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ABSTRACT 

BEHAVIORAL ECOLOGY OF MYIOPHARUS DORYPHORAE AND MYIOPHARUS 
ABERRANS, TACHINID PARASITOIDS OF THE COLORADO POTATO BEETLE. 

MAY 1995 

E. ROLANDO LOPEZ-GUTIERREZ. B.Sc.,UNIV. DELVALLE DE 

GUATEMALA 

MA, UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor David N. Ferro 

The life history and behavioral ecology of Myiopharus doryphorae (Riley) and 

Myiopharus aberrans (Townsend), important parasitoids of the Colorado potato beetle 

(CPB) Leptinotarsa decemlineata (Say), were investigated through a series of field and 

laboratory studies. 

The recruitment-recruitment method of determining percentage parasitism was 

compared with traditional methods in assessing population dynamics of the CPB and 

Myiopharus. Over the three-year period of the study, percentage parasitism calculated 

from traditional foliage sampling showed an erratic pattern. Revised estimates employing 

the recruitment method revealed a consistent 30-50% mortality of CPB larvae due to 

parasitism even when the CPB prepupal population density reached 80 per square meter 

per generation, showing that Myiopharus spp. can cause high levels of mortality to CPB 

larvae at higher host densities than has been reported in most previous field studies. 
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Field sampling demonstrated that M. doryphorae and M. aberrans overwinter as 

first-instar larvae within adult diapausing CPB and complete their development the 

following spring after the emergence of the parasitized beetles. 

Growth-chamber studies were conducted to quantify development of summer- 

generation M doryphorae at different life stages. During the first four days after being 

larviposited, these M. doryphorae remain as first-instar larvae but grow an average of 0.45 

±0.03 mm prior to the prepupal stage of their hosts, in which the parasitoids complete 

development. During this latter period, development rates ofM doryphorae were found 

to track closely those of the CPB itself when modeled as a nonlinear function of 

temperature assuming cessation of growth outside the approximate range of 4 - 34° C. 

The model appears to require additional adjustment at temperatures below 10°C. 

Laboratory studies showed that M. doryphorae do not discriminate between CPB 

larvae fed sublethal doses of B. thuringiensis and larvae not fed with B. thuringiensis. M. 

doryphorae appear more sensitive to CPB larval movement than to the presence or 

absence of B. thuringiensis. 

Through field studies a series of behaviors was identified and their frequency and 

duration were quantified for the two Myiopharus spp., which appeared not to vary their 

allocation of time in response to each other’s presence in the same field. A significant 

difference was found between the frequencies of larviposition by the two Myiopharus 

species across ranges of temperature and time of day. 
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Behavioral studies led to the discovery that larvipositing M. doryphorae and M. 

aberrans females discriminate between parasitized and non-parasitized host larvae, 

rejecting the former on contact and failing to larviposit in them when other potential hosts 

are available. This discrimination breaks down to some extent late in the growing season 

when CPB larvae of appropriate stages are rare; breakdown of host discrimination is 

accompanied, however, by the defense of recently parasitized hosts by females of both 

Myiopharus species, and is followed by the switch of larvipositing M. aberrans from 

larval hosts to adult CPB which are more common at this time of year. 
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CHAPTER 1 

LIFE HISTORY OF THE COLORADO POTATO BEETLE AND ITS NATURAL 
ENEMIES 

Pest Status and Management Strategies of the Colorado Potato Beetle 

The Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) is the 

principal insect pest defoliating potato Solanum tuberosum L. in the northeastern United 

States and Europe (Ferro 1985, Hough-Goldstein et al. 1993). CPB primary hosts 

include buffalbur (Solanum rostratum Dunal), Solanum elaeagnifolium Cavanilles and 

Solanum angustifolium Miller, and it first shifted to potatoes in the southwestern United 

States some 150 years ago (Hare 1990, Casagrande 1985). 

The life history characteristics of the CPB include its very high fecundity early in 

the season which can exceed 4000 eggs per female during its life-span (Brown et al. 

1980). Additionally, it may migrate as much as 150 km per year (Hurst 1969, Jolivet 

1991, Weber 1992) and it may overwinter through one, two, three and four years, 

allowing the beetle to emerge whenever the environment is most appropriate to complete 

its cycle (Ushatinskaya 1978). These characteristics, together with its great genetic 

variability (Hsiao 1984, 1985), contribute to the difficulty of controlling this pest. 

Pest management strategies based on heavy use of insecticides led to the 

development of resistance to DDT by the CPB in the 1950s. Insecticides developed 

during the next 35 years were also rendered ineffective as the beetle successively 

developed resistance to each new insecticide in progressively shorter periods of time 
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(Forgash 1985). Ground water contamination and increasing costs as a result of these 

management strategies influenced growers as well as extension agents to reconsider and 

reevaluate the role of some natural enemies as part the CPB management strategies. 

The use of natural enemies alone has not been satisfactory for controlling CPB in 

commercial crops. However, recent experience growing organic potatoes on small and 

medium size farms in northeastern USA has shown promising results (Ferro 1993). An 

essential ingredient in any program using natural enemies is the thorough knowledge of 

their life history and behavior. And in the case of CPB in particular, those natural 

enemies characteristics which might counteract the beetle fecundity, migration and/or 

overwintering habits. 

Natural Enemies of the Colorado Potato Beetle. 

Numerous Arachnida, Neuroptera, Hemiptera, Diptera and Hymenoptera species 

have been found to attack different stages of the CPB (Ferro 1993, Hare 1990). 

Beauveria bassiana (Balsamo) (Anderson et al. 1988, Hare 1990, Hough-Goldstein et al. 

1993) and Bacillus thuringiensis Berliner var. San Diego and tenebrionis (both of them 

available in commercial formulations in the USA and in Europe) are the two 

entomopathogens most widely used to control the CPB. However, CPB resistance to 

Bacillus thuringiensis has already been documented (Whalon et al. 1993). One of the 

limitations for commercial biological control of the CPB is that many of the beetle’s 

natural enemies are of tropical or subtropical origin with limited possibilities for surviving 

the winters of temperate zones where most of the potato crop in the world is produced 
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(Hough-Goldstein et al 1993). This is the case with the extensively studied egg 

parasitoid of the CPB, Edovum puttleri Grissell (Hymenoptera: Eulophidae), that was 

introduced to USA from Colombia in 1981 (Grissell 1981). It has been found that E. 

puttleri kills CPB eggs by parasitism as well as by probing (Corriga et al 1991, Lashomb 

et al 1987a & b). In augmentative releases on eggplants this species has been shown to 

attack 71 - 91 % of egg masses to cause 67 - 79 % parasitism of eggs per egg-mass ( 

Lashomb et al 1987b, 1989). E. puttleri can not survive the cold winters of temperate 

zones, and it has to be maintained during the winter using laboratory rearing methods 

(Schroder et al 1985). Because E. puttleri attacks only the egg stage of the beetle and 

releases are made only at commercial potato sites, it is very unlikely that Edovum would 

be able to cope with the beetle’s migration abilities, and it would probably miss beetles 

reproducing in their many wild solanaceous host plants. 

The only natural enemies known to attack mainly the CPB and already adapted to 

the temperate zones of the USA are the tachinid parasitoids Myiopharus 

(=Doryphorophaga) macella Reinhard, M. (=Doryphorophaga) australis Reinhard, M. 

(=Doryphorophaga) doryphorae (Riley) andM (=Adoryphorophaga) aberrans 

(Townsend) (Diptera: Tachinidae) (Amaud 1978). M doryporae and M aberrans have 

been the most studied as biological control agents, but unfortunately knowledge of their 

life history and behavioral ecology is still very limited. 

M doryphorae and M aberrans are the only two indigenous parasitoids that are 

consistently found in northern USA potato regions. M. doryphorae had been reported in 

field populations of CPB since late 1800 (Riley 1869, 1871, 1872). After these pioneering 
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studies, several other authors studied M. doryphorae (Biliotti and Persoons 1965, 

Feytaud 1938, Kelleher 1960 & 1966, Lipa 1985, Tamaki etal. 1983a, b, Trouvelot 

1931). M. doryphorae larviposits on second through early fourth instar CPB larvae. 

Once the parasitoid larva is in the host, it remains undeveloped until the host completes its 

development and the CPB burrows into the ground for pupation (Tamaki et al. 1983a, b). 

At this point the Myiopharus larva resumes growth, killing its host and completing its 

development in about 8-10 days at mean summer temperatures of 24 to 28 0 C (Tamaki et 

al. 1983a & b, Kelleher 1960). Several studies have shown M doryphorae to have two 

generations per year in northern regions (i.e. Canada: Manitoba and Ontario) (Kelleher 

1966) and in northern USA (Horton & Capinera 1987, Tamaki et al. 1983a, b). In 

general, the number of Myiopharus generations will depend on the number of CPB 

generations per year which are related to the latitude and the length of the growing season 

(Hurst, 1975). Some studies in the USA have indicated an inverse relationship between 

population densities of M. doryphorae and its host (Kelleher 1960, Tamaki et al. 1983a), 

with low percentages of parasitism early in the season when beetle populations are the 

highest but an increasing percentage of parasitism later in the season when the beetle 

populations start declining and most of the potato crop has been already damaged by the 

beetles. However, in a few cases in which beetle populations were not very high, 

Myiopharus has reached high levels of parasitism throughout the entire season (Bjelgovic 

1968, Horton & Capinera 1987). 

Much less has been written about the biology and ecology of Myiopharus aberrans 

(Gollands et al. 1991, Hough-Goldstein et al. 1993, Lopez et al. 1992). M doryphorae 
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and M aberrans have been found sharing the same potato fields, and both appear to 

parasitize the same larval stages of their host. Due to the common way of determining 

Myiopharus parasitism in CPB (dissecting field collected CPB larvae under the 

microscope) and because the larvae of both Myiopharus species look very similar under a 

standard microscope, it is very likely that the parasitism often attributed to M. 

doryphorae alone may in fact be the combined effect ofM doryphorae andM aberrans. 

This and some other possible assumptions surrounding Myiopharus parasitism needed 

clarification. This could be achieved only through the direct field observation and 

quantification of Myiopharus behavior. 

Purpose of the Study. 

It has become apparent that at the base of any sound biological control program is 

a knowledge of host and parasitoid behaviors and interactions. Host-parasitoid and 

parasitoid-parasitoid behavioral interaction studies under field conditions in tachinids are 

very limited ( Clausen 1944), in spite of tachinid parasitoids being extensively used as 

biological control agents (Grenier 1988). More detailed behavioral studies under field 

conditions of these interactions have been recommended during the last decade (Van 

Lenteren 1981). 

Tamaki et al. (1983a) suggested that before further work aimed to establish the 

actual role of Myiopharus in the population dynamics of the CPB is done, it would be 

necessary to determine their overwintering biology. Besides the knowledge of the 

overwintering biology of Myiopharus, several other areas of the biology, ecology and 
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behavior of the CPB - Myiopharus relation needed investigation. In this endeavor, two 

basic lines of inquiry were undertaken: a biological approach and a behavioral ecology 

approach. Under the former approach the overwintering biology, as well as development 

rates and percentage parasitism were investigated. Under the latter approach, the 

behavioral ecology ofM. doryphorae andM aberrans and the beetles’ response to 

Myiopharus attacks were thoroughly studied in the field. As part of the behavioral 

ecology approach, 8 different Myiopharus behaviors as well as the discrimination ability of 

both Myiopharus species were investigated under laboratory and field conditions. 

Because of the widespread use of Bacillus thuringiensis var. tenebrionis against CPB in 

potato fields where Myiopharus is also present, the behavioral response of Myiopharus 

toward immature stages of CPB treated with lethal and sublethal doses of Bacillus 

thuringiensis subsp. tenebrionis was also studied. 
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CHAPTER 2 

OVERWINTERING BIOLOGY OF MYIOPHARUS ABERRANS AND MYIOPHARUS 

DORYPHORAE 

Introduction 

Myiopharus species are the principal indigenous parasitoids of the Colorado 

potato beetle in North America, where they are widely distributed and are capable of 

overwintering in temperate areas. They appear to be relatively host specific and are able 

to locate hosts efficiently at low host densities (Lopez & Ferro, 1990 unpublished data). 

Myiopharus doryphorae (Riley) has been reported to cause 30-70% parasitism in the 

second generation of field populations of the Colorado potato beetle (Horton & Capinera 

1987, Tamaki et al. 1983, Kelleher 1960). 

Flies of the spring-early summer generation insert first instar larvae subcutaneously 

into late first through early fourth instar Colorado potato beetle larvae. Parasitoid larvae 

remain in their larval hosts with little or no growth until the last instar of the host burrows 

into the soil to pupate. At this time, the parasitoid begins its larval development and 

consumes the internal organs of the host pre-pupa. The parasitoid pupates inside the 

remains of the pre-pupa and later emerges from the soil to parasitize second generation 

Colorado potato beetle larvae in late summer (Kelleher 1960, Bjegovic 1968 and Tamaki 

et al. 1983). In the first host generation flies emerge from the soil approximately 8 days 

(288 DD, Lopez & Ferro 1990 unpublished data) after the parasitized 4th instar enter the 

soil. 

Grenier (1988) cites the lack of knowledge of the biology and ecology of tachinid 

parasitoids as one of the main reasons for failure when using these parasitoids in applied 

biological control programs. This appears to be the case for Myiopharus spp. which were 
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introduced into Europe as control agents for the Colorado potato beetle, but failed to 

establish (Briand 1935, Feytaud 1938, Lipa 1985). 

Despite several studies on the biology and ecology of Myiopharus spp. (Franz 

1957, Kelleher 1960, Billoti & Persoons 1965 and Tamaki et al. 1983) the complete life 

histories and in particular how the parasitoids overwinter were not identified. Kelleher 

(1960) dissected field-collected adult beetles in August and September and found about 

5% to be parasitized by Myiopharus spp. He stated that these Myiopharus spp. first 

instars were ones which had not had sufficient time to complete their development and 

were, in his opinion, certain to die. Kelleher (1960) also collected adult beetles from the 

field the following June and dissected them but found no parasitoids. Franz (1957) 

suggested that the tachinids probably overwintered in their puparia in the soil. Kelleher 

(1960) tested the viability of Myiopharus puparia subjected to winter temperatures by 

placing fly puparia from field and laboratory samples, in moist sand at 40° F. After about 

two months, he found no indication of diapause and no flies emerged from these puparia. 

Several other attempts to determine the overwintering biology of Myiopharus spp. were 

also unsuccessful (Tamaki et al., 1983, Kelleher 1960). 

We hypothesized that Myiopharus spp. overwintered either (1) as adults in 

undisturbed habitats adjacent to potato fields, or (2) as larvae inside Colorado potato 

beetle larvae or pre-pupae or (3) as pupae in puparia in the soil or (4) as larvae within 

overwintering adult Colorado potato beetles. 

Methods 

To determine if adult flies were the overwintering stage, observations were made 

in September of 1989 to locate night time resting sites used by flies. We reasoned that flies 

were likely to select similar places to overwinter and that such observations would indicate 

sites to monitor later in the year. During the first two hours after dusk, the foliage of a 

late planted potato field and that of the surrounding vegetation were thoroughly searched 
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for flies. Sites included the foliage and bark of forest trees (maple, oak, birch, hemlock, 

cherry etc.) and the foliage of various herbaceous weeds. 

To determine if Myiopharus spp. overwintered as larvae within Colorado potato 

beetle larvae, as pupae in their puparia in the soil or as prepupae or adults, soil samples 

were collected at South Deerfield, Massachusetts, USA, from mid-April to early May of 

1990 in fields which had been planted to potato the previous year. Soil was removed from 

approximately 20 randomly selected sites (4 nfi each) to a depth of 40 to 50 cm, the 

expected maximum depth of the majority of overwintering Colorado potato beetles. The 

soil was sieved and inspected for fly puparia and Colorado potato beetle adults, larvae and 

pupae. Soil temperatures had not exceeded 12° C prior to the date of our collections and 

it is unlikely that any significant parasitoid development would have occurred prior to the 

beetles being taken to the laboratory. No fly puparia or Colorado potato beetle larvae, 

prepupae or pupae were found, but a total of 379 overwintered adult Colorado potato 

beetles were collected. These adults were immediately placed individually into 30 ml 

ventilated plastic cups and covered with a 15 ml layer of moist, sterile, potting soil. A 

subsample of 67 beetles was used to detect overwintered Myiopharus spp. flies by placing 

the cups into a growth chamber (16:8, L:D) first at 17° C ± 2° C for 23 days and then at 

24° C ± 2° C (16:8, L:D), for 28 days. The number of surviving adult beetles was 

recorded as was the number of emerged flies. 

Results and Discussion. 

During a total of 30 hours of evening field observations, only two flies were 

observed in early September, both on the lower leaves of potato plants. Because potato 

fields are cultivated at the end of the season, flies could not succesfully overwinter on crop 

plants. No flies were observed on vegetation surrounding the potato field nor were any 

flies observed flying from the potato field. 

12 



A total of five M. aberrans and two M. doryphorae flies emerged from seven of 

the subsample of 67 beetles collected from the soil in the spring of 1990 (Fig. 2.1). 

Because the beetles were collected before they had become active in the spring, it is 

unclear whether in nature beetles first move to the soil surface and flies then emerge from 

the beetles, or if the flies emerge from the beetles after they are completely out of the soil 

or if both behaviors occur. On one occasion an overwintered beetle emerged from the soil 

and actively fed before dying. Five days after the beetle died it was dissected and a fly 

puparium was found. Three adult Colorado potato beetle exoskeletons with parasitoid 

emergence holes were found on the soil surface of a commercial potato field on May 14, 

1990, indicating that some beetles emerge from the soil before the parasitoids complete 

their development. 

This is the first report of adult Myiopharus spp. flies emerging from overwintered 

Colorado potato beetle adults. It suggests that Myiopharus spp. larvae remain as 

undeveloped first instars within beetles from the previous summer. Colorado potato beetle 

adults that emerge after August 1 do not produce flight muscles or a reproductive system 

(Voss et al., 1988), and this response to a shortening day length appears to be regulated 

by juvenile hormone (JH) titer (de Wilde et al. 1968). After emerging from the soil, 

summer adult beetles feed for about two weeks, then burrow into the soil to overwinter or 

may first walk to overwintering sites outside of the potato field (Voss & Ferro 1990). The 

parasitoid larva could be responding to the low level of JH in the Colorado potato beetle 

hemolymph, or could be responding to some factor produced by larvipositing female flies 

which responds to the shortened day length. 

Once diapause development is complete, and the soil temperature rises above 10° 

C, overwintered beetles regenerate their flight muscles and emerge from the soil in about 

288 DD (Ferro unpublished). On the average it took 183 DD (ca. 12 days at 25° C) for 

flies to emerge from post-diapausing beetles after they had emerged from the soil and had 

become active. This is about the same amount of time it takes for Myiopharus 
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development to be completed from the time Colorado potato beetle non-diapausing 

parasitized larvae burrow into the soil to fly emergence during the summer. Resumption 

of Myiopharus larval development within the post-diapausing beetle might possibly 

happens sometime after the adult Colorado potato beetle emergence from the soil. 

Fig. 2.1 A Myiopharus doryphorae fly emerging from an overwintered 
Colorado potato beetle. 
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CHAPTER 3 

TEMPERATURE-DEPENDENT DEVELOPMENT RATE OF MYIOPHARUS 
DORYPHORAE, A PARASITOID OF THE COLORADO POTATO BEETLE 

Introduction 

The relationship between temperature and insect development has long been 

recognized (Sanderson & Peairs 1913, Uvarov 1931, Davison 1944, Richards 1957, 

Howe 1967) along with the consequent utility of this environmental parameter in modeling 

insect population dynamics. Accurate estimates of the development rate of both pest 

insects and their natural enemies are of obvious significance in the elaboration of control 

programs; during the past decade the use of phenological models for use in integrated pest 

management has increased considerably ( Wagner et al. 1984b, Womer 1991, 1992). 

Linear degree-day models were some of the earliest to be developed and were applied to a 

large number of insect species (Howe 1967), but the non-linearity of growth found at high 

and low temperatures demonstrated these models to be often unrealistic. A number of 

nonlinear models, some of them empirical (Logan et al. 1976, Hilbert & Logan 1983) 

and others theoretical (Sharpe & DeMichele 1977, Schoolfield et al. 1981) have been 

elaborated for a wide variety of species and circumstances; further work (Gould & 

Elkinton 1990, Hebert & Cloutier 1990, Hilbert & Logan 1983, Wagner et al. 1984b) 

has applied and evaluated these models. 

