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ABSTRACT 

DISTANCE OF DETECTION OF HOST TREE VISUAL AND OLFACTORY 

STIMULI BY THE APPLE MAGGOT FLY, RHAGOLETIS POMONELLA 

(WALSH) (DIPTERA: TEPHRITIDAE) 

SEPTEMBER 1992 

THOMAS A. GREEN, B. A., HAMPSHIRE COLLEGE 

M. S., UNIVERSITY OF MASSACHUSETTS 

Ph. D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Ronald J. Prokopy 

Mature female apple maggot flies, Rhagoletis pomonella (Walsh) 

were released individually onto a single fruitless hawthorne tree in 

the center of an open field. This tree was surrounded by four 1 m2 

plywood host tree models painted green or white, with or without 

synthetic host fruit odor (butyl hexanoate), placed at one of several 

distances from the release tree. Each fly was permitted to forage 

freely on the release tree for up to 1 hour, or until it left the tree. 

Flies left the tree significantly sooner when green models with host 

fruit odor were present at 0.5 m, 1.5, or 2.5 m distance from the 

release tree than when these models were placed at a greater 

distance (4.5 m) from the release tree or when no models were 

present. These results suggest that female apple maggot flies did 

not detect green 1m2 models with odor 4.5 m away or models 

without odor 2.5 m or more away. 



Increasing model size to 2 m2 increased the distance at which 

flies responded to green models without odor. Decreasing model size 

to 0.5 m2 reduced fly responsiveness. The presence of host fruit 

odor alone did not influence residence time on the release tree. 

Rate of movement and upwind orientation (± 22.5°) of 

individually-caged R. pomonella flies increased significantly over 

no-odor conditions in the presence of a stationary point source of 

butyl hexanoate at a distance of 12 m (P < 0.03) in an open grassy 

field, but not at 24 m. Increasing the rate of butyl hexanoate release 

from ca. 500 ug per hour to ca. 6000 ug per hour did not significantly 

increase distance of response. 

Take-off direction of R. pomonella from a platform in the center 

of a large open field was random with respect to wind direction 

when no host odor stimulus was present. Take-off direction was 

significantly biased upwind (± 67.5°) when 8 evenly spaced butyl 

hexanoate-filled vials surrounded the release platform in a circle 

with a radius 6 m (P < 0.03), and downwind (± 67.5°) when the same 

number of vials encircled the platform at 12 m (P < 0.01). Similarly, 

take-off direction tended towards upwind when 16 evenly spaced 

butyl hexanoate-filled vials surrounded R. pomonella at 12 m (P < 

0.10), and was significantly biased downwind at 24 m (P < 0.01). 
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CHAPTER 1 

LONG-DISTANCE RESPONSE TO RESOURCES BY INSECTS 

"Studies dealing with only one modality inaccurately portray the 
mechanism used to locate resources and underestimate the real 

amount of information available." Bell (1990) 

Introduction 

The survival and reproductive success of an organism is 

dependent upon its ability to locate essential resources, including 

food, moisture, mates, and oviposition sites. The behavior of insects 

foraging for these resources has attracted considerable attention 

over the past 20 years (reviewed in Kennedy 1977, Hassel and 

Southwood 1978, Finch 1980, Stephens and Krebs 1986, Visser 

1988, Bell 1990), both as a basic research question and a pest 

management concern. The foraging behavior of tephritid fruit flies 

for host plant resources has been investigated quite extensively, 

perhaps as thoroughly as any other family of insects (reviewed in 

Prokopy & Roitberg 1989). More may be known about the foraging 

behavior of the apple maggot fly, Rhagoletis pomonella (Walsh) 

(=AMF), than any other tephritid species. The goal of this 

dissertation (Chapters 2 and 3) was to determine the maximum 
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distance at which apple maggot flies respond to the odor cues 

provided by host fruit and to visual stimuli provided by the host 

tree. 

To introduce this study, it is essential to review terms and 

definitions, mechanisms of detection and response, sources of 

variation in response, and the few previous studies of maximum 

distance of response. A thorough understanding of these issues and 

events is critical to choosing appropriate stimuli and experimental 

design, anticipating measurable responses, and interpreting results. 

While not an exhaustive review, this chapter is intended to describe 

at least some examples of all known mechanisms and sources of 

variability in long distance response to resource cues by insects. 

Definition Of Terms 

A framework of concepts and a specific vocabulary has been 

proposed and debated to describe the foraging process. Foraging, 

sensu Kennedy (1985) is movement that is "readily interrupted" by 

encounter with the resource in need. Foraging in a broader sense 

would include information gathering by stationary animals such as 

visual scanning. Searching is often used interchangeably with 

foraging, but its teleological implications probably make foraging a 

more desirable term. 

Foraging activities can be placed within a hierarchy of levels: 

the habitat, patch, and individual resource unit (Hassel & Southwood 

1978). Movement and foraging may occur between habitats (= 

migration, but see Kennedy 1985), between patches (= ranging), and 
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within patches (= local search) (Jander 1975). The insect in nature 

best defines these levels through changes in behavior, such as 

switching from extensive to area-concentrated search. Alternative 

models have been proposed to describe variations in this system 

including non-patchy habitats, and insects which feed while moving 

through rather than within patches (Arditi and Dacorogna 1988). 

Foraging behavior has been described as the product of 3 types of 

influences: (1) external environmental constraints including 

resource availability, apparency, and distribution, and interference 

from predators or abiotic factors, (2) the inherent biology of the 

organism which dictates sensory and locomotory ability, and (3) 

internal, physiological state variables such as egg load or degree of 

deprivation (Bell 1990). 

Responses to cues can be categorized as kineses, or changes in 

rate of locomotion or turning, or taxes, directed movement towards 

or away from the stimulus (Fraenkel and Gunn 1940, Kennedy 1977, 

1978). Behavioral response may be under allothetic control, initiated 

and modulated by information from sources external to the insect, 

and/or ideothetic control, generated internally from stored 

information or proprioceptors (Visser 1988). 

Long-Distance Response To Resources 

The maximum distance over which an insect can respond to 

resource cues has been determined for only a very few species 

(Miller and Strickler 1984). Other issues have been the focus of most 

foraging research, possibly in part because determining the 
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maximum distance of response can be a very difficult question to 

address. It is testimony to the paucity of research on this topic that 

this review can be undertaken without narrowing its focus to some 

subset of Insecta, such as herbivorous or parasitic insects. 

Restricting a review to this Class may still be too parochial. 

Foraging studies of organisms outside the Insecta hold much 

information that is of much value to entomologists (Dethier 1986). 

Long range response occurs at a distance greater than that at 

which chemotaxis (= directed movement in response to an odor 

gradient) is possible, generally thought to be at least several 

millimeters or centimeters from the source (Kennedy 1977). Visual 

cues associated with the host may operate over a shorter range in 

comparison to airborne odor cues, which may travel many meters. 

Visual cues not associated with the resource itself influence flight 

speed and direction through the optomotor response. Orientation to 

odors may also involve mechanoreception through detection of wind 

direction by crawling insects, and by flying insects prior to take¬ 

off. Auditory cues are also important for resource detection in some 

species, particularly for mate location (Ewing 1984), but are not 

considered here. 

Assays of response to visual and odor cues include trapping 

studies, direct measurement of movement parameters under 

conditions ranging from completely natural settings to tightly 

controlled laboratory arenas, and electrophysiological 

measurements at the receptor organ and cell level. Specific 
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behavioral responses to resource cues include increased movement, 

directed movement, take-off, upwind flight, and arrival at a source. 

Visual Response 

Mechanisms 

Prokopy and Owens (1983) describe a process whereby an insect 

more than a few meters from a plant can detect only the dark 

silhouette against a brighter sky. Within a very few meters or less, 

characteristics common to most plants such as spectral hue 

(dominant wavelength) and intensity (brightness, or total reflected 

energy) may become apparent, and within a meter or less, 

discrimination between host and non-hosts plants may be possible 

based on fine dimensional or pattern cues provided by the plant. 

Few examples of response to exclusively visual cues from a 

distance are available. Most foraging studies fail to dissect 

response into visual and olfactory components. This discrimination 

is most readily accomplished by carefully constructing 

unidimensional resource mimics containing only the visual or 

olfactory aspects of the actual resource. 

Host plant finding by Pieris rapae (L.) (Lepidoptera: Pieridae) is 

mediated by unknown mechanisms, but landing is elicited by a 

specific plant hue (Renwick & Radke 1988). Plant odor, and leaf size 

and shape are not important. Alightment by Delia radicum (L.) 

(Diptera: Anthomyiidae) is also influenced primarily by plant hue, at 
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least within patches of closely spaced plants (Prokopy et al. 1983a). 

Todd et al. (1990b) reported a highly specific response by host¬ 

seeking Dalbulus maidis (DeLong and Wolcott) (Homoptera: 

Cicadellidae) to reflected light within a narrow wavelength band 

around 560 nm. Response was reduced by more than half at 

wavelengths of 500 and 580 nm. 

In addition to color, structure or shape of the resource can also 

provide important visual cues. Several tephritid species including 

Anastrepha fraterculus (Wiedemann) (Cytrynowicz et al. 1982), 

Ceratitis capitata (Wiedemann) (Nakagawa et al. 1978), and R. 

pomonella (Walsh) (Prokopy 1968, Prokopy et al. 1973, Moericke et 

al. 1975) preferentially respond to fruit and foliage mimics of 

various sizes and shapes. Response to specific shapes can be 

enhanced by increasing contrast against background (Owens and 

Prokopy 1984, 1986, Allen and Stoffolano 1986). 

Visual Discrimination Of Distance 

Experimental demonstration of the maximum distance of insect 

visual response to resources is sparse. Two formicid (Hymenoptera) 

species for which visual discrimination of distant resources has 

been studied are apparently not able to judge absolute distance to 

objects of variable size solely by visual cues (Myrmecia gulosa F., 

Via 1977; Cataglyphis bicolor , Wehner 1981, 1987). It is likely that 

they possess specific limited abilities to process critical stimuli, 

such as determining when a prey object of "expected" size is within 

striking range. Their compound eyes contain localized arrays of 
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ommatidia or "visual streaks" which focus on a visual field at a set 

distance on the horizon. Stimulation of a specific number of these 

ommatidia, directly related to the size of the object entering the 

visual field, triggers the appropriate response (Via 1977, Wehner 

1981, 1987, Schiff et al. 1985). 

Distance to stationary objects further than a few centimeters 

from an insect may be judged by motion parallax. In this process, the 

insect moves its head from side to side and nearby objects appear to 

move more rapidly than faraway objects (Collett 1978, Eriksson 

1980, Goulet et al. 1981, Wehner 1981). True binocular triangulation 

of size and distance is possible only at distances of a few 

centimeters at most. 

In laboratory tests in an artificial arena and in field experiments 

within host trees, Roitberg (1985) measured distance of AMF 

response to a 6 cm dia. cluster of host fruit. The resulting reactive 

envelope wherein ca. 50% of flies responded to fruit, was 

assymetrical, reaching a maximum of 16-22 cm directly in front of 

the fly and decreasing as the eye to fruit cluster angle increased. 

Although odor was not eliminated as a possible influence on fly 

response, later work (Aluja-Schunemann 1989, Aluja et al. 1989) 

suggests that visual cues predominate under conditions of plentiful 

and readily apparent fruit. 

Sources Of Variability In Response To Visual Cues 

Comprehensively reviewed in Prokopy and Owens (1983), insect 

visual detection of resources is a function of a combination of 



environmental variables including the spectrum and intensity of 

natural illumination, contrast against background, and resource size, 

form, and spectral characteristics of reflected light. Inherent 

biological factors such as the sensitivity of ocular receptors to a 

limited range of wavelengths of light, the size of the eye and of the 

visual field, and the arrangement of ommatidia also determine 

insect visual ability (Wehner 1981, Wehner and Srinivasan 1984, 

Wehner 1987). An insect may be able to enhance its perception of a 

host resource by eye movement, and by controlling its precise 

position within the habitat, such as its angle of approach. Finally, 

variable physiological factors such as age (Campan and Gautier 

1975), mating status, and degree of satiation may influence insect 

visual ability and receptivity. 

In the following experiments reported in this dissertation, visual 

cues were standardized by using artificial host trees of consistent 

size and shape, closely mimicing spectral characteristics of real 

trees, and against a uniform background. Experiments were 

conducted in the field under naturally varying levels of illumination, 

temperature, humidity and wind speed. Experimental animals were of 

uniform age, sex, and mating status, and were pre-tested for 

propensity to oviposit by being offered a host fruit immediately 

prior to testing. Individuals which rejected this fruit were not used 

in the experiments. 
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Olfactory Response 

Mechanisms 

While many issues regarding odor movement and variables 

influencing response have received attention in sex pheromone 

communication, most have yet to be as fully addressed with regard 

to host odors. Characteristics of host odors and insect herbivore or 

predator/parasite response to host odors may be markedly different 

than sex pheromone cues and responses to mates (Carde 1986). 

Evolution has probably favored rapid, accurate response to the 

presence of sex pheromone, as the first male arriving at a calling 

female may have the highest probability of mating and reproducing. 

Response to host odors may not suffer the same time constraints: 

host odors are typically present over a longer period, and hosts may 

not be limited to use by the first arriver. Differences in the sizes 

and spatial distribution between sex pheromone sources and host 

odor sources may also be important factors in the evolution of 

response mechanisms to these two types of resources. 

Arrival of males at a calling female is typically accomplished by 

odor-mediated, optomotor anemotaxis during flight. Males respond to 

pheromone stimulation by taking flight, and in flight by moving in an 

upwind direction in a pattern of self-steered counterturns or 

zigzags, coupled with an optomotor response to wind-induced drift, 

and concentration-modulated changes in course angle and airspeed 

(Baker 1986, Baker and Haynes 1987, 1989). Flight direction, speed 

and height are maintained by reference to visual image flow across 
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specialized regions of the compound eye (David 1986). This 

description of the typical moth mate-finding process represents 

years of experimentation, reevaluation, and debate (reviewed in 

Farkas and Shorey 1974, Roelofs and Carde 1977, Kennedy 1983, 

Murlis et al. 1992). 

This typical pattern, however, is not characteristic of male 

potato tuberworm moths, Phthorimaea operculella (Zeller) 

(Lepidoptera: Gelechiidae) which reach calling females through a 

series of short flights or hops less than 1 m in length (Ono and Ito 

1989) , suggesting mechano-anemotaxis. In this process, wind 

direction is determined by mechanoreceptor input while the odor- 

stimulated insect is on the ground. Orientation of several dipteran 

species to host odor is also by mechano-anemotaxis and short 

flights, or an "aim then shoot" strategy (Hawkes and Coaker 1976, 

Dindonis and Miller 1980, Aluja-Schunemann 1989, Brady et al. 

1990) . Upon landing, the fly may wait for odor stimulation and then 

immediately take off in an upwind direction. A combination of 

mechano-anemotaxis and optomotor anemotaxis has also been 

observed in dipterans (Nottingham and Coaker 1985, 1987, 

Nottingham 1988, Gibson and Brady 1988). Optomotor anemotaxis in 

response to an oviposition attractant is suggested by preliminary 

experiments with female Culex quinquefasciatus Say (Diptera: 

Culicidae) (Pile et al. 1991). 

Only one study to date has directly compared the response of 

males to female pheromone, and that of females of the same 

species, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), to 



host odor (almond oil) (Haynes and Baker 1989). Results indicate 

gross similarity of upwind flight parameters of both sexes, with no 

evidence of zigzag flight by either sex. 

Direct chemo-orientation to chemical stimuli in still air has 

been demonstrated over a distance of 16-18 cm by walking Ips 

paraconfusus Lanier (Coleoptera: Scolytidae) (Akers 1989, Akers 

and Wood 1989) and by Trogoderma variable Ballion (Coleoptera: 

Dermestidae) (Tobin and Bell 1986) in an artificial pheromone 

corridor. 

