimated Abilities at 50% Passing 

Rep. Design 
TIE 

Level 

Equal Information 1/2-1/4-1/2 Information 
DPI Prox. NC Ran. DPI Prox. NC Ran. 

final 

1 

1-2-2 50% inc. 0.959 0.958 0.957 0.952 0.956 0.954 0.954 0.949 
1-2-2 Full 0.945 0.944 0.944 0.938 0.944 0.942 0.941 0.940 
1-2-2 25% dec. 0.932 0.929 0.929 0.922 0.930 0.926 0.926 0.926 
1-2-2 50% dec. 0.901 0.899 0.899 0.894 0.899 0.897 0.898 0.895 

1-3-3 50% inc. 0.958 0.958 0.957 0.953 0.956 0.955 0.955 0.950 
1-3-3 Full 0.947 0.943 0.943 0.937 0.945 0.942 0.942 0.938 
1-3-3 25% dec. 0.932 0.930 0.930 0.924 0.931 0.927 0.927 0.925 

1-3-3 50% dec. 0.904 0.902 0.903 0.896 0.899 0.898 0.897 0.896 

1-2-3 50% inc. 0.958 0.958 0.957 0.953 0.957 0.955 0.955 0.950 

1-2-3 Full 0.946 0.945 0.944 0.940 0.944 0.942 0.942 0.938 

1-2-3 25% dec. 0.933 0.930 0.930 0.924 0.928 0.927 0.926 0.926 

1-2-3 50% dec. 0.902 0.901 0.901 0.895 0.902 0.897 0.897 0.897 

1-3-2 50% inc. 0.959 0.957 0.957 0.953 0.956 0.956 0.956 0.951 

1-3-2 Full 0.945 0.944 0.944 0.938 0.945 0.943 0.942 0.939 

1-3-2 25% dec. 0.931 0.931 0.930 0.922 0.930 0.926 0.926 0.923 

1-3-2 50% dec. 0.903 0.903 0.903 0.894 0.902 0.899 0.898 0.899 

2 

1-2-2 50% inc. 0.960 0.958 0.958 0.952 0.955 0.955 0.955 0.950 

1-2-2 Full 0.944 0.945 0.945 0.939 0.944 0.942 0.942 0.941 

1-2-2 25% dec. 0.931 0.930 0.929 0.924 0.929 0.928 0.928 0.925 

1-2-2 50% dec. 0.900 0.901 0.900 0.896 0.899 0.897 0.896 0.896 

1-3-3 50% inc. 0.958 0.959 0.958 0.952 0.957 0.956 0.956 0.949 

1-3-3 Full 0.947 0.945 0.945 0.940 0.944 0.944 0.944 0.940 

1-3-3 25% dec. 0.932 0.931 0.931 0.925 0.932 0.929 0.928 0.925 

1-3-3 50% dec. 0.905 0.905 0.905 0.898 0.904 0.897 0.896 0.897 

1-2-3 50% inc. 0.960 0.958 0.958 0.954 0.957 0.957 0.957 0.950 

1-2-3 Full 0.948 0.945 0.945 0.939 0.944 0.944 0.943 0.939 

1-2-3 25% dec. 0.933 0.931 0.931 0.921 0.931 0.928 0.928 0.926 

1-2-3 50% dec. 0.904 0.904 0.903 0.899 0.901 0.896 0.896 0.895 

1-3-2 50% inc. 0.957 0.958 0.957 0.952 0.957 0.956 0.956 0.952 

1-3-2 Full 0.947 0.944 0.944 0.939 0.943 0.945 0.944 0.939 

1-3-2 25% dec. 0.932 0.931 0.930 0.922 0.931 0.928 0.928 0.922 

1-3-2 50% dec. 0.906 0.903 0.903 0.896 0.902 0.896 0.895 0.896 
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Table 4.20. Overall Root Mean Square Errors at 30% Passing 

Design 
TIE 

Level 

Equal Information 1/2-1/4-1/2 Information 
DPI 

RMSE 
Prox. 
RMSE 

NC 
RMSE 

Ran. 
RMSE 

DPI 
RMSE 

Prox. 
RMSE 

NC 
RMSE 

Ran. 
RMSE 

1-2-2 50% inc. 0.30 0.30 0.30 0.33 0.30 0.31 0.31 0.33 
1-2-2 Full 0.36 0.35 0.35 0.37 0.35 0.36 0.36 0.37 
1-2-2 25% dec. 0.39 0.39 0.39 0.41 0.41 0.41 0.41 0.42 
1-2-2 50% dec. 0.48 0.48 0.48 0.50 0.49 0.48 0.49 0.50 
1-3-3 50% inc. 0.30 0.30 0.30 0.32 0.31 0.31 0.31 0.33 
1-3-3 Full 0.36 0.35 0.35 0.37 0.35 0.35 0.35 0.38 
1-3-3 25% dec. 0.39 0.39 0.39 0.41 0.40 0.41 0.41 0.42 
1-3-3 50% dec. 0.47 0.48 0.47 0.49 0.48 0.49 0.49 0.49 
1-2-3 50% inc. 0.30 0.30 0.30 0.32 0.31 0.31 0.31 0.32 
1-2-3 Full 0.36 0.35 0.35 0.36 0.35 0.36 0.36 0.37 
1-2-3 25% dec. 0.39 0.39 0.39 0.42 0.40 0.42 0.41 0.42 
1-2-3 50% dec. 0.47 0.48 0.47 0.49 0.49 0.49 0.49 0.49 
1-3-2 50% inc. 0.30 0.30 0.30 0.32 0.30 0.31 0.31 0.34 
1-3-2 Full 0.35 0.35 0.35 0.36 0.35 0.35 0.35 0.38 
1-3-2 25% dec. 0.39 0.39 0.39 0.41 0.40 0.41 0.41 0.41 
1-3-2 50% dec. 0.47 0.47 0.47 0.49 0.48 0.49 0.49 0.50 
1-2-2 50% inc. 0.30 0.30 0.30 0.33 0.31 0.30 0.30 0.33 
1-2-2 Full 0.34 0.34 0.34 0.37 0.36 0.35 0.35 0.37 
1-2-2 25% dec. 0.39 0.39 0.39 0.42 0.40 0.41 0.41 0.41 
1-2-2 50% dec. 0.47 0.47 0.47 0.49 0.48 0.49 0.49 0.49 
1-3-3 50% inc. 0.30 0.30 0.30 0.32 0.31 0.31 0.31 0.34 
1-3-3 Full 0.34 0.34 0.34 0.37 0.35 0.35 0.35 0.37 
1-3-3 25% dec. 0.39 0.39 0.39 0.41 0.39 0.41 0.41 0.42 
1-3-3 50% dec. 0.48 0.48 0.48 0.50 0.48 0.48 0.48 0.50 

