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ABSTRACT

COMPUTATIONAL APPROACHES TO ASSISTING
PATIENTS’ MEDICAL COMPREHENSION FROM

ELECTRONIC HEALTH RECORDS

MAY 2020

JIAPING ZHENG

B.Eng., NANKAI UNIVERSITY

M.Sc., UNIVERSITY OF MINNESOTA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hong Yu

Patient-centered care has been established as a fundamental approach to improve

the quality of health care in a seminal report by the Institute of Medicine published

at the start of the century. Improved access to health information and demand for

greater transparency contributed to its move into the mainstream. Research has also

demonstrated that actively involving patients in the management of their own health

can lead to better outcomes, and potentially lower costs. However, despite the efforts

in many areas of medicine to embrace patient-centered care, engaging patients is still

considered a challenge. One of the barriers is the lack of effective tools to help patients

understand their health conditions, options and their consequences.

Patient portals are now widely adopted by hospitals and other healthcare practices

to provide patients with the capabilities to view their own Electronic Health Records.

They are a rich resource of information for patients. However, the language in the
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records are generally difficult for patients without training in medicine to understand.

Furthermore, the amount of information can often be overwhelming as well. In this

work, we propose computational approaches to foster patient engagement from three

aspects by exploiting the rich information in the medical records.

First, we design a framework to automatically generate health literacy instruments

to measure a patient’s literacy levels. This framework exploits readily available large

scale corpora to generate instruments in a commonly used test format. Second, we

investigate methods that can determine the readability of complex documents such

as health records. We propose to rank document readability, instead of assigning a

grade level or a pre-defined difficulty category. Lastly, we examine the problem of

finding targeted educational materials to facilitate patient comprehension of medical

notes. We study methods to formulate effective queries from specialized and long

clinical narratives. In addition, we propose a neural network based method to identify

medical concepts that are important to patients.

The three aspects of this work address the issues of the overabundance and tech-

nical complexity of medical language in health records. We demonstrate that our

approaches are effective with various experiments and evaluation metric.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Patient-centered care has been established as a fundamental approach to improve

the quality of health care in a seminal report by the Institute of Medicine published at

the start of the century [132]. The report defined patient-centered care as “care that

is respectful of and responsive to individual patient preferences, needs, and values”

and that ensures “that patient values guide all clinical decisions”. Improved access

to health information and demand for greater transparency, among other factors,

contributed to its move into the mainstream [36]. The patient-physician relationship

has thus shifted from a paternalistic style, where the physicians would decide what

was best for their patients, to a shared decision making model, in which the physician

would engage the patient to participate in determining the optimal course of action.

Research has also demonstrated that actively involving patients in the management

of their own health can lead to better outcomes, and potentially lower costs [63, 13].

However, despite the efforts in many areas of medicine to embrace patient-centered

care [103], engaging patients is still considered a challenge [10]. One of the barriers is

the lack of effective tools to help patients understand their health conditions, options

and their consequences.

Patient-centered care and shared decision making require more participation from

the patients. Underlying these demands are assumptions of their literacy skills. A

measurement of health literacy would facilitate patient engagement by tailoring com-

munications to the capacity appropriate for the individual patients. In the clinical
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practice setting, clinicians commonly overestimate the health literacy of their pa-

tients [11, 116]. Assessing the health literacy of a sample of patients can provide

the clinician with information about his or her patients’ average reading level, which

then can be used as a guide in the selection and development of patient education

materials.

Related to the health literacy demands on the patients, readability of the infor-

mation provided to patients also plays an important role in enabling effective patient

engagement. It is estimated in the National Assessment of Adult Literacy that the

average American has a reading level between the 7th and 8th grade [101]. It is also

reported in the same assessment that about 36% of the US population or 75 mil-

lion Americans have basic or below basic health literacy. A recent study estimated

that among uninsured adults in the US, only 8.6% possess the numeracy skills to

make complex, informed health decisions, such as managing chronic diseases [138]. In

fact, materials beyond the patients’ reading abilities are widely reported in the liter-

ature [2, 73, 43]. There is a great need in presenting concise and easy-to-understand

materials for more patients to benefit from these resources. Text readability has

often been studied in the context of grade school education, where children’s read-

ing abilities need to match reading materials. Measuring the readability of complex

documents in the health care domain is less explored.

Furthermore, patients now have unprecedented access to their own health infor-

mation. According to the data from the Office of the National Coordinator for Health

Information Technology, the percent of hospitals that enable patients to electronically

view, download, and transmit their health information grew almost 7-fold between

2013 and 2015 [72]. In the same survey, 95% of hospitals in 2015 provided their

patients with the ability to view their information. Access to such information can,

besides enhancing patients’ medical understanding and facilitating shared decision
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making with physicians, provide clinically relevant benefits [174], including increased

medication adherence [44].

The patients are also increasingly seeking assistance online for health related in-

formation [37, 46]. Well-known Information Retrieval (IR) techniques may work well

if the patients can create effective queries from EHR notes. However, it can be over-

whelming for patients without medical training to parse the opaque language in the

notes, which in turn hinders their efforts to identify the key information and formulate

effective queries. In these cases, they would benefit from a system that automatically

identifies content important to patients, thereby reducing their information load.

1.2 Measuring Targeted Health Literacy

The development of validated health literacy tests is a laborious process, mostly

relying on expert’s selection of words or passages in an ad-hoc fashion. Current

methods in use such as Rapid Estimate of Adult Literacy in Medicine (REALM) [41]

and Test of Functional Health Literacy in Adults (TOFHLA) [136] require manual

creation of test questions.

These methods are often based on a broad set of basic knowledge, without em-

phasis on any particular disease or condition. In order to better manage their health,

patients may benefit from specific knowledge about their own conditions, especially

chronic diseases. For instance, an understanding of A1c may be useful for a patient

with diabetes, but less valuable for a patient with hypertension.

The existing instruments are also static in their test content, and often do not

measure literacy beyond the lowest level required to function in the health care setting.

As a patient becomes more knowledgeable, the tests can exhibit a ceiling effect, where

literacy levels above a certain limit cannot be distinguished. A better testing method

should be able to focus on a patient’s specific literacy needs based on his or her health

and can evolve with the patients’ understanding of the relevant knowledge.

3



We propose to build a computationally inexpensive test framework that can be

instantiated from a large corpus, specific to users’ literacy needs. The test format

itself is also easy and fast to administer to the end users, minimizing clinical workflow

interruption if it is given to patients in a clinic.

1.3 Assessing Readability of Medical Documents

In document readability metrics, the widely used methods apply readability for-

mulas that only take into account a limited number of factors such as sentence length

and word length [55]. Moreover, they are usually developed for texts aimed for school

education and not validated in the health domain. In this work, we first demon-

strate that these grade level measures on complex health documents do not align

with readers’ perceived text difficulty. We collect anonymous reader’s perceptions of

text difficulty on English text for the general public on health topics and de-identified

EHR notes. Using a variety of measures, we show that in the samples we collected,

user perceptions of readability significantly differ from existing methods’ estimations.

We further propose a ranking based approach that can better predict document read-

ability than the widely adopted methods. User ratings on difficulty of documents are

collected to learn a ranking based model, employing features that do not rely on com-

plex syntactic or semantic processing on the text. We show that this model performs

comparably to human annotators and outperforms existing formulas significantly.

1.4 Facilitating Comprehension of Electronic Medical Record

Notes

To facilitate patient comprehension of their own EHR notes, we devise methods to

generate queries from EHR notes to retrieve education materials. Work has been done

in domain-specific information retrieval to generate Boolean queries that are preferred

by users [95]. Others assumed the user can select passages of interest from a long
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document [106]. In biomedical information retrieval, WRAPIN requires indexing by

a domain ontology [58].

One characteristic of the search behavior in consumer health that is distinct from

other document-based information retrieval is the user’s expertise level. In those

scenarios, the users are typically professionals or experts in the field or are at least

knowledgeable. For example, in patent retrieval, legal search, and academic literature

search, the users are typically practitioners in the respective field, and likely to have

professional knowledge. In our case, however, the patients in general do not have

medical training.

In our work, we focus on generating queries for patients without the expertise in

the domain. We explore topic modeling, filtering, and learning-based query generation

methods. Our experiments show that identifying key concepts from EHR notes is

crucial to effectively retrieve education materials. We collect expert annotations on

relevant education articles from Medline Plus on de-identified medical notes. We show

that machine learning models that are adapted using out of domain general English

text on medical topics achieve highest performance.

Furthermore, we propose to identify medical concepts that are important to pa-

tients. EHR notes generally incorporate a comprehensive longitudinal description

of patients’ medical courses yet patients may care more about their immediate con-

cerns. In patient support applications, providing comprehension assistance for all the

concepts are likely to overwhelm them and may be unnecessary in the first place.

Our aim is to develop an automatic system that can identify a small number of im-

portant medical concepts specific to a patient. These medical concepts can then be

used to provide tailored interventions to improve EHR comprehension and disease

management. We show that our identification method can outperform competitive

baselines.
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1.5 Summary

Patient-centered care, one of the foundations of high quality care, requires active

engagement of patients in the health care process. EHRs are a rich resource for

developing applications to engage patients and foster patient activation, thus holding

a strong potential to enhance patient-centered care. Given the potential in better

outcome and lower cost in engaging patients through EHR, we propose to develop

innovative methods to foster patient activation by evaluating health literacy, assessing

document readability, and retrieving education materials tailored to the patients.

1.6 Contributions

The contributions of this work include the following.

• A flexible framework that can dynamically generate targeted health literacy

instruments for a specific domain.

• Empirical evidence that current readability measurement tools are inadequate

at measuring users’ perceived text difficulty.

• Method to measure complex document readability.

• Method to identify medical concepts that are important and tailored for pa-

tients.

• Linking targeted educational materials for patients based on their medical records.

• Improving patient EHR comprehension by incorporating tailored medical con-

cepts.

1.7 Organization

The remaining chapters of this thesis is organized as follows. Chapter 2 proposes

a health literacy framework to generate customized instruments. Chapter 3 describes

6



the our empirical evaluations of widely readability formulas, and proposes a ranking-

based method to measure complex document readability. Chapter 4 proposes query

generation approaches to retrieve educational materials for EHR narrative notes, and

a method to identify medical concepts important to patients. Chapter 5 concludes

this thesis by summarizing our approaches and findings, and discussing future work.
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CHAPTER 2

MEASURING TARGETED HEALTH LITERACY

2.1 Introduction

The past few decades have seen a proliferation of health literacy instruments. Re-

cent reviews have identified dozens of tools [48, 133, 3, 82, 71], ranging from general

measurements to disease-, content- or population-specific ones. These instruments

aim to measure a variety of skills necessary to function in the health care system. For

example, one study [71] categorized 51 instruments based on 11 dimensions, including

the ability to perform basic reading tasks, to communicate on health matters, and to

derive meaning from sources of information, etc. The ability to understand informa-

tion is one of the four skills of health literacy identified in a systematic review [156].

It is also one of the most measured skills in the instruments. Those that measure this

skill are widely used in research.

Designing an instrument measuring reading ability, or print literacy, is a time-

and effort-intensive process. It usually starts with experts curating passages of text

or word lists, followed by psychometric validation and revision based on test results

obtained from a sample population. Once validated, the instruments stay static.

When a new scenario arises, the process has to be repeated to create a new instrument.

There are a few potential drawbacks of reusing instruments designed long in the

past. First, language use patterns evolve over time. Health literacy, reading ability

in particular, needs to adapt to these changes. Instruments that were designed from

early text sources may be out of date when employed decades later. Although we

are not aware of reports of this nature in the health literacy literature, researchers
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working on general vocabulary estimation tools have seen the need to update old

tests [122].

Moreover, the public’s reading abilities may also change because of increased expo-

sure to print material. Statistics of educational attainment show that the population

is receiving more education. Degrees conferred at various post-secondary levels all

rose more than 30% over the decade between 2004-05 and 2014-15 according to a re-

cent US national report [155]. More exposure to advanced text material at or above

college level may improve one’s reading ability. Older instruments that tend to use

low-grade-level text may struggle to distinguish readers proficient above the very ba-

sic level that’s required to function in the health care system. This ceiling effect,

many test takers obtaining perfect scores [163], can be more pronounced when such

tests are administered to groups in the general population, reflecting that many were

developed with convenience samples of patients in a health care setting. Therefore,

they function well as screening tools to detect low health literacy, but may fail to

properly separate advanced readers.

In this work, we propose a new task of measuring targeted health literacy, in

which a patient’s knowledge of a specific area is examined, as opposed to the general

health literacy that tests patients’ ability in broad settings without a focus on their

individual needs. We also aim to develop a test framework that can be customized

to a need on demand, and can measure skills beyond the basic level.

2.2 Related Work

We highlight a few instruments in this section that measure the individual skills

and abilities of understanding written text. For a more complete review of instruments

that measure both reading and other skills, we refer the reader to a recent review [71].

Numerous instruments have been developed to test health literacy since the 1990s.

There are two frequently used instruments: the Rapid Estimate of Adult Literacy
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in Medicine (REALM) [40] and the Test of Functional Health Literacy in Adults

(TOFHLA) [136], with its shortened form S-TOFHLA [8].

REALM is a tool based on word pronunciation. A list of 66 common medical terms

is organized into three columns according to the number of syllables and pronunciation

difficulty. The administrator records the number of terms correctly pronounced by

the test taker, and the raw count can be converted to one of four grade levels: 0–3,

4–6, 7–8, and 9 and above. Criterion validity of REALM is established with Wide

Range Achievement Test-Revised (WRAT-R) and other tests in the general domain.

Estimate of administration time is under three minutes, making it easy to fit in a

busy clinical workflow.

TOFHLA is designed to measure patients’ ability to read and understand what

they commonly encounter in the health care setting. It consists of 17 numeracy

items and 3 prose passages. The passages are drawn from actual materials a patient

may need to read, including instructions for preparation for an upper gastrointestinal

series, the patient “Rights and Responsibilities” section of a Medicaid application, and

a standard informed consent form. They are converted to a Cloze test with 50 items.

Total scores are divided into three levels: inadequate, marginal, and adequate. Those

who score in the adequate range do well on these tasks, but may have some difficulty

comprehending the more difficult tasks like determining financial eligibility and the

informed consent document. TOFHLA’s correlations with WRAT-R and REALM

were tested to establish validity. TOFHLA takes up to 22 minutes to administer.

Aiming to reduce the administration time, TOFHLA was abridged to an abbrevi-

ated version, S-TOFHLA, which takes a maximum of 12 minutes [8]. Two passages

with 36 items were selected from the full version. S-TOFHLA’s validity is compared

to the long version of the TOFHLA and the REALM.

Since the publication of REALM and TOFHLA, many new instruments were de-

rived from them, for different use cases. They were often used as the reference to test
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for criterion validity. The development process remains largely the same, requiring

expert curation and time-consuming validation. For instance, Literacy Assessment

for Diabetes (LAD) [131], Rapid Estimate of Adult Literacy in Vascular Surgery

(REAL VS) [170] and Arthritis-Adapted REALM (A-REALM) [159] were examples

in the REALM family. (Oral Health Literacy Instrument (OHLI) [150] and Nutri-

tional Literacy Scale (NLS) [45] followed the design of TOFHLA.

New instruments are constantly developed for particular use scenarios. Examples

of specific disease or condition included tests on asthma [175], hypertension [59], di-

abetes [176], colon cancer [137], and heart failure [7]. Tools for a specific population

such as adolescents [42, 181] were also developed. In different health domains, Rapid

Estimate of Adult Literacy in Dentistry (REALD)-30 [107], REALD-99 [148], Test

of Functional Health Literacy in Dentistry (TOFHLiD) [61], Health Literacy in Den-

tistry (HeLD) [79], and short-form HeLD-14 [80] targeted dentistry, Rapid Estimate

of Adult Literacy in Genetics (REAL-G) [52] measured literacy in genetics.