Extrinsic Sources Of Variability In Response To Odor Cues 

Unlike photons, odor molecules travel at a rate primarily 

dependent upon wind-caused air movement. External environmental 

factors such as wind speed (Nottingham 1987a, Salom and McLean 

1991, Brady et al. 1990) and directional consistency, temperature 

(Linn et al. 1987), humidity (Nottingham 1987a), topography and 

ground cover (Wallbank and Wheatley 1979) can all profoundly 

influence movement of odor molecules from the source, and/or 

insect response (Aylor et al. 1976, Carde 1984, Elkinton and Carde 

1984, Perry and Wall 1986, Visser 1986, Elkinton et al. 1987, Judd 

and Borden 1988, Murlis et al. 1992). Prolonged exposure to low 

relative humidity can decrease the receptivity of contact 

chemoreceptor cells (Stadler et al. 1987), and could conceivably 

affect other olfactory receptors. 

While an odor gradient may exist within millimeters or at most a 

few centimeters of a source, it disappears beyond this distance 



(Murlis et al. 1992). An insect at a distance downwind from the 

source is exposed to intermittent contact with varying 

concentrations of odor carried in a discontinuous plume whose size 

and shape varies widely depending on the degree of turbulence. 

Turbulence is determined by wind speed, temperature gradients, and 

habitat vegetation. 

Response to odor can also be affected by factors associated with 

the cue itself. These factors include: release pattern (pulsed vs. 

continuous, Willis and Baker 1984, Baker et al. 1985; diffuse vs. 

discrete plume, Nottingham and Coaker 1985, -1987), release rates 

(Baker and Roelofs 1981, Dindonis and Miller 1981, Reissig et al. 

1982, Tilden et al. 1983, Dickens 1986, Charlton et al. 1992, Linn et 

al. 1987, Baker and Haynes 1989, Leonhardt et al. 1990), ratio of 

component compounds (Linn et al. 1987, Willis and Baker 1988), 

presence of non-resource odors (Thiery and Visser 1986, Nottingham 

1987b), and height of the source (Cuthbert and Peacock 1975, Ono 

and Ito 1989). 

A pulsed pattern of release may result in a greater distance of 

response than continuous release of the same amount of odor 

stimulus, assuming that an insect needs only a momentary exposure 

to concentrations of odor molecules above threshold to respond 

(Dusenbery 1989). The directional consistency of wind and 

pheromone puffs over short periods of time may be more important 

than linearity of the trajectories of the individual puffs (Elkinton et 

al. 1987). Higher release rates of odor molecules may result in a 

greater distance of response (Baker and Haynes 1989), but may not 



increase the number of individuals arriving at the source due to 

inconsistent directionality and cohesiveness of the plume at long 

distances (Elkinton et al. 1987), and/or because of the deterrent 

effect of high concentrations closer to the source (Baker and Roelofs 

1981, Dickens 1986, Charlton et al. 1992). 

Interactions between different types of odors can influence 

response. Green leaf volatiles enhance response of boll weevils 

Anthonomus grandis Boh. (Coleoptera: Curculionidae) to aggregation 

pheromone (Dickens 1989), while host volatiles synergize response 

to pheromone of dried fruit beetle Carpophils hemipterus (L.) 

(Coleoptera: Nitidulidae) (Dowd and Bartelt 1991). Microbial 

products from decomposition of host and non-host material play a 

role in Delia antiqua host location and acceptance (Hausmann and 

Miller 1989), and may be feeding and sex attractants to female and 

male Dacus spp. (Drew 1987). Non-host odors hinder location of 

hosts in Psila rosae F. (Diptera: Psilidae) (Nottingham 1987b), and 

Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: 

Chrysomelidae) (Thiery and Visser 1986). 

Insect density can also influence response to resources. The 

foraging behavior of gypsy moth males is typically by optomotor 

anemotaxis. In high density populations, many matings occur prior to 

calling by the female, apparently a result of random search by males 

of tree trunks (Carde and Hagaman 1984). 

An insect may undertake active behaviors to increase the 

probability of encounter with odor cues. The question of whether 



downwind, upwind or crosswind flight is optimal for insects 

foraging for an odor plume is a matter of some controversy (Sabelis 

and Schippers 1984, Dusenbery 1989, 1990, Murlis et al. 1992). 

Intrinsic Sources of Variability In Response To Odor Cues 

Internal sources of variability both between individuals and in 

the same individual at different times include experience, genetic 

and maternal effects, degree of satiation or deprivation, sex, mating 

status and temporal and age related parameters (Klowden and Lea 

1979, Papaj and Rausher 1983, Prokopy 1986, Landolt and Heath 

1988, Roitberg 1990, Bell 1990). Endogenous periodicity in male 

response to female-emitted pheromone has been demonstrated 

repeatedly (reviewed in Carde and Webster 1981). 

A well-developed picture of individual variation in bark beetle 

response to pheromone and host odor cues is reviewed in Borden et 

al. (1986). Prior flight or walking activity, lipid content, weight, or 

generation and/or season of emergence greatly influence response to 

pheromone and host-odor cues in species within a number of 

different scolytid genera. 

Reproductive maturity is apparently a prerequisite for 

directional response and positive anemotaxis in the onion fly, Delia 

antiqua (Meigen) (Diptera: Anthomyiidae). In fields devoid of host 

odor, onion flies disperse at random with respect to wind direction. 

When grass fields are permeated with a component of onion odor, 

mature virgin flies respond directionally while immature and mated 

flies do not (Judd and Borden 1988). Mated, gravid D. radicum 
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respond to host plant odors, but males and unmated females are 

unresponsive (Hawkes and Coaker 1976). Similarly, only mated 

female navel orangeworm, Amyelois transitella Walker (Lepidoptera: 

Pyralidae), respond to almond odors (Phelan et al. 1991). Oriental 

fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae) males 

increase in responsiveness to methyl eugenol as they approach 

sexual maturity (Wong et al. 1989). Initiation of foraging behavior in 

honey bees, Apis mellifera L. (Hymenoptera: Apidae) is also age- 

dependent and can be manipulated by topical, oral or injection 

application of juvenile hormone (Robinson and Ratnieks 1987). 

Sustained flight response to host cues of Microplitis croceipes 

(Cresson) (Hymenoptera: Braconidae) depends upon prior exposure to 

components and combinations of components of the plant-host 

complex including damaged leaves, host larvae and larval feces 

(Drost et al. 1986). Experience also influences response of 

Trichogramma maidis Pint, et Voeg. (Hymenoptera: 

Trichogrammatidae) (Kaiser et al. 1989) to a mixture of host and 

plant odors. Individual M. croceipes may inherit differential 

responsiveness to airborne allelochemicals (Prevost and Lewis 

1990). The heritable variation of pink bollworm Pectinophora 

gossypiella (Saunders) (Lepidoptera: Gelechiidae) response to 

pheromone is sufficiently high to suggest the potential for rapid 

selection under pressure from mating disruptants used for control of 

this pest (Collins and Carde 1989a). 

Degree of starvation of desert locusts Schistocerca gregaria 

(Forsk.) (Orthoptera: Acrididae) influences response to grass odor 



(Kennedy and Moorhouse 1969). Sex, age and degree of starvation of 

Leptinotarsa decemlineata alter responsiveness to host odor 

(reviewed in Mitchell 1988). 

It is important that studies of long-distance resource detection 

attempt to anticipate and standardize or otherwise treat these 

sources of variation in a conscious, formal manner to insure 

repeatable results. In the following studies reported in this 

dissertation, odor cues were standardized by using artificial host 

odor released at a known, constant rate, with and without visual 

stimuli present. Variable wind speed, temperature and humidity 

were measured and considered in the analysis and interpretation. 

Interaction Between Visual And Olfactory Cues 

Early speculation that different cues played distinct roles in 

separate phases of the mate/host location and acceptance process 

has been countered by subsequent demonstration of the importance 

of the entire menu of resource characteristics acting as a whole to 

elicit optimum response in some systems (Lino et al. 1987, Sweeney 

et al. 1990, Harris and Miller 1991). Similarly, visual and olfactory 

modalities have been discussed as playing distinct roles in short vs. 

long range resource detection. Yet examples exist of all possible 

combinations of cues acting at all levels of resource foraging. Most 

studies directly addressing the interaction between visual and odor 

cues make no effort to determine distances at which these 
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interactions occur, nor to define the boundaries at which a change in 

modality might be made. 

Visual cues not associated with the resource operate in 

optomotor control of odor-initiated upwind flight. These visual cues 

are not limited to image formation and horizontal orientation, but 

can include light discrimination and vertical orientation, and 

possibly involve receptors other than compound eyes (Choudhury and 

Kennedy 1980). Visual optomotor response can be turned off by the 

loss of odor stimulation, or by contact with inhibitory chemicals 

(Preiss and Kramer 1983). 

As demonstrated in a recent review of host finding by moths 

(Ramaswamy 1988), little attention has been paid to the complex of 

modalities and mechanisms of host and host habitat recognition and 

location in this group. The few examples cited, however, support the 

role of vision and/or olfaction in both long and short range host 

location behavior. 

Male gypsy moths Lymantria dispar L. (Lepidoptera: 

Lymantriidae) respond to female sex pheromone by upwind flight, 

orienting to and alighting on the vertical silhouette of the tree bole 

from which the pheromone is released, and commencing a zig-zag 

crawling pattern to contact the female. Despite a high degree of 

apparency of female visual cues, these cues did not influence the 

landing site of the male, nor the speed and path linearity with which 

males arrived at the pheromone source (Charlton and Carde 1990). 

Even when extremely short distances (< 5 cm) separated the stimuli, 
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males oriented to the pheromone source alone rather than to female 

visual cues alone. 

The converse occurs with tsetse fly (Glossina spp., Diptera: 

Glossinidae). Flies responding to host odor cues are diverted away 

from the odor source by visual host mimics placed 1.5 m from the 

odor source (Torr 1989). The presence of host odor increases the 

number of flights per minute and rate of alightment on visual models 

(Warnes 1989). 

Dalbulus maidis response to green light is synergized by maize 

odor over a distance of at least 26 cm (Todd et al. 1990a). Alfalfa 

seed chalcids (Hymenoptera: Eurytomidae) apparently lose their 

ability to locate host-plant-odor baited targets when deprived of 

polarized sky light (Kamm 1990). Host color, shape, size and odor all 

significantly influenced acceptance of host surrogates by Delia 

antiqua , and act in a synergistic manner to elicit oviposition (Harris 

and Miller 1982, 1983, 1984). Host odor influences each step in the 

sequence of behaviors from alightment through oviposition (Harris 

and Miller 1991). The combination of host odor and a vertical 

silhouette greatly enhance response of black cutworm larvae, 

Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) to traps in the 

field (Whitford and Showers 1984). 

The southern pine beetle, Dendroctonus frontalis Zimmerman 

(Coleoptera: Scolytidae), may land at random on vertical objects, 

including host trees (Payne 1986). Whether or not the beetle remains 

depends on the quantity of host odor encountered upon landing. Once 



attack is initiated, the beetle releases pheromone which in addition 

to host odors from the freshly wounded tree, stimulates other 

individuals to join in the attack. Variations on this theme, including 

beetle attraction from a distance to hosts possessing particular 

odor profiles, have been demonstrated or proposed for several other 

bark beetle species (Borden et al. 1986). 

The spatial distribution of host plants can influence the 

interaction between visual and olfactory cues. With artificial plants 

spaced 100 cm apart, twice as many Delia radicum landed on odor- 

baited plants as on unbaited plants (Prokopy et al. 1983b). This 

difference disappeared when plants were 25 cm apart. These results 

suggest that flies may choose the most visually stimulating plant 

for alightment when faced with an odor source emanating from an 

array of closely spaced plants. 

While dissection of the resource seeking process into visual and 

olfactory components is often experimentally possible and desirable 

in interaction studies, a complete response can only be determined 

by integration of the typical blend of cues found in nature into the 

experimental design. Sources of variability must be recognized and 

can often be controlled experimentally, but the true, full picture of 

response measures these variables and their effects on response 

over the range of variability experienced in nature. 



Determining Distance Of Detection Of Resource Cues 

Despite the emergence of foraging behavior as an important area 

of research, little information is available about the maximum 

distance insects are able to detect resources. This lack of 

information may be due at least in part to the difficulty in 

identifying when an insect actually begins to perceive the resource 

cue that results in eventual arrival at the resource. Small, free- 

ranging, fast-moving insects can be extremely difficult if not 

impossible to follow for any length of time. Attempts to confine 

such animals to restricted areas which permit easy observation risk 

altering their behavior in such a way as to invalidate the results 

obtained, and limits the distance over which behaviors can be 

observed. 

Even in the case of a distinct, observable response such as wing 

fanning by male moths in the presence of pheromone, the complexity 

of the question of maximum distance of response to odor cues defies 

easy demonstration. An above-threshold dose of odor molecules may 

elicit a response at whatever distance from the source this dose is 

encountered. The maximum distance of detection may then be the 

maximum distance over which this dose can be delivered. The 

question which naturally follows may then be with what frequency 

and directional consistency does this dose have to be encountered to 

promote eventual arrival at the source? Simply because an odor 

stimulus is detectable at a distance downwind of the source does 

not insure that an insect can successfully navigate to the source of 

that stimulus. 
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In addition to the myriad environmental, biological and 

physiological state parameters influencing foraging behavior, 

variation associated with the resource cue can be an obstacle to 

success. It is often difficult to identify the precise resource cue 

which elicits a response and to standardize cue quality and quantity 

over a number of replicates and experiments. Researchers have 

turned to use of artificial, limited components of the resource cue 

to overcome this obstacle, unfortunately often resulting in 

misleading results (Linn et al. 1987). Especially with odor cues, it 

can be difficult to pinpoint the location of the odor stimulus at any 

distance downwind from the source. 

Most theoretical predictions of the distribution of above¬ 

threshold concentrations of odor molecules (i. e. size of the "active 

space" of the odor stimulus) have used Gaussian plume models which 

average odor concentrations over some interval of time (Sower et al. 

1973, Shapas and Burkholder 1978, Stanley et al. 1985). These 

models have failed validation tests because above-threshold 

instantaneous odor concentrations persist at greater distances than 

those predicted for time-averaged, above-threshold concentrations 

(Elkinton and Carde 1984, Elkinton et al. 1984). Mathematical 

expression of instantaneous concentrations of odor molecules have 

not yet proven accurate or very useful (Murlis et al. 1992). Practical 

solutions such as approximating plume location with smoke (Baker 

and Roelofs 1981, Brady et al. 1990), bubbles (Linn et al. 1987, 

1988), or unipolar ions (Murlis and Jones 1981) have better served 

studies of maximum response distance. 
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Direct Assessment Of Maximum Distance Of Response 

Despite these difficulties, direct determination of at least 

distance of detection if not distance of successful response 

(=arrival at the source) has been achieved in several studies. One 

method has been to observe flight of caged insects in response to a 

resource or resource cues placed at a distance upwind of the cage. 

Hawkes (1974) found that a higher proportion of caged gravid female 

cabbage root fly, Delia radicum flew to the upwind side of the cage 

when brassica plants were 1-15 m away than when plants were 

more distant or when no plants were present. A subsequent 

experiment provided evidence that cabbage root flies fly upwind 

irrespective of the presence or absence of host odor (Finch and 

Skinner 1982), but this report has been contradicted by several more 

recent studies (Nottingham and Coaker 1987, Nottingham 1987a, 

1988, Banks et al. 1988). 

Exposure of caged, female Mexican fruit flies, Anastrepha ludens 

(Loew) (Diptera: Tephritidae) to 100 male-equivalents of pheromone 

in an indoor hallway resulted in increased flight activity and upwind 

movement to a maximum distance of 8 m (Robacker and Moreno 

1988). A lesser distance of response was observed at lower 

pheromone concentrations. 

Eisemann (1988) measured response of caged blowflies, Lucilia 

cuprina (Weidemann) (Diptera: Calliphoridae) to sheep and found that 

significantly more flies responded to a caged flystruck sheep at 20 
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m downwind, and to a caged unstruck sheep at 10 m than to an empty 

control cage. 

