
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

July 2020

DESIGN AND IMPLEMENTATION OF PATH FINDING AND DESIGN AND IMPLEMENTATION OF PATH FINDING AND

VERIFICATION IN THE INTERNET VERIFICATION IN THE INTERNET

Hao Cai

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

Recommended Citation Recommended Citation
Cai, Hao, "DESIGN AND IMPLEMENTATION OF PATH FINDING AND VERIFICATION IN THE INTERNET"
(2020). Doctoral Dissertations. 1956.
https://doi.org/10.7275/q06a-qc91 https://scholarworks.umass.edu/dissertations_2/1956

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/334980544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/q06a-qc91
https://scholarworks.umass.edu/dissertations_2/1956?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1956&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

DESIGN AND IMPLEMENTATION OF
PATH FINDING AND VERIFICATION

IN THE INTERNET

A Dissertation Presented

by

HAO CAI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2020

Electrical and Computer Engineering

c© Copyright by Hao Cai 2020

All Rights Reserved

DESIGN AND IMPLEMENTATION OF
PATH FINDING AND VERIFICATION

IN THE INTERNET

A Dissertation Presented

by

HAO CAI

Approved as to style and content by:

Tilman Wolf, Chair

Dennis L. Goeckel, Member

David Irwin, Member

Don Towsley, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

DEDICATION

To my parents.

ACKNOWLEDGMENTS

I would not have been able to complete this dissertation and achieve one of my

dreams without the encouragement and guidance from people around me. While I

use “we” out of deference to my co-authors, all mistakes contained herein are mine

and mine alone.

I would like to express my deepest gratitude to my advisor, Professor Tilman

Wolf, for his guidance and advice in the past years. During these years, I learned

much from him, including rigorous scholarship and hard working. He taught me how

to tackle new research problems, pitch ideas, and give presentations. I believe these

skills will be valuable not only for my research but also for my future life.

I would like to thank my dissertation committee members, Professor Dennis L.

Goeckel, Professor David Irwin, and Professor Don Towsley for their time of attending

my presentation of the proposa and defensel. They also provided valuable feedback

on the dissertation writing.

I would also like to thank my labmates and colleagues. Xinming Chen’s program-

ming skill has really impressed me. I feel fortunate to have worked with him on

the credential and path finding projects. I have also worked closely with Abhishek

Dwaraki. His rich engineering experience assured the successful implementation of

my projects.

v

ABSTRACT

DESIGN AND IMPLEMENTATION OF
PATH FINDING AND VERIFICATION

IN THE INTERNET

MAY 2020

HAO CAI

B.Sc., SHANGHAI JIAO TONG UNIVERSITY

M.Sc., SHANGHAI JIAO TONG UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

In the Internet, network traffic between endpoints typically follows one path that

is determined by the control plane. Endpoints have little control over the choice of

which path their network traffic takes and little ability to verify if the traffic indeed

follows a specific path. With the emergence of software-defined networking (SDN),

more control over connections can be exercised, and thus the opportunity for novel

solutions exists. However, there remain concerns about the attack surface exposed

by fine-grained control, which may allow attackers to inject and redirect traffic.

To address these opportunities and concerns, we consider two specific challenges:

(1) How can the network determine the choices of paths available to connect end-

points, especially when multiple criteria can be considered? And (2) how can end-

points verify the integrity of the path over which network traffic is sent. The latter

consists of two subproblems, determining that the source of traffic is authentic and

vi

determining that a specified path is traversed without deviation. In this dissertation,

we investigate and present solutions for both the network path finding problem and

the verification problem.

We first address path finding, or routing, which is a core functionality in the Inter-

net. Existing approaches are either based on a single criterion (such as path length,

delay, or an artificially defined “weight”) or use a combinatorial optimization function

when there are multiple criteria. We present a multi-criteria routing algorithm that

can search the whole space of all possible paths. To achieve the scalability of our

solution, we limit the search to only Pareto-optimal paths, which allows us to prune

sub-optimal paths quickly and reduce computational complexity. We show that our

approach is tractable on a variety of realistic topologies and the results Pareto-optimal

paths can be clustered to present a few alternative options.

We then address path verification in the Internet, which consists of source au-

thentication and path validation. Once a path has been selected, we show that an

endpoint can validate that traffic indeed traverses along the chosen path. Prior work

has relied on cryptographic approaches for such validation, which need significant

computational resources. In contrast, we propose a lightweight and scalable tech-

nique to address this problem, which uses a set of orthogonal sequences as credentials

in the packets. The verification of these orthogonal credentials is based on inner

product computations, which can be easily implemented by basic bitwise operations

in a processor. We show that the proposed approach can achieve the necessary se-

curity properties for both source authentication and path validation. Results from

a prototype implementation show that the proposed technique can be implemented

efficiently and only add a small computational overhead.

The results of our work enable novel uses of networks with fine-grained traffic

control, such as enabling more path choices in networks where multiple performance

criteria matter. In addition, our work contributes to efforts to make the Internet more

vii

secure by presenting techniques that allow endpoints to validate the source and path

of network traffic. We believe that these contributions help with improving both the

current Internet and also future networks.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES .xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Path Finding with Multi-Criteria . 2
1.2 Source Authentication and Path Validation . 5
1.3 Organization and Contributions . 7

2. PATH FINDING WITH MULTI-CRITERIA . 9

2.1 Introduction . 9
2.2 Background . 12
2.3 Preliminaries . 13

2.3.1 System Model . 13
2.3.2 Pareto-optimal Path . 14

2.4 ParetoBFS : Pruning with Pareto Constraints . 16

2.4.1 Plain BFS to Find All Paths . 16
2.4.2 ParetoBFS – Pruning While Searching . 18

2.5 Evaluation and Complexity Analysis . 20

2.5.1 Methodology . 21
2.5.2 Complexity Analysis . 23
2.5.3 Experimental Results . 27

ix

2.6 Sampling Pareto-optimal Paths . 29

2.6.1 Random Sampling . 32
2.6.2 Clustering Sampling . 32
2.6.3 Convex Sampling . 32
2.6.4 Comparison of Sampling Techniques . 34

2.7 Comparison with Related Work . 35
2.8 Conclusions . 37

3. SOURCE AUTHENTICATION . 39

3.1 Introduction . 39
3.2 Preliminaries . 42

3.2.1 Security Requirements . 43

3.2.1.1 Security Requirements . 43
3.2.1.2 Attacker Capabilities . 44

3.2.2 Performance Requirements . 45

3.3 Related Work and Alternative Solutions . 46

3.3.1 Ingress Filtering . 46
3.3.2 IP Traceback . 46
3.3.3 HMAC/UMAC . 47
3.3.4 Public-Key Cryptography . 48
3.3.5 Hop-by-Hop Message Authentication . 48
3.3.6 Hidden Credentials . 49
3.3.7 Path Verification . 49
3.3.8 Constant Sequence Credentials . 50
3.3.9 Pseudorandom Sequence Credentials . 50

3.4 Overview of OrthCredential . 50

3.4.1 Goals and Non Goals . 51
3.4.2 Deployment Scenario . 51
3.4.3 Architecture and Components . 53
3.4.4 Hadamard Matrix . 55

3.4.4.1 Definition . 55
3.4.4.2 Properties . 56

3.5 Design Details of OrthCredential . 56

3.5.1 Creating Credentials . 57

x

3.5.2 Verifying Credentials . 59
3.5.3 Attacks . 63

3.6 Evaluation . 65

3.6.1 Performance Evaluation . 65

3.6.1.1 Security . 65
3.6.1.2 Verification Time . 66
3.6.1.3 Storage Consumption . 69

3.6.2 Deployment on GENI . 70

3.7 Conclusions . 71

4. PATH VALIDATION . 73

4.1 Introduction . 73
4.2 Related Work . 76
4.3 Preliminaries . 76

4.3.1 Goals . 77
4.3.2 Security Model . 77

4.3.2.1 Security Requirements . 77
4.3.2.2 Attacker Capabilities . 78

4.3.3 Limitations . 79

4.4 OSV Overview . 80
4.5 Design Details of OSV . 83

4.5.1 OSV Initialization . 84
4.5.2 Packet Initialization . 86

4.5.2.1 Credential Generation . 86
4.5.2.2 OVi Generation . 87
4.5.2.3 PV F Generation . 88

4.5.3 Packet Verification and Forwarding . 88

4.5.3.1 Source Authentication . 88
4.5.3.2 Path Validation . 89
4.5.3.3 Field Update . 90

4.6 Evaluation . 91

xi

4.6.1 Security Analysis . 91
4.6.2 Performance Evaluation . 94

4.6.2.1 Setup Latency . 95
4.6.2.2 Packet Processing Latency . 95
4.6.2.3 Packet Overhead . 96
4.6.2.4 Storage Consumption . 98