Another line of research used self reported comprehension assistance seeking-

behavior, as opposed to testing an underlying reading ability, to identify patients

with inadequate health literacy. One such study presented three questions that can

each screen for low literacy [32]. An instrument with a single item was evaluated in

a primary care setting to rule out patients with limited health literacy [129].

Among the menagerie of instruments, Medical Term Recognition Test (METER) [146]

bears the most similarity to our framework. It included 40 actual medical words and

40 nonwords, and required the participant to mark the actual words. This format

is generally known as a Yes/No test in the language testing research community. It

was proposed in the 1980s as a simple alternative to the traditional multiple-choice

method of testing vocabulary knowledge [123]. Scoring of the METER test suffers

from a problem that is common to this type of tests: ambiguity in unmarked items.

It is not clear whether the participant was uncertain about the item or genuinely did
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not know it. Our work addressed this problem by explicitly giving various degrees of

familiarity with an item as answer options. A second drawback of this tool is that it

reused many of the REALM words, rendering the test somewhat redundant.

2.3 Methods

2.3.1 Targeted Health Literacy

The existing literacy instruments that were reviewed in the previous section do

not focus on an individual patient’s needs. For example, REALM uses pre-selected

medical terms that a patient may not encounter in his or her disease management

activities. Failing to understand those irrelevant terms may not pose significant chal-

lenge for the patient. TOFHLA included texts that a patient is likely to encounter.

However, they are generic, thus do not reflect what the patient needs to comprehend

to make better decisions in his or her particular circumstance. The other instruments

do incorporate a focus of a certain specialty (such as dentistry in REALD) or condi-

tion (such as REALM, asthma knowledge), but not to a level that is specific for the

patient. Many patients have more than one condition that may require careful man-

agement. In these cases, measuring knowledge in one condition is not sufficient, and

testing knowledge of multiple conditions using multiple instruments is cumbersome.

Our work addresses this problem by designing a generic framework that can be

customized to target a specific condition or a combination of conditions. It also has

the flexibility to produce tests that are condition agnostic and applicable to a large

patient population.

2.3.2 Instrument Framework

We modeled our test framework after the Yes/No vocabulary test. Vocabulary

is critical to text comprehension [119]. A meta-analysis showed that vocabulary

knowledge most likely played a causal role in comprehension [157]. Another work
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showed that self-reported comprehension scores improved after lay definitions were

provided for medical jargon [143].

In psycholinguistic research, the Yes/No test for vocabulary knowledge usually

comprises words at different frequency levels, and pseudowords to calibrate for ran-

dom guessing. Pseudowords are strings of letters that follow the phonotactic and

morphological rules of a language, but are generally not actual words. The partici-

pants are asked to indicate whether they know each of the items.

Although this test format seems simple, creating them is not. Our framework gen-

eralized this format by relaxing the need to curate a new set of words and pseudoword

items each time a new test is required. Moreover, it can account for uncertainty in

the participant’s familiarity with a word. Our framework can also be customized to

a particular domain of interest such as dentistry or hypertension.

There are two parts to generating a test set under our framework. We start from

a vocabulary with their associated occurrence frequencies in a large corpus. The

vocabulary is first divided into 10 equally sized tiers based on their frequency. A

total of five words are then randomly selected from each tier. Next, two pseudowords

are generated from two random words in each tier. The 50 words and 20 pseudowords

constitute a complete instantiation of the framework. The options a test taker has

for each item are a 4-level Likert scale:

1. I have never seen this word and do not know its meaning.

2. I have seen this word but do not know its meaning.

3. I think I know the word’s meaning, but I am not sure.

4. I am sure I know the word’s meaning.
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2.3.3 Scoring Method

To calculate a score, we measure the agreement between a user and a master. A

master reader can perfectly answer all the true words with the most confident value

and all pseudowords with lowest value on the Likert scale. We generalized Cohen’s κ

as a measure of agreement, which calculates the observed and chance disagreement.

κ = 1− qo
qe

(2.1)

where qo is the observed disagreement proportion and qe is the expected disagreement

by chance. In an ordinal scale like ours, the proportions can be weighted to account

for varying degrees of disagreement [38].

When all the items are considered equal, as in weighted κ, the ratings from the

two raters can be summarized in a K ×K contingency table, where K is the number

of categories into which a test item can be assigned. The disagreement proportions

can be found from this table by multiplying the different degrees of disagreement vij,

where vij is the weight indicating the disagreement when one rater assigned i whereas

the other assigned j to an item.

We generalized this agreement by allowing the test items to carry different weights,

thus accounting for their prevalence in a corpus, and a person’s likelihood of knowing

them. We calculate the observed disagreement proportion by summing the individual

item’s disagreement, weighted by an item weight. Let u = [u1, u2, . . . , uN ] denote

the item weights for N test items. Note that the weights are normalized such that

0 ≤ ui ≤ 1 and
∑N

i=1 ui = 1. Let k = [k1, k2, . . . , kN ] and l = [l1, l2, . . . , lN ] denote the

category assignments given to the test items by the two raters respectively. Finally,

let v(i, j) denote a function that returns the disagreement weight between categories

i and j. The observed disagreement can be found in Equation 2.2.

qo = u>v(k, l) (2.2)
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The chance disagreement follows from weighted κ, with the distribution of category

assignments for each rater weighted by u.

qe =
K∑
i=1

∑
j 6=i

v(i, j)Pk(i)Pl(j) (2.3)

Pk(x) = u>
1[k=x] (2.4)

Pl(x) = u>
1[l=x] (2.5)

Our generalized κ can be found by substituting the two disagreement proportions in

Equation 2.1 with Equations 2.2 and 2.3. The score still has a value range between 0

and 1.

2.3.4 Assessment of Reliability

2.3.4.1 Test Format

In total, two parallel instantiations of our framework were created using the same

corpus, and scores were calculated using the same disagreement weight and scheme.

The two tests were shown back to back to participants without demarcations. The

test takers were not informed that they were taking two equivalent tests.

2.3.4.2 Test Administration

We administered the two parallel instantiations of our framework to 100 Amazon

Mechanical Turk (AMT) users. They were screened to be from the United States and

had an approval rate of at least 90%. We then eliminated answers from users that

were not native speakers of English.

Several quality control items were randomly embedded in the test. They were

simple and unambiguous questions with only one clear and correct answer. They

served to identify users that attempted to game our test.
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2.3.5 Assessment of Validity

2.3.5.1 Test Format

We designed a four-part online questionnaire to validate our health literacy frame-

work. The test consisted of S-TOFHLA, Short Assessment of Health Literacy-English

(SAHL-E) [109], our QuikLitE framework, the short form ComprehENotes test [104],

and 5 self-reported document difficulty questions.

To generate a set of test items from our framework, we used the Google Books

Ngram Corpus [115] as our starting vocabulary. This corpus is a large multilingual

collection of digitized books, which were automatically annotated with syntactic in-

formation. The English corpus contains approximately 4.5 million volumes and close

to half a trillion words. Since the earliest volumes date from the 1800s, we selected a

subset of books from 2000 and onward to ensure the vocabulary frequencies reflect cur-

rent language usage patterns. Because of digitization errors, there were non-English

words and non-letter symbols in the resulting vocabulary list. We filtered this list

to only keep those that appear in WordNet [128]. The required pseudowords were

generated by Wuggy [91]. Wuggy’s algorithm operates by building a chain of subsyl-

labic elements from a large lexicon, and then iterates through this chain to search for

possible pseudowords. Given a template word, Wuggy can generate pseudowords that

match the template’s subsyllabic structure and transition frequency between them.

The ComprehENotes test is an instrument to assess electronic health record (EHR)

notes comprehension. It includes 55 snippets of EHR notes from six common diseases

or conditions (heart failure, diabetes, cancer, hypertension, chronic obstructive pul-

monary disease, and liver failure), and questions generated using Sentence Verification

Technique from these notes. In our online set up, we employed the 14-item short-form

test.

Texts in the document difficulty questions were randomly selected from Wikipedia

articles in the Medicine category. As the writing quality and style vary among
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Wikipedia articles, we limited our article selection to those that were marked as

feature articles. These featured articles, according to Wikipedia editors, are “pro-

fessional, outstanding, and thorough”, and are “a definitive source for encyclopedic

information”. Furthermore, only articles designated with top or high importance

were considered in order to eliminate obscure topics. These designations signify “ex-

tremely important” or “clearly notable” articles, and there are “strong interests from

non-professionals around the world” or “many average readers”. Finally, to control

for document length, the first few paragraphs of the selected articles were used, and

all documents were approximately 300 words long. For each document, the users

were asked to rate its difficulty from 1 (easiest to understand) to 10 (most difficulty

to understand).

Similar to the parallel form reliability test, quality control items that were designed

to resemble real test questions were also randomly inserted to filter out cheating test

takers.

2.3.5.2 Test Administration

We recruited AMT users to take three versions of our online test. The tests differed

in the instantiation of our framework, and the document difficulty self-assessment. We

generated two sets of word items from our framework. Two sets of Wikipedia article

excerpts were selected for the document difficulty questions. The three versions of the

test included different combinations of the vocabulary test and document difficulty

test.

A power analysis projected a sample size of 158 to achieve a power of 0.8 with

a medium effect size. Published instruments such as S-TOFHLA and SAHL-E, with

which we compared in this study, used data from approximately 200 users for val-

idation. We therefore recruited 200 users for each of our test versions. They were

screened in the same fashion as in the reliability assessment.
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When scoring our literacy test, we adopted a linear disagreement weight, i.e.,

v(i, j) = |i−j|. Item weights for true words were based on their transformed frequency

in the Google Books Ngram Corpus. Specifically, the word frequencies were converted

to logarithmic scale, and standardized. These transformed frequencies were then

passed through a logistic function to obtain the item weights. This item weight

scheme emphasizes words with high frequencies, and applies minimum weight on the

rare words. We expect high frequency words to be know by most native speakers,

and unfamiliarity indicates lower language ability and literacy. At the other end of

the frequency spectrum, rare words may pose a challenge for most people, holding

little power to distinguish the test takers’ vocabulary knowledge. Pseudowords were

each assigned a weight equal to the average weight of the true words.

2.4 Results

2.4.1 Score Distribution

We first present a distribution of health literacy scores as assessed by our frame-

work in Figure 2.1. Mean scores among users in the 3 groups were 0.514 (SD=0.114),

0.498 (SD=0.154), and 0.528 (SD=0.101).

2.4.2 Reliability

Of the 100 users that participated in the parallel form test, 90 responses were legit-

imate. Demographic information of the users is shown in Table 2.1. The correlation

between scores of the two equivalent forms was 0.78 (95% CI 0.69–0.85 P < 0.001),

suggesting a high level of reliability.

2.4.3 Validity

Demographic information of the AMT users is shown in Table 2.2.
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Figure 2.1. Box plot of AMT users’ health literacy score according to our framework.
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Table 2.1. Demographic information of AMT users in reliability assessment.

Percent (%)
Characteristic (N=91)
Sex Female 54.95

Male 45.05

Race White 81.32
Black 8.79
Hispanic 5.49
Asian 3.30
IAHPI 1.10

Age 18–24 6.59
25–34 48.35
35–44 26.37
45–54 9.89
55–64 8.79

Education High school diploma 29.67
Associate 29.67
Bachelor 32.97
Master or higher 7.69

IAHPI = American Indian/Alaska Native/Native Hawaiian/Other Pacific Islander

Correlation measured between user score and ComprehENotes on the 3 groups of

users were moderate to decent, shown in Table 2.3. The correlation coefficients were

0.61 (95% CI 0.51–0.69), 0.49 (95% CI 0.38–0.59), and 0.47 (95% CI 0.35–0.57).

We also measured polyserial correlation between our score and the self-reported

document difficulty. The document difficulty scores were reverse coded in the analysis,

and treated as an ordinal variable. The correlations of the 3 groups were 0.30 (95% CI

0.17–0.43), 0.21 (95% CI 0.07–0.34), 0.29 (95% CI 0.15–0.41). The weak correlations

may be partially explained by the fact that despite given a range of 1 to 10, the AMT

users on average rated the document difficulty at 3.8 with a standard deviation of

2.0. Since the Wikipedia document excerpts were taken from well-written articles for

a wide readership, and over 70% of the users had at least an associate degree, the

actual document difficulty ratings concentrated in a narrow range.
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Table 2.2. Demographic information of AMT users in validity assessment.

Group 1 (%) Group 2 (%) Group 3 (%)
Characteristic (N=192) (N=196) (N=193)
Sex Female 46.35 53.06 56.48

Male 53.65 46.94 43.52

Race White 70.83 78.57 73.06
Black 10.94 9.69 10.36
Hispanic 6.25 3.57 8.29
Asian 7.81 6.63 7.25
IAHPI 2.08 0.51 -
Other 2.08 1.02 1.04

Age 18–24 14.06 11.22 12.44
25–34 43.23 36.73 38.86
35–44 23.44 29.59 30.05
45–54 8.33 13.27 11.40
55–64 4.69 6.12 4.66
65+ 6.25 3.06 2.59

Education Less than high school - 2.04 -
High school diploma 27.60 31.63 25.91
Associate 25.00 15.31 18.65
Bachelor 39.06 37.76 41.45
Master or higher 8.33 13.27 13.99

IAHPI = American Indian/Alaska Native/Native Hawaiian/Other Pacific Islander

Our framework achieved higher correlation with both ComprehENotes, and self-

reported document difficulty than the two existing instruments.

2.4.4 Subpopulation Differences

We compared the score differences between the subpopulations in our validation

data. We divided the data based on gender, race, and age to test differences in the

subpopulations. Analysis of variance (ANOVA) showed that there was no significant

difference between males and females (F (1, 579) = 2.895 P = 0.089). Older users

tended to score higher (F (1, 579) = 21.182 P < 0.001). White users achieved better

scores than non-white users (F (1, 579) = 15.462 P < 0.001).
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Table 2.3. Validity measured by correlation with ComprehENotes and self-reported
document difficulty.

ComprehENotes Document Difficulty

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

QuikLitE 0.61 0.49 0.47 0.30 0.21 0.29
SAHL-E 0.42 0.38 0.43 0.23 0.10 0.11
S-TOFHLA 0.34 0.46 0.40 0.23 0.14 0.11

2.4.5 Ceiling Effect

Existing health literacy instruments may exhibit a ceiling effect, as shown in our

data. A total of 52.8% of the users received the full score in SAHL-E, and 55.1%

in S-TOFHLA, whereas 32.4% scored perfectly in both tests. Furthermore, an over-

whelming majority (94.3%) of the users made at most one error in either one of

the tests. This phenomenon was also reported in other studies [116, 31]. In con-

trast, our framework can accommodate a large variation of user health literacy levels.

Among different educational attainment levels (high school or less, college, graduate),

ANOVA analysis showed that scores under our framework were significantly different

(F (2, 578) = 5.605P < 0.01).

2.4.6 Administration Time

The median time the AMT users finished our test is reported in Table 2.4. The

majority (90.36%) of users completed the test in less than 5 minutes. On average,

they finished the test 1.5 minutes faster than S-TOFHLA (paired t-test P < 0.001).

Compared to SAHL-E, users took an additional 1.5 minutes (paired t-test P < 0.001).

Among the 30 health literacy instruments with a reported administration time from

a catalog [71], our test time is shorter than or equal to 23 measures.
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Table 2.4. Median administration time in seconds.