Among the nonlinear models referred to above, most have been found reliable in 

predicting development rates principally in the middle ranges of applicable temperatures. 

The Logan equation (Logan et al. 1976) is of the form: r(T)= 7^epT - epTm'T) where W 

is the development rate at base temperature, p is a composite Qio for the critical enzyme- 

catalyzed biochemical reactions and the temperature (T) terms are determined by the 

experimenter. The Logan model normally overestimates growth at low temperatures, 

showing insect development at 0°C in some cases (Hilbert & Logan 1983). Sharpe & 
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DeMichele’s model was based on a more elaborate equation that used absolute 

temperatures and incorporated the universal gas constant and the concept of enthalpy 

associated with rate-controlling enzyme activation or deactivation (Sharpe & DeMichele 

1977). This model has been shown also to overestimate insect growth at certain 

temperatures: at low temperatures the model approaches zero development 

asymptotically and so predicts positive developmental rates even at 0° C in the cases 

modeled; it also predicts fairly high rates of developement at elevated temperatures 

which are known to be lethal (Hilbert & Logan 1983 and Gould & Elkinton 1990). The 

Hilbert & Logan Model is described by r (T) = !F[ (T2/T2+D2) - e'(T,n‘Ty AT] where r(T) 

is the rate of development at temperature T; T= T„ - Tb where T0 is the air temperature and 

Tb is the developmental base temperature; is the developmental rate at the base 

temperature Tb; Tm is the lethal maximum temperature; D is a “shape” parameter that 

control the inflection point of the sigmoid curve(it is an empirical parameter); and AT is 

the temperature range between developmental maximum and Tm. 

The Hilbert & Logan model has been more realistic in not predicting growth at the 

low and high temperatures known to be lethal for the Colorado potato beetle (CPB) 

(Ferro et al. 1985). Based on this feature and on the success of this model in describing 

CPB larval and pupal development (Ferro et al. 1985, Logan et al. 1985), Hilbert and 

Logan’s model was chosen for application in the present study to Myiopharus doryphorae 

Riley, an important parasitoid of the CPB in North America. 

With very few exceptions (Gould & Elkinton 1990, Nealis 1984), these nonlinear 

temperature-dependent growth models have been tested in each instance on single, non- 

parasitic insect species. No temperature-related development rate studies have been 

conducted on M. doryphorae. The relationship of temperature to egg and larval 

development rates has been simulated for another tachinid, Winthemia fumiferanae Toth, 

a parasitoid of the spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: 

Tortricidae) (Hebert & Cloutier 1990). However, several important differences exist 



between the life cycles of W fumiferana and M. doryphorae. W. fumiferana oviposits on 

a lepidopteran host and completes its pupal growth outside of the host. M. doryphorae 

has more than one generation per year: an overwintering generation placed as first-instar 

larvae within the host’s larval stage late in the season which completes development when 

the adult beetles emerge in the spring (Lopez et al. 1992 & Chapter 2) and a summer 

generation also larviposited into beetle larvae but completing development at the host 

prepupal stage within the same growing season. In both M. doryphorae generations, 

unlike W fumiferana, parasitoid growth occurs entirely within the host. Due to the many 

complications inherent in the overwintering generation, the summer generation of M. 

doryphorae was selected here for initial evaluation of the development model. 

It has been known for some time (Trouvelot 1931, Kelleher 1960) thatM 

doryphorae remain as first instar larvae throughout the larval development of their CPB 

hosts. Some authors have taken this to mean that no parasitoid growth occurs during this 

time, although Kelleher (1960) reported an average difference in length of 0.64 mm 

between recently laid first-instar M doryphorae larvae and presumably older first-instar 

parasitoids found in “mature” CPB larvae. An initial aspect of this project was to establish 

whether the first instar grow while in its larval host before it host pupated. The second 

aspect was to model the temperature dependent growth of the remaining larval stage of 

the summer-generation M. doryphorae within pre-pupal CPB. 

Methods 

Larval Growth of Mviopharus doryphorae Before its Host Prepupal Stage 

Early third instar CPB larvae from a laboratory colony were exposed to five fertile 

Myiopharus doryphorae flies ina35x35x35 cm plexiglass-framed and metal screen 

cage under laboratory conditions. After each CPB larva was parasitized it was 

immediately removed from the cage using soft tweezers and placed in a 25 x 5 mm plastic 
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petri dish with fresh potato foliage until 75 parasitized CPB larvae were obtained. 

Twenty-five of the parasitized CPB larvae were dissected immediately after parasitization 

and the length of the Myiopharus larvae found within them was recorded. The remaining 

50 parasitized CPB larvae were separated into two groups of 25 each in petri dishes and 

simultaneously placed in a 27 0 C and 80% RH growth chamber. Fresh potato foliage 

was provided every day in the petri dishes as food for the larvae. Half (25) of the 

remaining parasitized larvae were dissected after 48 hours and the other half after 96 

hours. In all cases parasitoid larvae were measured after dissection. 

Using these measurements, the growth of the parasitoid first instars within third 

and fourth instar CPB of its host was regressed on hours after larvipositon using both a 

linear model and a quadratic regression model ( Sigmaplot 2.0, 1994). 

Colorado potato beetle adults and Myiopharus flies used in this experiment were 

collected in July-August 1990 from a potato field (CV. Katahdin) located at the University 

of Massachusetts Experiment Station in South Deerfield, Mass, and maintained under 

greenhouse conditions (25± 3°C, 80% RH, and constant photoperiod of 16:8 L:D). 

From the first progeny of the beetles, 300 third-instars were exposed to fertile 

Myiopharus flies until each of them had been parasitized. All of these parasitized CPB 

larvae were kept in the greenhouse in ventilated plastic containers (7x7x14 cm) over a 

2-cm layer of moistened vermiculite. A total of 10 CPB larvae were left in each 

container. Each of these containers was provided with fresh potato foliage which was 

inserted into a florist’s water pick containing quarter-strength Hoagland's solution 

(Hoagland & Amon 1950); Potato foliage was changed every day until CPB larvae 

completed their development and dug into the vermiculite for pupation. 
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Another 300 CPB larvae not exposed to the flies were kept simultaneously under 

the same conditions as the parasitized ones. At the onset of CPB pupation, a set of 60 

prepupae from each group (parasitized and not parasitized) were left in the same 

containers in which they were reared and placed in each of five growth chambers at 17, 

20, 24, 27, 30 and 32° C, all of them kept at 16:8 LD photoperiod and 80% RH, to 

complete their development until adult emergence. 

During the 1990 trials, the CPB larvae may have been parasitized by either of two 

Myiopharus species, M. doryphorae and M. aberrans, and it was not possible to 

discriminate among parasitized larvae by parasitoid species. Therefore, in 1991 the 

experiment was repeated using only Myiopharus doryphorae. 

The Hilbert & Logan Model described above (Hilbert & Logan 1983) was fit to 

values of the geometric mean rate of development at each temperature which was 

calculated as: Mean developmental rate = 1/exp [Zln (Dj)/ n] where D; is the observed 

developmental time and n is the sample size. Mean developmental rates were computed in 

this way to correct for the skewed frequency distributions of developmental time (Logan 

etal. 1976). 

Initial estimates of the four parameters were determined graphically as described in 

Logan et al. (1976). Non-linear regression (SAS Institute 1988) was used to fit the 

model to values of mean development rate by an iterative least-squares procedure using 

the Marquardt algorithm (Marquardt 1963). The non-linear regression was performed on 

temperatures below 34°C because higher temperatures produced >80% mortality of 

parasitized CPB larvae. 
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Results and Discussion. 

Larval Growth of Mviopharus dorvphorae Before its Host Prepupal Stage 

Myiopharus doryphorae larvae raised at a constant temperature of 27° C during 

their host’s larval development were 0.69 ± 0.021 mm long for recently laid parasitoid 

larvae, 1.01± 0.02 mm after 48 h and 1.14 ± 0.061 mm after 96 hours. This was the 

approximate time it took CPB larvae raised at 27° C to go from late third instar to 

prepupal stage ( Logan et. al. 1985, Walgembach & Wyma 1984 and Ferro et al. 1985). 

A quadratic regression curve was fit to all data points. The quadratic regression Y= 0.698 

+ 0.422 Jt-0.115x2 gave a fit of r2 = 0.767 to our data for the Myiopharus first instar 

larval growth (Fig 3.1). The fitted curve indicated a steady growth of the Myiopharus 

first instars from zero to 48 h after larviposition. From 48 to 96 h the rate of growth 

appeared to decrease (Fig. 3.1). However, these aspects of the shape of the curve could 

largely be artifacts of the quadratic stipulation of the model; a larger number of temporal 

points would help to establish more closely any changes in rate of growth through time. 

This result support the study of Kelleher (1960) which showed that first instar 

Myiopharus growth to double during its host larval development before it reached the 

prepupal stage. 

TempBatii'e-Dependent Develo^ent Rate of Colorado Potato Beetle and Mviopharus 

Parameter values for the Hilbert and Logan model (defined above for the 1990 

experimental data) were estimated by Marquardt’s nonlinear least squares with the 

function fit to data in Tables 3.1a and 3.2a. For the Marquardt’s nonlinear least squares; 

computing 250 iterations were chosen because it has been shown that after that number of 

iterations in most cases the parameters values change very little. The sum of squares of 
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errors (SSE) is an estimate of the fit of the model. The smaller the SSE the better the fit. 

The parameters forMyiopharus sp. were Tb= 2.36525; D = 86.3803; = 1.2688; Tm= 

34 ; and AT = 1.1072 with a SSE = 0.000162. For the CPB the parameters estimated for 

1990 were: Tb = 2.26751; D = 83.52402; ¥ = 1.18252; Tm= 34; and AT = 1.0949 with 

a SSE = 0.000162. Fig. 3.2 represents the plots for functions and data. In 1991 

parameter values were again estimated by Marquardt’s nonlinear least squares with the 

function fit to data in Tables 3.1b and 3.2b for Myiopharus doryphorae and CPB 

respectively. The parameters for Myiopharus doryphorae were: Tb =4.55643; D = 

89.963020; ¥ = 1.530223; Tm= 34; and AT = 1.951225 with a SSE = 0.000021958. 

For CPB the parameters were: Tb = 3.873746; D = 106.87168; ¥ = 2.36702; Tm= 34; 

and AT = 1.4855 with a SSE = 0.00008298. Figure 3.2 presents the empirical data and 

model output. The development rate using the Hilbert and Logan equation projects to 

zero at T<Tb. The sum of squares errors in 1990 indicated a similar fit of the curve to the 

values for both CPB and Myiopharus (SSE = 0.000162). The SSE for the 1991 data 

indicated a much better fit of the curve to the values for both, the host and the parasitoid. 

However, the fit seems to be slightly better for Myiopharus than for CPB with values of 

0.000021958 for Myiopharus and 0.00008298 for CPB. 

The empirical nonlinear model of Hilbert & Logan predicted a lower temperature 

threshold for development of both CPB and Myiopharus than has normally been assumed 

(Tb= 10° C for most insects); the model’s predictions were: Tb = 4.5564 0 C for 

Myiopharus and Tb = 3.87 ° C for the beetles. In both cases the predicted Tb value is 

unrealistic. The model aproximated better development rate data at higher temperatures. 
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at least up to those of maximum development; beyond this, the model appeared to be 

more reliable than the earlier ones in that it predicted decline in growth reaching zero at 34 

°C, a temperature known to be lethal to these insects. Temperatures during the summer 

of 1990 reached the 8-9° C range only one day in May and after that, average temperatures 

10 cm under the soil surface rose but never exceeded the 340 C lethal threshold. During 

1991 the lowest temperatures were 7 -8° C only during 4 hours on May 4 and 1 hour on 

May 5. The rest of the summer was much hotter than the 1990 summer. At the 

University of Massachusetts experimental farm at 10 cm depth May to September there 

was a total of 67 hours of temperatures above 34° C for 15 different days between June 20 

and August 17. 

Several points should be taken into consideration in relation with the recording of 

temperature data and the behavior of the insects involved. All probes and thermistors 

from the recording device were placed on bare soil with no shade of any kind. Under 

these conditions one might expect the soil to be drier and hotter than the soil beneath the 

potato foliage where the parasitized beetle larvae are usually found. Another important 

factor is that the soil is of a sandy loam texture within which beetle larvae easily penetrate 

deep in the ground for pupation. Pupating larvae are frequently found between 10 to 15 

cm below the soil surface (Chapter 4). Behavioral mechanisms undoubtedly contribute to 

these insects’ thermoregulation and the avoidance of extreme temperatures (May 1979). 

If temperatures are low the larvae expose themselves to direct sunlight, while if it gets too 

hot they seek shelter on the undersides of foliage where the temperature is considerably 
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cooler, especially during the hottest hours of the day (personal observations; Ferro & 

Voss 1985). 

Table 3.1 Development of Myiopharus sp. and Myiopharus doryphorae at 7 
temperature regimes, a) 1990 & b) 1991. 

a) Myiopharus sp. 1990. Parasitoid Temperature, °C 

Host stage stage 17 24 27 30 34 
Prepupa-pupa 
Mean develop, time (days) 

larva-pupa 
38.3 15.1 12.7 12 11 

SE 0.8 0.3 0.3 0.1 0.0 
Number 60 60 60 60 60 
No. not completing development 7 10 5 9 58 
Developmental rate 0.0262 0.066 0.0789 0.0833 0.075 

b) Myiopharus doryphorae 1991 Parasitoid 
Host stage stage 20 25 28 30 32 

Prepupa-pupa larva- 
pupa 

Mean develop, time (days) 28.6 16.5 14.4 12.1 14.1 
SE 0.5 0.3 0.2 0.3 0.2 
Number 60 60 60 60 60 
No. not completing development 0 0 4 4 18 
Developmental rate 0.0437 0.076 0.0872 0.968 0.0768 

Table 3.2 Development of Colorado potato beetle at 7 temperature regimes. a) 1990 
& b) 1991. 

a) 1990. Temperature, °C 
17 24 27 30 34 

Stage: Prepupa-pupa 
Mean develop, time (days) 30.3 12.5 11.6 8.43 9.3 
SE 0.8 0.4 0.3 0.1 0.1 
Number 60 60 60 60 60 
No. not completing development 0 0 0 6 18 
Developmental rate 0.0329 0.08 0.0863 0.1187 0.1076 

b) 1991. 
20 25 28 30 32 

Stage: Prepupa-pupa 
Mean develop, time (days) 22.31 15.1 11.3 9.8 11.9 

SE 0.35 0.3 0.3 0.3 0.1 

Number 60 60 60 60 60 

No. not completing development 0 0 0 2 5 

Developmental rate 0.056 0.083 0.1109 0.1274 0.1053 
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In spite of many valid criticisms (Womer 1991, 1992) regarding the possible 

inaccuracies of non-linear models using constant temperatures versus variable 

temperatures and under laboratory versus natural conditions, there still exists a need to 

predict population trends of both host and parasitoids in a variety of conditions for which 

no adequate alternative methods exist. 

Our findings indicate that Myiopharus summer generation larval development 

includes three periods of growth: one, when parasitoid larvae are recently laid and before 

their host larvae reach maturity; a second period with limited larval growth between host 

larval maturity and the host prepupal stage; and a third, between the host prepupal stage 

and final adult Myiopharus emergence. Several other factors besides temperature 

seemed to be acting simultaneously upon Myiopharus development rates during each of 

the three periods. The focus here has been upon the third period of Myiopharus larval 

growth and its development rate was modeled as a function of temperature. To improve 

the fit of the model during this growth period, more experimental data covering the 

temperature range from 7 to 15° C are needed. 

The development rate curves developed herein for CPB and Myiopharus based on 

the Hilbert and Logan model appear to be a workable tool for temperatures from 15-34° 

C. Taking into account the limitations mentioned above, the results from the model might 

well be used in conjunction with the “graphical method” of Southwood and Jepson (1963) 

as modified by Bellows et al. (1989) to estimate numbers of hosts and parasitoids 

entering a given stage. 
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CHAPTER 4 

ASSESSMENT OF COLORADO POTATO BEETLE TOTAL LOSSES DUE TO 
PARASITISM BY MYIOPHARUS SPP. 

Introduction 

The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) is the most 

destructive insect pest of potato in the northeastern United States (Ferro 1985). Under 

favorable weather conditions, first generation CPB larvae and adults can cause up to 80- 

100% crop loss (Bjegovic 1968, Forgash 1981). Myiopharus doryphorae (Riley), 

together with Myiopharus aberrans (Townsend), are the most important parasitoids of 

CPB larvae in the United States (Riley 1869). However, it is not known why these 

parasitoids seem to be important control agents for CPB in certain regions of USA 

(Bjegovic 1968, Horton & Capinera 1987) but not in others (Kelleher 1960, Tamaki et al. 

1983a). 

The impact of Myiopharus doryphorae in past studies has been measured by 

dissecting CPB larvae collected periodically to assess larval density, determining the 

proportion parasitized. However, this approach fails to take into consideration some 

characteristics of the parasitoid's life history. The proportion of CPB larvae bearing 

Myiopharus maggots at any given time in field samples is the result of the cummulative 

maggot deposition in second through fourth instar CPB larvae because maggots defer 

development until the host digs into the soil and initiates pupation (Kelleher 1960, Tamaki 

et al 1983b). This causes the proportion of host larvae bearing parasitoid maggots to be 

greatest in the final CPB instar (fourth). This distorts the estimates of the proportion of 

hosts attacked and erroneously suggests a preference for older larvae. Furthermore, as 

CPB larvae grow older, their defenses become more effective and by the time they reach 

fourth instar they tighten their cuticle during parasitoid's attack and become extremely 
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difficult to penetrate (Tamaki et al. 1983b). Harcourt (1971) used life table methods to 

measure the impact of Myiopharus upon CPB populations and he concluded that 

Myiopharus was inversely densitiy dependent in its action with respect to CPB pupal 

densities. 

The Colorado potato beetle Leptinotarsa decemlineata is a chrysomelid beetle 

native to south-central Mexico that entered the USA in or before the early 19th century 

and fed on wild solanaceous plants such as Solarium rostratum Dunal, Solarium 

elaeagnifolium Cav., Solarium carolinense L. and cultivated potato Solarium tuberosum 

L. (Jacques 1988, Gauthier et al. 1981). Adult beetles overwinter in soil. Female beetles 

emerge from soil in the spring, begin feeding on their host plant and lay up to 500 eggs in 

clusters of 25-50 on the undersides of leaves of potato or other crops. These eggs give 

rise to the first summer generation of larvae. Egg laying occurs over a 4-week period. 

Most adults die within 5 weeks after emerging from the soil (Jacques 1988). There are 

four larval instars. Mature larvae drop from plants, burrow into soil and construct a 

spherical cell 2-4 inches beneath the soil surface. In 4-7 days, larvae transform into 

yellowish pupae which persist for 5-10 days (Jacques 1988). In Massachusetts there are 

normally two CPB generations per year between May and September. 

There are a number of native predators of CPB eggs and larvae in North America, 

including Coleomegilla maculata (De Geer), Podisus maculiventris (Say), Perillus 

bioculatus (Fabr.), Lebia grandis Hentz. In contrast the only indigenous larval parasitoids 

are Myiopharus doryphorae and Myiopharus aberrans, which are endoparasitic tachinids 

that larviposit directly into CPB larvae. Under field conditions, larviposition takes only 1- 

2 s when flies attack second through early fourth instars. Parasitoid maggots defer 

development until host larvae enter the soil to pupate. Parasitoids kill their hosts in the 

prepupal stage and complete their development in about 10 days (Tamaki et al 1983b). 

The objective of this research was to apply the recruitment method of Van 

Driesche and Bellows (1988) to the CPB - Myiopharus spp. system to obtain more 
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accurate estimates of the impact of Myiopharus parasitism on CPB populations in 

Massachusetts. 

Methods 

Analytical Methods 

The analytical approach used in this study was that of Van Driesche and Bellows 

(1988), taking into account that Myiopharus spp. are solitary parasitoids that normally do 

not superparasitize under field conditions. When more than one parasitoid maggot are 

deposited per host, only one survive finally emerging only one adult parasitoid from each 

host (R.L. unpublished). 