1-2-3 50% inc. 0.29 0.30 0.30 0.32 0.31 0.31 0.31 0.33 
1-2-3 Full 0.34 0.35 0.35 0.37 0.35 0.35 0.35 0.38 
1-2-3 25% dec. 0.39 0.39 0.39 0.41 0.41 0.41 0.41 0.41 
1-2-3 50% dec. 0.47 0.48 0.48 0.50 0.47 0.48 0.49 0.49 

1-3-2 50% inc. 0.30 0.30 0.30 0.32 0.31 0.31 0.31 0.33 
1-3-2 Full 0.35 0.35 0.35 0.37 0.35 0.35 0.35 0.37 
1-3-2 25% dec. 0.39 0.39 0.39 0.41 0.40 0.41 0.41 0.42 
1-3-2 50% dec. 0.48 0.48 0.47 0.50 0.48 0.49 0.49 0.49 
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Table 4.21. Overall Root Mean Square Errors at 40% Passing 

Design 
TIP 

Level 

Equal Information 1/2-1/4-1/2 Information 
DPI 

RMSE 
Prox. 
RMSE 

NC 
RMSE 

Ran. 
RMSE 

DPI 
RMSE 

Prox. 
RMSE 

NC 
RMSE 

Ran. 
RMSE 

1-2-2 50% inc. 0.30 0.31 0.31 0.32 0.31 0.31 0.31 0.33 
1-2-2 Full 0.35 0.35 0.35 0.37 0.35 0.36 0.36 0.38 
1-2-2 25% dec. 0.39 0.39 0.39 0.42 0.39 0.40 0.40 0.41 
1-2-2 50% dec. 0.49 0.48 0.48 0.49 0.49 0.48 0.48 0.50 
1-3-3 50% inc. 0.30 0.30 0.30 0.32 0.31 0.32 0.32 0.33 
1-3-3 Full 0.35 0.34 0.34 0.37 0.35 0.36 0.35 0.37 
1-3-3 25% dec. 0.39 0.39 0.39 0.42 0.40 0.40 0.40 0.41 
1-3-3 50% dec. 0.48 0.48 0.48 0.50 0.49 0.49 0.49 0.50 
1-2-3 50% inc. 0.30 0.31 0.30 0.32 0.31 0.31 0.31 0.33 
1-2-3 Full 0.34 0.35 0.35 0.37 0.35 0.36 0.36 0.38 
1-2-3 25% dec. 0.39 0.39 0.39 0.42 0.40 0.41 0.41 0.41 
1-2-3 50% dec. 0.47 0.48 0.48 0.49 0.49 0.49 0.49 0.50 
1-3-2 50% inc. 0.30 0.30 0.30 0.33 0.31 0.31 0.31 0.34 
1-3-2 Full 0.34 0.35 0.35 0.37 0.35 0.36 0.36 0.37 
1-3-2 25% dec. 0.40 0.39 0.39 0.42 0.40 0.41 0.40 0.41 
1-3-2 50% dec. 0.48 0.48 0.48 0.50 0.49 0.49 0.49 0.50 
1-2-2 50% inc. 0.30 0.31 0.31 0.33 0.31 0.31 0.31 0.33 
1-2-2 Full 0.35 0.35 0.35 0.37 0.35 0.36 0.36 0.38 
1-2-2 25% dec. 0.39 0.39 0.39 0.42 0.39 0.40 0.40 0.41 
1-2-2 50% dec. 0.48 0.48 0.48 0.50 0.49 0.49 0.49 0.49 

1-3-3 50% inc. 0.29 0.30 0.30 0.33 0.30 0.31 0.31 0.34 
1-3-3 Full 0.34 0.35 0.35 0.37 0.35 0.35 0.35 0.37 
1-3-3 25% dec. 0.39 0.39 0.39 0.42 0.40 0.40 0.40 0.41 
1-3-3 50% dec. 0.47 0.49 0.49 0.50 0.48 0.49 0.49 0.50 

1-2-3 50% inc. 0.29 0.31 0.30 0.33 0.31 0.31 0.31 0.33 
1-2-3 Full 0.34 0.34 0.34 0.37 0.34 0.35 0.35 0.38 
1-2-3 25% dec. 0.39 0.39 0.39 0.41 0.39 0.40 0.40 0.41 
1-2-3 50% dec. 0.47 0.48 0.48 0.49 0.49 0.49 0.49 0.50 

1-3-2 50% inc. 0.29 0.30 0.30 0.32 0.30 0.31 0.31 0.33 
1-3-2 Full 0.34 0.34 0.34 0.37 0.35 0.35 0.35 0.38 
1-3-2 25% dec. 0.39 0.39 0.39 0.41 0.40 0.40 0.40 0.41 

1-3-2 50% dec. 0.48 0.48 0.48 0.49 0.48 0.66 0.49 0.49 
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Table 4.22. Overall Root Mean Square Errors at 50% Passing 