Group 1 Group 2 Group 3

QuikLitE 173.5 180.5 189
SAHL-E 64 63 64
S-TOFHLA 194.5 199.5 192
ComprehENotes 376 432.5 376

2.5 Discussions

2.5.1 Administration

Unlike REALM and its derivatives that rely on word pronunciation checks, our

framework can be used in a waiting room without the presence of an administrator,

or even at home, where the test taker may experience less anxiety. In a clinic, a

test can be administered by a nurse with minimal interference to the clinical work

flow since it takes less than 5 minutes. For patients uncomfortable with an electronic

device, a paper format can be used, either in a clinic or at home.

Our test can be useful for patients who have seen the material in other instruments.

For patients with more exposure to written material, our test can still measure their

literacy level. Moreover, if an instrument does not exist for a particular domain of

interest, a test can be prepared using our framework.

2.5.2 Flexibilities

Many aspects of our framework can be easily adjusted to a test designer’s focus.

This has several advantages over existing instruments that are static. First, our

framework allows for easy instantiation to suit the test designer’s emphasis on a

particular subject matter or health care domain. The test may be customized to

a particular health care domain, or personalized for a specific patient’s need. For

example, the education material given to a diabetes patient is different from that for

a cancer patient. Separate vocabularies can be compiled from source texts of various

subjects, and subject-specific tests can be created to target patients’ particular needs.
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Furthermore, administering the same test over time to monitor a patient’s health

literacy can be problematic because repeated testing may result in memorization of

the test items, making the measurement unreliable. Creating a unique test on demand

with our framework can reduce item repetition, while maintaining similar coverage of

word knowledge in a vocabulary.

Additionally, there is no inherent limit to the number of items that can be included

in a test under our framework. The only limit is a test taker and the administrator’s

available time. Therefore, to get a broader coverage test of health literacy, a health

practitioner can use more words and pseudowords. The same scoring method can be

applied without modification.

Finally, our framework can be adapted to other languages. This is especially help-

ful in languages such as Spanish that REALM style pronunciation tests are difficult

to develop because of the phonemic orthographic rules.

2.5.3 Corpus Size

The sampling process in QuikLitE to create a test depends on the frequencies of

words in a corpus. Therefore, it is essential to provide accurate frequency estimation

in the instantiation process. Previous studies in psycholinguistics [22] have shown that

a corpus of 1 million words can be used to estimate frequencies of high-frequency

words (more than 20 occurrences per million). Low-frequency words (less than 10

occurrences per million) require 16–30 million words to estimate reliably.

Corpora of this size in the health domain are not difficult to assemble. In our

study to link educational materials for patients (Section 4.2), the Medline Plus corpus

contains about 7 million words, which is more than adequate to reliably estimate high-

frequency words. To test advanced readers using more rare words, a larger corpus may

be obtained from MEDLINE abstracts. A study reported that 5 years of MEDLINE

abstracts contain approximately 46 million words [186].
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2.5.4 Limitations

As large corpora are readily available, it is straightforward to create a test set

with our framework electronically. However, scoring our test manually is challenging.

This may limit its utility when a test is administered in a paper format, and a score

is needed immediately.

As a test can be generated dynamically, there may be discrepancies with each

administration if a new set is created, making comparison difficult. Nevertheless,

in our reliability assessment, the median score difference between the two equivalent

forms is only 0.06. This difference may have little impact on the overall health literacy

assessment of a test taker.

In our data set, the samples were biased toward educated white users. More tests

may be needed to assess reliability and validity on underrepresented population in

future studies.

Lastly, our framework focuses on print literacy. Numeracy and other skills are

also recognized as important for managing one’s health. Reading and understanding

health-related text is, however, still a critical component to successful engagement

with the health care system.

2.6 Summary

Over the decades, a plethora of health literacy instruments were published. De-

signing such instruments are often time-consuming. When a new need arises, such as

a new health context, a specific disease or condition, the laborious development pro-

cess has to be repeated. We, therefore, proposed QuikLitE, a novel framework that

can dynamically generate and score a word recognition-based health literacy instru-

ment. Test results with online Amazon Mechanical Turk users showed high parallel

form reliability. Validity as assessed by correlation with ComprehENotes, an EHR

comprehension instrument, was higher than two existing health literacy instruments.
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Our framework also displayed higher correlation with AMT users’ self-reported docu-

ment difficulty than S-TOFHLA and SAHL-E. Furthermore, QuikLitE is among the

easiest to administer and does not exhibit a ceiling effect.
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CHAPTER 3

ASSESSING READABILITY OF MEDICAL DOCUMENTS

3.1 Introduction

The research community has relied on readability formulas to assess a variety of

information materials for patients. Numerous readability metrics have been developed

to assess the grade level or the number of years of education needed for a person to

understand the content. One of the most widely used in the health domain is Flesch-

Kincaid Grade Level [55] (FKGL), which predicts a grade level using the average

sentence length and the average word length.

This metric and many others rely on the assumption that the longer the words

and the sentences are, the more difficult the text is. However this assumption may

not hold for EHR narratives as sentences are usually short and abbreviations are

common.

Accurate measurement of the readability of the Electronic Health Records notes

is one important step toward making the notes accessible to the patients. Many

studies [21, 73, 64] have evaluated the difficulty of health information intended for

patient consumption using readability formulas. They conclude that the materials are

often written at a grade level higher than common recommendations [6]. However,

the trust in these formulas to measure difficulty may be overextended. Grade-level

readability formulas were originally developed to try to ensure that a school textbook

for a particular grade was appropriate for children at that grade level [147]. Their

capabilities in measuring documents of a highly technical nature such as health care

are not thoroughly validated.
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In this chapter, we first empirically explore the relationship between these read-

ability formulas and the perceived difficulty on general health information and EHR

notes in Section 3.2. In Section 3.3, we then propose to build a new model based on

consumer perceptions of text difficulty.

3.2 Perceptions of Text Difficulty and Readability Formulas

3.2.1 Overview

As patients express interests in reading their own EHR data [174], health care

institutions have also begun to open up access to the EHR records [161]. However,

EHRs are written by physicians to communicate with other health care profession-

als [130]. Merely providing patients with their own EHR records, therefore, does

not necessarily help the patients better understand their own conditions. Measuring

the readability of the EHR notes is one important step towards making the notes

accessible to the patients.

3.2.2 Related Work

Numerous readability metrics have been used for the purposes of preparing texts

for school children, language learners, and ensuring smooth written communication.

These metrics assess the grade level of text using a linear regression type predic-

tion. Here we briefly introduce three of the metrics. For more discussions on these

traditional readability formulas, we refer the reader to the review in [98].

Flesch-Kincaid Grade Level (FKGL) [55] (Equation 3.1) predicts a grade level

using the average sentence length and the average word length.

0.39×
(

total words

total sentences

)
+ 11.8×

(
total syllables

total words

)
− 15.59 (3.1)

Simple Measure of Gobbledygook (SMOG) [120] (Equation 3.2) predicts readability

based on the number of polysyllabic words (words with more than three syllables),
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and the number of sentences.

1.0430×
√

polysyllabic words

sentences
× 30 + 3.1291 (3.2)

Similarly, Gunning-Fog Index (GFI) [66] (Equation 3.3) employs sentence length and

the proportion of polysyllabic words.

0.4×
(

words

sentences
+ 100× polysyllabic words

words

)
(3.3)

These metrics, although not developed in the health care domain, are used ex-

tensively to measure the readability of various health documents, including patient

handouts [21, 177, 178, 180], online health information for patients [73, 30, 51], med-

ication inserts [92, 171], informed consent forms [64, 162, 134], clinical trial informa-

tion [182], and Wikipedia medical entries [164, 5]. FKGL, in particular, is used in

more than half of readability studies compared in one review [172].

In general, these aforementioned metrics rely on the assumption that the longer the

words and the sentences are, the more difficult the text is. However this assumption

may not hold true for EHR narratives, which contain lists of clinical events (e.g.,

medication list), abbreviations, and incomplete and short sentences, unduly lowering

the readability score.

Less research has been conducted on whether the readability grade levels predicted

by these formulas or computational models agree with actual users’ perceptions of

text difficulty. In other research fields, objective characteristics are shown to not

always align with user perceptions. In one study, user perceptions of computer man-

ufacturers’ Web sites are different from content analysis tools [108]. In this section,

we examine the relationship between users’ perceptions of text difficulty and the

readability formulas’ output.
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We evaluate FKGL and other widely used traditional readability metrics. These

metrics usually hinge on a few textual characteristics and do not take into account

the domain of the text. We also explore the effectiveness of the existing readability

formulas on predicting the users’ perceptions of difficulty. We show that the perceived

readability of technical documents on complex topics is dependent on the domain of

the text, not an absolute measure of the difficulty of a piece of text.

3.2.3 Methods

We evaluate existing metrics for assessing EHR readability and investigate their

utility in EHR notes. In the following we first describe the data we use for evaluation,

followed by an analysis of this corpus.

3.2.3.1 Data

We collected documents about diabetes from two different resources: English

Wikipedia (denoted as wiki) and de-identified EHR notes (denoted as med). In wiki

documents, we traversed from the Diabetes category. The EHR notes are selected

using the International Classification of Diseases, Ninth Revision (ICD-9) code range

250.00 to 250.93. The two sources provide a contrast between texts aimed at the gen-

eral audience and those written with health care professionals in mind. The statistics

of this collection is shown in Table 3.1 under the columns labeled “all”.

Diabetes is a common disease that we can expect a large body of readers to be

aware of and can provide reasonable judgments on readability. This is especially

important in the EHR collection, because randomly selected EHR notes may contain

information about rare conditions, which can confuse the readers. The common theme

of the content in the two sources also helps address the problem of variations of a

user’s knowledge in different areas. By constraining to a single condition, we can

limit the confounding effect of a user’s different levels of familiarity in different areas.
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Table 3.1. Document collection statistics. Columns labeled “all” include all docu-
ments. Columns labeled “paired” include only documents where another one with a
similar length and FKGL score is also available.

Genre Documents Sentences Tokens FKGL

all paired all paired all paired all paired

wiki 140 58 5703 1084 142,106 23,185 7.33–21.85 7.33–17.82
med 242 133 8715 4232 120,315 57,655 6.48–15.76 6.99–15.76

3.2.3.2 Amazon Mechanical Turk Annotators

To validate one of the most frequently used readability formulas, FKGL, we paired

analogous documents in our collection to ask Amazon Mechanical Turk (AMT) users

to compare them. Specifically, documents are paired so that they have similar lengths

(within 50 token difference) and comparable readability levels according to FKGL

(within 0.5 grade level). The statistics on documents that were paired are shown in

Table 3.1 under the columns labeled “paired”.

We recruited 15 AMT subjects to read and rate pairs of documents. The readers

are screened to have English as their native language and be AMT master workers.

Three readers had a high school diploma, seven had an associate degree, four had a

Bachelor’s degree, and one did not report education level. Each reader is presented

with 20 randomly selected pairs of documents side by side on the computer screen.

The 20 document pairs consist of 5 pairs of wiki documents, 5 pairs of med docu-

ments, and 10 pairs of mixed genre documents. The readers are requested to rate the

readability of the documents on a scale from 1 (easiest to understand) to 10 (most

difficult to understand). Figure 3.1 is a screenshot of the interface with a mixed genre

pair.
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Figure 3.1. Screenshot of the interface for the AMT users.

3.2.3.3 Corpus Analysis

3.2.3.3.1 Readability and User Rating Distributions We first analyze the

empirical distribution of AMT users’ ratings on the text difficulty, and compare it to

the empirical distribution of the readability formulas’ scores.

3.2.3.3.2 Correlation between AMT Users We next measure correlations be-

tween different AMT users. For each user, all the documents that he or she provided

a rating were collected. Since the document pairs were randomly assigned, in general

no two users worked on an identical set of documents. Only a subset of the docu-

ments were rated by any two users. On average, a document was rated by 2.3 users.

Between two users, 8.6 documents were on average rated by both.
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We calculated correlations for a user’s and any other user’s ratings on the docu-

ments that were rated by both. The average for each user was obtained by first trans-

forming the correlations by Fisher’s z transformation, and then back-transformed [153].

Document genres were not separated in the calculation; otherwise, it would result in

too few instances.

3.2.3.3.3 Correlation between AMT User and Readability Formulas To

evaluate traditional readability formulas’ applicability in technical documents, cor-

relations between each AMT user’s ratings and the three readability formulas are

measured separately for the wiki and med genres. The average over each user’s cor-

relations are also obtained by Fisher’s z transformation.

3.2.3.3.4 Differences in Users’ Perceived Difficulty To validate the gener-

alizability of FKGL to different genres of text, we tested whether users perceive a

difference when the readability scores are similar. The AMT users in our experiments

are presented with documents of comparable difficulty (within a difference of 0.5)

according to FKGL and of similar length (within 50 tokens difference). We tested

the statistical significance of the difference between the difficulty values assigned by

the users to two similar documents, separately for wiki, med, and mixed pairs. Two

statistical tests are employed—Wilcoxon signed rank test and Kolmogorov-Smirnov

test.

We also tested the generalizability of two other formulas using the same procedure.

Among all of the document pairs, we selected the subset of documents pairs in which

the SMOG scores are within 0.5 between each pair. The same process was repeated

using GFI scores.

Furthermore, we explored the disparity in users’ perceived difficulty when a read-

ability formula reports a difference between two documents. For each user, we gener-

ated pairs of documents from all of the documents he or she rated, then removed the
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pairs that were presented during the AMT work session. These document pairs are

separated into three types based on the genres of the documents, as in the previous

experiments.

3.2.3.3.5 Correlation between Readability Formulas Since FKGL, SMOG,

and GFI all involve similar variables (sentence length in words or polysyllabic words,

word length), we examined the correlations between different readability formulas on

the two genres of text in our data set. Many studies adopt more than one of the

traditional formulas to ascertain readability grade level on documents intended for

patient consumption [70, 69, 168, 167, 160, 140]. Analyzing the formulas’ correlations

would inform us of this approach’s utility.

3.2.3.3.6 Word Usage We compare the word usage patterns in the two genres of

text by examining the common words. First, words in both med and wiki sources are

ordered by the frequency they appear in their respective genre. Then, the common

words that are in both genres of text in the top frequently used words are counted.

The shared vocabulary size may reveal a difference in word usage in different text

genres.

3.2.3.3.7 Impact of Medical Concepts Medical jargon is one of the barriers

for the patient to understand health information. The eligibility criteria in clinical

trials are found to be too difficult for the average American population, mainly due to

the frequent use of technical jargon [86]. One study has shown that linking medical

terms in EHR notes to Wikipedia pages can improve patient’s comprehension [145].

Moreover, many methods have been proposed to identify important or potentially

unfamiliar medical terms [50, 189].

We explore the effects of the medical concepts by measuring the correlation be-

tween users’ ratings and the number of concepts. Medical concepts are identified by

running MetaMap [4], a system that identifies biomedical concepts and their semantic

34



types. In this experiment, we exclude concepts from the following semantic groups

and types: Activities & Behaviors, Concepts & Ideas, Geographic Areas, Objects,

Occupations, Organizations, Age Group, Animal, Family Group, Group, Human, Pa-

tient or Disabled Group, Population Group, Professional or Occupational Group, Ed-

ucational Activity, Health Care Activity, Research Activity. These semantic groups

and types usually do not contain technical medical jargon, and are uncommon in

EHR notes. We also excluded Anatomical Structure because in our dataset almost

all terms in this category are “body”, with the rest being such common body parts

as “head” that would not pose difficulty for an average reader.

3.2.4 Results

3.2.4.1 Readability and User Rating Distributions

Empirical distributions of the FKGL readability scores and users’ ratings are

shown in Figures 3.2 and 3.3. The FKGL histograms (Figure 3.2) on the two genres

have clear distinctions. However, contrary to the general belief that EHR notes are

more difficult to read, the histogram on the med data peaks to the left of the wiki

data histogram. The users’ ratings (Figure 3.3), although to a smaller degree, show

a higher difficulty level for the med than the wiki data.

