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ABSTRACT 

ESTIMATING THE IMPACT OF PARASITOIDS ON THE DYNAMICS OF 

POPULATIONS OF GYPSY MOTHS 

MAY 1990 

JULI R. GOULD, B.S., CORNELL UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Joseph S. Elkinton 

To estimate the impact of parasitoids, one must be able to accurately 

measure the mortality they cause. I therefore investigated biases associated 

with several methods of calculating stage-specific and time-specific parasitism 

by Cotesia melanoscela. Parasetioena silvestris. and Brachvmeria intermedia. I 

released laboratory-reared gypsy moths into the field to measure the timing of 

oviposition by parasitoids. I determined the timing of emergence of parasitoids 

by collecting naturally occurring gypsy moths. I also monitored the timing of 

host recruitment to and advancement out of the stage(s) that was susceptible to 

parasitism. I found that many of the methods used in previous studies of gypsy 

moth dynamics were affected by overlap of these processes and that several 

methods severely over- or underestimated parasitism. I estimated temperature- 

dependent development of £.. melanoscela for use with the Southwood & 

Jepson method of calculating the number of parasitoids attacking hosts. 

I also studied some effects of superparasitism by P. silvestris. The dispersion 

of eggs of P. silvestris on gypsy moth larvae collected in the field was more 

aggregated when larvae were collected from under burlap bands. This resulted 

in lowered percentage parasitism of hosts collected in this manner. In 

laboratory studies, deposition of more than one egg on a single host 

significantly increased host mortality, but had a negative effect on survival of the 

v i 



immature parasitoid and the size of the puparium produced. 

Experimental manipulations of densities of gypsy moths revealed a strong, 

positive spatially density-dependent reduction in gypsy moth populations. 

Positive density-dependent mortality occurred during the early and mid larval 

stages and was primarily due to Compsilura concinnata. a polyphagous 

parasitoid. Oviposition by P. silvestris. an oligophagous parasitoid, was initially 

inversely density-dependent, but became positively density-dependent during 

the late larval period. I conclude that if populations of gypsy moths increase 

and decrease in density asynchronously on a spatial scale of a few ha, the 

density-dependent responses of parasitoids could suppress the populations to 

a point where small mammal predation would be able to prevent population 

increase. This phenomenon may explain the apparent stability of gypsy moth 

populations on a region-wide basis for the years between outbreaks. 
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CHAPTER 1 

INTRODUCTION 

Gypsy moths, Lvmantria dispar (L.), are not native to North America. They 

were inadvertently released from the home of Etienne Leopold Trouvelot, an 

amateur entomologist residing in Medford, Massachusetts. Only a few 

individuals escaped from Mr. Trouvelot's home in 1868 or 1869, and although 

Mr. Trouvelot alerted the public to the potential dangers, no action was taken to 

find and eliminate the gypsy moths (Forbush & Fernald 1896). For 10 years, 

only those people residing near the Trouvelot home took any notice of the 

gypsy moth. Within 20 years, however, the gypsy moth had spread to 30 towns 

and was causing extensive defoliation. 

North America provided a suitable climate and food supply for the gypsy 

moth, but the complement of natural enemies found in Europe was absent. 

Although some native species (birds, parasitoids, and small mammals) caused 

mortality of gypsy moths, they were unable to prevent outbreaks. Early 

strategies to control gypsy moths did not include importation of natural enemies, 

because efforts were focused on eradication; but in 1904, the federal 

government and the state of Massachusetts joined forces to begin importing 

and releasing such enemies. 

The search for natural enemies was concentrated in Europe, where the strain 

of gypsy moth in North America originated. Between 1905 and 1914, six 

species of parasitoids were successfully established in North America: 

Compsilura concinnata (Meigen) (Diptera: Tachinidae), Blepharipa pratensis 

(Meigen) (Diptera: Tachinidae), Cotesia melanoscela (Ratzeburg) 

(Hymenoptera: Braconidae), Phobocampe disparis (Hymenoptera: 

Ichneumonidae), Anastatus disparis (Viereck) (Hymenoptera: Eupelmidae), and 
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Ooencvrtus kuvanae (Howard) (Hymenoptera: Encyrtidae). Exploration in 

Europe was interrupted by World War I, but continued from 1922-1933. During 

this period two to three more parasitoids were established in North America: 

Parasetigena silvestris (Robineau-Desvoidy) (Diptera: Tachinidae), Exorista 

larvarum (L.) (Diptera: Tachinidae), and possibly Brachymeria intermedia 

(Nees) (Hymenoptera: Chalcididae). Exploration and importation were 

conducted again in the early 1960's, but in spite of extensive efforts, no new 

parasitoids became established. 

In North America, populations of the gypsy moth typically remain at low 

densities for eight to ten years and then increase rapidly to outbreak levels. 

After a few years of defoliation, epizootics of nuclear polyhedrosis virus cause 

the collapse of these populations. Because prevention of outbreaks in areas 

where the gypsy moth is well established is virtually impossible and attempts at 

control are extremely costly, an understanding of the dynamics of this species 

must be gained if there is to be any chance of managing this pest. In particular, 

we must identify the factors responsible for maintaining populations at low 

densities and the reason that they fail in certain years, resulting in outbreaks. 

Campbell and Sloan (1976, 1977, 1978) hypothesized that positively 

density-dependent predation of late-instars and pupae by small mammals, 

especially Peromvscus leucopus. was responsible for maintaining low densities 

of gypsy moths during the years between outbreaks. When the density of gypsy 

moths exceeded some threshold, above which predation by small mammals 

became inversely density-dependent, populations "escaped" to an outbreak 

phase. Recent studies support Campbell's finding that rates of mortality are 

highest during the late instar and pupal stages of the gypsy moth (Elkinton et al. 

1989, Liebhold & Elkinton 1989a) and that much of this mortality is attributable 

to predation by P. leucopus (Elkinton et al. 1989). In spite of much effort, 



however, positive density-dependent predation by £. leucopus has yet to be 

shown conclusively. 

Is it possible that parasitoids play an important role in suppressing or 

regulating populations of gypsy moths? Many researchers (e.g. Ticehurst et al. 

1978, Campbell & Sloan 1977, Campbell et al. 1977, and Reardon 1976) have 

concluded that parasitoids do not cause sufficient mortality to limit the growth of 

gypsy moth populations. Unfortunately, these conclusions were typically based 

on values of percentage parasitism calculated using methods that can result in 

severely biased estimates of levels of parasitism (Gould et al. 1989, Van 

Driesche 1983). Whether or not biases exist in the use of other methods of 

calculating percentage parasitism has not been tested for parasitoids of the 

gypsy moth. Also, levels of parasitism were quite high in some gypsy moth 

populations (Blumenthal et al. 1979, ODell & Godwin 1979, Barbosa et al. 1975, 

and Doane 1971). When one is considering whether or not a natural enemy 

can control its host or prey, however, the critical issue is not necessarily the 

magnitude of mortality, but whether or not the mortality is density-dependent. 

The strength of the density-dependent response may determine the equilibrium 

density of the host (Varley et al. 1973) and whether the host population exhibits 

stability or large fluctuations in density (May 1986). 

To accurately assess the effect of parasitoids on populations of the gypsy 

moth, I had to begin with the basics. How does one obtain unbiased estimates 

of levels of parasitism? Van Driesche (1983) has shown that values of 

percentage parasitism observed in samples collected over time reflect levels of 

parasitism for the stage(s) of the host that is susceptible to parasitism (stage- 

specific parasitism) only in specific instances. In general, samples must be 

collected when all hosts and parasitoids are available for sampling. If either 

hosts or parasitoids are entering (being recruited to) or leaving (advancing out 
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of) the stage of the host that is susceptible to parasitism while samples are 

being collected, values of percentage parasitism in those samples do not 

accurately measure levels of stage-specific parasitism. 

Some other approaches to calculating stage-specific parasitism include 

examination of remains (pupal exuviae in the case of the gypsy moth), using the 

graphical method of Southwood & Jepson (1962) to calculate the number of 

parasitoids attacking susceptible hosts (Bellows et al. 1989), and directly 

measuring the number of hosts and parasitoids that enter the system (Van 

Driesche & Bellows 1988). The first two of these techniques have been used to 

calculate parasitism by gypsy moth parasitoids, but the biases associated with 

these methods, as well as the methods using values of percentage parasitism in 

samples, had not been examined. 

Determining stage-specific parasitism is not the only way of assessing the 

impact of parasitoids. One can also determine the proportion killed during 

certain intervals of time, i.e. time-specific parasitism (Elkinton 1990a). 

Calculation of time-specific mortality eliminates the need to calculate the 

number of individuals entering a stage, which is often difficult. Elkinton (1990a) 

proposed calculating survival from attack by a given agent during short intervals 

of time. Multiplying these survivorships results in the total survival from attack 

by a given agent over the entire interval. Elkinton (1990b) also advocates 

calculating the marginal probability of being killed by a given parasitoid in the 

absence of contemporaneous mortality agents, rather than the number that 

actually die. He presents techniques for calculating the marginal probability of 

being killed based on the number actually observed to die in samples. This 

technique is not, however, without biases (Elkinton 1990b). 

The first goal of my research was to determine which, if any, of the methods 

used to calculate percentage parasitism are appropriate for use with parasitoids 
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of the gypsy moth. Because data on the rate of development of the parasitoid is 

necessary for use of the Southwood & Jepson graphical method, I first 

conducted a laboratory study to determine the temperature-dependent growth 

rate of £. melanoscela. I then released laboratory-reared insects in the field to 

determine the phenology of four processes: (1) recruitment of hosts to the 

stage(s) susceptible to parasitism, (2) advancement of hosts from the 

susceptible stage, (3) recruitment of parasitoids (oviposition), and (4) 

advancement of parasitoids (emergence and death). These data, as well as 

data on rates of mortality of healthy and parasitized gypsy moths, allowed me to 

determine which of the methods of calculating stage-specific or time-specific 

parasitism were appropriate for calculating percentage parasitism by £. 

melanoscela. £. silvestris. and fi. intermedia. 

Once I had identified appropriate methods for calculating levels of parasitism, 

I was able to investigate other aspects of the impact of parasitoids on 

populations of gypsy moths. It has been argued that superparasitism (the 

deposition of more than one egg in a single host) by solitary parasitoids is a 

waste of eggs (Fiske 1910). Superparasitism, according to this viewpoint, 

reduces the effectiveness of the parasitoid as a control agent. It also is 

considered maladaptive from the perspective of the female parasitoid, owing to 

the reduced survivorship of her offspring (Salt 1961). Offspring developing in 

superparasitized hosts may also be smaller or less fecund (King et al. 1976). 

For the above reasons, it has been argued that selection of mechanisms to 

avoid superparasitism should be strong (Van Lenteren 1981, Rogers 1975). 

In recent years, however, a revised view of superparasitism as an alternative 

reproductive strategy that can be advantageous under certain conditions, has 

developed (van Alphen & Visser 1990, Hubbard et al. 1987, Waage 1986, 

Bakker et al. 1985, Cloutier 1984, van Alphen & Nell 1982). For instance, 
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superparasitism may increase the probability of survival of the parasitoid (and 

thus death of the host) if more than one parasitoid is better able to overcome the 

defenses of the host (Beland & King 1976, Puttier 1974, Streams 1971). Also, 

superparasitism may be a better strategy than laying no eggs at all, when hosts 

are scarce or percentage parasitism is high. 

I chose to study superparasitism by the tachinid, E- silvestris. This species 

lays large, macrotype eggs on the integument of the gypsy moth, so the 

distribution of eggs can be studied in the field. Also, superparasitism by this 

species is often reported (e.g. ODell & Godwin 1979, Weseloh 1974, 1976, 

Burgess & Crossman 1929, and Prell 1915), yet usually only a single parasitoid 

emerges (Burgess & Crossman 1929, Prell 1915). I decided to conduct field 

studies of the distribution of eggs of E. silvestris to determine whether 

superparasitism was the result of random opposition or whether some hosts 

were more susceptible to attack than others. I conducted these studies in plots 

with high and low densities of gypsy moths and collected gypsy moths from both 

the general population and from under burlap bands. I hoped to determine if 

the density of hosts or the method of collection affected levels of 

superparasitism, and whether this in turn influenced levels of host mortality. 

The field studies provided information on the occurrence of superparasitism, 

but I also wanted to know the effect of superparasitism on individual hosts. In 

the laboratory, I investigated the effect of an increasing number of eggs per host 

on three parameters: (1) percentage mortality of hosts, (2) probability of survival 

of the offspring of the parasitoid, and (3) size of emerging parasitoids. 

It has been argued that for a parasitoid to regulate its host, the proportion of 

hosts attacked must change with host density in a predictable manner 

(Dempster & Pollard 1986). Some researchers claim to have found positive 

density-dependent parasitism (Furuta 1982, ODell & Godwin 1979, Sisojevic 
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1977, Reardon 1976), and others have found a negative correlation between 

percentage parasitism and host density and/or percentage defoliation 

(Ticehurst et al. 1978, Reardon & Podgwaite 1976, Reardon 1976, Weseloh 

1973). In most of these studies, however, the methods used to estimate host 

density, calculate percentage parasitism, or determine a statistical relationship 

were unsatisfactory. The usual method of assessing whether or not natural 

enemies cause density-dependent mortality has been to follow a population for 

many generations (Varley et al. 1973). For practical reasons, few long-term 

studies have been undertaken. Also, several statistical problems have been 

identified with the methodology (e.g. Pollard et al. 1987, Slade 1977, Bulmer 

1975, Benson 1973). Stochastic variation (Hassell 1985, 1987) or monitoring 

the population on an inappropriate spatial scale (Hassell et al. 1987, Heads & 

Lawton 1983) may obscure underlying density-dependent processes. 

Experimental manipulation of host populations has been proposed as an 

alternative to long term life-table studies (Murdoch & Reeve 1987, Hassell 

1987). I therefore decided to augment populations of gypsy moths to four 

different densities in order to determine whether any of the gypsy moth 

parasitoids cause spatially density-dependent mortality (differential responses 

to different host densities within a generation). In contrast, temporal density 

dependence is differential mortality as host populations change in density 

between generations. Several mathematical models have shown that spatial 

density-dependence can promote population stability. Others (e.g. Dempster & 

Pollard 1986) argue, however, that spatial density dependence alone, without a 

temporal component, cannot regulate a population. The goal of my study was 

not to determine if populations of gypsy moths are regulated, but whether 

parasitoids cause spatially density-dependent mortality. 
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CHAPTER 2 

TEMPERATURE-DEPENDENT GROWTH OF COTESIA MELANOSCELA 

(HYMENOPTERA: BRACONIDAE) 

Introduction 

Cotesia melanoscela (Ratzeburg) is one of the principal parasitoids attacking 

early instar gypsy moths in North America. Estimating the effect of parasitism by 

£. melanoscela and other parasitoids on populations of the gypsy moth is an 

important research goal. Rates of development of Q. melanoscela as a function 

of temperature are needed for simulation models of the effects of this parasitoid 

on the population dynamics of the gypsy moth, Lvmantria dispar (L.). With these 

rates, one can use the "graphical method" of Southwood and Jepson (1962) to 

estimate the number of individuals entering a given stage. This method has 

been extended by Bellows et al. (1989) to estimate the number of parasitoids 

attacking the susceptible stage of the host and has been used by Kolodny- 

Hirsch et al. (1988) to evaluate the impact of sequential releases of Q. 

melanoscela on populations of L dispar. 

Weseloh (1976) has shown that Q. melanoscela is generally capable of 

attacking only first- through third-instar gypsy moths; therefore, this study was 

confined to these instars. I compared the development of parasitoid larvae 

reared in host larvae feeding on oak foliage (as one would find under field 

conditions) with that of larvae reared in hosts feeding on artificial diet 

(conditions that would occur if larvae were collected in the field and reared in 

the laboratory). I also determined the rate of development of parasitoid pupae. 

Developmental rates of pupae would be required for a simulation of population 

dynamics, because the timing of emergence of £. melanoscela adults of the 

8 



second generation in relation to the developmental stage of their host is a 

critical factor in determining the magnitude of the impact of this parasitoid 

(Weseloh 1976). 

Methods and Materials 

Development of Parasitoid Larvae in Hosts Feeding on Foliage 

Gypsy moth egg masses were collected from a moderately dense 

(approximately 200 egg masses per ha) population on Otis Air National Guard 

Base (ANGB), Cape Cod, Massachusetts, in the spring of 1985. Egg masses 

were dehaired and soaked for one hour in a 10% formalin solution (Bell et al. 

1981) to inactivate nuclear polyhedrosis virus (NPV) on the surfaces of the 

eggs. Larvae that hatched from these eggs were placed in groups of ten in 100 

mm diameter petri dishes and reared at 25°C (60% RH and 16:8 L:D) until they 

were ready for parasitization. Larvae were fed black oak (Quercus velutina) 

foliage that was collected from a site on Otis ANGB with few gypsy moths and 

little or no defoliation for the previous 2 yr. The foliage was washed in a 

solution of 4% chlorine bleach and was rinsed with water to prevent infection of 

larvae by NPV. To reduce water loss, the tip of the petiole of each leaf was 

dipped in paraffin and the Petri dish was sealed with Parafilm. Because 

removing leaves from trees could affect levels of secondary plant compounds in 

the leaves, the foliage was replaced daily. 

Parasitoids were obtained by rearing wild gypsy moth larvae collected from a 

moderately dense population on Otis ANGB. Cocoons produced by emerging 

parasitoid larvae were placed in open petri dishes in plexiglas cages (30 by 30 

by 30 cm), and adult parasitoids were allowed to emerge and mate. Water was 

provided on cotton wicks placed in plastic cups (30 ml) with plastic lids, and 

9 



honey was streaked on paper disks (10 cm diameter) which were suspended 

from the tops of the cages. 

Parasitization by £. melanoscela was accomplished by placing 10 host 

larvae on a paper disk (10 cm diameter) and suspending the lid from the top of 

a cage containing parasitoids. The activity of the parasitoids was monitored 

continuously, and host larvae were removed from the cage as soon as an 

oviposition was observed. Late first, second, and third instars that were about to 

molt (the new head capsule was visible beneath the old head capsule) were 

chosen for the study because they were not very mobile and thus easier to 

manipulate during parasitization. 

Parasitized larvae were placed in groups of 10 in Petri dishes (100 mm 

diameter) and placed in incubators at 10,15, 20, 25, 30, 33, or 34° C (60% RH 

and 16:8 L:D). There was a total of eight Petri dishes (no=80) of first instar 

gypsy moths and five dishes (no=50) of both second and third instars at each 

temperature. Host larvae were checked every 24 h (when fresh foliage was 

provided) for parasitoid emergence and host mortality. 

Development of ParasitoidJ,a^ae.iaiiosts Feedinfl.Qn.&diticialJ2ifil 

Gypsy moth eggs were obtained from a laboratory colony at Otis ANGB. Late 

first instars were parasitized in the manner described above and were placed 

individually in plastic cups (30 ml) containing 10 ml of a wheat germ based 

artificial diet (Bell et al. 1981). Fifty cups (no=50) were placed in each incubator 

at 10,15, 20, 25, 30, 32, or 34°C (60% RH and 16:8 L:D). Host larvae were 

checked daily for parasitoid emergence. 

Development of Parasitoid Pupae 

Parasitized third instar hosts were reared at 25°C in groups of 12 in 180 ml 

cups containing 85 ml of artificial diet until parasitoids were about to emerge (as 

determined by the results for developmental rates of parasitoid larvae). Host 



larvae were then transferred individually to empty plastic cups (30 ml). These 

cups were checked every 24 h and were placed in an incubator once a 

parasitoid larva emerged, thereby avoiding disturbance of the parasitoid during 

cocoon formation. Fifty parasitoid pupae per temperature were reared at 15, 20, 

25, 30, 32, 33 or 34° C and checked every 24 h until adults emerged, at which 

time the sex of the adult was recorded. 

Data Analysis 

Developmental rate was regressed on temperature using a linear model and 

the nonlinear models of Logan et al. (1976) and Sharpe & DeMichele (1977). 

Variances were found to be non-heterogeneous (Levene's test; Milliken & 

Johnson 1984), and I corrected for this by weighting each observation by 

1/variance (within each instar and temperature). 