4.6.3 Deployment on Testbed . 98

4.7 Conclusions . 101

5. DEPLOYMENT ON CONTAINERS . 102

5.1 Setup . 102
5.2 Defense on Packets with Random Credentials . 103
5.3 Defense on Packets with Duplicate Credentials . 105
5.4 Evaluation on Verification Overhead . 106

6. SUMMARY . 109

BIBLIOGRAPHY . 111

xii

LIST OF TABLES

Table Page

2.1 BRITE parameters. 22

2.2 The effectiveness of sampling methods. 34

2.3 Comparison Martins’ algorithm with ParetoBFS on 4 Rocketfuel
topologies. 36

2.4 Comparison of path finding algorithms. 37

3.1 A full description of the relevant notations in Chapter 3. 52

3.2 Number of Hadamard matrices of different types. 55

3.3 Average verification costs of different schemes for 500-byte packets
. 70

3.4 Throughput under different scenarios. 71

4.1 A full description of the relevant notations in Chapter 4. 81

4.2 Credential information saved in source node S and each node Ni

along the path. 84

xiii

LIST OF FIGURES

Figure Page

2.1 Example of Pareto-optimal path computation from node A to F. 14

2.2 ParetoBFS and BFS comparison. 20

2.3 Examples of test topologies. 22

2.4 The time complexity of ParetoBFS . 24

2.5 The number of Pareto-optimal paths found. 25

2.6 The effect of different sampling methods. 30

2.7 Example of convex sampling. 33

2.8 Running speed of Hansen’s and ParetoBFS. 35

3.1 An example of interactions between a user and a provider. 40

3.2 Credentials generation and verification in OrthCredential 53

3.3 An illustration of Hadamard matrix and its properties. 55

3.4 OrthCredential header, which total overhead in a packet is 16 to 28
bytes. 57

3.5 An illustration of an 8× 8 Hadamard construction. 59

3.6 An example which shows the relations between sum(k) and
{sum bit[i]} when n = 32. 61

3.7 Success probability of attacks using random generated credentials. 67

3.8 Probability distribution of the number of the inner product
computations for an invalid packet. 68

xiv

3.9 The time for OrthCredential system to verify different types of
packets. 69

3.10 Test setup on ExoGENI using flukes. 71

4.1 OSV’s forwarding process. 80

4.2 An illustration of the splitting of a generated Hadamard matrix. 84

4.3 OSV header. 86

4.4 Packet processing latency of OSV (in a log10 scale). 94

4.5 Packet overhead varying with increasing path length in bytes. 97

4.6 Throughput and goodput of OSV for 4-hop and 12-hop paths, in the
context of varying payload sizes. 99

4.7 Throughput and goodput of OSV for 256B and 1024 packets, in the
context of varying path lengths. 100

5.1 Container networking on a single host. 103

5.2 Usage of the python scripts on source node and router to generate,
send, receive packets and do verification on the credentials in
them. 104

5.3 Send and receive packets with random credentials between source
node and router (credential length is 64). 105

5.4 Successful probability of attacks of packets using random credentials,
including the cases that the router received valid credentials or
not. 105

5.5 Send and receive packets with duplicate credentials between source
node and router (credential length is 64). 106

5.6 The forwarding rate of the router varies with increasing sending rate
of the source node when the credential length is 64 and the
number of credentials used on router is 3, 10 and 20,
respectively. 106

5.7 The maximum forwarding packet rates with increasing number of
credentials used on the router with different credential length. 107

xv

LIST OF ALGORITHMS

1 BFS that finds Pareto-optimal paths by enumerating all the simple
paths between two nodes. 17

2 Pareto-optimal pruning process. 18
3 ParetoBFS . 19
4 Sampling the Pareto-optimal set after adding a path. 29
5 Operations of generating a credential . 59
6 Operations of verifying a credential . 62
7 OSV header initialization pseudo code. 91
8 OSV header validation and update (in Node Ni) pseudo code. 92

xvi

CHAPTER 1

INTRODUCTION

Since its birth in the 1960s, the Internet has evolved in many aspects. As the

diversity of uses for the Internet is increasing, many network protocols and archi-

tectures have been developed by the industry and the research community. In these

proposed protocols and architectures, an important developing trend is that the net-

work owners and operators have more controls on their infrastructures and data flows,

allowing customization and optimization, and reducing the overall capital and oper-

ational costs. For example, Software Defined Networking (SDN) and OpenFlow have

emerged as a new paradigm of networking, which transform the current Internet into

an open and programmable component of a larger cloud infrastructure. The benefits

of convenient control on the whole map of the entire network enable the introduction

of new features in Internet to become less manual, less prone to error, and faster to

implement.

Path finding or routing, i.e., determining a path for traffic to flow between com-

municating end-system, is a core functionality in such networks with the data flow

control. In the current Internet, path finding is typically based on a single criterion,

such as path length, delay, or an artificially defined weight. However, networks have

grown in leaps and bounds so that single-criterion shortest paths no longer fit the

whole spectrum of services that exist in today’s networks. Multi-Criteria path prob-

lem has been addressed in several contexts, for example Quality of Service (QoS)

routing. But when there are multiple optimization metrics, most approaches rely

on an combinatorial optimization function, which combines all metrics into a single

1

metric (e.g., weighted sum). In contrast to these algorithms, our aim is to search

the whole spectrum of all the possible optimal paths which have advantages even on

any one metric, which can help the network owner or operator is able to take a more

comprehensive consideration.

Once a selected data path is determined by a network owner or operator, how can

they be sure that their preferences are truly enforced is another important concern

in the future Internet. For instance, an enterprise might want the packets that it

receives to pass through several services, such as an accounting service and a packet-

cleaning service. Or a company might want fine-grained control over which providers

carry which traffic between its branch offices, yet the network paths must respect

the providers’ pairwise business relationships. Or providers might want to make sure

that they are carrying traffic only from friendly nations. These abilities of source

authentication of packets and verification of an intended traffic path can help the In-

ternet mitigate various attacks, such as DoS attack, address spoofing, flow redirection

and etc. Unfortunately, the existing approaches either are unable to satisfy security

requirements, or need a lot of computational resources (i.e., based on cryptographic

techniques), which make these techniques expensive to implement in practice since

potentially every packet needs to be checked at line rate. Therefore, in this work,

we design a novel technique for the high-performance source authentication and path

validation in the Internet, especially when considering that the further Internet may

have billions of users with billions of services.

1.1 Path Finding with Multi-Criteria

While more and more network protocols and architectures enable the network

owners and operators to decide intended paths that each data flow has been tra-

versed on, there are usually a multiple choices of different paths that could be chosen.

Widely used routing protocols, such as OSPF [61] and RIP [39], are designed to solve

2

this path-finding problem in the network. They use single routing metric and corre-

sponding routing algorithms, such as Dijkstra’s. However, networks have grown in

the diversity of their use so that single-criterion shortest paths no longer fit the whole

spectrum of services that exist in today’s networks. For example, in networks where

the user has the ability to choose paths [22, 83], the cost of a path and the quality

of a path need to be represented by independent metrics. Also, load-balancing and

use of alternate backup paths require multiple paths to be calculated [46]. In these

cases, additional criteria beyond the shortest path metric may be used (e.g., available

bandwidth, path reliability, etc.).

When only a single metric is used, a single optimal solution (i.e., shortest path)

is enough. But when multiple metrics are used, a set of paths needs to be found to

represent the trade-offs among criteria. A key challenge for realizing multi-criteria

routing is the need to develop an efficient algorithm for determining suitable paths in

the potentially very large space of all possible paths (exponential to the number of

nodes). The multi-criteria path finding is an NP-hard [37] problem, but it is possible

to develop solutions for typical-sized networks that work well in practice.

Previous work has addressed the multi-criteria optimal path problem in various

contexts, for example Quality of Service (QoS) routing. A central problem in QoS

routing is to find feasible paths between a source and a destination that satisfy mul-

tiple constraints (e.g., bandwidth, delay). Then, the best path among the feasible

paths is selected based on a given optimization metric (e.g., delay-constrained least-

cost path routing). When there are multiple optimization metrics, most approaches

rely on an combinatorial optimization function [52], which combines all metrics into

a single metric (e.g., weighted sum).

Using a single, combined metric simplifies the path finding problem, but also

presents a fundamental limit on the ability to find solutions: a single optimization

metric requires a priori weighing of each metric [29]. That is, before running the

3

path finding algorithm, the relative “value” between different metrics needs to be set.

The result of the search is then optimal (only) for this fixed weighing of metrics. In

practice, however, there are situations where this weighing cannot be done a priori.

For example, a network may allow users to choose a specific path based on price

and quality characteristics [22, 83]. In the marketplace of such a network, different

paths need to be offered before knowing the users’ sensitivity to the price and the

quality (i.e., before knowing their weighting of criteria). Similarly, in SDN [63],

an SDN controller may pre-compute available paths before knowing the weights of

metrics that are desired by a specific northbound SDN application. In such cases, the

weighing can only be done a posteriori and the multi-criteria optimal path problem

needs to find the set of all Pareto-optimal paths. A path is Pareto-optimal if there

is no other path that is better in all metrics. Since multiple metrics allow for the

existence of paths that are better than others in one or more metric, but not all,

there can be a large number of mutually Pareto-optimal paths. Based on the set of

Pareto-optimal paths, one path can be chosen for any possible weighing of metrics

(e.g., by an SDN application or by a network customer).