Design 
TIP 

Level 

Equal Information 1/2-1/4-1/2 Information 
DPI 

RMSE 
Prox. 
RMSE 

NC 
RMSE 

Ran. 
RMSE 

DPI 
RMSE 

Prox. 
RMSE 

NC 
RMSE 

Ran. 
RMSE 

1-2-2 50% inc. 0.30 0.31 0.31 0.33 0.32 0.32 0.32 0.34 
1-2-2 Full 0.35 0.35 0.36 0.38 0.36 0.36 0.36 0.37 
1-2-2 25% dec. 0.39 0.40 0.40 0.43 0.41 0.42 0.42 0.42 
1-2-2 50% dec. 0.49 0.49 0.49 0.51 0.50 0.50 0.50 0.51 
1-3-3 50% inc. 0.31 0.31 0.31 0.33 0.32 0.32 0.32 0.34 
1-3-3 Full 0.35 0.36 0.36 0.38 0.36 0.36 0.36 0.38 
1-3-3 25% dec. 0.40 0.40 0.40 0.42 0.41 0.41 0.41 0.43 
1-3-3 50% dec. 0.49 0.48 0.48 0.51 0.50 0.50 0.50 0.51 
1-2-3 50% inc. 0.31 0.31 0.31 0.33 0.31 0.31 0.31 0.34 
1-2-3 Full 0.35 0.35 0.35 0.37 0.36 0.36 0.36 0.38 
1-2-3 25% dec. 0.39 0.40 0.40 0.42 0.42 0.41 0.42 0.42 
1-2-3 50% dec. 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.51 
1-3-2 50% inc. 0.31 0.31 0.31 0.33 0.32 0.31 0.31 0.34 
1-3-2 Full 0.36 0.35 0.35 0.38 0.35 0.36 0.36 0.38 
1-3-2 25% dec. 0.40 0.40 0.40 0.43 0.41 0.42 0.42 0.43 
1-3-2 50% dec. 0.49 0.48 0.48 0.51 0.49 0.50 0.50 0.50 
1-2-2 50% inc. 0.30 0.31 0.31 0.34 0.32 0.32 0.32 0.34 
1-2-2 Full 0.36 0.35 0.35 0.38 0.36 0.37 0.36 0.37 
1-2-2 25% dec. 0.40 0.40 0.40 0.43 0.41 0.41 0.41 0.42 
1-2-2 50% dec. 0.50 0.49 0.49 0.51 0.50 0.50 0.51 0.51 

1-3-3 50% inc. 0.31 0.30 0.31 0.34 0.31 0.32 0.31 0.34 
1-3-3 Full 0.35 0.35 0.35 0.38 0.35 0.36 0.36 0.38 
1-3-3 25% dec. 0.39 0.40 0.40 0.42 0.40 0.41 0.41 0.42 
1-3-3 50% dec. 0.48 0.48 0.48 0.51 0.49 0.50 0.50 0.51 

1-2-3 50% inc. 0.30 0.31 0.31 0.32 0.31 0.31 0.31 0.34 
1-2-3 Full 0.34 0.35 0.35 0.38 0.36 0.36 0.36 0.38 
1-2-3 25% dec. 0.39 0.39 0.40 0.43 0.40 0.41 0.41 0.42 
1-2-3 50% dec. 0.48 0.48 0.48 0.51 0.49 0.51 0.51 0.52 

1-3-2 50% inc. 0.31 0.31 0.31 0.34 0.31 0.31 0.31 0.34 

1-3-2 Full 0.35 0.35 0.35 0.38 0.36 0.36 0.36 0.38 
1-3-2 25% dec. 0.39 0.40 0.40 0.43 0.40 0.41 0.41 0.43 

1-3-2 50% dec. 0.48 0.48 0.48 0.51 0.49 0.50 0.51 0.50 
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Table 4.23. Routing Path Frequencies in 1-2-2 Design with Four Routing Strategies 

Division of 
Information 

TIF Level lodule Routing Strategy 
si s2 s3 DPI Proximity NC Random 

Equal 
Information 

Across 
Stages 

50% 
Increase 

1 1 1 45.5% 36.3% 38.9% 25.2% 
1 1 2 4.5% 12.2% 7.9% 24.7% 
1 2 1 4.5% 7.8% 4.7% 25.2% 
1 2 2 45.5% 43.7% 47.5% 24.9% 

Full 

1 1 1 44.6% 33.8% 37.5% 24.9% 
1 1 2 5.4% 10.9% 8.6% 25.1% 
1 2 1 5.4% 11.8% 4.4% 24.6% 
1 2 2 44.6% 43.5% 49.5% 25.4% 

25% 
Decrease 

1 1 1 43.9% 30.8% 39.4% 25.2% 
1 1 2 6.1% 12.0% 8.7% 25.0% 
1 2 1 6.1% 14.0% 3.3% 24.8% 
1 2 2 43.9% 43.1% 48.6% 25.0% 

50% 
Decrease 

1 1 1 42.7% 29.0% 41.2% 24.7% 
1 1 2 7.3% 13.9% 8.7% 25.2% 
1 2 1 7.3% 14.9% 3.4% 25.0% 
1 2 2 42.7% 42.2% 46.7% 25.1% 

1/2-1/4-1/4 
Information 

Across 
Stages 

50% 
Increase 

1 1 1 46.6% 42.8% 34.1% 24.9% 
1 1 2 3.4% 8.6% 12.3% 25.0% 
1 2 1 3.4% 5.7% 9.1% 25.1% 
1 2 2 46.6% 42.9% 44.5% 25.0% 

Full 

1 1 1 46.4% 43.0% 34.6% 24.9% 
1 1 2 3.6% 8.9% 13.8% 25.1% 
1 2 1 3.6% 6.3% 8.8% 25.0% 
1 2 2 46.4% 42.8% 42.7% 25.0% 

25% 
Decrease 

1 1 1 45.8% 39.8% 32.1% 24.7% 
1 1 2 4.2% 9.8% 12.4% 25.2% 
1 2 1 4.2% 8.0% 12.6% 25.1% 
1 2 2 45.8% 42.4% 43.0% 24.9% 

50% 
Decrease 

1 1 1 45.0% 38.5% 28.7% 24.9% 
1 1 2 5.0% 9.8% 14.1% 24.8% 
1 2 1 5.0% 9.0% 15.5% 25.2% 
1 2 2 45.0% 43.8% 41.7% 25.1% 
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Table 4.24. Routing Path Frequencies in 1-3-3 Design with Four Routing Strategies 

Division of 
Information 

TIF 
Level 

K lodule Routing Strategy 
si s2 s3 DPI Proximity NC Random 

Equal 
Information 

Across 
Stages 

50% 
Increase 

1 1 1 29.2% 22.1% 29.2% 14.7% 
1 1 2 4.1% 6.6% 3.7% 15.0% 
1 2 1 4.1% 1.3% 6.4% 14.1% 
1 2 2 24.8% 27.1% 13.6% 15.1% 
1 2 3 4.4% 5.6% 9.8% 14.0% 
1 3 2 4.4% 2.8% 3.4% 14.5% 
1 3 1 29.0% 33.6% 34.1% 13.7% 

Full 

1 1 1 28.4% 18.9% 25.9% 13.5% 
1 1 2 4.9% 8.1% 5.6% 14.8% 
1 2 1 4.9% 1.5% 6.7% 14.3% 
1 2 2 23.5% 28.5% 12.4% 15.1% 
1 2 3 5.0% 8.8% 9.4% 14.3% 
1 3 2 4.9% 2.3% 5.7% 14.6% 
1 3 1 28.4% 30.6% 34.3% 15.5% 