Linear Model. Developmental rates (1/number of days) were regressed on 

temperatures below 32°C (SAS Institute 1987) because higher temperatures 

inhibited development. A test of significance of deviations from the regression 

model (Sokal & Rohlf 1981, pp. 482-483) was performed to determine if the 

data fit a linear model. Analysis of covariance (Sokal & Rohlf 1981) was used to 

test for differences in developmental rates among parasitoid larvae reared in 

three host instars feeding on foliage, differences between first instars reared on 

foliage versus artificial diet, and differences between male versus female 

parasitoid pupae. Partial and overall r2 values also were determined. 

Logan Model. The Logan model (Logan et al. 1976) was fit to values of 

mean rate of development at each temperature which were calculated as: 

Mean developmental rate=1/exp[ln(Dj)/n] 

where Dj is the observed developmental time and n is the sample size. Mean 

developmental rates were calculated in this fashion to correct for the skewed 

frequency distributions of developmental time (Logan et al. 1976). Another 



method of compensating for the skewed frequency distribution would have 

been to take the median value of developmental rate as a measure of central 

tendency as recommended by Wagner et al. (1984a) and Casagrande et al. 

(1987). 

The Logan model is described as: 

r(T)=Phi*[exp(Rho*T)-exp((Rho*Tm)-((Tm-T)/AT))] 

where r(T) is the rate of development at temperature T, T is the temperature in 

°C above a base temperature (Tb) (i.e., the lowest experimental temperature), 

Phi is the rate of temperature-dependent development at Tb , Rho is a 

composite Q*jo value for critical enzyme-catalyzed, biochemical reactions, Tm is 

a thermal maximum (temperature at which life processes can no longer be 

maintained), and AT is the temperature range between developmental maximum 

and Tm Initial estimates of the four parameters of the model were determined 

graphically as described in Logan et al. (1976). Nonlinear regression (SAS 

Institute 1987) was used to fit the model to values of mean developmental rate 

by an iterative, least squares procedure using the Marquardt algorithm. An F 

statistic was then calculated to test the significance of deviations from the 

regression model (Sokal & Rohlf 1981). 

Sharpe & DeMichele Model. The model of Sharpe and DeMichele (1977), as 

modified by Schoolfield et al. (1981), was fitted to values of mean 

developmental rate. The modified six parameter equation is: 

RH025*(T/298.15)*exp[(HA/R)*(1/298.15 - ^^T)] 
r(T) = 

1 + exp[(HL/R)*(1/TL-1/T) + exp[(HH/R)*(1/TH-1/T) , 

where r(T) is the mean development rate at temperature T (°K), R is the 

universal gas constant (1.987 cal degree'1 mole'1), RH025 is the 



developmental rate at 25°C assuming no enzyme inactivation, HA is the 

enthalpy of activation of the reaction that is catalyzed by a rate-controlling 

enzyme, TL is the Kelvin temperature at which the rate-controlling enzyme is 

half active and half low-temperature inactive, HL is the change in enthalpy 

associated with low temperature inactivation of the enzyme, TH is the Kelvin 

temperature at which the rate-controlling enzyme is half active and half high- 

temperature inactive, and HH is the change in enthalpy associated with high- 

temperature inactivation of the enzyme. 

The numerator of the equation describes the temperature-dependent 

developmental rate at moderate temperatures when high- and low-temperature 

inactivation are not important. The first exponential function in the denominator 

accounts for inhibition of development at low temperatures, and the second 

exponential function in the denominator accounts for inhibition at high 

temperatures. I used the computer program of Wagner et al. (1984b), which 

uses SAS procedures (SAS Institute 1987) to evaluate the significance of each 

portion of the equation (and thus to determine the number of parameters to be 

used). The program then determined the starting values of the parameters and 

computed estimates of the parameters with a least-squares procedure using the 

Marquardt algorithm. An F statistic was then calculated to test the significance 

of deviations from the regression model (Sokal & Rohlf 1981). 

Cumulative Weibull Functions. To model the distribution of developmental 

times around the fitted values I used the computer program of Wagner et al. 

(1984a). This program normalizes the distribution of developmental times at 

each temperature by dividing each observation by the median developmental 

time at that temperature, identifies a single curve representative of all 

normalized distributions, and fits a cumulative Weibull function to this curve. 



The form of the Weibull Function is: 

F(x) = 1 - exp(-[(x - gamma)/eta]beta), 

were F(x) is the probability of complete development at normalized time x, and 

gamma, eta, and beta are estimated parameters. 

Environmental Temperature Data 

For three years, I recorded temperatures at permanent study sites on Cape 

Cod, Massachusetts, during the period when gypsy moth larvae were 

parasitized by Q. melanoscela. I used a Campbell Scientific CR21 weather 

station of standard design and measured ambient air temperature at 1 m above 

the ground with a thermistor probe. Temperature was recorded on a Campbell 

Scientific Data Logger as hourly averages of readings taken once per minute. 

Results and Discussion 

Development of Parasitoid Larvae 

Developmental rate increased with temperature to 30°C and then declined 

rapidly to zero at 34°C (Fig. 2.1 A and B), the temperature at which there was 

100% mortality (Table 2.1) for parasitoid larvae reared in hosts of all instars. 

Developmental rate showed a significant linear relationship with temperature 

(Table 2.2) for temperatures <30°C. Analysis of covariance indicated that 

differences in development among parasitoid larvae reared in hosts of different 

instars were statistically significant (£ = 20.499; df = 4, 524; £ <0.001); however, 

considering instars separately accounted for <1% more of the variability than 

did the regression for all instars combined (overall r2 improved from 0.955 to 

0.961). Also, there was no consistent trend in developmental rates among 

instars (Table 2.1). For these reasons and because in some applications of 

these models (i.e., the graphical method of estimating numbers entering the 
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stage) knowledge of the instar in which oviposition occurred is usually not 

available, I present models based on all instars combined as well as separately. 

A statistical improvement also was achieved by fitting separate linear models 

of developmental rates of parasitoids reared in first instar hosts feeding on 

artificial diet versus foliage (£ = 84.717; df = 2, 345; E < 0.001). The differences 

between dietary treatments were more pronounced than for instar treatments, 

and developmental rates in first-instar hosts feeding on artificial diet were 

consistently slower than in hosts feeding on foliage (Table 2.1). The r2 value 

increased from 0.909 for treatments considered together to 0.939 for treatments 

considered separately (partial r2 = 0.329). 

The differences in developmental rates observed for the diet versus the 

foliage treatments could have been because the gypsy moth hosts represented 

different strains (laboratory reared versus wild), but I do not feel that this is likely. 

Casagrande et al. (1987) concluded that there were no consistent differences in 

developmental rates among different populations of wild gypsy moths and that a 

single model was appropriate for describing developmental rate. Also, other 

experiments (unpublished data) indicate that at 25°C the development of first- 

third instar wild gypsy moths (from the same source as those used in this study) 

did not differ from that of the laboratory strain (J. A. Tanner personal 

communication). Although no differences in gypsy moth development have 

been found among gypsy moth strains, substantial differences have been 

observed for development on different host species (Casagrande et al. 1987), 

supporting my hypothesis that differences in parasitoid development were 

caused by differences in host nutrition rather than host strain. 

Differences in developmental rates on foliage versus diet are important to 

consider when estimating the timing of parasitoid emergence from larvae 

collected in the field and those reared in the laboratory on artificial diet. One 

20 



solution would be to rear these larvae on foliage, but this would be quite labor 

intensive and time consuming. A more practical solution would be to collect 

field samples frequently and to rear the hosts on diet only until the next sample 

was taken. This procedure would minimize the error in estimating timing of 

parasitoid emergence caused by effects of rearing the hosts on artificial diet. 

Although the r2 values for the linear models were high, the deviations from 

linear regression were statistically significant (Table 2.2), which indicates that 

nonlinear models might be more appropriate. Both the Logan and the Sharpe 

& DeMichele models (Tables 2.3 & 2.4) had higher r2 values than the 

corresponding linear model, and the deviations from regression were not 

significant. Inclusion of inhibition at higher temperatures significantly improved 

the fit of the Sharpe & DeMichele model for all treatments, but low temperature 

inhibition was not significant. Four parameter models (including high 

temperature inhibition) were therefore used. Both nonlinear models fit well for 

temperatures below 30°C; in fact, there was virtually no difference between the 

models for larvae reared on foliage (Fig. 2.1 A). Figure 2.1 B , however, indicates 

that the Logan model fits the data better, especially at higher temperatures, 

when host larvae were reared on diet. 

Development of Parasitoid Pupae 

The linear relationship between developmental rate of parasitoid pupae and 

temperature also was significant (Table 2.2). The model was improved by 

considering males and females separately (£ = 14.916; df = 2,125; £ < 0.001), 

although the partial r2 value was only 0.193. It was necessary to consider male 

and female pupae separately because only one female pupa survived above 

30°C (Table 2.1). The deviations from linear regression were significant (£ = 

6.510; df = 2,53; R < 0.003 and E = 3.690; df = 3,67; P < 0.016 for female and 

male pupae, respectively). Both nonlinear models had higher i2 values than 
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did the corresponding linear models, and the deviations from regression were 

not significant (Tables 2.3 & 2.4). As with larval development, the Logan model 

appears to fit the data on development of female pupae better than the Sharpe 

& DeMichele model at higher temperatures (Fig. 2.1 C and D). 

Environmental Temperature Data 

Ambient temperatures exceeded 30°C, but not often (9 h in 1984, 8 h in 

1985, and 14 h in 1986); however, the temperature probe was in a shaded, 

ventilated weather station. Lance et al. (1987) showed that when trees are 

defoliated, the internal temperature of gypsy moth larvae is often elevated 2- 

6°C above ambient temperatures. Also, early summer temperatures on Cape 

Cod are lower than those experienced by gypsy moths elsewhere. Thus, 

environmental temperature conditions may necessitate the use of the nonlinear 

models, which predict developmental rate at temperatures above 30°C. 

Nonlinear models also are better predictors of developmental rate at low 

temperatures, because linear models predict developmental thresholds that are 

too high (Hilbert & Logan 1983). The result is that linear models underestimate 

development at low temperatures. In all cases, the nonlinear models predicted 

higher developmental rates than did the linear models for temperatures below 

approximately 15°C (Fig. 2.1). During the period when gypsy moth larvae were 

parasitized by £. melanoscela. temperatures frequently dropped below 15°C. 

Although simple linear models are fairly good predictors of developmental rates 

between 15 and 30°C, environmental temperatures frequently fall outside this 

range. One of the nonlinear models should, therefore, be used to predict 

temperature-dependent development of £. melanoscela. 

Cumulative Weibull Functions 

Parameter estimates of cumulative Weibull functions are given in Table 2.5. 

The i2 values for all treatments were high (Table 2.5), and the curves fit the data 
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well (see Fig. 2.2 for two examples). Using these functions to model the 

distribution of parasitoid development is important in simulation models that are 

used to predict the age structure or frequency distribution of various life stages 

of the parasitoid. 

Applications of the Models 

Weseloh (1976) reared parasitized and non-parasitized hosts under three 

different variable temperature regimes and found that the mean developmental 

rate of Q. melanoscela from egg to adult always was slower than the mean 

developmental rate of gypsy moths from first to fourth instar. Fourth instars 

generally are not suitable as hosts because of their long setae and vigorous 

defensive movements (Weseloh 1976). The second generation of Q. 

melanoscela is thus not well synchronized with the availability of suitable hosts 

(Weseloh 1976). Treating hosts with Bacillus thuringiensis (Bt) retarded 

development of surviving gypsy moths compared with controls, and treated 

hosts were attacked by Q. melanoscela to a greater extent than nontreated 

hosts (Weseloh & Andreadis 1982). This is because the former had not yet 

molted to the fourth instar at the time of parasitoid oviposition (Weseloh et al. 

1983). Wollam & Yendol (1976) found that Bt and Q. melanoscela acted 

synergistically and provided greater foliage protection than either treatment 

alone. If other treatments slowed the development of host larvae, my results 

could be used to predict the timing of the adult stage of Q. melanoscela in 

relation to the host, and the potential impact of the parasitoid on populations of 

gypsy moths. 

Another application of the models would be to predict the occurrence of 

various life stages of Q. melanoscela to minimize the impact of management 

treatments such as pesticides. Q. melanoscela is only susceptible to Dimilin 

during the early stages of its development (Granett & Weseloh 1975), and 
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Granett et al. (1976) suggest that Dimilin sprays to control gypsy moth larval 

populations could be timed to avoid adversely affecting susceptible parasitoids. 

It is likely that adult Q. melanoscela are susceptible to other pesticides and the 

timing of pesticide application could be adjusted to avoid harming adult 

parasitoids. 
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CHAPTER 3 

ASSESSMENT OF POTENTIAL METHODS OF MEASURING PARASITISM BY 

BRACHYMERIA INTERMEDIA (NEES) (HYMENOPTERA: CHALCIDIDAE) 

Introduction 

Brachymeria intermedia (Nees), a solitary endoparasitoid of lepidopteran 

pupae, was first recovered from the gypsy moth in North America in 1965 

(Leonard 1966). It is now found throughout the range of the gypsy moth in the 

northeastern United States, and high levels of parasitism by B. intermedia have 

been reported for some populations (e.g. Doane 1971, J.R.G. & J.S.E. 

unpublished). Brachymeria intermedia is easily reared in the laboratory, 

establishes well after release, and is a candidate for augmentative and 

inundative releases (Leonard 1981, Blumenthal et al. 1981, Blumenthal et al. 

1979). Because of the potential importance of this parasitoid, unbiased 

methods of measuring levels of the parasitism it causes are needed. 

Stage-specific parasitism in this paper is defined as the percentage of those 

hosts entering a stage susceptible to parasitism that are subsequently attacked 

by parasitoids. I will follow the guidelines of Varley et al. (1973) that a host 

cannot be killed more than once and that death is attributable to the first agent 

that attacks. Stage-specific parasitism has been calculated from field data in 

several ways, but these methods do not always provide accurate estimates of 

stage-specific parasitism levels (Van Driesche 1983, Gould et al. 1989 and 

references therein). One method previously used in studies of B. intermedia 

has been to calculate the percentage of parasitized hosts in either a single 

sample or a series of samples (Ticehurst et al. 1978, Reardon 1976, Smilowitz 

& Rhoads 1973, Doane 1971, Leonard 1966, 1967, 1971). Van Driesche 



(1983) has shown, however, that the value of percentage parasitism in a given 

sample reflects the net result of four processes: (1) recruitment of the host to the 

stage that is susceptible to parasitism (2) recruitment of the parasitoid (i.e. 

oviposition), (3) advancement of the host out of the susceptible stage through 

death or molting, and (4) advancement of the parasitoid out of the host through 

death or emergence. The value of percentage parasitism in a single sample 

accurately estimates stage-specific parasitism only if all hosts have entered the 

stage of interest, all parasitoid oviposition is complete, and no hosts (parasitized 

or healthy) have been lost to death or molting to the next stage (Van Driesche 

1983). 

In some systems, evidence of the presence of the host (galls, mines, exuviae, 

etc.) remains after hosts have either died or advanced to the next life-stage. If 

the fate of these hosts can be determined by examination of the remains, 

percentage parasitism can be calculated by examining a single sample at the 

end of the host generation and determining the percentage of hosts from which 

a parasitoid emerged (Van Driesche 1983). Using this approach, samples of 

pupal exuviae collected at the end of the generation have been used to 

measure levels of parasitism of gypsy moth pupae by B. intermedia (Leonard 

1966, Doane 1971). Predation, however, destroys all evidence that a particular 

host had become parasitized prior to being consumed. If levels of predation on 

parasitized and healthy hosts differ, examination of pupal exuviae does not 

accurately estimate stage-specific parasitism (Varley et al. 1973). 

A third method of estimating stage-specific parasitism is direct measurement 

of host and parasitoid recruitment (Van Driesche & Bellows 1988). This method 

is unaffected by the timing of host and parasitoid recruitment to and 

advancement out of the sampled stages or by subsequent mortality of healthy or 

parasitized hosts. Values of percentage parasitism are calculated by dividing 
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the number of hosts that become parasitized by the number of hosts that enter 

the susceptible stage. If the biologies of the species involved are such that 

techniques can be devised to measure host and parasitoid recruitment, this 

method provides an unbiased estimate of stage-specific parasitism (Van 

Driesche & Bellows 1988). 

This study was designed to compare the estimates of parasitism of gypsy 

moth pupae by fi. intermedia provided by three methods (peak sample 

percentage parasitism, examination of exuviae, and direct assessment of host 

and parasitoid recruitment). The timing of host and parasitoid recruitment to 

and advancement out of the pupal stage of the gypsy moth were measured in 

the field to determine if peak sample percentage parasitism would reflect stage- 

specific parasitism. I also investigated the possibility that predation of 

parasitized and healthy pupae would differ and would thus bias estimates of 

parasitism based on examination of exuviae. Lastly, the feasibility of directly 

measuring recruitment of hosts and parasitoids was determined. 

Methods and Materials 

Description of Field Site 

The study was conducted between 10 July and 18 August, 1986 near Otis Air 

National Guard Base in Falmouth, Massachusetts, a site dominated by oak, 

Quercus spp (a favored food of the gypsy moth). The density of gypsy moths at 

the study site was extremely high, and ca. 70% defoliation of the oak trees had 

occurred by the beginning of the study. The study plot measured 120 m X 50 m 

and had a 17 X 9 grid of sampling points (7 m between columns and 5 m 

between rows). The oak tree closest to each sampling point was numbered, 

and trees for the various sampling regimes were selected at random from the 



153 sampling trees. Some gypsy moths had pupated prior to the beginning of 

sampling. The density of gypsy moth pupae and percentage parasitism of those 

pupae present at the beginning of the study were determined and used as 

starting values for calculating total numbers of hosts and parasitoids recruited. 

Description of Sampling Regimes 

Three types of observations of gypsy moth pupae were made: (1) 

semiweekly collections of field pupae to estimate values of sample percentage 

parasitism and the timing of host and parasitoid advancement, (2) repeated 

examination of sample trees and marking of field pupae to estimate recruitment 

of hosts to the pupal stage, and (3) exposure of in sectary-re a red pupae to 

estimate recruitment of parasitoids. In all cases, the sampling units were the 

trunk and branches of sampling trees between 0 and 3 m above the ground. 

Because the sizes of the trees differed, the diameters of the trees at breast 

height were measured and parameters are expressed as numbers per m2 of 

trunk surface. 

Collection of Pupae in the Field. Twice each week I collected 30 gypsy moth 

pupae from each of ten sample trees (n=300). Trees were never sampled more 

than once. Pupae that showed evidence of parasitoid emergence, adult gypsy 

moth emergence, or predation were not collected. The pupae were placed in 

30 ml plastic cups containing tissue paper, reared in an outdoor insectary, and 

checked daily for emergence of adult gypsy moths or parasitoids. Dead hosts 

from which no parasitoids emerged were dissected, and those containing a £. 

intermedia pupa were considered parasitized by f3. intermedia. The percentage 

of pupae that died or advanced to the adult stage prior to the next sampling 

occasion and the total percentage of pupae that died or advanced to the adult 

stage were calculated for each sample. 



Repeated Examination of Sample Trees. At the beginning of the study, all the 

gypsy moth pupae found on 30 permanently tagged sample trees were marked 

with a dot of acrylic paint on the tip of the abdomen. A dot of paint was also 

placed on the tree next to each pupa. Every 3-4 days I returned and marked all 

new pupae that had appeared on the same trees (i.e. were recruited) since the 

previous sample occasion. After emergence of adult £. intermedia and gypsy 

moths was complete, the fates of all pupae were determined. 

Exposure of Reared Pupae as Trap-Hosts. Recruitment of B. intermedia 

(through oviposition) was measured by placing unparasitized gypsy moth 

pupae in the field as trap-hosts for short intervals of time. To rear pupae for use 

as trap-hosts, egg masses of gypsy moths were collected from a moderately 

dense population of gypsy moths in Falmouth, Massachusetts in the spring of 

1986. These masses were soaked for 1 h in an aqueous solution of 3.7% 

formaldehyde to destroy nuclear polyhedrosis virus (NPV) particles on the 

outside of the eggs and were rinsed for 1 h with water (Bell et al. 1981). Gypsy 

moth larvae hatched from these egg masses in cages (1 by 1 by 1 m), which 

had wooden frames, floors, and roofs. The cages were covered with screening 

(mesh size = 0.5 mm) to prevent parasitoid attack prior to exposure of trap-hosts 

in the field. 