Field Site Description 

In 1989 and 1990 a 48 x 24 m field of potato Solarium tuberosum (c.v. Katahdin) 

was planted the first week of May at the UMASS farm in South Deerfield, MA, with 90 

cm inter-row and 20 cm inter-plant spacings. Commercial practices were followed 

regarding hilling, fertilization, weed and disease controls (using standard dosages of 

metribuzin (4-amino-6-ter/-butyl-3-methylthio-l,2,4-triazin-5(4//)-one) and metholachlor 

(2-chloro-6'-ethyl-N-(2-methoxy-l-methyl)acet-otoluidide) for weed control and maneb 

(manganese ethylenebis(dithiocarbamate) (polymeric) or mancozeb (manganese 

ethylenebis(dithiocarbamate) (polymeric) complex with zinc salt) for disease control). M- 

One (Bacillus thuringiensis var. San Diego) was used once in each of the third and fourth 

weeks of June each year to keep CPB larval populations from defoliating the experimental 

plots. Early season potatoes such as c.v. Superior, planted in this area at the beginning of 

May normally become senescent a few weeks after the initiation of the second CPB 

generation. Late planted plots were established each year at the UMASS farm and in 

these plots the second generation CPB completed development by the end of August. In 

1991, a 30 x 20 m plot of potatoes (c.v. Katahdin), with the same spacings among rows 

and plants and the same commercial practices, as above, was also established at the farm 

of Edward McGlew, in Hatfield MA, for the first beetle generation. 

34 



Estimating Colorado Potato Beetle Density and Percentage Parasitism 

Study plots were sampled twice per week during the 1989 growing season and 

once per week during 1990-1991 growing seasons. To determine density of CPB larvae, 

40 potato plants were randomly selected and examined. For the first beetle generation, 

the whole potato plant was searched for CPB egg masses, larvae and adults. For the 

second generation only the three main stalks on each plant were searched for CPB egg 

masses, larvae and adults. Counts were converted to numbers per m2 by multiplying the 

number of CPB egg masses, larvae or adults per plant or stalks (for the second generation) 

by the number of plants per m , which was determined by counting the numbers of plants 

(or stalks) in a 1 m wooden frame placed randomly in 20 different locations within the 

plot. All second through fourth instar CPB larvae were removed from the sample plants, 

placed in ventilated plastic petri dishes, and supplied with fresh potato foliage. Dishes 

were placed in an insulated chest together with ice packs and larvae returned to the 

laboratory for dissection. The experimental plot contained 1500-2000 potato plants such 

that the 40 plants from which larvae were removed on each sample occasion constituted 

only 2-3% of the plot in 1990-1991 and 4-6% in 1989 when sampling was done twice a 

week. 

All CPB larvae collected from the field plots for dissections were second through 

fourth instars since first instars CPB larvae are too small for the parasitoid to larviposit in 

effectively (Tamaki et al. 1983a). Parasitism levels were assessed weekly in all three years 

by randomly selecting and dissecting 100 larvae from each larval instar present in samples 

on each sample date. 

Assessment of Colorado Potato Beetle and Parasitoid Recruitment 

The CPB prepupal stage and parasitoid maggots within prepupae were chosen as 

the stages into which CPB and parasitoid recruitment would be measured. Host 

recruitment for the first CPB generation was measured by placing metal screen cages 
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under the ground individually surrounding 40 potato plants. Cages were designed so that 

all CPB larvae which dropped from the plant to the ground to pupate would be trapped in 

the cage and could be located when cages were unearthed and their contents examined. 

Before placing the screen cages in the soil, the top 8-10 cm of surface soil around each 

potato plant was removed with a shovel. In the first generation, cages were constructed in 

two halves and one half placed at each side of a potato plant. The two halves of the 

screen cage were put back together around the potato plant using and leaving an empty 

circle (5 cm diam.) in the center for the plant stalks. Each cage was them filled with the 

soil that had been removed and sifted to remove preexisting CPB stages and reshaped to 

form a hill. CPB prepupal and pupal stages together required 10 or more days in the 

ground prior to adult emergence at typical summer temperatures (Ferro et al. 1985). CPB 

prepupae and pupae found in soil in cages were placed in 4 x 8 x 5-cm ventilated plastic 

cages, covered with 1 cm of moist soil, returned to the laboratory where the larvae were 

dissected and examined for maggots. When more than 100 prepupae were recovered from 

all cages combined for the collection date, extra prepupae were reared in a growth 

chamber at 27°± 1 °C. Immediately after collecting prepupae from each screen cage, new 

plants for the recruitment estimation for the next week were selected and screen cages 

again buried surrounding these new plants as before. The number of pupae or prepupae in 

which parasitoid maggots were observed during dissection was taken as the estimate of 

parasitoid recruitment per unit area for the week. For sample occasions when prepupae 

and pupae were reared, counts of emerging adult flies and beetles were included in 

recruitment estimates. 

To estimate CPB recruitment in the second generation, cages were placed in the 

ground between potato plants such that the equivalent of one whole plant was sampled. 

This practice was necessary because of the increased plant size and recumbent stature of 

mature plants. Cages were of the same size as those used in the first generation but were 
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constructed as a single piece rather than two interlocking halves. Samples were processed 

as described for the first generation. 

Results 

Densities of CPB larvae (all instars combined) peaked at 182, 103 and 102 per m2 

on 2 July 1989, 1990 and 1991 respectively (Figs. 4.1c, 4.2c and 4.3c). Adult beetles per 

square meter peaked at 24, 17 and 27 on 6 August 1989 and 1990 and on 27 August 1991 

respectively. For all three years, egg masses per square meter for the first generation 

exceeded the number in the second generation (Fig. 4.1a, 4.2a & 4.3a). In 1990, due to 

unusually high temperatures, adult CPB oviposition for the second generation was delayed 

and extremely reduced, resulting in the absence of a second generation of larvae. 

Parasitism by Myiopharus doryphorae of CPB larvae collected in samples to 

determine larval density was always higher in the second than in the first generation for 

both large and small larvae. Percentage parasitism ranged from 1-4 % for second instar 

larvae and 2-12% for third and fourth instar larvae in the first generation and from 9-11% 

for second instar larvae and 10-37% for third and fourth instar larvae for the second 

generation during the three year period from 1989-1991 (Table 4.1 and Figs. 4.1c, 4.2c & 

4.3c). Percentage parasitism from density samples for the same generation over the three 

year period showed a more erratic pattern than from the recruitment estimates (Figs. 

4.1c-d, 4.2c-d & 4.3c-d). 

The total number of CPB prepupae recruited to the population per m ranged from 

1 to 7 per day for the first generation and from 1 to 5 for the second generation. Parasitoid 

recruitment levels per square meter in the first CPB generation ranged from 0 to 0.5 per 

day and, for the second generation, ranged from 0.03 to 3.2 (Figs. 4.Id, 4.2d & 4.3d ). 

Seasonal trends in host and parasitoid recruitments are shown in Figs. 4.Id, 4.2d, 4.3d and 

Table 4.2. In the first generation, mortality from parasitism was estimated by the 

recruitment method as 2.15, 34.33 and 33.91% for 1989, 1990 and 1991 respectively. 
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Recruitment estimates for CPB prepupae and Myiopharus for the second generations in 

1989 and 1991 were 31.52% and 47.47% for CPB prepupae respectively. 

Additional data from samples at four different organic farms in Franklin county in 

western Massachusetts, during 1990, also showed that beginning on 9 July Myiopharus 

was able to maintain 20% parasitism or higher with CPB larval densities ranging from 1-8 

larvae/m2 (Figs. 4.4a, 4.4b & 4.4c). 

Discussion 

Parasitism of second instar CPB larvae was lower than levels in large larvae 

(instars 3-4). While this could reflect a lower preference or attack efficiency on second 

instar larvae by Myiopharus flies, it could also be explained by noting that any Myiopharus 

maggots larviposited in second instar CPB larvae remain undeveloped until their hosts 

complete their development and drop to the ground for pupation. Thus, parasitized larvae 

within the large category (instars 3-4) represent the total parasitism accumulated over all 

four larval instars. Furthermore, field behavioral studies of Myiopharus confirm that the 

lower rate parasitism of first to second instar larval CPB is not because lower searching 

efficiency by Myiopharus but rather due to morphological and physiological limitations. 

Myiopharus needs to hold the CPB larva with its legs while larvipositing in order to 

successfully introduce its larvipositor into the host. It is difficult for Myiopharus to 

successfully grip first and early second instar CPB larvae because at this stage 

Myiopharus’ larvipositor is almost as large as the CPB larva itself. 

Seasonal trends in host and parasitoid recruitment indicated that Myiopharus spp. 

populations were able to parasitize 30-50% of hosts when CPB larval recruitment ranged 

from 1-5 larvae/m^/day (Figs. 4. Id, 4.2d & 4.3d). This study demonstrates, contrary to 

the findings of other researchers, that Myiopharus can cause high levels of parasitism on 

CPB not only late in the season when beetle larval populations are lower but also through 

the season provided that beetle larval densities do not exccedd 5 larvae recruited/m /day. 
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At higher host densities, harcourt (1971) found substantially lower levels of Myiopharus 

parasitism. 

Low levels of Myiopharus parasitism occurring early in first generation when CPB 

recruitments are 6 or more larvae per m2/day still have to be explained. Several hypothesis 

have already been proposed. Possible differential mortality of overwintering parasitized 

beetles Tamaki et al. 1983b), which has not been tested yet in the field. It is known that 

CPB and Myiopharus differ in their lifetime fecundities. In the first generation, 

Myiopharus flies lay about 200 larvae over approximately 30 days (Tamaki et al. 1983b) 

compared to 450 eggs for CPB (D. N. Ferro unpublished information), placing flies in a 

reproductive disadvantage for the first generation of CPB. For the second generation the 

situation is reversed because flies continue to lay 200 larvae versus only 45 eggs per 

female beetle. 

The difference between percentage parasitism determined from density samples 

and from recruitment data might be partially due to the eminently cumulative nature of 

parasitism at the prepupal stage (which was declared the recruitment stage) where 

parasitism is represented by the summation of all the maggots laid during the lifespan of 

each CPB larval instar from second through fourth. On the other hand, percentage 

parasitism from density samples was determined using CPB larvae that were at any point 

in their life history before they completed their development on each larval instar probably 

missing life-exposure time to the parasitoids. 

The recruitment method for assessing total losses to parasitoids using metal screen 

cages buried around the potato plant and underneath its foliage was successfully applied to 

the Myiopharus doryphorae - Colorado potato beetle life-system. Furthermore, the 

recruitment method provides a more reliable index of percentage parasitism by 

Myiopharus on CPB adult generation than parasitism determined from density samples. 
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Table 4.1 Percentage parasitism of CPB larvae by Myiopharus doryphorae in a potato 
field at South Deerfield MA, 1989-1991, summed across sample dates and divided 

by size classes. 
FIRST GENERATION SECOND GENERATION SEASONAL AVE.b 

1989 % SEM (n) % SEM (n) % SEM (n) 
SMALL 3.59 3.5 (857) 10.8 3.2 (277) 7.4 2.4 (1134) 

LARGE 12.00 3.8 (1761) 36.8 2.9 (430) 27.4 2.3 (2191) 

AVERAGE3 3.00 1.3 (2618) 24.5 2.2 (707) 8.9 1.1 (3325) 

1990 
SMALL 3.86 1.6 (1454) 

LARGE 2.80 0.7 (1621) No second generation this year. 

AVERAGE3 1.19 0.4 (3075) 

1991 
SMALL 0.73 1.54 (295) 9.6 1.20 (146) 3.59 0.95 (441) 

LARGE 1.71 0.89 (410) 17.9 0.91 (395) 6.90 0.64 (805) 

AVERAGE3 1.57 0.49 (705) 15.7 1.54 (541) 2.84 0.41 (1246) 

=Averages for combinations of CPB larvae sizes were obtained by weighting each category by its 

sample size. 
=Averages over time for the two generations were obtained by weighting the value for each sample date 

inversely to the sample variance. 
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Table 4.2 Total host and parasitoid recruitment/m^ for each generation in a potato field 
at S. Deerfield, MA. 1989-1991. 

FIRST GENERATION SECOND GENERATION 

1989 (28 June to 9 August) (18 August to 12 Sept.) 

Total Total 
recruitment SEM recruitment SEM 

CPB 178.76 13.06 4.79 0.76 
MYIOPHAR US 3.84 2.12 1.51 0.41 
GENERATIONAL 

PARASITISM 2.15% 0.67% 31.52% 4.84% 

1990 
(25 June to 13 August) 

CPB 79.49 10.03 No second generation 
MYIOPHAR US 27.29 7.99 this year. 
GENERATIONAL 

PARASITISM 34.33% 5.80% 

1991 
(30 May to 23 July) (30 July to 30 August) 

CPB 20.73 3.06 23.70 3.03 
MYIOPHAR US 7.03 1.98 11.25 1.80 
GENERATIONAL 

PARASITISM 33.91% 5.47% 47.47% 7.36% 
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CHAPTER 5 

HOST DISCRIMINATION ABILITY OF FEMALE MYIOPHARUS SPP. 

Introduction 

Host discrimination by a parasitoid is defined as its ability to distinguish non- 

parasitized from parasitized hosts (Salt 1934). Salt (1937) noted that the avoidance of 

superparasitization involves two distinct abilities: (1) the ability to discriminate between 

healthy and parasitized hosts, and (2) the ability to refrain from oviposition when suitable 

hosts are not available. However, Van Alphen et al 1986, have shown that 

superparasitization by inexperienced parasitoids that encounter only parasitized hosts is 

adaptive from a foraging point of view and that the tendency to super parasitize may be 

influenced by experience (Van Alphen et al. 1987, Van Alphen & Visser 1990 ). Host 

discrimination by parasitoids prevents wastage of time and parasitoid offspring. It may 

also serve to cause adult parasitoids to move to new areas after finding several parasitized 

hosts in one place (van Lenteren 1981), thus distributing their offspring in space and time. 

Host discrimination ability seems to be widespread among parasitic Hymenopotera 

(Salt 1961, Clausen 1940, Doutt 1959, Askew 1971, DeBach 1974, Huffaker& 

Messenger 1976, Ridgway & Vinson 1977). Askew (1971) wrote that discrimination 

had not been reported among parasitic Diptera and van Lenteren (1981) noted that there 

have been very few studies of ovipositional behavior of parasitic Diptera, especially under 

natural conditions. We believe this is the first report of tachinids being able to 

discriminate between parasitized and non parasitized hosts. 

Myiopharus doryphorae (Riley) and M. aberrans (Townsend) are solitary 

tachinid parasitoids which attack second through early fourth instar larvae of 

Leptinotarsa decemlineata (Say), the Colorado potato beetle, in eastern United States 

(Kelleher 1960, Tamaki et al 1983a & b, Lopez et al 1993). Only one adult parasitoid 

emerges from a parasitized host (Kelleher 1960). Kelleher (1960) found superparasitism 
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in field-collected Colorado potato beetle larvae to occur very rarely and only late in the 

season. When it did occur only one parasitoid larva was found alive. Based on the 

behavior of other tachinids he presumed that the survivor actively killed the other larva 

although this has not yet been documented in Myiopharus spp. 

The purpose of the present investigation was to study the larvipositional behavior 

of M. doryphorae and M. aberrans under laboratory and field conditions to examine 

their ability to discriminate between parasitized and non-parasitized hosts. 

Methods 

Preliminary Studies 

The methods developed to answer the principal research question depended upon 

two preliminary studies aimed at establishing indicators of (a) the occurrence of 

successful larviposition and (b) the age of a developing parasitoid. These two studies and 

their results are presented prior to the description of the principal experiments. 

Determination of Successful Larviposition. Under field conditions, Myiopharus 

flies larviposit in Colorado potato beetle larvae in 1-2 seconds and can be observed by eye 

from up to 80 cm (Lopez et al. 1993). During the process of larviposition a. Myiopharus 

fly mount a Colorado potato beetle larva, insert and remove its larvipositor while 

depositing its own larva, and a drop of hemolymph appear on the surface of the host larva. 

We adopted the observation of this series of behaviors as indications of successful 

larviposition. Rates of correct determination in the five studies that follow (based on 

subsequent dissections) were 100%, 85%, 83%, 96%, and 95%, respectively. 

Red Pigmentation as Indicator of Parasitoid Larval Age. Kelleher (1960) 

reported the presence of bright red pigmentation in the lower body cavity of Myiopharus 

first instar. From the dissection of field samples of parasitized Colorado potato beetle 

larvae, we confirmed the presence of a bright red tissue in the lower cavity of the 

parasitoid larva, but we also found some larvae with no pigmentation at all or only a faint 

48 



red pigment. We hypothesized that the intensity of pigmentation increased with parasitoid 

larva development; were this true, it would be possible to use presence or level of 

pigmentation as an indicator of time elapsed since larviposition. 

To test our hypothesis, previously isolated early third instar Colorado potato beetle 

larvae were exposed to fertile Myiopharus flies under greenhouse conditions. Immediately 

after the larvae were parasitized they were placed under refrigeration (4° C) to minimize 

metabolism until 60 parasitized larvae were obtained. Ten of these larvae were 

immediately dissected and the larvae examined for red pigmentation. The remaining 50 

parasitized larvae were placed over a 5 mm layer of moistened vermiculite together with 

fresh potato foliage on 150 mm diameter plastic petri dishes with ventilated lids. The 

dishes with the parasitized larvae were kept in an environmental chamber maintained at a 

constant temperature of 25 ± 2 ° C; L16:D8 and 80 ±5% R.H. Every hour for five 

hours, 10 parasitized larvae were dissected. The inner body cavities of the parasitoid 

larvae were examined visually for the presence of red pigmentation. This procedure was 

repeated two more times under similar conditions. No red pigmentation was observed 

for the 120 parasitoid larvae dissected at 0, 1,2 and 3 h after larviposition. All 60 larvae 

observed 4-5 h after larviposition clearly exhibited red pigmentation. We concluded that 

the presence of red pigmentation in the developing parasitoid indicates passage of at least 

3 h since larviposition. 

Laboratory experiments with Myiopharus were performed in a greenhouse located 

on the campus of the University of Massachusetts at Amherst. Cages were 35x35x35 

cm Plexiglas-framed cages with metal screens for the top and three sides, a Plexiglas 

bottom, and an easily removable clear plastic sheet covering the fourth side to facilitate 

introduction and removal of larvae and flies. Field behavioral observations were made at 

the University Vegetable Research Farm in South Deerfield, Massachusetts and at 

Brookfield organic farm, Belchertown, MA. 
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Host Discrimination by Myiopharus doryphorae under Greenhouse Conditions 

To obtain parasitized Colorado potato beetle larvae, previously isolated early third 

instar larvae were placed on potato foliage in a petri dish within a cage and exposed to 

fertile female Myiopharus doryphorae flies (8-12 days after emergence) under greenhouse 

conditions until 100 larvae were parasitized. These parasitized larvae were placed in two 

150 mm diameter plastic petri dishes with ventilated lids, fed fresh potato foliage and kept 

overnight at 17± 1° C and 80± 5 % R.H. to allow parasitoids to develop. Another five 

hundred non-parasitized larvae (raised isolated from contact with parasitoids) of the same 

age as the parasitized larvae were kept overnight in separate cages from the parasitized 

ones but in the same growth chamber. 

Twenty-four hours after parasitization, all Colorado potato beetle larvae were 

taken from the growth chamber and exposed in groups of 12 parasitized and 12 non- 

parasitized larvae at a time to different numbers of caged fertile female M. doryphorae 

flies. The larvae were placed in each of three 18x12x2.5 cm plastic trays having 24 

individual wells, each 15 mm deep and 15 mm in diameter. The wells were half filled with 

jellied agar, and a 1 cm diameter disc of fresh potato foliage was placed on the agar as 

food for the larvae. One Colorado potato beetle larva was placed in each well, distributed 

by type within each tray as follows: a) 12 parasitized Colorado potato beetle larvae were 

placed randomly using a computerized random number generator on a 6 x 4 grid pattern 

and marked with a 1 mm permanent red ink dot on the border of the well, and b) one non- 

parasitized Colorado potato beetle larva (of the same instar as the parasitized larvae) was 

placed in each of the other 12 wells in the tray. One such tray of Colorado potato beetle 

larvae was introduced simultaneously into each of three cages containing 1, 2 and 4 

fertile female Myiopharus doryphorae respectively. The flies had been kept isolated from 

Colorado potato beetle larvae for the 24 h prior to these exposures. Water and sugar 

cubes were placed on the floor of each cage for the flies. 
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Larvipositional behavior was carefully observed from the moment the trays were 

placed inside the cages. Each time a Colorado potato beetle larva was observed to be 

parasitized it was immediately removed using a different set of soft tweezers for each kind 

of larva (parasitized vs non-parasitized) and replaced with another larva of the same kind 

to maintain a constant proportion of parasitized and non-parasitized larvae within each 

cage. Physical contacts of flies with each larva (via fly tarsi or proboscis) as well as 

occurrence of larviposition were recorded. 