In our work, we address this multi-criteria path finding problem and design a

high-performance algorithm to find all the possible Pareto-optimal paths, which is

important in practice, especially in environments where different metric weights are

unknown to the pathfinder. The key theoretical and practical research challenges this

work in path finding with multi-criteria tries to address are:

• How to design a path finding algorithm that can find Pareto-optimal paths in

multi-criteria networks?

• How to design it fast enough to find all the Pareto-optimal paths within 1 second

on a typical sized network?

4

• How to find a subset of the Pareto-optimal paths in shorter time when the full

Pareto-optimal set is not necessary?

1.2 Source Authentication and Path Validation

After the network owners and operators choose their intended paths for each data

flow, the current Internet typically provides a simple delivery mechanism: we put

destination addresses in packets and launch them into the network. We leave the

network to decide the path that our packets take and the intermediate providers that

the path passes through. Even network operators have little control over the paths

that packets take toward them, or after leaving them. However, more and more

endhosts and ISPs desire to validate service level agreement compliance regarding

data delivery in the network: Did the packet truly originate from the claimed client?

Did the client select a path that complies with the service provider’s policy? Did the

packet indeed travel through the path selected by the client?

The above discussed problems can be divided into two categories: source au-

thentication and path validation, which we term “path verification” in this work.

Source authentication and path validation are two important concepts in networking,

which help construct higher-level security mechanisms, such as mitigating denial-of-

service (DoS) attack, ensuring path compliance and packet attribution, and protecting

against flow redirection. Source authentication is the verification of the source ad-

dress of a host that sends a packet and is designed to determine whether this packet

indeed originated from the claimed source. Path validation confirms that a packet

indeed traversed the path known to (or selected by) the host (i.e., the source). The

latter is used when senders, receivers, or operators want to ensure that a packet’s path

adheres to their preferences. For example, an enterprise might want to dictate that

incoming traffic passes through certain services, such as deep packet inspection [53].

5

Path validation provides a way to verify this path compliance according to the policies

of ISPs, enterprises, and data centers.

The current Internet does not provide any effective means for source authentica-

tion and path validation by routers or end-hosts. For example, a network provider

cannot determine if traffic is sent by neighboring providers along paths that match

service-level agreements; a receiver cannot be sure whether a packet is from a specific

source, since an attacker can spoof source addresses in packets. Widely used end-

to-end encryption and authentication schemes (e.g., TLS/SSL) are not able to solve

these issues, since they are agnostic to which path their packets have been forwarded

on. A stronger approach is needed, which enables routers and destinations to perform

source authentication and path validation.

Most of existing approaches to implementing such source authentication and path

validation are typically based on cryptographic schemes (e.g., digital signatures,

HMAC [24] or UMAC [6] that uses a hash of the packet contents with a shared se-

cret in it). They may work well in a domain-specific network with a limited number

of users and dominated by strict security requirements. However, the high compu-

tational cost of cryptographic operations makes these techniques unsuitable for the

data plane of the future Internet, where there are maybe up to billions of users with

billions of services and potentially every packet needs to be checked at Gigabit per

second link rates. Therefore, we design a novel technique for the high-performance

path verification in the Internet, which use a set of orthogonal sequences as “creden-

tials” in the packets. The key theoretical and practical research challenges this work

in source authentication and path validation tries to address are:

• Where to place the credentials in a packet?

• How to design the credentials such that the size of the packet does not increase

with the number of the hops.

6

• How to design the authentication mechanism that enables both source authen-

tication and path validation simultaneously, while still providing the necessary

security guarantees?

• How to decrease the router overhead as much as possible?

• How to test and implement such an authentication mechanism?

• How to compare the authentication mechanism with existing cryptographic ap-

proaches?

1.3 Organization and Contributions

This dissertation focuses on the research challenges discussed in Sections 1.1 and

1.2 to address the fundamental problems of the path finding and verification in the

Internet. The rest of this dissertation is organized as follows, with the major contri-

butions summarized in each.

Chapter 2 presents ParetoBFS, a new multi-criteria path finding algorithm to find

all the possible Pareto-optimal paths for the Internet. This algorithm is a variant of

the breadth-first search (BFS) algorithm and uses Pareto constraints to prune the

traversal tree. Comparison with two existing algorithms shows ParetoBFS is tens to

hundreds times faster and find more paths on typical sized networks. This chapter

also shows a sampling heuristic to decreases the running time by only finding a subset

of Pareto-optimal solutions.

Chapter 3 focuses on the source authentication in the Internet. An algorithm

named OrthCredential is proposed to address this problem. OrthCredential uses a

set of orthogonal sequences to verify packets along the path. It provides a fast and

memory efficient method for source authentication. It is also resistant to DoS attacks.

Chapter 4 extends OrthCredential to a new algorithm named OSV (Orthogonal

Sequence Verification) to further address the path validation problem in the Internet.

7

OSV also uses orthogonal capabilities that are carried in packets for verification,

which can be implemented efficiently by basic bitwise operations on a processor. The

experimental results show that the verification time in OSV is much lower than that

existing approaches while providing the necessary security guarantees.

Chapter 5 evaluates the effectiveness and performance of our proposed path vali-

dation mechanism where “Docker” container [1] is used as the experiment tool.

Chapter 6 summarizes the previous chapters.

8

CHAPTER 2

PATH FINDING WITH MULTI-CRITERIA

Path finding, or routing, is a fundamental functionality in networking. Path find-

ing in the current Internet uses a single criterion, such as hop count or link weight.

Although there are proposed solutions to the multi-criteria optimal path selection

problem for quality-of-service routing, since the routers eventually need to pick only

one path, they usually combine all criteria into a single path optimization metric a

priori. In contrast to these algorithms, our aim is to search the whole spectrum of all

the possible optimal paths (i.e, Pareto-optimal path) that have advantages even on

any one metric, which can help the network owner or operator is able to take a full

consideration.

This chapter presents ParetoBFS, a variant of a breadth-first search that uses

branch and bound techniques to find all the Pareto-optimal paths while effectively

limiting the potentially very large search space. We present several sampling tech-

niques to further increase the speed of the search while degrading the quality of

the results only marginally. The simulation results show that existing multi-criteria

combinatorial optimization approaches can only search a small fraction of all the

Paretooptimal paths while our ParetoBFS can obtain the whole Pareto-optimal path

set in shorter time. Some of the material in this chapter have been published in [24].

2.1 Introduction

Routing, which is determining a path for traffic to flow between communicating

end-systems, is one of the essential functionalities of any computer network. In typical

9

networks, routing is based on a single criterion, such as path length, delay, or an

artificially defined “weight.” Widely used routing protocols, such as OSPF [61] and

RIP [39], use single routing metric and corresponding routing algorithms, such as

Dijkstra’s algorithm [26] and the Bellman-Ford algorithm [13], to efficiently determine

the optimal path between two network nodes.

However, networks have grown in the diversity of their use so that single-criterion

shortest paths no longer fit the whole spectrum of services that exist in today’s

networks. For example, in networks where the user has the ability to choose paths

[22, 83], the cost of a path and the quality of a path need to be represented by

independent metrics. Also, load-balancing and use of alternate backup paths require

multiple paths to be calculated [46]. In these cases, additional criteria beyond the

shortest path metric may be used (e.g., available bandwidth, path reliability, etc.).

When only a single metric is used, a single optimal solution (i.e., shortest path)

is enough. But when multiple metrics are used, a set of paths needs to be found to

represent the trade-offs among criteria. A key challenge for realizing multi-criteria

routing is the need to develop an efficient algorithm for determining suitable paths in

the potentially very large space of all possible paths (exponential to the number of

nodes). The multi-criteria path finding is an NP-hard [37] problem, but it is possible

to develop solutions for typical-sized networks that work well in practice.

Previous work has addressed the multi-criteria optimal path problem in various

contexts, for example Quality of Service (QoS) routing. A central problem in QoS

routing is to find feasible paths between a source and a destination that satisfy mul-

tiple constraints (e.g., bandwidth, delay). Then, the best path among the feasible

paths is selected based on a given optimization metric (e.g., delay-constrained least-

cost path routing). When there are multiple optimization metrics, most approaches

rely on an combinatorial optimization function [52], which combines all metrics into

a single metric (e.g., weighted sum).

10

Using a single, combined metric simplifies the path finding problem, but also

presents a fundamental limit on the ability to find solutions: a single optimization

metric requires a priori weighing of each metric [29]. That is, before running the

path finding algorithm, the relative “value” between different metrics needs to be set.