Trap-host larvae were fed black oak. Quercus velutina Lam., collected from 

an area with a low density of gypsy moths. This was done because host 

kairomones are important for host acceptance by £. intermedia females 

(Leonard et al. 1975, Tucker & Leonard 1977, Carde & Lee 1990), and it is not 

known whether gypsy moths reared on artificial diet produce natural kinds or 

levels of kairomones. The branches of foliage were soaked for 1 h in a 4% 

solution of sodium hypochlorite to kill NPV and were then rinsed with water. 

Branches of foliage were placed in 4 liter jars of water equipped with foam 



stoppers (to prevent water loss and drowning of larvae) and were replaced with 

fresh foliage every two to three days. Larvae were transferred with camel’s-hair 

brushes to new foliage at each change. 

When the gypsy moth larvae were about to pupate, small oak twigs with 

leaves were placed on the bottom of the cages. Larvae spun webs of silk 

around these leaves and pupated in the webbing. Only larvae that pupated in 

the webs and were hence properly positioned to exert natural host defensive 

movements (Rothery & Barbosa 1984) were used as trap-hosts. On each 

sampling occasion, twigs containing a total of ten pupae were stapled to each of 

ten sample trees (n=100), using different trees on each occasion. Ten naturally 

occurring pupae were removed from each tree so that pupal density would not 

be altered. A dot of paint was placed on the tips of the abdomens of all trap- 

host pupae so that they could be distinguished from pupae of naturally 

occurring gypsy moths that used the twigs as pupation sites. Three to four days 

after the release, trap-host pupae were collected and placed in 30 ml plastic 

cups, containing pieces of tissue paper. The pupae were reared in an outdoor 

insectary and were checked daily for emergence of £. intermedia. 

Calculation of Host and Parasitoid Recruitment and Advancement 

Host Recruitment. Recruitment of hosts during interval i (HRj) equalled the 

number of new pupae per m^ of trunk surface that appeared on the thirty 

sample trees during the interval. An interval consisted of the three to four days 

between sampling occasions. The total number of gypsy moths that were 

recruited over n intervals to the pupal stage (HR) was calculated as: 

n 
HR = H0 + X HR; 

i=1 
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where Hq is the number of pupae per m2 present at the beginning of the 

experiment, HRj is the number of pupae per m2 recruited during interval (i), and 

n = 9. 

Parasitoid Recruitment. Recruitment of the parasitoid, £. intermedia during a 

given interval (PRj) was calculated as: 

PRj = PTHj * {[(GMPj * (1-Hlj)) + (GMPi+1 * (1-Hi+1))]/2} 

where PTHj is the proportion of trap-hosts parasitized by B. intermedia during 

interval (i), GMPj is the number of gypsy moth pupae per m2 present at the 

beginning of interval (i), and HI,- is the proportion of hosts infected by disease or 

parasitoids at the beginning of interval (i). The term 1-HI was used to denote 

the proportion of hosts that were not already infected by parasitoids or disease. 

Mortality of these hosts would be attributed to the first agent that attacked 

(Varley et al. 1973). The proportion of pupae infected by parasitoids or disease 

(Hlj) was calculated by collecting and rearing samples of pupae. Because 

hosts were both being recruited and advancing during the intervals when 

parasitism was occurring, the number of hosts available for attack by Q.. 

intermedia during the interval was taken to be the average of the number of 

healthy hosts at times (i) and (i + 1). 

The number of gypsy moth pupae present, GMPj, was estimated by first 

summing the number of hosts recruited (HRj) over all previous intervals and 

then subtracting the total number of hosts that had been killed by predators, 

advanced to the adult stage, or died prior to the beginning of the interval. The 

total percentage of pupae consumed by predators was estimated at the end of 

the experiment by examination of exuviae. The total number of pupae per m2 

consumed by predators was divided equally among intervals. A constant 

number of pupae consumed was used instead of a constant rate of predation 



because it was felt that at the extremely high densities of gypsy moths in the 

plot, predators would be saturated. 

The total number of g. intermedia recruited during the pupal stage of the host 

(PR) was calculated as: 

n 
PR = Po +X PRi 

i=1 

where Pq is the number of pupae per m2 parasitized by B. intermedia at the 

beginning of the experiment, PRj is the number of B. intermedia per m2 

recruited during interval (i), and n = 9. 

Host and Parasitoid Advancement. Advancement of hosts out of the pupal 

stage occurred when pupae died (due to disease, predation, or emergence of 

other parasitoid species) or when adults emerged. Advancement of g. 

intermedia was in the form of emergence of adult parasitoids or predation of 

pupae parasitized by g. intermedia. Because the temperature conditions of the 

insectary were somewhat different from those in the field plot, and I was 

interested in the timing of emergence under natural conditions, I only monitored 

emergence of hosts and parasitoids for 3-4 days after pupae were brought to 

the insectary. I calculated the proportion of pupae in sample (i) that died or 

emerged prior to sample (i + 1). I then monitored emergence from pupae in 

sample (i + 1), and so on, for (i) = 1 to 9. 

The number of hosts not parasitized by B. intermedia (I will call them non- 

parasitized hosts) advancing during a given interval (HAj) was calculated as: 

HAj = (PHAj * Hj) + HPj 

where PHAj is the proportion of non-parasitized hosts in sample (i) that advance 

prior to (i + 1), Hj is the number of non-parasitized hosts per m2 present at the 
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beginning of interval (i), and HP; is the number of nonparasitized hosts per m2 

that are consumed by predators during interval (i). 

The number of B. intermedia advancing during a given interval (PAj) was 

similarly calculated as: 

PAj = (PPAj# PHj) + PPj 

where PPAj is the proportion of hosts collected at the beginning of interval (i) 

from which B. intermedia emerged prior to the beginning of interval (i + 1), PHj 

is the number of hosts per m2 parasitized by £. intermedia at the beginning of 

interval (i), and PPj is the number of hosts per m2 parasitized by B. intermedia 

that are consumed by predators during interval (i). 

Methods of Estimating Percentage Parasitism 

Peak Sample Percentage Parasitism. Pupae that had been collected in the 

field were kept in the insectary until all pupae had either died or emerged as 

adults. Percentage parasitism in the sample taken at the beginning of interval 

(i) (% PA) was calculated as: 

% PA = PHj / PTj 

where PTj is the number of hosts in sample i parasitized by B. intermedia and 

THj is the total number of hosts collected. Values of sample percentage 

parasitism were graphed and the peak value was determined. 

Examination of Exuviae. Gypsy moth pupae that had been marked with paint 

as they were recruited were examined after all mortality and adult emergence 

was complete. The fates of the pupae could be determined in most cases by 

the characteristics of the exuviae (Tigner 1974). Missing pupae were identified 

by the dots of paint on trees and were assumed to have been removed by 

predators. Emergence holes produced by B. intermedia are similar to those 

produced by the ichneumonid, Theronia atalantae fulvescens (Cresson), but the 

two were distinguished by breaking open the exuviae to examine the meconia. 



The meconium of intermedia is compact and gray; the meconium of J. 

atalantae is white and sinuous. Pupae with no sign of parasitoid emergence or 

predation were dissected, and those containing pupae of intermedia were 

considered parasitized. Percentage parasitism by £. intermedia was calculated 

by dividing the number of exuviae containing emergence holes or pupae of £. 

intermedia by the total number of pupae originally marked. 

Direct Assessment of Host and Parasitoid Recruitment. I estimated the total 

number of gypsy moth pupae (HR) and the total number that became 

parasitized (PR) by summing host and parasitoid recruitment values over all 

intervals. Percentage parasitism was calculated by dividing PR by HR. 

Some of the parameters I calculated were obtained by multiplying several 

random variables. For example, estimates of PRj were obtained by multiplying 

three random variables (PTHj, GMPj and Hlj). Confidence limits associated with 

parameters such as PRj, HRj, HAj, PAj, Hj, and PH were therefore calculated 

with a bootstrap approach (Buonaccorsi & Liebhold 1988, Efron & Tibshirani 

1985). I randomly sampled the raw data with replacement 1000 times and 

calculated an estimate of the parameter at each iteration. A frequency 

distribution of estimates of the parameter was thus generated, and the mean 

and 95% confidence interval of this distribution were determined. 

Results 

Host and parasitoid recruitment in the study population occurred 

simultaneously (Fig. 3.1 A and B), from the beginning of the study period until ca. 

26 July. However, some host and parasitoid recruitment occurred before 

sampling began. Advancement of hosts not parasitized by B. intermedia was 

also high during this period, peaking on 19 July and declining after that date 
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(Fig. 3.1 B). Peak advancement of £. intermedia did not occur until later, 26 July 

(Fig. 3.1 A). This was when emergence of £. intermedia adults began; 

parasitoid advancement earlier in the season was due entirely to predation. As 

hosts not parasitized by fi. intermedia advanced early in the season, the 

number remaining declined, and by 21 July, there were more hosts parasitized 

by fi. intermedia than there were hosts not parasitized by £. intermedia (Fig. 

3.1C). 

Sample percentage parasitism peaked on 24 July (Fig. 3.1 D) at 62.7%. I 

estimated that 36.3 gypsy moths per m2 entered the pupal stage and that 13.1 

per m2 (36.1%) became parasitized by £. intermedia. I examined 1179 exuviae 

at the end of the season, and 234 (19.8%) contained emergence holes of £. 

intermedia. Of the remaining pupae, 223 (18.9%) had emergence holes 

produced by I. atalantae. 137 (11.6%) had produced tachinid flies, 115 (9.8%) 

died of unknown causes, and 435 (36.9%) had been consumed by predators. 

Only 35 (3.0%) of the gypsy moths in this pupal population became adults. 

Discussion 

The estimate of parasitism based on the peak value of sample percentage 

parasitism was high relative to estimates calculated using the other two 

methods (Table 3.1). It has been shown using simulation models that the peak 

value of sample percentage parasitism is a good estimator of stage-specific 

parasitism only if samples are collected after all hosts and parasitoids have 

been recruited and prior to host and parasitoid advancement (Van Driesche 

1983). In the study population, there was no time when all hosts (healthy and 

parasitized) were available for sampling. Recruitment and advancement of 

gypsy moth pupae and B. intermedia overlapped (Fig. 3.1), and as a result, 
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Table 3.1. Percentage parasitism (± SE) by Brachymeria 
intermedia on pupae of the gypsy moth calculated using three 
methods. For a population at Otis Air Force Base, Cape Cod, 
Massachusetts, in 1986. 

Method 

JPeak Percentage Parasitism 

Direct Assessment of Recruitment 

Examination of Exuviae 

% Parasitism 

62.7 ± 1.2 

36.6 + 8.0 

19.8 + 1.2 



values of sample percentage parasitism fluctuated in a manner unrelated to 

stage-specific parasitism (Fig. 3.1 D). Of particular note is the fact that hosts not 

parasitized by £. intermedia (Fig. 3.1 B) advanced earlier in the season than 

those parasitized by £. intermedia (Fig. 3.1 A) and were no longer in the 

population of hosts available for sampling. Approximately halfway through the 

sampling period, the number of hosts not parasitized by £. intermedia became 

lower than the number of hosts parasitized by £. intermedia, and values of 

sample percentage parasitism increased sharply. The peak value of sample 

percentage parasitism that occurred at this time did not reflect levels of stage- 

specific parasitism but rather was a consequence of the early advancement of 

hosts not parasitized by £. intermedia. When nonparasitized hosts remain 

available for sampling for a shorter period than do parasitized hosts, as in this 

study, the peak value of sample percentage parasitism overestimates stage- 

specific parasitism (Van Driesche & Taub 1983). 

The estimate of parasitism based on examination of exuviae at the end of the 

season was low relative to estimates calculated using the other two methods 

(Table 3.1). Predation removes evidence that a particular host had been 

previously parasitized. Estimates based on examination of exuviae in 

populations where predation levels are high are therefore expected to 

underestimate stage-specific parasitism if parasitized hosts are exposed longer 

to predation because of longer developmental period. In the population on 

Cape Cod in 1986, 36.9% of the pupae were consumed by predators by the 

end of the season. When levels of predation are high, estimates of parasitism 

based on examination of exuviae can be adjusted. This is accomplished by 

partitioning hosts consumed by predators into the categories of parasitized and 

non-parasitized hosts based on the proportion of hosts that were not predated 

that fall into each of these categories (Varley et al. 1973). The adjusted value 



that I calculated in this manner was 27.2%, a value that is still lower than the 

estimate based on host and parasitoid recruitment. 

The method of Varley et al. (1973) assumes that the probability of predation 

is the same for parasitized and non-parasitized hosts. In the population I 

studied, hosts that were not parasitized by £. intermedia left the system much 

earlier than hosts parasitized by Jj3. intermedia (Fig. 3.1 A and B), and were 

therefore available to predators for a shorter period of time. The explanation for 

this phenomenon is that the developmental rate of gypsy moth pupae is less 

than that of £. intermedia. For example, it takes 12 days for female gypsy moth 

pupae to become adults and 17 days for male pupae at 23°C (Casagrande et 

al. 1987), while it takes 24 and 27 days for male and female B. intermedia to 

develop in gypsy moth pupae reared at 23°C (Minot & Leonard 1976). Even in 

the absence of selective daily rates of predation of parasitized pupae, therefore, 

pupae parasitized by B. intermedia suffered higher stage-specific rates of 

predation because they were exposed to predation longer. Examination of 

exuviae at the end of the stage, consequently, underestimated stage-specific 

parasitism. 

When calculating percentage parasitism, I followed the guidelines of Varley 

et al. (1973) that no host may be killed more than once. If a host is attacked 

successively by two parasitoids (or by a parasitoid then a predator), death of the 

host is attributed to the first parasitoid. If the second parasitoid succeeds in 

emerging from the host at the expense of the first parasitoid, the second species 

is considered to have killed the first parasitoid species, not the host. If £. 

intermedia can develop and emerge from hosts previously infected by other 

agents (and already dead by this scenario), values of percentage parasitism 

based on sample percentage parasitism or examination of exuviae could be 

high relative to stage-specific parasitism levels. This problem does not occur for 



the method of directly measuring recruitment because I calculated parasitoid 

recruitment only in uninfected hosts. 

The method of directly measuring recruitment is not affected by the timing of 

host and parasitoid recruitment and advancement. Also, because numbers of 

hosts and parasitoids are measured and summed over short intervals of time, 

subsequent predation of parasitized or non-parasitized hosts is not a concern. 

Potential biases associated with this method arise if the rates of parasitism of 

trap hosts differ substantially from parasitism of naturally occurring hosts. Care 

was taken, therefore, to simulate natural conditions when placing trap-host 

pupae in the field. I accomplished this by rearing trap hosts on oak foliage, by 

not altering the density of pupae in the field, and by only using trap-hosts that 

were encased in webbing. Levels of parasitism of trap-hosts were, therefore, 

probably quite similar to those for unparasitized pupae in the field. Given the 

above, I feel that the method of directly measuring host and parasitoid 

recruitment provides a relatively unbiased estimate of stage-specific parasitism. 

In conclusion, I feel that estimates of parasitism of gypsy moth pupae by £. 

intermedia, based on values of peak sample percentage parasitism, 

overestimate stage-specific levels of parasitism. Collections of pupae timed to 

occur during the late pupal-stage (i.e. Leonard 1967) or after adult emergence 

is complete (i.e. Leonard 1966) will also result in overestimations of parasitoid 

impact. In contrast, estimates of parasitism based on examination of exuviae at 

the end of the season underestimate stage-specific parasitism because of 

overall differences in predation of parasitized and non-parasitized hosts. 

Because of the particular life-histories of B. intermedia and gypsy moth pupae, 

direct assessment of host and parasitoid-recruitment is feasible and provides 

the least biased estimate of stage-specific parasitism. This method is the most 



time consuming of the three methods, but is superior to the other methods 

examined in its freedom from major biases. 



CHAPTER 4 

TEMPORAL PATTERNS AND MORTALITIES OF HOST AND PARASITOID 

POPULATIONS: IMPLICATIONS FOR MEASURING PARASITOID IMPACT 

Introduction 

Many attempts have been made to estimate the impact of parasitoids on the 

dynamics of the gypsy moth. The approach most commonly employed has 

been to measure stage-specific parasitism (i.e. the 'apparent' parasitism of life- 

table analysis), which may be defined as the percentage of hosts that enter the 

stage susceptible to parasitism that are killed by a given species of parasitoid. 

Researchers often attempt to estimate stage-specific parasitism from data on 

trends of percentage parasitism in samples collected over time, selecting either 

the average value (Pooled Percentage Parasitism) or the highest value (Peak 

Percentage Parasitism) as their estimate. Van Driesche (1983) has shown that 

these two methods accurately measure stage-specific parasitism only if specific 

conditions are met. These methods can be severely biased by the timing of 

samples in relation to four life-history processes: (1) recruitment of hosts into the 

stage susceptible to parasitism, (2) advancement of hosts out of the susceptible 

stage due to death or molting, (3) recruitment of parasitoids (oviposition), and 

(4) advancement of parasitoids out of the sampled stage due to death or 

molting. 

To accurately measure stage-specific parasitism, two parameters must be 

precisely estimated: (1) the number of individuals that enter (i.e. are recruited 

into) the host stage susceptible to parasitism and (2) the number of healthy 

hosts that are subsequently killed by parasitoids. The number of individuals 

entering a given stage differs from the number cf individuals per sample unit 
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(i.e. host density) at a given moment. Many techniques have been developed to 

estimate numbers entering a stage from stage-frequency data (reviewed in 

Southwood 1978). To date, however, only one of these methods, which I will 

term the Southwood & Jepson (1962) Graphical Method, has been extended to 

provide estimates of both host and parasitoid recruitment (Bellows et. al. 1989). 

Mortalities that occur during the period when stage-frequency data are collected 

are major sources of biases in this process, when this method is used to 

measure numbers of hosts, parasitoids, or both (Bellows et al. 1989). 

Direct measurement of host and parasitoid recruitment is an alternative 

approach for estimating stage-specific parasitism (Van Driesche & Bellows 

1988, Lopez & Van Driesche 1989). I will call this the Recruitment Method. It 

consists of measuring the number of hosts and/or parasitoids entering the 

system over short intervals of time, and then summing these values over the 

entire sampling period to estimate the total number of individuals of each type 

that are recruited. This method has the advantage that the desired quantities 

are measured directly, rather than being inferred from stage-frequency data. 

The feasibility of this method depends on being able to design techniques to 

measure recruitment of hosts and parasitoids, given the biologies of the species 

involved. 

Another approach, which I will term Time-Specific Death-Rate Analysis 

(Elkinton 1990a), offers some alternatives to using stage-specific parasitism to 

evaluate the impact of parasitoids. This method measures mortality rates over 

short, contiguous time intervals, rather than stages, and does not require 

estimates of either host densities or host or parasitoid recruitment. Percentage 

parasitism during an interval is calculated in terms of the number of individuals 

(regardless of stage) present at the beginning of a time interval that die from a 

given agent during the interval. Percentage parasitism over a series of intervals 
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is calculated as 1 - the product of the survivorship from parasitism in each 

interval. This technique is especially appropriate when estimates of host 

density are difficult to obtain. 

The Time-Specific Death-Rate Analysis method solves some of the problems 

associated with estimating stage-specific parasitism, when several sources of 

mortality are operating contemporaneously in a population. In most populations 

it is the rule, not the exception, that periods of mortality by different agents 

overlap. Assuming that attack by two or more species is sequential, when it is 

not, results in errors in estimating mortality by these agents (Varley et al. 1973, 

Elkinton et al. 1990b). Alternatively, if one assumes the agents act entirely 

contemporaneously, by considering them to act as one "factor", one cannot 

estimate the impact of individual species on the dynamics of the host 

population. 