Males of many moth species wing fan when they encounter an 

above-threshold dose of pheromone, providing a clear demonstration 

of odor detection (Baker and Roelofs 1981, Elkinton et al. 1984, 

1987, Linn et al. 1987, Collins and Carde 1989b). To determine 

maximum response distance, a pheromone source has been provided 

upwind of male moths held in stationary cages at several distances 

from the source (Elkinton et al. 1987), or in cages carried upwind 

along the pheromone plume (Baker and Roelofs 1981, Linn et al. 

1987, 1991). Oriental fruit moths, Grapholita molesta (Busck) 

(Lepidoptera: Tortricidae) respond to a three-component pheromone 

blend at different distances downwind of the source depending upon 

release rate, with a ten-fold increase in rate resulting in ca. 

doubling of response distance to a maximum of ca. 80 m at 1000 pg 

per septum (Baker and Roelofs 1981). Grapholita molesta males 

responded to the same blend at 60 m (100 pg/septum) when 

temperatures were within 25-28° C, but responded only at shorter 

distances (5-30 m) to incomplete blends, single components, or at 

lower temperatures (19-21° C). Lymantria dispar respond to 

pheromone by wing fanning at distances greater than 120 m from the 

source, but very few arrive at the source from this distance 

(Elkinton et al. 1984, 1987). 

As part of what is perhaps the most complete work to date on 

long distance response of any insect to host plant visual and 

olfactory cues, sexually mature, virgin female Delia antiqua were 
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released in the center of an arena surrounded by dipropyl-disulphide 

baited traps at 25, 50, or 100 m (Judd 1986, Judd and Borden 1988, 

1989). Control releases indicated random takeoff with respect to 

wind direction. A positive anemotactic response was recorded when 

the odor sources were located at all three distances, giving the 

longest distance of response recorded for any insect to host plant 

odor to date. A positive response was not exhibited by mated female 

D. antiqua, suggesting that in this case, host plant odor may have 

been used to locate males and mating sites. 

An important caveat to this work is that Judd used flies from a 

10 yr old lab colony. Results may not be comparable to wild fly 

response. Significant differences in response of wild flies vs. flies 

reared under semi-natural conditions vs. flies under continuous 

laboratory culture have been noted in studies of D. radicum distance 

of response to allylisothiocyanate (Finch and Skinner 1982), Dacus 

dorsalis response to methyl eugenol (Wong et al. 1989), and spruce 

budworm, Choristoneura occidentalis Freeman (Lepidoptera: 

Tortricidae) response to sex pheromone (Sweeney and McLean 1990). 

Indirect Assessment of Maximum Distance of Response 

Several indirect approaches have been suggested for determining 

distance of response in the absence of a marked behavioral change 

when an insect is presented with a stimulus. These approaches, 

including mark-recapture and trap competition studies, yield 

measurements which may have a positive relationship to distance of 
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response, but do not represent the actual distance at which the 

response occurred. 

Mark-recapture trapping experiments have been used to speculate 

on distance of response for a number of species with many different 

attractants and trap types (Maxwell and Parsons 1968, Hawkes 

1974, Coyne et al. 1987, Wall and Perry 1987,. Mason et al. 1990). 

These studies at most determine a sampling range, or the distance 

over which an insect may move within a specified amount of time. 

With this approach, it is not possible to determine the actual 

distance at which the insect perceived and responded to the 

stimulus. Perception and response may have occurred, if at all, at 

any point along the path the insect followed to reach the recapture 

point. 

Mark-recapture data have been fit to random movement models to 

compare expected arrival at a resource patch with observed arrival 

of insects released at varying distances from the patch (Banks et al. 

1988, Harrison 1989). Significantly higher observed arrival has been 

interpreted as indicative of orientation. This approach is fraught 

with possibility for error including disturbance of marked insects, 

incomplete calculation of true arrival, distance-dependent 

mortality, inaccurate model parameters, and a likely asymmetrical 

"absorption" zone within which individuals respond to the patch 

stimuli. This approach cannot determine the distance at which the 

insect responded to cues provided by the patch and can only offer a 

rough estimate of the maximum limit of any possible orientation. 
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The dimensions of the absorption zone are the true representation of 

distance of response. 

Byers et al. (1989) have proposed an effective attraction radius 

(EAR) to represent the average distance of response to attractive 

traps, computed from the ratio of attractant-baited trap captures to 

passive (no attractant) trap catches, and the longitudinal cross 

section (or effective trapping area) of the passive trap. These 

authors failed to consider possible visual responses to the passive 

traps, or odor-mediated visual responses to the odor-batied trap. 

The greatest limitation to this approach in general is that 

theoretically all insects encountering the passive trap are captured, 

yet only those insects which are of the appropriate physiological 

state (age, maturity, degree of deprivation or satiety) to respond to 

the attractant may be captured by the baited trap. Variable 

environmental conditions such as wind speed may also influence 

attractant trap catches disproportionately to passive traps. The 

ratio may be useful primarily as an index to compare relative 

distance of attraction between different times, areas, attractants, 

and insect species. 

Cunningham and Couey (1986) developed distance/response 

curves for Ceratitis capitata response to trimedlure. They released 

marked flies at different distances and directions from a central 

baited trap. The proportion of flies captured was plotted against 

distance of release to determine a probability of recapture. From 

their model, they were able to predict the efficiency of different 
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trap densities used in detection programs, but not actual distance of 

response. 

Trap competition studies have also been used to suggest a range 

of attraction, by determining the maximum distance between traps 

at which competition can be detected. Howell (1983) examined 

competition between traps containing 10 live virgin codling moths, 

Cydia pomonella L. (Lepidoptera: Tortricidae) and blacklight traps. 

Blacklight traps typically catch more male than female codling 

moths. When a blacklight trap was surrounded by 8 traps containing 

virgin females, the ratio changed in favor of females. This 

competitive effect disappeared when the 8 surrounding virgin 

female-baited traps were more than 75-91 m from the blacklight 

trap. Distance of response to the blacklight trap was estimated at 

27-40 m from previous tests, leaving an estimated 35 to 64 m 

drawing range of virgin female baited traps containing 10 females. 

A study of Cydia nigricana (F.) (Lepidoptera: Tortricidae) 

indicated competition among traps when placed in a linear array or 

in a circle around a center trap were 100 m apart (Wall and Perry 

1978, 1980, 1987). The authors suggest a range of attraction equal 

to at least this distance and possibly to 400 m based on these 

results, anecdotal observations of individual moths, and results of 

timed mark-recapture experiments. In a similar study using pine 

beauty moth, Panolis flammea (Denis and Schiffermuller) 

(Lepidoptera: Noctuidae), Bradshaw et al. (1989) placed traps 

releasing pheromone at two different rates in linear arrays with 

inter-trap distances of 1, 5, 20, 50 and 100 m. Apparent competition 
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or interference by low-dose and high-dose traps disappeared 

between 20 and 50 m. 

Dransfield (1984) suggests a maximum distance of response of 

15-20 m for Glossina pallidipes Westwood (Diptera: Glossinidae) to 

biconical visual traps, based on a trap competition study. Dransfield 

also compared captures of flies in traps placed in an open field at 

various distances from a forest edge. The capture of flies in these 

traps was compared to captures expected of flies naturally active in 

the grassland, and captures expected if no flies were active there 

(all coming from the woodland, attracted by the trap). This 

comparison was used to suggest which traps lay within the range of 

attraction, and which were beyond this range, and corroborated 

results of the trap competition study. Tsetse flies have also been 

shown to respond to 0.75 x 0.75 m visual targets from a distance of 

at least 5 m in a separate study which did not examine responses at 

greater distances (Torr 1988). 

Finally, interception trapping of AMF may provide indirect 

evidence of distance of response to artificial host fruit odor. Red, 

spherical traps baited with butyl hexanoate and placed around the 

perimeter of orchard blocks have been used successfully in small- 

scale tests (3 acres or less) to intercept AMF entering commercial 

orchard blocks. These flies originate from unsprayed trees at some 

distance outside the blocks. Effective control, equivalent to that 

obtained with pesticide, has been achieved with traps placed 5 m 

apart in trees around the entire orchard perimeter, but this control 
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breaks down when the inter-trap distance is increased to 10 m 

(Prokopy et ai 1990). 

Response of AMF to Host Plant Cues 

AMF is a serious pest of commercial apples in North America. 

Females oviposit into and larvae develop within the fruit. Pupation 

occurs in the soil. An emerging adult can be faced with a long-range 

search for oviposition sites if (1) it has emerged some distance 

from host trees because the fruit within which it completed larval 

development was carried away from the tree, (2) host trees are not 

fruiting due to a biennial fruiting habit or lack of fruit set due to 

frost or other injury, or (3) fruit is already occupied by 

conspecifics. 

A mark-recapture experiment has indicated that AMF may travel 

at least 1572 m from a release site to apple orchards (Maxwell and 

Parsons 1968). A dispersal study using radio-labeled AMF indicated 

that most AMF released within an abandoned orchard were 

recaptured there, although some flies were recaptured ca. 45 m from 

the marking site (Neilson 1971). 

AMF respond to visual stimuli associated with apple fruit. AMF 

foraging within a host tree find red spheres more frequently and 

more rapidly than green or clear spheres of identical size (Aluja- 

Schunemann 1989). More AMF are trapped on dark-colored spheres 

than on lighter-colored spheres, or on rectangles, cylinders, or cubes 
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(Prokopy 1968). Contrast of fruit against background has a 

substantial effect on fruit apparency, more substantial than fruit 

hue (Owens and Prokopy 1984, 1986). 

AMF have been shown to respond to hue, size, form and 

orientation of host-tree model silhouettes in field studies (Prokopy 

et al. 1973, Moericke et al. 1975). AMF also respond to the spectral 

reflectance characteristics of host tree foliage both from outside 

and within host trees (Prokopy 1968, Prokopy et al. 1973, Owens 

1982, Owens and Prokopy 1986), 

AMF respond to certain volatile compounds given off by ripening 

fruit. In laboratory electro-antennogram and wind tunnel studies, 

fruit volatiles elicited significant EAG responses, directed upwind 

movement, and arrival at the odor source (Fein et al. 1982, Averill et 

al. 1988). In field trapping assays, 2-5 times more AMF are captured 

on traps baited with real (Prokopy et al. 1973, Reissig 1974) or 

artificial host fruit odor (Reissig et al. 1982, 1985). Under direct 

observation in a patch of fruitless host trees permeated with 

artificial host fruit odor, AMF make more upwind flights, leave trees 

sooner, visit more trees per minute, arrive at the edge of the patch, 

and leave the patch sooner than when no host fruit odor is present 

(Aluja and Prokopy 1992). Within a host tree, host fruit odor 

significantly enhances the ability of AMF to find host fruit only 

when fruit are present at very low density or when the visual 

stimulus is weak (e.g. green fruit) (Aluja-Schunemann 1989, Aluja 

et al. 1989). 
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In the following chapters, I report on the maximum distance of 

response of female apple maggot flies to host tree visual and odor 

stimuli. Also examined are several factors which influence this 

distance, including environmental conditions (wind speed and 

direction, temperature, relative humidity), and stimulus 

characteristics (size and color of visual stimuli and release rate of 

odor stimuli). This project was conducted in as natural a setting as 

possible, to mimic the processes occurring in nature. 

31 



CHAPTER 2 

INTERACTION OF VISUAL AND OLFACTORY STIMULI IN DISTANCE OF 

RESPONSE TO HOST TREE MODELS BY FEMALE APPLE MAGGOT FLIES 

Abstract 

Mature female apple maggot flies, Rhagoletis pomonella (Walsh) 

were released individually onto a single potted, fruitless hawthorne 

tree in the center of an open field. This tree was surrounded by four 

1 m2 plywood host tree models painted green or white, with or 

without synthetic host fruit odor (butyl hexanoate), and placed at 

one of several distances from the release tree. Each fly was 

permitted to forage freely on the release tree for up to 1 hour, or 

until it left the tree. Flies left the tree significantly sooner when 

green models with host fruit odor were present at 0.5 m, 1.5, or 2.5 

m distance from the release tree than when these models were 

placed at a greater distance (4.5 m) from the release tree or when no 

models were present. Flies responded detectably to 1m2 models 

without odor up to a maximum distance of 1.5 m. These results 

suggest that female apple maggot flies did not detect green 1m2 

models with odor 4.5 m away or models without odor 2.5 m or more 

away. Flies responded to white models with and without odor to a 

much lesser extent, both in terms of response distance and flight to 

and alightment upon models. 
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Increasing model size to 2 m2 increased the distance at which 

flies responded to green models without odor. Decreasing model size 

to 0.5 m2 reduced fly responsiveness to green or white models. The 

presence of host fruit odor alone, without the visual stimulus of a 

green model, did not influence residence time on the release tree. 
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Introduction 

Over the past 20 years, intensive study of the foraging behavior 

of insects for food and water, shelter, mates and oviposition sites 

has illuminated basic behavioral mechanisms and improved pest 

management strategies. Information sources, tactics, orientation 

mechanisms, resource assessment and utilization, individual and 

environmental variability, and the role of experience have been the 

dominant topics in basic foraging research (reviewed in Hassell and 

Southwood 1978, Finch 1980, Papaj and Rausher 1983, Visser 1988, 

Papaj and Prokopy 1989, Bell 1990). Efforts to describe, model and 

test foraging strategies maximizing proximal success and 

reproductive fitness of the forager have demanded a rigorous, 

comprehensive and quantitative assessment of foraging behavior 

(Pyke 1984, Stephens and Krebs 1986, Houston et al. 1988). 

Pest management techniques have benefited from foraging 

research through proposal and application of efficient trap and 

attractant combinations (Coli et al. 1985, Chenier and Philogene 

1989, Leonhardt et al. 1990, Salom and McLean 1990, Prokopy et al. 

1990, Colvin and Gibson 1992), disruptants and deterrents (Bartell 

1982, Van Steenwyk and Barnett 1987, Miller and Cowles 1990), 

aggregants and attractants (Dickens 1989, Gray and Borden 1989, 

Lewis and Martin 1990), planting schemes designed to foil foraging 

strategies (Perrin and Phillips 1978, Cromartie 1981, Thiery and 

Visser 1986, Nottingham 1987b), and resource characteristics 

artificially altered to disguise quality (Boiler et al. 1987). 
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Despite the attention these issues have received, the maximum 

distance at which resources are detected by foraging insects has 

remained largely undetermined, except for a very few species. 

Distance of response to a pheromone source has been demonstrated 

in convincing fashion for lepidopterans Lymantria dispar (Elkinton 

et al. 1987) and Grapholita molesta (Baker and Roelofs 1981, Linn et 

al. 1987, 1991), to host odor for dipterans Lucilia cuprina 

(Eisemann 1988), Delia antiqua (Judd and Borden 1989), and Delia 

radicum (Hawkes 1974), and to male-produced pheromone for 

female tephritid Anastrepha ludens (Robacker and Moreno 1988). 

Most theoretical predictions of the distribution of above¬ 

threshold concentrations of odor molecules have used Gaussian 

plume models which average odor concentrations over some interval 

of time (Sower et al. 1973, Shapas and Burkholder 1978, Stanley et 

al. 1985). These models have failed validation tests because above¬ 

threshold instantaneous odor concentrations persist at greater 

distances than those predicted for time-averaged, above-threshold 

concentrations (Elkinton and Carde 1984, Elkinton et al. 1984). 

Mathematical expression of instantaneous concentrations of odor 

molecules have not yet proven accurate or very useful (Murlis et al. 

1992). 

Speculation about maximum response distance has been 

generated from absolute density estimates based on trap catches 

(Howell 1983, Dransfield 1984), survey-trap optimum density 

analysis (Cunningham and Couey 1986), trap competition 

experiments (Wall and Perry 1978, 1980, 1987, Tilden et al. 1983, 
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Bradshaw et al. 1989, Byers et al. 1989), mark-recapture dispersal 

studies (Maxwell and Parsons 1968, Coyne et al. 1987, Mason et al. 

1990, Martinson et al. 1989, Harrison 1989), and probability 

estimates for colonization of new crop plantings (Martinson et al. 