25% 
Decrease 

1 1 1 27.7% 20.4% 23.8% 14.6% 
1 1 2 5.6% 6.8% 6.7% 13.7% 
1 2 1 5.5% 3.0% 8.3% 14.2% 
1 2 2 22.2% 31.7% 12.4% 14.1% 
1 2 3 5.6% 6.8% 8.1% 14.2% 
1 3 2 5.6% 4.9% 5.8% 14.7% 
1 3 1 27.7% 25.7% 34.8% 13.6% 

50% 
Decrease 

1 1 1 27.1% 19.9% 22.6% 14.9% 
1 1 2 6.1% 5.8% 9.3% 14.6% 
1 2 1 6.0% 2.9% 7.1% 13.1% 
1 2 2 20.6% 35.8% 10.3% 15.0% 
1 2 3 6.7% 7.1% 7.7% 14.0% 
1 3 2 6.6% 4.5% 10.0% 14.7% 
1 3 1 26.6% 26.5% 33.0% 15.7% 

1/2-1/4-1/4 
Information 

Across 
Stages 

50% 
Increase 

1 1 1 30.1% 24.6% 25.3% 14.6% 
1 1 2 3.2% 8.9% 3.6% 14.6% 
1 2 1 3.2% 0.4% 7.8% 14.0% 
1 2 2 26.6% 27.3% 16.0% 13.9% 
1 2 3 3.5% 11.1% 7.3% 14.0% 
1 3 2 3.5% 0.3% 4.0% 14.9% 
1 3 1 29.8% 26.6% 36.0% 15.0% 

Full 

1 1 1 30.0% 25.4% 27.3% 13.6% 
1 1 2 3.3% 4.9% 5.6% 14.3% 

1 2 1 3.3% 2.0% 8.1% 14.1% 

1 2 2 26.4% 27.0% 12.3% 14.1% 

1 2 3 3.6% 4.4% 9.3% 14.2% 

1 3 2 3.6% 3.0% 4.0% 14.7% 

1 3 1 29.7% 33.4% 33.5% 15.0% 

25% 
Decrease 

1 1 1 29.4% 19.6% 26.5% 13.7% 

1 1 2 4.0% 5.3% 7.7% 14.8% 

1 2 1 4.0% 1.6% 7.9% 14.1% 

1 2 2 25.4% 28.0% 12.3% 14.1% 

1 2 3 4.0% 5.6% 7.5% 14.3% 

1 3 2 4.0% 2.8% 5.8% 14.5% 

1 3 1 29.4% 36.5% 32.3% 14.4% 

50% 
Decrease 

1 1 1 28.8% 24.4% 21.6% 14.8% 

1 1 2 4.5% 3.5% 8.9% 14.7% 

1 2 1 4.5% 1.6% 8.8% 14.5% 

1 2 2 24.3% 25.4% 9.2% 14.0% 

1 2 3 4.5% 5.7% 10.8% 13.9% 

1 3 2 4.5% 3.3% 8.1% 15.0% 

1 3 1 28.8% 33.8% 32.5% 14.2% 
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Table 4.25. Routing Path Frequencies in 1-2-3 Design with Four Routing Strategies 

Division of 

Information 
TIF Level 

Modu le Routing Strategv 
si 1 s2 s3 DPI Proximity NC Random 

Equal 

Information 

Across 

Stages 

50% 

Increase 

1 1 1 33.0% 33.3% 35.2% 16.9% 
1 1 2 16.7% 16.7% 12.1% 16.7% 
1 1 3 0.2% 0.0% 1.5% 16.6% 
I 2 1 0.3% 0.1% 0.1% 16.6% 
1 2 2 16.6% 16.6% 11.0% 16.4% 
1 2 3 33.1% 33.3% 40.1% 16.8% 

Full 

1 1 1 32.7% 33.3% 35.1% 16.9% 
1 1 2 16.7% 16.7% 10.6% 16.9% 
1 1 3 0.5% 0.1% 0.3% 16.6% 
1 2 1 0.6% 0.1% 0.4% 16.7% 
1 2 2 16.6% 16.7% 12.4% 16.3% 
1 2 3 32.8% 33.3% 41.2% 16.7% 

25% 

Decrease 

1 1 1 32.3% 33.1% 26.6% 16.8% 
1 1 2 16.8% 16.7% 8.4% 16.6% 
1 1 3 0.9% 0.2% 6.5% 16.5% 
1 2 1 1.0% 0.2% 0.8% 16.4% 
1 2 2 16.5% 16.6% 15.3% 16.8% 
1 2 3 32.5% 33.2% 42.3% 16.9% 

50% 

Decrease 

1 1 1 31.9% 32.9% 35.6% 16.4% 
1 1 2 16.5% 16.8% 10.0% 16.7% 
1 1 3 1.6% 0.4% 1.1% 16.7% 
1 2 1 1.5% 0.5% 1.7% 16.6% 
1 2 2 16.8% 16.6% 13.2% 16.7% 
1 2 3 31.8% 33.0% 40.4% 16.9% 

1/2-1/4-1/4 

Information 

Across 

Stages 

50% 

Increase 

1 1 1 33.3% 30.2% 25.3% 16.7% 
1 1 2 16.7% 12.1% 15.1% 16.6% 
1 1 3 0.0% 1.5% 4.4% 16.8% 

1 2 1 0.1% 0.1% 4.4% 16.8% 

1 2 2 16.6% 16.0% 12.5% 16.7% 

1 2 3 33.3% 40.1% 38.3% 16.5% 

Full 

1 1 1 33.3% 28.1% 25.7% 16.9% 

1 1 2 16.7% 15.6% 13.9% 16.5% 

1 1 3 0.1% 0.3% 7.6% 16.6% 

1 2 1 0.1% 0.4% 4.9% 16.7% 

1 2 2 16.7% 17.4% 14.0% 16.6% 

1 2 3 33.3% 38.2% 34.1% 16.7% 

25% 

Decrease 

1 1 1 33.1% 29.6% 23.7% 17.0% 

1 1 2 16.7% 18.4% 11.6% 16.7% 

1 1 3 0.2% 1.5% 6.8% 16.6% 

1 2 1 0.2% 0.8% 8.2% 16.6% 

1 2 2 16.6% 15.3% 13.7% 16.6% 

1 2 3 33.2% 34.3% 36.0% 16.6% 

50% 

Decrease 

1 I 1 32.9% 35.6% 21.3% 16.6% 

1 1 2 16.8% 11.0% 11.9% 16.5% 

1 1 3 0.4% 1.1% 9.8% 16.5% 

1 2 1 0.5% 1.7% 8.0% 16.7% 

1 2 2 16.6% 13.2% 12.6% 16.9% 

■ 1 ^ 3 33.0% 37.4% ,36.4% 16.8% 
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Table 4.26. Routing Path Frequencies in 1-3-2 Design with Four Routing Strategies 