Royama (1981a) resolved the problem of separately quantifying mortalities 

from contemporaneous agents by calculating the probability of hosts dying from 

each mortality agent in the absence of other agents (termed the marginal 

probability of death). For parasitoids, the marginal probability of dying is greater 

than the proportion actually killed because some individuals bearing immature 

parasitoids will die from other causes prior to parasitoid emergence. Marginal 

probabilities of two or more mortality agents acting together do not sum to the 

total percentage mortality during a stage or interval (as is the case for stage- 

specific percentage parasitism calculated in the usual manner). Instead, 

survivorships from the different agents multiply to equal the total survivorship 

from all agents (1 - percentage mortality). If the parasitoid is the only source of 

mortality or is the first in a series of factors acting sequentially within a stage or 

interval, then the marginal probability of dying from parasitism will equal the 

stage- or interval-specific proportion killed . Elkinton et al. (1990a) present 
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arguments that it is the marginal probability of dying and not stage-specific 

mortality that represents the most unbiased estimate of parasitoid impact on a 

population. 

The goal of this study was to determine the timing of recruitment and 

advancement of hosts and parasitoids, as well as the timing of mortality from 

sources other than parasitism, for the second generation of Cotesia 

melanoscela Ratzeburg (Hymenoptera: Braconidae) and for Parasetigena 

silvestris Robineau-Desvoidy (Diptera: Tachinidae), parasitoids of the gypsy 

moth, Lvmantria dispar (L.) (Lepidoptera: Lymantriidae). Based on my results, I 

evaluate the five methods (Pooled Percentage Parasitism, Peak Sample 

Percentage Parasitism, the Southwood & Jepson Graphical Method, the 

Recruitment Method, and Time-Specific Death-Rate Analysis) for calculating 

parasitism of gypsy moths by these two species. The first three of these 

methods estimate stage-specific parasitism. The Time-Specific Death-Rate 

Analysis method yields an estimate of the marginal probability of dying. Data 

on recruitment can be used to estimate either stage-specific parasitism or the 

marginal probability of dying, depending on the details of how the data are 

collected and the recruitment rate is estimated. 

Methods and Materials 

Field Sites 

Field studies were conducted on two 9 ha plots (300 X 300 m) on Otis Air 

Force Base on Cape Cod, Massachusetts in 1984 and 1985. Initial densities of 

gypsy moth egg masses in the spring were 149 ± 14 SE egg masses per ha for 

Plot 1 (1985), and 200 + 57 SE egg masses per ha for Plot 2 (1984). The most 

abundant tree species in both plots were oak (Quercus spp.) and pitch pine 



(Pinus rigida Mill.), and blueberry (Vaccinium spp.) dominated the understory. 

The plots were divided into nine, square 1 ha subplots, and forty sampling 

points were established in a 4 X 10 grid in each subplot. 

Description of Sampling Regimes 

In 1985, field observations were made on five parameters: (1) the density of 

egg masses per ha and numbers of larvae hatching per egg-mass, (2) the 

timing of hatch of egg masses in the field, (3) the density of gypsy moth larvae 

and pupae throughout the season, (4) rate of parasitism of insectary-reared 

larvae exposed in the field, and (5) sample percentage parasitism and the 

timing of host and parasitoid advancement in weekly collections of gypsy moth 

larvae and pupae. In 1984, I only measured the timing of parasitoid recruitment 

and advancement. 

Density of Egg Masses and the Number of Larvae Hatching per Egg-Mass. In 

1985, the number of gypsy moth larvae hatching from egg masses within Plot 1 

was calculated by multiplying the number of egg masses per ha by the number 

of larvae emerging per egg-mass. The estimate of egg-mass density was 

based on counts of egg masses within 10 m diameter circles surrounding 169 

sampling points in a 13 X 13 grid (25 m between points). The number of larvae 

per egg-mass was estimated by first measuring the length and width of two egg 

masses at each point (n = 338 egg masses). I then used regressions of number 

of larvae hatching on length times width of egg masses (developed by A.M. 

Liebhold) to determine the number of larvae hatching per egg-mass. This 

regression subsumes the two variables of eggs per cm2 of egg-mass area and 

percentage viability. 

Timing of Hatch of Egg Masses. In 1985,1 monitored egg masses in the field 

at 15 sampling points selected at random from the 13 X 13 grid. Prior to hatch, I 

tagged up to four egg masses in each 10 m diameter circle (two on overstory 
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trees and two on the ground). I did not always find two egg masses in each 

category, and in all I monitored 44 egg masses. From 30 April to 15 May 1985 I 

checked each egg mass daily in the late morning and recorded the presence or 

absence of gypsy moth larvae. Most hatch occurs in the early morning, and 

newly emerged larvae spend from 1 to 49 hours on the surface of the egg mass 

(McManus 1973). 

Density of Gvpsv Moth Larvae and Pupae. On three sampling occasions, 2 X 

5 m quadrats were established at two of the 40 sampling points in each subplot. 

I counted all the larvae and pupae within each quadrat by thoroughly searching 

the leaf litter, understory vegetation, and overstory trees. Because trees on 

Cape Cod are relatively short (generally < 10 m) I was able to sample the tops 

of trees above the quadrats using ladders and pole pruners to collect foliage. 

This sampling technique was extremely time consuming, and I was only able to 

estimate densities on three occasions: 4-5 June (instar 3), 24-25 June (instar 5), 

and 17-18 July (pupae). 

Rate of Parasitism of Laboratory-Reared Trap-Host Larvae. Recruitment of 

parasitoids to their immature stage was estimated by deploying unparasitized, 

gypsy moth larvae as trap-hosts. These larvae were placed in the field for short 

periods of time, recovered, and reared to determine the proportion that had 

become parasitized. Trap-host larvae were reared from egg masses collected 

one week prior to hatch from a moderately high density population on Cape 

Cod, Massachusetts (2357 egg masses per ha). Egg masses were soaked in a 

10% solution of formalin to reduce levels of viable nuclear polyhedrosis virus 

(NPV) on the surface of the eggs (Bell et al. 1981), were rinsed with water for 1 

h, and were allowed to hatch in 26 cages (1.0 X 1.0 X 1.2 m). The cages were 

located outdoors and were covered with fine netting (mesh size = 0.5 mm) to 

prevent parasitoid attack prior to release in the field. To assess the 



effectiveness of the netting in excluding parasitoids, five larvae were randomly 

selected from each cage once per week (n = 130), placed individually in 30 ml 

cups containing artificial diet (Bell et al. 1981), and monitored daily for 

parasitoid emergence. 

Trap-host larvae were fed black oak. Quercus velutina Lam., leaves collected 

from areas adjacent to the study plot. Branches of foliage were soaked for 1 h 

in a 4% solution of sodium hypochlorite to eliminate viable NPV polyinclusion 

bodies and were then rinsed with water. The foliage was placed in 4 I jars of 

water with foam stoppers (to prevent water loss and drowning of larvae) and 

was replaced with fresh foliage every 2-3 days. Larvae were transferred with 

camel's-hair brushes to new foliage at each change. 

Trap-host larvae were marked by removal of one proleg (a different proleg for 

each release occasion). This mark was easily recognized in the field, was not 

lost when the larvae molted, and did not significantly effect survivorship or 

mobility of the larvae (Weseloh 1985a). Larvae to be marked were held in Petri 

dishes over crushed ice for 15-30 min until immobilized, and a proleg was 

removed with surgical scissors. Larvae were replaced over ice for another 10 

min to allow the wound to heal. Marked larvae were then placed in a separate 

cage for at least 3 days prior to release to allow recovery from surgery. 

Larvae were released every week at two sampling points in each subplot 

(new sampling points were used each week). In 1984, 50 trap-host larvae were 

released on each of the two oak trees nearest to the sampling points (n = 1800 

larvae per week). In 1985, 75 larvae were released on a single oak tree at each 

sampling point (n = 1350 larvae per week). For each weekly release, larvae 

were divided into three groups of equal size and were released on three 

successive days. Larvae were transported to the release site in 360 ml paper 

cups which were stapled to the trunks of the oaks at 1.5 m. Because gypsy 



moth larvae in low density populations feed at night, releases were made 

between 16:00 h and 18:00 h so that larvae would climb up the trees and begin 

to feed, reducing dispersal away from the release trees. 

Trap-host larvae were recaptured 4-5 days following release by searching 

the entire understory and litter beneath the crown of each release tree and the 

canopies of the trees themselves. The larvae were placed individually in 30 ml 

cups containing artificial diet (Bell et al. 1981), were reared in an outdoor 

insectary, and were checked daily for mortality. Emerging parasitoids were 

keyed to species (Simons et al. 1979). Because of the staggered release 

schedule and the resulting staggered recapture, there were larvae in the field 

on almost every day during each weekly interval. 

Parasitism. Molting, and Death Rates of Field Collected Larvae and Pupae. In 

1985, I collected weekly samples of 40 naturally occurring gypsy moth larvae 

and pupae at the same time I was recovering trap-hosts on the 18 sampling 

trees (n = 720 per week). In 1984, I collected 60 gypsy moth larvae and pupae 

at each of the 18 sampling points (n = 1080 per week). Gypsy moth larvae and 

pupae were collected from all parts of the habitat (forest canopy, understory 

vegetation, and leaf litter), were placed individually in 30 ml cups containing 

artificial diet, and were reared in an outdoor, screened insectary. In 1984, 

gypsy moth larvae and pupae from a sample were checked daily for mortality or 

emergence of adult gypsy moths until the next sample was collected. In 1985, 

larvae and pupae were checked daily until death or adult eclosion so that I was 

able to calculate percentage parasitism for each sample, as well as the timing of 

parasitoid emergence. If a parasitoid emerged, the parasitoid puparium or 

cocoon was keyed to species (Simons et al. 1979). Dead gypsy moth larvae 

and pupae from which no parasitoids emerged were dissected, and if they 

contained an unemerged, immature parasitoid, they were considered 



parasitized. Unparasitized, dead gypsy moths were checked for the presence 

of the polyinclusion bodies of NPV, using a phase contrast microscope at 

1000X magnification. 

Estimating Mortality from Predation 

Predation rates of gypsy moth larvae in the field were estimated indirectly by 

combining data on changes in gypsy moth density and data on rates of mortality 

from parasitoids and disease observed in samples of field-collected gypsy moth 

larvae and pupae reared in the laboratory. The difference between mortality 

rates observed in the field (i.e. changes in density) and mortality rates observed 

in rearing is termed residual mortality and includes losses due to predation as 

well as other causes such as weather. 

Comparison of Trap-Hosts and Naturally Occurring Hosts 

Female Q. melanoscela are more successful in attacking early instars (1-3) 

than later instars (4-6) because the setae and defensive movements of larger 

larvae make parasitoid oviposition attempts less successful (Weseloh 1976). 

To determine if larvae used as trap-hosts were equivalent to field larvae in 

terms of body size, I weighed 20 trap-host larvae and 20 naturally occurring 

larvae on each sampling occasion. Because the data were not normally 

distributed, weights of trap-host and naturally occurring larvae on each 

collection date were compared using a Wilcoxon Rank Sum Test (PROC 

NPAR1 WAY, SAS Inst. 1987). I also compared the proportions of trap-hosts 

and naturally occurring hosts that were in the third or younger instars using a 

Chi-square test (PROC FREQ, SAS Inst. 1987). 

An important behavior of late-stage gypsy moths that affects parasitism by E. 

silvestris is the daily migration from nighttime feeding sites in the forest canopy 

to daytime resting sites under bark flaps or in the litter (ODell & Godwin 1979). 

To test whether trap-host larvae exhibited migration patterns similar to naturally 
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occurring larvae, I isolated two 6 m tall oak trees in the forest outside of Plot 1 in 

1986. A 4 X 4 m barrier of 20 cm high aluminum flashing was established 

around each tree. Sticky material (Tack Trap) was placed on the top of the 

inside of the flashing to prevent larvae from escaping. A 24.5 cm wide band of 

burlap was wrapped around the trunk of each tree at 1.5 m above the ground. 

On 18 June 1986 I released 50 fifth instar gypsy moths reared on foliage in 

the screen cages (I will call them trap-hosts) and 50 naturally occurring fifth 

instars (collected from Plot 1) on each tree. The trap-host larvae were marked 

with a dot of white acrylic paint on the dorsum of the abdomen, and naturally 

occurring gypsy moth larvae were marked with light red paint. I observed these 

larvae on 20 June, 21 June, and 26 June by searching the entire area of each 

enclosure including the litter, under burlap bands, and the canopy of the trees 

(using step-ladders). I recorded the height above the ground for each larva. 

Larvae on the ground were considered to be at 0 m. I compared the mean 

height of trap-hosts versus naturally occurring larvae using the Wilcoxon Sign 

Rank Test (PROC NPAR1 WAY, SAS Inst. 1987). 

Calculations of Recruitment and Advancement 

Host Recruitment. The number of hosts recruited to the susceptible (larval) 

stage (HR) could be measured directly because gypsy moths hatch over a 

relatively short period of time, and hatch is completed prior to the onset of 

significant larval mortality or parasitoid oviposition. The estimate of larval 

density, determined by quadrat sampling, was nearly three times higher than 

the estimate based on the number of larvae hatching within the plot, indicating 

large amount of immigration of first instars (the dispersal stage of the gypsy 

moth). I therefore used the number based on quadrat sampling as the best 

estimate of the total number of gypsy moths susceptible to parasitism in Plot 1. 



The timing of host recruitment was based on observations of hatching of egg 

masses in the field. The numbers of egg masses hatching on each day were 

summed over the entire period of egg hatch to give the total number of egg- 

mass hatch days. The number of larvae emerging on day i (L-) was calculated 

as: 

NumHj 
L. =- * JotL 

egg-mass days 

where NumHj is the number of egg masses hatching of day (i), TotL is the total 

number of gypsy moths recruited to the larval stage in Plot 1, and egg-mass 

days are as defined above. 

Parasitoid Recruitment. Recruitment of parasitoids during a given week (PRj) 

was calculated as: 

PRj = PTHj * {[(GMPj * PLj * (1-Hlj)) + (GMPi+1 # PLi+1 

*(1-Hli+1))]/2} 

where PTHj is the proportion of trap-hosts parasitized during week i, GMPj is the 

number of gypsy moths per ha present at the beginning of week (i), PLj is the 

proportion of gypsy moths that are still in the larval stage at the beginning of 

week (i), and Hlj is the proportion of hosts infected by disease or parasitoids at 

the beginning of week (i). The proportion of trap-hosts that would have been 

parasitized in a week (PTHj) was calculated as: 

PTHj = 1 -((1-PTHs)1/d)7 

where PTHS is the proportion of trap-hosts in sample (i) that were parasitized 

and d is the number of days that trap-hosts were exposed to parasitism in the 

field. The term PLj was included because only larvae are susceptible to attack 

by C. melanoscela and P. silvestris. The term 1 -HI was used to denote the 

proportion of gypsy moth larvae that did not already contain parasitoids or 
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disease and were thus available for attack. Because hosts were pupating and 

dying during some of the weeks when parasitism was occurring, the number of 

hosts available for attack during the week beginning at time i was taken to be 

the average of the number of healthy larvae at times (i) and (i + 1). 

Host and Parasitoid Advancement. Although both host and parasitoid 

advancement (i.e. losses from molting or death) by definition must include 

deaths from predation, actual interval-specific predation rates were not 

measured. Advancement rates as observed in laboratory rearing of field 

collected larvae and pupae includes all factors except predation. For 

parasitoids this included parasitoid emergence from parasitized hosts or deaths 

in rearing. Advancement of hosts included deaths and molts of all hosts not 

parasitized by the species of parasitoid of interest. For hosts that were not 

parasitized by Q. melanoscela. advancement was due to death from disease, 

emergence of other parasitoid species, or pupation. Because immature P. 

silvestris can emerge from gypsy moth pupae, advancement of hosts not 

parasitized by £. silvestris resulted from death due to disease, emergence of 

other parasitoid species, or emergence of gypsy moth adults from pupae. 

Because the temperatures inside the screened insectary differed somewhat 

from those in the field, and because I was interested in estimating the timing of 

emergence of hosts and parasitoids under natural conditions, I only monitored 

emergence of hosts and parasitoids for 1 week after the gypsy moths were 

brought to the insectary. I calculated the proportion of individuals in sample i 

that died or emerged prior to each subsequent sample (i + 1). I then monitored 

emergence from gypsy moths in sample (i + 1) and so on for (i) = 1 to 10. 

The number of hosts not parasitized by a particular species advancing during 

a given week (HAj) was calculated as: 



where PHAj is the proportion of nonparasitized hosts in sample (i) that advance 

prior to sample (i + 1) and Hj is the number of nonparasitized hosts per ha at the 

beginning of week (i). 

The number of parasitoids advancing during a given week (PAj) was similarly 

calculated as: 

PAj = PPAj * PHj 

where PPAj is the proportion of parasitized hosts collected in sample (i) from 

which parasitoids emerged prior to (i + 1) and PHj is the number of parasitized 

hosts per ha at the beginning of week (i). PH,- was calculated by multiplying the 

number of gypsy moths per ha by the proportion of gypsy moths in sample (i) 

that was parasitized by the species of interest. 

Methods of Calculating Percentage Parasitism 

Peak Sample Percentage Parasitism. Gypsy moths that had been collected in 

the field were kept in the insectary until they died or emerged as adults. 

Sample Percentage Parasitism (SPP) due to a particular species was 

calculated as: 

SPP = HPj / HTj 

where HPj is the total number of parasitized hosts in sample i over the whole 

rearing period and HTj is the total number of hosts collected for sample i. 

Values of sample percentage parasitism were graphed and the peak value was 

determined. 

Pooled Percentage Parasitism. Pooled Percentage Parasitism (PPP) was 

calculated as: 

PPP = PH /TH 

where TH is the total number of hosts collected over the entire season and PH 

is the number of these hosts from which a parasitoid emerged or was found 

following dissection to contain a parasitoid. Because melanoscela attacks 



and emerges only from larvae, TH was the total number of larvae collected, 

whereas pupae were also included in the TH value for calculations of pooled 

percentage parasitism by E. silvestris. 

Southwood & Jepson Graphical Method. The Southwood & Jepson 

Graphical Method was used to estimate the number of parasitoid attacks on 

gypsy moth larvae. The number of parasitized hosts per ha on each sample 

occasion (PHj) was plotted against accumulated degree-days in the field. To 

calculate the number of individuals entering the immature stage of the 

parasitoid, the area under the curve through these points was divided by the 

number of degree-days required for complete development of the immature 

stage of the parasitoid. Percentage parasitism was then calculated by dividing 

the number of parasitized hosts by the total number of hosts initially susceptible 

to parasitism (HR). 

The accumulation of degree-days in the field was estimated using hourly 

average temperature data obtained with a thermistor probe in a standard 

weather station located in an open field near the field plots and recorded on a 

CR21 data logger (Campbell Scientific, Logan, Utah). 

Cotesia melanoscela requires 182 degree-days to emerge from hosts 

feeding on oak foliage, with a developmental threshold of 7°C (Chapter 2). The 

development of E- silvestris is influenced by temperature, but this parasitoid 

does not develop under a strict degree-day regime. Immature P. silvestris 

responds to the developmental stage of the host and only complete 

development as the host nears pupation (T. M. ODell unpublished). To estimate 

the number of degree days required for development of £. silvestris. therefore, I 

estimated the number of degree-days observed in the field from mean 

oviposition into trap-hosts to mean emergence from naturally occurring hosts. 

This was found to be 160 degree-days. The developmental threshold for the 



gypsy moth, 7°C (Casagrande et al. 1987), was used for this calculation. When 

the developmental rate of £. melanoscela was estimated in a similar manner, 

the result was 188 degree-days, which is close to the number of degree-days 

based on the laboratory data. 

The Recruitment Method. The total number of each parasitoid species 

recruited (PR) was calculated by summing weekly recruitment over the entire 

season as follows: 

n 
PR = I PRj 

i=1 

where PRj is the number of parasitoids per ha recruited during week (i) and n is 

the total number of sample intervals (10 weeks). Percentage parasitism was 

calculated by dividing PR by HR, an independent measure of total gypsy moths 

entering the larval stage. 