After one hour, all flies in all cages as well as the 24 Colorado potato beetle larvae 

in the trays were replaced with new, fertile flies and with new parasitized and non- 

parasitized larvae. This process was repeated three times the daily. Flies and cages were 

combined such that each cage received one replicate of each number of flies (1, 2 , or 4). 

Host Discrimination bv Mviopharus sp. under Field Conditions: Experimental Test 

Forty previously isolated early third instar larvae of Colorado potato beetle were 

parasitized in the laboratory by fertile M. doryphorae flies in late August of 1991. These 

parasitized larvae were kept together in a growth chamber maintained at 17° C; L16:D8 

and 80 ± 5 R.H. but not in contact with the 120 non-parasitized larvae of the same age. 

Twenty-four hours later all larvae were taken to a potato field at the University of 

Massachusetts research farm. All parasitized larvae were marked on the pronotum with a 

1 mm diameter yellow dot using a Speedball® non toxic Painters Opaque Paint Marker 

(Hunt manufacturing Co. Statesville, NC 28677). Non-parasitized larvae were marked 

with a blue dot. Four replicates of the experiment were placed in the potato field by 

randomly choosing 4 potato plants and removing all Colorado potato beetle life stages. 

Ten parasitized larvae and 30 non-parasitized larvae were distributed on each of the four 

plants. The 3:1 ratio of non-parasitized : parasitized larvae was chosen because at the 

time of the year of the experiment this was the average percentage parasitism normally 

found in this area (Lopez et al., 1993). Colorado potato beetle larvae were left exposed 
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to Myiopharus spp. flies under natural conditions for three hours after which all larvae 

from each replicate were collected and returned to the laboratory for dissection. 

To avoid any possible effect of the paint on M. doryphorae behavior, a second 

method of marking Colorado potato beetle larvae was used in the field. Eighty early third 

instar Colorado potato beetle larvae were parasitized by fertile M doryphorae flies in the 

greenhouse. After parasitism, the tarsa of the middle leg on the right side of all parasitized 

larvae was severed. The tarsa was also cut from the middle leg on the left side of another 

80 non-parasitized Colorado potato beetle larvae of the same age. 

The walking performance of these larvae was not inhibited when compared to 

intact larvae of the same age based on observations on plants. This was determined by 

taking an equal number of intact third, instar Colorado potato beetle larvae and those with 

their middle tarsi cut (30 of each) and forcing them to walk on top of a potted potato plant 

for 20 min by constantly stimulating them with a paint brush. The proportion of the larvae 

with cut tarsi falling to the ground was not greater than that of intact ones. 

All non-parasitized as well as parasitized Colorado potato beetle larvae were 

placed in group in 150 mm diameter plastic petri dishes with ventilated lids and fresh 

potato foliage for food and kept overnight in a growth chamber at 17 ± 2° C; L16:D8 and 

80 ± 5% R.H. The following day all larvae were taken to the Brookfield farm. At 10:00 

am on a clear sunny day, August 28th 1991, 8 potato plants were chosen and all 

Colorado potato beetle life stages were removed from them. Ten parasitized and 10 non- 

parasitized Colorado potato beetle larvae were randomly distributed on each plant and left 

for 3 h and 15 min. This proportion was chosen to provide an equal probability of wild 

flies coming in contact with each experimental larva. After this exposure all larvae from 

these plants were placed in a cooler, returned to the laboratory and dissected and 

examined for fly larvae. The time it took to return the larvae to the laboratory and dissect 

them was no more than 20 min. 
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Discrimination Ability by Myiopharus dorvphorae and Mviopharus aberrans under Field 

Conditions: Long-Term Behavioral Study 

Observation of the customary searching and larviposition behavior of M. 

doryphorae female flies in the field was part of a three-year study described elsewhere 

(Lopez et al. 1993, unpublished). Early in that study it was occasionally observed that a 

M. doryphorae fly landed on a Colorado potato beetle larva as if to larviposit but instead 

immediately flew away without completing larviposition. To test whether these apparent 

rejections constituted discrimination of already parasitized hosts, the following experiment 

was conducted in conjunction with the long-term behavioral observations. 

During three years of general field behavioral studies (1989-1991), Myiopharus 

females were followed in their searching and larviposition behaviors by two observers 

every day Monday to Friday from 21 August to 15 September in 1989 and 1990 and three 

days a week, Monday, Wednesday and Friday from late June through 15 September in 

1991. Every time a Colorado potato beetle larva was contacted (by landing on top of the 

larva as it was mentioned above) and larviposited, the larva was collected and the fly was 

followed; the next larva contacted and abandoned by the same fly was also collected. 

After collecting one contacted and larviposited and one contacted and abandoned beetle 

larva from a particular fly, different Myiopharus flies behavior were followed and if new 

pairs of contacted and parasitized and contacted and abandoned larvae occurred during 

the observation period, they were also collected. All contacted and parasitized larvae 

were kept together in the same petri dish but separate from "contacted and abandoned" 

ones. All larvae were placed in a cooler, taken to the laboratory and dissected to 

determine presence and pigmentation of Myiopharus spp. larvae. Dissections took place 

before 3.5 h had passed from the time when the first "contacted and abandoned larva" 

was collected. Fly larvae with red pigmentation were assumed to have been larviposited 

prior to our field observations, while those lacking the pigment were considered to have 

been newly deposited. 



Results 

Host Discrimination bv Mviopharus dorvphorae under Greenhouse Conditions 

In the caged experiment under greenhouse conditions, acceptance of previously 

parasitized hosts byM doryphorae flies ranged from 0% in a trial in which there was only 

one fly per cage, progressively increasing to a maximum of 53% when 4 flies were 

confined to the same cage (Fig. 5.1). Among the three replicates using 1, 2 and 4 M. 

doryphorae flies per cage, a total of 1, 7 and 24 cases of superparasitism were found 

respectively . A chi-square test on each treatment showed a significantly greater 

frequency of M. doryphorae larviposition in non-parasitized hosts (Fig.5.1). A logistic 

regression analysis was performed with a model including three variables: decision to 

larviposit in parasitized vs nonparasitized hosts, superparasitism in cages with one vs two 

and with one vs four parasitoids per cage. The analysis showed that all variables were 

significant in the model and that the rate of parasitisation of the non-parasitized hosts 

increases multiplicatively with the number of parasitoids in the cage. The overall odds 

ratio test and 95% Cl for non parasitized hosts vs parasitized ones was 18.19 (8.93, 

37.07), indicating that non-parasitized hosts were 18 times more likely to be parasitized 

than the parasitized ones (Table 5.4). At the same time odds ratios for 2 vs 1 and for 4 vs 

1 parasitoids per cage were 1.59 (0.59, 4.25) and 3.71 (1.44, 9.54) respectively indicating 

that parasitized hosts in cages with two and four parasitoids per cage had progressively 

increasing chances of being superparsitized than hosts in the cage with only one parasitoid 

(Table 5.4). 
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Table 5.1 Parasitism by Myiopharus spp. in previously parasitized and non- 
parasitized Colorado potato beetle larvae (distinguished by paint 
markers) exposed to wild flies in a potato field, South Deerfield 
Massachusetts. 1991. 

Treatments Parasitized Non-parasitized 
No. of Colorado potato beetle larvae exposed 

No. of Colorado potato beetle larvae recovered 

40 120 

after 3 h 39 117 
>4 h old larvae a 33 0 

^ 3 h old larvae b 0 40 

Superparasitized after field exposure c 1 0 

Not parasitized 5 77 

a = Parasitoid larvae 4 h old or older had a red pigmented tissue developed within the 
body cavity as established in the preliminary studies, 

b = Parasitoid larvae 3 h old or less did not have any red pigmented structure within 
their body as established in the preliminary studies, 

c = Superparasitized larvae contained two parasitoid larvae, one >4 h and 
one <3 h 

Host Discrimination bv Myiopharus sp under Field Conditions: Experimental Test 

Out of the total of 160 Colorado potato beetle larvae exposed during the three- 

hour field test using paint markers and a 1:3 ratio of parasitized to non-parasitized hosts, 

only one larva was superparasitized with one old parasitoid larva and a new one (Table 

5.1) (All superparasitized beetle larvae mentioned hereafter had only two parasitoid larvae 

in them: one old and one new). A chi-square test showed a significantly greater frequency 

of Myiopharus flies larvipositing in Colorado potato beetle larvae that had not been 

previously parasitized (x2 = 13.67; with df, 1; and P = 0.0001). 

In the test using Colorado potato beetle larvae marked by removing tarsi and a 1:1 

ratio of parasitized to non-parasitized hosts, only four out of 160 Colorado potato beetle 

larvae were found superparasitized in the three-hour field test (Table 5.2). A chi square 

test again showed a significantly greater frequency of larviposition in non-parasitized hosts 

(X2 = 10.77; with df \ 1; and P = 0.0018 ). 
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Table 5.2 Parasitism by Myiopharus spp. in previously parasitized and non-parasitized 
Colorado potato beetle larvae (distinguished by tarsal excision) exposed to wild 
flies in a potato field, Belchertown, Massachusetts. 1991. 

Treatments Parasitized Non-parasitized 
No. of Colorado potato beetle larvae exposed 

No. of Colorado potato beetle larvae recovered 

80 80 

after 3 h 68 55 
>4 h old larvae # 62 0 

^ 3 h old larvae ^ 0 45 

Superparasitized after field exposure c 4 0 

Not parasitized 2 10 

a = Parasitoid larvae 4 h old or older had a red pigmented tissue developed within the 
body cavity as established in the preliminary studies, 

b = Parasitoid larvae 3 h old or less did not have any red pigmented structure within 
their body as established in the preliminary studies, 

c = Superparasitized larvae contained two parasitoid larvae, one >4 h and 
one ^3 h 

Discrimination Ability of Myiopharus dorvphorae and Myiopharus aberrans under Field 

Conditions: Long-Term Behavioral Study 

Over the three years, a total of 87 pairs of one "contacted and abandoned" 

Colorado potato beetle larva and one "contacted and effectively parasitized" larvae were 

collected and dissected within 3.5 h. Among a total of 47 Colorado potato beetle larvae 

contacted and abandoned byM doryphorae , 44 (93.62%) had already been parasitized ( 

i.e., the parasitoid larvae were > 4 h old based on presence of red pigmentation). M 

aberrans showed a similar pattern. Of 40 Colorado potato beetle larvae "contacted and 

abandoned" by M aberrans, 38 (95%) contained larvae > 4 h old. There were no 

superparasitized larvae found in 174 Colorado potato beetle larvae collected during the 

three year study. Nevertheless, Myiopharus spp. larviposited readily in previously non- 

parasitized hosts. Parasitoid larvae were encountered in 45 out of the 47 Colorado 

potato beetle larvae observed to have been larviposited in by M. doryphorae and these 
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parasitoid larvae showed no sign of pigmentation, indicating that they were deposited 

within the observation period. Parasitoids were found in 38 out of the 40 Colorado 

potato beetle larvae observed to have been larviposited in by Maberrans and these larvae 

also showed no sign of pigmentation, indicating that they also were recently deposited. 

Discussion 

Both greenhouse and field experiments showed the occurrence of superparasitism 

to be rare and a highly significant behavioral selection by Myiopharus spp. of non- 

parasitized hosts for larviposition. In the long-term behavioral study under natural field 

conditions, no superparasitism by M doryphorae or M aberrans was found despite high 

rates of larviposition in previously non-parasitized hosts. It appears that these 

Myiopharus spp possess the ability to discriminate between parasitized and non- 

parasitized hosts. In both species, discrimination occurred only after the fly contacted the 

integument of a parasitized larva with its tarsi. Thus it is probable that chemoreceptors 

and/or mechanoreceptors are involved in the process of discrimination. The average time 

the flies take to contact and abandon a parasitized larva was 1 (one) second. 
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Table 5.3 Number of Colorado potato beetle larvae found with Myiopharus maggots <3h 
old (b) and > 4 h old (a) that were avoided by larvipositing Myiopharus flies 
or parasitized by the same flies under field conditions (South Deerfield, MA. 1989- 
1991) 

Myiopharus doryphorae Contacted and avoided 
in the field 

Contacted and 
larviposited in the field 

Total Colorado potato beetle 
larvae collected after exposition 47 47 
N° previously parasitized a 44 0 

N° Newly parasitized b 0 45 

N° Not parasitized 3 2 

N° Superparasitized c 0 0 

Myiopharus aberrans Contacted and avoided 
in the field 

Contacted and 
larviposited in the field 

Total Colorado potato beetle 
larvae collected after exposition 40 40 

No. previously parasitized a 38 0 

No. Newly parasitized b 0 38 

N° Not parasitized 2 2 

N° Superparasitized c 0 0 

a = Parasitoid maggots 4 h old or older had a red pigmented tissue developed within the 
body cavity as established in the preliminary studies, 

b = Parasitoid maggots 3 h old or less did not have any red pigmented structure within 
their body as established in the preliminary studies, 

c = Superparasitized larvae contained two parasitoid maggots, one ^4 h 

and one < 3 h. 

In spite of the discrimination ability by these Myiopharus spp, a few 

superparasitized Colorado potato beetle larvae appeared in each of the laboratory tests. 

Superparasitism by Myiopharus has been reported under laboratory conditions by others 

(Tamaki et al. 1983b) although these workers were not specifically testing for 

discrimination ability. Superparasitism in our greenhouse experiments was probably 

caused by confining these trials with a limited ratio of available hosts relative to fertile 

parasitoids. This is supported by the progressively increasing percentage of 

superparasitism with increasing number of flies per cage in these experiments (Fig. 5.1, 
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Table 5.4). Increasing numbers of superparasitized hosts with increasing numbers of 

parasitoids in laboratory experiments has also been found with Hymenopteran parasitoids 

( Bakker et al. 1985, van Alphen & Visser 1990, Huffaker & Matsumoto 1982). An 

average number of .33, 1.17 and 2 superparasitized beetle larvae per fly were found in 

cages with 1, 2 and 4 flies respectively. Furthermore, in the greenhouse experiments, flies 

had been caged without hosts during the previous 24 h. By the time of the experiments 

those flies were probably more physiologically inclined to larviposit than Myiopharus spp. 

under usual field conditions. These results suggest that these occurrences of 

superparasitism by Myiopharus were a result of a breakdown of their tendency to refrain 

from larviposition when suitable hosts are unavailable or a possible adaptive strategy (van 

Alphen & Visser 1990), rather than a lack of host discrimination. 

Table 5.4 Odds ratios obtained from the fitted logistic regression model from the 
greenhouse experiment with one, two and four Myiopharus doryphorae 
flies per cage respectively. Amherst, Massachusetts. 1991. 

PREDICTOR ODDS 95% 
VARIABLES RATIO0 Confidence Intervals 

Parasitized vs Non-Parasitized 18.19 (8.93, 37.07) 

Superparasitism in 2 vs 1 Flies/cage 1.59 (0.59, 4.25) 

Superparasitism in 4 vs 1 Flies/cage 3.71 (1.44, 954) 

a = See Hosmer & Lemeshow (1989) chapter 3 for a dicussion and interpretation 
of the odds ratios. 

59 



Caged experiments appeared to replicate the limited host conditions found in the 

field in late summer when superparasitism has been noted (Kelleher 1960). Our results 

might be due to the scarcity of Colorado potato beetle larvae relative to the number of 

larvipositing flies which normally occurs late in August. 

In a separate three-year study based on regular bi-weekly field samples (Lopez et 

al. 1993), five of 6347 Colorado potato beetle larvae were found superparasitized by 

Myiopharus spp., and all five cases occurred during the last two weeks of August. This 

strikingly lower rate of superparasitism in natural field conditions than in laboratory 

experiments illustrates the importance of direct field observations in behavioral studies. 

If superparasitism is a parasitoid's "type II error," then contacting but avoiding a 

non-parasitized host would be the corresponding "type I error" in host discrimination 

which we also observed in a small number of cases. Seventeen of the 130 not-previously- 

parasitized Colorado potato beetle larvae contacted in greenhouse conditions were 

contacted and abandoned by Myiopharus doryphorae (Fig. 5.1), and five of the 87 

Colorado potato beetle contacted and abandoned by Myiopharus spp. in the field turned 

out not to have been previously parasitized (Table 5.3). In routine work exposing third 

instar Colorado potato beetle larvae to both species of Myiopharus for parasitism in the 

laboratory, we have noted occasionally that apparently healthy, non-parasitized larvae are 

repeatedly contacted and abandoned by a given fertile fly. On five occasions such larvae 

were then exposed and rejected by Myiopharus spp (unpublished observations of 

authors). This behavior warrants further investigation to determine if, for example, the 

signal(s) used in host discrimination are sometimes produced by phenomena other than 

pre-existing parasitoids, or may be acquired by non-parasitized beetle larvae which come 

in contact with parasitized larvae. Factors other than previous parasitism (e.g. infirmity) 

might provoke rejection by potential parasitoids. Alternatively, Colorado potato beetle 

may have a defensive reaction that mimics the discrimination signal. 
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The discrimination ability of Myiopharus spp. increases their effectiveness at the 

population level and thus heightens their efficiency as natural enemies of the Colorado 

potato beetle. Together with their apparent capacity to migrate within their hosts in the 

spring (Lopez et al. 1992), this characteristic suggests that they are promising agents for 

use in biological control of this insect pest. 
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CHAPTER 6 

BEHAVIORAL ECOLOGY OF FEMALE MYIOPHARUS DORYPHORAE AND 
MYIOPHARUS ABERRANS. 

Introduction 

Understanding the behavior of parasitoids under field conditions is of great 

importance when assessing their potential as biological control agents. The behavior of 

many hymenopteran parasitoids has been extensively documented in the laboratory and 

under field conditions (Vinson 1981, 1976, Vinson & Iwantsch 1980; Waage 1978, 1979, 

Van Lenterem 1976, Salt 1958, Arthur 1981, Lewis etal. 1975, Van Alphen & Vet 1986, 

Vet & Groenewold 1990, etc.). Despite the use of numerous species of tachinids in 

biological control programs (Grenier 1988), only two behavioral studies of tachinids have 

been conducted under natural conditions (Herrebout 1967, Monteith 1958). The mobility 

and rapid movement of these insects make them difficult to follow while making 

behavioral observations in the field. 

The tachinid flies Myiopharus doryphorae (Riley) and Myiopharus aberrans 

(Townsend) have been recognized as parasitoids of the Colorado potato beetle, 

Leptinotarsa decemlineata (Say), since the late 1800s (Riley 1869). Myiopharus spp. are 

found routinely in New England and other regions of the United States in potato fields 

that are infested with Colorado potato beetle and in which broad-spectrum insecticides 

have not been employed. Although they are the only known indigenous parasitoids of the 



Colorado potato beetle in North America, it was not until recently that their life cycles 

were fully documented Lopez et al. 1992). 

This study was designed to identify and quantify the behavior of Myiopharus 

species under field conditions, taking particular note of any influences that these behaviors 

might have on the population dynamics of the Colorado potato beetle. The study also 

examined interactions between the two Myiopharus species when both were found 

together and their possible consequences in terms of overall parasitism. 

Methods 

Studies were performed on populations of Colorado potato beetle, Leptinotarsa 

decemlineata (Say), and of the tachinid flies Myiopharus doryphorae and M. aberrans, 

found during the growing season in organically grown potato (Solarium tuberosum cv. 

Kathadin) fields in western Massachusetts, U.S.A. Observations were made during the 

summers of 1989, 1990 and 1991 at the University of Massachusetts Experimental Farm 

(South Deerfield, MA) and in the summer of 1991 also at Brookfield Farm (Belchertown, 

MA) and at Hampshire College Experimental Farm (Amherst, MA). Potato plots were 

planted in early May with 90 cm inter-row and 20 cm inter-plant spacing. Standard 

practices of local commercial farmers were followed regarding hilling, fertilization, and 

weed and disease controls (using standard dosages of metribuzin and metholachlor for 

weed control and maneb or mancozeb for disease control). M-One (Bacillus thuringiensis 

Subsp. tenebrionis) was applied twice during the season on each plot to keep larval 

populations of the Colorado potato beetle from defoliating the experimental plots. The 
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two Myiopharus species were identified by comparison with characteristics of specimens 

collected locally and determined by Dr. James O'Hara from the Biological Resource 

Division at the Center for Land & Biological Resources Research, Ottawa, Canada. 