1988). These studies have yielded measurements which may be 

positively correlated with distance of response, but do not 

definitively determine the distance at which response occurred. 

The variety of potential mechanisms of detection and response 

available to insects in locating resources requires examination of 

multiple modalities to draw meaningful conclusions from foraging 

studies (Dethier 1947, Kennedy 1978, Bell 1990). Specifically, the 

interaction of visual and olfactory cues has been reviewed (Prokopy 

1986) and reported in subsequent studies (Green 1986, Prokopy et al. 

1987, Nottingham 1988, Tuttle et al. 1988, Torr 1989, Warnes 1989, 

Charlton and Carde 1990, Todd et al. 1990a). Variable resource and 

environmental factors affecting stimulus apparency, and external 

and endogenous influences on insect response, demand careful 

consideration in experimental design, interpretation and analysis 

(Mitchell 1988). 

Tephritid fruit fly foraging behavior (reviewed in Prokopy and 

Roitberg 1989, Fletcher and Prokopy 1991) and in particular the 

behavior of the apple maggot fly, Rhagoletis pomonella (Walsh) (= 

AMF) have been frequent subjects of research (Roitberg et al. 1982, 

Roitberg and Prokopy 1982, 1984, Prokopy and Roitberg 1984, Aluja- 

Schunemann 1989). The economic importance of this major pest of 

commercial apple in North America, and the relative ease of rearing 
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and handling individual AMF in both field and laboratory settings 

have contributed to its popularity as a model organism. 

Roitberg and Prokopy (1982) found that foraging AMF departed 

from host trees sooner when neighboring non-fruiting trees were 

nearby than when trees were further away or absent. This 

relationship was used to determine when neighboring trees were 

beyond the maximum distance of detection, i. e. AMF foraged on a 

host tree as if no trees were nearby. Visual and olfactory cues, air 

temperature, relative humidity, and wind speed were examined for 

influence on the maximum distance of detection of host tree models 

by mature, host-seeking female AMF. 

Materials And Methods 

All experiments were conducted during the summer months of 

1986, 1987 and 1988 in an open 80 x 200 m field surrounded by non¬ 

host trees in Amherst, Massachusetts, USA. Artificial host tree 

mimics and synthetic host fruit odor were used as test stimuli. This 

eliminated natural variability in canopy size, structure, and spectral 

characteristics of reflected and transmitted light of real trees, and 

in release rate and ratio of component compounds of real host fruit. 

These aspects vary both between individual trees and host fruit, and 

within trees and fruit over time, potentially contributing 

substantial error variation to assays using real trees and fruit 

(Averill et al. 1988). 
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A fruitless potted hawthorne (Crataegus mollis var toba , pruned 

to ca. 1.5 m height, 0.75 m dia. canopy with ca. 125 leaves) was 

placed in the center of the open field. This tree was surrounded by 

green or white two-dimensional host tree models, with or without 

synthetic host fruit odor, at one of several distances from the tree 

(Figure 1). White models served as a control for any influence of a 

green model on air movement. Distance to the models was measured 

from the outer branch tips of the tree canopy. A no-model treatment 

served as an additional control and consisted of a vertical 1 cm dia. 

stake with a wire cross-piece at 1.5 m height from which empty or 

odor-filled vials were suspended. 

Tree models were 1 cm thick plywood panels, 0.5, 1, or 2 m2, 

painted with a mixture of oil pigments (83% cadmium yellow, 12% 

Winsor green, and 5% mars black, Winsor and Newton, London) to 

closely match the spectral reflectance pattern of apple foliage 

(Owens 1982). The reverse side was painted with a non-UV 

reflecting white paint (675 White, Kyanize, Everett, Massachusetts). 

Each panel was perforated with 144, 4-cm-dia. holes per m2 to 

approximate light and air penetration through real trees. Panels 

were nailed vertically to an upright white post mounted on a 

movable base such that the center of each panel was 1.5 m above 

ground. 

Two clear polyethelene vials (Andler Israel & Son, Boston, 

Massachusetts) were partially filled with synthetic apple odor, and 

hung at 1.5 m height at the sides of each model. Odor was released at 

a rate of ca. 500 ug per hour, equivalent to about 35,000 unripe or 
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330 ripe McIntosh apples (Carle et al. 1987). In 1986, this odor 

consisted of 6 components of the behaviorally active fraction of the 

volatile blend given off by apples after harvest (Fein et al. 1982, 

Reissig et al. 1985). A subsequent study showed that at least one of 

these components was not present in apples before harvest (Carle et 

al. 1987). Therefore, after 1986, butyl hexanoate, the major 

behaviorally-active component of the volatile blend given off by 

fresh apple and hawthorne fruit, was used alone (Carle et al. 1987). 

Empty vials were used in the no-odor treatments. 

Preliminary tests using artificial "smoke" (TiCl4) confirmed that 

wind moved at least some air across the release tree from vial 

positions regardless of wind direction. The proportion of time this 

was so appeared to decline with increasing distance between the 

models and the release tree. 

Test flies were 14-21 day old females, reared from fruit 

collected in nature and maintained in the laboratory according to 

methods reported in Roitberg et al. (1982). To insure uniformity of 

fly physiological state as much as possible and thus minimize error 

variability in test results, all pre-test experience with fruit was 

standardized. Beginning 48 hours before transport to the field, flies 

were permitted free access to C. mollis fruit for a period of 24 

hours. Immediately prior to testing, each fly was assayed for 

propensity to oviposit (and presumably affirm a host-seeking mode) 

by being offered a single C. mollis fruit. Only those flies which 

oviposited in these assay fruit were used. Each fly was tested only 

once. Treatments were replicated an average of 20 times for a total 
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of 800 trials. Tests were conducted between 0800 to 2000 h (Table 

1), and the daily sequence of treatments was randomized throughout 

the course of the experiment. 

During test days, flies were maintained with food and water in a 

shaded spot 40 m from the test arena. To begin a test, a single fly 

was carefully moved to the release tree while ovipositing in the 

assay fruit and transferred to a leaf at the lower center of the 

canopy as soon as oviposition was complete. For each test, 4 models 

of the same size, color and odor condition were present around the 

release tree at one of the treatment distances (or no models = 

control). 

Each fly was allowed to move freely within the release tree for 

up to one hour. During this time, 2 observers tracked its movement, 

recording number of leaves visited, time elapsed before departure, 

direction of departure over the first ca. 50 cm after leaving the 

tree, and whether or not the departing AMF alighted on a model. 

Wind direction at time of departure was noted by observing wind- 

caused displacement of a feather suspended from a thread within the 

tree canopy. Average wind speed was measured with a cup 

anemometer (Wind-Minder Indicator, Weathermeasure Model W200- 

Sl, Qualimetrics Inc., Sacramento, CA), mounted at 1.5 m height. 

Temperature and humidity were recorded at the beginning and end of 

each trial. All data were collected using a Radio Shack 100 portable 

computer (Tandy Corp., Fort Worth, Texas), and later transferred to a 

Control Data Corp. Cyber 175/730 mainframe at the University of 

Massachusetts Computing Center for statistical analyses. Analyses 
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were performed using BMDP (BMDP Statistical Software Inc., Los 

Angeles). 

Because the data were incomplete or censored (i. e. 10.4 % of 

flies remained on the tree for the full 60 minutes permitted), a 

survival-type regression analysis was performed using BMDP2L 

(Dixon 1985). The effects of covariates model color, distance to 

model, model size, temperature, humidity, and wind speed on 

residence time on the release tree were fit using a Cox proportional 

hazards model. Proportions of AMF flying to and landing on the 

models were compared using logistic regression analysis (BMDPLR). 

Multiple regression (BMDP1R) analysis was applied to analysis of 

take-off flight direction when leaving the release tree in relation to 

wind direction at the time of departure. 

Results 

Environmental parameters air temperature, relative humidity and 

wind speed were highly variable (Table 1), and represented the wide 

range of conditions experienced by foraging AMF in nature. Seventy- 

three per cent of all tests were conducted after noon. 

When no tree models were present, flies remained on the release 

tree for ca. 31 min, regardless of the presence or absence of 

synthetic host fruit odor (Figure 2). Flies left the tree significantly 

sooner when (1) 1 m2 green models with odor were present at 0.5 m, 

1.5 m, or 2.5 m from the release tree, or without odor at 0.5 or 1.5 
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m, (2) 0.5 m2 green models with odor were present at 0.5 or 2.5 m, 

or without odor at 0.5 m, (3) 2 m2 green models with or without 

odor were present at 2.5 m, and (4) 1 m2 white models with or 

without odor were present at 0.5 m. 

Regression analysis indicated that model color and size, the 

presence of odor, and the distance between models and the release 

tree were very highly significant covariates influencing residence 

time on the tree (P < 0.001, Table 2). Air temperature was highly 

significant (P < 0.01), while relative humidity and wind speed were 

not significant. Interactions between odor and color, and between 

distance and size were also tested and found to be insignificant. The 

regression model predicted that an AMF would leave the tree (1) 1.03 

times sooner for each 1 degree increase in air temperature, (2) 1.39 

times sooner when odor was present than when odor was absent, (3) 

1.59 times sooner when green models were present than when white 

models of the same size were present at the same distance, (4) 1.33 

times sooner for each 1 m2 increase in model size, and (5) 0.80 

times sooner (will remain longer) for each 1 m increase in distance 

between the release tree and the models. 

The proportion of AMF landing on models approached 100% when 

green 1 m2 models with or without odor were present at 0.5 m, and 

declined to less than 35% when these models were at 2.5 m distance 

(Figure 3). Lesser proportions of AMF landed on white models at 

these distances. Regression analysis indicated that model color, size 

and distance were very highly significant factors influencing flight 
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to and alightment on models (Table 3). The influence of odor was 

significant (P < 0.05). 

Wind direction at the time AMF left the tree significantly 

influenced the direction AMF left the tree (P < 0.001, Table 4). Model 

color and distance from the release tree and time of day (pre- or 

post-noon) were also significant covariates. 

The number of leaves visited was significantly positively 

correlated with residence time on the tree (r = 0.38 for 550 

observations, P < 0.001). Total time on the tree, wind speed, relative 

humidity, and model size were significant or very highly significant 

covariates affecting number of leaves visited (Table 5). 

Discussion 

AMF foraging on host trees were apparently unable to detect or 

respond to neighboring host tree models beyond 2.5 m distance, 

regardless of size, color, or the presence or absence of synthetic 

host fruit odor. This is a relatively short distance in comparison to 

results of other studies of insect response to odor cues alone. 

Response distance maxima have been reported as at least 100 m for 

Delia antiqua to dipropyl-disulphide baited traps (Judd and Borden 

1989), 15 m for Delia radicum to brassica plants ( Hawkes 1974), 8 

m for Anastrepha ludens to male produced pheromone (Robacker and 

Moreno 1988), and 20 m for Lucilia cuprina to flystruck sheep 

(Eisemann 1988). Response of Lepidoptera to pheromone has been 
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demonstrated up to 80 m for Lymantria dispar (Elkinton et al. 1987) 

and Grapholitha molesta (Baker and Roelofs 1981, Linn et al. 1987, 

1991). 

Results here were remarkably similar to those of Roitberg and 

Prokopy (1982) who found that AMF foraged on a fruitless host tree 

for 32 min when no alternate host trees were nearby (vs. 31 min 

here). They reported a mean within-tree foraging time of 16.4 min 

when fruitless hosts trees (ca. 2 m tall) were 1.6 m distant (vs. 14.9 

min. for 1 m2 green models with odor at 1.5 m distance here), and 

22.1 min when fruitless host trees were 3.2 m distant (vs. 16.6 and 

26.7 min for green 1 m2 models with odor at 2.5 and 4.5 m, 

respectively, here). Roitberg and Prokopy used real trees for 

neighboring hosts, and counted time AMF spent actively foraging and 

not time spent motionless. Here all time on the release tree was 

counted. They did not consider the influence of host fruit odor on 

their results, although their experiments were conducted within a 

fruiting apple orchard with neighboring trees with fruit ca. 15 m 

distant. 

Results here were also similar to those obtained by Aluja and 

Prokopy (1992) who observed AMF foraging in a patch of real 

fruitless host trees spaced 0.6 m apart from one canopy edge to the 

next. They found that on average, AMF left host trees within 5.3 min 

when odor was present, and 8.8 min when odor was absent (vs. 8.9 

min with odor and 11.8 min with no odor associated with 1m models 

at 0.5 m distance here, Figure 2). 
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Roitberg and Prokopy (1982) clearly demonstrated that AMF 

invested less search effort within a tree when alternate foraging 

sites were nearby. Their results fulfilled a prediction of optimal 

foraging theory that foragers should remain in a patch longer as 

travel costs between patches increase (Pyke 1984). Results here 

indicated that in addition to distance from nearby host trees, search 

effort is highly dependent on specific characteristics of nearby host 

trees, including size, color, and the presence of host fruit odor. 

Differences in these characteristics apparently affected the ability 

of AMF to detect the host tree models, and may have also imparted 

information about the potential quality of the nearby host mimic. 

Differences in perceived quality may account for some of the 

differences in response observed here. Expected benefits from higher 

quality resources (e. g. larger size models, fruit odor present) may 

have counterbalanced costs and risks associated with travel from 

the release tree. 

For nearly all models of the same size, color and odor condition, 

response was graduated at distances between 0.5 and 2.5 m (Figure 

2), not simply one residence time when models were apparent, and a 

different residence time equal to the no-model control when models 

were beyond the maximum distance of detection. This graduation 

may have resulted from individual variation among flies in 

perceptual ability or responsiveness. Individual variation in various 

phases of foraging behavior due to genotype, environment, or 

experience has been demonstrated repeatedly .(reviewed in Chapter 

1, Papaj and Rausher 1983, Roitberg 1990). By standardizing adult 
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AMF pre-test environment and experience, these two sources of 

individual variation were hopefully minimized. 

Alternatively or in addition, the relationship between the 

benefits of remaining within a patch and the cost of travel to nearby 

patches may have been continuous rather than discrete. Neighboring 

host tree models of the same type may have presented perceptible 

levels of difference in travel distance and associated risks and 

costs, creating or contributing to the graduated response evident 

here. 

Interaction of odor and visual stimuli. In assays here, host fruit 

odor and host tree visual stimuli acted synergistically. AMF did not 

respond to green 0.5 m2 or 1 m2 models without odor at 2. 5 m 

distance, nor to odor alone at 1.5 m (no model treatment, Figure 2). 

However, the combination of odor and 0.5 m2 or 1 m2 models at 2.5 

m distance elicited a significant response. Synergism between 

visual and odor cues in response to host plant cues has been reported 

for another Dipteran, Delia antiqua (Harris and Miller 1982), and for 

a leafhopper, Dalbulus maidis (Todd et al. 1990a). 

The fact that AMF did not detectably respond to host odor in the 

absence of visual stimuli was an unexpected result. Subsequent work 

(Chapter 3, Aluja and Prokopy 1992) has indicated that AMF were 

able to detect and respond to host fruit odor at a much greater 

distance than found here. Presumably AMF foraging in the presence 

of the no model + odor treatment were able to detect host fruit odor, 

but did not exhibit a discernable response. This lack of response 
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clearly demonstrates the limitation of the current work as a 

definitive assay for distance of host tree stimulus detection. 

Rather, this set of experiments represented Giving Up Time (GUT) 

assays for the maximum distance of response of foraging AMF to 

nearby host tree stimuli. The physiological state of AMF foraging 

among non-host plants for host cues may be one of heightened 

sensitivity to host tree stimuli, and detect and respond to such 

stimuli at a greater distance. Odor cues in particular may be more 

discernable from a distance than visual cues of host vs. non-host 

trees. 

Other studies have demonstrated that AMF foraging within a 

patch of fruitless host trees leave trees sooner, reach the edge of 

the patch sooner, and make more straight flights when host fruit 

odor is present at the edge of the patch than when odor is absent 

(Aluja and Prokopy 1992). The fact that host odor did not generate a 

detectable response in the absence of any visual stimuli here 

suggested that the costs and risks of travel over large open spaces 

remained high and outweighed any influence of odor cues indicating 

the presence of host fruit somewhere in the vicinity. 