The result of the search is then optimal (only) for this fixed weighing of metrics. In

practice, however, there are situations where this weighing cannot be done a priori.

For example, a network may allow users to choose a specific path based on price and

quality characteristics [22, 83]. In the marketplace of such a network, different paths

need to be offered before knowing the users’ sensitivity to the price and the quality

(i.e., before knowing their weighting of criteria). Similarly, in a Software-Defined Net-

work (SDN) [63], an SDN controller may pre-compute available paths before knowing

the weights of metrics that are desired by a specific northbound SDN application. In

such cases, the weighing can only be done a posteriori and the multi-criteria optimal

path problem needs to find the set of all Pareto-optimal paths. A path is Pareto-

optimal if there is no other path that is better in all metrics. Since multiple metrics

allow for the existence of paths that are better than others in one or more metric,

but not all, there can be a large number of mutually Pareto-optimal paths. Based

on the set of Pareto-optimal paths, one path can be chosen for any possible weighing

of metrics (e.g., by an SDN application or by a network customer). In our work, we

address this multi-criteria routing problem, which is important in practice, especially

in environments where different metric weights are unknown to the pathfinder.

We present ParetoBFS, a variant of the breadth-first search (BFS) algorithm that

uses Pareto constraints to prune the traversal tree. Experiments show that ParetoBFS

can find all Pareto-optimal paths in a network in a reasonable time since typical-sized

networks do not exhibit the characteristics that cause the problem space to become

intractable. The specific contributions of this work are:

11

• The ParetoBFS algorithm that can find the entire set of Pareto-optimal paths in

a network where the edges have an arbitrary number of metrics, both sum- and

bottleneck-type. Comparison with two existing algorithms shows ParetoBFS is

tens to hundreds times faster and finds more Pareto-optimal paths.

• A sampling heuristic for ParetoBFS that reduces the number of elements in the

set of Pareto-optimal solutions and thus decreases the complexity of the path

finding process. We show that despite not yielding all optimal solutions, this

heuristic still yields solutions that are useful in practice.

We believe that this work provides a practical foundation for systematically using

multi-criteria routing in networks to develop more effective network control applica-

tions in the future.

2.2 Background

Multi-criteria path finding has been studied extensively in the operations research

community. This problem arises in many practical applications, including route plan-

ning in traffic networks [12] and QoS routing and traffic engineering in communication

networks [78]. If the goal is to find the optimal path with some constraints on one or

more metrics given a directed graph with edges that have a set of metrics, it is called

multi-constrained path optimization (MCPO) [23, 30, 49, 52, 75, 79, 87]. Without the

constraints on the metrics, this problem then becomes the multi-criteria optimization

(MCO) problem [29, 37, 52, 67]. Solutions to MCPO and MCO are usually similar in

that they use a combinatorial function on the multiple metrics (a priori) to find the

optimal path.

The goal of ParetoBFS is to find all the Pareto-optimal paths, which is different

from the prior work. Therefore, ParetoBFS is a broader solution to address both

MCPO and MCO problems since the resulting paths from previous approaches are

12

usually a subset of the Pareto-optimal path set. These Pareto-optimal paths are

important in many scenarios. For example, references [46] and [31] each describe a

standalone routing service module that provides paths for other modules. Thus, the

routing service module itself cannot make any choice for metric preferences. Also,

in networks where paths are charged by their qualities, such as ChoiceNet [83], the

cost and the quality of a path need to be represented by independent metrics. In

these problems, there is no single objective function to select the best path, and it is

impossible to give the paths an a priori ranking. Instead, the decision maker needs

to see all the Pareto-optimal paths. Each Pareto-optimal path represents a trade-off

between criteria, and may be equally important for the decision entity.

Section 2.7 compares the performance of ParetoBFS with some prior work in

detail. The experiments show ParetoBFS is tens to hundreds times faster and can

solve broader range of problems.

2.3 Preliminaries

Before describing the ParetoBFS algorithm in Section 2.4, we briefly introduce

the network model and describe the formal definition of our path finding problem.

2.3.1 System Model

We model the network as a directed graph G = (V,E), where V is the set of nodes

and E is the set of edges interconnecting the nodes. n and m are the cardinalities of

V and E, i.e., n = |V |, m = |E|, respectively.

To make the problem general enough, we consider that G is a multi-graph, which

means there can be multiple edges between each node pair. (In practice, these

multiple edges can correspond to different services that are offered on the same

physical link, such as different QoS configurations.) In addition, we assume that

each edge {eu,v|u, v ∈ V } ∈ E is associated with an edge criteria vector w(u, v) =

13

A

B

C

D

E

F

1024, 5, 2

2048, 4, 2

2048, 3, 3

512, 2, 4

2048, 2, 5

1024, 5, 2

2048, 5, 5

2048, 5, 2

1024, 4, 2

p1 =(A,B,D,F): 512, 12, 8
p2 =(A,C,E,F): 1024, 10, 9
p3 =(A,B,E,F): 1024, 14, 6

p4 =(A,C,E,D,F): 2048, 16, 14
p5 =(A,B,E,D,F): 1024, 20, 11
p6 =(A,B,C,E,F): 1024, 14, 12

p7 =(A,B,C,E,D,F):1024, 20, 17

 Path list at node F:

 Pareto-
optimal path.

 Not Pareto-
optimal and
discarded.

Criteria:

bandwidth, delay, cost

Figure 2.1. Example of Pareto-optimal path computation from node A to F.

(w1, w2, ..., wk), where k is the number of criteria. Each wi corresponds to one of the

independent criteria used in routing, such as bandwidth, latency, packet pass rate

and cost. A path p from a source vp1 to a destination vpr is defined as a finite sequence

of edges that connects a sequence of vertices (vp1, v
p
2, ..., v

p
r), vpi(i≤r) ∈ V .

The path p can be assigned a path criteria vector wp = {wp
1, w

p
2, ..., w

p
k}. In

this chapter, the calculation of the path criteria vector must satisfy the following

property: when a hop is added to the path’s end, the optimality of the new path

does not increase on any criterion. Criteria satisfying this property can usually be

classified into two types: sum-type criterion (e.g., delay) where wp
i =

∑
eu,v∈pwi(u, v);

and bottleneck-type criterion (e.g., bandwidth) where wp
i = min(wi(u, v))1.

2.3.2 Pareto-optimal Path

To define Pareto-optimality, we first define a dominant path as follows. We use

the notation � to denote the left operand is more optimal than or equals to the right

operand.

Definition 1 (Dominant path) path p dominates path q if and only if

1There are also multiplicative criteria (e.g. link reliability, packet loss rate), but they can be
transformed into sum-type criteria by using a logarithm.

14

wp
i � wq

i ,∀i ∈ {1, 2, ..., k}.

and the strict inequality holds at least once.

Then we can define Pareto-optimality as:

Definition 2 (Pareto-optimal path) Path set P is called a Pareto-optimal set if and

only if

p does not dominate q,∀p, q ∈ P.

A path in a Pareto-optimal set is called a Pareto-optimal path.

In this chapter, the goal is to find all the Pareto-optimal paths from a source

node to a target node in a given graph G. For instance, if each edge e ∈ E has

three metrics: bandwidth (w1), delay (w2) and cost (w3), then the set of the Pareto-

optimal paths P , which we finally find out, satisfies that, for ∀pi, pj ∈ P,wpi
1 >

w
pj
1 ∨w

pi
2 < wpi

2 ∨w
pi
3 < w

pj
3 . This is different from the conventional multi-constrained

optimal path problem [52], where a path optimization function fp is used to combine

all the metrics together and the optimal path is found by calculating the value of

fp on each path. As discussed above, the optimal path computed based on a single

aggregated metric may not meet the multiple constraints being considered.

An example of the type of result we are aiming to obtain is shown in Figure 2.1.

The edges of the graph are labeled with their respective metrics comprising of band-

width (w1), delay (w2) and cost (w3). There are seven paths (p1, p2..., p7) from source

node A to destination node F . Among these paths, path p2 = (A,C,E, F) is strictly

more optimal than path p5 = (A,B,E,D, F) because wp2
2 < wp5

2 and wp2
3 < wp5

3 while

wp2
1 = wp5

1 . Therefore, path p5 is not a Pareto-optimal path and would be discarded.

Similarly, neither of the paths p6 and p7 are not Pareto-optimal paths because p2

and p3 is strictly more optimal than them. Finally, we get the Pareto-optimal paths

p1∼4. (In the ParetoBFS algorithm, we maintain a list on each node to record all the

15

Pareto-optimal paths to this node and their corresponding parameters. Such a list is

shown in black on node F in Figure 2.1.)

2.4 ParetoBFS : Pruning with Pareto Constraints

In this section, we first describe the plain breadth first search (BFS) solution to

the multi-criteria path finding problem. Then, we describe how we use pruning to

reduce the running time of the algorithm to a practical level.

2.4.1 Plain BFS to Find All Paths

A brute force solution to the multi-criteria path finding problem is to enumerate

all the possible paths, then extract the Pareto-optimal set from them.