Table 3.2 shows the average score of each readability formula and the AMT users’

ratings. All the three readability scores suggest the technical EHR notes are sig-

nificantly easier than lay language wiki articles, whereas the AMT users rated the

opposite—wiki articles are 21.31% harder EHR notes.

These results suggest that although FKGL might distinguish the readability of

different genres, its counterintuitive predictions could lead to underestimation of dif-

ficulty levels on highly complex documents.
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Figure 3.2. Histogram of Flesch-Kincaid Grade Level.

Table 3.2. Average readability score and users’ ratings. All differences in scores
between the wiki and med genres are statistically significant at level p = 0.01 (Mann-
Whitney U test). The second to last row shows the percentage med score is higher
than wiki.

Genre Average Score or Rating

FKGL SMOG GFI AMT user rating
wiki 14.75 11.07 12.33 4.48
med 9.87 8.74 8.16 5.41

Diff. (%) −33.09 −21.03 −33.76 20.76
p-value < .001 < .001 < .001 < .001
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Figure 3.3. Histogram of AMT users’ ratings.
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Table 3.3. Average correlations between a user and everyone else.

Avg Cor (ρ) # Users

0.4–0.6 22
> 0.6 78

Table 3.4. Average correlation between users’ ratings and readability formulas.

wiki med

FKGL 0.171 0.297
SMOG 0.415 0.104
GFI 0.274 0.129

3.2.4.2 Correlation between AMT Users

Table 3.3 summarizes the correlations between two users’ ratings. Most users

show strong correlation with other users, suggesting that the AMT users’ perceptions

of difficulty are congruous among themselves.

3.2.4.3 Correlation between AMT User and Readability Formulas

Table 3.4 shows the average correlation coefficients between an AMT user’s ratings

and the three readability formulas’ output. All the correlations are very low, especially

in the med category. The SMOG and user rating correlation on wiki data, although

slightly higher than FKGL and GFI, is barely moderate. The low correlations suggest

that users’ perceived difficulty levels are inconsistent with the readability formulas’

predictions. For example, one user consistently assigned low difficulty levels to doc-

uments with FK scores 12 to 16. However, another user’s scores for documents with

FK levels approximately 13.5 vary considerably. In contrast, the difficulty perceptions

among different users are highly consistent (Table 3.3).

This pattern of inconsistency highlights the inadequacy of these formulas’ utility in

measuring EHR readability. It also highlights their weakness in testing readability of

documents of complex topics such as medicine, as they were developed to help users in

the education community to gauge text difficulty below 12th grade. All three formu-
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Table 3.5. Statistical significance of difference in AMT users’ perceived difficulty
between documents of similar Flesch-Kincaid Grade Level.

Genre of Pair p-value

Wilcoxon signed-rank test Kolmogorov-Smirnov test

wiki .406 .515
med .112 .147
mixed .006 < .001

las rely on word counts and sentence counts to estimate text readability. The implicit

assumption that longer words are more difficult, however, can often be violated. For

instance, abbreviations that are not normally used outside the medical domain such

as “CHF” (Congestive Heart Failure) and “EKG” (electrocardiogram) are prevalent

in EHR notes, without full definitions. Because these short abbreviations are often

comprised of very few, if any, syllables, they would have exactly the same impact

on the readability score as do the common stop words such as “the”. However, the

abbreviations are obviously one of the barriers for a patient to understanding an

EHR note. Furthermore, many abbreviations are ambiguous. For example, “MI” can

be the shorthand for both “myocardial infarction” and “myocardial ischemia”, two

different clinical conditions. In fact, disambiguating these abbreviations has been ac-

tively studied [184, 96]. Finally, SMOG and GFI’s use of polysyllabic words can also

exacerbate the problems with abbreviations. For example, “COPD” may be consid-

ered a one syllable word in calculating FKGL, but it would make no contribution to

the calculation of SMOG or GFI.

3.2.4.4 Differences in Users’ Perceived Difficulty

When two documents of similar length and FKGL score are shown together, the

ratings assigned by the AMT users exhibit different patterns depending on the genres

of the two documents. Using a Wilcoxon signed rank test, the p-values are displayed

in Table 3.5 under “Wilcoxon signed-rank test”.
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Table 3.6. Statistical significance of difference in AMT users’ perceived difficulty
between documents of similar SMOG or GFI levels.

Genre of Pair SMOG GFI

Sgn-Rank test K-S test Sgn-Rank test K-S test

wiki 1 1 1 1
med 1 .999 .821 1
mixed < .001 < .001 < .001 .003

The p-values for a pair of same genre documents show that the users’ assignments

are not significantly different, consistent with the traditional formula’s assessment.

However, the p-value for a pair of documents from different genres indicates that

despite being assessed at similar difficulty, actual users perceive them as significantly

different in terms of readability. Kolmogorov-Smirnov test (Table 3.5) also shows the

same trend.

The same tests, when repeated on a subset of document pairs whose SMOG or

GFI score difference is within 0.5, confirm that they are not generalizable to different

text domains either. Significance test results are displayed in Table 3.6. The AMT

users again show significant perceived difference in a document pair of mixed genres,

whereas documents in the same genre do not exhibit significant difference.

AMT users’ perceptions of difficulty vary depending on the genre of text, even

though a readability formula shows no difference. We then explore users’ perceived

difficulty disparity when a readability formula reports a difference between two docu-

ments. Figure 3.4 shows the average difference in users’ ratings on a pair of documents

with varying differences in FKGL scores.

For a pair of EHR notes, as the difference in FKGL scores widens, AMT users’

rating in fact decreases, before increasing when the FKGL score difference is large. A

similar trend is present in a mixed pair of documents: AMT users’ rating difference

decreases initially. For a pair of Wikipedia documents, AMT users’ rating difference

gradually increases when the FKGL difference is small. However, in all the genres,
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Figure 3.4. Average user rating difference on two documents of different FKGL
scores. Error bars are bootstrapped 95% confidence interval.

the users’ ratings are limited to no more than 2 levels of difference even for large

FKGL differences. These patterns suggest that in a wide range of FKGL scores,

users’ ratings do not agree with FKGL.

3.2.4.5 Correlation between Readability Formulas

Figures 3.5 and 3.6 show the correlations of SMOG and GFI measured separately

against FKGL. Both plots show a positive linear trend between FKGL and the other

formulas. The correlation coefficients are shown in Table 3.7.

The correlation coefficients between different formulas confirmed that all three

formulas were strongly correlated on our data set regardless of text genre, consistent

with the findings from previous studies [158, 166]. The substantial correlation implied

that there was limited utility in employing multiple formulas, especially those relying

on word and sentence lengths, to reduce potential bias of the individual ones when

assessing text readability, as is often done in research studies [70, 69, 168, 167, 6].
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Figure 3.5. Scatter plot of SMOG and GFI scores against FKGL on wiki genre text.

Table 3.7. Correlation coefficients between readability formulas. All correlations are
significant (p < .001).

wiki med

FKGL-SMOG 0.8124 0.8428
FKGL-GFI 0.9191 0.8784
SMOG-GFI 0.8952 0.9696
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Figure 3.7. Common words in the med and wiki genre texts.

3.2.4.6 Word Usage

In two similar corpora, the N most frequent words from each corpus would be

similar. Therefore, the number of common words would increase at approximately

the same rate as more frequent words are examined from the two corpora. Significant

deviations from this pattern are indications of different word usage patterns. As

shown in Figure 3.7, in our set of diabetes documents, the rate of increase in common

words between wiki and med documents is significantly smaller (at the level p < .001)

than one (shown as the solid line in the figure). This suggests that the word usage

patterns in the technical (med) and lay language (wiki) documents on the same topic

are different.

Expanding to more topics, we built the same word frequency statistic in all

Wikipedia articles and about 100,000 EHR notes. Shown in Figure 3.7 as the “ex-

panded” collection, the slope of common word count is also significantly smaller than

one (at the level p < .001).
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Table 3.8. Average correlations between users’ ratings and number of medical con-
cepts.

wiki med

Number of all concepts 0.4434 0.3987
Number of unique concepts 0.5041 0.4329

3.2.4.7 Impact of Medical Concepts

The correlation coefficients between the number of medical concepts and user

difficulty ratings, shown in Table 3.8, are measured for each user and averaged. The

average correlation is again obtained by Fisher’s z transformation. Correlations with

unique concepts are slightly higher than correlations with all concepts in both med

and wiki texts. More unique medical concepts are likely to result in more cognitive

load for a user to comprehend. It is also worth noting that EHR notes show a lower

level of correlation than the Wikipedia documents. This could be in part attributed to

the multitude of complexities of EHR notes not limited to the abundance of technical

jargon. Writing style such as choice of words and textual cohesion may also account

for some of the variances in perceptions of EHR notes’ difficulty. In spite of the

differences, these correlations suggest that medical jargon is a substantial contributor

to readers’ perceived difficulty of both genres of text.

3.3 Predicting Readability

3.3.1 Overview

As discussed in Section 3.2.2, most readability metrics in use today in the health

care domain are based on formulas developed for the general English text. We have

demonstrated that these formulas’ prediction did not align with perceived difficulty

in health documents from users. In this section, we describe a ranking approach to

compare document difficulty.
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3.3.2 Related Work

There are efforts in the general domain to build machine learning models to predict

text readability. They are usually designed around classification, which are often

limited to a few pre-defined labels or require corpora labeled at distinct levels.

One measurement that tailors to the medical domain was proposed in [93]. This

method compares surface text, syntactic, and semantic differences to predefined easy

and difficult documents, and reports normalized scores instead of grade levels. An-

other method for health text based on a naive Bayes classifier was developed [113].

The authors collected training documents from online blogs, patient education doc-

uments, and medical journal articles. Vocabularies in these documents are used as

features for the classifier. Both of the methods rely on manually curated reference

documents. Therefore, different choices in constructing the document sets may result

in variation in the scores or classification results. Moreover, the classifier is limited,

as it assigns only three categories—easy, intermediate, and difficult, and does not

assign a grade-level scale.

In this work, we view measuring readability as a ranking task, where the relative

difficulty of two documents are compared. This may be a more natural task. In many

cases, a grade level is only used to compare to a user’s reading ability. A patient-facing

EHR system may instead learn from its users’ reactions to infer their reading ability

and present appropriate education materials. Such a system can be personalized

for an individual user. A user with limited literacy will only see straightforward

materials and quality materials that require higher literacy levels can be presented to

an advanced user.
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Table 3.9. Document statistics

# Documents # Sentences # Tokens

cancer 215 2510 46,349
wiki diabetes 74 1352 33,402

hypertension 85 2007 45,440

cancer 127 2067 37,830
med diabetes 195 6335 81,085

hypertension 231 6594 90,784

total 927 20,865 334,890

3.3.3 Materials and Methods

3.3.3.1 Data

Following a similar procedure in Section 3.2.3.1, we collected difficulty levels on

health related documents from AMT users.

Three common diseases were selected as topics from the document sources: cancer,

diabetes, and hypertension. Wikipedia documents were randomly selected by recur-

sively traversing up to 3 levels from the respective disease category page, excluding

pages about lists, people, and countries. EHR notes were selected using ICD-9 codes

(140–195 for cancer, 250.00–250.93 for diabetes, and 401.0–401.9 for hypertension).

The document statistics are shown in Table 3.9. For each disease topic, 30 AMT

users’ data were collected.

3.3.3.2 Learning to rank

We developed a supervised learning system for EHR readability. Traditionally,

readability is measured at grade levels. Formulas that see wide adoption in the health

care domain include FKGL, Simple Measure of Gobbledygook, Gunning Fog Index,

Coleman-Liau Index, and New Dale-Chall. They all use a limited number of factors,

mostly word and sentence lengths, to estimate a document’s grade level. These simple

features, however, are not able to fully capture the complexity of medical documents

when used alone as in the formulas. For instance, EHR narratives often contain
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abbreviations and lists, which are treated as short words and sentences, thus lowering

the estimated grade level. However, the abbreviations present a great challenge to a

lay person’s understanding.[89, 144]

In the machine learning community, many systems were developed to classify

documents into a pre-defined set of readability levels. Such systems can include a

multitude of features, including lexical, syntactic, discourse features. These methods

are nevertheless constrained in the granularity that they can estimate since the pre-

defined difficulty levels are often limited.

In our work, we approached readability as a ranking problem, in which the diffi-

culty levels between documents are compared. This approach overcomes the problems

in both the traditional formulas and the classification methods: We are not solely re-

liant on word and sentence lengths as in the formulas, and our approach can produce

an order on readability levels for a set of documents.

A support vector machine (SVM) model was learned from the pairwise compar-

isons of AMT users’ assigned document difficulty levels using the SVMrank pack-

age [77]. SVM models normally optimize a hinge loss function based on a binary

label for every training example. In the pairwise scenario, the objective is to min-

imize the number of discordant pairs, i.e. pairs that are ordered incorrectly with

respect to the true order. More formally, given a set of training examples {(xi, yi)},

the primal form of the problem is

min w2 + C
∑

ξi,j

s.t. wTxi ≥ wTxj + 1− ξi,j,∀yi > yj

ξi,j ≥ 0,∀i, j,

where w is the weight vector, C parameterizes the trade-off between training error

and margin size, and ξ are slack variables. Rearranging the first constraint,
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wT (xi − xj) > 1− ξi,j.

This is equivalent to a classic SVM problem on the modified input vectors x′ = xi−xj.

Therefore, a binary classification SVM optimizer can be used to solve the problem.

In our dataset, we generated pairwise difference vectors x′ from each AMT user’s

ratings. The difference vectors were not generated from different users because ratings

across users may not form a consistent ranking as those from a single user do.

3.3.3.3 Features

We employed several types of features, including those from traditional readability

formulas. We included average words per sentence, average syllables per word from

the FKGL formula, the proportion of polysyllabic words (words with more than three

syllables) from the GFI formula, and the percentage of difficult words from the new

Dale-Chall formula. Although these formulas do not correlate well with human per-

ceptions of difficulty [190], these word length based features are useful at capturing

some longer medical jargon (e.g., Huntington’s disease). There is also evidence that

perceived difficulty of a word is correlated with its length [112]. We also included

word frequency based histogram features. The frequencies were obtained from En-

glish Wikipedia and de-identified EHR notes, since common words are found to be

likely perceived easier to understand [112]. The frequencies are grouped into 10 bins

and the percentage of words in each bin were used as features. Additional features

included document length measured in words and sentences. Long documents require

more cognitive processing to comprehend, which might translate to higher perceived

difficulty. Lastly, we captured language patterns using two word embeddings learned

separately from a snapshot of February 2017 English Wikipedia documents and de-

identified EHR notes from University of Pittsburgh Medical Center. The mean of all

the words in a document under the two embeddings models were included as two sep-
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arate sets of features. Word2vec [127] was used to learn a 200-dimensional skip-gram

embeddings with a context window size of 5, trained using negative sampling.

3.3.4 Results

3.3.4.1 System performance

We split the annotated data three ways into training (60%), development (20%),

and test (20%) sets. The three disease topics were stratified in the split. Hyperpa-

rameters were optimized on the development set. Final test results were obtained

from a model trained using the optimized parameters.

We evaluated our system using Kendall’s coefficient of concordance W [88], a

statistic that measures the agreement between rankings from multiple raters. The

coefficient aggregates the ranks assigned to each item from all raters, and measures

the variance. The variance is then normalized to be between 0 and 1.

Specifically, let ri,j denote the rank given to item i by rater j, where i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m}. The total rank Ri for item i is

Ri =
m∑
j=1

ri,j.