A factor not considered in the design of experiments here was 

the distance between odor vials, which varied according to model 

size and distance from the release tree. Additional experiments 

(Chapter 3) have shown distance between odor sources surrounding 

AMF to be critical in determining response distance. In any case, two 

discrete odor sources per model was not representative of a natural 

situation where a tree may have several hundred point sources 
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scattered over its entire silhouette, providing a vertically and 

horizontally diffuse odor plume. Height of odor sources (held 

constant at 1.5 m here) has been shown to influence response in 

several studies (Cuthbert and Peacock 1975, Ono and Ito 1989). 

Influence of color on response. White models were intended as a 

control for the effect of green tree models on air movement between 

the models and the release tree. The significant effect of white 1m2 

models at 0.5 m distance on fly residence time indicated that air 

movement or some other aspect of the white models did influence 

AMF foraging behavior, albeit to a much lesser degree than did green 

models. From most positions within the release tree canopy, the 

background behind all models was dark (woods or grass). White 

models perforated with holes (144, 4 cm dia. holes per m2) may have 

represented sparsely foliated trees (i. e. the inverse image of green 

models). Several studies have confirmed the importance of contrast 

against background in resource location (Owens and Prokopy 1984, 

Allen and Stoffolano 1986). 

Alternatively, perceptible white models may have simply offered 

a landing and perching site for AMF. The availability of such a perch 

may have reduced the costs and risks of travel between patches, 

especially given that AMF do not travel readily across open, grassy 

areas. In previous studies, numbers of AMF captured on sticky- 

coated white tree models were ca. 50% of captures on green models 

(Moericke et. al. 1975), roughly comparable to proportions of AMF 

landing on white vs. green models here (Figure 3). Large white 

rectangles (1.2 x 2.4 m2) with apples captured twice as many AMF as 
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white rectangles without apples (Prokopy et al. 1973), but only 20% 

as many as yellow rectangles with apples. 

Interaction of Stimulus Size and Distance.The 2 m2 model at 2.5 

m, the 1 m2 model at 1.5 m, and the 0.5 m2 model at 0.5 m were 

selected to occupy an approximately equivalent area in the visual 

field of AMF foraging within the release tree canopy (Figure 4). AMF 

responded as if these size/distance combinations were nearly 

equivalent when green models were used with odor. These size and 

distance combinations elicited different responses when odor was 

absent. It is unclear why these disparate results were obtained. The 

experimental design permitted AMF to view the models from many 

vantage points within the release tree, including during occasional 

brief circling or looping flights just outside the canopy diameter. 

Perhaps as foraging time on the tree increased when odor was 

absent, AMF were able to obtain more information and judge the 

size/distance relationship more accurately. 

In previous studies, increasing the size of sticky-coated red or 

yellow rectangles placed in open fields resulted in a proportional 

increase in the numbers of AMF captured per rectangle, but the 

numbers of AMF captured per cm2 decreased with increasing size of 

yellow but not red rectangles (Moericke et al. 1975). Increases in 

ox-mimic size resulted in much greater than proportional increases 

in response by tsetse flies (Plargrove 1980b). An increase, not 

always proportional, in AMF alighting on models with increasing 

model size was noted here for green models with odor at 0.5, 1.5 and 

2.5 m distance, and without odor at 0.5 and 1.5 m (Figure 3). 
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Alightment on Tree Models. The proportion of flies landing on 

models after leaving the release tree did not give accurate 

information about the distance of detection of the model, because no 

information was available as to whether the fly detected the model 

while on the release tree or sometime after leaving it. The 

substantial proportion of AMF alighting on white models (though 

much less than for green models, Figure 3), and the significant 

influence of 1 m2 white models at 0.5 m distance on residence time 

(Figure 2), support the possibility that white models may have at 

least provided intermediate perching sites for AMF if in fact they 

did not elicit a response due to a resemblance to sparsely foliated 

trees. 

Takeoff Direction and Wind Direction at Time of Departure. In 

this study, the presence or absence of synthetic host fruit odor did 

not significantly influence direction of departure from the release 

tree. These result were in contrast to those obtained in subsequent 

studies where takeoff direction of AMF from a platform was random 

in the absence of odor stimuli, but directional in the presence of 

synthetic host fruit odor (Chapter 3, Aluja and Prokopy 1992). 

Glossina spp. (Bursell 1987), Lucilia cuprina (Eisemann 1988), Delia 

antiqua (Judd and Borden 1988), Psila rosae (Nottingham 1987b) and 

D. radicum (Hawkes 1974, Nottingham and Coaker 1987) also made 

more upwind flights in the presence than in the absence of host 

odors. 

Results here were more influenced by other variables. The 

position of the sun in the morning vs. the afternoon (75% of tests 
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were conducted after noon) may have created more or less apparent 

silhouettes for certain model positions. The fact that model color, 

distance to models, and time of day had a greater impact on 

departure direction than did wind direction (Table 4) suggested that 

this may have been the case. Significant deviation from odor- 

mediated upwind flight in the presence of visual targets at different 

distances and orientations has been demonstrated for tsetse flies 

(Torr 1989, Gibson et al. 1991). 

Effect of Wind Speed. Temperature, and Relative Humidity. It was 

surprising that wind speed was not a significant determinant of 

departure time from the tree, especially given the wide range and 

sometimes very high wind speeds experienced over the course of 

this study (Table 1). AMF were often observed crouching low on leaf 

surfaces during wind gusts, and increasing wind speeds resulted in 

significantly fewer leaf visits (Table 5). It was expected that this 

"down time" would be reflected in higher residence times for trials 

during high winds. This finding may have represented (1) continued 

assessment of the release tree and surroundings by AMF during 

wind-caused "down time", (2) an internal, fixed-time GUT clock 

(Roitberg and Prokopy 1984, Prokopy and Roitberg 1989), set upon 

release on the tree and continuing to run during this time, or (3) GUT 

set by an energy expenditure clock rather than a fixed-time clock 

and continuing expenditure of energy during this "down time" to 

maintain position during strong wind gusts, or possibly greater 

energy expenditure per unit time when foraging under higher wind 

speed conditions. High wind speeds significantly slowed rate of 
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departure of alate aphids from host plants in the field or from 

artificial substrates or host plants in the laboratory (Walters and 

Dixon 1984, Bottenberg and Irwin 1991). Departure was delayed but 

not prevented at wind speeds as high as 10 m s_1. 

The significant effect of increasing temperatures, reducing 

residence time (Table 2), was in agreement with non-significant 

trends reported for AMF by Roitberg and Prokopy (1984). However, 

temperature was not significantly correlated with foraging speed 

measured in number of leaves visited per second (r= .00791, NS), nor 

was temperature a significant influence on the total number of 

leaves visited (Table 5). Temperature may have (1) increased 

foraging rates and/or energy expenditure in a way undetected by this 

assay and so speeded up the GUT clock, (2) acted in some other way 

to increase perception of surrounding host tree stimuli, or (3) 

caused AMF to leave the release tree sooner to seek shelter and 

cooler temperatures. Studies of other systems have provided 

evidence that one or more of these possibilities may have occurred. 

Tsetse fly wing beat frequency increased with increasing 

temperatures from 20 to 32 °C (Hargrove 1980a), and a bimodal 

behavioral response resulted. With increasing temperatures, a 

greater proportion of flies became active, but duration of flights 

decreased due to more rapid oxidation of metabolite reserves. 

Oriental fruit moth males responded to an equivalent release rate of 

pheromone blend at twice the distance when temperatures were 25- 

28 °C vs. 19-21 °C, and male specificity of response increased at 

the lower temperature range (Linn et al. 1987). These authors 
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hypothesized that higher temperatures may have increased release 

rates of pheromone, increased body temperatures permitting greater 

levels of sustained flight, and/or altered interactions between 

chemical stimuli and receptors at the peripheral sensory level, 

optimizing response spectra or rates of disadaptation. 

The small but significant influence of relative humidity on 

number of leaves visited (coefficient = -0.23, P (F) < 0.04) is the 

first reported evidence of an effect of moderate humidity levels on 

AMF foraging. The regression model predicted a slight decrease in 

the number of leaves visited with an increase in humidity. 

Nottingham (1987a) demonstrated significantly greater than 

expected trap captures of Delia radicum at 65-70% relative 

humidity, and trap catch increased linearly with increasing 

humidity. 

Dispersal studies have indicated that marked AMF can travel at 

least 1572 m from a release site to apple orchards (Maxwell and 

Parsons 1968), and marked AMF have been captured up to 45 m from 

a release site within an abandoned orchard (Neilson 1971). Although 

results here in no way rule out directed movement over long 

distances, especially to odor cues, AMF foraging on host trees 

exhibit a very limited distance of response (maximum of between 

2.5 and 4.5 m) to neighboring host trees of up to 2 m2 in canopy size. 

For AMF, color, size, distance of nearby tree models and the 

presence or absence of host fruit odor may act alone and/or in 

combination to affect stimulus apparency, and significantly impact 
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GUT and alightment decisions in a continuous fashion. Environmental 

variables temperature, relative humidity, and wind speed and 

direction also affect AMF behavior in quantifiable ways. In light of 

these findings, models of AMF foraging may be improved to increase 

predictability of AMF movements under a broader range of resource 

and environmental conditions. 
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CHAPTER 3 

DISTANCE OF DETECTION OF SYNTHETIC HOST FRUIT ODOR BY FEMALE 

APPLE MAGGOT FLIES 

Abstract 

Distance of detection of a synthetic host fruit odor (butyl 

hexanoate) by mature, wild-origin, female apple maggot flies, 

Rhagoletis pomonella (Walsh), was assessed by measuring rate of fly 

movement and within-cage orientation in 3 experiments, and time 

until take-off and take-off direction in a fourth experiment. Rate of 

movement and upwind orientation (± 22.5°) of individually-caged R. 

pomonella flies increased significantly over no-odor conditions in 

the presence of a stationary point source of butyl hexanoate at a 

distance of 12 m (P < 0.03) in an open grassy field, but not at 24 m. 

Increasing the rate of butyl hexanoate release from ca. 500 ug per 

hour to ca. 6000 ug per hour did not significantly increase distance 

of response or proportion of flies responding. . 

Take-off direction of R. pomonella from a platform in the center 

of a large open field was random with respect to wind direction 

when no host odor stimulus was present. Take-off direction was 

significantly biased upwind (± 67.5°) when 8 evenly spaced butyl 
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hexanoate-filled vials surrounded the release platform in a circle 

with a radius 6 m (P < 0.03), and downwind (± 67.5°) when the same 

number of vials encircled the platform at 12 m (P < 0.01). Similarly, 

take-off direction tended towards upwind when 16 evenly spaced 

butyl hexanoate-filled vials surrounded R. pomonella at a distance of 

12 m (P < 0.10), and was significantly biased downwind at 24 m (P < 

0.01). Time between emerging from a release jar and take-off was 

significantly longer when R. pomonella were surrounded by the 

treatments which elicited downwind flight than when no butyl 

hexanoate was present or when treatments which elicited upwind 

flight were present. 

These results suggest that R. pomonella flies use mechano- 

anemotaxis to orient towards sources of host fruit odor, and are the 

first indication that R. pomonella may fly downwind when 

stimulated by directionally non-specific, low amounts of butyl 

hexanoate. Air temperatures and wind speeds typically experienced 

by AMF in nature significantly influenced rate of movement (P < 

0.006). Relative humidity influenced rate of movement in one 

experiment and upwind orientation in another (P < 0.003). 
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Introduction 

Insects following odor cues to distant resources have developed 

a following of their own, as evidenced by the frequency of reviews 

and theoretical examinations on this topic over the past 20 years 

(Farkas and Shorey 1974, Kennedy 1977, 1986, Finch 1980, Murlis 

and Jones 1981, Bell and Tobin 1982, David et al. 1982, Bell 1984, 

Carde 1984, Sabelis and Schippers 1984, Visser 1986, Murlis et al. 

1992). The strongest attraction in both basic and applied insect 

olfaction research appears to have been towards male response to 

female-produced pheromone in the Lepidoptera (reviewed in Roelofs 

and Carde 1977, Carde and Webster 1981, Bartell 1982, Kennedy 

1983, Baker 1986, Perry and Wall 1986, Ramaswamy 1988, Ridgway 

et. al. 1990). Research on insect response to distant host odor 

sources has been less frequent (reviewed in Finch 1980, Visser 

1986). Much of what has been learned has been gained from studies 

of Coleoptera (Borden et al. 1986, Dickens 1986, 1989, Jermy et al. 

1988, Mitchell 1988, Chenier and Philogene 1989, Dowd and Bartelt 

1991), Lepidoptera (Landolt 1989, Tingle et al. 1989, Phelan et al. 

1991, Mitchell et al. 1991), and Diptera to both animal (Colvin and 

Gibson 1992) and plant host cues (Nottingham 1988, Judd and Borden 

1989, Prokopy and Roitberg 1989, Fletcher and Prokopy 1991). 

Issues pursued in the study of olfactory detection of distant 

resources include the size, shape and behavior of the signal plume 

(Murlis et al. 1992), influence of stimulus, environmental, and 

physiological state variables on odor movement and insect response 
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(Baker and Haynes 1987, 1989, Brady et al. 1990), mechanisms of 

detection and response on the organism and receptor cell level 

(Carde 1986, Bell 1990), the interaction of odor cues with other 

stimuli (Prokopy 1986, Aluja-Schunemann 1989, Judd 1986), and 

applications to pest management (Bartell 1982, Gray and Borden 

1989, Lewis and Martin 1990, Prokopy et al. 1990, Colvin and Gibson 

1992). Proposed optimal strategies for insects locating and 

following odor plumes have generated some controversy, which still 

awaits full resolution (Sabelis and Schippers 1984, Dusenbery 1989, 

1990, Murlis et al. 1992). 

The maximum distance of detection of resource odor cues has 

received comparatively little attention. Convincing evidence of 

distance of detection maxima has been reported for male 

lepidopterans Lymantria dispar (Elkinton et al. 1984, 1987) and 

Grapholita molesta to a pheromone source (Baker and Roelofs 1981, 

Linn et al. 1987, 1991), for dipterans Lucilia cuprina (Eisemann 

1988), Delia antiqua (Judd and Borden 1989), and D. radicum to host 

odor (Hawkes 1974), and for female Anastrepha ludens to male- 

produced pheromone (Robacker and Moreno 1988). Mark-recapture and 

trap competition studies have yielded measurements which may be 

positively correlated with distance of detection, but do not 

definitively determine the distance at which detection occurred 

(Finch and Skinner 1982, Howell 1983, Dransfield 1984, Wall and 

Perry 1987, Martinson et al. 1989, Harrison 1989, Mason et al. 

1990). 
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An above-threshold dose of odor molecules may elicit a 

detectable response at whatever distance from the source this dose 

is encountered. The maximum distance of detection may then be the 

maximum distance over which this dose can be delivered. A second, 

more difficult question to answer is with what frequency and 

directional consistency does this dose have to be encountered to 

promote eventual arrival at the source? 

A large part of the challenge in determining distance of 

detection is to identify when an insect actually begins to perceive a 

resource cue. Small, free-ranging, fast-moving insects are 

extremely difficult if not impossible to follow for any length of 

time or over any distance. Confining such animals to restricted 

areas to permit easy observation risks confounding results by 

altering their behavior, and limits the distance over which behaviors 

can be observed. 