Division of 
Information 

TIF Level lodule Routing Strategy 
si s2 s3 DPI Proximity NC Random 

Equal 
Information 

Across 
Stages 

50% 
Increase 

1 1 1 33.0% 33.3% 31.6% 16.8% 
1 1 2 0.3% 0.1% 2.7% 16.5% 
1 2 1 16.6% 16.6% 13.7% 16.6% 
1 2 2 16.7% 16.7% 15.1% 16.8% 
1 3 1 0.4% 0.1% 0.0% 16.8% 
1 3 2 33.0% 33.2% 36.8% 16.5% 

Full 

1 1 1 32.8% 33.2% 29.1% 16.6% 
1 1 2 0.5% 0.1% 1.2% 16.9% 
1 2 1 16.6% 16.7% 17.3% 16.5% 
1 2 2 16.7% 16.7% 14.0% 16.7% 
1 3 1 0.6% 0.1% 0.2% 16.8% 
1 3 2 32.7% 33.2% 38.2% 16.5% 

25% 
Decrease 

1 1 1 32.4% 33.1% 22.8% 16.4% 
1 1 2 1.0% 0.2% 2.6% 16.9% 
1 2 1 16.6% 16.6% 14.9% 16.8% 
1 2 2 16.8% 16.7% 10.4% 16.7% 
1 3 1 1.1% 0.3% 0.4% 16.6% 
1 3 2 32.3% 33.1% 49.0% 16.6% 

50% 
Decrease 

1 1 1 31.9% 32.9% 16.7% 16.6% 
i 1 2 1.5% 0.4% 3.3% 16.5% 
1 2 1 16.4% 16.5% 13.3% 16.5% 
1 2 2 17.0% 16.8% 19.3% 16.8% 
1 3 1 1.8% 0.5% 0.6% 16.7% 
1 3 2 31.6% 32.8% 46.8% 16.9% 

1/2-1/4-1/4 
Information 

Across 
Stages 

50% 
Increase 

1 1 1 33.3% 31.6% 25.3% 16.9% 
1 1 2 0.1% 2.7% 3.6% 16.4% 

1 2 1 16.6% 8.7% 15.9% 16.5% 

1 2 2 16.7% 15.1% 15.2% 16.9% 

1 3 1 0.1% 0.0% 4.0% 16.8% 

1 3 2 33.2% 41.8% 36.0% 16.6% 

Full 

1 1 1 33.2% 29.1% 27.3% 16.6% 

1 1 2 0.1% 1.2% 5.6% 17.0% 

1 2 1 16.7% 17.3% 11.9% 16.5% 

1 2 2 16.7% 14.0% 17.8% 16.6% 

1 3 1 0.1% 0.2% 4.0% 16.5% 

1 3 2 33.2% 38.2% 33.5% 16.8% 

25% 
Decrease 

1 1 1 33.1% 32.8% 26.5% 16.6% 

1 1 2 0.2% 2.6% 7.7% 16.8% 

1 2 1 16.6% 14.9% 11.4% 16.6% 

1 2 2 16.7% 10.4% 13.3% 16.8% 

1 3 1 0.3% 0.4% 5.8% 16.6% 

1 3 2 33.1% 39.0% 35.3% 16.6% 

50% 
Decrease 

1 1 1 32.9% 26.7% 21.6% 16.5% 

1 1 2 0.4% 3.3% 8.9% 16.7% 

1 2 1 16.5% 13.3% 13.2% 16.6% 

1 2 2 16.8% 19.3% 15.6% 16.8% 

1 3 1 0.5% 0.6% 8.1% 16.8% 

1 3 2 32.8% 36.8% 32.5% 16.6% 
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Figure 4.1. RMSEs for DPI Routing with 1-2-2 Design at Three Pass Rates 

Rep . 1 Ability Level Rep. 2 

30% Passing 
—♦—50% Inc., equal 

-»-50% inc., 1/2-1/4-1/4 

.•*..Full, equal 

--><r-Full, 1/2-1/4-1/4 

25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 
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Rep . 1 Ability Level Rep. 2 

40% Passing 
—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

■■■■*.Full, equal 

-x-Full. 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

Rep . 1 Ability Level Rep. 2 

50% Passing 
—♦—50% inc., equal 

-•-50% inc., 1/2-1/4-1/4 

Full, equal 

-*~Full. 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.2. RMSEs for DPI Routing with 1-3-3 Design at Three Pass Rates 

30% Passing 
—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

A Full, equal 

Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-^25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

Rep. 1 Ability Level Rep. 2 

40% Passing 
—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

.ik Full, equal 

•-.*-Full, 1/2-1/4-1/4 

—*— 25% dec., equal 

-^25% dec., 1/2-1/4-1/4 

—H—50% dec., equal 

-^50% dec., 1/2-1/4-1/4 

Rep. 1 Ability Level Rep. 2 

50% Passing 
—♦—50% inc., equal 

-h^-50% inc., 1/2-1/4-1/4 

.*—Fuil, equal 

X Full, 1/2-1/4-1/4 

X 25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—H—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

Rep. 1 Ability Level Rep. 2 
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Figure 4.3. RMSEs for DPI Routing with 1-2-3 Design at Three Pass Rates 

30% Passing 
—♦—50% inc., equal 

-«-50% inc., 1/2-1/4-1/4 

♦.Full, equal 

-x- Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

40% Passing 
—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

• A Full, equal 

K Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

50% Passing 
♦ 50% inc., equal 

-♦-50% inc., 1/2-1/4-1/4 

- A-- Full, equal 

-x-Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.4. RMSEs for DPI Routing with 1-3-2 Design at Three Pass Rates 

30% Passing 
—» 50% inc., equal 

•hb-50% inc., 1/2-1/4-1/4 

■ j(r Full, equal 

X Full. 1/2-1/4-1/4 

-HI6—25% dec., equal 

-^25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

1 1 

0.9 - 

0.8 - 

0.7 - 

0.6 ■ 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0 T-1-1-1 I-1-1-1-1 I I-r ~~i-1-1-1-1-1- 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