Time-Specific Death-Rate Analysis. The proportion of gypsy moths collected 

on week (i) that died from each agent prior to week (i + 1) was calculated for 

each weekly interval. Mortality from each agent during a given week (kjj) was 

expressed as: 

kij = -tog-jo (1-mij) 

where mjj is the marginal probability of hosts dying from agent (j) during week 

(i). Total mortality due to a given agent (Kj) was calculated by summing the 

weekly k-values as follows: 

Kj = £ kjj 
i=1 

for i = 1 to 10. Percentage parasitism by each species during the period of 

sampling was then calculated as 1 - 1/10Ki 



To calculate the marginal rates of mortality (my), based on the actual 

proportion observed to die in rearing, I used equations 12 and 13 of Royama 

(1981), which assume that attack by each species is independent of other 

species. Solutions to these equations are derived in Elkinton et al. (1990b) and 

are as follows: 

mjj = (b - (b2 - 4c * vy)1/2 / 2c 

mij.= vjj,/(1-(c*mjj) 

where 

b = c(vy + vjj*) + 1 - vy 

my = the marginal probability of attack by species j during week i, 

mjj* = the marginal probability of attack by species j' 

Vjj = the proportion of hosts in rearing that died from species j in week i, 

Vjj* = the proportion of hosts in rearing that died from species j' during week i, 

and 

c = the proportion of hosts attacked by both j and j' that produce species (j)- 

This methodology was extended from a system of two contemporaneous 

species to more than two species by calculating the marginal rate of mortality 

due to the species of interest (mjj) versus the combined mortality from all other 

agents (mjj*). I assumed that if a host was attacked by both species (j) and at 

least one other agent, 50% would produce species (j) (c = 0.5). 

This method produces a small error that is proportional to the fraction of hosts 

attacked by three or more contemporaneous agents. In most populations, this 

fraction and the resulting error are quite small (Elkinton et al. 1990b). The 

rationale behind the use of this method is described in a series of papers 

(Elkinton et al. 1990a,b). 



Calculating 95% Confidence Intervals of Compound Parameters 

Some of the parameters I measured (i.e. PR, HA, PA, and the number of 

parasitoids recruited using the Southwood & Jepson Graphical Method) were 

calculated by multiplying several random variables. Confidence limits 

associated with these parameters were therefore calculated using a bootstrap 

approach (Buonaccorsi & Liebhold 1988, Efron & Tibshirani 1985). I randomly 

sampled the raw data with replacement 1000 times and calculated an estimate 

of the parameter at each iteration. A frequency distribution of estimates was 

thus generated, and the mean and 95% confidence interval were determined. 

Results 

Of the 1,300 larvae collected from the rearing cages, only 1 produced an 

immature £. melanoscela. and P. silvestris did not emerge from any of these 

larvae. This indicates that I was successful in producing unparasitized trap- 

hosts for release. I was also quite successful in recapturing trap-host larvae, 

recovering from 22 to 50% of the larvae released in a given week in 1985. The 

proportions of larvae that were third instar or less on a given sample occasion 

were not significantly different between trap-hosts and naturally occurring hosts 

(Table 4.1). For all but the first sample, however, the mean weight of trap-hosts 

was consistently lower than that of naturally occurring hosts (Table 4.1), 

although these differences were not significant. The comparison of heights of 

daytime resting locations revealed that naturally occurring fifth instars rested at 

significantly lower levels than fifth instars reared in cages (Table 4.2). 

The periods of hatch and dispersal of gypsy moths occurred prior to the onset 

of parasitism by the second generation of Q. melanoscela (Fig. 4.1 A). On 4 

June I estimated from quadrat samples that there were 109,200 gypsy moth 
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Table 4.2. Mean height above the ground of gypsy moth 
larvae reared in screen cages (trap-hosts) and naturally 
occurring (wild) larvae released on oak trees on Cape Cod, 
Massachusetts. 

Mean Height 

Date Trap- -hosts Wild- -hosts 

20 June 10.0 ± 0.4 5.8 ± 0.6 

21 June 9.1 ± 0.5 3.1 ± 0.3 

26 June 9.2 ± 0.6 4.7 ± 0.6 
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Date 

Figure 4.1. Timing of life-history processes of C. 
melanoscela and gypsy moths in 1985. (A) Hatch of gypsy 
moth larvae and advancement of larvae not parasitized by C. 
melanoscela. (B) Recruitment (oviposition) and advancement 
(emergence) of C. melanoscela. (C) Percentage parasitism in 
samples of gypsy moths from a population at Otis Air Force 
Base, Cape Cod, Massachusetts. Bars represent + 95% Cl. 
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larvae per ha. Liebhold & Elkinton (1988a) recorded a similar density in this 

plot in 1985 by collecting trass particles. Dispersal had essentially ceased by 

28 May, when 90% of all gypsy moths were second instar or greater. 

Recruitment of gypsy moths therefore ended prior to oviposition by the second 

generation of £. melanoscela. which began on ca. 4 June, and prior to 

oviposition by £. silvestris. which began on ca. 12 June. 

The periods of recruitment (oviposition) and advancement of £. melanoscela 

overlapped slightly in 1985 (Fig. 4.1 B) and 1984 (Fig. 4.2A). Advancement of 

hosts not parasitized by £. melanoscela. due to death from NPV or emergence 

of other parasitoid species, was quite low during the period of oviposition by £.. 

melanoscela and peaked after most £. melanoscela immatures had emerged 

(Fig. 4.1 A). Also, few gypsy moths were consumed by predators during this 

period, as evidenced by the fact that estimates of density actually increased 

slightly (by ca. 2,000 larvae per ha) between 4 June and 25 June. 

Estimates of percentage parasitism by Q. melanoscela in 1985, calculated 

using the five methods, are shown in Table 4.3. Values of sample percentage 

parasitism peaked at 7.1% on 25 June (Fig. 4.1 C), about the time when the 

period of oviposition was ending and advancement was beginning. Using the 

Recruitment Method, I estimated that 25,001 (22.9%) of the 109,200 gypsy moth 

larvae became parasitized by Q. melanoscela. The estimate of the number of 

hosts parasitized by Q. melanoscela. using the Southwood & Jepson Graphical 

Method, was 8,190 (7.5%). A total of 5,400 gypsy moth larvae were collected, of 

which 160 (3.0%) were parasitized by Q. melanoscela. The marginal rate of 

parasitism by Q. melanoscela. using Time-Specific Death-Rate Analysis, was 

estimated to be 8.1%. 

The periods of recruitment and advancement of P. silvestris overlapped 

considerably in both 1984 (Fig. 4.2B) and 1985 (Fig 4.3B). The period of 
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Figure 4.2. Recruitment and advancement of C. melanoscela 
and P. silvestris in 1984. Percentages of C. melanoscela 
(A) and P. silvestris (B) recruited into and advancing out 
of gypsy moth hosts, are for a population of gypsy moths at 
Otis Air Force Base, Cape Cod, Massachusetts. 



advancement of hosts not parasitized by P. silvestris also overlapped with both 

recruitment and advancement of £. silvestris (Fig. 4.3A), and predation was a 

significant mortality factor at this time. Between 25 June and 17 July, mortality 

observed in rearing did not account for the entire amount of mortality measured 

in the field, and I estimate that during this period, residual mortality, presumably 

accounted for by predation, was 32%. 

Sample Percentage Parasitism by E- silvestris peaked on 16 July (Fig. 4.3C) 

at 49.7%. By directly measuring recruitment I estimated that 17,784 (16.3%) 

hosts became parasitized by £. silvestris. The estimate of parasitoid 

recruitment, based on the Southwood & Jepson graphical method, was 73,710 

or 67.5%. Of the 6,056 larvae and pupae I collected over the course of the 

season, 1,031 (17.0%) were parasitized by E. silvestris. The marginal rate of 

parasitism, calculated by summing weekly k-values, was 70.4%. 

Discussion 

I will first consider the four methods of calculating stage-specific parasitism. 

Although I was attempting to measure the same entity (stage-specific 

parasitism) in the same population, estimates of percentage parasitism varied 

considerably depending on the method of calculation. One would come to quite 

different conclusions about the contribution of these two parasitoids to mortality 

of the gypsy moth depending on the method used. (Table 4.3). I will explore the 

biases associated with the use of these four methods for measuring stage- 

specific parasitism by Q. melanoscela and P. silvestris. 

I will begin with the Recruitment method, because it is potentially the most 

straightforward of the four techniques. A crucial assumption of this method is 

that rates of parasitism of trap-hosts and naturally occurring hosts are equal. 
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Figure 4.3. Timing of life-history processes of P. 
silvestris and gypsy moths in 1985. (A) Hatch of gypsy moth 
larvae and advancement of larvae not parasitized by P. 
silvestris. (B) Recruitment (oviposition) and advancement 
(emergence) of P. silvestris. (C) Percentage parasitism 
seen in samples of gypsy moths from a population at Otis Air 
Base, Cape Cod, Massachusetts. Bars represent ± 95% Cl. 



Table 4.3 Values of percentage parasitism (+ 95% Cl) by C. 
melanoscela and P. silvestris calculated using five methods. 
Gypsy moth larvae were collected on Otis Air Force Base, 
Cape Cod, Massachusetts, in 1985. 

Method 

Recruitment 

Pooled Percentage Parasitism 

Peak Sample % Parasitism 

Southwood & Jepson Graphical 

Time-Specific Death-Rates 

% Parasitism 
. melanoscela P. silvestris 

22.9 + 3.9 16.8 + 2.4 

3.0 + 0.5 17.0 + 0.9 

7.1 + 2.9 49.7 + 4.9 

in • 

r*
 + 1.6 67.5 + 3.9 

8.1 + 0.2 70.4 + 0.4 



When adults of the second generation of £. melanoscela emerged, many gypsy 

moth larvae were already fourth instars, and could avoid parasitism by Q. 

melanoscela because of their long setae and vigorous defensive movements 

(Weseloh 1976). Although the proportions of trap-hosts and naturally occurring 

hosts that were third instar or less were the same, the mean weight of trap-host 

larvae was consistently lower than that of naturally occurring hosts. I suspect 

that this difference is real and that I was unable to show a statistically significant 

difference because of the small sample size. I believe that due to their smaller 

size, a greater proportion of trap-host larvae were susceptible to parasitism by 

the second generation of £. melanoscela than were the naturally occurring 

hosts and that this accounts for the relatively high estimate of percentage 

parasitism using the Recruitment method. 

Female P. silvestris are especially attracted to gypsy moth larvae that are 

moving between nighttime feeding sites in the forest canopy and daytime 

resting sites (ODell & Godwin 1979). I have evidence that trap-host larvae did 

not exhibit a typical diel migration pattern. In the enclosure experiment, most 

naturally occurring larvae occurred at ca. 1.5 m above the ground (the height of 

burlap bands). Trap-host larvae, on the other hand, remained in the canopy 

during the day and were probably subject to lower rates of parasitism by P. 

silvestris. This phenomenon could explain why the estimate of percentage 

parasitism by P. silvestris based on the Recruitment method was lower than that 

of any other method. The use of trap-hosts to assess parasitism has proven 

more successful for sessile organisms, such as gypsy moth pupae (Chapter 3) 

and Colorado potato beetle eggs (Van Driesche et al. 1990), for which host 

behavior is not as important. 

I also calculated the number of hosts that became parasitized using the 

Southwood and Jepson Graphical Method. Severe biases occur with the use of 



this method if mortality of immature parasitoids is greater than 20% (Bellows et 

al. 1989). I have no reason to believe that mortality of Q. melanoscela 

immatures was anything but minimal. Gypsy moths are not known to 

encapsulate this species and mortality of gypsy moths from predation, NPV, and 

other parasitoids, which would also have killed melanoscela. was quite low 

when £.. melanoscela was present. The Southwood & Jepson method, coupled 

with the direct estimate of the number of hosts susceptible to parasitism, is 

therefore a relatively unbiased method for calculating stage-specific parasitism 

by £. rnsJanosceta- 

Mortality of gypsy moths (due to NPV and predation) was greater than 20% 

during the period when P. silvestris was present, and for this reason I would 

expect the Southwood & Jepson Method to underestimate percentage 

parasitism by this species. Perhaps an even greater confounding factor, 

however, is that E- silvestris does not develop in a strict degree-day fashion. 

Development of immatures is arrested until the host is ready to pupate (T. M. 

ODell unpublished) so that the offspring of individuals that oviposit several 

weeks before pupation accumulate many more thermal units than offspring 

resulting from later ovipositions. Because of these problems, it is difficult to 

interpret values of percentage parasitism by P. silvestris calculated using the 

Southwood & Jepson Graphical Method, and I do not recommend that it be 

used for this species. 

The Pooled Percentage Parasitism and Peak Sample Percentage Parasitism 

methods are accurate only if the samples are collected after host and parasitoid 

recruitment are complete and prior to advancement of hosts and parasitoids 

(Van Driesche 1983). Mortalities of parasitized and nonparasitized hosts must 

also be equal. These requirements were essentially met for Q. melanoscela for 

the Peak Sample Percentage Parasitism Method. Recruitment of hosts was 



complete well before the peak of percentage parasitism that occurred on 25 

June, appreciable advancement of hosts did not begin until after 25 June, and 

the periods of parasitoid recruitment and advancement overlapped only slightly. 

While I would expect the peak value of sample percentage parasitism to slightly 

underestimate stage-specific percentage parasitism, because of the slight 

overlap of parasitoid recruitment and advancement, the amount of error should 

be small. 

Researchers should be careful, however, in the use of Peak Sample 

Percentage Parasitism to measure parasitism by Q. melanoscela in populations 

of gypsy moths that have been treated with Bacillus thurinoiensis (Bt). 

Development of gypsy moth larvae that survive treatment with Bt is delayed, 

prolonging the availability of gypsy moths to Q. melanoscela (Weseloh & 

Andreadis 1982). Oviposition by Q. melanoscela did not end in the population I 

studied because female parasitoids ceased ovipositing but because hosts 

became too large. In a population treated with Bt, it is probable that oviposition 

and emergence would overlap to a greater extent, with the result that values of 

Peak Sample Percentage Parasitism would underestimate stage-specific 

parasitism. 

The periods of recruitment and advancement of P. silvestris overlapped 

broadly with each other and also with advancement of hosts not parasitized by 

P. silvestris. At no time were all hosts, parasitized and nonparasitized, available 

to be sampled, and consequently the peak value of sample percentage 

parasitism is not a good measure stage-specific parasitism by this species. 

There was also a considerable amount of predation of gypsy moths during the 

period when P. silvestris was present. Although I do not know if predators 

consumed different proportions of parasitized and nonparasitized hosts, if they 

did, values of Peak Sample Percentage Parasitism would be affected. 
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Values of Pooled Percentage Parasitism accurately estimate stage-specific 

parasitism only when levels of parasitism remain unchanged over a series of 

samples (Gould et al. 1989). This did not occur for the population I studied; 

values of percentage parasitism increasing as parasitoids oviposited and 

decreasing as they emerged. Pooling these samples with those collected at the 

time of peak percentage parasitism is equivalent to averaging percentage 

parasitism over the season. In general, this is a weighted average because if 

some samples contain more hosts they contribute more than average to the 

estimate of Pooled Percentage Parasitism. Pooled Percentage parasitism 

invariably underestimates stage-specific parasitism, and indeed percentage 

parasitism estimates calculated using this method were quite low for both £. 

melanoscela and P. silvestris. 

Time-Specific Death-Rate Analysis involves calculation of the marginal 

probability of dying using data from rearing field-collected individuals. A few 

problems associated with this technique have been identified (Elkinton 1990a). 

Errors can occur if host recruitment or advancement overlaps with mortality, 

which did not occur for £. melanoscela but was a concern for P. silvestris 

because hosts were advancing during the period of mortality of this species. 

This method also assumes that simultaneous attack and competition among 

mortality agents occurs during a short interval (one week in this study). It does 

not account for individuals that are subsequently successfully attacked by 

another agent. Again, this was not a major problem for Q.. melanoscela 

because agents such as NPV and other parasitoids that could have 

subsequently attacked hosts bearing £. melanoscela take longer to develop 

than does Q. melanoscela. It is likely that once C. melanoscela is relatively well 

developed, subsequent attack by NPV or P. silvestris would not prevent Q. 

melanoscela from emerging. For P. silvestris. which delays development until 



hosts near pupation, there is a large probability that a host attacked by £. 

silvestris during a given week would be subsequently attacked by another 

agent, and that this second agent would kill the host. 

Concluding Remarks 

Both Peak Sample Percentage Parasitism and the Southwood and Jepson 

Graphical Method produce relatively unbiased methods for calculating stage- 

specific percentage parasitism by £. melanoscela. Indeed, values of 

percentage parasitism calculated using these two methods were extremely 

similar. Time-specific Death-Rate Analysis was also robust for calculating the 

marginal probability of parasitism by this species and was slightly greater than 

values of stage-specific parasitism, as expected. None of the five methods 

studied were satisfactory in estimating parasitism by P. silvestris, however. 

In the future, I recommend that another version of the Recruitment Method, 

the short-marker stage (Van Driesche 1988, Van Driesche & Bellows 1988), be 

used to calculate both stage-specific parasitism and the marginal rate of 

parasitism by P. silvestris. This technique involves identifying a sufficiently early 

stage of the parasitoid that, given the developmental rate of the parasitoid and 

accumulation of heat in the field between sample occasions, all naturally 

occurring hosts containing this stage must have become parasitized since the 

previous sample occasion. This method has the advantage over the use of 

laboratory-reared trap-hosts that recruitment is measured into naturally 

occurring hosts. For P. silvestris the obvious candidate for a short-marker stage 

is the egg. Eggs of P. silvestris are large and deposited conspicuously on the 

integuments of gypsy moths. The eggs hatch in ca. 4 days, and it is possible to 

distinguish eggs containing parasitoids from those that have already hatched 

(Prell 1915). A possible short coming of this method is that some eggs may be 



infertile or be shed before the immature P. silvestris hatch. These phenomena 

would have to be studied before the technique could be used. 

The two methods of estimating parasitism by Q. melanoscela and £. silvestris 

most commonly used in past studies were Peak Sample Percentage Parasitism 

(e.g. Fuester et al. 1983, Drea & Fuester 1979, Ticehurst et al. 1978, and Tigner 

1974) and Pooled Percentage Parasitism (e.g. Blumenthal et al. 1979, Reardon 

& Podgwaite 1976, and Barbosa et al. 1975). These methods were used 

without regard for the biases that affect them, and as I have shown, the use of 

Pooled Percentage Parasitism or the use of Peak Sample Percentage 

Parasitism by P. silvestris is not appropriate. One needs to be careful when 

conclusions of research are based on the use of these methods to estimate the 

impact of parasitoids on gypsy moth populations. The Southwood & Jepson 

Graphical Method has been used to assess recruitment of both Q.. melanoscela 

and first through third instar gypsy moths (Kolodny-Hirsch et al. 1988). The 

authors did not measure mortality that might bias the use of this method, but 

because mortality of early instar gypsy moths is usually low (Elkinton et al. 

1989), this method was probably suitable. 

In the calculations of stage-specific parasitism, in order to evaluate the 

impact of the two species separately, I had to assume that they acted entirely 

sequentially. This was not the case in this study. Although £. melanoscela 

was present earlier in the season, the two species occurred together for ca. 5 

weeks. Assuming that the species acted sequentially can lead to errors in 

partitioning mortality for use in life-tables (Varley et al. 1973). It is my 

recommendation that the most unambiguous way to measure the impact of Q.. 

melanoscela and P. silvestris is to measure marginal probabilities of parasitism. 



CHAPTER 5 

FIELD AND LABORATORY STUDIES OF SUPERPARASITISM BY 

PARASETIGENA SILVESTRIS (DIPTERA: TACHINIDAE) 

Introduction 

Parasetigena silvestris (Robineau-Desvoidy). a solitary endoparasitoid of 

larvae of the gypsy moth, Lvmantria dispar (L.), can be found throughout the 

range of its host in the northeastern United States. Adults emerge and mate in 

early spring, but females do not begin to oviposit until mid June, when gypsy 

moths are in the fourth instar (Prell 1915, ODell & Godwin 1979). Female P. 

silvestris search for hosts by flying or walking in vertical spirals around the 

trunks of trees (ODell & Godwin 1979). Although active searching peaks in mid 

afternoon (Weseloh .1976), when ambient temperatures are above 20°C (Prell 

1915, ODell & Godwin 1979), a major stimulus for oviposition is movement of 

the host larvae (Prell 1915, Weseloh 1976), which is greatest at dawn and in the 

evening. At these times, larvae are in transit between nighttime feeding sites in 

the forest canopy and daytime resting sites such as bark flaps and leaf litter. 