Long and short-range behavioral and electroantennogram 

responses to volatile components of ripening fruit have been 

reported for a number of tephritids (Metcalf et at. 1983, Robacker 

and Garcia 1990, and references in Prokopy and Roitberg 1989, 

Fletcher and Prokopy 1991). These studies have described behavioral 

responses to host fruit chemical cues including changes in rate of 

movement and flight, oriented movement and flight, sustained 

progress towards and eventual arrival and/or landing at the source, 

and feeding at the source. 
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The apple maggot fly, Rhagoletis pomonella (Walsh) (AMF), is a 

major pest of commercial apples in North America and a model 

organism for basic research on host race formation, foraging 

behavior, learning, visual ecology, and female-produced host marking 

pheromone. A female AMF in nature may be faced with a long¬ 

distance search for host trees and fruit beyond the range of visual 

detection when (a) it has been carried some distance away from a 

fruiting host as a larva within its fruit of origin, (b) its tree of 

origin has not fruited due to a biennial habit, frost or disease, (c) 

fruit in its tree of origin were previously parasitized by 

conspecifics. AMF have been reported to travel at least 1572 m to 

host trees (Maxwell and Parsons 1968). 

AMF response to host fruit odor has been demonstrated 

repeatedly. Trap captures of AMF increased due to the presence of 

real fruit odor (Prokopy et al. 1973, Reissig 1974) or synthetic fruit 

odor (Fein et al. 1982, Reissig et al. 1982, 1985, Averill et al. 1988). 

EAG and/or wind tunnel flight responses of AMF have been 

demonstrated to several esters present in ripening or ripe fruit 

(Fein et al. 1982, Averill et al. 1988). Within host trees, when the 

visual stimulus was weak (fruit present at low densities or green), 

AMF found fruit models more rapidly when host odor was present 

than when it was absent (Aluja et al. 1989). Within a patch of 

fruitless host trees permeated with synthetic fruit odor, AMF moved 

faster, left trees sooner, visited more trees per minute, and arrived 

at the edge of the patch sooner than when synthetic host odor was 

absent (Aluja and Prokopy 1992). When the same patch was bordered 
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by a single point source of odor, AMF made more upwind flights and 

arrived at or near the tree harboring the point source with much 

greater frequency than when no odor was present. Distance of 

detection of non-fruiting host trees (Roitberg and Prokopy 1982) or 

host tree models 2-2.5 m in height with or without synthetic host 

fruit odor (Chapter 1) was limited to 2.5-3 m, and of small fruit 

clusters to 40 cm (Roitberg 1985). 

The objectives of the following study were to develop an assay 

for detection of host odor by mature, female AMF in the absence of 

host visual stimuli, determine the maximum distance of detection, 

and examine the effects of environmental variables and varying 

amounts of host odor on response. 

Materials And Methods 

All experiments were conducted at the University of 

Massachusetts during summer months from June of 1986 

(experiment 1) through August of 1989 (experiment 4). Test flies 

were 14-21 day-old females, reared from fruit collected in nature 

and maintained according to methods reported in Roitberg et al. 

(1982). Forty-eight hours prior to testing, AMF were permitted free 

access to Crataegus mollis fruit for oviposition, until 24 hours 

before the test at which time fruit were removed. In experiments 1- 

3, each test fly was offered a single C. mollis fruit immediately 

prior to and after testing. Only those flies which oviposited in both 

these fruit were used. This standardized physiological state by 

61 



affirming that flies were in an oviposition and ideally a host¬ 

seeking mode. Experiments 2-4 were designed in response to results 

of the preceeding experiments. Therefore the rationale behind the 

designs is more fully reported in the results section. 

Experiment 1 was designed to detect changes in rate of 

movement or orientation by caged AMF in response to synthetic host 

odor. At one end of an empty, whitewashed, ca. 10 x 20 m 

greenhouse, a 0.75 m dia. box fan was placed such that the center of 

the fan was 1 m above ground (Figure 5A). Several thicknesses of 

white cheesecloth were suspended in front of the fan to obscure any 

visual stimulus provided by the fan, and to diffuse the air stream 

emanating from the fan. A polyethelene vial (Andler Israel & Son, 

Boston, MA), empty (control) or containing the Fein blend (Fein et al. 

1982) of synthetic host fruit volatiles releasing at ca. 500 ug/hr 

(equivalent to about 35,000 unripe or 330 ripe McIntosh apples, 

Carle et al. 1987) was hung directly in front of the cheesecloth. 

Prior to testing, flies were maintained in a shaded location outside 

the greenhouse. 

For each test, a single female AMF was placed in the center of 

each of two 15 cm dia. spherical wire screen cages, positioned at 1 

m height 1, 2 or 3 m downwind of the fan. Treatments were still 

clean air, moving clean air, or moving odor-filled air at each of the 

three distances. At 5 s intervals over a period of 20 min, two 

observers recorded the position of the fly in the cage (divided into 8 

sections of equal size) and whether the fly was moving (= 

displacement of over one body length per second) or stationary. 
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Temperature and relative humidity (RH) were recorded at the 

beginning and end of each test. Wind speeds at the cages with the fan 

on (moving air treatments) were 0.4, 0.2, and 0.125 m s_1 at 1, 2, 

and 3 m from the fan, respectively. Two exhaust fans were run 

continuously at the far end of the greenhouse to provide ventilation. 

In between replicates, the greenhouse was fully vented for at least 

10 min to clear out BH remaining from the previous treatment. 

Experiments 2, 3 and 4 were conducted in an open ca. 300 x 600 

m field of short grass. Prior to testing, flies were maintained in a 

shaded spot 100 m from the test arena. Results of studies available 

after experiment 1 was completed showed that at least one of the 

components of the Fein blend was not present in apples before 

harvest (Carle et al. 1987), and that butyl hexanoate (a component of 

the Fein blend) was the major behaviorally-active component of the 

volatile blend given off by fresh apple and hawthorne fruit (Averill 

et al. 1988). Butyl hexanoate elicited a similar trap catch to that of 

the Fein blend in field studies (Averill et al. 1988). Therefore, in 

experiments 2-4, butyl hexanoate was used alone. 

The design of experiment 2 provided for continuous or near 

continuous exposure of flies to odor at distances to 5.5 m under 

naturally varying wind speeds and directions. A 4-arm horizontal 

wind vane was constructed with aluminum tubing which rotated 

freely with the wind such that one arm was maintained upwind of a 

central cage continuously (Figure 5B). The cylindrical cage, 1 m 

height x 1 m dia., was constructed with screen side walls and 

wooden floor and ceiling. One or 12 empty or BH-filled vials were 
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mounted on a 50 x 50 cm wire screen and suspended from the upwind 

arm at a 1.5, 3.5, or 5.5 m distance from the outer edge of the cage. 

Screens containing identical numbers of empty vials were suspended 

at the same distance from the other other 3 arms to control for any 

visual response to the screens and vials. 

At the start of each test, a single AMF was released into the 

center of the cage and allowed to acclimate for 5 minutes before the 

treatment screens were put in place. Every 5 s for a total of 15 min, 

an observer recorded the position of the fly within the cage (divided 

into 8 wedge-shaped sections), whether the fly was moving or 

stationary, and the location of the upwind arm relative to the cage 

(i. e. which cage section faced upwind). Wind speed was measured 

continuously with a cup anemometer (Wind-Minder Indicator, 

Weathermeasure Model W200-SI, Qualimetrics Inc., Sacramento, CA). 

Temperature and RH were recorded at the beginning and end of each 

test. 

The design of experiment 3 permitted testing of response at 

greater distances than in the preceeding experiments, using a 

stationary BH source (Figure 5C). At the start of each test, a single 

AMF was placed in the center of each of two cages identical to the 

cage used in experiment 2 and allowed to acclimate for 5 min. A 

screen (1.5 m height x 2 m width) holding 1 or 12 BH-filled vials 

was then positioned 6, 12 or 24 m upwind of the cages (based on the 

prevailing wind direction over the previous 15 minutes). The 

bottoms of both the screen and cages were mounted 0.5 m above 

ground. Twelve empty vials at 6 m upwind served as a control. Fly 
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behavior and environmental parameters were recorded as in 

experiment 2. 

Finally, in experiment 4, take-off direction of individual flies 

released from a central platform surrounded by BH-filled vials or no 

vials (control) was assayed (Figure 5D). Vials were suspended at 1.5 

m height from metal stakes arranged in a circular array around the 

release platform such that regardless of wind, direction, odor would 

have been carried across the platform with a higher frequency than 

if a single source had been used. The actual frequency would have 

been largely dependent upon number of and distance to BH-filled 

vials. Eight stakes and vials were used at 6 or 12 m, 16 at 12 or 24 

m, or 24 at 18 m, maintaining a 4.7 or 9.4 m distance between vials 

along the circumference of the circle. 

On the morning of each test day, 10 female AMF were pre-tested 

as in experiments 1-3 and placed in a 275 ml glass jar fitted with a 

screen top. At the start of a test, the screen top was replaced with 

a paper one with a 2.5 cm dia. hole in the center. The jar was then 

placed on a wooden platform 1.5 m in height in the center of the 

field. Flies were allowed to emerge from the hole until all 10 had 

emerged or for a maximum of 15 minutes. Time of emergence from 

the jar, time and direction of take-off, and wind speed and direction 

at the platform at time of take-off were recorded for each fly. 

Take-off direction was defined as the heading within the first 50 

cm of flight. Wind speed was measured with a hot-wire anemometer 

(AVM 502, Prosser Scientific Instruments, Hadleigh UK). Wind 

direction at time of take off was determined by checking a bird 
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feather wind-vane, mounted horizontally just below the release 

platform on a vertical wire through its shaft. This feather was very 

sensitive to directional shifts of even light winds. AMF which 

emerged from the jar and failed to take-off (< 2%) were not included 

in the analysis. Temperature and relative humidity were recorded at 

the beginning and end of each release. 

Data from each experiment were recorded on a Radio Shack 100 

portable computer (Tandy Corp., Fort Worth, Texas, USA), and later 

transferred to a Control Data Corp. Cyber 175/730 mainframe at the 

University of Massachusetts Computing Center. Statistical analyses 

were performed using BMDP (BMDP Statistical Software Inc., Los 

Angeles, Dixon 1985). Analysis of variance and covariance (BMDP 

P2V) and single degree of freedom contrasts for mean separation 

(BMDP P4V or P7D) were applied to data from experiments 1-4. 

Direction of take-off (experiment 4) was analyzed using logistic 

regression (BMDP PLR). 

Results 

Mean air temperatures, RH, and wind speeds for experiments 2-4 

were similar for all 3 experiments, and represent the range of 

conditions experienced by AMF in nature (Table 6). In all experiments 

using caged AMF (experiments 1-3), AMF spent nearly all of the time 

walking along the cage wall, and very little time in flight, although 

this observation was not quantified. 

In experiment 1, a pre-experiment test in which artificial 

“smoke” (TiCl4) was used in place of host odor indicated that the 
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smoke plume moved in a straight trajectory from the fan to a 

distance of ca. 2.5 m. Beyond 2.5 m, the plume became greatly 

diffused and turned upwards and to one side, precluding tests much 

beyond this distance. 

When the Fein blend of synthetic apple odor was present, AMF 

within the 15 cm dia. cages were moving a significantly greater 

number of times at all three distances than in still air or moving 

clean air (Figure 6A, Table 7). Differences in time AMF were in the 

upwind vs. downwind half of the cages due to treatment were not 

significant, differences between cages were significant for 

orientation only (Figure 6B, Table 7). Temperature and RH had no 

significant effect on movement or position. AMF were in the upper 

half of the cages during 80.3% (± 1.7% S. E.) of all observations, 

regardless of treatment. 

Experiment 2 was designed to test the possibility that the lack 

of an orientation response in experiment 1 may have been influenced 

by cage size, and to test for response at greater distances than 

possible within the greenhouse. Rate of movement was not 

influenced significantly by the presence of BH at any distance (Fig. 

7A, Table 7). Temperature, RH, and wind speed did have a significant 

effect on rate of movement. Overall, AMF were observed moving 

23.8% of the time, less than the 37.9% for AMF in clean air and 55.8% 

for AMF in odor-laden air in experiment 1. AMF were observed a 

significantly greater number of times in the upwind 1/8 of the 1 m 

height x 1 m dia. cylindrical cage when 1 or 12 BH-filled vials were 

continuously upwind than when empty vials were used (Figure 7B). 
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Distance to the vials (1, 3.5, or 5.5 m), number of BH-filled vials (1 

vs. 12), temperature, RH and wind speed had no effect on AMF 

position within the cage (Table 7). 

In experiment 2, the visual distraction of wind-caused motion of 

the screens and cross-arms may have influenced rate of movement 

of AMF, possibly confounding any effect of treatment. Therefore, 

both within-cage orientation and rate of movement were assayed in 

experiment 3 with a stationary odor source. The stationary odor 

source more closely represented conditions experienced by AMF in 

nature and permitted testing at greater distances, desirable due to 

lack of distance effects on orientation in experiment 2. 

Differences in both rate of movement and upwind orientation 

within the cage in the presence vs. absence of BH were detectable 

and significant to 12 m from the stationary odor source (Figure 8). 

No significant response to BH was detected at 24 m. Cage effects, 

cage by treatment interaction, and temperature and wind speed 

significantly influenced rate of movement (Table 7). Differences in 

rate of movement due to the number of BH-filled vials ( 1 vs. 12) 

were significant for cage 1 only. AMF were moving 19.0% of the time 

when odor was absent, and 30.3% when 1 vial was present at 6 m, 

about the same proportionate increase in rate of movement observed 

in experiment 1. 

The effect of RH on time in the 1/8 of the cage facing the odor 

source was significant (P < 0.001). Effects of cage, temperature and 

wind speed were not. The 1/8 of the cage facing the stationary odor 
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source was directly downwind (± 22.5°) of the odor source 60% of 

the time, or near to downwind (± 67.5°) 87% of the time. The 

proportion of time that this was so was not a significant 

determinant of movement, nor of upwind orientation (P < 0.09). 

Finally, experiment 4 was designed to determine if fly response 

could be found at distances greater than detected in experiment 3 by 

increasing the probability of odor contacting test flies through 

spatial arrangement of the odor sources. 

Overall, 43% of AMF loaded into the jars left the jar during the 

15 minutes allowed for each test. Take-off direction of AMF in 

relation to wind direction at time of take-off was significantly 

biased upwind (± 67.5°) when 8 BH-filled vials were present at 6 m 

(Figure 9), with a non-significant trend (P < 0.10) towards upwind 

when 16 vials were present at 12 m. Take-off was significantly 

biased downwind (± 67.5°) when 8 BH-filled vials were present at 

12 m or 16 vials were present at 24 m. The proportion of upwind or 

downwind take-offs within a narrower range (± 22.5°), comparable 

to the specificity of within-cage upwind orientation in experiments 

2 and 3, was not significantly different among treatments (P < 0.08 

for 8 vials at 6 m). Logistic regression analysis yielded odds ratios 

for upwind take-off of 1.14 for each additional BH-filled vial used 

and 0.84 for each 1 m increase in distance to the odor source, over 

no odor controls (Table 8). The odds ratio of 1.14 means 

approximately that with every increase in BH-filled vials used, an 

AMF is 1.14 times more likely to move in an upwind direction. The 

odds ratio for downwind take-off was 0.91 for each additional BH- 
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filled vial used, and 1.13 for each 1 m increase in distance to the 

odor sourcerelative to no-odor controls. Take:off direction became 

progressively less directed upwind as distance to the vials 

increased, even when the number of vials was increased to maintain 

a 4.7 m distance between vials (16 at 12 m, or 24 at 18 m). 

Time between emergence from the release jar and take-off from 

the top of the jar was significantly longer when the release jar was 

surrounded by 8 vials at 12 m (P < 0.003), 16 vials at 24 m (P < 

0.03), or 24 vials at 18 m (P < 0.001) vs. time when no odor was 

present (Figure 9). Time until take-off for 8 vials at 6 m, or 16 vials 

at 12 m was not significantly different than the no odor control. 

Temperature and wind speed were significant covariates (Table 7). 