Algorithm 1 shows a variant of BFS algorithm that finds all the simple paths

from the source node to a target node. Unlike the normal BFS, it does not maintain

“visited” tags on the nodes, because a node may be visited multiple times when

the algorithm examines different paths. Algorithm 1 starts from a source node and

enqueues it into a path queue, i.e., path queue. Then, the source node is dequeued

and all the directed edges of it are enqueued into path queue as new paths from

the source node to some node in the graph. Each time a path is dequeued from

path queue, it is stored into the path set corresponding to its last node. Meanwhile,

the out-edge neighbors of the dequeued path’s last node are added to its end to

form new paths. These new paths are further enqueued into path queue. To prevent

loops, Line 11 checks whether the neighbor is already in the path before appending

it. After repeating this enqueue and dequeue process until path queue is empty,

path set contains all the simple paths2 from source node to all other nodes. Selecting

a Pareto-optimal set from it is straightforward, as shown in function pareto add of

Algorithm 2.

2A simple path is a path which does not have repeating nodes.

16

Algorithm 1 BFS that finds Pareto-optimal paths by enumerating all the simple
paths between two nodes.

1: procedure BFS(G, source, target)
2: for all v ∈ G(v) do
3: path set[v]← ∅
4: end for
5: path queue.push([source])
6: while path queue.length > 0 do
7: path← path queue.pop()
8: s1← path.end()
9: for all edge ∈ s1.out edges() do

10: s2← edge.dest node()
11: if s2 6∈ path then
12: new path← path.append(edge)
13: path set[s2]← path set[s2]∪

{new path}
14: if s2 6= target then
15: path queue.push(new path)
16: end if
17: end if
18: end for
19: end while
20: pareto set← ∅
21: for all path ∈ path set[target] do
22: pareto set← pareto add(pareto set, path)
23: end for
24: return pareto set
25: end procedure

Algorithm 1 can be easily extended to find the Pareto-optimal paths from one

source node to all the other nodes, by replacing Line 13 with a pareto add function,

removing Line 14, and doing Lines 20 - 23 on each node.

The algorithm is obviously not scalable. In a directed graph, the number of possi-

ble paths is usually exponential to the number of nodes. Moreover, for a multi-graph

with p parallel edges between each pair of nodes, the total number of paths increases

with a factor of ph, where h is the number of hops in a path. Figure 2.2(a) shows

the number of paths traversed in Algorithm 1. It grows exponentially; enumerating

all the possible paths is typically not feasible in both time and space. To make Al-

17

Algorithm 2 Pareto-optimal pruning process.

1: procedure pareto add(pareto set, new path)
2: result set← ∅
3: for all path ∈ pareto set do
4: if path is strictly more optimal than new path then
5: return pareto set
6: else if new path is not strictly more optimal than path then
7: result set.append(path)
8: end if
9: end for

10: result set.append(new path)
11: return result set
12: end procedure

gorithm 1 practical, it is necessary to prune the space of paths that are considered

during the traversal.

2.4.2 ParetoBFS – Pruning While Searching

Since our goal is to find Pareto-optimal paths, we can stop considering a path if

it is already strictly worse than other known paths. We call this process pruning.

Formally, during the search process, a path ending with node vi can be pruned if

either of the following conditions satisfies:

1. The path is dominated by a path in the Pareto-optimal path set with destination

node vi.

2. The path is dominated by a path in the Pareto-optimal path set with destination

node target.

An algorithm with such pruning maintains the same theoretical worst-case time

and space complexity. In practice, however, pruning reduces the size of the search tree

dramatically. Note that pruning does not affect the correctness of the final solution,

because extension cannot make a suboptimal path optimal.

Applying the pruning method to Algorithm 1, we can get the ParetoBFS algorithm

as shown in Algorithm 3. Instead of saving all the paths, a set pareto set is used

18

Algorithm 3 ParetoBFS

1: procedure ParetoBFS (G, source, target)
2: for all v ∈ G(v) do
3: pareto set[v]← ∅
4: end for
5: path queue.push([source])
6: while path queue.length > 0 do
7: path← path queue.pop()
8: s1← path.end()
9: if path is Pareto-optimal for pareto set[target] and path ∈ pareto set[s1]

then
10: . Check whether the path satisfies the Pareto-optimal conditions
11: for all edge ∈ s1.out edges() do
12: s2← edge.dest node()
13: if s2 6∈ path then
14: new path← path.append(edge)
15: if new path is Pareto-optimal to pareto set[target] and

pareto set[s2] then
16: . see if new path can be added into the

Pareto-optimal path set to node s2
17: pareto add(pareto set[s2],

new path)
18: if s2 6= target then
19: path queue.push(new path)
20: end if
21: end if
22: end if
23: end for
24: else
25: continue
26: end if
27: end while
28: return pareto set[target]
29: end procedure

19

Number of nodes

5 10 15 20 25

N
u

m
b

e
r

o
f

p
a

th
s
 t

ra
v
e

rs
e

d

100

101

102

103

104

105

106

107

BFS

ParetoBFS

(a) Traversed paths.
Number of nodes

5 10 15 20 25

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

10-4

10-3

10-2

10-1

100

101

(b) Running time.

Figure 2.2. Comparison with respect to the number of traversed paths (a) and
running time (b) for ParetoBFS and BFS: a BRITE- generated topology, 2 metrics,
1 parallel edge, and averaging over 60 runs with different graphs and source/target
nodes.

to save the Pareto-optimal paths from the source node to each node. It differs from

Algorithm 1 in Lines 9, 15 and 17. Lines 15 and 17 check the Pareto-optimality before

the enqueue step, to eliminate any suboptimal path. There is another check after the

dequeue step in Line 9, because the Pareto-optimal sets may have changed during

the time that path stays in the queue. Figure 2.2(a) shows that the pruning method

can effectively reduce the number of traversed paths by several orders of magnitude.

The detailed performance and complexity analysis is shown in Section 2.5.

Algorithm 3 can be extended to find Pareto-optimal paths to all other nodes, by

removing the condition checks involving the target Pareto-optimal set in Lines 9, 15

and 18. The running time increases because of the less strict pruning conditions.

2.5 Evaluation and Complexity Analysis

In this section, we discuss the effectiveness of our ParetoBFS algorithm in the

context of network graphs to show that it is practically useful.

20

2.5.1 Methodology

To test the performance of the path finding algorithm, we use both generated

topology and real-world topology. Although ParetoBFS can apply to both inter-

and intra-AS topologies, most of the intelligent routing applications are used within

private domains. So we focus on the intra-AS topology here. We use the BRITE

topology generator [60] to generate router-level topologies. The sizes of the topologies

range from 100 nodes to 10,000 nodes. BRITE provides three metrics for paths:

length, bandwidth and latency. When testing with more than 3 metrics, we add

extra random parameters besides these 3 metrics.

BRITE provides four generation models: Waxman [80], BA [10], BA-2 [4] and

GLP [17](the GLP model is mainly for AS-level topologies). The node placement has

two options: random and heavy-tailed. The bandwidth distribution has four options:

constant, uniform, exponential and heavy-tailed. We test all the combinations and

list the running time and the Pareto-optimal path count in Table 2.1. It can be

observed that, except for the constant options, other combinations of parameters do

not show significant difference in the path finding result. Therefore, we can arbitrarily

pick these parameters. In the following experiments, the generation model is set

to Waxman, a most commonly used intra-AS model, the node placement is set to

random, and the bandwidth distribution is uniform distribution.

As for the real-world topology, we use Rocketfuel [73], an ISP topology data set

measured by the University of Washington. Each Rocketfuel data file represents a

topology of one AS, ranging from 100 nodes to 10,000 nodes. The data we use does

not include any metric such as bandwidth or latency, so we randomly generate values

for the metrics using a normal distribution.

Both the generated and the real-world topologies are uni-graphs, i.e., topologies

with only one edge between the same pair of nodes. However, sometimes we need

more than one edge between two nodes, these parallel edges can be either physical

21

Table 2.1. Different BRITE parameters does not have significant impact on Pareto-
BFS running time and average Pareto-optimal path count. (1,000 nodes, 3 metrics,
1 parallel edge. Each result is an average over 100 runs. The unit of time is second.)

Node
Placement

Bandwidth
Distribution

Model
Waxman BA BA-2 GLP

time paths time paths time paths time paths

Random

Constant 0.03 1.00 0.03 1.00 0.06 1.00 0.03 1.00
Uniform 0.36 7.46 0.26 5.22 0.64 7.42 0.12 2.24
Exponential 0.36 6.60 0.23 4.16 0.62 7.22 0.09 1.94
HeavyTailed 0.42 6.64 0.28 4.84 0.68 7.40 0.12 2.36

Heavy Tailed

Constant 0.04 1.00 0.05 1.00 0.08 1.00 0.03 1.00
Uniform 0.59 8.46 0.37 5.24 0.89 7.78 0.15 1.98
Exponential 0.52 7.22 0.30 5.78 0.81 7.96 0.15 2.46
HeavyTailed 0.48 7.62 0.25 4.68 0.84 7.76 0.13 2.70

(a) BRITE generated topology, 100 nodes. (b) Rocketfuel topology, AS 4755, 121 nodes.