Most of the large, white macrotype eggs are deposited on the integuments of 

larvae during these migrations (Weseloh 1974), although P. silvestris also 

attacks larvae in the daytime resting sites (ODell & Godwin 1979). 

Superparasitism by P. silvestris. the deposition of more than one egg on a 

single host, has frequently been reported (Prell 1915, Burgess & Crossman 

1929, Weseloh 1974, 1976, ODell & Godwin 1979). Rarely, however, does 

more than one P. silvestris larva survive and emerge from the host (Prell 1915, 

Burgess & Crossman 1929). Pest managers often do not consider the 

propensity to superparasitize to be a desirable trait for a solitary parasitoid 
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because it results in a wastage of eggs (Fiske 1910). Superparasitism may, 

however, increase the probability of parasitoid survival (and thus of host 

mortality) if more than one parasitoid is better able to overcome host defenses 

(e.g. Streams 1971, Puttier 1974, Beland & King 1976). 

The inability to avoid superparasitism is also considered maladaptive from 

the perspective of an individual parasitoid because the probability of survival is 

reduced by competition among conspecifics (Salt 1961). Immature parasitoids 

developing in superparasitized hosts may also be smaller and less fecund 

(King et al. 1976). It has been suggested that there should be strong selective 

pressures to develop mechanisms to discriminate between parasitized and 

unparasitized hosts and to avoid superparasitism (Rogers 1975, van Lenteren 

1981). 

To study the effect of superparasitism on levels of host mortality, I measured 

the dispersion of parasitoid eggs on field-collected gypsy moth iarvae to 

determine if superparasitism was the result of random oviposition or if certain 

hosts were more or less likely to be attacked than average. Gypsy moth larvae 

were also collected and reared to confirm that a single parasitoid usually 

emerges from superparasitized hosts. The dispersion patterns of eggs were 

compared between larvae collected in a populations with high and low 

densities of gypsy moths and between larvae collected from under burlap 

bands with larvae collected elsewhere in the same plot. Bands of burlap 

wrapped around the trunks of trees are utilized by larvae as daytime resting 

sites are often used as a sampling tool (e.g. Tigner et al. 1974, Reardon 1976, 

Bogenschutz et al. 1989). Because estimates of the impact of P. silvestris on 

the population dynamics of the gypsy moth are frequently based on samples 

collected from under burlap bands, it is important to know if the use of burlap 



bands affects levels of superparasitism and ultimately biases estimates of host 

mortality due to P. silvestris. 

To investigate the effect of superparasitism on individual parasitoids, 

laboratory studies were conducted to determine how increases in the number of 

eggs per host larva influenced the following: (1) mortality of hosts, (2) survival of 

parasitoid progeny, and (3) size of parasitoid progeny. 

Methods and Materials 

Field Studies 

Field Sites and Collection Procedures. Field studies were conducted from 

mid June to mid July of 1986 in two 9 ha plots (300 m X 300 m) on Otis Air 

National Guard Base (ANGB), Cape Cod, Massachusetts. Plot 1 had a density 

of 694 (± 152 SE) gypsy moth egg masses per ha prior to hatch in 1986, and 

there were 3934 (+ 402 SE) egg masses per ha in Plot 2 (based on prism-point 

estimates of egg-mass density - Wilson & Fontaine 1978) (J.S.E. unpublished 

data). Each plot was divided into nine 1 ha subplots (100 m X 100 m), which 

were in turn divided into 16 square sub-sub plots. Sampling points were 

located at the center of each sub-sub plot. Prior to sampling, three of the 16 

sampling points in each subplot were selected at random. The ten trees with a 

diameter at breast height greater than 7 cm that were closest to the sampling 

points were wrapped with 24.5 cm strips of burlap. Several vertical slits were 

cut in each burlap band to create flaps that gypsy moth larvae could use as 

daytime resting sites. 

Gypsy moth larvae were collected from each plot on three sampling 

occasions (designated Samples 1 to 3), which began on 16 June in Plot 1 and 

on 24 June in Plot 2. On each sampling occasion, one point with burlap bands 

around the trees and one point without burlap were selected at random in each 



subplot. Up to eight gypsy moth larvae were collected from under each burlap 

band. At points without burlap, collections began at the sampling point and 

continued outward in concentric circles until at least 65 gypsy moth larvae were 

collected. All parts of the habitat including the litter, understory vegetation, 

boles of trees, and canopies of trees were searched. Collections were never 

made from the same sampling point twice. 

I recorded the number of large, macrotype eggs deposited on each larva I 

collected. Eggs remain on the integument of the host until molts, at which time 

the eggs (and external evidence of parasitism) are lost. The majority of larvae 

were fourth instar at the time of Sample 1, fifth instar for Sample 2, and sixth 

instar for Sample 3. The majority of larvae, therefore, molted between samples, 

and I was recording mostly new ovipositions on each sampling occasion. 

Larvae were placed in 30 ml plastic cups containing artificial diet (Bell et al. 

1981), reared in an outdoor insectary, and checked once per week until death 

or emergence of adult gypsy moths. The number of P. silvestris larvae 

emerging from each host was recorded. 

Patterns of Dispersion of Parasitoid Eggs and Larvae. To determine whether 

the patterns of eggs laid on hosts and of parasitoid larvae emerging from hosts 

were random, I tested the goodness-of-fit of the sample data to a Poisson 

distribution using X2 test statistics (Elliott 1983). I pooled the data from all 

subplots for the analysis because by the time data from single subplots were 

combined to get expected frequencies of greater than one, there were not 

enough degrees of freedom to conduct the test. I also calculated four indices of 

dispersion [1/k of the negative binomial, variance-to-mean ratio (s2/x), Morisita's 

Index (y and Green's Coefficient (Cx)j to assess the degree of aggregation or 

uniformity of sample objects. Values of the indices at maximum uniformity, 

randomness, and maximum aggregation are as follows: (1) 1/k: -1/x, 0, n-1/x 
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(2) s2/x: 0,1,Ix(3)l:1-(n-1/Ix-1), 1,n(4)Cx: -(1/Zx-l), 0, 1 where n = 

number of hosts sampled, 7 = mean number of parasitoid eggs per host, and Zx 

= total number of parasitoid eggs on all larvae (Elliott 1983). Sometimes the 

iterative method used to solve for k of the negative binomial did not converge on 

a value of k. If it was possible to estimate k, however, I tested the goodness-of- 

fit of the sample data to a negative binomial distribution (Elliott 1983). For s2/x, 

1^, and Cx, I determined whether the observed values fell within the 95% 

confidence intervals of random distributions. 

Estimating Total Mortality Due to P. Silvestris. Because hosts attacked by E. 

silvestris could ultimately be killed by other parasitoids or disease, and because 

the incidence of these mortality factors might differ between plots or be affected 

by sampling from burlap bands, I calculated the marginal probabilities (sensu 

Royama 1981a) of hosts being killed by P. silvestris in the absence of other 

mortality agents. The probability of surviving mortality from P. silvestris was 

determined for each interval between samples and for the final sample (based 

on mortality observed by rearing larvae). These values were multiplied to 

determine the probability of surviving death from P. silvestris over the entire 

sampling period. Total percentage mortality was calculated as 100 - 

percentage survival (see Chapter 6 and Appendix 1 for a more thorough 

description of this method). Within a plot, the significance of the difference in 

percentage mortality between samples collected from under burlap bands and 

samples collected without burlap was tested using an approximate Z-test 

(Freedman et al. 1978). 

Laboratory Studies 

Collection and Maintenance of Parasitoid Adults. Adult parasitoids were 

collected from 28 May to 5 June 1986 near Plot 1. Sweep nets were used to 

collect mating pairs to ensure that females were fertilized. Male and female 



parasitoids were placed in 40 X 26 X 17 cm clear plastic cages with screening 

on both ends (ca. 10 pairs per cage). Honey was dabbed on the walls and 

ceiling of the cage, and water was provided in glass vials with cotton wicks. The 

cages were kept in an outdoor, screened insectary until the parasitoids were 

used for the experiment. 

Gvdsv Moth Larvae. Gypsy moth larvae were from a laboratory colony at Otis 

Methods Development Center, Otis ANGB, Cape Cod, Massachusetts (NJ 

Strain: generation 29). Larvae were reared (10 per 180 ml cup) on artificial diet 

(Bell et al. 1981) at 25°C, 60% RH, and 16:8 L:D until they were about to molt to 

the fourth or fifth instar. They were then placed individually in 30 ml plastic cups 

with artificial diet. Larvae were used for the experiment within 24 h of molting. 

Superparasitization. The effects of superparasitism were evaluated by 

allowing parasitoid females to lay 1,2, 3, or 4 eggs on a single larva. Larvae 

were placed individually in the cages of parasitoids and were removed after the 

desired number of eggs (hereafter designated egg-density) were deposited on 

the integument. Parasitized larvae were held in an environmental chamber at 

25.0°C, 60% RH, and 16:8 L:D and were inspected daily for emergence of 

parasitoids. Fifty unparasitized fourth and fifth instars served as controls, were 

reared in the same manner as parasitized larvae, and were inspected daily for 

mortality or adult emergence. 

The proportions of parasitized hosts that (1) produced parasitoids (2) died 

without producing parasitoids and (3) lived were analyzed to determine if there 

were significant differences depending on egg-density or the instar of the host. I 

used weighted-least-squares estimates of the model parameters, and the 

goodness-of-fit of the data to the categorical model was tested using X2 

statistics (PROC CATMOD, SAS Institute 1987). Contrasts were used to 

determine the significance of differences between adjacent categories of egg- 
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density. I also calculated the probability that a given parasitoid would survive to 

emerge from a host as the percentage of the total eggs laid at each egg-density 

that survived to emerge. The significance of differences in the probability of 

survival, based on host instar and egg-density, was analyzed using PROC 

CATMOD (SAS Institute 1987), again using contrasts to compare between 

adjacent categories of egg-density. 

Upon emergence from the hosts, all immature parasitoids were placed 

individually in 30 ml cups containing 20 ml of moist leaf litter. The parasitoids 

formed puparia and immediately began developing into pharate adults, which 

entered diapause for the winter. The puparia remained undisturbed for six 

months and were then dissected to determine whether or not an adult had 

developed. Prior to dissection, the size of each puparium was determined by 

measuring its length (L) and diameter (D) to the nearest mm using a dissecting 

microscope and a ruler. The volume (V) of the puparium was then calculated as 

V = L k (D/2)2* | did not weigh the puparia because in some instances 

desiccation had occurred. The effects of host instar and egg-density on the 

volume of the puparia was tested by ANOVA (PROC GLM, SAS Institute 1987). 

The volumes were weighted by 1/variance for the categories of instar and egg- 

density because the variances among these categories were not 

homoscedastic (Levene’s Test; Milliken & Johnson 1984). Contrasts were used 

to compare volumes between adjacent categories of egg-density. 

Results and Discussion 

Eifild-Studies 

Patterns of Dispersion of Parasitoid Eggs. When Sample 1 was collected, 

oviposition by P. silvestris had just begun. As a result, few larvae were 
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parasitized, and only four of the 2157 larvae collected had more than one egg. 

The patterns of dispersion of eggs on larvae collected in Sample 1 were not 

significantly different from random, although three of the four cases tended 

toward a uniform distribution (Table 5.1). Only one of the patterns of dispersion 

in Samples 2 and 3 was significantly different from a negative binomial 

distribution, and all but one were significantly aggregated (Table 5.1). The 

aggregation of parasitoid oviposition on certain hosts suggests that 

superparasitism was not simply the result of random oviposition, but that certain 

hosts were more likely to be attacked than others. 

Within a given sample and collection regime (burlap or no burlap), the 

degree of aggregation was higher in Plot 1, the plot with a lower density of 

gypsy moths, than in Plot 2 (Table 5.1). These findings support the hypotheses 

of Weseloh (1976) and ODell and Godwin (1979). In low density populations, 

most larvae are in resting locations during the day and are not apparent to 

parasitoid females who are attracted to larval movement. The few larvae that 

are exposed receive the majority of the parasitizations that occur in the early 

afternoon, when parasitization is at its peak, and tend to be superparasitized. 

These authors predicted a more even distribution of eggs in higher density 

populations because a greater proportion of the larvae are exposed and 

moving during the day due to a shift in larval behavior. 

When samples collected at the same time and from the same plot were 

compared, the degree of aggregation of eggs for Samples 2 and 3 was higher 

for larvae collected from under burlap bands (Table 5.1). Gypsy moth larvae 

often begin the migration from the canopy to daytime resting sites as early as 

03:45 h (ODell & Godwin 1979), when ambient temperature and light levels are 

too low for parasitoids to be active. As temperature and light levels increase, 

parasitoids become active and attack larvae that come down the tree later. 
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ODell and Godwin (1979) observed that these larvae are sometimes attacked 

two to three times prior to reaching artificial bark flaps. Larvae that arrive later 

end up on the periphery of aggregations of larvae and are also subject to higher 

rates of oviposition by parasitoids searching under the burlap bands. Larvae 

that arrive at the burlap bands later, therefore, have a greater probability of 

being attacked during migration and also while under the burlap bands. 

In both plots, total mortality due to £. silvestris was significantly lower for 

larvae collected from under burlap bands (Z = 3.17, d.f. = 1, E < 0.05 and Z = 

2.25, d.f. = 1, E < 0.05 for Plots 1 and 2 respectively) (Table 5.2). Lower 

percentage parasitism would be expected if, for some reason, larvae using 

burlap bands escaped attack by parasitoids; however, the number of eggs per 

larva was not consistantly lower for larvae collected from under burlap bands 

(Table 5.1). An alternative explaination is that as the degree of aggregation of 

parasitoid attacks increases, the same number of eggs is distributed among a 

smaller proportion of the hosts, resulting in lower percentage parasitism. The 

consistently greater aggregation of eggs on larvae collected from under burlap 

bands (Table 5.1) may explain the lower overall mortality of these larvae. This 

finding has an important practical implication. The use of burlap bands to 

collect larvae could result in artificially elevated levels of superparasitism and 

corresponding underestimates of the impact of £. silvestris. Reardon (1976) 

concluded that collecting larvae from burlap bands elevated rather than 

decreased estimates of parasitism; however, he pooled samples of larvae taken 

throughout the season to calculate percentage parasitism. This method does 

not accurately measure levels of parasitism (Gould et al. 1989). 

Patterns of Dispersion of Parasitoid Larvae. My results support the contention 

that it is usual for only one E. silvestris larva to emerge from parasitized hosts. 

Two parasitoid larvae emerged from only four of the parasitized hosts collected, 



Table 5.2. Total percentage mortality due to P. silvestris 

( + SE) for two populations of gypsy moths on Cape Cod, 

Massachusetts in 1986. Larvae were collected either from 

under burlap bands (B) or from habitats without burlap 

bands (WB). 

% P. silvestris 

Plot B/WB mortality 

1 B 33.7 ± 3.1 

1 WB 52.7 ± 3.7 

2 B 30.8 + 4.2 

2 WB 45.2 ± 3.5 
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and more than two parasitoids never emerged from these field- collected larvae. 

This resulted in a uniform distributions of larvae emerging from hosts (Table 

5.3). The switch in the pattern of dispersion between life-stages, from 

aggregated in the parasitoid's egg-stage to uniform in the larval-stage, implies 

that the parasitoids were capable of eliminating competitors. The mechanism of 

competition in £. silvestris is unknown, but Prell (1915) noted that two 

parasitoids could survive in a single host only if they were far apart. Larvae of 

£. silvestris do not have large, fighting mandibles and do not move about inside 

of the host (Prell 1915), therefore, some sort of physiological suppression of 

competitors is likely. Competition in some tachinid species is thought to be the 

result of progressive elimination of more slowly developing parasitoids through 

selective starvation (Pschorn-Walcher 1971). 

Laboratory Stupes 

Effect of Superparasitism on Host Mortality. Total mortality of gypsy moth 

larvae increased significantly (X2 = 14.8; d.f. = 1; £ < 0.01) with the deposition of 

two, rather than one, eggs per host (Figure 5.1). This phenomenon was most 

pronounced for instar four. The simplest explanation for the increase in host 

mortality with deposition of more than one egg is that, given a constant 

probability that a parasitoid will survive and kill its host, more ovipositions per 

host leads to greater levies of host mortality. I tested this hypothesis by 

assuming that the probability of a single parasitoid emerging from a host (PE-j) 

was as observed for the egg-density of one. The expected probability of a host 

dying from parasiotid emergence (PEn), when more than one egg was laid, was 

calculated by multiplying probabilities of surviving parasitism as follows: 

PEn = 1 -(1-PEi)n 
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where n is the egg-density. The observed numbers of hosts dying from 

parasitoid emergence were differed significantly from this model (X2 = 5.927, 

d.f. = 1,£< 0.025). 

Another explanation for greater host mortality with increasing egg-density is 

that several parasitoids are more successful in overcoming host defenses. A 

lower frequency of encapsulations in superparasitized hosts was reported for 

the tachinid, Lixophaga diatraeae (Beland & King 1976), and also for 

hymenopterous parasitoids (Streams 1971, Puttier 1974). If this hypothesis is 

correct, one would expect more superparasitized hosts to die from parasitoid 

emergence than would be predicted by the constant probability model. I found 

just the opposite; the probability of parasitoid emergence was lower than 

expected. This is probably attributable to the adverse effects of competition with 

conspecifics or to a decrease in the quality of superparasitized hosts. 

No mortality occurred among unparasitized hosts, therefore mortality of 

parasitized hosts that did not result in emergence of a parasitoid was assumed 

to be parasitoid-induced-mortality (PIM). The incidence of PIM (Fig. 5.1) was 

lower than the values of 52.5% and 9.7% for fourth and fifth instars 

(respectively) found in another study using wild gypsy moth larvae and a single 

attack (T. ODell unpublished data). This difference could be attributed to a 

difference in PIM between wild and laboratory-reared hosts. PIM increases with 

increasing superparasitism for some species (i.e. Hughes 1975, Pawson et al. 

1987). The amount of PIM caused by P. silvestris increased slightly but not 

significantly with increasing egg-density in fourth instars, but there was no trend 

for fifth instars (Fig. 5.1). 

Effect of Superparasitism on Survival and Size of Parasitoids. Although 

parasitism by two or more individuals increased the probability that at least one 

parasitoid would survive to emerge from the host, superparasitism adversely 



affected survival of individual parasitoid progeny. The probability that a 

parasitoid would survive to emerge from a host decreased as egg-density 

increased (Fig. 5.2). The response was the most pronounced for fifth instars. 

The interaction between instar and egg-density in the ANOVA model was 

significant (X2 = 11.4; d.f. = 1; E < 0.01), therefore I analyzed at the effect of egg- 

density separately for each instar. There were significant differences between 

one and two eggs per host (X2 = 3.5; d.f. = 1; E < .06) and between three and 

four eggs (X2 = 7.08; d.f. = 1; E < 0.01) for instar five, and between two and 

three eggs (X2 = 4.44; d.f. = 1; E < 0.04) for instar four. The probability of a 

parasitoid developing into an adult once it had emerged from the host ranged 

from 70.4% to 95.5%, but there were no significant effects on this percentage 

caused by host instar or egg-density. 

In the laboratory, 17% of the superparasitized hosts produced more than one 

parasitoid larva. In contrast, very few field-collected hosts produced more than 

one immature P. silvestris. This difference could be due to a dissimilarity 

between wild and laboratory-reared hosts or to the timing of parasitoid 

oviposition. All eggs in the laboratory study were deposited simultaneously, 

while in the field, oviposition presumably occurred over an extended period. 

The probability of parasiotids coexisting may be greater when they are the 

same age. It should also be noted that in some field populations, more than 

one E- silvestris larva has emerged from over 10% of parasitized hosts 

(Ticehurst et al. 1978, J.R.G. & J. S. Elkinton unpublished data). 