40% Passing 
—♦—50% inc., equal 

-m-50% inc., 1/2-1/4-1/4 

Full, equal 

•-K- Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—H- 50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

50% Passing 
—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

■jf Full, equal 

K Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I— 50% dec., equal 

^i-50% dec., 1/2-1/4-1/4 
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Figure 4.5. RMSEs for Proximity Routing with 1-2-2 Design at Three Pass Rates 

30% Passing 
—♦—50% inc., equal 

—50% inc., 1/2-1/4-1/4 

i. Full, equal 

Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

40% Passing 
—♦—50% inc., equal 

-■-50% inc., 1/2-1/4-1/4 

Full, equal 

X Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•—25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

—i—50% dec., 1/2-1/4-1/4 

Rep. 1 Ability Level Rep. 2 

50% Passing 
—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

* Full, equal 

-*-Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

Rep. 1 Ability Level Rep. 2 
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Figure 4.6. RMSEs for Proximity Routing with 1-3-3 Design at Three Pass Rates 

30% Passing 
—♦—50% inc., equal 

■-*-50% inc., 1/2-1/4-1/4 

..Full, equal 

-H-FuII, 1/2-1/4-1/4 

-*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-—^50% dec., 1/2-1/4-1/4 

40% Passing 
—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

s Full, equal 

X Full, 1/2-1/4-1/4 

-^le—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—(—50% dec., equal 

—^50% dec., 1/2-1/4-1/4 

50% Passing 

—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

Full, equal 

-X- Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-^50% dec., 1/2-1/4-1/4 
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Figure 4.7. RMSEs for Proximity Routing with 1-2-3 Design at Three Pass Rates 

30% Passing 
—♦—50% inc., equal 

-■^-50% inc.. 1/2-1/4-1/4 

- A Full, equal 

-K.Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

-H—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

40% Passing 
—♦—50% inc., equal 

-iih-50% inc., 1/2-1/4-1/4 

- Full, equal 

.X Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—i—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

50% Passing 
» 50% inc., equal 

-■*-50% inc., 1/2-1/4-1/4 

Full, equal 

-x- Full. 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—i—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.8. RMSEs for Proximity Routing with 1-3-2 Design at Three Pass Rates 

30% Passing 
♦ 50% inc., equal 

-»~50% inc., 1/2-1/4-1/4 

*..Full, equal 

-X-.Full, 1/2-1/4-1/4 

X 25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

40% Passing 

—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

A Full, equal 

-x- Full, 1/2-1/4-1/4 

-Hte-25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

50% Passing 

—♦—50% inc., equal 

-m-50% inc., 1/2-1/4-1/4 

A Full, equal 

-X-Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.9. RMSEs for NC Routing with 1-2-2 Design at Three Pass Rates 

30% Passing 

—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

—*.Full, equal 

-^Full, 1/2-1/4-1/4 

—iK— 25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

^-50% dec., 1/2-1/4-1/4 

1 

0.9 - 

0.8 - 

0.7 - 

•2 -1.5 -1 -0.5 0 

Rep. 1 

0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 

Ability Level Rep. 2 

40% Passing 
—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

Full, equal 

X Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

1 1 

0.9 

0.8 ■ 

0.7 ■ 

0.6 - 

0.5 - 

0.4 ■ 

0.3 ■ 

0.2 ■ 

50% Passing 

—♦—50% inc., equal 

-•-50% inc., 1/2-1/4-1/4 

- Full, equal 

Full, 1/2-1/4-1/4 

-*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

0.1 - 

0 'I-r- I-1 I-1-) I I-1-r 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 

Rep . 1 Ability Level 

-0.5 0 0.5 1 1.5 2 

Rep. 2 
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Figure 4.10. RMSEs for NC Routing with 1-3-3 Design at Three Pass Rates 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

30% Passing 
—♦—50% inc., equal 

-•-50% inc., 1/2-1/4-1/4 

.4 - Full, equal 

-h-FuII, 1/2-1/4-1/4 

-*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

•—50% dec., 1/2-1/4-1/4 

40% Passing 

—♦—50% inc., equal 

-h»-50% inc., 1/2-1/4-1/4 

- * ■ Full, equal 

Full, 1/2-1/4-1/4 

-*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

-H—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

• 50% Passing 

—♦—50% inc., equal 

-■-50% Inc., 1/2-1/4-1/4 

.Full, equal 

Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.11. RMSEs for NC Routing with 1-2-3 Design at Three Pass Rates 

Rep . 1 Ability Level Rep. 2 

30% Passing 
—♦—50% inc., equal 

50% inc., 1/2-1/4-1/4 

* Full, equal 

X- Full, 1/2-1/4-1/4 

-*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—i—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

40% Passing 
—♦—50% inc., equal 

-^l^-50% inc., 1/2-1/4-1/4 

.Full, equal 

X Full, 1/2-1/4-1/4 

-HK— 25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

Rep . 1 Ability Level Rep. 2 

50% Passing 
♦ 50% inc., equal 

-<•-50% inc., 1/2-1/4-1/4 

Full, equal 

Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—!—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.12. RMSEs for NC Routing with 1-3-2 Design at Three Pass Rates 

Rep . 1 Ability Level Rep. 2 

30% Passing 
—♦—50% inc.. equal 

-•-50% inc., 1/2-1/4-1/4 

■ *-- Full, equal 

K Full, 1/2-1/4-1/4 

—ji^-25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

Rep . 1 Ability Level Rep. 2 

40% Passing 

—♦—50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

■■k Full, equal 

Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

1 1 

0.9 ■ 

0.8 ■ 

0.7 - 

0.6 ■ 

0.5 - 

0.4 ■ 

0.3 ■ 

0.2 ■ 

0.1 - 

0 -<-•-1-1-1-1-•->-1-'-'-'-'-'-'-'-'—" 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

50% Passing 

♦ 50% inc., equal 

-•-50% inc., 1/2-1/4-1/4 

*; Full, equal 

X Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.13. RMSEs for Random Routing with 1-2-2 Design at Three Pass Rates 

30% Passing 

—♦—50% inc., equal 

-«-50% inc., 1/2-1/4-1/4 

♦.Full, equal 

• X Full, 1/2-1/4-1/4 

—3it—25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

1.0 -] 