Identification of Behavioral Categories 

The summers of 1989 and 1990 were dedicated to observing wild Myiopharus flies 

within the study plots and identifying their most common behaviors categories as a 

framework for subsequent quantification. During these observations, flies moved freely 

within or outside the field plots. Observations began at 0630 and ended at 2030 hours 

from 15 August to 15 September 1989 and 1990; they included a series of 2-h observation 

and recording periods separated by 30-min meetings among workers to share observations 

and refine behavioral categories. Time was divided equally between two complementary 

approaches to sampling fly activities. In both cases workers took haphazard walks 

through the study plots searching for Myiopharus spp. to observe; in the first approach 

only the behavior in which the fly was engaged when spotted was recorded. The second 

approach involved watching individual flies for as long as they could be followed and 

recording the duration of each separate behavior. Initial attempts at quantification 

employed digital stopwatches, however, hand recording proved cumbersome and was by 

the use of computerized data collection techniques which were employed in the principal 

study. 

Some 20 different activities were identified during these two summers of 

preliminary observations; eight of the most common ones, recognized as together 
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occupying close to 95% of female flies’ time, were chosen for a more detailed quantitative 

study. These eight behaviors were defined as follows: 

Resting: standing still except for occasional cleaning and grooming 

Forays : meandering flight at about 0.5 m above the potato plants, 

normally oriented along a given row and lasting up to several 

seconds before alighting or disappearing from view 

Localized searching: walking over a potato plant while palpating the surfaces of 

the leaves with tarsi; occasionally hopping from one leaf or stem to another 

and from one potato plant to another and continuing this 

exploratory behavior 

Plant feeding, extension of the proboscis and contacting of the surface of the 

potato leaves with the labellum 

Host contact and withdrawal: landing atop a beetle larva but flying away 

immediately upon tarsal contact with the larval integument 

Pre-larviposition stimulus: landing atop a Colorado potato beetle larva, 

ostensibly attempting to larviposit, but withholding larviposition when the 

beetle larva shifts to a thanatosic ("playing dead") state; host “stimulation” 

involves the parasitoid pushing its larvipositor very slowly at the 

integument of the larva but stopping before actual penetration if the host 

still does not move, or sometimes hopping off the larva and poking at it 

with the foretarsi; these movements may be repeated several times before 



actual larviposition (when the host finally moves) or abandonment (if the 

larva remains quiescent) 

Larviposition: landing atop a Colorado potato beetle larva and inserting the 

larvipositor through its integument 

Feeding on host: extension of the proboscis until it contacts and absorbs 

the drop of hemolymph released upon larvipositing in a Colorado potato 

beetle larva 

Male Myiopharus spp. engaged in only two of the above types of behavior : 

resting and plant feeding. They were far less active than the females, more difficult to find 

and observe, and as adults were not involved in direct interactions with their hosts. 

Consequently only female Myiopharus were included in this study. 

In addition to the above eight categories, three types of behavior closely associated 

with larviposition and involving both the parasitoids and their hosts were singled out for a 

separate study because of their particular interest within the context of biological control. 

Quantification of Eight Common Behaviors 

Employing the typology of common behaviors defined above, a more precise 

behavioral study was conducted in the summer of 1991 using a computerized event 

recorder program. The study was performed in a 48 x 24 m plot located at the University 

of Massachusetts Experimental Farm, South Deerfield, MA; a 80 x 30 m plot at 

Brookfield Farm, Belchertown, MA; and a 50 x 50 m plot at Hampshire College 

Experimental Farm, Amherst, MA. Observations were made twice a week from 12 June 
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to 15 September; on each day observations were made from 0800 to 1700 hours, based 

on the previous year’s observation that the flies are mostly quiescent outside this time 

period. Again, all Myiopharus flies were naturally occurring and unrestricted in their 

movements. 

Observers carried portable computers provided with the Quick Basic (Zanen et al. 

1989) event recording software, with a different key from the keyboard assigned to each 

of the eight defined behaviors and a pre-set time limit of two minutes per subject. Two 

observers started from opposite ends of the potato field and walked randomly through the 

plot. For each Myiopharus fly spotted, its observer immediately pressed the key 

corresponding to its current behavior and continued recording each change in activity until 

the computer produced the sound signal indicating that a two-minute interval had elapsed. 

The observer then corrected any errors noted in data input, moved at least three rows 

away to reduce the probability of repeated sightings of the same fly, and resumed 

searching for new flies. The computer program registered each parasitoid entered as a 

separate record comprising all the behaviors noted within one two-minute observation 

period. After each 45 min of observing flies and recording behaviors, observers took 15- 

min breaks throughout each day of the study, leading to a total of 435 person-h of 

observation during 1991. 

Temperature, rainfall and relative humidity were recorded continuously at a 

weather station located within the University of Massachusetts farm facility some 75 m 

from our study plot. For the data analysis frequency and duration were the main 

components computer recorded from Myiopharus behaviors. A consistent relation was 
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apparent between these two components of Myiopharus behaviors and temperature since 

the initial preliminary field observations. Therefore, linear regression models were fitted 

to test frequency and duration of the behaviors across the temperature range experienced 

by the flies from 0800 h to 1700 h. Quadratic regression models were fitted to test the 

variation in frequency and duration of Myiopharus behaviors at the various times of day. 

Larviposition-Related Behavioral Studies 

Colorado Potato Beetle Defenses Against Larviposition. Our 1989 observations 

indicated that CPB larvae respond to Myiopharus attacks with a large repertoire of 

defensive behaviors, including: cycloalexy (circular defense), flailing of fore and middle 

legs , regurgitation, dropping from the potato plant, tanathosis, and tightening of 

abdominal muscles. In 1990 and 1991, studies were conducted to measure the 

effectiveness of such behaviors against Myiopharus attacks by recording observed 

occurrences of each defensive behavior along with their outcomes. 

Every study day, one observer walked randomly through the potato plot in search 

of female Myiopharus spp. individuals which were then followed for as long as they made 

frequent larviposition attempts. Whenever a CPB larva approached by a fly reacted with 

one of the above defensive behaviors, the type of behavior was recorded along with the 

success or failure of larviposition. Larviposition was considered effective whenever a 

drop of hemolymph was observed exuding from the place of entry of the larvipositor 

(Chapter 5 and Lopez et al. 1995); the fly was usually seen cleaning its larvipositor after 

these successful attempts. Larviposition failure was recorded when no drop of 
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hemolymph appeared. When z Myiopharus under observation ceased to larviposit 

repeatedly or disappeared from view, the observer continued to walk until another fly was 

spotted. One-hour recording intervals were interspersed with 10-min break periods from 

0800 to 1700 hours and an additional 30-min break at noon; the study was thus based 

upon a total of 109 h of observation. 

Post-Larviposition ‘Territorial’ Behavior ofMyiopharus spp. An unusual sequel 

to larviposition behavior was observed forM doryphorae on nine occasions in the late 

summer of 1989. This apparent territorial behavior consisted of the fly remaining for 

several minutes on a single leaf of the same plant where the CPB larvae in which she had 

just larviposited were located and making quick darting flights at any other Myiopharus fly 

approaching that plant. The approaching fly was inevitably driven away by the encounter 

upon contact, after which the Myiopharus that had larviposited returned to the same 

potato leaf. This behavior was made the focus of a specific study in 1990 and 1991. 

Observations of “territorial” behavior were made between 15 August and 15 September 

of those years. Each day of the study was divided between hour-long recording periods 

and 10-min break periods from 0800 to 1700 with a 30-min break at noon, giving a total 

of 109 h of observation and recording. In addition, this behavior was watched for 

throughout the summers of 1990 and 1991 during the wider behavioral study described 

above. 

Every study day, one observer walked randomly through the potato plot in search 

of larvipositing Myiopharus flies and hand-recorded their behavior after larviposition for 
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up to one hour as long as each fly continued returning to the same leaf. Elements 

recorded for each episode were: species of Myiopharus engaging in defense, total number 

of larvipositions on hosts occupying a given plant before defense behavior began, number 

of repulsions of other Myiopharus flies realized before the defending Myiopharus 

abandoned its perch, and total time spent per defense episode. 

Provocation of Pre and Post Diapausing Adult Colorado Potato Beetle bv 

Myiopharus aberrans. During the three-year study individual Myiopharus aberrans 

females were frequently observed encircling individual adult CPB, jumping about with 

frenzied motion and poking at them continually with their tarsi to the extent that the 

beetles were prevented from eating for as long as the flies persisted. On a few occasions 

M. aberrans was observed having the same behavior toward beetle larvae. This behavior 

was mainly noted during the first days of the growing season (1-15 June) with post¬ 

diapause CPB adults and toward the end of the season (15-20 August through 15 

September) with pre-diapausing CPB, although CPB adults were always present in the 

potato fields studied and in our caged greenhouse colonies of the flies. 

Because this behavior coincided with the principal seasons of CPB flight and given 

that the only easily penetrable portions of the beetle’s exoskeleton are beneath the elytra, 

we hypothesized that the Myiopharus aberrans fly might be attempting to provoke 

initiation of beetle flight to permit larviposition. One report (Biliotti & Persoons 1965) 

exists of two or more individuals of M. doryphorae larvipositing in adult CPB under 

laboratory conditions after the beetles’ elytra and wings were removed; however, we 
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never observed this species showing any interest in adult CPB and suspect that the flies in 

question might have been deprived of larval hosts before and during exposure to the 

adults. No other reports exist of either Myiopharus species larvipositing in adult beetles, 

and Biliotti and Persoons (1965) themselves regarded it an unlikely occurrence in natural 

conditions where presence of elytra and wings would prevent it. Houser and Balduf 

(1925) and Bussart (1937) do mention possible cases of the tachinid fly Chaetophleps 

setosa Coquillet larvipositing in adult cucumber beetles Diabrotica vittata Fabricius in 

flight, although the first of these reports describes an unlikely case of larviposition through 

the elytra and the second admits to having been unable to observe clearly the suspected 

insertion of the larvipositor from beneath the raised elytra. We investigated our 

hypothesis using the following procedures: 

In the field, late in the 1990 season (20 August to 15 September) every study day 

two observers walked randomly through the potato plot in search of Myiopharus aberrans 

females in close proximity to adult CPB. An observer watched a given pair for as long as 

they remained together, hand-recording all activities of M. aberrans but paying particular 

attention to possible larviposition attempts. Observations were conducted from 0800 until 

1200 hours every day with 10 min breaks every hour, leading to a total observation time 

of 60 hours. 

Following these observations, workers spent up to one half hour seeking additional 

Myiopharus-CPB pairs in the field; all pairs up to a maximum of four encountered during 

this time were taken to a greenhouse at the University of Massachusetts and placed in 35- 
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cm cubical screened cages where their activities were observed and recorded for two 

hours. 

In June of 1990, nine uninterrupted hours of video recording were made in the 

laboratory of two M. aberrans females interacting with three field-collected pre- 

diapausing adult beetles and five CPB larvae in a 35-cm cubical screened cage provided 

with sugar and water for the flies and potato leaves for the beetles. All insects were 

dissected afterward and examined for M. aberrans larvae. 

In the laboratory also, several attempts were made in August-September of 1991 

to record the response ofM aberrans females toward adult beetles with the abdominal 

dorsum artificially exposed. The elytra of 30 last-generation pre-diapausing adult beetles 

were removed without harming their wings. These winged, but elytra-less, beetles were 

exposed for a week simultaneously in groups of 10 each in three different 35-cm cubical 

cages as above to four field-captured fertile M. aberrans females per cage. The elytra 

and the wings of another 30 adult last-generation pre-diapausing beetles were removed 

and the beetles with the uncovered dorsal integument of the abdomen were also exposed 

simultaneously for a week in groups of 10 to three different groups of four fertile M. 

aberrans flies each in the same type of cage as above. Fresh potato foliage as well as 

sugar cubes and water were provided daily as food for beetles and parasitoids respectively. 

At the end of the week in both experiments all beetles and flies were dissected to check for 

the presence of parasitoid larvae, indicating parasitization and fertility respectively. 

To induce flight in pre-diapausing CPB adults captured in flight in the field and 

then exposed in cages to M. aberrans females in the laboratory, several methods were 
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tried during August-September of 1994, including placement of the beetles on narrow 

raised perches and placement of potted potato plants at some distance within an expansive 

(2.5 m x 3 m x 1.5 m tall) cage. Knowing from earlier work with the CPB that suspension 

by the thorax can provoke flight initiation in the beetles (Weber 1992), we attached one 

end of a #2 insect pin bent into a “Z” shape to the mesothorax of each of 10 of these pre- 

diapausing CPB adults with beeswax and tied a thin nylon filament to the other end of 

each pin; thus tethered and suspended in the air, the beetles were exposed to two female 

M. aberrcms at a time in one of the screened plexiglass cages described above. 

Results and Discussion 

Identification of Behavioral Categories 

Observations made during the course of the principal behavioral study provided 

more detailed descriptions of each of the eight activities on which that study focused. 

These qualitative observations are summarized below for each of the behavioral 

categories; in all cases the behavior was similar for both Myiopharus species. 

Resting. Early in the day, resting normally took place in full sunlight on the upper 

surfaces of potato leaves. At other times, the flies rested anywhere on the plants or on the 

ground. Gradually toward evening resting occupied an increasing proportion of time and 

the flies moved to the lower leaves of the plants, where they apparently spent the nights 

resting on the undersides of leaves. 
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Forays: These slow flights swept directly above the rows of potato plants and 

appeared to entail one form of searching, defined as the active movement by which an 

animal finds or attempts to find resources (Bell 1985, 1991). Initiation of flight was 

always noted to occur after a period of localized searching (below), often after an 

extended period without encountering hosts. The potato plant on which the fly landed at 

the conclusion of a foray frequently had more abundant and/or visible CPB larvae than 

surrounding plants, and forays were generally followed by localized searching upon this 

new plant. 

Localized searching: Myiopharus spp. females spent much of their time in this 

characteristic activity involving quick walking and hopping motions across the upper and 

lower surfaces of potato leaves, along the vines, and among adjacent plants in movements 

that covered a large proportion of the plant foliage. Since males were never found 

engaged in this searching behavior, as well as the observation that flies invariably stopped 

searching and switched to a different activity upon encountering a CPB larva, it would 

appear that host larvae were the resource sought during this behavioral activity. 

The flies’ halting movements and their continual palpations of the plant surfaces 

suggested that tarsal chemoreceptors provided at least a portion of the cues used in these 

local searches. The possible role of various types of contact kairomones in the search was 

also indicated by the response to CPB spoor (feces, regurgitate, leaves damaged by beetle 

feeding, or CPB larvae themselves) encountered in their path: the fly usually stopped 

abruptly, followed by reorientation and apparently directed movement similar to the 

behavior termed “arrestment” by Waage (1978). 
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Plant feeding: Myiopharus spp. were observed feeding on two distinct categories 

of matter found on plant surfaces. During early morning hours the flies took in water 

from droplets of condensation remaining on the leaves. Dissolved deposits, including 

perhaps the various types of excretions left on leaves by the beetles and larvae were 

evidently one object of this consumption: flies often drank from the murky drops 

concentrated from water washed into pockets of curled leaves after ignoring the clear 

droplets generally found on flatter leaf surfaces. 

Throughout the day, the flies fed on a second type of substance on the surfaces of 

potato plants: the exudates from edges of leaves recently damaged by feeding of CPB 

larvae or adults. It is interesting to consider that this may be an additional form of 

dependence by the flies on their hosts, given that these plant juices seem to be their only 

readily available source of water later in the day. 

Host contact and withdrawal: Observations that some host larvae were “rejected” 

after being attacked by fertile females of Myiopharus spp. eventually led to an 

independent study of this behavior (Lopez et al. 1995) in which it was shown that both 

Myiopharus species have the ability to discriminate between already parasitized and non- 

parasitized hosts. Discrimination is virtually instantaneous but occurs only upon direct 

tarsal contact with the host. Frequency of this behavior varies through time in conjunction 

with changing host-parasite ratios and other elements of behavior, as will be discussed 

later. 

Prelarviposition stimulus: This behavior was employed only in cases of thanatosic 

defense behavior by their hosts (below), and it was therefore restricted to Myiopharus 



females attacking the third and fourth larval instars of CPB which are those that engage in 

tanathosis; for this reason it was not noted during the first few days of the growing season 

when only adults and early instars were present. The behavior may help the flies to 

distinguish live and healthy larvae from unhealthy hosts; conceivably also the limp state of 

a thanatosic larva prevents proper insertion of the larvipositor, and stimulus in this case 

might help restore an adequate degree of turgidity for larviposition to be completed. 

Larvipositon: This behavior occurs during periods of searching activity when the 

Myiopharus female comes within a few cm of a CPB larva. Often it was initiated by a 

short period of “arrestment” (Waage 1978) before the fly jumped upon the dorsum of the 

larva and commenced insertion of the larvipositor. Evidence of successful insertion is 

manifest in the appearance of a drop of hemolymph which exuded from the wound. 

Laboratory trials followed by dissections (Lopez et al. 1995) showed that observed 

insertion of the larvipositor was invariably accompanied by deposition of a parasitoid larva 

within the host. Flies larviposited only once within a given host but were able to larviposit 

in some 3-4 successive hosts, if available, within a few seconds; afterward they usually 

remained in one place grooming and cleaning for a few additional seconds before resuming 

localized searching behavior. 

Feeding on host: Immediately after larviposition, flies sometimes consumed the 

drop of hemolymph exuded from the host larva. When this behavior occurred, it seemed 

deliberate and was unmistakable: the fly returned after jumping off the larva and 

proceeded directly toward the drop, which it took up quickly and completely. Patterns of 

occurrence of this behavior were difficult to determine in the field, but caged flies 
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provided continuously with hosts ceased to feed on these exudations after approximately 

the third consecutive larviposition, indicating satiety (author’s unpublished data). 

This feeding could have been important for larvipositing females, which had no 

other apparent source of protein-rich nutrition. It was first reported by Bruneteau (1937) 

forM. doryphorae and according to Clausen (1940) has been recorded for Anetia nigripes 

Fallen as well. The only significant investigation of this behavior among tachinids was that 

of Nettles (1987), who attempted to analyze and replicate constituents of the hemolymph 

of Helicoperva sp. but found the resulting mixture unequal to natural hemolymph as a 

food for the tachinid parasitoid Eucelatoria brycmi Sabrosky. 

Quantification of Eight Common Behaviors 

A total of492 individuals of Myiopharus were recorded during the course of the 

quantitative study; of these, 174 were M. aberrans and 318 wereM doryphorae. The 

two species showed a markedly uneven distribution among the three study sites: at 

Brookfield Farm 99% of the Myiopharus flies recorded were ofM. aberrant at the 

Hampshire College Experimental Farm 99% wereM doryphorae; whereas at the 

University of Massachusetts Experimental Farm 74% wereM. doryphorae and 26% were 

M aberrans. Due to this variation and the possibility of shifts in behavior in the presence 

of a close competitor, it was decided to analyze data separately for each of the three fields. 

Henceforth the expression “separate fields” will refer to the Brookfield Farm (M. aberrans 

data only) and Hampshire College Experimental Farm (M. doryphorae only) study plots. 
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Data presented from the study plot at the University of Massachusetts Experimental Farm 

include both species, quantified separately but referred to as “within the same field.” 

A summary of the frequency and duration of the eight designated activities 

according to time of day as well as ambient temperature forM. doryphorae and M. 

aberrcms is presented. For Myiopharus spp. found both in separate fields (Figs. 6.1- 6.4) 

and within the same field (Figs. 6.5-6.8). 

A linear regression analysis comparing frequency and duration of each of the eight 

behaviors of each Myiopharus species occurring alone (“separate fields”) versus those of 

the same species co-occurring with the other (“within the same field”) did not show any 

significant differences. This situation is apparent in comparisons of the two series of 

graphs for each species, which show rather similar patterns across times and temperatures 

for each of the behavioral categories. Co-occurrence of these congeners in a given field 

does not, therefore, appear to affect these aspects of their behavior. 