Superparasitism resulted in a decrease in the size of emerging parasitoid 

progeny. The volume of puparia produced by emerging parasitoids decreased 

significantly between one and two eggs per host (X2 = 3.89; d.f. = 1; E < 0.05), 

but further reductions in volume were not significant (Fig. 5.3). The size of adult 

parasitoids, especially females, can affect fitness parameters such as longevity, 
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mating success, fecundity, or searching rates (Pak & Oatman 1982, Waage & 

Ng 1984). King et al. (1976) reported a decrease in the weight of L diatraeae 

puparia with increasing number of parasitoids per host and a corresponding 

decrease in egg production with decreasing weight. Prell (1915) found that 

there was a direct relationship between the size of the ovaries of £. silvestris 

females and the size of the female fly, which might translate to a reduced 

fecundity of the smaller progeny emerging from superparasitized hosts. 

Effect of Host Instar on Host Mortality. Percentage mortality of gypsy moths 

was significantly higher (X2 = 28.5; d.f. = 1; P < 0.01) when hosts were attacked 

in the fifth instar (Fig. 5.1). Larvae of P. silvestris emerge just prior to host 

pupation regardless of when oviposition occurs (T. M. ODell unpublished), 

therefore parasitoids remain in fourth instars longer than in fifth instars. There 

may be a greater likelihood of parasitoid mortality (perhaps due to host 

defenses), and thus of host survival, when hosts are attacked in the fourth instar. 

Effect of Host Instar on Parasitoid Survival and Size. The probability of a 

given egg surviving to produce an immature parasitoid was significantly greater 

(X2 = 25.4; d.f. = 1; P < 0.01) if the egg was laid on a fifth instar host (Fig. 5.2). 

This increased probability of survival was offset by the significantly smaller (X2 

= 6.04; d.f. = 1; E < 0.02) size of puparia formed by maggots emerging from fifth 

instars (Fig. 5.3). Because parasitoids remain in fourth instars longer, they may 

be able to acquire more nutrition and reach a larger size. 

Concluding remarks 

Superparasitism by solitary parasitoid females has been considered wasteful 

behavior because it decreases the probability of survival of the parasitoid's 

offspring. It is argued that the ability to discriminate between parasitized and 

unparasitized hosts, and thus to avoid superparasitism, should have a strong 

selective advantage (Rogers 1975, van Lenteren 1981). The question of 
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whether £. silvestris has the ability to discriminate between parasitized and 

nonparasitized hosts has not yet been answered definitively. Weseloh (1976) 

concluded that £. silvestris cannot discriminate, but he compared parasitization 

of naturally occurring parasitized larvae with nonparasitized laboratory-reared 

larvae. He actually found that fewer eggs were deposited on larvae that had 

been previously parasitized, although the difference was not significant. Also, 

the fact that this species superparasitizes in both the laboratory and the field 

does not prove that it lacks the ability to discriminate. Recent work suggests that 

superparasitism may be an alternative reproductive strategy that is adaptive 

under certain conditions (van Alphen & Visser 1990, Hubbard et al. 1987, 

Waage 1986, Bakker et al. 1985, Cloutier 1984, van Alphen & Nell 1982). In 

past studies, superparasitism by P. silvestris ranged from quite high (>80% 

Bogenschutz et al. 1989) to moderate (>10% Ticehurst et al. 1978, J.R.G. & 

J.S.EIkinton unpublished data) to extremely low (Weseloh 1976, Tigner et al. 

1974) to nonexistent (Barbosa et al. 1975). Further studies are needed to 

determine whether these differences depend on ecological factors or 

behavioral adaptations of female parasitoids. 



CHAPTER 6 

DENSITY-DEPENDENT SUPPRESSION OF EXPERIMENTALLY CREATED 

GYPSY MOTH POPULATIONS BY NATURAL ENEMIES 

Introduction 

In the northeastern United States the gypsy moth. Lvmantria dispar L. 

(Lepidoptera: Lymantriidae), is one of the most damaging forest insect pests. 

Larvae hatch in April or May, climb to the tops of trees and often disperse on the 

wind by spinning down on silken threads. Following this they commence 

feeding and remain in the forest canopy until they molt to the fourth instar. In 

low to moderate density populations, late instars (4-6) undergo a daily migration 

from nighttime feeding sites to protected daytime resting locations under bark 

flaps or in the litter on the forest floor. It has been hypothesized (Campbell & 

Sloan 1976) that this behavior evolved in Europe in response to parasitism by 

tachinid flies and predation by insectivorous birds, but in North America it leads 

to high rates of predation by small mammals, particularly Peromvscus leucopus 

Raf. Larvae pupate in their resting sites and adults emerge in July. Females do 

not fly and they deposit their eggs in a single mass not far from the site of 

pupation. 

In North America, densities of gypsy moths in most forest stands remain at 

low levels for many years and then erupt into an outbreak phase which may last 

for several years. The major goal of research on gypsy moth population 

dynamics is to identify those factors or agents responsible for maintaining 

populations at low densities and the mechanisms for release to outbreak levels. 

It has been suggested (Campbell 1976; Campbell & Sloan 1977,1978; 

Campbell et al. 1977) that predation by small mammals on late instars and 
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pupae maintains populations at low densities and that this predation is 

positively density-dependent (Campbell et al. 1977). There are also eight 

introduced parasitoids established in North America as well as ten endemic 

parasitoid species that attack gypsy moths. While there have been reports of 

relatively high levels of parasitism by some gypsy moth parasitoids (Campbell & 

Podgwaite 1971; Doane 1971; Barbosa et al. 1975; Blumenthal et al. 1979; 

ODell & Godwin 1979; J.R.G. & J.S. Elkinton unpublished), most researchers 

(e.g. Campbell et al. 1977; Reardon 1976; Ticehurst et al. 1978) believe that 

parasitoids do not cause sufficient mortality to limit the growth of gypsy moth 

populations. The total amount of mortality caused by a given agent is not as 

important to population regulation, however, as the density-dependence of the 

response. The strength of the density-dependent response over a range of host 

densities determines whether the host population is stabilized, goes through 

regular cycles, or exhibits chaotic behavior (May 1986). 

There is as yet no strong evidence that small mammals cause positive 

density-dependent mortality in populations of gypsy moths. In fact, there is 

some evidence (Elkinton et al. 1989) that predation by small mammals is 

inversely density-dependent. Some researchers have found positive density- 

dependent mortality due to parasitoids (Reardon 1976; Sisojevic 1977; ODell & 

Godwin 1979; Furuta 1982) and others have found a negative correlation 

between percentage parasitism and host density and/or percent defoliation 

(Weseloh 1973; Reardon 1976; Reardon & Podgwaite 1976; Ticehurst et al. 

1978). In many of these studies, however, the methods used to determine host 

density or percentage parasitism were unsatisfactory (Gould et al. 1989). 

Density-dependence may be difficult to detect from traditional temporal life- 

table studies. Natural stochastic variation may obscure underlying density- 

dependent processes rendering them difficult to detect (Hassell 1985, 1987), 
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although Dempster and Pollard (1986) and Mountford (1988) have disputed this 

contention. Also, life-table studies which look at average mortality occurring in 

populations over several generations may not detect density-dependent 

responses to spatial heterogeneity among subpopulations within a generation 

(Hassell 1987; Hassell et al. 1987). Furthermore, when natural population 

densities are close to an equilibrium, there may be no direct density-dependent 

mortality of the host population (Murdoch & Reeve 1987). It has been 

suggested (Gaston & Lawton 1987; Hassell 1985, 1987; Murdoch & Reeve 

1987) that a solution to these problems is to manipulate population densities 

(£.$. Karieva 1985; Reeve & Murdoch 1985; Furuta 1976) rather than to rely on 

life-table data collected from natural populations over several generations. This 

study was designed to manipulate the density of gypsy moth larvae to 

determine if natural enemies could respond to local increases in density in a 

density-dependent manner. 

Methods and Materials 

Site Description and Preliminary Counts of Egg Masses 

The study was conducted in Cadwell Memorial Forest in Pelham and 

Belchertown, Massachusetts during 1987. I established eight 1 ha plots (100 m 

by 100 m) in the forest spaced at least 750 m from one another. Oaks (QueiQUS 

rubra L., Q. velutina Lam., & Q. alba L.) were the predominant overstory trees in 

all plots and the plots also contained Acer rubrum L. and to a lesser extent A- 

saccharum Marsh. Betula lenta L., B. lutea Michx., B. populifolia March, and 

Fraxinus americana L. 

In each plot I established a ten-by-ten grid of points, with 10 m between 

points, to serve as a framework for various sampling regimes. Prior to density 
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manipulations I conducted an egg mass survey in each plot by counting all egg 

masses within a 7.5 m radius circle around five egg mass sample points. Mount 

Lincoln in Cadwell Forest has a history of outbreaks and had defoliating gypsy 

moth populations during an outbreak from 1979 to 1981. Following the 

population crash in 1981 densities remained very low and the pre-season egg 

mass counts revealed no egg masses in any of the plots. 

Release of Larvae 

Egg masses for the release experiment were collected in an area with 

expanding, moderately high density gypsy moth populations in Hopeville, 

Connecticut. These egg masses were submerged for 1 h in a 10% formalin 

solution to remove viable nuclear polyhedrosis virus (NPV) from the egg surface 

(Bell et al. 1981) and were then rinsed for 1 h with water. The eggs were 

divided into four groups of different sizes (two replicates per group size) to give 

us four densities of larvae at hatch. I weighed each group and then placed the 

eggs in 100 7.5 X 10 cm screen packets (200 packets for the highest density). ! 

then sampled one of the largest packets and determined the number of larvae 

that emerged. The resulting value of number of larvae emerging per gram of 

eggs was multiplied by the weight of all eggs for each group to estimate the 

number of larvae at hatch. The expected numbers of larvae at hatch in the eight 

plots are given in Table 6.1. 

On 4 May 1987 I released larvae at densities that corresponded to that 

expected from 174 to 4600 egg masses per ha, assuming a hatch of 250 larvae 

per egg mass. Egg mass densities above 2500 per ha would be expected to 

result in complete defoliation of a forest stand (Wilson & Talerico 1981). Prior to 

the release I had collected eighteen egg masses from a high density site in 

Hardwick, Massachusetts (20 km from Cadwell Forest). These egg masses 

were placed individually in 30 ml plastic cups and were kept shaded in Cadwell 
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Table 6.1. The estimated number of larvae (± 95% confidence 
limits) released in eight plots in Cadwell Forest in 1987. 

Density Class Plot 

1 1A 

1 IB 

2 2A 

2 2B 

3 3A 

3 3B 

4 4A 

4 4B 

No. larvae/ha at hatch 

59, 304 < + /- 2, 206) 

43, 538 (+/- If 619) 

146, 825 (+/- 5, 461) 

81, 821 <+/- 3, 043) 

374, 542 (+/- 13 , 930) 

296, 157 ( + /- 11 , 015) 

1^143, 112 <+/- 42 , 516) 

If 144, 325 ( + /- 42 ,561) 
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Forest. Hatch was monitored daily and I timed the release to coincide with that 

observed from these egg masses. Oak trees in all plots were beginning to 

expand their leaves at this time. 

To assure that gypsy moth larvae were distributed throughout each plot I 

released them at 100 points in the ten-by-ten grid. I deployed gypsy moth egg 

masses by stapling the screen packets to the trunks of the trees closest to the 

release points at a height of 1.5 m. Neonates emerging from the egg masses 

passed easily through the mesh of the screen. 

Monitoring Dispersal of Larvae 

To monitor dispersal of larvae away from the plots I established eight transect 

lines (two per cardinal direction) extending 150 m away from plots 4A and 4B 

(the plots with the highest density of released larvae). Transect lines were 25 m 

from the corners of the plots and were 50 m apart. I wrapped a 24.5 cm wide 

burlap band at a height of 1.5 m around every oak tree within 5 m of either side 

of the transect line. When larvae were in the fifth and sixth instars I took counts 

of the numbers of live and dead larvae under each burlap band to determine 

how far from the plots the larvae dispersed and if the magnitude of mortality 

changed with distance from the plot. I regressed both the logio of the total 

number of larvae per m burlap and the arcsine of the square root of the 

proportion of dead larvae on the distance from the plot. 

Monitoring Changes in Density 

I monitored the change in density of gypsy moths in all plots throughout the 

season by taking weekly density estimates. Frass traps (Liebhold & Elkinton 

1988a,b) were deployed at 48 points in each plot to estimate the densities of 

third through fifth instar larvae. Each week I counted the number of frass pellets 

collected overnight in the 50 cm diameter funnel shaped traps. I also collected 

twenty larvae from each of the four higher density plots and held them 



individually in 360 ml cups with oak leaves during the period of trass drop 

measurement. By dividing the number of pellets collected in the total area 

covered by the trass traps by the number of pellets produced per individual 

larva I was able to estimate the number of larvae per ha (see Liebhold & 

Elkinton, 1988a,b for a complete description of this method). 

After 2 July when larval densities became so low that estimates from trass 

traps were no longer accurate, I measured changes in density by taking weekly 

counts of the number of larvae and pupae per meter of burlap band. There 

were four sample points per plot and the 25 trees closest to each point were 

wrapped with a 25.4 cm wide strip of burlap. Several vertical slits were cut in 

each band to create flaps which larvae used as daytime resting sites. It should 

be noted that it is not possible to directly convert the number of larvae under 

burlap bands to number per ha, and I therefore used these measures to 

estimate the relative drops in density occurring during the late instars. Mortality 

of larvae under burlap bands may differ from that experienced elsewhere in the 

population, but at the low densities experienced this method was the only 

option. 

At the end of the season I estimated the final egg mass density, using the 

same five egg mass sample points used for the pre-season egg mass count. 

These points were situated at least 25 m from the nearest burlap point because 

burlap bands can influence pupal survival (Bess et al. 1947; Campbell et al. 

1975). I recorded the location of these egg masses and returned following 

hatch in the spring to determine the number of larvae present in the next 

generation. The lengths of the egg masses were measured and the regression 

of Moore & Jones (1987) was used to estimate the number of eggs per mass 

(newly hatched larvae consume the chorion of the egg, therefore eggs from 

which larvae had emerged could not be counted). I then counted the number of 



unhatched or parasitized eggs in each mass and subtracted this value from the 

number of eggs to estimate the number of larvae. 

Monitoring Larval Mortality 

During the larval period I monitored mortality due to parasitoids and disease 

by making weekly collections of 100 larvae per plot. Four grid points were 

selected at random in each plot on each sample occasion. Early instars, which 

were mainly in the canopy, were sampled by climbing the oak tree closest to the 

sample point using climbing ropes. Branches were cut with pole pruners, 

dropped onto plastic tarps, and larvae were collected. I also collected larvae' 

from the litter and understory vegetation around the sample point. When the 

larvae reached the fourth instar and descended from the canopy during the day 

I deployed burlap bands on the five trees closest to the randomly selected 

sample points on the day prior to sampling. Larvae were collected from under 

the burlap bands, which were then removed, as well as from the litter and the 

understory. On each sample occasion I also recorded the number of larvae 

bearing large macrotype eggs laid by Parasetiaena silvestris Robineau- 

Desvoidy (Diptera: Tachinidae). 

Larvae were placed individually in 30 ml plastic cups containing artificial diet 

(Bell et al. 1981) and were reared in an outdoor screen cage located 

approximately 200 m from one of the plots. Larvae were checked once a week 

until death or adult emergence and puparia or cocoons of emerging parasitoids 

were keyed to species (Simons et al. 1979). Dead larvae, from which no 

parasitoid emerged, were checked for the presence of the polyinclusion bodies 

of NPV using a phase contrast microscope at 1000 X magnification, and for 

immature parasitoids that failed to emerge. If I failed to detect polyinclusion 

bodies or parasitoids, I classified the mortality as "unexplained". 
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Because predation on released larvae could not be measured directly, I 

conducted additional observations to assess the potential impact of avian 

predators. When larvae were in the second and third instars, and were located 

mainly in the canopies of the trees, I attempted to determine if foliage gleaning 

birds were attracted to areas with high density gypsy moth populations. Four 

sampling points were chosen in the two plots with the highest densities. I also 

established a control plot 100 m from each test plot that had a similar forest 

composition and the same configuration of sample points, but few gypsy moths. 

Two experienced ornithologists recorded the numbers of each species of 

foliage gleaning birds that were heard or seen over an 8 min period at each 

sample point. Sampling was conducted between 06.00 and 09.00 hours from 

29 May to 2 June with each ornithologist observing the birds in one plot and the 

adjacent control plot. The plots were sampled in a different order on each day. 

Monitoring Pupal Mortality 

During the pupal period I attempted to quantify mortality of pupae due to 

predators and parasitoids. In all eight plots I deployed 150 male and fifty female 

laboratory-reared pupae (from Otis Methods Development Center - New Jersey 

strain, generation 30), which were attached individually to small pieces of 

burlap with beeswax. Fifty of the male pupae were placed in 44 X 10 X 5 cm 

wire mesh cages (1.27 cm mesh) to exclude small mammals. I placed one 

uncaged male pupa and either an uncaged female pupa or a caged male pupa 

at each grid point. Pupae were placed on the ground at the base of the trees 

nearest to the grid point and were covered with leaf litter. Pupae were checked 

on each of the next three days to determine survival. The significance of the 

differences in the survival of pupae between plots was calculated using the 

SPSS 9.0 Survival procedure (Hull & Nie 1981) and the Lee-Desu D statistic 

(Lee & Desu 1972). After three days all surviving female pupae were returned 
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to the laboratory and reared in 30 ml plastic cups to determine if they had been 

attacked by pupal parasitoids. 

Analysis of Density Dependence and Calculation of K-values 

To determine whether mortality occurring over the entire season and during 

four periods of time was density-dependent I used the method of Varley et al. 

(1973). I estimated the killing power, k, of a mortality agent or agents which is 

defined as k=logio(Nj/S), where Nj is the density of the initial population and S 

is the density of survivors after the action of the mortality agent(s). The k-value 

was regressed on the logarithm of the initial density (Nj). A regression line with 

a slope significantly greater than zero indicated positive density-dependence, 

whereas inverse density-dependence was indicated by a negative slope. In 

this study I recorded spatial density-dependence in contrast to the temporal 

density-dependence measured by Varley & Gradwell (1968). The values for Nj 

and S used to calculate the k-values for the entire season and for four periods 

of time are given in Table 6.2. I added 1.0 to all final density estimates because 

the logarithm of zero is undefined and most plots had an estimated density of 

zero egg masses per ha at the end of the generation. The k-value for period 4 

(which included mortality of pupae and adults, and effects of adult sex-ratio) 

was determined by subtracting k-j, k2, and k3 from K, the k-value for the entire 

season. 

Several investigators have addressed statistical problems with detecting 

density-dependence by regressing k-values on log-j q Nj (£-0- Eberhardt 1970; 

Benson 1973; Slade 1977; Royama 1981a,b). One problem with this technique 

is that when regressing k=logio(Nj/S) on log-j q Nj. Nj appears in calculations of 

both the dependent and independent variables. A regression of this k-value on 

logi o Nj might result in a spurious positive relationship between the two 

variables (Atchley et al. 1976). Furthermore, the technique violates the 
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regression assumption that all the error resides with measurement of the 

dependent variable. Varley and Gradwell (1968) developed a method to verify 

density-dependence that solves both of these problems but their method is 

highly conservative (Hassell et al. 1987; Slade 1977). Other methods have 

been developed to overcome problems of detecting density-dependence in 

series of annual censuses (i.£. Bulmer 1975; Pollard et al. 1987) but this study 

was limited to density-dependence occurring within one generation. Following 

the suggestion of Hassell et al. (1987) I verified density-dependence by 

regressing log-jo S on log-j q Ni using the regression technique of Bartlett 

(1949), which allows regression when there is error associated with both the 

dependent and independent variables. Reported probability values were 

obtained by determining the largest confidence interval around the slope that 

did not overlap with unity. 