Figure 2.3. Examples of test topologies.

links with different metrics, or service offerings on the same link but with different

QoS limits. To extend the uni-graphs to multi-graphs, each edge of the uni-graph is

duplicated and assigned with Pareto-optimal metrics.

We use Python to implement our algorithms because of its convenient graph li-

braries, and the ability to integrate into the pox3 SDN controller, which also uses

Python. We use the pypy4 interpreter to run the experiments, which can achieve

3http://www.noxrepo.org/pox/about-pox/

4A Python interpreter with JIT compiler. http://pypy.org/

22

performance close to the native code. One exception is the convex sampling in Sec-

tion 2.6, we use CPython for that experiment because the convex hull calculation

uses pyhull, which is not pypy compatible.

The processor we use is an Intel Core2 Quad CPU Q9400 running at 2.66 GHz.

The software configuration is Ubuntu 14.04 64-bit with kernel version 3.13.0-24 and

pypy 2.6.0.

2.5.2 Complexity Analysis

In this section, we provide a theoretical analysis on the plain BFS and Pareto-

BFS algorithms (i.e., Algorithms 1 and 3). Let G = (V,E) be the graph, where

V = (v1, v2, ..., vn) is a set of all nodes of the graph and E = (e1, e2, ..., em) is a set of

all edges of the graph. The number of criteria is k. We assume the source node is v1

and the target node is vn.

Recall that Algorithm 1 first finds all possible paths and then the Pareto-optimal paths

among all these paths. On the other hand, Algorithm 3 finds the Pareto-optimal path

each time when it visits a node. We first analyze the time to find all the paths in

Algorithm 1.

As discussed in Section 2.3, a suboptimal path cannot become optimal when a hop

is added to its end. Therefore, all Pareto-optimal paths considered in this chapter are

simple paths, which do not have repeating vertices. In a directed graph, for a simple

path, we can order the vertices so that edges only point forward. E.g., if node u is

a descendent of node v, then node u comes after node v in the sorted list of nodes.

In Algorithm 1, the times that each node vi (i = 1, 2, ..., n) is visited are the number

of the paths from source node v1 to node vi. Let v2 be the next node. The number

of paths from v1 to v2 is the number of parallel edges between them. Let v3 be one

of v2’s neighbours, the number of paths from v1 to v3 is the number of (direct) edges

from v1 to v3, plus the paths that use v2 as an intermediate vertex. More generally,

23

Number of nodes
0 2000 4000 6000 8000 10000 12000

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0

1

2

3

4

5

6

7

Generated topology

Rocketfuel topology

(a) Number of nodes. (2 criteria, 3 parallel edges)
Number of parallel edges

2 4 6 8 10

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0

0.5

1

1.5

2

2.5

3

3.5
Generated topology, 1000 nodes

AS 3967 in Rocketfuel topology, 917 nodes

(b) Number of parallel edges. (2 criteria)

Number of criteria
2 4 6 8 10

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

0

10

20

30

40

50

60
Generated topology, 121 nodes

AS 4755 in Rocketfuel topology, 121 nodes

(c) Number of criteria. (3 parallel edges)

Figure 2.4. The time complexity of ParetoBFS to different variables. Each data
point is an average of 30 runs.

24

Number of nodes
0 2000 4000 6000 8000 10000 12000

N
u

m
b

e
r

o
f

P
a

re
to

-o
p

ti
m

a
l
p

a
th

s

8

10

12

14

16

18

20

22

24

26

Generated topology

Rocketfuel topology

(a) Number of nodes. (2 criteria, 3 parallel edges)
Number of parallel edges

2 4 6 8 10

N
u

m
b

e
r

o
f

P
a

re
to

-o
p

ti
m

a
l
p

a
th

s

0

10

20

30

40

50

60 Generated topology, 1000 nodes

AS 3967 in Rocketfuel topology, 917 nodes

(b) Number of parallel edges. (2 criteria)

Number of criteria
2 4 6 8 10

N
u

m
b

e
r

o
f

P
a

re
to

-o
p

ti
m

a
l
p

a
th

s

0

100

200

300

400

500

600

700

800

900

1000

Generated topology, 121 nodes

AS 4755 in Rocketfuel topology, 121 nodes

(c) Number of criteria. (3 parallel edges)

Figure 2.5. The number of Pareto-optimal paths found. Each data point is an
average of 30 runs.

25

let e(i, j) be the number of directed edges between node vi and node vj (e(i, j) = 0 if

vi and node vj are not adjacent nodes), and d(j) be the number of paths from v1 to

vj, then we have:

d(j) = e(1, j) +

j∑
i=2

d(k)e(k, j).

For each node vj, computing d(j) takes time proportional to the in-degree of node

vj, and overall it will take O(m) time. Therefore, Algorithm 1 visits each node O(m)

times, and the total time to find all the possible paths in Algorithm 1 is O(nm) time.

To calculate the complexity of the Pareto selection phase, we denote p as the number

of all the paths from source node v1 to target node vn. p could be 1 if there is only

1 simple path from node v1 to node vn, however, p could also be n! when graph G is

full mesh (each node connects to every other node). The operation of Algorithm 2

takes O(k) times computation for each path in the input pareto set. The process of

screening out the Pareto-optimal paths adds 1 Pareto-optimal path each time from

the temporary pareto set, and the number of paths in pareto set goes from 0 to p−1.

Therefore, the process will compute O(k(1 + 2 + · · ·+ p)) = O(kp2) times. Then, the

running time for Algorithm 1 is O(nm+ kp2).

In contrast to Algorithm 1, Algorithm 3 deletes the non-Pareto-optimal paths from

source node v1 to node vj each time when it visits node vj. Therefore, the number of

paths saved in path queue in Algorithm 3 will be less than that of Algorithm 1. The

number could be the same when all paths are Pareto-optimal . Thus, in the worst

case, Algorithm 3 also visits each node O(m) times. We denote p∗ as the Pareto-

optimal paths between the source node v1 and the target node vn. The total running

time for Algorithm 3 is O(nmkp∗).

The time complexity of Algorithm 1 is dominated by the number of the paths

p. In fact, in a typical network topology, p usually grows exponentially with the

number of nodes n. We can take the graph in Figure 2.1 as an example. If we have

26

2 parallel edges between each connecting node pairs, then number of the paths from

node A to node F becomes 3 × 23 + 3 × 24 + 1 × 25 = 104, which is much larger

than n (n = 6). Besides, the number of the possible paths doubles when a new node

is added into the graph. On the contrary, the time complexity of Algorithm 3 may

not be dominated by the number of the Pareto-optimal paths p∗ when p∗ is just a

small fraction of p. However, the optimal path fraction would grow rapidly when the

number of considered metrics increases. In this case, the time complexity is dominated

by p∗, and also grows approximate exponentially with n. The experimental results in

the next section indicate the correctness of our analysis here.

2.5.3 Experimental Results

In this section, we present the experimental results of the ParetoBFS algorithm.

We first present the running time of the plain BFS and ParetoBFS algorithms in

Figure 2.2(b). It shows that the running time of plain BFS increases exponentially

with the increase of the number of nodes. The complexity of ParetoBFS is sub-

exponential, i.e., the running time may grow faster than any polynomial solution but

is still significantly smaller than an exponential solution. This makes sense because

ParetoBFS ’s running time grows exponentially with the number of nodes in the worst

case, which happens when the number of the Pareto-optimal paths makes up a large

part of the paths between the source and target node. However, in a realistic network

topology, the Pareto-optimal paths are usually a small fraction of the total paths.

So the pruning method can prevent the curve from going too steep, because it keeps

removing non-Pareto-optimal paths at each node, therefore it avoids unnecessary

comparisons afterwards.

We then present the running time of ParetoBFS to find all the Pareto-optimal paths

in graphs with different parameters. Here, we only focus on the running time. The

memory consumption is proportional to the running time, because it depends on

27

the length of the path queue. Figure 2.4 shows how the average running time of

ParetoBFS grows with the increasing number of nodes, parallel edges and criteria, re-

spectively. Figure 2.4(a) shows that ParetoBFS can find all the Pareto-optimal paths

on a 10,000-node topology in 30 seconds. Figure 2.4(b) shows a similar complexity

with the number of parallel edges as in Figure 2.4(a). This is also reasonable because

increasing the number of parallel edges and increasing the number of nodes have the

same effect on the traversal queue length, and the pruning methods also have similar

effects on these two metrics. Figure 2.4(c), however, shows a steeper growth than

the previous figures. For instance, if there are a number of k metrics w1, w2..., wk

on each edge (the value of wk is generated randomly), considering two neighboring

nodes with two parallel edges connecting them, the probability that these two edges

are Pareto-optimal is 1− 1
2k−1 . When k grows, the number of the Pareto-optimal paths

between two nodes approaches the number of all the paths between them. This is the

worst case for ParetoBFS which makes the running time grows exponentially. The

large number of metrics also makes the Pareto pruning not working efficiently, which

makes the running time grow faster than in Figure 2.4(a) and 2.4(b). In order to

reduce the running time when the number of metrics is high, Section 2.6 proposes

several sampling methods to reduce the size of the Pareto-optimal set.