For the statistical analysis of all eight behaviors and their comparison between the 

two species of Myiopharus across temperature range and at different time of day, a Proc 

Reg procedure from SAS statistical analysis software was used where temperature and 

time were coded as follows: for temperature (° C), if temperature =16-19 then temp = 1; 

if temperature = 19-23 then temp = 2; if temperature = 23-27 then temp = 3; if 

temperature =27-31 then temp = 4; if temperature =31-34 then temp = 5; and for time 

the coding was: if time = 0800 - 1000 then time = 1; if time =1000-1200 then time = 2; 

if time = 1200-1400 then time = 3; if time = 1400-1600 then time = 4; if time = 1600- 

1800 then time = 5. Considering time = 1, 2, 3 ,4 and 5. Therefore, TIME2 = TIME X 
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Myiopharus aberrans Myiopharus doryphorae 

Fig. 6.1 Frequency of eight common behaviors across temperature 
range by M. doryphorae and M. aberrans found in separate fields. 
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Fig. 6.2 Mean time spent on each behavior across temperature range by 

M. doryphorae andM. aberrans found in separate fields 
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Fig. 6.3. Frequency of eight common behaviors across time of day for 
M. doryphorae and M. aberrans found in separate fields. 
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Myiopharus aberrans Myiopharus doryphorae 

TIME OF DAY 

Fig. 6.4 Mean time spent on each behavior across time of day for 
M. doryphorae and M. aberrans found in separate fields 
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Fig. 6.5. Frequency of eight common behaviors across temperature range for 
M. doryphorae and M aberrans found within the same potato field 
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Myiopharus aberrans Myiopharus doryphorae 

Fig. 6.6 Mean time spent on each behavior across temperature range by 
M. doryphorae andM aberrans found within the same potato field 
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Myiopharus aberrans Myiopharus doryphorae 

Fig. 6.7 Frequency of eight common behaviors across time of day for 
M. doryphorae and M. aberrans found within the same potato field 
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Myiopharus aberrans Myiopharus doryphorae 

Fig. 6.8 Mean time spent on each behavior across time of day for 
M. doryphorae and M.aberrans found within the same potato field. 
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TIME- lxl, 2x2, 3x3, 4x4 and 5x5 giving origin to a quadratic instead of a linear 

regression when analyzing the behaviors by time of day. For analysis purposes the two 

parasitoid species were also coded as M. doryphorae = 0 and M. aberrans = 1 

A linear regression analysis was performed for all eight behaviors of each 

Myiopharus species found in separate fields, to describe the effects of temperature and 

time of day on the flies’ activities. The analysis showed that for M. aberrans there was a 

significant difference across the temperature range in frequency of both larviposition and 

plant feeding but not in frequency of the other six behaviors. There was no significant 

difference in the mean time spent by this species on any of the behaviors across 

temperature range or time of day. For M. doryphorae there was a significant difference 

in the frequency of larviposition, host feeding, plant feeding and resting across the 

temperature range; mean time spent in host contact and withdrawal also differed by 

temperatures. Searching frequency and mean time spent feeding on plants were the only 

two values which differed significantly across times of day for this species. (Figs. 6.9 - 

6.12 and Tables 7, 8). 

The same analysis as above was applied to the two species of Myiopharus when 

found within the same field, comparing the frequency and duration of each behavior across 

time and temperature ranges. A statistically significant difference was found between the 

two species in the frequency across temperatures of all behaviors except for host contact 

and withdrawal and feeding on host hemolymph (Table 6.1, Fig. 6.5). The mean time 

spent larvipositing, searching, resting and in prelarviposition stimulus across the 

temperature range were also significantly different (Table 2 and Fig. 6.6). A significant 
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difference was also found between the two species in the frequencies of all behaviors 

except plant feeding, contact and withdrawal, and feeding on host hemolymph across time 

of day ( Fig. 6.7). The mean time spent larvipositing and resting were also significantly 

different by time of day (Fig. 6.8). 

Table 6.1 Linear regression comparison test for the frequency of each behavior per two- 
minute period recording across temperature range between the two Myiopharus 
species within the same field. A = Plant feeding, B= Forays, C= Feeding on host, 
D = Larviposition, E = Localized searching, F = Resting, G = Contact and 

withdrawal, H = Prelarviposition stimulus. 

A B C D E F G H 
Constant -0.265 2.086 -0.015 0.027 -0.250 6.524 0.449 -0.145 
Temp (° C)t 0.040 0.012 0.005 0.016 0.203 -0.082 -0.005 0.007 
Spec* -2.037 -1.757 0.139 -0.927 1.126 -3.988 -1.031 -0.131 
spec xTemp 0.074 0.017 -0.006 0.055 -0.065 0.123 0.045 0.005 
Overall P 0.013 0.007 0.92 0.0001 0.017 0.091+ 0.207 0.030 
*- Spec.= species. Coded as M. doryphorae = 0 and M. aberrans = 1 (see text) 
+=05 < P < .10 

t= Temperature range (° C) coded as 1= 16-19; 2 = 19-23; 3 = 23-27, 4 = 27-30; 5 = 30- 
34 (See text). 

Table 6.2 Linear regression comparison test for the mean time spent on each behavior 
per two-minute period recording across temperature range between the two 
Myiopharus species within the same field. A = Plant feeding, B= Forays, C= 
Feeding on host, D = Larviposition, E = Localized searching, F = Resting, G = 
Contact and withdrawal, H = Prelarviposition stimulus. 

A B C D E Ft G H 

Constant 0.546 -0.660 0.582 0.427 -0.454 — -0.090 -0.580 
Temp. (° C) 0.117 0.093 0.005 -0.001 0.390 — 0.007 0.031 

Spec. * -2.593 2.352 -0.330 0.018 13.84 — 0.198 -1.609 

spec.x Temp. 0.046 -0.049 0.003 0.013 -0.401 — -0.004 0.065 

Overall P 0.388 0.175 0.991 0.014 0.042 — 0.103 0.046 

t= F could not be fit due to colinearity. 
*= Spec.= species. Coded asM doryphorae = 0 and M. aberrans = 1 (see text) 
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The following tables (Table 6.3 - 6.10) and corresponding figures (Figs 6.9 - 6.16) 

are representations of a model based on linear regression analysis of the frequency and 

duration of localized searching and larviposition behaviors of the two species across 

ranges of temperature and time of day. Figures 6.9 - 6.16 are based on the 1991 data 

when both Myiopharus species were found within the same field. These two behaviors 

were selected for modeling because of the consistent statistical differences found between 

the two species in regard to larviposition and the obvious connection of larviposition with 

searching behavior, as well as the likely importance in biological control of these two 

activities. 
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Table 6.3 Linear regression of larvipositing frequency 
by ambient temperature. 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M. doryphorae 

Constant -1.4806 -1.1501 0.0271 * 

Temp.(° C) 0.099 + 0.070 + 0.0164 * 

Spec. — — -0.927 
spec x Temp — — 0.0552 * 

Overall P 0.0475 0.004 0.0001 

*= P < .05 
+=.05 < P < .10 

Fig. 6.9 Observed means and fitted values from the linear 
regression models of larviposition frequency for both 

Myiopharus spp. across temperature range. (1991 data) 



Table 6.4 Quadratic regression of larvipositing frequency at 
5 periods of time of day 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M. doryphorae 

Constant -1.616 -0.078 0.034 

Timef 1.864 0.573 0.437 
Time2J -0.289 -0.111 -0.089 
Spec. — — -1.329 
Spec x Time 1.162 
Spec x Time2 -0.159 

Overall P 0.239 0.581 0.0001 

t= Time coded as 1 = 8-10, 2 = 10-12, 3 = 12-2, 4 = 2-4, 5 = 4-6; 
X = Time2 = Time x Time = lxl, 2x2, 3X3, 4x4 and 5x5 (See text) 
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Fig. 6.10 Oberved means and fitted values of the quadratic 
regression modelsof larviposition frequency response 
to time of day by both Myiopharus spp. (1991 data) 
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Table 6.5 Linear regression of mean time (Sec) larvipositing 
by ambient temperature. 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M doryphorae 

Constant -0.0720 -0.573 0.427 

Temp(° C) 0.0344* 0.0472 * -0.001 

Spec. — — 0.0189 * 
spec x Temp — — 0.0135* 

Overall P 0.2586 0.164 0.0143* 

*= P < .05 

Table 6.6 Quadratic regression of mean time (Sec) larvipositing at 
5 periods of time of day. 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M. doryphorae 

Constant -0.4759 -1.518 -0.0469 

Time 0.0932 1.666 0.4501 

Time2 -0.1513 -0.297 -0.0889 

Spec. — — -0.6716 

Spec x Time — — 0.5787 

Spec x Time2 — — -0.0656 

Overall P 0.413 0.1420 0.0013 
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Table 6.7 Linear regression of localized searching frequency 
by ambient temperature. 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M. doryphorae 

Constant 1.873 4.543 -0.2501 
Temp(° C) 0.1065 -0.003 0.2036 
Spec. — — 1.1265 
spec x Temp — — -0.0651 
Overall P 0.2773 0.982 0.017 

16-19 19-23 23-27 27-31 31-34 

Temperature range ( 
o 

C) 

Fig. 6.11 Observed means and fitted values from the linear 
regression models of searching frequency for both 
Myiopharus spp. across temperature range (1991 data) 
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Table 6.8 Quadratic regression of localized searching frequency 
at 5 periods of time of day 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M. doryphorae 

Constant 2.259 -6.761 0.4343 

Time 1.540 8.603 3.2172 
Time2 -0.221 -1.494 -G.491 

Spec. — — 0.057+ 

Spec x Time — — -0.566 

Spec x Time2 — — 0.103 

Overall P 0.706 0.0308 0.073+ 

+=.05 < P < .10 

Fig. 6.12 Observed means and fitted values of the quadratic 
regression models of searching frequency response 
to time of day by both Myiopharus spp. (1991 data) 
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Table 6.9 Linear regression of mean time (Sec) localized 
searching at 5 temperature ranges 

Separate fields Within same field 

M. aberrans M. doryphorae M. aberrans 
+ M. doryphorae 

Constant 17.810 -2.087 -0.4541 
Temp(° C) -0.111 0.4418 0.391 
Spec. — 13.843 
spec x Temp — 0.391 
Overall P 0.779 0.192 0.0427 

+=.05 < P < .10 

Table 6.10 Quadratic regression of mean time (Sec) 
localized searching at 5 periods of time of day 

Separate fields Within same field 

M. aberrans M. M. aberrans 
doryphorae + M. doryphorae 

Constant 34.344 2.259 0.434 

Time -13.357 1.540 3.217 
Time2 2.044 -0.221 -0.491 

Spec. — — 0.057+ 

Spec x Time — — -0.565 

Spec x Time2 — 0.1029 

Overall P 0.284 0.706 0.0731 + 

+=.05 < P < .10 
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Larviposition-Related Behavioral Studies 

Colorado Potato Beetle Defenses Against Larviposition Colorado potato beetle 

larvae responded to larviposition attempts by Myiopharus aberrans and M. doryphorae 

with a wide variety of behaviors hypothesized to deter the parasitoids from attacking or 

prevent them from larvipositing. These behaviors were not seen to be employed against 

the pentatomid predators Perillus bioculatus (Fabricius) and Podisus maculiventris (Say) 

or any other approaching insects besides Myiopharus, but appeared to be used 

indiscriminately against both species of Myiopharus. Total numbers reported (Table 

6.11) were cumulative occurrences of the behaviors recorded during the 109 h of directed 

observations during the summers of 1990 and 1991. The description and effectiveness of 

each type of defensive is presented. 

Table 6.11 Colorado potato beetle defensive responses to Myiopharus attacks under 
field conditions. 

CPB Defensive Behavior Events 
observed (n) 

Larvipositions 

n (%) 

Successfal CPB escapes 

n (%) 
Leg-flailing 124 68 (55) 56 (45) 
Regurgitation 86 49 (57) 37 (43) 
Dropping to the ground 72 64 (89) 8 (11) 
Thanatosis 34 25 (74) 9 (26) 

Tightening of abdominal muscles 92 2 (2) 90 (98) 

Defecation 15 15(100) 0 (0) 

Flailing of fore and middle legs: This direct form of defense was used by 

individual CPB larvae from second to early fourth instar. The larvae were evidently able 

to detect approaching parasitoids from any direction at a distance some 0.5 m, at which 



point they reared up on abdomen and hind legs and began flailing their anterior pairs of 

legs. To test whether other approaching objects would induce leg-flailing, during one 

study day we tried moving several other small objects toward a number of CPB larvae 

which had shown this reaction to the tachinids (n=25 trials); we moved the approaching 

objects at different speeds, distances and angles, but were unable to provoke the reaction 

brought about by Myiopharus. Leg-flailing behavior was observed on 124 occasions 

during the study and was effective in preventing larviposition in 45 % of cases (Table 

6.11). 

Cycloalexy or circular defense. First- and second-instar CPB larvae often 

maintained themselves in tightly concentrated groups in which the limited exposure of any 

given larva by itself presumably conferred some degree of protection to these vulnerable 

early stages. In addition, the larvae in these groups commonly reacted to the approach of 

parasitoids with a collective manifestation of leg-flailing behavior as described above. 

This kind of circular defense, or “cycloalexy,” has long been recognized in insects from 

several families (Wheeler & Mann 1923, D'Azevedo Marquez 1933) and was recently 

reassessed by Vasconcellos-Neto & Jolivet (1988) with respect to larval defenses of 

chrysomelids and by Weinstein (1989) for sawflies. Cycloalexic behavior of CPB larvae 

toward Myiopharus females was often dramatic, the flailing activity involving all or nearly 

all members of a given group and becoming increasingly intense with the approach of the 

parasitoid. Undoubtedly both the grouping of larvae and their defensive movements 

contributed to the effectiveness of this behavior in preventing larviposition; because of our 
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inability to separate these effects cycloalexy is included with leg-flailing by later-instar 

larvae in the data in Table 6.11. 

Regurgitation: Third- and some fourth-instar CPB larvae commonly responded to 

attacking Myiopharus females by ejecting from the mouth a large drop of brown liquid. 

When regurgitation occurred in this context it took place immediately upon physical 

contact by the parasitoid and before larviposition had occurred. Eighty six instances of 

regurgitation were observed, with 43% were successful in causing the tachinid to 

withdraw without completing larviposition (Table 6.11). All successful escapes occurred 

when beetle larvae were attacked while they were situated on the undersides of inclined 

potato leaves and positioned with head uppermost; from that position, the disgorged liquid 

ended up covering the body of the larva and as soon as this liquid was contacted by a 

parasitoid it flew away. 

Dropping to the ground. Another common reaction of principally third-instar 

larvae at the instant parasitoids landed upon them was to drop from the potato leaf on 

which they had been feeding, landing on lower foliage or falling to the ground. Its 

success was limited, however; in nearly 90% of the 71 cases when this behavior was 

observed (Table 6.11) the parasitoids never released the seized larva and were able to 

complete larviposition. 

Thanatosis. Threatened late-instar larvae and adults often adopt a type of passive 

posture (thanatosis, or “playing dead”) long recognized in a large number of insect 

species. Thanatosis occurred in CPB larvae only at the time of approachment or contact 

by Myiopharus flies. The larva would become limp and motionless and cease to respond 
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to most stimuli. The attacking fly, in turn, invariably responded by engaging in the 

behavior referred to above as “prelarviposition stimulus,” which in most cases eventually 

succeeded in stirring a response by the host larvae. Thanatosis occurred in only 34 of the 

larviposition attempts recorded in our study and ultimately deterred larviposition in only 

26% of these cases (Table 6.11). 

Tightening of the abdominal muscles and integument. By the time well-fed late 

fourth-instar reached maximum size their abdomen became nearly spherical in shape and 

comprises over 90% of body volume. Morphological constraints prevent rearing of the 

body and the leg-flailing defense characteristic of early instars. Meanwhile the abdominal 

muscles of these larvae have thickened and strengthened, as was evident in the many 

dissections performed in the course of these studies. The most common defensive 

behavior observed in fourth-instars attacked by Myiopharus was for the larvae to further 

curl the body into an almost a perfect sphere and tighten the abdominal muscles, as 

evidenced in a change in the aspect of the integument from its normal dull cast to a shinier, 

smoother-appearing surface. This was the most effective defensive behavior recorded in 

our study for fourth instars, deterring larviposition in 98% of observed cases (Table 6.11). 

The importance of the active tightening of the musculature was observed in several caged 

larvae in the laboratory in which Myiopharus females were unsuccessful in inserting the 

larvipositor for as long as the larva maintained this tensed posture, but completed 

larviposition immediately if the larva relaxed its abdomen and continued walking. It was 

also noticed during the performance of injections into CPB larvae (author’s unpublished 
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data), when fourth-instars required prior chilling to prevent their tightening of abdominal 

muscles which impeded insertion of the syringe. 

On five different occasions in late August (1989-1991), M. doryphorae females 

attacking fourth-instar CPB larvae in the field were observed to persist in their 

larviposition attempts for 5-7 min but eventually to desist without completing 

parasitization of these larger hosts. This species has a sharper larvipositor than M 

aberrans (Bruneteau 1937) and, if it is unusual for the former to succeed in larvipositing 

in CPB of this instar, it would appear very unlikely that M. aberrans is ever successful in 

doing so under natural conditions. 

Defecation. Although defecation by CPB larvae upon attack by female 

Myiopharus was noted in a small proportion of cases, it was ineffective in preventing 

larviposition in any instances observed (Table 6.11) and, in fact, was observed always to 

occur when the fly’s larvipositor was already penetrating the integument of the host larva. 

Rather than a defense, therefore, defecation should probably be viewed as a traumatic 

reaction to the execution of larviposition itself. 

Collectively, the defensive behaviors detailed above occurred only in about one 

half of the larviposition attempts by Myiopharus spp. which were observed during the 

course of the study; because unresisted larvipositions were not recorded, the global effects 

of these defenses upon CPB population dynamics remain to be ascertained. Of the 

instances of defense behavior observed, 49% overall were successful in preventing 

larviposition. Although CPB larvae are not infallibly recognizable in the field, our 

observations suggested that defense reactions of these larvae vary in a loose relation to the 
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larval growth stage in the following sequence: leg flailing is used in conjunction with 

clustering in the first two instars; in the third instar individual leg-flailing is common as are 

regurgitation and dropping to the ground; thanatosis and finally abdominal muscle 

tightening become more prevalent means of defense during the fourth larval instar. Given 

this progression, our observations of the relative effectiveness of these different defenses-- 

of which muscle-tightening and leg-flailing (particularly in combination with clustering) 

showed the highest rates of success—may account in part for our findings (Lopez et al. 

1993) of highest Myiopharus recruitment in the second and third larval instars of the 

beetle in field conditions. 

Post-Larviposition ‘Territorial’ Behavior of Myiopharus spp. A total of 85 

instances of post-larvipositional territorial behavior by Myiopharus spp. were observed 

during 109 h of observation in late summer of 1990 and 1991 (Table 6.12). As is evident 

in the table, both Myiopharus doryphorae and M. aberrans engaged in this behavior, with 

no significant differences between the two species with regard to the aspects recorded. 

No instances of this behavior were noted during our general behavioral studies at any 

other time of the growing season (i.e. mid-June through early August). 

Table 6.12 Territorial behavior of Myiopharus doryphorae and Myiopharus aberrans in 
potato fields at South Deerfield, MA (1990 and 1991 data combined). 

M. doryphorae M. aberrans 

Defense episodes observed in 109 h 46 39 
Larvipositions before defense began (Mean ± SE) 3.25 ±1.12 3.3 ± 1.2 
Repulsions per defense episode (Mean ± SE) 4.25 ±1.2 3.2 ±1.1 
Mean time spent per defense episode (min ± SE) 7.23 ± 2.2_6.3 ± 2.2 
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A given territorial defense episode normally began after larviposition by the same 

fly in 3-4 larvae located on the same potato plant. The fly then remained based on a leaf 

of this same plant for some 6-7 minutes during which it drove away an average of 3-4 

approaching flies of either or both species oiMyiopharus (Table 6.12). 

Two initially puzzling aspects of this defense behavior are probably interrelated. 

One of these is the question of why the defense of newly parasitized host larvae would 

occur only during the final weeks of the growing season, given that both Myiopharus 

species are engaged in larviposition into most larval instars of the same host throughout 

most of the summer. The other peculiar feature of such defensive behavior, whose only 

apparent advantage is that of preventing the superparasitization of individual larvae, is that 

defending a parasitized host should be redundant in species such as Myiopharus aberrans 

andM doryphorae which discern and reject already parasitized CPB larvae (Lopez et al. 

1995). Time spent protecting already deposited progeny reduces opportunities for further 

larvipositions and would appear maladaptive given that the discrimination ability of both 

species works adequately to preclude superparasitization. 