0.9 - 

0.8 - 

0.7 ■ 

0.6 - 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0.0 -I-1-1-1-1-1-1-1-^-1-1-1-1-1-1-1-1-1— 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

40% Passing 
—♦—50% inc., equal 

-^li-50% inc., 1/2-1/4-1/4 

- * Full, equal 

--x-Full, 1/2-1/4-1/4 

- x 25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

1.0 1 

0.9 - 

0.8 ■ 

0.7 ■ 

0.6 ■ 

0.5 ■ 

0.4 - 

0.3 ■ 

0.2 ■ 

0.1 - 

0.0 - 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

50% Passing 

—♦—50% inc., equal 

-h^-50% inc., 1/2-1/4-1/4 

jt. Full, equal 

._x.....Full, 1/2-1/4-1/4 

m 25% dec., equal 

-♦-25% dec., 1/2-1/4-1/4 

-H—50% dec., equal 

-^50% dec., 1/2-1/4-1/4 
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Figure 4.14. RMSEs for Random Routing with 1-3-3 Design at Three Pass Rates 

Rep . 1 Ability Level Rep. 2 

30% Passing 

—♦—50% inc., equal 

—50% inc., 1/2-1/4-1/4 

.-k-.Full, equal 

Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

——50% dec., 1/2-1/4-1/4 

1.0 1 

0.9 - 

0.8 - 

0.7 - 

0.6 - 

0.5 - 

0.4 - 

0.3 ■ 

0.2 - 

0.1 - 

0.0 -- 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0,5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

40% Passing 

- ♦ 50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

* Full, equal 

-X - Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—<—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

1.0 1 

0.9 - 

0.8 - 

0.7 ■ 

0.6 - 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0.0-1-1-1-1-1-1-1-1-1-1-'-1-'-1-<-«-1— 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Rep . 1 Ability Level Rep. 2 

50% Passing 

—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

—Full, equal 

X Full, 1/2-1/4-1/4 

-*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—<—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 
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Figure 4.15. RMSEs for Random Routing with 1-2-3 Design at Three Pass Rates 

30% Passing 
♦ 50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

* .Full, equal 

X Full, 1/2-1/4-1/4 

-*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—i—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

Rep . 1 Ability Level Rep. 2 

40% Passing 
—»— 50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

j Full, equal 

X Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

Rep . 1 Ability Level Rep. 2 

50% Passing 
» 50% inc., equal 

-»-50% inc., 1/2-1/4-1/4 

.* - Full, equal 

- Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-*-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-50% dec., 1/2-1/4-1/4 
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Figure 4.16. RMSEs for Random Routing with 1-3-2 Design at Three Pass Rates 

30% Passing 
—♦—50% inc., equal 

-•-50% inc., 1/2-1/4-1/4 

-A-.Full, equal 

—K- Full, 1/2-1/4-1/4 

—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—i—50% dec., equal 

-50% dec., 1/2-1/4-1/4 

Rep. 1 Ability Level Rep. 2 

40% Passing 

—♦—50% Inc., equal 

-Ha-50% inc., 1/2-1/4-1/4 

Full, equal 

- , Full, 1/2-1/4-1/4 

-HK—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

— 50% dec., 1/2-1/4-1/4 

50% Passing 

—♦—50% inc., equal 

-*-50% inc., 1/2-1/4-1/4 

♦ Full, equal 

-X- Full, 1/2-1/4-1/4 

—*—25% dec., equal 

-•-25% dec., 1/2-1/4-1/4 

—I—50% dec., equal 

-^50% dec., 1/2-1/4-1/4 

150 



7 

CHAPTER 5 

CONCLUSIONS 

5.1 Conclusions 

Many previous studies have documented the quality of measurement associated 

with multi'-stage tests relative to other test designs. The current simulation study was 

carried out to help practitioners understand better some of the psychometric properties of 

multi-stage tests because there are many design variables to consider in constructing and 

using such tests. 

Fixed in this study was the total number of stages, the number of items per 

module, and the total test length. Of course these are important design considerations as 

well, but these variables were fixed to be consistent with typical values while exploring 

the effects of other, less-well-understood variables. It would be practically impossible to 

study al interest design variables simultaneously. The variables of interest here included 

the total amount of test information (4 levels), the distribution of test information across 

stages of the MST (2 levels), the choice of design structure (4 levels), and the routing 

rules implemented to move candidates from stage to stage (4 levels). Each combination 

of variables was considered at three levels of passing rates. The result was a study 

involving 384 conditions (4x2x4x4x3). 

Results of interest in this study were selected to reflect those of importance in 

credentialing and licensure assessment: decision accuracy, decision consistency, and 

ability estimation. In addition, as a practical concern, the proportion of candidates being 

routed to each possible path in each design structure was also evaluated to inform test 

development with regard to module exposure rates. 
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The candidate population and the test characteristics implemented were designed 

to closely emulate the circumstances of a large-scale, high-stakes credentialing 

examination. The item bank from which modules were assembled was constructed based 

on actual item parameters from previous forms of a high-stakes credentialing exam, and 

the test information function too was based on these forms. 

The multi-stage test design, as implemented in this study, clearly provided highly 

reliable and accurate results with respect to both ability estimation and pass-fail 

decisions. Overall, the RMSEs, kappa values, and levels of decision consistency and 

accuracy represent the ‘best-case’ statistics that would be seen with the use of multi-stage 

tests, as model-data fit is high. Nevertheless, the results should be illuminating to those 

with an interest in MST an d how such tests might be designed in practice. 

The results from this study concerning test information have particular relevance 

for credentialing agencies. As a general rule, high levels of test information provide 

better measurement than lesser levels, and certainly this pattern of results was observed in 

this study. However, it was an interaction between levels of test information and the 

division of test information across the stages of an MST that emerged as a particularly 

interesting finding. More information overall in the test lent itself to an equal division of 

information across stages, while in conditions with less test information comparable 

measurement results were observed to be associated with a strategy where half of the test 

information was collected at Stage 1 and one-quarter of the total test information was 

gathered in the two subsequent stages. Basically, the finding seemed to be that relatively 

low levels of information should be avoided at Stage 1. 
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This finding has significance for testing agencies. First, a strategy that allows for 

comparable measurement results to be obtained with less test information may be quite 

desirable to testing agencies. A test information function can be met in two ways, either 

with regard to the 1) quality or 2) number of items. Thus, when it is possible to use a 

lower test information function, that can be accomplished by using fewer but higher- 

quality items or more items and drawing more fully from the quality range in the item 

bank. The second meaning of this result is that it suggests that employing unbalanced 

levels of test information across stages may well be beneficial for testing in some 

contexts, and sometimes gathering higher levels of test information earlier in the test to 

make better routing decisions earlier may be helpful. However slight the benefit, any 

improvement in the accuracy of decision outcomes due to increased efficiency of the 

routing at earlier points in the test is a highly desirable goal in test development. 