Figure 2.5 shows how the number of the Pareto-optimal paths, p∗, grows with the

increasing number of nodes, parallel edges and criteria, respectively. In Figure 2.5(a),

the Rocketfuel-topology curve fluctuates, because each real topology has unique inte-

rior structure which is not as uniform as the generated topology. In Figure 2.5(b), it

can be observed that the number of the Pareto-optimal paths varies linearly with the

number of parallel edges when there are 2 criteria on each edge. The curves show the

correctness of the analytic O(nmkp∗) running time for ParetoBFS in the last section

when compared with Figure 2.4(b). When the number of parallel edges doubles, p∗

and m also double. Therefore, if the curves of p∗ in Figure 2.5(b) can be considered as

28

linear, the curves are polynomial in Figure 2.4(b). Figure 2.5(c) shows how p∗ varies

with the number of criteria. It can be observed that p∗ increases in Figure 2.5(c) more

than in Figure 2.5(a) and in Figure 2.5(b). As discussed in Section 2.5.2, a large num-

ber of the criteria results in the number of the Pareto-optimal paths approaching the

number of all the paths.

2.6 Sampling Pareto-optimal Paths

Algorithm 4 Sampling the Pareto-optimal set after adding a path.

1: procedure sampling add(pareto set, new path)
2: result set = pareto add(pareto set, new path)
3: if result set.length > th then
4: sampled set = sampling(result set)
5: return sampled set
6: else
7: return result set
8: end if
9: end procedure

ParetoBFS finds all the Pareto-optimal paths. But as the number of criteria in-

creases, the size of Pareto-optimal set may grow exponentially. Even for a small 1,000-

node network with just 3 criteria, there may be hundreds of Pareto-optimal paths

between two nodes.

Sometimes it is not necessary or too slow to find all the Pareto-optimal paths, so

we introduce a heuristic based on sampling. Sampling the Pareto-optimal set can be

useful in two ways: (1) sampling reduces the difficulty of choice for the entity selecting

among Pareto-optimal paths; (2) if sampling happens during the search, the number

of traversed paths can be further reduced, and the algorithm can find a set of paths

that are close to the Pareto-optimal set in a shorter time.

Algorithm 4 describes how to sample paths. Every time after a path is added to

the Pareto-optimal set, the algorithm checks the Pareto-optimal set size. If the size is

larger than a threshold th, a sampling method is used to reduce the Pareto-optimal set

29

Bandwidth (Mbps)
60 70 80 90 100 110 120 130

L
a

te
n

c
y
 (

m
s
)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

All Pareto-optimal paths

Paths sampled by the random method

(a) Random sample, th = 10, l = 6.
Bandwidth (Mbps)

60 70 80 90 100 110 120 130
L

a
te

n
c
y
 (

m
s
)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

All Pareto-optimal paths

Paths sampled by the clustering method

(b) clustering sample, th = 10, l = 6.

Bandwidth (Mbps)
60 70 80 90 100 110 120 130

L
a

te
n

c
y
 (

m
s
)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

All Pareto-optimal paths

Paths sampled by the convex method

(c) Convex sample, th = 10.

Figure 2.6. The effect of different sampling methods. (2 criteria, 3 parallel edges,
10,000 nodes)

30

to l paths. It should be noted that sampling can discard some useful path halfway.

It is possible that the final result is not a subset of the original ParetoBFS result.

Assuming P = {p1, ..., pm} is the Pareto-optimal set found by ParetoBFS , and

Q = {q1, ..., qn} is the Pareto-optimal set found by ParetoBFS with sampling. To

compare the effectiveness of the sampling methods, we propose the following metrics:

• Running Time Ratio (RT) is defined as the ratio of the running time to find Q

to the running time to find P . This metric indicates how the sampling method

affects the running time.

• Path Count Ratio (PC) is defined as the ratio of Q’s size to P ’s size, that

is, PC = n/m. This metric indicates how many Pareto-optimal paths can be

found using this sampling method. It does not indicate the optimality of the

paths.

• Path Quality (PQ) is defined as the average k-dimensional Euclidean distance

between P ’s andQ’s criteria vector sets wQ = {wq1 , ..., wqn} and wP = {wp1 , ..., wpm}.

Each wqi or wpi is a Pareto-optimal path’s criteria vector. To calculate PQ, first

normalize wP and wQ into wP ’s range:

wpi′
j =

wpi
j −min(wp1

j . . . wpm
j)

max(wp1
j . . . wpm

j)−min(wp1
j . . . wpm

j)
, i∈{1...m}j∈{1...k}

wqi′
j =

wqi
j −min(wp1

j . . . wpm
j)

max(wp1
j . . . wpm

j)−min(wp1
j . . . wpm

j)
, i∈{1...n}j∈{1...k}

then for each wqi′, calculate the distance from its closest wpt′:

dqi = min
t∈{1...m}

√ ∑
j∈{1...k}

(wqi′
j − w

pt′
j)2

Then PQ can be defined as: PQ = 1
n

∑n
i=1(d

qi). It can be viewed as the average

distance between wP and wQ, PQ = 0 means Q is a subset of P .

31

The sampling method must be fast and be able to process an arbitrary number

of criteria. Assuming there is no preference over any criterion, the sampling methods

should treat each criterion equally. In this section, three sampling techniques are

investigated: random, clustering, and convex sampling.

2.6.1 Random Sampling

This method randomly samples l paths from the Pareto-optimal set. It is fast, but

does not make use of any information of the data points. The result of a 2-criteria

example is shown in Figure 2.6(a). Q mostly overlaps with P , which means that,

after sampling, we can still find an approximate subset of the Pareto-optimal paths.

2.6.2 Clustering Sampling

It is an intuitive idea to cluster Pareto-optimal points that are close to each other

in the k-dimensional space, especially when looking for redundant paths is not the

goal. Here, we use Lloyd’s clustering algorithm [57] to divide the points into l groups,

and select the points closest to the center of each group.

Lloyd’s algorithm’s time complexity is O(nkli) (n being the number of points; k

being the dimension; l being the number of groups; i being the number of iterations).

The example of a clustering result is shown in Figure 2.6(b). The points are more

dispersed than Figure 2.6(a), thus they are more representative.

2.6.3 Convex Sampling

The assumption of convex sampling is that the points on the convex hull are better

than the ones inside. This can be illustrated by Figure 2.7. Points 1-5 are Pareto-

optimal points. Points 1, 2, 4, 5 and the nadir point (not a real data point) forms the

convex hull. Point 3 is inside the hull. Compared to Point 2, Point 3 only improves

a little in bandwidth, but sacrifices a lot in latency. The similar situation applies to

Point 3 and 4. Therefore, Points 2 and 4 seems more preferable than Point 3. This

32

Figure 2.7. Example of convex sampling.

method works better if the criterion is sum-type, because the points on the convex

hull are more likely to stay optimal when the path is extended.

We use the qhull library, which implements the Quickhull algorithm [11]. Its time

complexity is O(nlogv) in 2-d and 3-d, and O(nv(bd/2c−1)
bd/2c) for higher dimensions (n

being the number of points; v being the number of points on the convex hull). The

result in Figure 2.6(c) successfully eliminates the points inside the convex hull. For

dimensions higher than 4, the performance of qhull degrades rapidly, it may no longer

help speeding up the algorithm.

The advantage of the convex sampling is that it always reserves the corner points

(e.g. Points 1 and 5 in Figure 2.6(c)), which represent the extreme values in one

dimension, and they are more important if the decision maker wants to choose the

highest value in one dimension. Another advantage is that the calculation of the

convex hull does not require normalizing each dimension, thus improving the speed.

33

Table 2.2. The effectiveness of sampling methods.

k th l
random clustering convex

RT PC PQ RT PC PQ RT PC PQ

2 10 5 1.175 0.850 0.141 1.632 0.869 0.004 1.058 0.828 0.001

3 20 10 0.530 0.461 0.022 1.405 0.455 0.026 0.431 0.546 0.007

4 100 10 0.473 0.384 0.030 1.087 0.413 0.032 0.393 0.502 0.030

The disadvantage is that the convex sampling cannot control how many points

are sampled. It is possible that too few or too many points are left, which brings

uncertainty to the quality of the sampling result as well as the running time.