Two additional observations from our studies help to explain these apparent 

anomalies. One was that host discrimination (or at least the rejection of previously 

parasitized hosts) breaks down to some extent during the last weeks of the summer. 

Dissections from CPB population samples (Lopez et al. 1993) revealed five 

superparasitized CPB larvae containing two Myiopharus larvae apiece (less than 1% of 

any given sample); all of these came from samples taken after August 15. This in turn 

appears to be related to the lowered host: parasitoid ratio found late in the summer (Lopez 
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et al. 1993), which drastically reduce the probability of the flies encountering acceptable 

host larvae; caged experiments in which host availability was kept artificially low have 

brought about superparasitization at other times of the summer (Lopez et al. 1995). 

A superparasitized CPB larva gives rise to at most one live Myiopharus adult; the 

cause of death of the additional larva has not been determined. Our untested hypothesis 

concerning the possible adaptive advantage of larvipositing Myiopharus females’ defense 

behavior is that the 6-7 additional minutes thereby provided for establishment within the 

host confers some sort of advantage upon the first Myiopharus maggot deposited within a 

given CPB larva. 

Provocation of Pre and Post Diapausing Adult Colorado Potato Beetle bv 

Myiopharus aberrans. In Massachusetts, field collected beetles after the photoperiod had 

shortened to 14 h of light or less are considered prediapausing beetles ( Voss et al. 1988). 

All beetles that emerge from the soil in the spring and colonize the potato fields from the 

end of May to the middle of June are considered postdiapausing beetles (Voss & Ferro 

1990a). In the laboratory, beetles reared under short photoperiod conditions (i.e. 13:11, 

LD) will enter diapause. Beetles raised under long photoperiod regime would never enter 

diapause (Kort 1990). 

No larvipositions were observed during the 60 h of field observation of M. 

aberrans stimulating adult beetles at the end of the 1990 growing season. Routine 

observations of this species during the other behavioral studies also revealed no examples 

of larviposition in adult beetles at the beginning of the 1990 summer nor during early or 
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late summer of 1991. However, on 12 different occasions in 1990 M aberrans females 

were seen to jump atop pre-diapausing beetles and hit them with the tip of their abdomen. 

This behavior occurred only after the parasitoids had spent 8-15 minutes stimulating the 

beetles with no apparent effect. 

An additional 36 h of observations of caged M. aberrans with CPB adults also 

produced no larvipositions and no distinguishable differences in behavior of flies or beetles 

from those noted in field conditions. 

Detailed examination of the videotape made ofM aberrans females caged with 

CPB larvae and adults showed that the flies continued provoking the adult beetles 

uninterruptedly for the entire 9 h of filming except for short (5-10 sec) visits to the water 

wick and sugar cubes. CPB larvae were disregarded by the flies, whereas interference 

with all three adults was such that the beetles were prevented from eating for several 

hours at a time. After the video recording was made the two M. aberrans females were 

dissected and shown to contain 9 and 11 mature parasitoid larvae. The two CPB adults 

and five CPB larvae were also dissected, but none were found parasitized. 

Removal of elytra alone or elytra and wings to expose the abdomens of the beetles 

did not induce M aberrans females to larviposit in pre-diapausing CPB adults in our 

caged trials, although the flies continued to pursue the beetles and were engaged in the 

same provocation behavior described above whenever the cages were examined. After a 

week of exposure to the flies, all 60 beetles were dissected but none of them were found 

to contain parasitoids. 
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Attempts to provoke flight in caged pre-diapausing CPB by provision of perches 

and other alterations of their environment were all unsuccessful. However, when these 

beetles were suspended by the thorax above they finally “flew” (opened elytra and spread 

wings and began beating them). M. aberrans flies on the floor of the same cage 

responded immediately, directing themselves toward the beetles with accelerated jerking 

movements but never taking flight to approach the beetles in the air. As the tethered 

beetles were lowered close to the flies and again provoked into initiating flight 

movements, the M. aberrans appeared increasingly excited and curved their abdomens 

downward, protruding their larvipositors as soon as the beetles began opening their elytra 

(Fig. 6.13). The instant that a suspended beetle spread its wings, theM. aberrans fly 

jumped upon the beetle’s abdomen and with a quick movement hit the exposed dorsal wall 

with the tip of its abdomen and introduced its larvipositor in the soft abdominal 

integument. Insertion of the larvipositor was extremely swift, the fly escaping just before 

the beetle was able to fold back its wings and close its elytra (Fig. 6.14). 

Of the 10 CPB adults exposed to the flies in this manner, only six could be induced 

to initiate flight, but of these all six were attacked by the larvipositing M. aberrans. The 

larviposition attempts took two different forms: one in which the fly jumped facing 

forward from behind the beetle, stung it and flew away through the opening between the 

beetle’s raised elytra; and a second in which the fly jumped from beside the beetle to a 

position facing its rear, grasped the last segment of the beetle’s abdomen, inserted the 

larvipositor in an anterior segment and escaped still facing in the same direction. Attacked 

beetles always folded back wings and elytra immediately, stopping short of actually taking 
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flight. The six stung beetles were dissected within one hour of exposure to the flies; 

Myiopharus larvae with no red coloration (Lopez et al. 1995)were encountered in three of 

these and the others contained no larvae. That the parasitoid larvae found within the 

dissected CPB were not pre-existing larvae from earlier larvipositions is established by 

their lack of red coloring, which would have appeared in older parasitoid larvae (Lopez et 

al. 1995). 

It can be concluded from the above that Myiopharus aberrans will parasitize adult 

Colorado potato beetles and are able to do so when the beetles initiate flight, allowing the 

flies to reach the exposed soft abdominal dorsum. The three unsuccessful “larvipositions” 

may have been cut short by the beetles’ reactions; presence of wings and the movements 

involved make both precise observation and, evidently, larviposition itself more difficult 

than in the case of CPB larvae. In addition, the drop of hemolymph which signals a 

completed larviposition into larval CPB was not an applicable indicator of successful 

larviposition in the case of the winged adults. If insertion of the larvipositor did occur in 

these three cases, failure of parasitization may have been due to the age and possible 

overmaturity of the M. aberrans females available for this test. 

This is the first account ofM. aberrans larvipositing in adult CPB. The speed and 

short duration of the larviposition act, its infrequency relative to the time the flies spend 

provoking the adult hosts, and its evident restriction to short periods at the beginning and 

end of the growing season help explain why this behavior has not been witnessed under 

field conditions. This finding has important implications for the assessment of biological 

control programs. Past determinations of percentage parasitism by Myiopharus spp. on 
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CPB (Kelleher 1960, Harcourt 1971, Tamaki etal. 1983a, Horton and Capinera 1987, 

Lopez et al. 1993) often did not distinguish between M. doryphorae and M. aberrans and 

did not take into account the latter species’ parasitization of the beetle’s adult stage. We 

now know that correct determination of parasitoid impact on CPB populations will need 

to include sampling of pre- and post-diapausing adult beetles in the process of migrating. 

We take the “provocation” behavior discussed earlier to be a prelude to 

larviposition attempts during the two periods of the summer when it occurs, which 

coincide with the two main periods of CPB flight. Although it is not clear what causes the 

marked switches in attention of larvipositing M aberrans from adult to larval hosts and 

back again during the course of each growing season, the series of behavioral studies 

described above gives some indication of the proximal cues required for parasitization of 

adult CPB. Successful larviposition in a given beetle appears to constitute a two-step 

process of pursuit and attack requiring different stimuli for the two steps. 

Timely and close pursuit of appropriate adult hosts would seem essential given the 

very limited time span (less than a second during the life of a typical pre-diapausing beetle) 

in which the conditions for larviposition are met. M aberrans can only insert its 

larvipositor when the beetle’s raised wings uncover its soft abdominal dorsum; the fly is 

evidently incapable of larviposition when the beetle’s wings are actually beating; it must 

thus sting its host during flight initiation, or the instant between opening of the wings and 

active flight; a pre-diapausing beetle normally initiates flight only once. 

Not all adult CPB incur pursuit by M. aberrans; for most of the summer, adults are 

ignored in favor of CPB larvae, but adult stages as well as larvae were observed to be 
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disregarded by M. aberrans in favor of pre- and post-diapausing adults. We hypothesize 

that some aspect of the development or regeneration of flight muscles, a principal 

physiological change occurring in circum-diapausing adult CPB, might provide the 

stimulus for this pursuit behavior by M. aberrans. Reaction to sex pheromones of the 

adult CPB would be insufficient to account for this behavior given its failure to occur 

toward reproductive adults in midsummer. 

For the “attack” stage or larviposition itself to occur, exposure of the beetle’s 

abdomen was a necessary but insufficient requirement, as evidenced by our experiments 

involving removal of elytra and wings. Given the visual acuity of most Diptera and their 

particular sensitivity to movement and contrast (Dethier 1963, Schmid 1992), it is likely 

that the movement of the elytra and the sharp difference between their striped exterior and 

plain white underside serve as the immediate triggers for attack by M. aberrans. 

Whatever its proximal and distal causes, the switch to adult hosts early and late in 

the growing season holds interesting ecological and management implications. As 

congeners, Myiopharus doryphorae and M. aberrans could be expected by prevalent 

niche and competition theories to have become diversified in their resources or behavior or 

to maintain allopatric distributions, yet the two species share a single principal host in 

overlapping ranges and, as reported above, show minimal behavioral differences. 

However, the replacement of adult hosts for larvae by M. aberrans comes at precisely the 

times during the growing season when beetle larval populations are lowest and adults are a 

more available resource, reducing host competition between the two species. Late-season 

larviposition in adults greatly reduces the parasitoids’ exposure to the CPB larval 
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predators (pentatomids, carabids, cicindelids, etc.) which are most abundant during late 

summer. 

These same features may lend M. aberrans added value as a biological control 

agent and as a complement to M. doryphorae for this purpose. The different reproductive 

strategies by these two tachinids, and by M. aberrans within the course of a summer, 

resemble and parallel somewhat the risk-reducing or “bet-hedging” patterns of the beetle’s 

own diapause and migration behavior (Voss and Ferro 1990b). In early summer they may 

also help to counteract the lack of synchronization with the CPB population which has 

been cited as a cause for low parasitization rates byM doryphorae. 

Parasitism at flight-initiation of CPB adults also means that close to 100% of the 

late-summer larviposited M. aberrans undoubtedly migrate along with their hosts at the 

end of the growing season, as contrasted with a probability closer to 85% (Voss et al. 

1990a and 1990b) forM doryphorae. The migration of insect pests traditionally presents 

serious difficulties for their natural enemies. The case of Myiopharus is a rare one in 

which principal parasitoids of a significant economic pest migrate within their host, and M. 

aberrans would appear especially likely to economize on parasitoid releases and 

contribute to their moving with the beetle. This should make M. aberrans a particularly 

promising species for release at the edges of CPB distributions in areas such as Eurasia 

where the beetle is a rapidly expanding exotic pest (Jolivet 1991). 
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Conclusion 

Studying the behavior of Myiopharus doryphorae and M. aberrans under field 

conditions has helped to demonstrate and explain their effectiveness in locating and 

parasitizing their CPB hosts during most of the growing season. Adult females of both 

tachinid species spend a large portion of their time engaged in a combination of local 

searching and longer forays that together seem highly efficient at encountering available 

host larvae, as illustrated in data from the site where both species occurred (Table 6.13a). 

Maximum number of larvipositions recorded per 2-min observation period were 13 for M. 

aberrans and 11 for M. doryphorae. Given that the maximum larval load of a fertile 

female Myiopharus is normally between 17 and 25 larvae/day (author’s unpublished data 

and Tamaki et al. 1983b, Kelleher 1960), there would seem to be little doubt that 

Myiopharus spp. are able to allocate virtually all of their progeny when the host 

population is adequate. 

Table 6.13 Larval host searching and larviposition efficiency of M. doryphorae and M. 
aberrans in a potato field in South Deerfield, MA, 1991. 

a) Throughout season of activity b) After 1 August only 

% of time spent larvipositions/ % of time spent larvipositions/ 
searching min search time searching min search time 

M. doryphorae 37 0.65 38 0.58 
M. aberrans 48 0.97 56 0.30 

This situation is illustrated in the center portion of Fig. 6.15, a composite graph in 

which the seasonal sequence of larviposition-related behaviors of Myiopharus spp. from 
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the present study are juxtaposed in time with densities of CPB larvae and adults for the 

same year at the study site (data presented in Table 6.13). CPB larval density ranged 

between 40 and 100 individuals/m2 from mid-June to mid-August (Lopez et al. 1993), and 

the activity of both parasitoid species focused upon location of and larviposition in CPB 

larvae during this period. 

As the CPB larval population became markedly reduced to 20-30 individuals/m2 

later in the growing season (Lopez et al. 1993), both Myiopharus species began engaging 

in “territorial” defense behavior near their most recently parasitized host larvae (Fig. 

6.15). Such activity might be expected to reduce the time available for searching and 

perhaps the total number of larvipositions accomplished but should raise the chances for 

survival of any defended offspring, given the breakdown of restraint from 

superparasitization which accompanies the lowered host to parasitoid ratios at this time. 

Table 6.13 portrays the actual situation at the site where the two tachinid species occurred 

together: M. doryphorae continued to spend approximately the same proportion of its 

time searching with slightly reduced success, while M. aberrans spent a somewhat greater 

proportion of its time in searching but with larviposition efficiency cut to less than one- 

third. 

Soon after this, however, M. aberrans ceased parasitizing and defending the beetle 

larvae as it switched its attention to adult CPB (Fig. 6.15), coinciding with a rise in 

abundance of pre-diapausing adult CPB as well as the near-absence of any CPB larvae, 

other than fourth-instars. The late fourth-instar CPB larval integument appears 

114 



impervious to the larvipositor of M. aberrans, but this species is able to larviposit in 

migrating adult CPB at the very moment that these beetles initiate flight. 

As the growing season came to an end, M. aberrans continued ignoring CPB 

larvae in favor of pre-diapausing adults, yetM doryphorae did not cease its protection of 

the CPB larvae in which it larviposited (Fig. 6.15). This “territorial” behavior was always 

observed to be directed indiscriminately toward conspecifics as well as females of the 

other Myiopharus species, and the survival advantage it may confer upon a given 

Myiopharus larva would seem independent of the species of any potential superparasitoid. 

A rather curious situation was found at the very beginning of the growing season; 

for most of June, no M. doryphorae were found at the site and CPB larvae were far more 

plentiful than adults, yet M. aberrans females pursued adult beetles just as they did at the 

end of the season (Fig. 6.15). Possible advantages of parasitizing adult beetles at this time 

can be construed. The CPB larvae present early in the season are necessarily small early- 

instar ones which seem difficult for the larvipositing parasitoid to grasp properly (Chapter 

4 and Lopez et al. 1993); they also commonly engage in the rather effective cycloalexic 

flailing defense. In addition, if parasitoid development that begins in an early-season CPB 

adult takes appreciably less time than it requires when starting in a larval host (which must 

pupate before parasitoid larval development begins), larviposition in adult CPB at this time 

of year may enable M. aberrans to build up its population more quickly and take better 

advantage of the abundance of larval hosts. However, in such speculation it is good to be 

cautious of the “Panglossian paradigm” (Gould and Lewontin 1979); it is possible that this 
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early period of pursuit of adult hosts results less from some direct selective advantage than 

from a physiological constraint imposed by this parasitoid’s attraction to circum- 

diapausing adult beetles. By the last week of June in our study site the principal migration 

of post-diapausing CPB adults was over and M. aberrans had begun attacking larvae for a 

week before M. doryphorae appeared. 

This earlier appearance ofM aberrans than ofM doryphorae, noted in at least 

one other study (Bruneteau 1937), appears anomalous given the congruencies in their life 

histories. Both M. doryphorae and M. aberrans overwinter as larvae within diapausing 

adult CPB (Lopez et al. 1992); yet one species is found nearly a month before the other 

appears. Whether this relates in some way to the stage of the CPB originally parasitized 

or reflects some other factor of the insects’ biology is yet to be determined. 

What is perhaps most striking overall in Fig. 6.15 and the results of the present 

study is the apparent complementarity of these two parasitoids as controlling influences 

upon a given CPB population. The two species of Myiopharus attack the same host 

stages (CPB larvae) only during midsummer when larvae are most abundant, and for most 

of this time their discrimination ability keeps losses to superparasitization at close to nil. 

For perhaps a week toward the end of the season the larval host population plummets and 

competition apparently becomes acute enough to cause breakdown of the restraint against 

superparasitization but at this same time territorial behavior around parasitized hosts helps 

prevent superparasitization and may also reduce wastage of time searching among already 

parasitized larvae. Before the larval population becomes too drastically reduced, one 

species shifts to adults of the host species which are by this time more abundant. The 



same species emerges first the following year and attacks adult hosts while larval hosts are 

still of suboptimal size (Tamaki etal. 1983b, Fig. 6.15). 

Improved knowledge of the life cycle of Myiopharus doryphorae helped in the 

design of a methodology for calculation of percentage parasitism that led to recognition of 

a greater role for that species in controlling CPB populations than was previously 

recognized (Lopez et al. 1993). The findings of the present field study of the behavioral 

ecology of Myiopharus spp. lend further support to Salt’s (1958) assertion that: 

It is naive to suppose that natural enemies can be effectively used for 
control with inadequate knowledge of their biological nature, especially 
their physiology and behavior.... The behavior of insect parasites plays a 
great part in fixing their values as pest controls; and it follows that we 
must know their behavior before we can use them effectively. 
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Fig. 6.13 Myiopharus aberrcms fly closely following the movements of an adult 

prediapausing CPB. (Pursuit by Myiopharus commenced prior to 

beetle’s suspension by thorax as depicted) 
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Fig. 6.14 Myiopharus aberrans fly in the act of larvipositing in a prediapausing 

CPB at the moment it raises its elytra and expands its wings 

but immediately before the beetle starts beating its wings. 
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CHAPTER 7 

MYIOPHARUS BEHAVIORAL RESPONSES TO COLORADO POTATO BEETLE 

LARVAE TREATED WITH M-ONE ® (BACILLUS THURINGIENSIS SUBSP. 
TENEBRIONIS). 

Introduction 

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is the most 

damaging defoliator of potato worldwide (Ferro 1985, Gauthier et al 1981). Control this 

insect pest over the last 30 to 40 yr with insecticides has been variable because the beetle 

has developed resistance to almost all insecticides used against it (Forgash 1985, 

Casagrande 1987). In addition, in many instances the insecticides have been shown to be 

more damaging to insect pests’ natural enemies and other beneficial insects than to the 

insect pests themselves (Ehler & Endicott 1984). 

Bacillus thuringiensis Berliner subsp. tenebrionis has been used successfully 

against immature stages of the Colorado potato beetle (Ferro & Lyon 1991, Ferro 1993). 

However, because under laboratory conditions it has developed resistance to the delta- 

endotoxin produced by B. thuringiensis (Wahlon et al. 1993), there is a concern that the 

beetle will develop this same resistance under field conditions (Ferro 1993). The 

integration of natural enemies of the Colorado potato beetle with judicious applications of 

B. thuringiensis subsp. tenebrionis could be important in delaying the development of 

insecticide resistance by the beetle while at the same time preventing the decline of 

populations of its insect predators and parasitoids. 
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The only endemic parasitoids of the Colorado potato beetle in North America are 

the tachinid flies Myiopharus (=Doryphorophaga) doryphorae (Riley) and Myiopharus 

0=Adoryphorophaga) aberrans (Townsend); occasionally Myiopharus (=D.) australis 

Reinhard and Myiopharus (=D.) macella Reinhard have also been found to attack 

Colorado potato beetle larvae (Amaud 1978). During the first beetle generation each 

summer, adult female Myiopharus flies, which are obligate solitary parasitoids, larviposit 

within 2nd to early 4th instar Colorado potato beetles. First instar parasitoid larvae 

remain undeveloped until parasitized beetle larvae borrow into the ground to pupate. At 

this time the parasitoid kills its host and completes its development in about 10 days at 28° 

C (unpublished data). During the last summer generation of the beetles, the parasitoid 

larvae remain undeveloped within the Colorado potato beetle larvae, allowing beetle 

larvae to complete their development and emerge as adults. After generating flight 

muscles, the parasitized adult beetles migrate to overwintering sites, or remain in the field 

to diapause if they do not generate flight muscles. The first instar parasitoids overwinter 

within the beetles and complete development the following season after the beetles emerge 

from overwintering sites (Lopez et al. 1992). 