Discussion 

The significant response to 16 vials of butyl hexanoate at 24 m 

is the greatest distance of detection of synthetic host fruit 

volatiles by AMF reported to date, and is the first experimental 

evidence of downwind flight of AMF in response to low rates of 

synthetic host odor. This distance of detection compares to distance 

maxima of at least 100 m for D. antiqua to dipropyl-disulphide 

(DPDS) baited traps (Judd and Borden 1989), 15 m for D. radicum to 

brassica plants ( Hawkes 1974), 8 m for A.ludens to male produced 

pheromone (Robacker and Moreno 1988), and 20 m for L. cuprina to 

flystruck sheep (Eisemann 1988). Response of Lepidoptera to 

pheromone has been demonstrated to 120 m for L. dispar (Elkinton et 
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a/. 1984, 1987) and G. molesta (Baker and Roelofs 1981, Linn et al. 

1987, 1991). 

Kinetic response. Increased movement of AMF in the presence of 

synthetic host fruit odor was evident in two settings of this study: 

in experiment 1, in which the Fein blend was artificially blown past 

caged AMF continuously at a constant speed and from a constant 

direction for 20 minutes; and in experiment 3, where naturally 

varying wind direction and speed provided intermittent odor stimuli 

to caged AMF over a period of 15 minutes. A greater rate of 

movement for AMF exposed to synthetic host fruit odor was 

consistent with results of previous studies which showed an 

increase in total time spent moving and a greater number of landings 

per min in a wind tunnel in the presence of the Fein blend (Aluja- 

Schunemann 1989), and a greater number of trees visited per minute 

in a patch of fruitless host tress permeated by synthetic host fruit 

odor (Aluja and Prokopy 1992). These authors suggested that 

activation may serve to increase the liklihood of response and 

shorten response time of AMF to odor cues during brief moments of 

time when wind speed and direction are favorable for response. In 

the Diptera, activation in response to host odor has been reported 

for D. radicum (Hawkes and Coaker 1976), Glossina spp. (Bursell 

1984) and to trimedlure for C. capitata (Jones et al. 1981). 

Orientation response. AMF oriented towards the BH source in 3 

settings: experiment 2, in which the odor source was always 

coincident with an upwind direction; experiment 3, in which the odor 

source was coincident with an upwind direction (±22.5°) 60% of the 
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time or a more broadly defined upwind direction (± 67.5°) 87% of the 

time; and in experiment 4, when 8 vials were present at 6 m and the 

odor source was coincident with an upwind direction a variable and 

undetermined amount of time. Upwind orientation of AMF in response 

to host fruit odor was consistent with previous wind tunnel and 

field trapping studies with the Fein blend (Fein et al. 1982, Averill 

et al. 1988, Aluja-Schunemann 1989, Aluja and Prokopy 1992), and 5 

individual esters including butyl hexanoate (Averill et al. 1988). 

In all three situations, AMF were assayed for a response 

generated almost exclusively (experiments 2 and 3) or exclusively 

(experiment 4) while walking or stationary, providing a strong 

indication that AMF used mechano-anemotaxis to identify the 

instantaneous wind direction and orient towards the source of BH. 

Distances tested here were too great for orientation by monitoring 

distance-related changes in concentration (Murlis and Jones 1981). 

Use of mechano-anemotaxis and upwind take-off in the presence of 

nearby synthetic host odor in experiment 4 support the possibility of 

an Maim then shoot", or "series of steps" mechanism of host odor 

source location proposed for AMF by Aluja and Prokopy (1992), for D. 

antiqua by Dindonis and Miller (1980), for D. floralis by Havukkala 

(1987), and for the potato tuberworm moth Phthorimaea operculella 

(Zeller) (Lepidoptera: Gelechiidae) by Ono and Ito (1989). This 

hypothesis describes a process whereby a foraging insect lands 

frequently, turns upwind when stimulated by resource odor, and 

takes off in that direction. Evidence here in no way rules out use by 

AMF of anemotaxis in flight in addition to mechano-anemotaxis from 
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a perch, as has been proposed for D. radicum (Nottingham and Coaker 

1985, 1987, Nottingham 1988) and Glossina spp. (Gibson and Brady 

1988). 

The failure of AMF in small cages (15 cm dia., experiment 1) to 

orient upwind as was observed within larger cages (1 m dia x 1 m 

height, experiments 2 and 3) was consistent with observations of D. 

radicum by Hawkes and Coaker (1976). These authors reported an 

increased rate of movement without upwind orientation by D. 

radicum exposed to host odor in small cages (40 x 30 x 30 cm). 

Upwind orientation was detected in a large wind tunnel (6 x 2.3 x 1.8 

m), and in field experiments using larger, 1 m3 cages (Hawkes 

1974). 

Orientation by AMF towards host odor sources demonstrated in 

this study and in previous studies (Fein et al. 1982, Averill et at 

1988, Aluja-Schunemann 1989, Aluja and Prokopy 1992) appears to 

be subject to much greater variability than male moth response to 

pheromone. In pheromone-response studies, nearly all males exposed 

to a sufficient concentration exhibit a response (Baker and Roelofs 

1981, Elkinton et al. 1984, 1987, Linn et al. 1987, 1991). The 

limitation of orientation response of AMF to host odor to a smaller 

proportion of the test populations may reflect different evolutionary 

pressures on host odor response vs. response to pheromone (Carde 

1986). Evolution has probably favored rapid, accurate response to 

the presence of sex pheromone, as the first male arriving at a 

calling female may have the highest probability of mating and 
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reproducing. Host odors are typically present over a longer period, 

and hosts may not be limited to use by the first arriver. 

Random take-off with respect to wind direction when no odor 

stimulus was present (experiment 4) was consistent with previous 

results for AMF (Aluja and Prokopy 1992), D. antiqua (Judd and 

Borden 1988), D. floralis (Havukkala 1987), and D. radicum 

(Nottingham and Coaker 1985). Glossina spp. take-off in a downwind 

direction in the absence of host odor (Bursell 1987). 

A greater frequency of upwind take-offs when AMF were 

surrounded by a large number of nearby odor sources (8 vials at 6 m) 

was consistent with results obtained in a field permeated with the 

Fein blend (24 vials, 1.3 m apart in a 8 x 8 m square array, Aluja and 

Prokopy 1992). The decline in upwind take-offs beyond 6 m was in 

contrast to response of D. antiqua, which maintain upwind take-off 

when surrounded by 8 dipropyl-disulphide (>0.01 concentration) 

sources at 25, 50 or 100 m. 

Downwind take-off in the presence of lesser numbers of vials 

indicates AMF may use a plume-location strategy suggested as 

optimum for insects under variable wind-direction conditions by 

Sabelis and Schippers (1984, but see Murlis et al. 1992). According 

to these authors, a variation in wind direction of 30° or more will 

favor downwind searching due to minimization of energy expenditure 

per unit distance travelled and a higher probability of contact with 

an odor plume at a location closer to the source. Why AMF took flight 

in a random direction in the absence of any odor stimulus, and 
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downwind only under conditions of lesser amounts of odor is 

unknown. A concentration effect on take-off direction has also been 

noted for D.antiqua. which take-off in an upwind direction when 

surrounded by 0.01 - 10.0 % concentrations of DPDS released from 8 

evenly spaced sources, but cross-wind when at a concentration of 

0.001%. Development of realistic, comprehensive models of optimum 

insect behavior for odor plume location has been hindered by a lack 

of good field evidence (Murlis et at. 1992). 

Latency Response. The significantly increased time between 

emergence from the release jar and take-off when exposed to low 

concentrations of BH in experiment 4 might be termed an arrestment 

response. It is doubtful that AMF were arrested in the typical sense, 

that is a decline or cessation of activity and/or change in rate of 

turning which serves to maintain position within a limited area 

(Kennedy 1978). Perhaps the delay in departure represents extended 

processing time, due to insufficient stimulus for a rapid, conclusive 

response. Increased latencies have also been recorded for male L. 

dispar at lower doses of synthetic pheromone (Carde and Hagaman 

1979). 

Dose Response. An increase in response to increasing doses of 

resource odor has been demonstrated within the range of 

biologically relevant dosages for a number of insects in several 

different orders (Dickens 1986, Landolt 1989, Mitchell et al. 1991, 

Phelan et al. 1991). Among Diptera, responses to increasing doses of 

resource odor include a progressive increase in frequency of flights 

per minute over a 50-fold, 4-step increase in trimedlure 

/ 
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concentration for lab-cultured C. capitata (Jones et al. 1981), an 

increase in upwind flights over a 50-fold, 3 step increase in number 

of brassica plants for D. radicum (Nottingham and Coaker 1985), a 

linear increase in log number of flies caught and log weight of 

livestock attractant for Glossina spp. (Hargrove and Vale 1978, 

Colvin and Gibson 1992), and a non-significant trend towards 

greater trap captures with a 10,000 fold, 5-step increase in DPDS 

for D. antiqua. (Dindonis and Miller 1981). A leveling off of increases 

in response has been reported for higher doses of DPDS for D. antiqua 

(Dindonis and Miller 1981). Repellance by higher dosages of host 

plant compounds have been reported for allyl isothiocyanate in D. 

radicum (Wallbank and Wheatley 1979). EAG, peripheral olfactory 

receptor neuron, and behavioral responses to increasing 

concentrations of resource odor plotted for a number of Lepidoptera 

exhibited common characteristics suggesting that the relationship 

between dose and these responses may operate under some 

principles applicable to insects in general (Mayer et al. 1987). 

Dose-response effects have been reported for AMF and fruit 

volatiles, including apparent decreases in effects at higher rates. 

Red spherical traps baited with 50 or 100 mg of Fein blend captured 

significantly greater numbers of AMF than unbaited spheres or 

baited spheres with 300 mg of blend (Reissig et al. 1982). 

Information on release rates of these doses was not provided. EAG 

response by AMF increased steadily with increasing concentrations 

of propyl hexanoate, a behaviorally-active ester found in the 

headspace of host fruit and a component of the Fein blend (serial 
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dilutions from 103 to 10~3 ug, Averill et al. 1988). No significant 

differences in number of landings by AMF within a wind tunnel were 

found between doses of 18 ug/h and 500 ug/h (Aluja-Schunemann 

1989). 

The only detectable, significant effect of 1 vs. 12 vials here was 

a lack of increased movement by AMF in cage 1 when 12 BH-filled 

vials were used at 6 or 12 m in experiment 3 (Figure 8). The odor 

plume may have been carried into cage 1 with lower frequency vs. 

cage 2. However, the variability in wind direction was much the 

same for both 1 and 12 vial treatments (source directly upwind of 

the cages 58 vs. 62% of the total time), and no difference in 

response between cages was apparent for the 1 vial dose. Another 

possibility was that the odor plume may have been carried into cage 

1 with greater frequency vs. cage 2, and the decrease in response 

over cage 2 represents habituation due to the greater amounts of 

odor when 12 vials were present. This hypothesis is supported by a 

lack of upwind fly orientation suggesting possible repellence by 12 

vials at 6 m for cage 1, and is worthy of further investigation. 

However, rate of movement of AMF within the canopy of a single tree 

did not suggest habituation when Fein blend was released at 8000 

ug/ h (16 vials) vs. no odor, and rates of movement under low and 

high release rates of Fein blend (8 and 500 ug/h) declined over time 

at the same rate in wind tunnel experiments (Aluja-Schunemann 

1989). 

In experiment 4, increasing the total number of vials from 8 to 

16 at 12 m, and thus increasing the total release of volatiles, 
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resulted in an upwind trend to take-off direction. Given results of 

the previous experiments, in which no dose response was evident, 

the additional vials almost certainly had a greater effect due to 

physical distribution decreasing intermittency (= time stimulus is 

absent) at the release platform than to dose or total release rate. 

Environmental variables. In tests here, wind speed caused a 

significant decrease in rate of movement in both experiments 2 and 

3, and a significant increase in time until take-off in experiment 4. 

In wind tunnel assays, an increase in wind speed from 0 or 8 m s'1 

to 1.6 m s"1 resulted in significant downwind movement of AMF, and 

a significant decrease in time spent moving (Aluja-Schunemann 

1989). AMF foraging in fruitless hosts visited significantly fewer 

leaves with increasing wind speeds (Chapter 1), and were often 

observed crouching low on leaves during gusts and crawling under 

leaves during periods of high winds (Chapter 1, Aluja and Prokopy 

1992). High wind speeds have also been reported to slow rate of 

departure of alate aphids from host plants in the field or from 

artificial substrates or host plants in the laboratory (Walters and 

Dixon 1984, Bottenberg and Irwin 1991). Departure was delayed but 

not prevented at wind speeds as high as 10 m s'1. 

Wind speed effects on orientation were not detected under the 

range of wind speeds experienced here, although wind speeds can 

greatly influence directional consistency of plume trajectories 

(David et al. 1982, Brady et al. 1990), and odor concentration 

(Elkinton and Carde 1984). AMF may have avoided movement and 

flight during periods of high wind to avoid being blown from a perch, 
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facilitate control of flight direction, and as protection from the 

desiccating effects of wind. The absence of a significant effect of 

wind speed on orientation in all experiments indicated AMF could 

accomplish directed movement, probably by taking advantage of 

moments of relative calm during windy periods. Wind speeds during 

tests here (max. of 4.5 m s~1) were never sufficiently high to 

preclude all movement during any one replicate. 

Very highly significant temperature effects on rate of movement 

(experiments 2 and 3) and time to take-off (experiment 4) are in 

agreement with previous reports (Chapter 1). As discussed by Linn et 

al. (1991), higher temperatures may have increased release rates of 

the stimulus, increased body temperatures permitting greater levels 

of sustained movement, and/or altered interactions between 

chemical stimuli and receptors at the peripheral sensory level, 

optimizing response spectra or rates of disadaptation. 

Very highly significant and positive relative humidity effects on 

rate of movement (experiment 2) compare to previous reports in 

which numbers of leaves visited decreased slightly with increased 

humidity (Chapter 1). Very highly significant effects of RH on 

orientation (experiment 3) are the first indication of such an effect 

for AMF. D. radicum captures on visual traps in the vicinity of host 

plants increased linearly with increasing humidity levels 

(Nottingham 1987a). 

Odor dispersion and distance of response. Odor plumes vary 

widely in large-scale, small-scale and time-averaged structural 
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characteristics, including size, shape, intermittency, and 

concentration (Murlis et al. 1992). These characteristics are 

determined by wind speed, temperature gradients, habitat, and the 

size, position, release pattern and rate, and the chemistry of the 

odor stimulus. The main result of increasing distance to the odor 

source may be to increase intermittency, primarily due the 

relatively slow expansion of the instantaneous plume as it is 

transported downwind. Any fixed point at greater distances from the 

odor source has a declining probability of lying within the plume 

with greater distance from the source. Murlis et al. (1990) reported 

a systematic increase in intermittency from > 60% at 2.5 m to over 

90% at 20 m. Pockets of high concentration of odor are maintained 

well beyond that distance. By using a directionally-controlled odor 

source in an enclosed space in experiment 1, and by maintaining the 

odor source continuously upwind of the cage in experiment 2, 

intermittency due to plume movement may have been greatly 

reduced. In these experiments, no distance effect on response to 

odor was observed, although distances may have been insufficient 

for such an effect to be apparent. Intermittency may have been 

correlated with the number of times the cages were not directly 

downwind of the odor source in experiment 3, and with distance 

between vials and distance to vials in experiment 4. 

Intermittency may be effectively achieved when concentration 

drops below threshold. The EAG threshold of AMF response to propyl 

hexanoate (another behaviorally-active ester found in the headspace 

of host fruit and a component of the Fein blend) is apparently very 
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small. A 10 -3 ug concentration elicited a response which increased 

through at least 103ug (Averill et al. 1988). The behavioral 

threshold is unknown, but AMF within a wind tunnel spent 

significantly more time moving when exposed to 18 ug/h of Fein 

blend, the lowest release rate tested, over no odor (Aluja- 

Schunemann 1989). 

Mechanism of location of host trees. In an open field here, AMF 

detected and oriented to a single BH source 12 m upwind, and 

detected BH emanating from multiple, surrounding sources 24 m 

distant. The question of the maximum distance AMF can follow and 

successfully arrive at a host odor source remains unanswered. In 

another study, however, Aluja and Prokopy (1992) showed that ca. 