Let R̄ denote the mean of the total ranks Ri, and S their variance.

R̄ =
1

n

n∑
i=1

Ri

S =
1

n

n∑
i=1

(Ri − R̄).

Kendall’s W is defined as

W =
12S

m2(n2 − 1)
.

Higher value represents a high level of concordance. Since the documents in our

dataset were randomly assigned to AMT users, common documents among more
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Table 3.10. System performance. Bold values indicate a significant increase over
the FKGL baseline at 0.05 level using a Wilcoxon signed rank test. Numbers in
parentheses are percentage improvements over FKGL.

cancer diabetes hypertension all

FKGL 0.541 0.490 0.561 0.531

our system
(all) 0.656 (21.3) 0.790 (61.3) 0.715 (27.5) 0.734 (38.3)
(-eccentric users) 0.694 (28.3) 0.762 (55.5) 0.727 (29.6) 0.722 (36.0)
(-controversial docs) 0.650 (20.1) 0.790 (61.3) 0.759 (35.2) 0.737 (39.0)

than two users were rare. Therefore, we report the average of the W coefficients

between all pairs of users.

The system performance was shown in Table 3.10. As a baseline, we evaluated the

performance of the widely used FKGL readability formula. The average agreement

between this formula and the AMT annotators was 0.531. Our system achieved an

agreement of 0.734 with the AMT annotators, outperforming the FKGL baseline by

38.3%. The increase is statistically significant using a Wilcoxon signed rank test at

p = 0.05 level.

We also trained and tested separate models for each of the disease topics follow-

ing the same process. Our system showed consistent improvement over the baseline

across all disease categories. The diabetes and hypertension categories saw significant

increase in agreement over the baseline FKGL metric. Although not significant, the

cancer category still showed substantial improvement over the baseline. These results

suggested that our method is robust across different topics.

3.3.4.2 User behavior

A variety of factors may influence a reader’s reading comprehension, which in

turn determines his or her judgment on a document’s difficulty. We examined the

differences in the AMT users’ difficulty ratings using the same Kendall’s W coeffi-
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Figure 3.8. Histogram of Kendall’s W between two AMT users.

cient. The average concordance between any two users is 0.658. Figure 3.8 shows the

distribution of concordance between any two users in our dataset.

While there are pairs of users whose concordance were low, the majority (66%)

have a concordance greater than 0.6. When examined on an individual level, the low

concordance can often be attributed to a few users that appeared to disagree with

many others. There are 9 users that had less than 0.5 concordance with more than

10 other users. Furthermore, five of these users’ mean concordance with other users

were less than 0.5.

To measure a user’s “conformity” in relation to others, we calculated the mean

Kendall’s W between a user and all his or her peers. The distribution is shown in

Figure 3.9.

Approximately one third of the users were highly conforming (mean W at least

0.7) with others, whereas 7% were eccentric (mean W less than 0.4). This result

suggests that despite the individual differences in the background knowledge about

the subject matter, AMT users still exhibited a consensus on a document’s difficulty

level. We also noted that our system was able to predict readability orders similar to
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Figure 3.9. Histogram of AMT user’s “conformity” (measured by the mean of
Kendall’s W against peers).

that of a “regular” user. Its mean W was highly correlated with a user’s conformity

(ρ = 0.85). In contrast, the FKGL formula’s predicted grade levels did not show

strong correlation (ρ = −0.13) with conformity.

Table 3.10 (row “-eccentric users”) shows performance of models trained from

data excluding eccentric users. All disease topics performed significantly better than

FKGL. Performance on the entire data set, also significantly higher than FKGL, was

slightly lower than the system using full data. This could be due to the large amount

of samples removed from training even when a small number of users were excluded,

because the difference vectors were generated from all possible pairwise comparisons.

On the individual disease topic level, however, the cancer and hypertension models

outperformed our system learned from the full training data.

3.3.4.3 Controversial documents

In addition to annotator differences, another factor that contributes to inconsis-

tent annotations is the nature of the documents. We postulate that some documents
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Figure 3.10. Histogram of maximum difference in AMT users’ ratings on a docu-
ment.

may be challenging for the AMT users. For example, certain types of domain-specific

writing may appear easy to understand to some but not all users, leading to incon-

sistent user ratings. These “controversial documents” would also confuse our system,

which attempts to learn from the conflicting human annotation. To highlight the

range of difficulty perceptions by AMT users, Figure 3.10 shows the maximum dif-

ference in ratings assigned by AMT users on documents that were rated by at least

two users.

The mean difference is 3.8, suggesting that there were considerable variations in

the perceptions of difficulty among users. The two genres of documents (Wikipedia

and EHR notes) contained approximately the same number of controversial docu-

ments (maximum difference greater than 5), and the cancer topic had more such

documents than the other two topics.

We further trained new models after removing controversial documents from the

dataset. The performance of these models are shown in Table 3.10 in the last row (“-

controversial docs”). Performance of two categories, cancer and diabetes, remained
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Table 3.11. Feature ablation. “full” is the system with all proposed features, “-X”
indicates a system that excluded feature X.

feature set cancer diabetes hypertension all

full (from Tab.3.10) 0.656 0.790 0.715 0.734
-frequency 0.652 0.792 0.710 0.733
-formula 0.648 0.789 0.709 0.728
-length 0.636 0.785 0.702 0.716
-embedding 0.677 0.784 0.703 0.714

similar to the models trained from the full data. The hypertension set received an

appreciable increase.

3.3.4.4 Feature ablation

We compared the contribution of the different types of features included in our

system. Separated models were trained without the readability formula features, word

frequency based features, length-based features and word embedding based features.

Performance of these models are shown in Table 3.11.

Excluding word embeddings showed the most decrease in performance. The only

exception is in the category in which removing this feature resulted in a slight increase

in performance. The reason could be that cancer is a very broad topic encompass-

ing many different subtypes, unlike diabetes or hypertension, and our embeddings

learned from a different source that may be less representative of our test documents.

The word frequency based features did not appear to contribute much to the overall

performance. Removing these features only resulted in a 0.1% performance decrease.

This could be due to the nature of the word frequency corpus (a general English

corpus without any particular emphasis on any domain) we used to calculate these

features. The surface text characteristics captured by the formulas shows moder-

ate contribution, although not reliable indicators when used standalone. With the

exception of one case, the contributions of the features were consistent across differ-
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Table 3.12. Performance of a regression approach on readability assessment, com-
pared to the readability formulas and our ranking approach.

cancer diabetes hypertension all

FKGL 0.541 0.490 0.561 0.531
regression 0.489 0.624 0.560 0.580
ranking (from Tab. 3.10) 0.656 0.790 0.715 0.734

ent disease topics—word embedding and length-based features the highest and word

frequency lowest.

3.3.5 Discussion

We formulated readability assessment as a ranking task. An alternative is to apply

a regression model to predict the difficulty levels assigned by the AMT users. We

used the same training, development, and test data set as in our ranking approach

to learn a SVM-based regression model using SVMlight [76]. The same set of features

were adopted in this model as well. We compared the two approaches with Kendall’s

W.

Table 3.12 shows that the ranking approach we proposed outperforms the re-

gression approach. One reason is the subjectivity of the difficulty levels by human

annotators. Two users may assign very different difficulty values if their background

and knowledge are different. Therefore, learning to predict an absolute value can be

challenging. However, our AMT users were largely consistent in the relative order of

their annotations. Thus the ranking model can more reliably learn from the ordering,

even though the absolute values may differ by a large amount.

A limitation of a ranking approach is the lack of an easy-to-interpret grade or

difficulty value that can be attached to a document. Such a value can be useful

in information retrieval systems that index not only the content but also document

metadata. With these values, a user can easily request documents at certain levels

using a familiar scale.
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3.4 Summary

Patient’s access to EHR notes has increased dramatically according to national

statistics. Studies have shown that such access to their own EHR notes may lead

to improved health care outcomes. Measuring the readability of the EHR notes

is one important step towards making the highly complex and technical narratives

accessible to the patients. Despite being widely used in the health care domain,

existing readability formulas are not thoroughly validated for its appositeness in this

domain. In this study, we evaluated several such formulas’ abilities in predicting

perceptions of difficulty in health-related text from Wikipedia and EHR notes. We

found that the readability formulas’ predictions do not align with perceived difficulty

in either text genre.

Better readability assessment of EHR notes and other complex documents is im-

perative to designing patient support systems that provide accessible information.

Toward this end, we developed a new machine learning based method to assess EHR

readability from relative orders of text difficulty. We trained a learning to rank system

to predict relative difficulty levels of given documents, instead of the traditional clas-

sification approach in which documents are assigned levels from a limited pre-defined

set of values. Our experiments showed that this method significantly outperformed

the widely used Flesch-Kincaid Grade Level formula, and the improvement was con-

sistent across different topics. Our system’s concordance with a human user’s ratings

was higher than the concordance between different human annotators.
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CHAPTER 4

FACILITATING COMPREHENSION OF ELECTRONIC
HEALTH RECORD NOTES

4.1 Introduction

Decisions involving one’s health often need to be made outside a face-to-face

visit with a health care provider. For example, choosing a health insurance plan

and following directions on medication labels are scenarios where a patient needs to

make informed decisions using health knowledge. Growing prevalence of chronic dis-

eases [169, 173, 65] places more burden on the patients to make decisions about their

health conditions and treatment options. Demands on the consumers for greater in-

volvement in health-care choices, driven by the increase in “consumer-directed” health

plans, may also contribute to higher demands on their literacy skills [49].

Health-related content is one of the most searched-for topics on the internet. De-

cision support systems such as UpToDate that provide physicians with clinical in-

formation at point of care are already deployed in many major academic medical

centers in the US. Such information is of interest not only to clinical practitioners

but also to patients and their families. However, as they are targeted to the physi-

cians, patients without professional training in medicine will have to resort to other

consumer-oriented sources.

Furthermore, the physicians, with their solid understanding of the basic health

science, are likely to be able to isolate from a complex scenario individual questions

they need answers to. On the other hand, the patients, when faced with a similarly

complex EHR note, may struggle to locate the key information that are crucial to

their comprehension and management of their health conditions.
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In this chapter, we study methods to extract and rank key content and retrieve

targeted educational materials to facilitate better comprehension of EHR notes for

patients.

4.2 Linking Educational Materials

4.2.1 Overview

EHR notes, as we have discussed, are full of medical jargon, abbreviations, and

other domain-specific usages and expressions that are ill-suited for the lay people (pa-

tients). One study showed that nearly two thirds of the surveyed patients consider

physicians’ notes difficult to understand, and radiology reports and nurses’ notes [89]

are also perceived as difficult. Another study recruited healthy volunteers to read and

retell medical documents [90]. Common retelling errors included misunderstanding

clinical concepts and physician’s findings during a patient’s visit. A recent patient

survey on web-based access to laboratory results concluded that test result compre-

hension still needs improvement [118]. Findings from an assessment of lay under-

standing of medical terms suggest that a substantial proportion of the lay public

do not understand phrases often used in cancer consultations and that knowledge

of basic anatomy cannot be assumed [28]. This section describes our approaches to

generate effective queries from long EHR notes and retrieve educational materials to

help patient better understand their conditions.

4.2.2 Related Work

There is a wealth of work in improving patient understanding of medical text.

The medical jargon, which is prevalent in the EHR notes, is one evident difficulty in

patients’ understanding [89]. [187] and [154] created mappings between the medical

and consumer terminologies. Unsupervised methods are employed to identify diffi-

cult terms and definitions are retrieved using commercial search engines [50]. [85]
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developed tools to simplify difficult terms. [62] used morphological analysis and text

mining to collect paraphrases for medical terms. Providing definitions of medical

jargon is also shown to improve EHR notes’ readability. For instance, the NoteAid

system [143] identifies medical concepts and fetches definitions from Unified Medical

Language System (UMLS), Medline Plus, and Wikipedia and evaluation has shown

significant improvement in self-reported comprehension.

High quality information obtained through education materials can potentially

lead to better outcomes [19]. The Patient Clinical Information System [35] provides

patients with online information resources and educational aides, and evaluations by

patients have been positive. However, no automated systems have been reported. The

Infobutton Manager Project [34, 33] links EHR notes to other information resources

(e.g., drug databases, Google, PubMed, AskHERMES [24]). However, Infobuttons

were developed mainly to assist physicians, and were not designed for patients. PER-

SIVAL is another physician-centric system that accepts user provided queries to re-

trieve personalized results from a patient care library [121]. EHR notes are used to

build topics from consumer health texts. Probabilistic topic modeling is also utilized

to recommend education materials to patients with diabetes [84]. Education materi-

als are ranked according to frequencies of terms and topics in a given EHR note. The

authors show that the top two recommended documents are significantly more rele-

vant than a randomly selected document from the same domain. [47] use structured

data from EHR to retrieve health-related information. An early system was designed

to provide personalized health information from a knowledge base by filling manually

created templates [27].

Research in domain-specific Information Retrieval is closely related to our work as

well. In these searches, it is common to use a document as the base for queries. Patent

retrieval [56], as an example, has been widely studied. Patent documents are generally

long and complex, necessitating methods to generate shorter queries. For example,
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words in the summary section of a patent document can be ranked by tf-idf scores

and extracted to form a query [185]. Sentences that are similar to pseudo-relevant

documents according to a language model are also used to reduce query length [57].

Other similarity measures such as Kullback-Leibler divergence are used to extract

terms, which are expanded to generate queries in the patent retrieval domain [117].

However, the patent retrieval domain is recall-driven, while in our scenario, patients

are generally not expected to read relevant education documents exhaustively.

Other than retrieving patents, various methods have been proposed to retrieve

documents relevant to passages of text or web documents. A model extended from

Conditional Random Fields (CRF) is proposed to identify noun phrases and named

entities from a user-selected passage as queries [106]. Similarly, noun phrases in a

verbose query are also used as candidates for key concepts [14]. Other related work

that reduces long queries includes ranking all subsets of the original query [100].

However, the passages and verbose queries in these systems are shorter than typical

EHR notes, which makes the graphical model and other learning based models less

efficient. Moreover, parsers and Named Entity Recognizers for the medical domain

are less effective than the general domain. Pseudo-relevant documents are exploited

to identify concepts for query generation [94].

Information Retrieval in the biomedical domain is also related to this work.

WRAPIN is a system that analyzes web pages and retrieves related health docu-

ments [58]. The system is limited by the design that the health document sources are

only indexed by Medical Subject Headings (MeSH) terms and their synonyms, a con-

trolled vocabulary thesaurus for indexing biomedical publications. Our system does

not require indexing the document collection with ontology sources, thus eliminating

the computationally expensive extraction of the MeSH terms. More IR systems in

the biomedical domain are developed to help physicians and researchers. In a review

article by [142], it states that one third of searches may have a positive impact on
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physicians. A full text index of EHR notes and query-based IR allowed healthcare

providers to perform tasks such as medical management of patients, medical research,

and improving the traceability of medical care in medical records [16]. A life science

IR system LAILAPS utilizes query expansion and suggestion to improve retrieval re-

sults [54]. Another study also found query expansion helpful in retrieving biomedical

documents from a subset of MEDLINE [149]. Query expansion using a large, in-

domain clinical corpus is reported to be useful for patient cohort identification [191].

The CLEF eHealth [87] challenge includes a task to retrieve information to address

questions patients may have when reading clinical reports. This task provides par-

ticipants with expert-formulated concise queries for one central disorder in discharge

summaries [60]. In our study, we aim to generate queries from long EHR notes

without the help of experts. TREC Clinical Decision Support Track is another infor-

mation retrieval challenge involving EHR notes. A number of participants extracted

terms from the query descriptions exhaustively using external knowledge bases, and

expanded them with synonyms defined in medical ontologies. Relevance feedback is

also a popular technique among the participating systems. Unlike our method that

filters the pseudo-relevant documents, some systems use manual judgments or the

top documents. The task is designed to address the physicians’ information needs of

diagnosing the condition, further testing, and treating the patients, rather than the

patients’ needs of education materials. Case reports are provided as query descrip-

tions, which can be shorter and more focused than an EHR note.