Low beetle populations in some localities coincide with relatively high densities of 

these parasitoids (Horton & Capinera 1986, Bjegovic 1968), and continuing studies of the 

biology and ecology of Myiopharus spp. (Lopez et al. 1992, Lopez et al. 1993) may lead 

to their applicability in integrated pest management programs. Studies concerning the 

behavioral response of these parasitoids to Colorado potato beetle larvae fed foliage 

treated with B. thuringiensis have not been reported. If the fly is unable to discriminate 
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between healthy larvae and larvae intoxicated with the B. thuringiensis delta-endotoxin, 

parasitoid larvae deposited within lethally intoxicated larvae will not survive. 

In this study, we investigated the larvipositional response of M. doryphorae flies 

presented with Colorado potato beetle larvae fed foliage treated with different 

concentrations of B. thuringiensis subsp. tenebrionis for different periods of time. 

Methods 

Colorado potato beetle larvae used in these experiments were from a colony 

started from beetles collected from the field the previous July. Populations from the area 

of collection have high levels of resistance to organophosphate and carbamate insecticides 

and lower levels of resistance to pyrethroids (Argentine et al. 1989). The M. doryphorae 

flies used in these experiments were 8 to 20 day old females from a greenhouse colony 

started from parasitized beetle larvae collected from the field the previous September. 

The quality of light is extremely important in maintaining this parasitoid under artificial 

conditions, and for this reason, the colony was kept in screened cages in a greenhouse 

rather than in the laboratory. 

All behavioral observations were made in the greenhouse (Femald Hall, University 

of Massachusetts, Amherst, MA) during the spring of 1990. The greenhouse was 

maintained at 70 ± 5° C and 90% RH during the experiments. Potato trifoliates were 

excised from greenhouse grown potato plants, Solanum tuberosum L. ‘Superior’, and 
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placed immediately into floral pics (5.5 ml) containing one-quarter strength Hoagland’s 

solution (Hoagland & Amon 1950). The environmental chamber used in these 

experiments was maintained at 27° C, 75% RH, with a photoperiod of 16:8 (L:D)h. 

Instar-specific Lethal and Sublethal Concentrations 

Dose-mortality curves were determined for early first instars (1.0 mg body 

weight), late first instars (2.3 mg), early second instars (4.0 mg), late second instars (7.8 

mg) and early third instars (15.6 mg) exposed to potato foliage dipped in different 

concentrations of M-one® (Bacillus thuringiensis subsp. tenebrionis, ref. MYD 810c, 

11,354 pg toxin/ml; Mycogen Corporation, San Diego, CA). A minimum of 30 larvae 

were tested for each concentration (3 or 4 replicates per concentration). The control 

consisted of distilled water. Leaflets were dipped in the appropriate concentration, air 

dried, and placed into ventilated plastic boxes (12 by 7 by 6 cm). After 10 larvae were 

introduced into each box, the boxes were placed in the environmental chamber. Larvae 

were checked daily and Hoagland’s solution was replenished as needed, as was fresh 

foliage. Mortality was assessed 96 hours after the larvae were placed on the foliage; twice 

the time needed for larvae to molt to the next instar at 27° C (Ferro et al. 1985). The 

criterion for mortality was failure of tarsi to move when larvae were prodded gently with a 

moistened paint brush. Polo-PC (Le Ora Software 1987) was used for probit analyses. 

The data are presented as percentage mortality as a function of mg toxin/liter of water/mg 

body weight. 
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Behavioral Response of Larvipositing M dorvphorae 

The M. doryphorae flies used in this experiment had been kept in colony with 

Colorado potato beetle larvae, a dental wick saturated with distilled water and sugar 

cubes. Late second instars were used for all of the experiments. Dilutions of M-one® 

were made with distilled water. The lethal dose (10 mg toxin/liter of water/mg body 

weight) was the LC90, and the sublethal dose (0.3 mg toxin/liter of water/mg body 

weight) was the LC20. 

Trifoliates of potato foliage were dipped in the appropriate concentrations and 

allowed to air-dry before placing the larvae on them. Half of the larvae were allowed to 

feed for 1 h before being removed from the treated foliage and placed on fresh foliage. 

The other half were left on the treated foliage for 24 h before being removed and placed 

on fresh foliage. 

Each observation consisted of introducing a single female fly into the observation 

cage with three larvae, representing a larva exposed to a lethal or sublethal concentration 

of M-one, or to distilled water (control). Three potato trifoliates were placed in water 

pics and the bottom of the pics were inserted into a hole in a wooden stand so that 

trifoliates were 4 cm apart. One larva of each kind was placed on each trifoliate. Larval 

position was randomized among the three positions for each trial. Thirty-nine and 36 

different female flies were observed for the larvae fed treated foliage for 1 h and 24 h 

respectively. 

Each fly was placed inside the 25 by 25 by 25 cm screened observation cage 30 

min before initiating the experiment to acclimate it to the arena. The wooden stand 
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holding the foliage and larvae was then introduced into the cage, and observations were 

made for 15 uninterrupted min. Every larviposition by the flies was recorded. At the end 

of each trial, all larvae were collected and held separately in plastic cups (35 ml) before 

being dissected to determine the number of parasitoid larvae in each host larva. 

Results and discussion 

Instar-specific Lethal and Sublethal Concentrations 

The LC50 values for the different larval stages were 2.03 mg toxin/liter/mg body 

weight for early first instars, 1.7 mg for late first instars, 1.09 mg for early second instars, 

1.85 mg for late second instars and 0.95 mg for early third instars (Fig. 7.1). The LC90 

values ranged from 3.0 mg (early second instars) to 10.1 mg (late first and second instars). 

When the data were converted to mg toxin/liter/mg body weight there was little difference 

between the different stages and percentage mortality. 

Behavioral Response ofLarvipositingM dorvphorae 

A Chi square did not show a preference by M doryphorae flies for Colorado 

potato beetle larva in either the 1 h or the 24 h treatment (%2- 0.159 and P = 0.9261 for 1 

h treatment, and y?=\.\5 and P = 0.5617 for the 24 h treatment, Table 1). This 

indicates that M doryphorae did not distinguish among larvae that have ingested a lethal 

or sublethal dose of B. thuringiensis toxin or no toxin. However, these observations 

were made with larvae that had been intoxicated for 24 h or less. 
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Under field conditions, Myiopharus flies in the process of larvipositing 

encountered various defensive reactions by the beetle larvae. Including flailing of fore 

and middle legs, dropping to the ground, and thanatosis (“playing dead”). Our field and 

laboratory behavioral studies with this parasitoid have shown the fly to be sensitive to such 

reactions by host larvae. Myiopharus readily larviposit on walking larvae, but were 

never observed to larviposit in dead larvae. The flies reaction to a thanatoid larva was 

normally to spend several minutes stimulating the larva until it moved before finally 

larvipositing. Defensive movements such as flailing of legs also effectively delayed 

larviposition (Chapter 6). 

Colorado potato beetle larvae which fed for 1 h on treated foliage (lethal and 

sublethal doses), although still moving, reacted sluggishly to the presence of the 

parasitoids compared with the control larvae whose reaction was to quickly and strongly 

flail their fore and middle legs. Myiopharus readily larviposited in sluggish larvae but took 

more time to overcome the strong defensive reactions of healthy control larvae. This is 

reflected in the summary table of the mean time elapsed before the first larviposition in 

each treatment type in the larvae fed for 1 h (Table 1). For those larvae, an ANOVA 

showed a significant difference in the mean time elapsed before the first larviposition 

among these treatments when compared to the control (F= 6.77 and P= 0.0032, n=39). 

When larvae fed for 24 h and were exposed to Myiopharus on treated potato 

foliage (lethal and sublethal doses), the larvae reacted more sluggishly to Myiopharus flies 

approaching them than the larvae fed for 1 h on these treatments. The Myiopharus 

larvipositing behavior was similar to their reaction to larvae with a thanatosis defense; they 
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spent up to several minutes stimulating the larvae until they moved. In the case of the 

control larvae, Myiopharus also spent more time before larvipositing in them, but for the 

opposite reason; these larvae were more active and more defensive. An ANOVA did not 

show any difference in the mean time elapsed before larvae from the different treatment 

types were stung for the first time (Table 1. F=0.60 and p=0.5568, n= 36), although the 

average time in the case of the larvae fed a sublethal dose of B. thuringiensis was lower. 

The chi square test showed that M. doryphorae was unable to discriminate 

between hosts intoxicated and not intoxicated with B. thuringiensis. Although flies were 

not deterred from larvipositing into host larvae intoxicated at different levels, their 

reactions to the larvae differed. There was equal probability of flies larvipositing into 

beetle larvae fed a lethal or sublethal dose of B. thuringiensis or control larvae. Larvae 

deposited by parasitoids within hosts fed with lethal doses of B. thuringiensis are certain 

to die because the hosts will never complete development; this would reduce the number 

of parasitoids surviving to the next Colorado potato beetle generation. However, when 

sublethal doses of B. thuringiensis allow Colorado potato beetle larvae to reach the 

prepupal stage, the parasitoid larvae within them will also complete development. 

For purposes of biological pest control it is of interest to examine the population 

dynamics of M. doryphorae used in conjunction with B. thuringiensis against the 

Colorado potato beetle. Our results show that M. doryphorae does not discriminate 

between B. thuringiensis intoxicated hosts and non intoxicated hosts. In either case the 

larvae deposited by parasitoids within hosts fed with lethal doses of B. thuringiensis will 

die if the host dies before reaching the prepupal stage. However, sublethal doses of B. 
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thuringiensis do not stop the Colorado potato beetle larvae from reaching its prepupal 

stage. In a side experiment in the laboratory testing the survival of parasitoid larvae 

deposited in host larvae treated for 1 h with a sublethal concentration of B. thuringiensis, 

39 out 50 third instar parasitized previously treated larvae produced healthy adult 

parasitoids versus 45 out of 50 for the controls. From an evolutionary perspective, 

tachinidae arose from a group of taxa whose larvae generally feed in decomposing 

materials, and therefore have long coexisted with bacterial and fungal toxins in their diet 

(Gauld et al. 1992). Thus, it is possible that the parasitoids do not react to the presence of 

B. thuringiensis because of their familiarity with bacterial environments. Once Myiopharus 

parasitoids are within their host, the only other requirement the flies need to molt and 

complete their development is the rise in ecdysone levels and low titers of juvenile 

hormone within the hemolymph of its host (unpublished data) and this naturally occurs 

when the host reaches the prepupal stage. 

The behavior of parasitoids during the 15-min exposure period was not quantified 

except for the elapsed time before larvipositions and the number of larvipositions 

themselves. However, our observations showed that the host larva’s defensive behaviors - 

especially regurgitation, flailing of their legs in the presence of parasitoid flies and falling 

to the ground when contacted by parasitoids- were readily exhibited by control larvae 

when compared with the larvae fed foliage treated with B& thuringiensis, especially those 

fed treated foliage with lethal concentrations which after 24 hours were not feeding 

anymore and were generally sluggish in their responses. If sublethal doses of B. 

thuringiensis retard larval development, then low doses of B. thuringiensis could allow 
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more time for Myiopharus to act upon the larval population. This is particularly true if 

these larvae are more readily parasitized byM doryphorae than either healthy or lethally 

intoxicated larvae, as indicated by average time elapsed before first larviposition for both 1 

h and 24 h experiments (Table 7.1). 

The lower percentage of larvipositions in the group of larvae fed treated foliage 

after 24 h than in those fed for 1 h (Table 7.2) suggests that the length of time after larvae 

fed on treated foliage may be important to inundative control programs; i.e. it may be best 

to introduce these parasitoids 24 h after the application of B. thuringiensis to ensure 

maximum establishment. 

In regard to natural populations of M. doryphorae, the present studies showed B. 

thuringiensis did not seem to directly affect M doryphorae parasitoids unless their larvae 

are laid within Colorado potato beetle larvae lethally intoxicated with B. thuringiensis. 

Superparasitism rarely occur in the field and when it happens only one adult parasitod 

survive per host (Kelleher 1960). Field and laboratoty studies have shown that M. 

doryphorae flies are able to discriminate between parasitized and nonparasitized hosts 

(Lopez et al. 1995). Therefore, superparasitism in the cages (Table 7.2) was probably 

more a cage effect rather than the normal way of Myiopharus behavior. Therefore, time 

elapsed before first larviposition in the Colarado potato beetle larvae seems to be the most 

important factor. This time was not statistically different between controls and lethally 

treated larvae when exposed after 24 h. In the case of the control larvae it took the flies 

5.1 ± 1.2 min and sometimes after two or three attempts before larvipositing them due to 

their strong defenses. However, the 5.4 ± 1.5 min before larvipositing lethally treated 
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larvae were spent repeatedly avoiding them and larviposition occurred only after they have 

larviposited the sublethally treated and the control larvae within a cage(Table 7.1). The 

avoidance was related to the immobility of the treated larva because flies spent part of the 

time stimulating them and did not larviposit unless they moved. Under field conditions, 

Myiopharus flies avoid their host larvae once and normally do not attack them a second 

time unless the avoidance was due to strong defense from the larva (Chapter 6). 

Therefore, in release programs, lethally treated larvae after 24 h encountered by 

Myiopharus are more likely to be avoided but not after 1 h when they still have some 

mobility (Table 7.1). Because Myiopharus flies are not normally active during late 

afternoon and evening (Lopez et al. 1992), if B. thuringiensis is applyed late in the 

afternoon the following day by the time Myiopharus becomes active again, lethally 

intoxicated larvae from the previous day will be paralyzed (personal observation) and will 

most likely to be avoided by naturally occurring M. doryphorae minimizing B. 

thuringiensis impact on the natural populations of Myiopharus. 
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Table 7.1 Larvipositional response ofM. doryphorae toward 2nd instar Colorado 
potato beetles fed foliage treated with lethal and sublethal doses of B. 
thuringiensis subsp. tenebrionis or fed untreated foliage for either 1 h or 24 h 

Treatments N Mean time elapsed Standard error 
Fed for 1 h (39) in min before first 

Control 12 
larviposition 

5.5a 1.0 
Lethal 14 2.5b 0.6 

Sublethal 13 2.0b 0.4 

Treatments N Mean time elapsed Standard error 
Fed for 24 h (36) in min before first 

Control 11 
larviposition 

5.1*k 1.2 

Lethal 10 5.4a 1.5 

Sublethal 15 3.7b 1.0 

Mean times followed by different letter are significantly different; Tukey’s procedure (P^ 

0.05) (SAS Institute 1988]) 
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Table 7.2 Number of Myiopharus doryphorae larvae found in Colorado potato beetle 
larvae fed foliage treated with a lethal or sublethal doses of Bacillus thuringiensis 
subsp. tenebrionis or fed untreated foliage for either 1 h or 24 h. 

Treatment: Number of parasitoid larvae found per host 

Fed for 1 h 0 1 2 3 

Lethal 11 24 3 1 

Sublethal 15 21 3 - 

Control 12 22 5 - 

Percentage 32.8 57.8 9.5 0.7 

Fed for 24 h 

Lethal 21 13 1 - 

Sublethal 16 12 7 - 

Control 16 17 2 - 

Percentage 50.5 40.0 9.5 0 

X2 test for lh vs 24h, 3 df [SAS Chisq. procedure, 1988]; Lethal %2 - 8.2, 

P=0.04; Sublethal x2 = 3.9, P= 0.144; Control x2 = 2.3, P= 0.312. 



Dose (mg toxin / liter / mg body weight) 

Fig. 7.1 Bacillus thuringiensis subsp. tenebrionis LC50 values for Colorado 

potato beetle larvae. El = early first instar: LI = late first instar; E2 = early 

second instar; L2 = late second instar; E3 = early third instar. 
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CHAPTER 8 

CONCLUSIONS AND PRACTICAL APPLICATIONS 

Decades of insecticide use have been unable to provide adequate control of the 

Colorado potato beetle. The CPB has developed resistance to all synthetic insecticides 

presently registered for its control (Roush et al. 1990). Meanwhile, the very high 

fecundity of beetles colonizing potato fields early in the spring (Peferoen et al. 1981, Voss 

et al. 1988) and the pest’s migration potential ( Voss & Ferro 1990a, b; Weber 1992) 

contribute to the high CPB populations that make it the most damaging insect pest of 

potato in the northeastern USA. 

Given the defeat of synthetic insecticides by the beetles, an approach integrating 

multiple elements including biological and cultural control tactics seems the only viable 

alternative. In this context, the present study’s findings concerning the life histories of M. 

aberrans and M. doryphorae may significantly improve our ability to employ these 

tachinid species as biological control agents of CPB in the eastern United States. 

The discovery that both Myiopharus species overwinter within adult overwintering 

CPB ( Lopez et al. 1992) suggests that the flies overwintering mortality, previously 

thought prohibitively high for successful CPB control (Tamaki et al. 1983), in fact might 

not be greater than the mortality of the beetle itself. Late-planting potato rows 

sporadically interspersed within potato fields might offer refugia for CPB larvae to 

complete their development late in the season (late August-September). Since 70-80% of 

these CPB larvae become parasitized (Lopez et al. 1993), increasing the number of these 

parasitized CPB larvae through provision of late-season refugia might result in a 
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significant increase in the overwintering population of Myiopharus and its subsequent 

emergence in the spring. 

The finding that M. aberrans attacks beetles at the moment of flight initiation 

(Chapter 6) introduces important elements to take into account when using Myiopharus 

spp. as biological control agents. Normally, M. aberrans begins attacking adult 

colonizing beetles in early June, gradually switching to attack CPB larvae by the end of the 

month (Fig 6.15). As CPB larvae become more abundant M. doryphorae appears late in 

June and in early July and joins in parasitizing larvae. Therefore, any control strategy 

based on killing adult beetles early in the spring (i.e. butane flames or synthetic insecticide 

application) threatens also the Myiopharus overwintering population within the beetles 

plus the Myiopharus larvae recently larviposited by M. aberrans within colonizing beetles. 

A biological control-based integrated pest management would require recognition 

of the rapid buildup of CPB larval populations in early June resulting from the high 

reproduction rates of colonizing beetles (Lopez et al. 1993, Voss et al. 1988, Peferoen et 

al. 1981). Myiopharus spp. on the other hand, have a fixed reproduction rate of no more 

than 25-30 larvae per day (Lopez unpublished). Consequently, attacks on colonizing CPB 

reproductive females byM aberrans would be more cost effective than waiting for CPB 

females to lay their eggs and then trying to eliminate eggs or larvae. A mass release 

program of fertile M. aberrans flies early in the season when colonizing beetles are 

arriving might significantly impact beetle larval populations during the remaining part of 

the summer. Food sources for adult flies and water supply in or near potato fields would 

probably increase their survival rate during early releases. Grass left growing at the edges 
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of fields seems to be a good source of water from nighttime condensation; hedgerows 

provided as shade might extend its availability longer through the day. 

Additional control can be achieved using Coleomegilla maculata as a CPB egg 

predator either by improving natural populations of this coccinellid through habitat 

manipulation (i.e. planting com and potato crops beside each other; Hazzard et al. 1991) 

or by direct mass release early in the season. In our experimental plots, a single well 

timed application of Bacillus thuringiensis subsp. tenebrionis provided an adequate 

complement to natural populations ofMyiopharus for controlling the CPB. Appropriate 

timing of such an application should be based on sampling of beetle and fly populations at 

least three times a week during the first month after potato plant emergence given the 

explosive nature of early-season CPB population growth. 

Based on results of our field studies to date, recommendations for integrated 

control strategy for CPB in western Massachusetts might consist of the following steps: 

• Leave grass border by woody hedgerows around sections of potato field. 

• Plant a com crop nearby to provide pollen as food complement.for 

Coleomegilla. 

• Sample three times a week to monitor colonizing beetles and flies as well as 

CPB egg-masses and larval densities. 

• Apply Bacillus thuringiensis subsp. tenebrionis when CPB larval density 

reaches 20-30 /m2. 

Based on future studies of the effectiveness ofM aberrans releases against early 

season adult CPB and of C. maculata releases against CPB egg-masses, it should 
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eventually be possible to add specific recomendations regarding levels of application of 

these natural enemies as a function of sampled CPB densities. 

It remains to determine the cost effectiveness of such a program in comparison 

with traditional chemical contro, which will depend in part upon availability of parasitoid 

and predator colonies for mass releases. However, long-term effectiveness of the 

combination of Myiopharus spp. and B. thuringiensis is indicated by our observations of 

organic farms in which adequate control has been achieved after several years without 

spraying. 
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