In contrast to the more typical use of stage specific k-values, I calculated 

time-specific k-values for individual mortality agents across larval instars. I 

calculated weekly k-values for each parasitoid and for disease following a 

scheme derived from Royama (1981a). The weekly k-value for parasitoid A, kA, 

can be defined as 

kA = -1.0 log-i0(1-mA) 

where mA is the proportion of hosts attacked and killed by parasitoid A over a 

weekly interval in the absence of other simultaneous mortality agents. This 

value is what Royama (1981a) calls the marginal probability of mortality from a 

given agent. This value is greater than the proportion that are observed to die 

in rearings from parasitoid A, vA, because a certain proportion of the larvae that 

would have died from parasitoid A died instead from other parasitoids or 

disease. To calculate the marginal probability for each parasitoid (mA) I solved 



equations 12 and 13 in Royama (1981a) for the case of two simultaneous 

agents see Appendix for more detail). 

These calculations produced estimates of k for each parasitoid and disease 

for each week, and these values were summed up to a value that was equal 

(within ca 1%) to the k-value for all parasitoids and diseases for the week. K- 

values for each individual mortality agent were summed across weeks to yield a 

total for each parasitoid or disease for each period. The difference between the 

total k-value for the period (from density estimates) and the k-value of parasitism 

and disease (from rearings) constituted a measure of residual mortality (which 

includes predation). Individual k-values for each mortality agent for each period 

were regressed on the logig of the density at the beginning of the period using 

the technique of Bartlett (1949). If the linear regression was significant, I also 

looked at the significance of quadratic and cubic trends in the data using 

sequential sums of squares. 

E. silvestris attacks middle and late instar larvae and has been shown by 

T.M. ODell (personal communication) to emerge just prior to host pupation. By 

the end of the fifth and sixth instars, when one would expect the parasitoids to 

emerge, host density was so low that I was unable to collect many larvae and 

thus directly measure mortality due to P. silvestris. I had a direct measure of the 

oviposition rate of this parasitoid, however, from the estimates of the number of 

larvae carrying macrotype eggs when larvae were still sufficiently numerous to 

sample. These eggs remain on the integument until a molt. During the 

sampling period gypsy moth larvae were advancing approximately one instar 

per week and I was therefore confident that the eggs seen on each sample 

occasion had been deposited within the preceding week. For the analysis I 

regressed the k-values of P. silvestris oviposition rates for each week on the 



larval density prior to the sample occasion, based on trass trap density 

estimates, using the technique of Bartlett (1949). 

Result? 

The densities of gypsy moths in all eight plots were reduced between the first 

instar and adult stages to very low levels (Fig. 6.1) and at the end of the season 

there were more egg masses (surviving females) per ha in the lower density 

release plots (Fig. 6.1a and b) than in plots with higher initial gypsy moth 

densities (Fig. 6.1c and d). Also, in all plots there were fewer larvae hatching in 

1988 than were released in 1987, indicating that populations declined in 

density between generations following the release. 

K-values for each plot over the entire season and the contributions to these 

values during periods 2 and 3 by the various mortality agents are shown in 

Table 6.3. The regression of K for the entire season on the log-jo of the density 

at hatch showed that overall mortality was strongly density-dependent (Fig. 6.2). 

Positive density-dependence occurred during Periods 1 (instars 1-3) and 2 

(instars 3-5) (Fig. 6.3a and b), but regressions were not significant for Periods 3 

(instar 5 - pupae) and 4 (pupae - adults) (Fig. 6.3c and d). By regressing log-| q 

S on log*io Nj I verified that the relationships observed during Periods 1 and 2 

were density-dependent (P =0.004 for Period 1 and P =0.019 for Period 2). 

No parasitoids emerged from larvae collected during Period 1 so the drop in 

density during this period was presumably due to predation and/or dispersal of 

first instars. I found no evidence that foliage gleaning birds, which might 

consume small larvae, were more abundant in plots with high gypsy moth 

density than in control plots with no gypsy moths (Table 6.4). In fact, more birds 

were observed in the control plots. Larvae did disperse from the plots, and 
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while I did not directly measure dispersal of first instar larvae I did find fifth and 

sixth instar larvae under burlap bands up to 130 m from plots 4A and 4B. No 

gypsy moths were found under burlap bands between 130 and 150 m from the 

plots. 

During Period 2, when the gypsy moths were mainly instars 3-5, there was 

high weekly mortality due to parasitoids (Fig. 6.4). Compsilura concinnata 

Meigen (Diptera: Tachinidae) caused the most parasitism and there was some 

parasitism bv Cotesia melanoscela Ratzeburg (Hymenoptera: Braconidae), 

Phobocampe disparis Veireck (Hymenoptera: Ichneumonidae), and £. 

silvestris. Unexplained mortality was also high which is consistent with studies 

of other gypsy moth populations (Blumenthal et al. 1979, Campbell 1963, 

Reardon & Podgwaite 1976). Unexplained mortality could be due to trauma 

associated with collection and rearing but there is evidence that parasitoid 

induced mortality that does not result in the emergence of a parasitoid can be 

high (Blumenthal et al. 1979; Godwin & ODell 1984). It is possible, therefore, 

that the overall contribution of parasitoids to the mortality observed in the 

populations was greater than the observed percentage parasitism values would 

indicate. Unexplained mortality could also be due to pathogens such as 

Streptococcus faecalis Doane (Doane 1970a). 

Q. concinnata was the principal source of the density-dependent decline of 

the population during Period 2 (Fig. 6.5a). The regression of kcomp on logio Nj 

was highly significant and had a relatively large positive slope. The response 

was nonlinear, however, and leveled off above approximately 100 000 hosts 

per ha. A quadratic model (Y = -18.87 + 7.32 X - 0.68 X^) fit the data better 

than the linear model (P=0.006, F=21.77, d.f.=1,5) and is shown in Fig. 6.5a. 

Unexplained mortality also increased significantly with increasing density (Fig. 

6.5e) which suggests that it may be related to attacks by concinnata. The 
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only other mortality agent for which the regression was significant was £. 

disparis but for this parasitoid the slope of the regression line was negative (Fig. 

6.5c). 

At the beginning of Period 3 when gypsy moths were in the late larval instars 

there was substantial parasitism (Fig. 6.4). Mortality due to £. concinnata was 

density-dependent (Fig. 6.6a) although the overall mortality for this period (k3) 

did not show this trend (Fig. 6.3c). Again the response of Q. concinnata was 

nonlinear with a quadratic model (Y = 25.16 -13.60 X + 1.84 X2) providing a 

significantly better fit than the linear model (P=0.012, £=14.95, d.f.=1,5). At this 

range of densities the density-dependent response leveled off at the lower 

densities (Fig. 6.1a). None of the regressions for the other mortality agents 

acting during this period were significant. 

The density-dependence of oviposition by P. silvestris reversed over time. 

On the first two sample occasions the relationship between attack rate and 

density was inversely density-dependent (Fig. 6.7a and b). The third sample 

showed no significant relationship (Fig. 6.7c) yet for the fourth sample there was 

a strong positive density-dependent relationship (Fig. 6.7d). 

Additional evidence of density-dependent mortality during the mid and late 

larval instars was obtained from the transect line data. The total number of 

larvae under bands declined with distance from the plot, as I would expect from 

the limited dispersal of first and late instar larvae (Mason & McManus 1981). I 

also found that the proportion of dead larvae decreased significantly with 

distance from the plot (P=0.020, F=7.37, d.f.=1,11) indicating that mortality was 

higher closer to the release plots where densities were higher. 

The rate of mortality during Period 4 was higher than during any other period 

in all but one plot (Table 6.3) but there was no evidence of an overall density- 

dependent reduction in pupal density. The pupal deployment experiment 
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suggested that predation on pupae was inversely density-dependent (Table 

6.5). The survival of both male and female pupae was greatest in Plots IB and 

2B, which were the two plots with the greatest number of gypsy moth larvae per 

metre of burlap band prior to the experiment. These two plots were also two of 

the three plots in which egg masses were found. Survival of deployed female 

pupae in plot 2A was not significantly greater than in the other plots, but survival 

of females under burlap bands was 100%. The major predators were probably 

small mammals because survival of male pupae inside of wire cages was high. 

An invertebrate, Calosoma svcophanta L. (Coleoptera: Carabidae), is also too 

large to go through the mesh of the wire cages. Q. svcophanta has been 

implicated as an important predator in high density populations (Weseloh 

1985b), but I saw little evidence of these predators under burlap bands (where 

they are often found) in any of the plots. None of the surviving pupae that I 

collected and reared yielded pupal parasitoids such as Brachvmeria intermedia 

(Nees) (Hymenoptera: Chalcididae), and there were no B. intermedia 

emergence holes in any of the pupal cadavers collected under burlap bands. 

Discussion 

Contrary to what many investigators have suggested I have evidence that 

parasitoids may have an important impact on the population dynamics of the 

gypsy moth and can, in combination with predation, cause in excess of 99% 

mortality within a generation. I found no NPV, a common cause of mortality in 

high density populations (Campbell 1967; Doane 1970b), yet populations in all 

eight plots declined in a density-dependent fashion to quite low levels. 

Predators caused a high rate of mortality during the pupal stage but there was 

no evidence that they were responding in a positively density-dependent 
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manner. The density-dependent mortality occurred during the early and mid 

instars; not during the late instar and pupal stages as would be predicted if 

predation on late instars and pupae was a regulating factor. 

My results are not unique. Similar responses of gypsy moth parasitoids have 

been noted by S. Wilmot et al. (personal communication) for releases of FI 

sterile larvae (progeny of partially sterilized adults) in Vermont and by Liebhold 

and Elkinton (1989b) for releases of both FI sterile and feral larvae on Cape 

Cod, Massachusetts. Also, a number of previous research projects (M.L. 

McManus personal communication) have tried yet failed to create high density 

populations of gypsy moth larvae by releasing egg masses, indicating a strong 

response by natural enemies. These results suggest that the strong response 

of parasitoids to local increases in host density is common and consistent in 

many places in different years. 

The drop in density from hatch to third instar was positively density- 

dependent, but I was unable to determine its cause. Parasitoids had not begun 

to appear in samples, and I found no evidence of birds aggregating in areas of 

high gypsy moth density. The observations were mainly on resident birds with 

established territories, however, and it is possible that migrant birds removed a 

higher proportion of larvae in the higher density plots. This period coincided 

with peak migration of many bird species. Furthermore, the resident birds may 

have foraged more intensively for gypsy moth larvae in the high density plots. 

Furuta (1976) found that when gypsy moth larvae were released in clumps of 

different densities, birds searched for prey longer in higher density clumps and 

the number of larvae decreased in a density-dependent fashion. 

Density-dependent dispersal of first instars is another possible explanation 

for the disappearance of larvae. If more than one larva reaches a branch 

terminal there is an increased probability of dispersal (Semevsky 1971), and 
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Campbell (1969) found a greater loss of first instar larvae due to dispersal in 

dense populations. Leonard (1970) suggested that the lower nutrition of eggs 

laid in high density populations resulted in an increased probability of dispersal, 

but this could not account for my results because all the eggs for this experiment 

were collected from the same population. 

The polyphagous parasitoid, Q. concinnata. was the major mortality agent in 

the plots during the mid larval stage, and it acted in a positively density- 

dependent fashion. This parasitoid showed a remarkable ability to locate and 

parasitize gypsy moths in the experimental populations. Gypsy moths were not 

present in the plots prior to the release, yet I measured up to 55% mortality due 

to this parasitoid in a single week. Beddington et al. (1978) suggested that 

successful natural enemies are most likely specialists, but in this study, the 

more specialized parasitoids, such as P. disparis and Q. melanoscela. did not 

respond as strongly as £.. concinnata to increases in pest densities. 

Polyphagous natural enemies can remain abundant when a particular host 

species has become extremely sparse or locally extinct, and when reinfestation 

of the host occurs they can respond quickly (Murdoch et al. 1985). This seems 

to be what occurred in this study. £. concinnata was present in the area and 

was able to respond by either migrating from surrounding areas or by switching 

to gypsy moths from alternate hosts within the plots. 

£. concinnata has up to 4 generations per year (Culver 1919), and requires 

hosts other than the gypsy moth during some of these generations. The 

availability of alternate hosts, therefore, may be an important factor in 

determining parasitoid abundance from one year to the next. In an inundative 

release of £. concinnata in Pennsylvania,- Blumenthal et al. (1979) found 

significantly higher percentage parasitism in release plots than in control plots 

in the year of release, but found no differences the following year. 
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Another factor that might limit the effectiveness of this parasitoid in regulating 

gypsy moth populations is the spatial scale on which gypsy moth populations 

typically increase in density. I recorded a density-dependent response to hosts 

in areas of one ha. If gypsy moth populations increase in density over larger 

areas, the pool of available parasitoids might be overwhelmed and populations 

could continue to increase. There is preliminary evidence, however, that Q.. 

concinnata can respond to population increase over larger areas (T.M. ODell 

personal communication). In a 16.7 ha plot and a 57.5 ha plot in Vermont, FI 

sterile gypsy moth larvae were released at rates of 1 million and 600 000 larvae 

hatching per ha, respectively. At the end of the season both plots contained 

only 1 egg mass per ha. A major mortality agent in these plots was £. 

concinnata. 

The possible nonlinearity of the density-dependent response of £. 

concinnata is also important to consider. Taken together, Fig. 6.5a and 6a imply 

that Q.. concinnata exhibits a positive density-dependent response, but only 

over the range of densities from approximately 6000 to 100 000 larvae per ha. 

Outside of this range of densities, the response may be inversely density- 

dependent or density independent. The ability of C. concinnata to regulate 

populations at extremely low densities or to suppress outbreaks once the 

threshold of 100 000 mid instars per ha is exceeded is, therefore, uncertain. 

The response of the oligophagous parasitoid, P. silvestris. was initially 

inversely density-dependence but switched to positive density-dependence as 

the season progressed. One plausible explanation for this pattern would be 

that a greater number of P. silvestris females were attracted to the high density 

plots, but at the beginning of the season there were so many larvae in these 

plots that inversely density-dependent parasitism nevertheless occurred. As 

host densities declined, due primarily to the action of C. concinnata. the greater 
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number of P. silvestris females in the higher density plots attacked a greater 

proportion of larvae. Greater continued recruitment of P. silvestris females to the 

high density plots is another possible explanation of these results. 

It should be noted that the density-dependent oviposition by P. silvestris that 

occurred during the week of 3 July was not evident when I looked at mortality 

that occurred over the entire Period 3 (3-16 July). One possible explanation is 

that the early inverse density-dependent attack rate canceled the later direct 

density-dependent attack rate so that the overall effect was not density- 

dependent. Another explanation is that most mortality due to P. silvestris 

occurred during Period 4, when population densities were too low to sample for 

estimates of mortality. This is possible because P. silvestris emerges just prior 

to pupation, which in this study occurred during Period 4. 

Q. concinnata and E. silvestris responded to differences in the density of 

hosts among subpopulations within a generation in a density-dependent 

fashion, but whether spatially density-dependent responses can lead to 

temporal density-dependence and population regulation has been debated in 

the recent literature. It has been demonstrated (£.g. Hassell 1985; Beddington 

et al. 1978) that a spatially density-dependent response among subpopulations 

can contribute to long-term stability of simulated populations. These 

conclusions were based on models in which the number of parasitoids in a 

particular generation depended on the number of hosts parasitized in the 

previous generation, as might be expected for P. silvestris. The stabilizing 

ability of a generalist natural enemy such as C. concinnata. which has a strong 

spatially density-dependent response but, presumably, little generational 

carryover, is less clear. The model of Hassell (1985) has predicted that spatially 

density-dependent mortality by such agents can stabilize a population, but this 

occurs only if the degree of clumping of the host within subpopulations changes 



as overall density changes (Latto & Hassell 1988). I would expect such a 

change in the dispersion pattern of gypsy moths following the action of density- 

dependent natural enemies because gypsy moth females do not fly and 

dispersal of first instars is limited (Mason & McManus 1981). 

Life-table analyses of gypsy moth population dynamics in North America 

have so far failed to identify regulation or temporal density-dependent mortality 

due to parasitoids (Dempster 1983). There is some evidence of density- 

dependent pupal mortality, presumably due to predation (Campbell & Sloan 

1978; Campbell et al. 1975), but spatial and temporal density-dependent effects 

were considered together in these studies and there was little or no data on the 

contribution of parasitoids to overall mortality. It may be that populations are not 

regulated around an equilibrium density, but are instead characterized by local 

extinction and colonization which results in area wide stability (£.q. Murdoch et 

al. 1985; Nachman 1987; Morrison & Barbosa 1987; Elkinton et al. 1989). 

Persistence of such populations has been shown to be most likely when there is 

some density-dependent coupling of hosts and parasitoids, and when migration 

rates of the parasitoid exceed those of the host (Reeve 1988). This would be 

possible for gypsy moth populations because gypsy moths do not generally 

migrate over large distances and parasitoids can migrate further than their hosts 

and can respond in a density-dependent fashion. 

Another reason that regulation and temporal density-dependence may not 

have been detected in gypsy moth populations is that few long-term studies 

have been conducted. It is uncertain, however, that temporal density- 

dependence, if it exists, would be detected by such studies. Stochastic 

variation (Hassell 1985, 1987) or conducting the studies on an inappropriate 

spatial scale (Heads & Lawton 1983; Hassell et al. 1987) may obscure density- 

dependent processes. Furthermore, it is extremely difficult to measure host 
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density or parasitism with any degree of precision when gypsy moth densities 

are low. As a result, low density populations are rarely studied. If regulation is 

the result of rapid suppression of local increases in gypsy moth density, it is 

unlikely that previous studies would have detected these processes. 

Further experimental manipulations of low density gypsy moth populations 

are needed to resolve the question of population regulation. If I discover that 

populations of gypsy moths at low densities are indeed regulated, it is possible 

that parasitoids attacking the mid instars, not pupal predators, will be the agents 

responsible for regulation. Campbell & Sloan (1978) theorized that gypsy moth 

populations are characterized by a low density threshold above which mortality 

by small mammal predators is inversely density-dependent and populations 

escape into outbreak phase. During the periods of low population density 

between outbreaks, the role of parasitoids such as Q. concinnata and E. 

silvestris may be to suppress local increases in the density of gypsy moths to 

levels at which predation by small mammals would cause sufficient mortality to 

prevent population increase. Because £. concinnata is multivoltine and is 

dependent on the availability of alternate hosts, however, this parasitoid may 

not be present in large numbers in certain years. Lowered mortality from £. 

concinnata in a given year might result in a greater number of gypsy moth 

pupae than could be consumed by pupal predators, leading to an increase in 

reproduction by the gypsy moth. The number of host larvae the following year 

might then be outside the range over which the density-dependent response of 

£. concinnata occurs. These processes could rapidly propel the population 

above the thresholds of both parasitoids and predators and into an outbreak 

phase. 



APPENDIX 

CALCULATING THE MARGINAL PROBABILITY OF MORTALITY 

I calculated the marginal probability of mortality due to a mortality agent in 

the presence of other simultaneous mortality agents (after Royama 1981b). The 

marginal probability can be thought of as the proportion that would have died 

from a given agent if none of the other agents were present. For a system with 

two simultaneous parasitoids (A & B) the marginal probabilities (mA, mB) are: 

mA = VA/(1 "°vb) 
o 1 /? 

mB = ((c-1 )vA + cvB + 1 - ((vA-cvA-cvB-1) - 4cvb) / 2c) 

where 

vA = proportion of reared hosts producing parasitoid A 

vB = proportion of reared hosts producing parasitoid B 

c = proportion of hosts that yield parasitoid B when both 

A and B attack the same individual. 

1-c = proportion of hosts that yield parasitoid A when both 

A and B attack the same individual. 

These formulae assume that either parasitoid A or B, but not both, can emerge 

from hosts parasitized by both species. In my calculations I assumed c = 0.5 for 

all interactions. This value is largely unknown for interactions between gypsy 

moth parasitoids but for the interaction between £. concinnata and 

melanoscela. the parasitoids emerged in equal proportions from 

multiparasitized host larvae (Weseloh 1983). 

I extended this analysis to four simultaneous parasitoids and one disease 

(unexplained rearing mortality) by analyzing each agent separately against all 

other agents combined. In other words I defined vb as death due to all four of 

the other simultaneous agents. This scheme caused a small error in 
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partitioning the marginal probabilities for host individuals attacked by three or 

more agents simultaneously but this constituted an extremely small fraction of 

the mortality and the resulting error in the estimated k-values was less than 1%. 
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