4.2.3 Generating Queries from EHR Notes

We have explored several methods to automatically generate queries from EHR

narratives. In our queries, sequential dependence model [125] was used to capture the

dependencies in a multi-word query term. In this model, given a query, documents

are ranked based on features of documents containing a single query term, two query
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Table 4.1. Statistics of MedlinePlus Collection

Document Type Documents (Tokens) Average Tokens (StdDev)

Health Topics 956 (141,185) 147.7 (37.6)
Medical Encyclopedia 7078 (5,126,101) 724.2 (363.7)
Drugs, Supplements, and
Herbal Information

1332 (1,726,570) 1296.2 (992.8)

Total 9366 (6,993,856) 749.1 (565.9)

terms sequentially appearing in the query, and two query terms in any order. This

model has been shown to be effective in many applications [9, 26, 15].

4.2.3.1 Data

MedlinePlus1 provides current and reliable information about over 900 health

topics pages and 1000 medication pages to users in consumer-oriented lay language.

Additionally, the medical encyclopedia section includes over 7000 articles about dis-

eases, tests, symptoms, injuries, and surgeries. We include in this study the textual

narratives in the “health topics”, “drugs, supplements, and herbal information”, and

“medical encyclopedia” sections of the MedlinePlus as the collection of educational

materials. There are a total of approximately 9400 articles in this collection, which we

designate as MedlinePlus. Table 4.1 summarizes the characteristics of the collection.

We index the MedlinePlus documents with Galago, an advanced open source

search engine. Galago implements the inference network retrieval model [165]. This

model calculates the probability of the user’s information needs being satisfied given

a document in a directed acyclic graph. There are four types of binary nodes in this

graph: documents nodes corresponding to the event of a document being observed;

representation nodes corresponding to document features; query nodes that combine

evidence from representation nodes and other query nodes; and an information need

1http://www.nlm.nih.gov/medlineplus/
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Table 4.2. Example EHR Note and its relevant documents

Summary of EHR Note

Patient remains in ICU with the following problems: respiratory failure,
hemodynamics, renal failure, status post liver transplant, atrial fib, infectious
disease, nutrition.

Select Relevant Documents

Respiratory Failure
Deep Vein Thrombosis
Aspiration pneumonia
Pulmonary Hypertension
Kidney Failure
Atrial Fibrillation or Flutter
Liver Transplantation
Dialysis - Hemodialysis

node that combines all of the evidence from the other query nodes. This framework

is a formal and robust model to allow efficient combination of not only word-based

evidence but also structure, metadata, and other types of evidence. It has been

applied in many information retrieval tasks, and shown to be successful [126].

Twenty progress notes are randomly selected from a corpus of de-identified EHR

notes as the EHR document collection. Each note contains on average 261 tokens,

with a standard deviation of 133. A physician read each note, and manually identi-

fied relevant education materials from the MedlinePlus documents. For example, a

note about various conditions and symptoms of liver disease is linked to an education

document on alcoholic disease to discourage the patient from drinking alcohol. Each

EHR note is linked to 22 education material documents on average. For example,

Table 4.2.3.1 shows the summary of one EHR note and some of its relevant Medline-

Plus documents. There are approximately 30 sentences or 360 tokens in the actual

document.
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To evaluate the IR systems, we use the Mean Average Precision (MAP) metric, a

common standard in the IR community to evaluate ranked retrieval results. Another

metric that we use to evaluate our system performance is precision at 10. It is useful

as patients are less likely to read more than a few related documents.

Precision at position k (P@k) is defined as the proportion of k retrieved results

that are relevant.

P (R,Dk) =
|R ∩Dk|

k

where R is the ground truth set of relevant documents to a query, and Dk is the top

k retrieved documents.

MAP is defined on the Average Precision (AP) on retrieval results.

AP (R,Dk) =

∑
di∈Dk∩R P (R,Di)

|R|

For a set of queries Q, MAP is defined as

MAP (Q) =

∑
q∈QAP

(
R(q), D

(q)
k

)
|Q|

where R(q) is the ground truth relevant documents for query q, and D
(q)
k is the top k

retrieved documents for query q.

4.2.3.2 Baseline

Our baseline approach uses a full EHR note as the query to the MedlinePlus

document index and retrieves top 500 relevant documents. Although queries are

not generally as long as EHR notes, an average patient without adequate medical

knowledge may have difficulties constructing effective queries. Thus, this baseline

can be considered as a proxy to how a patient actually conducts his or her own search

in the real word.
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Since EHR text is not patient-oriented, to investigate the gap between medical

language and lay language, we substituted the medical concepts from the EHR notes

with their consumer-oriented counterparts created by the Consumer Health Vocabu-

lary (CHV) Initiative [187]. The EHR notes were first processed by MetaMap [4] to

recognize medical concepts. Those recognized concepts that have a corresponding lay-

man term in CHV were subsequently replaced. In order to limit concepts to domain-

specific medical terms, we filtered the MetaMap recognized concepts to the following

semantic types, as defined in Unified Medical Language System (UMLS) [20]: acquired

abnormality, antibiotic, cell or molecular dysfunction, clinical attribute, diagnostic

procedure, disease or syndrome, experimental model of disease, finding, laboratory

procedure, laboratory or test result, organ or tissue function, pathologic function,

physiologic function, pharmacologic substance, sign or symptom and therapeutic or

preventive procedure.

MetaMap is a highly configurable system that maps biomedical text to the UMLS

Metathesaurus. It employs several steps to process input text, including lexical and

syntactic analysis (such as tokenization, sentence boundary detection, part-of-speech

tagging, lexical lookup in a lexicon, shallow parsing), variant generation, candidate

identification, mapping construction, and word sense disambiguation. UMLS is a

suite of knowledge sources in biomedicine and health, and their associated tools pro-

duced by the US National Library of Medicine. Metathesaurus, a core component

of UMLS, is a multi-lingual vocabulary database that contains various ontologies of

biomedical and health related concepts and the relationships among them. It is or-

ganized by concept, and groups alternative names and views of the same concept

from different source ontologies together. Each of the concepts is assigned a Con-

cept Unique Identifier (CUI) and at least one semantic type. CHV was developed to

map the most frequently occurring concepts observed among MedlinePlus queries to

consumer-friendly display names.
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4.2.3.3 Topic Models

Full EHR notes typically discuss several aspects of the patient’s conditions, includ-

ing diagnoses, medication, procedures, etc. We trained Latent Dirichlet Allocation

(LDA) topic models [18] from over 6000 de-identified EHR notes to infer topics from

the test notes. Three models were learned with 20, 50, and 100 topics, of which the

one with 100 topics shows the highest performance.

Traditional LDA models extract distributions over individual word tokens for each

topic. However, medical concepts often contain more than one token. We employed

turbo topics [17] to find phrases from these topics. This method builds significant

n-grams based on a language model of arbitrary length expressions from normal LDA

posterior distributions. It first assigns each word a topic using the posterior distribu-

tion of the topic variable zd,i for the ith word in the dth document. A log likelihood

ratio is then calculated for a bigram under two different language models, one in-

corporating the bigram as a multi-word expression (the expanded model), the other

assuming independence (the unexpanded model). Turbo topics use a back-off lan-

guage model in which only a sparse set of words are dependent on their history. The

conditional distribution of a word v following u under this model is

P (v|u) =


πv|u if v is dependent on u

γuP (v) otherwise

where γu is a normalization factor to ensure the distribution sums to one. Permutation

test determines the significance of this ratio. Higher order n-gram are built in the

same fashion recursively. In our experiments, we set the significance level to 0.001.

To translate the topics into queries, we first performed inference on the test notes to

find the topic mixture, and then took the top 5 phrases from the most likely topics

whose combined probability is over 80%.
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To concentrate on medical terms, we trained another LDA model solely from the

medical concepts contained in the EHR notes. The same de-identified EHR notes

used to train LDA models in the approach above were first processed to find medical

terms, in the same way as described in Section 4.2.3.2. The notes were then converted

to collections of the UMLS Concept Unique Identifiers (CUIs), corresponding to the

medical terms recognized by MetaMap, disregarding the textual content. These con-

verted notes were training documents for the new LDA model. Topics were inferred

on the test EHR notes, after being processed similarly. The top 5 CUIs from the most

likely topics (with combined probability of over 80 %) are mapped back to phrases in

UMLS, and are generated as queries.

4.2.3.4 IDF-filtered Concepts

We also more directly focus on the medical concepts by selecting the top concepts

based on their inverse document frequency (IDF) from the EHR note corpus we used

to learn LDA models. In a large corpus in general, concepts that occur in a small

number of documents are more unique to the document being analyzed. In an EHR

note, these concepts are presumably more important for the patient. Therefore, we

selected 10 concepts that have the lowest IDF from each note to construct a query,

using the following definition:

IDF (c) = log
N

1 + nc

where c is a concept, N is the total number of notes, and nc is the number of EHR

notes that contain the concept c.

4.2.3.5 Key Concept Identification

We developed learning-based key concept identification to build queries from EHR

notes. We employed linear-chain Conditional Random Fields (CRF) model [102] to
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identify key concepts, which are most in need of explanation by external education

materials. These key concepts can be considered in a broad sense topics, as they

also capture various aspects of the EHR note content. We explored lexical, morpho-

logical, UMLS semantic type, and word embeddings as features. A 200-dimensional

word embeddings model was induced from a combination of Wikipedia articles in the

Medicine category and de-identified EHR progress notes, using the skip-gram archi-

tecture trained with negative sampling. We adopted the BIO scheme for the single

concept type label: KEY CONCEPT.

To address the issue of sparse training data, we applied domain adaptation strate-

gies. Wikipedia articles were selected as the out-of-domain data. These articles,

especially those in the Medicine category, are an appealing resource as they share

similarities to our task of key concept identification. According to Wikipedia’s man-

ual of style, internal links in a page are curated by editors to other articles that “help

readers understand the article more fully”, with “relevant information”, or “explain

words of technical terms, jargon or slang expressions/phrases”. Therefore, the links

are usually concepts that are important to topic of the page containing them. The

article leads, the sections before the table of contents and the first heading, are used

in our dataset, as the manual of style encourages providing internal links in these

sections. We treat anchor texts in these paragraphs as key concepts.

We compared three different methods of domain adaptation to identify the key

concepts—instance weighting, instance pruning, and feature augmentation. In accor-

dance with the common terminology, we refer to the larger Wikipedia data as source

domain, and the smaller EHR notes the target domain data.

Instance weighting [75] merges the data from both corpora with different weights

during training. The weights are usually inversely proportional to the size of the

corpus. A model is then trained using this weighted training dataset. In our exper-

iments, we used leave-one-out cross validation on the target domain data. In each
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fold, the training data is a weighted combination of the Wikipedia data and EHR

notes. The test data is the left out EHR note.

Instance pruning [75] removes misleading training instances from the source do-

main by first applying a model learned from the target domain. For example, if an

instance is assigned different labels in the source and target domain corpora, it is

removed to prevent the algorithm from learning from this confusing data. We first

trained a model on the target domain data, and then predicted the labels on the

source domain data. Instances in the source domain that were incorrectly labeled

were pruned from the source training set. Finally, a new model was trained using

this pruned source domain dataset.

Feature augmentation [39] adds additional features to the training instances to

identify which corpus they come from. For each original feature in a training example,

a new indicator feature is included to indicate the origin domain of the feature, so the

learning algorithm can distinguish features important to each domain. A model is

then trained on the combined dataset. In our experiments, we applied cross validation

on the target domain in a similar fashion to the instance weighting experiments. In

each fold, a feature-augmented corpus was built from all the Wikipedia data and EHR

notes, and the test data consisted of one EHR note.

As a baseline system, we used leave-one-out cross validation on the EHR notes.

The features in the model include lexical, capitalization, prefix, suffix, word shape,

and UMLS semantic type. The semantic types are provided by MetaMap, and added

as a feature to each token of the MetaMap-recognized terms.

4.2.3.6 Query Expansion

We explored query expansion by incorporating relevance feedback from pseudo-

relevant documents. The initial queries are generated using methods described previ-

ously. Among the top 20 retrieval results, those with a title that matches one of the
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Table 4.3. System Performance of retrieving educational materials for EHR notes.

System P@10 MAP Increase

1 Baseline 0% 0.0091 -
2 CHV 5% 0.0240 2.6
3 LDA 10% 0.0489 5.4
4 LDA on concepts 10% 0.0410 4.3
5 IDF-Filtered Concepts 14.5% 0.0681 7.5

identified key concepts are considered pseudo-relevant documents. This additional

requirement is to ensure that the expanded concepts do not drift from the main topic

of the medical notes. From these documents, medical concepts are extracted using

MetaMap. These concepts, with their synonyms provided by the UMLS Metathe-

saurus, are used as expansions.

4.2.4 Experiment Results

4.2.4.1 Baseline Approaches

Performance of the baseline approach of using full EHR notes is shown in Table 4.3,

row 1. The result using full text with CHV as shown in Table 4.3, row 2 more than

doubled. The gap between medical language and lay language highlights the issue that

patients may have difficulty finding relevant health information without assistance.

4.2.4.2 Topic Models

100 topics are learned from the de-identified EHR note collection. This level of

topic granularity shows the best performance in our experiments. The retrieval result

is shown in Table 4.3, row 3. The improvement over the baseline is 5.4 folds, and

is statistically significant using a paired Student’s t-test (p < 0.05). Performance of

LDA on concepts is also statistically significant over the baseline system, using the

same test, as shown in Table 4.3, row 4.
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Table 4.4. Key concept identification results using domain adaptation strategies.

Precision Recall F1

No augmentation 45.77% 26.51% 31.76%
Instance Weighting 47.59% 34.41% 38.32%
Instance Pruning 40.00% 6.02% 10.23%
Feature Augmentation 46.60% 28.86% 34.08%

Table 4.5. System performance of retrieving educational materials for EHR notes,
using augmented data.

System P@10 MAP Increase over baseline

No augmentation 16.5% 0.0921 10.1
Instance Weighting 18.3% 0.1111 12.2
Instance Pruning 7.8% 0.0316 3.5
Feature Augmentation 14.5% 0.0684 7.5

4.2.4.3 IDF-filtered Concepts

The system performance using IDF-filtered concepts is shown in Table 4.3, row 5.

Compared to the baseline and the topic model based methods, this experiment shows

that medical concepts are effective query terms.

4.2.4.4 Key Concept Identification

The key concept identification performance of the three CRF models is shown in

Table 4.4. Retrieval performance of these models are shown in Table 4.3, rows 4 to 6.

All systems showed a statistically significant improvement over the baseline. The last

model’s improvement is also statistically significant over the LDA approach. Query

expansion methods further improved system performance, as shown in Table 4.6.

4.2.5 Discussions

We found that the top 10 retrieved results of the baseline system for each of

the EHR notes are nearly identical, with minimal order variations. We also found

that none of the top 10 retrievals is a true relevant document according to our gold
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Table 4.6. System performance with pseudo-relevance feedback.