40% of AMF released singly in the center of a 25 m2 patch of host 

trees and observed for up to 1 h located and arrived at a Fein-blend- 

baited host tree positioned 1 m from the edge of the patch. This 

baited tree was positioned without regard to prevailing wind 

direction, in a random direction 3.5 m from the initial fly release 

point, and was 1-5 m from the fly throughout each test. No AMF 

arrived at a similarly positioned non-baited tree. 

The mechanisms by which a particular insect successfully 

responds to odor cues provided by a distant resource are presumably 

dictated by selection for those behaviors most appropriate to the 

characteristics and conditions associated with- that resource cue, 

and presumably, the variability of those characteristics and 

conditions. AMF foraging behavior in relation to location of distant 

host trees may have been selected in habitats occupied by grasses 
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and a variety of densities of shrubs, and also possibly through 

intervening forest. The native host of AMF is the hawthorne, 

Crataegus spp., an intermediate succession plant in northeastern 

North America often accompanied by blackberry, dogwood, 

chokecherry and other plants of densely branched woody structure 

and low height. Because of the profound effect of habitat on odor 

plume movement (Elkinton et al. 1984, 1987, Brady et al. 1990), 

variability in ancestral habitats may have preadapted AMF to exploit 

the even wider variety of habitats within which host trees are now 

found. Untended apple trees are often located within new-growth 

forests. Commercial orchards can be surrounded by forest, shrub or 

grasslands, or urban or suburban development. AMF manage to locate 

these orchards in large numbers, even when sources of immigrating 

flies are greater than 200 m away (Prokopy et al. 1990). 

Hawthorne apparently does not produce attractive volatiles until 

fruit are ripe (August-September), whereas certain apple cultivars 

emit highly attractive compounds 1-2 months prior to ripening 

(Carle et al. 1987). The premature attractiveness of certain apple 

cultivars may have facilitated the initial shift of AMF from 

hawthorne to apple. 

Results here demonstrate that a broad array of closely spaced 

odor sources elicits greater AMF response than a less closely spaced 

array at the same distance. Large acreages of closely spaced 

commercial apple trees may act to provide a wide front of 

continuous odor over a large area downwind of the orchard. The 

practical importance of regulating distance between odor sources 
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has been demonstrated by the effectiveness of interception traps 

(red, spherical traps baited with butyl hexanoate) spaced 5 m apart 

along the perimeters of commercial orchards in controlling crop 

damage due to immigrating AMF, and failure of control when inter¬ 

trap distances are 10 m or more (Prokopy et al. 1990). 

The significant response to a single synthetic component of host 

fruit odor demonstrated here may support the contention of Judd and 

Borden (1989) that host finding is not necessarily dependent upon 

high release rates of complex mixtures of host volatiles, contrary to 

hypotheses of Miller and Strickler (1984) and Finch (1986). However, 

responses measured here were not directly compared to AMF 

response to a more complete blend. A greater rate or distance of 

response may be obtained by the addition of other volatiles, or other 

types of odor. Prokopy (pers. comm.) reports greater trap captures of 

AMF when ammonium carbonate (a food odor) is used in addition to 

butyl hexanoate. 

Finally, most of the behaviors assayed in this study may relate 

best to AMF perched on or walking within a tree. Additional 

experiments examining the response of AMF in flight to host odor vs. 

clean air would be helpful to complete the picture of AMF response 

presented here. 
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I 

Figure 1. Experimental design and overhead view of one 

treatment: 1 m2 models at 1.5 m distance from the release tree. For 

each test, a single fly was released onto the fruitless hawthorne 

tree and exposed to a treatment consisting of four tree models of 

one size (0.5, 1, or 2m2, or no models = control), color (white or 

green), and synthetic host fruit odor condition (present or absent) 

surrounding the release tree at one distance (0.5, 1.5, 2.5, or 4.5 m). 

N=800 flies tested. 
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Figure 2. Mean residence time of AMF on a fruitless hawthorne 

tree surrounded by four green or white tree models of various sizes, 

with or without synthetic host fruit odor, and placed at one of 

several distances from the tree (or no models = control). Single 

degree of freedom contrasts were used to compare treatment means 

to those of the no model control. 
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Figure 3. Proportion of AMF (± S. E.) leaving the release tree and 

flying directly to and landing on the surface of a tree model. The 0.5 

models were present at 0.5, 1.5 or 2.5 m, 1 m2 models at 0.5, 

1.5, 2.5 or 4.5 m, and 2 m2 models at 2.5, 4.5 or 6.5 m. N = 528 flies. 

86 



0.5 1.5 2.5 m 

odor present . A 0 7 , 
r 14.2 ± 3.1 rrnn 

14.9 ± 1.8 

13.7 ± 3.1 

I 0.5 m 

12.7 ±2.5 

22.0 ±3.5 

1 mi 2 m model 

odor absent 25.0 ± 4.1 min 

Figure 4. Average residence time (± S. E.) on the release tree for 

AMF when 0.5 m2 green models were 0.5 m from the release tree or 

1 m2 green models were 1.5 m from the release tree, hypothetically 

creating an image occupying the same area in the visual field of AMF 

foraging on the release tree. 
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Figure 5. Experimental designs (A) Experiment 1. Two 15 cm dia. 

cages were placed 1, 2 or 3 m from a fan within a greenhouse. For 

each test, a single female AMF was placed in each of the cages. The 

location of each AMF and whether it was moving or stationary were 

recorded every 5 s for 20 min per test. Treatments were fan off and 

butyl hexanoate (BH) absent, fan on and BH absent, and fan on and BH 

present. 

(B) Experiment 2. A wind-vane-driven outdoor olfactometer was 

operated in the center of an open field. The wind vane rotated with 

wind, maintaining 12 empty or 1 or 12 BH-filled polyethelene vials 

at end of cross-arm continuously upwind of the single AMF in the 

central cage. Three other cross-arms held empty vials. The central 

cage was divided into 8 equal wedge-shaped sections. Wind 

direction, AMF location and whether the AMF was moving or 

stationary were recorded every 5 s for 15 min per test. 

(C) Experiment 3. Two 1 m height by 1 m dia. cages were 

positioned 0.5 m above ground in the middle of an open field. For 

each test, a single female AMF was placed in each cage. Wind 

direction, AMF location and whether the AMF was moving or 

stationary were recorded every 5 s for 15 min per test. One or 12 

empty or BH-filled vials, mounted on a stationary screen, were 

positioned upwind of the cages. Wind direction was determined by 

observation of flags atop the cages during the 15 min immediately 

preceeding each test. 
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(D) Experiment 4. AMF were released from a glass jar and 

allowed to take off from a platform in the middle of an open field. 

The platform was surrounded at 6, 12, 18, or 24 m by 8, 16, or 24 

BH-filled vials or no vials (control). Direction of take-off and wind 

direction at time of take-off were recorded for each fly. 
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Figure 6. Results, experiment 1. Of 240 total observations per fly 

(one every 5 s for 20 min per replicate), mean number (± S. E.) when 

AMF were (A) moving vs. stationary, and (B) in the upwind half of the 

cage. For each 20 min test, two 15 cm dia. wire screen cages each 

containing a single AMF were positioned 1, 2, or 3 m from a fan and a 

polyethelene vial empty or filled with the Fein blend of synthetic 

host fruit volatiles, within a greenhouse. Treatments were fan off 

and odor absent, fan on and odor absent, or fan on and odor present. 

Repeated measures analysis of variance indicated for (A) effects of 

treatment were significant (P < 0.01)(treatment means not followed 

by the same letter significantly different, single degree of freedom 

contrast test, P < 0.05), effects of distance and differences between 

cages were not significant (P > 0.05), and for (B) effects of 

treatment and distance were not significant, differences between 

cages were significant (P < 0.04). N = 16 flies per treatment at each 

distance. Because of the large number of measurements (240 per 

fly), counts were analyzed rather than proportions. * 
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Figure 7. Results, experiment 2. Of 180 total observations per fly 

(one every 5 s for 15 min), mean number (± S. E.) when individually- 

caged AMF were (A) moving vs. stationary, and (B) in the upwind 1/8 

of the cage. For each 15 minute test, 1 or 12 empty or BH-filled 

polyethelene vials were maintained 1, 3.5 or 5.5 m continuously 

upwind of the central cage. Analysis of variance indicated for (A) 

effects of BH were not significant, and for (B) the presence of BH 

was highly significant (P < 0.005)(treatment means not followed by 

the same letter significantly different, single degree of freedom 

contrasts, P < 0.05). Effects of distance and levels of BH (1 vs. 12 

vials) were not significant. N = 16 flies per treatment at each 

distance. 
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Figure 8. Results, experiment 3. Of 180 total observations per fly 

(one every 5 s for 15 min), mean number (± S. E.) when individually- 

caged AMF were (A) moving vs. stationary, and (B) in the upwind 1/8 

of the cage. For each 15 minute test, 1 or 12 empty or BH-filled 

polyethelene vials were positioned 6, 12, or 24 m upwind of two 

cages. Analysis of variance indicated for (A) differences between 

cages and effects of treatment (BH and distance) were significant, 

and for (B) effects of treatment were significant (P < 0.05). Cage 

means for (A) and odor + distance means for (B) marked by different 

letters were significantly different from no-odor control (single 

degree of freedom contrasts, P < 0.05). Effects of level of odor (1 vs. 

12) differed significantly for number of times moving in cage 1 only 

(P < 0.01). N = 24 flies per treatment at each distance. 
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Figure 9. Results, experiment 4. Mean time (± S. E. ) from leaving 

the jar until take-off, and take-off direction of flies from a 

platform in the center of an open field. The platform was surrounded 

by various numbers of BH-filled vials (or no vials, control) at 

several distances from the platform. Proportions taking off upwind 

(± 67.5°) followed by the same letter are not significantly different 

(logistic regression, P > 0.05). Mean times to take-off with solid 

bars are significantly different than control ( P < 0.03, single degree 

of freedom contrasts on log transformed data adjusted for 

significant covariates temperature and wind speed). N = 242 total 

AMF. 
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Table 1. Environmental conditions and distribution of time of day 

when tests were conducted. Temperature and relative humidity were 

recorded at the beginning and end of each test, and these values 

were averaged to give an individual test mean. Wind speed was 

measured continuously throughout each test. N= 800. 

Variable3 Mean±S. D. Range 

Air temperature 28.0 ± 3.44 °C 19-37 

Relative humidity 35.8 ± 10.62 % 15 - 80 

Wind speed 4.5 ± 2.16 m s'^ 0-11.2 

Time of Dayb 

0800- 1 000- 1200- 1400- 1600- 1 800 

0959 1159 1359 1559 1759 1959 

N of Replicates 4 0 181 197 220 131 31 

% of Total 4.9 22.6 24.6 27.5 16.3 3.8 

a Measured at 1 m height in the center of the open field, 10 m away 

from the release tree, 

b Eastern daylight savings time. 
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Table 2. Cox model proportional hazards regression model 

parameters for residence time of AMF on a fruitless hawthorne tree. 

With each unit change in the value of a covariate, the risk of the AMF 

departing from the tree changes by a factor equivalent to the 

exponent of the coefficient (e. g. for each 1 oq increase in 

temperature, the risk of an AMF departing increases 1.0333 times). 

Coded values for color were 0 (white models) or 1 (green models), 

and for odor were 0 (no odor) or 1 (odor). The effect of wind speed 

and relative humidity on residence time was not significant, these 

were dropped from the model. N = 800 total observations. 

Variable 

Coef¬ 

ficient S. E. P 

Relative 

Risk 

95% C. 1. for 

Rel. Risk 

Temperature 0.033 0.010 < 0.01 1.03 1.01 - 1.05 

Odor 0.330 0.075 < 0.001 1.39 1.20 - 1.61 

Color 0.462 0.076 < 0.001 1.59 1.37 - 1.84 

Size 0.287 0.083 < 0.001 1.3 1.13 - 1.57 

Distance -0.218 0.030 < 0.001 0.80 0.76 - 0.85 
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Table 3. Logistic regression model parameters for proportions of 

AMF flying directly to and landing on tree models. With each unit 

change in the value of a covariate, the odds of an AMF flying to and 

landing on a model changes by a factor aproximately equivalent to 

the exponent of the coefficient (e. g. with each meter increase in 

distance between the release tree and the model, the odds of landing 

on the model decreases by a factor of approximately 0.44). Coded 

values for color were 0 (white models) or 1 (green models), and for 

odor were 0 (no odor) or 1 (odor). The effect of temperature, wind 

speed and relative humidity were not significant and so were 

dropped from the model. N = 800 total observations. 

Coef- Odds 95% C. 1. for 

Variable ficient S. E. P Ratio Odds Ratio 

Odor 0.411 0.210 < 0.05 1.51 0.99 - 2.28 

Color 0.849 0.212 < 0.001 2.34 1.54 - 3.55 

Size 0.861 0.238 < 0.001 2.37 1.48 - 3.78 

Distance - 0.828 0.099 < 0.001 0.44 0.36 - 0.53 

Constant - 0.508 0.273 < 0.08 0.60 0.35 - 1.03 
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Table 4. Statistics for parameters of multiple linear regression 

model predicting direction of AMF leaving the release tree. a 

Variable Coefficient S. E. P 

Wind direction at 

time of departure 0.16 0.035 < 0.001 

Distance -0.21 0.057 < 0.001 

Time of day 

(pre- or post-noon) 0.54 0.235 < 0.02 

Color 0.46 0.216 < 0.04 

Constant 3.72 • 

aOverall F = 11.65 (P < 0.001), d. f. = 550, r2 = 0.071. 
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Table 5. Statistics for parameters of multiple linear regression 
model predicting number of leaves visited by AMF foraging on the 

release tree3 

Variable Coefficient S. E. P (F) 

lotal time on tree 0.01 0.001 P < 0.001 

Wind speed -2.11 0.535 P < 0.001 

Relative humidity -0.23 0.108 P < 0.04 

Model size -3.63 1.684 P < 0.03 

Constant 37.44 

aOverall F = 29.72 (P < 0.001), d. f. = 550, r2 = 0.18. 

104 



Table 6. Environmental conditions when tests were conducted. 

Temperature and relative humidity were recorded at the beginning 

and end of each test, and averaged to give an individual test mean. 

Wind speed was measured continuously throughout each test 

(experiments 2-3), or at time of take-off only (experiment 4). 

Exp. 

Air Temp (°C) 

Mean±S. E. Range 

RH (%) 

Mean±S. E. Range 

Wind Speed (m s_1) 

Mean±S. E. Range 

1 30.2+0.36 23-36 41.7±1.35 20-73 — - - - - 

2 28.8±0.38 20-38 37.7±0.89 19-66 1.2±0.11 0-6.0 

3 29.2±0.38 18-35 44.0±0.64 25-68 1.0±0.03 0.2-2.8 

4 29.6±0.22 23-36 46.0±0.58 30-60 1.0±0.05 0.1-4.5 
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Table 8. Experiment 4, logistic regression model parameters for 

proportions of AMF taking off upwind or downwind (± 67.5°) from a 

platform in the center of an open field. The platform was surrounded 

by a circular array of BH-filled vials, or no vials (control). Vials 

were 4.7 m apart (8 vials at 6 m, 16 vials at 12 m, or 24 at 18 m) or 

9.4 m apart (8 vials at 12 m, 16 at 24 m) along the circumference of 

the circle. The odds of upwind take-off increases approximately 1.14 

times for each additional BH-filled vial used, over no odor controls. 

Coefficients for wind speed, temperature and RH were not 

significant. 

Variable 

Coef¬ 

ficient S. E. P 

Odds 

Ratio 

95% C. 1. for 

Odds Ratio 

UPWIND 

Odor 0.12 0.051 < 0.01 1.14 1.03 - 1.26 

Distance -0.18 0.059 < 0.01 0.83 0.74 - 0.94 

Constant -1.00 0.272 < 0.001 0.37 0.22 - 0.63 

DOWNWIND 

Odor -0.09 0.036 < 0.01 0.91 0.85 - 0.98 

Distance 0.13 0.033 < 0.001 .1.13 1.06 - 1.20 

Constant -0.89 0.251 < 0.001 0.41 0.25 - 0.67 
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