The results relating to the routing rules implemented were likewise interesting, 

and have implications for implementing multi-stage tests. One strategy, the Random 

approach, did not take examinee ability into account whatsoever, and measurement and 

decision results across candidates for this method were lower - but not substantially so - 

than the other methods that did use ability estimates or number-correct scores in making 

routing decisions. But it is not likely that this result is generalizable. Were the modules 

to be positioned further apart within stages, measurement results from the Random 

method would likely be poorer than evidenced here. 

Among the strategies that did incorporate estimates of ability into the routing 

decisions made, the DPI method did give results that were slightly poorer than the 

Proximity and Number-Correct methods. Almost certainly, this finding is due to the fact 
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that the DPI method was primarily focused on equalizing the distribution of candidates 

across modules and not specifically matching candidates to modules where test 

information was optimal for the ability distribution. 

At the same time results obtained by the DPI methods were only slightly less 

accurate and consistent than using the Proximity or Number-Correct strategies, and these 

latter two approaches were highly consistent with one another. From the perspective of a 

test developer, all these methods are comparable in complexity to implement, and so the 

choice of strategy does remain one driven by measurement concerns. All things 

considered, the logic of the Proximity method may be considered to be the most 

appropriate and defensible of the four methods for high-stakes decisions, as it involves 

assigning candidates to the module empirically determined to most nearly match their 

estimated ability. 

No differences in measurement outcomes of interest were detected with respect to 

the choice of design strategy employed. As testing agencies consider the merits of 

different module configurations, in terms of outcomes no differences due to using two or 

three modules at stages 2 and 3 were found. However, the decision to limit the variation 

in difficulty of second and third stage modules may have limited the extent to which the 

test deisgns produced different results. 

Concerning design strategy, in the absence of clear measurement advantages, the 

bigger operational concern for programs seems to be using more than two stages so that 

the candidates do not have the perception of being unable to pass if they do poorly at 

Stage 1. Operationally, there may be certain benefits to only having to manage one cut- 

score in moving from stage to stage, and concentrating resources on making sure that the 
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routing based on that single cut between each stage is as precise as possible. For this 

reason, some test developers may prefer the 1-2-2 design given that its use does not result 

in any lowering of DA and DC. 

In comparing results across several different pass rates (30%, 40%, 50%), the 

decrease in accuracy and consistency observed as the passing score was moved from 

+.521 to .000 was clear. At the same time, this decrease was not so striking that 

practitioners would expect wildly different results depending on the placement of the 

passing score. The results from this study are likely to be generalizable to passing scores 

set that results in pass rates ranging from at least 30% to 70%. 

The results from this study suggest that the design overall does provide a high 

level of measurement quality for a variety of implementation structures and strategies. 

But in simulation studies like this one using model-generated data, model-data fit is high 

and findings do tend to over-predict the findings observed in practice. 

Ultimately, the findings highlighted here do represent an investigation to clarify 

certain specific aspects of an under-researched approach to adapting tests to examinees in 

the specific context of credentialing testing where decisions are the overriding concern. 

However, the inclusion of measurement accuracy as an outcome of interest further 

generalizes the conclusions to other testing contexts and test uses, where accuracy of 

ability estimation itself is desired. These conclusions suggest that some MST design 

variables do not significantly shape the results (module arrangement being a prime 

example of this) but the relationship between measurement outcomes and other design 

variables (such as amount of test information and the stages where that information is 
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collected) is more complex and test developers should weigh such decisions carefully in 

light of findings from this study. 

Generalizing findings from simulation studies is always problematic. In practice, 

psychometric models never completely explain candidate performance, and with the 

MST design, there is always the potential psychological impact on candidates if they 

notice a shift in test difficulty. At the same time, two findings seem to stand out in this 

research: (1) with limited amounts of overall test information, it may be best to capitalize 

on the information that is available with accurate branching decisions at Stage 1, and (2) 

unless for reasons of content validity, or to convince candidates they have been 

rigorously assessed, there may be little advantage of exceeding test information much 

above 10 because the gains in decision consistency and decision accuracy appear to be 

quite small. 

5.2 Directions for Future Research 

There are a number of research questions that seem worthy of follow-up research. 

The first direction of interest concerns further investigation of various routing strategies 

in the context of considerably shortened tests. As mentioned above, a probable cause for 

the results by routing strategy in this study not being more distinct is that after 60 items’ 

worth of testing, any differences due to poorer or better routing may well be rendered less 

evident than they would be with shorter tests. The interesting finding in this study, with 

tests of lower test information function compared to the baseline tests, provides an 

indication of the impact of shortening tests. It would be interesting to vary the lengths of 

the individual stage-level tests in the context of generally shorter tests, say 30 or 40 
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items. When test (and accordingly, module) lengths are reduced, more significant 

differences in the methods may well become clear. In terms of maximally estimating 

examinee abilities in such high-stakes settings, the value of knowing the preferred 

method for doing so should not be underestimated. 

A similar future investigation might well focus more closely on the splitting of 

information among stages. Interesting patterns of results were observed in this study. 

More effective targetting of module information in relation to passing scores and ability 

distribution would be another question worthy of study. 

Another important extension of this study would be to build more error into the 

simulations and repeat them, to better reflect the kinds of errors that would be seen in 

practice. Simulation approaches such as adding a second dimension correlated to the first 

should be considered, since with less good model fit due to the second dimension, it 

would be possible to obtain simulation results that might better reflect those that could be 

obtained in practice. 

Finally, the branching of many testing programs into measuring skills and abilities 

that are more complex in nature raises the possibility of multi-stage tests using 

polytomously-scored tasks. Here, a stage might consist of two or more polytomously- 

scored items. Utilizing the adaptive structure of multi-stage tests to improve 

measurement precision by improving selection of such items for administration as part of 

a stage-based test structure may well be a direction of interest for researchers. Indeed, 

approaches using polytomous items in MST could explore the efficacy of both 

dichotomous and polytomous items or polytomous items alone. 
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