System P@10 MAP

LDA 11.5% 0.0513
LDA on concepts 9.5% 0.0389
IDF-filtered concepts 12% 0.0662

Key concept (no augmentation) 20.5% 0.1114
Key concept (Instance Weighting) 22.5% 0.1424
Key concept (Instance Pruning) 18.5% 0.1002
Key concept (Feature Augmentation) 17% 0.1081

standard. The results are not surprising. EHR notes are written by physicians,

containing domain-specific medical jargons. In contrast, consumer-oriented education

materials are written in lay language, a different text genre. In addition, the full text

of an EHR note may contain noise to the extent that distinguishing content is difficult

to locate. For example, an EHR sentence “I am glad to see Ms. Smith today” provides

little information other than the gender of the patient, which may still be identified

from other parts of the note. Search engines are not optimized to process queries

as long as over 500 tokens, and cannot automatically filter out the noise without

significant adaptations. The unique language and style in these medical notes makes

the filtering all the more difficult.

From the LDA model, Table 4.2.5 shows the top 10 n-grams from 7 topics trained

on the medical text. It is clear that while topics like the first one capture medical

concepts, others like the second one do not. The LDA results also highlight the

noisy nature of the EHR notes. Queries formed by including the generic or noisy

terms such as “continue on” will not benefit retrieval results. Examining the retrieval

results, we found that when the prominent topics include medical concepts, the top

10 results usually contain at least one relevant document. When only generic topics

are identified, relevant documents are absent in the top 10 results.
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Table 4.7. Top 10 n-grams from 7 topics using the LDA model

Phrases with the highest probability

1 dialysis, hemodialysis, catheter, renal failure, renal, coumadin, line, picc
line, dialysis catheter, failure

2 job id, today, point, continue on, reasonable, try to, continue, yesterday,
left, right

3 continue, patient, job id, pain, patient has, normal, patient s, white
count, secondary to, culture

4 liver, ascites, normal, tenderness, fluid, stable, elevated, today, edema,
chest

5 preliminary, patient, patient s, time, blood, mmoll, patient has, routine,
high, vial

6 diarrhea, abdominal, flagyl, stool, abdominal pain, colitis, abdomen, dif-
ficile, fluid, distended

7 bipap, pneumonia, year old, respiratory failure, failure, minutes, requir-
ing, encephalopathy, ards, patient

In the domain adaptation experiments, the precision of the three approaches were

relatively close to the baseline of not using augmented data. However, the recall

scores vary greatly. In the instance weighting experiment, the model was able to

identify many abbreviations that are rare in the target domain. For example, “EGD”

and “DVT” were successfully identified as key concepts despite their occurring only

once and three times in the target domain corpus. On the other hand, the instance

pruning approach removed over half of the training instances from the source domain

data, resulting in a lower performance. The Wikipedia Manual of Style states that

only the first occurrence of a term should be linked, and generally a link should only

appear once. This resulted in many valid instances being removed because of multiple

occurrences. For example, repeated mentions of “glucose” in Wikipedia articles were

predicted as key concepts by the target domain model. However, most were removed

because only one of them in each article was linked to the glucose article. The reduced

training size lowered the recall of this model.
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In the IR experiments, the instance weighting approach outperformed the baseline

of no augmentation in both the single query and query expansion designs. This can

be attributed to the higher recall of this approach in the CRF model. Due to its low

recall in key concept identification, instance pruning failed to retrieve many relevant

documents. For example, in six of the EHR notes, only one phrase was labeled as key

concept, and one of them was incorrect. Despite feature augmentation’s improvement

in the key concept identification experiments over the baseline, queries generated

from this approach did not improve over the baseline query result. The identified key

concepts by this method included abbreviations such as “CHF” and general symptoms

such as “nausea”, which can be associated with a multitude of diseases.

4.3 Ranking Important Medical Concepts for Patients

4.3.1 Overview

We have demonstrated that employing key clinical concepts achieved top per-

formance in retrieving relevant education materials for patients. These concepts

themselves are a source of confusion for patients without medical training. Many

studies have highlighted that patients have difficulty in comprehending medical jar-

gon [144, 89, 28, 110, 81]. To support patient EHR comprehension, we focus on

identifying medical terms that matter the most to individual patients in this section.

EHR notes generally incorporate a comprehensive longitudinal description of pa-

tients’ medical courses. However, patients may care more about their immediate

concerns. In patient support applications, providing explanations or educational ma-

terials for all the concepts are likely to overwhelm them and may be unnecessary in

the first place. Our aim is to develop an automatic system that can identify a small

number of important medical concepts specific to a patient. These medical concepts

can then be used to provide tailored interventions to improve EHR comprehension
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Mr. X is a X-year-old gentleman with history of right-sided heart failure with pre-
served LVEF, COPD, chronic kidney disease, coronary artery disease, status post
CABG x3, hypertension, paroxysmal AFib/flutter who I have been following closely
for the last several months. I last saw him on X, at which time, he has significant
lower extremity edema, though otherwise did not appear to be in acute heart failure.
At that time, I did increase his diuretics slightly, and recommended that he keep
his legs elevated regularly. During that visit, he has stage III kidney disease with a
BUN of 00, creatinine 0; he also remained in sinus rhythm. Today in clinic, Mr. X
is accompanied by his daughter, X. X, he has no specific complaints related to heart
failure. He denies shortness of breath at rest or with low level activity. He states that
he does very little activity throughout the day; he states he is sitting down in the
chair 80% of the day, and the other 20%, he is in bed sleeping. He is not participating
in physical therapy and feels that he has become very weak and deconditioned. He
states he has normal balance, and has had no recent falls. He denies orthopnea or
PND. He does note his lower extremity swelling has improved. He denies any chest
pain or pressure. He does have a chronic cough. Denies lightheadedness, dizziness or
presyncope. He does not have an ICD or pacemaker and denies palpitations.

Figure 4.1. An example medical record narrative with important medical concepts
underlined, and all other concepts italicized.

and disease management. In this work, we designed a neural network based ranking

system to automatically order the medical concepts in an EHR note.

Figure 4.3.1 is an excerpt of an EHR note with concepts that are deemed important

underlined, and other concepts italicized. In this example, medical concepts appear

in almost every sentence. However, only a small number of them are important for

patients to understand according to human expert annotations.

4.3.2 Related Work

Research on designing tools to help patients understand health information has

focused on substituting difficult terms with easier synonyms or other closely related

terms. For example, [188] developed a system to extract medical concepts, and re-

place them with consumer-friendly terms in CHV, a lexical resource with mappings

between medical concepts and consumer vocabulary. If the difficult medical concept

was not found in CHV, a term with a broader or narrower sense in a medical ontol-
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ogy was searched to find its consumer-friendly counterpart. They reported that on

9 EHR notes, a majority of the terms were translated correctly and helpful. [85] ex-

tended this work to use a larger set of relationships to generate explanation phrases

of difficult terms. Cloze test score by reviewers on clinical records improved from

35.8% to 43.6%. It also incorporated a module to simplify compound sentences. In

[111], the authors created a semi-automated system for writers to choose alternatives

of unfamiliar words in medical text. They used word frequencies from the Google

Web Corpus as a proxy for term familiarity. Words that occur less than a pre-defined

threshold were considered difficult. The system generated synonyms or hypernyms

as candidates for these difficult words from WordNet, UMLS Metathesaurus, simple

English Wikipedia, and regular English Wikipedia. The candidates were ordered by

type and term familiarity. Evaluation by Amazon Mechanical Turk users showed a

significant effect of simplification on perceived difficulty and slightly improved un-

derstanding with better question-answering for simplified documents. In Swedish

medical text, [1] adapted word frequency based difficulty measure by incorporating

word substring frequencies, to account for the compounding nature of the Swedish

language. In a corpus of medical journal text, all terms having a MeSH synonym

that was assessed to be easier were replaced with the easier alternative. Evaluation

by two readability measures differed on the difficulty of the replaced text. However,

a reader study showed improved readability after replacement.

These work all target difficult terms as a method to simplify medical text. Our

study instead focuses on identifying terms that are important for the patients. This

approach complements the text simplification methods. Patients reading complex

medical records face two challenges: First, the specialized language in the records

that deviates from what they normally read and use everyday. Second, the abundance

of medical concepts that overwhelm them. The existing works addressed the first

challenge by providing simpler alternatives, whereas we tackle the second challenge
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by reducing the cognitive load of processing large amount of unfamiliar concepts. We

note that all difficult terms are not necessarily important. As shown in Figure 4.3.1,

many medical concepts that do not occur frequently in daily usage, such as “ICD” and

“presyncope”, are not considered important for the patient by physician annotators

that read this report. Conversely, important terms may appear to be easy and familiar

in everyday English. “Heart failure” and “kidney disease” are examples from the

excerpt. However, these are highlighted by physicians because of their significance to

the patient’s health.

Our approach also differs from the aforementioned work in that our method is

patient centered. The importance of a medical concepts depends on the patient’s

conditions. For example, in the previous excerpt, “COPD” is an important concept.

However, in a different report, it is not highlighted as important for the patient. Our

work aims to rank the importance of the concepts tailored to the patient’s needs.

Our work is also related to systems that extract key phrases from a document.

These systems identify topical terms or phrases that are important to the documents,

which can be used to index them for later retrieval. Binary classification, including

Naive Bayes [179], decision tree [68], and random forest [99], is often adopted. Confi-

dence scores from the classifiers are ordered to arrive at a final rank of the candidate

phrases. In the biomedical domain, [114] developed a system that assigns scores to

noun phrases based on their degree of relevance to the main theme of the document

using MeSH terms. [151] designed features that are specific to the medical domain.

KEA++ [124] incorporated information from medical thesauri to extract candidate

phrases and select key phrases. In contrast, we formulated important medical concept

identification as a ranking problem, and does not require complex processing of the

document to extract domain-specific features.

In information retrieval, deep learning models for ad hoc relevance ranking is

related to this work. Deep Structured Semantic Model (DSSM) [74] was proposed
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to learn vectors for the query and document. It then ranked the relevance of a

document with a query by measuring cosine similarity of their vectors. Convolutional

Deep Structured Semantic Model (C-DSSM) [152] replaced the feed forward network

in DSSM with a convolutional network. [67] proposed Deep Relevance Matching

Model (DRMM) to directly model the interaction between the terms in a query and

document pair. The interactions were transformed into matching histograms and

passed into a feed forward network to produce matching scores for the query terms.

A term gating network aggregated the term matching scores to generate an overall

matching score. [135] designed DeepRank, a network architecture that attempted to

model the human judgment process. It first located query-centric contexts from the

document, and built query context interaction matrices. A convolutional network

or a 2-dimensional Gated Recurrent Unit was then used to learn representations for

these local interactions. A recurrent network utilized the query terms’ positions in the

document to aggregate the local interaction representations. Finally a term gating

network similar to DRMM aggregated the term level scores.

Our problem setting is different in that all of the candidate concepts that need

to be ranked for importance come from the same document. Therefore, they all are

relevant a priori. Modeling relevance by query document term interactions at the

local level may be less effective. Moreover, since the internal document structure,

interactions between concepts in particular, could provide information into their im-

portance for patients, we leveraged both semantic and rich ontological relationships

to model the document.

4.3.3 Methods

We designed our system to order medical concepts in an EHR note according to

their importance to the patient. It first extracts candidate concepts using MetaMap,

and obtains their corresponding CUIs and UMLS semantic types. These concepts
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are then ranked by a deep neural network with context information from both the

sentences they occurred in and the whole document.

The network consisted of three main components to model the candidate medical

concept, a local sentential context, and a global document context. Figure 4.2 shows

the architecture of our model. In this figure, it scores the concept “stage III kidney

disease” in the excerpt from Figure 4.3.1, with sentence 4 as the local context, and

all the concepts in the note as the global context.

A feed forward component modeled the medical concepts c. It contained a series

of dense layers followed by activation layers. Let x
(l)
i denote the output of node i

from layer l, w
(l)
i and b

(l)
i the weights and biases at node i of layer l, f an activation

function.

z
(1)
i = w
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(l+1)
i x

(l)
i + b

(l+1)
i

y
(l+1)
i = f

(
z
(l+1)
i

)

The medical concept c to be ranked is fed into the first layer of this component.

Rectified linear unit (ReLU) was used as the activation function in each layer:

f
(
z
(l)
i

)
= max

(
0, z

(l)
i

)

A convolutional component modeled the local sentential context that the medical

concept in question occurred in. The sentences are represented by the sequence

of medical concepts as extracted by MetaMap. Let c1,n denote a sequence of n

concatenated concepts:

c1,n = c1 ⊕ c2 ⊕ . . .⊕ cn,
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where ⊕ is the concatenation operator. Convolutional filters w are applied to a

window of consecutive concepts to generate a feature. Let hi be the feature that is

generated from the concept sequence ci,j

hi = f (wci,j + b) ,

where f and b are an activation function and a bias term, respectively. We used

ReLU as the activation as in the feed forward layers. This operation is applied to all

the consecutive concept sequences in a sentence to generate a feature map.

h = [h1, h2, . . . , hs] ,

where s = n− j + i for a convolutional filter of length j − i.

A max pooling layer is then applied on the feature map to obtain the maximum

value of h:

ĥ = max(h1, h2, . . . , hs).

Multiple filters of different lengths are used in our model. The output from the max

pooling layers of these filters are concatenated to form a representation of the local

sentential context.

At the document level, we represented the global context d using a bag-of-concepts

model. The concepts are aggregated based on their salience information s.

d = sᵀ



c1

c2
...

cn


This document context vector is passed through a feed forward network similar to

the medical concept component.
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Finally, the three components are concatenated together with the salience infor-

mation of the medical concept, before being passed to a fully connected dense layer.

We captured a concept’s salience using centrality measures from two graph repre-

sentations of the document. The graphs were both constructed from the candidate

concepts in an EHR note as the vertices. Two concepts were connected with an edge if

there exists a medical relationship between them. These relationships were obtained

from Systematized Nomenclature of Medicine Clinical Terminology (SNOMED CT),

one of the source vocabularies in UMLS. For example, SNOMED CT asserts a “finding

site” relationship between the concepts “heart failure” and ”heart structure”. From

this graph, we derived a degree-based centrality measure for each concept. Another

denser graph was built using the same vertices, with an adjacency matrix of con-

cept similarities. An eigenvector-based centrality measure was computed from this

graph. This metric was based on LexRank [53], which estimated similarity between

two sentences from modified tf-idf vectors of the words. We adopted cosine similarity

between two concepts using their embeddings. The two types of centrality measures

captured the salience of the medical concept from two different perspectives: One

from a expert curated ontology with rich structures, and the other from empirically

derived embeddings that represented real world usage.

Input to the network included the embeddings of the medical concept and the

embeddings of concepts both in the sentential context and the entire document. To

prevent overfitting of the network, we employed dropout layers in each of the three

components.

We optimized the neural network’s parameters using a pairwise cross logistic loss.

Let y denote the ground truth labels, ŷ denote the scores computed by the network.

L(y, ŷ) = −
n∑

j=1

n∑
k=1

1[yj>yk] log(1 + exp(ŷk − ŷj))

where 1 is an indicator function.
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Figure 4.2. Architecture of the neural network model to rank important medical
concepts. Three components model the candidate medical concept to rank (“stage
III kidney disease” in this example), the local context that the candidate appears
in (”stage III kidney disease”, “BUN”, “creatinine”, “sinus rhythm”, etc), and the
global context of the EHR note (“heart failure”, “LVEF”, etc), respectively. The
learned representations of these components are combined together with the candidate
concept’s centrality to produce a score.
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We evaluate our system performance with Normalized Discounted Cumulative

Gain (NDCG) [83]. NDCG can be calculated using Discounted Cumulative Gain

(DCG) at position k (DCGk), which rewards relevant documents more at the top of

the retrieval list.

DCGk =
k∑

i=1

reli
log2(1 + i)

,

where reli is the graded relevance of the retrieval result at position i. NDCG at

position k (NDCGk) can then be computed by

NDCGk =
DCGk

IDCGk

,

where IDCGk is the ideal DCG, which is the score when a system correctly orders

all the documents based on their relevance.

IDCGk =

|RELk|∑
i=1

reli
log2(1 + i)

,

where RELk is the ideal ordering of the relevant documents up to position k.

We compared our system’s performance with several competitive learning to rank

algorithms, including RankNet [23], ListNet [25], and LambdaMART [183]. To test

the utility of these medical concepts, we applied our system to the education material

retrieval task presented in the previous section.

4.3.4 Data

Finding impOrant medical Concepts most Useful to patientS (FOCUS) [29] is a

collection of 90 EHR discharge summaries and progress notes from the University

of Massachusetts Memorial Hospital outpatient clinics. Six different but common

primary clinical diagnoses (cancer, chronic obstructive pulmonary disease, diabetes,

heart failure, hypertension, and liver failure) were selected to create the corpus. Af-

ter de-identification, every note was annotated by two physicians to identify terms
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that are important to patients. In this work, an additional 51 notes were annotated

following the same guidelines as the original FOCUS corpus. The notes were split

into training (60%), development (20%), and test (20%) sets.

We adopted as concept representations a set of pre-trained 500-dimensional clinical

concept embeddings (cui2vec) that was learned from a large collection of multimodal

medical data [12]. The source data included an insurance claims database of 60

million members, a collection of 20 million clinical notes, and 1.7 million full text

biomedical journal articles. This set consisted of embeddings for 108477 medical

concepts, represented as UMLS CUIs. It achieved state-of-the-art performance on

many concept relation identification benchmark tasks.

4.3.5 Results

4.3.5.1 Corpus

In each note in our corpus, the textual annotations from the physicians were con-

verted to UMLS CUIs by MetaMap. MetaMap was also used to extract all other med-

ical concepts in the original notes. Of the candidate concepts extracted by MetaMap,

we only retained those with semantic types that occurred more than 10 times in

the physicians’ annotations. Since the important concepts were outnumbered by

non-important concepts nearly 30 times, non-important concepts were subsampled to

produce a balanced training data set.

We consolidated the two relevance rankings from different physicians by assigning

to each annotated concept a weight that is equal to the reciprocal of the rank. The

final graded relevance of each concept is ordered by the average of the weights from

the two annotations. The inter-annotator agreement measured by Cohen’s κ was

0.43, showing moderate agreement according to the interpretation scheme by [105].
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Table 4.8. Statistics of the important medical concepts corpus.

N or mean (SD)

Number of EHR notes 141
Average document length (tokens) 1023.9 (163.9)
Average number of unique medical concepts 272.0 (39.0)
Average number of ground truth important concepts 6.1 (4.4)

There are 39444 CUIs in the corpus, 1119 of which are important concepts. On av-

erage, each note contains 272 unique concepts, and 6.1 important ones. Table 4.3.5.1

summarizes the statistics of the corpus.

We analyzed the semantic types of the important terms annotated by the physi-

cians. In total, they covered 88 of the 127 semantic types defined by UMLS. The most

frequently annotated semantic types and a few examples are shown in Table 4.9.

4.3.5.2 System Performance

In the feed forward components, the number of the dense layers were selected

between 3 and 6, while their dimensions were selected from 26, 27, 28, 29, and 210.

The convolutional component employed filter widths of 2, 3, 4 with 100 feature maps

each. A dropout rate of 0.5 was used in the dropout layer. Training was done using

gradient descent with Adaptive Moment Estimation (Adam) [97].

Since only a small fraction of the candidate medical concepts are important, we

subsampled the negative training examples during training to obtain a more balanced

training dataset. After learning is completed, the full test dataset was used to evaluate

our model.

Evaluation results on the test data set are shown in Table 4.10. To compare with

the other methods, we used the pre-trained embeddings for the medical concepts and

also included the embeddings for all the concepts in the context sentence. Our system

outperformed RankNet, ListNet, and RankSVM on all of the metrics. Using paired

t-test, improvement on NDCG@10 was statistically significant (P < 0.05). It also
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Table 4.9. Semantic types of physician annotated important concepts.

Semantic type Number Examples

Disease or Syndrome 582 inferior mi, bacteriuria, nephritis,
grave’s disease, fibromyalgia

Pharmacologic Substance 536 Methotrexate, Insulin, Tylenol,
Pantoprazole, PPSV23

Organic Chemical 420 Glipizide, Sucralfate, Atorvas-
tatin, Harvoni, Nitroglycerine

Therapeutic or Preventive Procedure 187 Splenectomy, Bypass, Gastric,
Cauterization, Immunizations

Finding 158 Diffusing capacity, Poor Oral In-
take, Source, Severe, Low albumin

Diagnostic Procedure 133 Body plethysmography, Bone
Marrow Biopsy, Screening
Colonoscopy, uterine biopsy,
Thoracoscopic lung biopsy

Qualitative Concept 107 Extremely, Poorly Differentiated,
Stenosis, Ordered, Related

Amino Acid, Peptide, or Protein 107 BNP, alpha Foetoprotein, Insulin,
Antibodies, Anticardiolipin, CT A

Neoplastic Process 103 HCC, Endometrial Adenocarci-
noma, Sclerosis, Tuberous, Lo-
cally Advanced Cancer, Stage III
Hodgkin Lymphoma

Sign or Symptom 101 Syncopes, paralysis left sided,
Abdominal pain, epigastric, Leg
pain, neoplasm pain
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Table 4.10. System performance of identifying important medical concepts.

System NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankNet 0.09 0.11 0.11 0.15
ListNet 0.09 0.13 0.16 0.19
LambdaMART 0.30 0.30 0.30 0.32
RankSVM 0.13 0.13 0.14 0.14
Our system 0.29 0.27 0.29 0.35

Table 4.11. Performance of incorporating tailored important medical concepts as
queries to retrieve educational materials.

System P@10 MAP

Key concepts 22.5% 0.1424

Additional important concepts from
RankNet 22.5% 0.1424
ListNet 23% 0.1425
LambdaMART 26.5% 0.1637
Rank SVM 22.5% 0.1438
Our system 26.5% 0.1642

achieved similar performance to LambdaMART, which is a competitive algorithm in

learning to rank tasks. An advantage of our approach is that the representations can

be reused in other tasks.

When the top 2 most important concepts as recognized by our system was added as

additional query terms in the educational materials retrieval system to the Wikipedia-

augmented method (described in Section 4.2.3), we see improvement in both the P@10

and MAP measures (Table 4.11).

4.3.6 Discussions

Medical concepts are abundant in EHR notes, which are shown to be a barrier to

comprehension by patients. We developed a neural network based system to auto-

matically identify concepts that are important for them to understand the notes.
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Existing approaches usually target unfamiliar or difficult terms, whereas our work

aims to reduce the medical concept overload problem. The unfamiliar terms, which

are often approximated by low frequency words in a large corpus, are not necessarily

critical for patients. Unfamiliar terms identified in this way are the same for all

patients. However, in our dataset, 40% of the important medical concepts appeared

in only one EHR note. Furthermore, although two documents with the same primary

diagnoses share about 50 common medical concepts on average, there is less than one

common concept between two notes. This suggests that the important terms are in

general highly specific to the individual patients, with few shared ones.

Compared to prior work [29], which employed a multitude of sophisticated fea-

tures, including term frequency, term structure, positional, lexical, part of speech,

word embeddings, UMLS semantic type, Consumer Health Vocabulary based, and

topical features, our system only required distributed representations of medical con-

cepts and centrality features that can be derived from these representations, reducing

the need for complex preprocessing.

The tailored concepts proved helpful when incorporated as query terms to retrieve

patient educational materials. For example, in one note, the system identified hyper-

tension as an important concept that was not in the original query when using the

CRF based model. This concept is a comorbidity of the main problem experienced

by the patient. Including it helped retrieve documents with topics on this condition,

which were annotated as relevant for managing the main disease.

4.4 Summary

Patients reading their own medical notes in an EHR system frequently encounter

difficult language. In this chapter, we studied approaches to retrieve EHR note-

tailored online consumer-oriented health education materials. In our experiments, we

have shown that using the full text of an EHR note is ineffective at retrieving relevant
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education materials. Identifying key concepts of an EHR note as query terms result

in significantly improved performance.

Medical concepts are often cited a major barrier to patient comprehension. We

proposed a neural network based system to automatically identify concepts that are

important for them to understand the notes. Unlike existing approaches that target

unfamiliar or difficult terms, our work aims to reduce the medical concept overload

problem by identifying important terms to patients, which are not necessarily rare

words. Experiments show that this system outperformed three leading learning to

rank algorithms.
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CHAPTER 5

CONCLUSIONS

5.1 Overview

This chapter summarizes the dissertation, and is organized as follows. Section 5.2

describes the challenges of engaging patients in the current environment of wide avail-

ability of patient access to Electronic Health Records. Section 5.3 reiterates the main

contributions of this dissertation. Finally, in Section 5.4 discusses the limitations of

this work and future directions for improvements.

5.2 Summary

Patient-centered care has been established as a fundamental approach to improve

the quality of health care in a seminal report by the Institute of Medicine published

at the start of the century [132]. There is growing awareness that to achieve the best

outcomes, patients and families must be more actively engaged in decisions about their

healthcare and must have enhanced access to information and support [78]. In this

work, we proposed innovative computational tools to facilitate patient engagement,

an essential step towards realizing patient-centered care. Patient-centered care shifts

the focus from the diagnosis to the patient, a shift that can result in significant

improvements in clinical outcomes, patient satisfaction, and cost reduction.

A characteristic in the patient-physician interactions is the information asymmetry—

a highly trained professional with domain expertise and a usually non-expert con-

sumer. This characteristic presents significant challenges for patients to effectively

communicate and engage with their health care providers and the health care system
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Table 5.1. Validity measured by correlation with a reading comprehension test.

Instrument Correlation

QuikLitE 0.52
SAHL-E 0.41
S-TOFHLA 0.40

Table 5.2. Document readability ranking performance on medical notes.

System Concordance

FKGL 0.531
Our system 0.734

in general. We proposed methods to determine patient’s health literacy level, mea-

sure readability of complex documents, identify important information for patients

and provide educational materials specific to a patient.

In Chapter 2, we proposed a flexible and computationally inexpensive framework,

QuikLitE, to create targeted health literacy instruments. Our assessments showed

that the instruments instantiated using this method is both reliable (as demonstrated

from high correlation between parallel instantiations in Section 2.4.2) and valid (as

shown in Table 5.1). In addition, it does not suffer from the ceiling effect, where

differences in literacy at higher levels cannot be distinguished.

Chapter 3 empirically demonstrated that readability formulas that are frequently

used in health care research do not align well with lay readers’ perceptions of text

difficulty (Table 3.4). We therefore proposed a system to compare the readability of

complex documents, such as EHR notes and educational materials. Experiments on

different genres of medical texts all showed improvement over the traditional FKGL

formula, statistically significant in many cases. Overall, the improvement over the

baseline FKGL is more than 38% (Table 5.2).

In Chapter 4, we investigated retrieving educational materials that are specific

to a patient’s needs based on his or her EHR notes. A detailed comparison among
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Table 5.3. Educational material retrieval performance for EHR notes.

Method MAP

Full note 0.0091
Key concept 0.1424

several approaches revealed that identifying key concepts in a note is the most ef-

fective method to link educational documents (Table 5.3). Furthermore, we showed,

using a physician annotated corpus, that the key medical concepts that are impor-

tant for patients are not necessarily the unfamiliar or difficult ones, in contrast to

many approaches that targeted the unfamiliar concepts. We designed a deep neural

network model to rank medical concepts that are important for patients. It utilized

embeddings of medical concepts induced from multiple sources and outperformed

competitive baselines (Table 4.10). These important concepts also helped improve

performance of retrieving educational materials from EHR notes.

5.3 Contributions

The major contributions of this work are as follows.

• A flexible framework that can dynamically generate health literacy instruments

for a specific domain.

We proposed QuikLitE, a framework for health literacy measurement instru-

ment that can be tailored to individual patients. We showed that it is flexible,

convenient, reliable, and valid.

• Empirical evidence that current readability measurement tools are inadequate

at measuring users’ perceived text difficulty.

Our user studies using EHR notes and general medical text showed that grade

levels predicted by the current tools widely used in the health care domain are

inconsistent with the users’ reported document difficulty.
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• Method to measure complex document readability.

We proposed a method to compare document readability, instead of classifying

to pre-defined difficulty levels. Our experiments on various disease topics veri-

fied that this method is generalizable and effective at comparing the readability.

• Method to identify medical concepts that are important and tailored for pa-

tients.

To help patients efficiently examine and review the vast amount of medical

concepts in their own EHR notes, we proposed a neural network model to order

medical concepts, without using sophisticated preprocessing of the text.

• Linking targeted educational materials for patients based on their medical records.

We proposed methods to identify educational materials that can assist patients’

comprehension of their medical records. Our method of generating queries

from EHR notes retrieved significantly more relevant documents than what an

inexperienced user may be able to using naive methods.

• Improving patient EHR comprehension by incorporating tailored medical con-

cepts.

The important medical concepts tailored to patients, when incorporated into

queries generated from EHR notes, improve retrieval results over using textual

queries.

5.4 Future Work

In this section, we summarize the limitations of our proposed methods and future

directions for improvements.
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5.4.1 Health Literacy Framework

Our QuikLitE framework requires a large corpus from the domain of interest to

construct a specific health literacy instrument. Such corpora are generally readily

available. However, scoring our test manually is challenging as it involves calcula-

tions of various weighted disagreements. This may limit its utility when a test is

administered in a paper format for patients who are not comfortable with electronic

devices. Future research could explore simpler scoring methods that are amenable to

manual calculation, for example, discrete weights based on word frequencies. Future

work could also explore other weighting schemes to better represent the individual

needs of the user being tested, which could lead to opportunities to identify a test

taker’s knowledge gaps.

In our data set, the samples were biased toward educated white users in the

general population. More tests may be needed to assess reliability and validity on

underrepresented population and patient population of a particular health condition

in future studies.

5.4.2 Document Readability Assessment

Unlike current methods that assign a label (for example, a grade level or a pre-

defined set of easy, moderate, and difficult levels) as readability to a document, we

adopted a ranking approach. This introduces a challenge for the users with a need

to classify document difficulty levels. Future studies could investigate approaches

that can integrate users’ health literacy levels, such as measured using our proposed

QuikLitE framework, with readability assessment to determine appropriateness of the

documents.

Research in the general domain has explored features at many different levels,

including surface, syntactic, semantic, and discourse levels [141, 139]. One of the goals

of designing our method was to reduce dependency on such sophisticated processing
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of the documents to extract features. Advances in neural network based methods

provide a direction for future research to leverage their ability to learn representations

directly from text.

5.4.3 Educational Materials Retrieval

Our proposed approaches generated one set of query terms for each document to

retrieve educational materials that are relevant to an EHR note. However, as the

medical records often contain a comprehensive history of the patient’s health, many

distinct aspects of the patient’s conditions may be documented. Future research could

investigate methods that can recognize these different aspects and generate multiple

queries to improve the coverage of the retrieved results. In our dataset, there are also

educational materials with topics that were not directly mentioned in the EHR notes.

Medication is one example. The annotator included medications that the patient may

need to take to manage the disease. Future work could investigate approaches that

can incorporate external knowledge to address this issue.

In identifying medical concepts that are important to patients, our current model

learned representations of concepts and documents separately and only leveraged their

interactions as additional features. Future research could explore incorporating inter-

actions between the candidate concept and other concepts in the note. Architecture

designs that can influence learning through concept interactions may lead to better

representations. Another direction for future work is to investigate approaches that

can model the document structure to derive a better representation of the note, as

opposed to the bag-of-concepts model we currently adopted.
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