2.6.4 Comparison of Sampling Techniques

We test the three sampling techniques on 9 Rocketfuel topologies, whose sizes

range from 121 to 10,152, and get the average RT , PC and PQ. The results are

listed in Table 2.2. The sampling threshold th and sample size l also affect RT , PC

and PQ. They are chosen from trial runs, to get a compromise between the running

time and the result accuracy.

As for RT , the sampling techniques do not reduce the running speed when k = 2,

but they tend to reduce the running time at higher dimensions. The random and

convex sampling speeds are about the same. The clustering is much slower than the

other two, thus is not recommended. As for PC, all the three techniques can find a

similar amount of Pareto-optimal paths, even for 4 criteria problems, they can still

find 40% to 50% of the Pareto-optimal paths. The convex sampling performs slightly

better at higher dimensions. As for PQ, the convex sampling has the best path

quality, but its PQ increases much faster than the other two, this may be because

the convex sampling cannot control the sample size, so the result accuracy is less

adjustable.

Overall, the convex sampling works the best among the three sampling methods,

at least for k = 2, 3, 4. It is faster, finds more Pareto-optimal paths with higher path

34

Number of nodes
0 2000 4000 6000 8000 10000 12000

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

10-2

10-1

100

101

102

Hansen's

ParetoBFS

Figure 2.8. Running speed of Hansen’s algorithm and ParetoBFS. (1 sum-type
metric and 1 bottleneck-type metric, 1 parallel edge, Rocketfuel topology)

quality. Therefore, the convex sampling is recommended when dealing with 2, 3 and

4 criteria topologies.

2.7 Comparison with Related Work

As discussed in Section 2.2, much previous work has addressed the multi-criteria

path finding problem. There are several survey papers and bibliographies [29, 35,

58,76], which summarize more than 40 papers about the multi-criteria shortest path

problem. Unfortunately, most of the papers only deal with sum-type metrics. Only

two papers – Hansen [37] and Pelegrin et al. [67] – consider one sum-type and one

bottleneck-type metric. Gandibleux et al. have a paper considering one bottleneck-

type and an arbitrary number of sum-type metrics [34]. We have implemented

Hansen’s algorithm, and the comparison with ParetoBFS is shown in Figure 2.8.

35

Table 2.3. Comparison Martins’ algorithm with ParetoBFS on 4 Rocketfuel topolo-
gies.

of

nodes

k=2 k=3 k=4

RT PC PQ RT PC PQ RT PC PQ

121 1.1 0.56 0.0000 1.3 0.41 0.0000 1.5 0.44 0.0000

609 23.7 0.42 0.0050 178.7 0.38 0.0018 121.2 0.38 0.0003

855 126.5 0.68 0.0000 233.4 0.61 0.0004 258.9 0.53 0.0007

917 34.4 0.41 0.0074 169.6 0.24 0.0008 279.1 0.37 0.0006

The Hansen’s algorithm examined here is Algorithm 2 in reference [37]. It uses a

multiple labeling scheme. Since Hansen’s algorithm finds the exact Pareto-optimal set,

we only compare the running time here.

Figure 2.8 shows the running speed between Hansen’s algorithm and ParetoBFS ,

we can see that ParetoBFS ’s running time grows slower with increasing nodes. Even

for small topologies with a few hundred nodes, ParetoBFS is as fast as Hansen’s

algorithm. For the large topology with 10,000 nodes, ParetoBFS is about 40 times

faster than Hansen’s algorithm. Not to mention that Hansen’s algorithm is only

designed for the bi-criteria problem, while ParetoBFS is capable of dealing with more

criteria.

Other than the exact methods (i.e. to find all the Pareto-optimal paths) like

ParetoBFS and Hansen’s algorithm, many papers propose approximation methods to

find a subset of Pareto-optimal paths in an efficient manner. These are known as

fully polynomial approximation schemes (FPAS). All the FPAS we investigated are

only for sum-type metrics5. Here, we compare ParetoBFS with a popular FPAS –

Martins’ algorithm [59].

5In some work (e.g., [52]), it is suggested that bottleneck types can be converted to sum types
by reciprocal. That is, define the optimal goal as: fp =

∑
e

1
bandwidth(e) , e ∈ p, where p is a path and

e is an edge on p.

36

Table 2.4. Comparison of path finding algorithms. (p∗ and p are the numbers of all
the Pareto-optimal and possible paths between two nodes, respectively.)

Type
Number of Number of Pareto-

Complexity
criteria Optimal paths

Plain BFS k p∗ O(mn+ kp2) (p > p∗)
ParetoBFS k p∗ O(mnkp∗)
Hasen’s [37] 2 p∗ O(p∗2 log n)

Martins’ [59]
k sum-type

ω (ω < p∗) O(k2m
n
ω2 logω)

metrics

Martins’ algorithm only gives an approximation of the Pareto-optimal set, which

may differ from the exact Pareto-optimal set. Similarly, we compare the quality of

results as in Section 2.6. The results on 4 Rocketfuel topologies are shown in Table 2.3.

Even for graphs with hundreds of nodes, the running speed of Martins’ algorithm is

tens to hundreds times slower than ParetoBFS . On larger Rocketfuel topologies,

Martins’ algorithm becomes too slow to be feasible. Though Martins’ algorithm finds

a reasonable portion of the Pareto-optimal set (about 40% to 60%) and the quality

of paths is very close to the exact Pareto-optimal set, Martins’ algorithm is too slow

compared to ParetoBFS . Besides, ParetoBFS can find all the Pareto-optimal paths

while Martins’ algorithm only finds a part of them.

Table 2.4 compares the complexity of ParetoBFS with Hansen’s algorithm and

Martins’ algorithm. From the comparison, we can see that ParetoBFS is superior

than prior work in various aspects: It is able to take an arbitrary number of sum-

type and bottleneck-type metrics. Besides, it finds the full Pareto-optimal set faster

than other exact methods. Our experiments also show that it is even faster than

certain FPAS in practice.

2.8 Conclusions

In this chapter, we address the problem of finding multiple Pareto-optimal paths in

a network where multiple criteria are used for routing. Such information is necessary

37

in networks where path choices need to be provided to consumers for a posteriori selec-

tion. We have described ParetoBFS , an algorithm to find all the Pareto-optimal paths

in a network. The experiments show that the algorithm works well and can get a

solution on a typical network in reasonable time. We have also proposed several

sampling techniques to further reduce the running time when finding all the Pareto-

optimal paths is not necessary or not feasible. We believe that this work presents an

important step toward enabling novel routing techniques in modern networks.

38

CHAPTER 3

SOURCE AUTHENTICATION

In the Internet, an important problem is to make sure only authorized users (i.e.,

those who have paid for a particular network service) can access the service. Most

existing authentication approaches are based on cryptographic techniques.Most ex-

isting authentication approaches are based on cryptographic techniques. However,

cryptography has high computational cost, making it unsuitable for the data plane of

the network, where potentially every packet needs to be checked at Gigabit per second

link rates. This chapter describes a novel design for data plane access control, called

OrthCredential. The main idea is to use a set of orthogonal sequences as credentials

that can be verified easily to protect the data plane against various attacks. These or-

thogonal sequences can be constructed by Hadamard matrices. The evaluation shows

that OrthCredential only requires less than 300 processor cycles for verification with

64-bit credentials, much less than existing access control schemes such as HMAC. And

it provides reasonable security strength (e.g., less than 10−8 probability of successful

attack). Some of the material in this chapter have been published in [20].

3.1 Introduction

Recently, there has been much interest in the networking community to explore

new network architectures for the future Internet [64]. In many proposed architec-

tures, functionalities in the network are viewed as “network services” [28, 47, 82].

These services can be simple paths between nodes, and they can be more complex

protocol processing and content storage. Service-centric network architectures then

39

Customer

(User)

Provider

1.Request for one service offering

2.Request payment

3.Payment

4.Service credentials

5.Setup/enable service

Service

Resource

6.Transmission with credentials

7.Verification

8.Execution of

authorized service

Attacker

a.Sniff packets sent

by authorized user

c.Pretend to be the user and

send request for services

with extracted credentials

b.Extract

credentials from the

observed packets

Figure 3.1. An example of interactions between a user and a provider.

describe the semantics of various network services and allow composition of more

complex services based on users’ needs. To incentivize the deployment of novel ser-

vices by network providers, it has been envisioned that services can be offered in a

marketplace [84]. In this space, users (or their applications) can choose and obtain

necessary network services in return for payments to the providers who offer these

services. A key technical challenge in such a network is to provide access control to

these network services (if explicit payments are used or not). Only traffic sent by

authorized users (i.e., those who have established an economic relationship with the

provider) should be able to access network services that are not offered by default.

Therefore, some form of checking must be applied to the traffic before granting them

access to reserved resources. Figure 3.1 shows an example of the interactions within a

service-oriented network. Once a service contract has established between a user and

a provider, the provider delivers some credentials (or “capabilities” [6]) information

to the user and sets up the service. These credentials (or seed material to generate

multiple credentials) are created by the provider or an entity acting on behalf of the

provider. The user attaches a credential to each request for service, which is created

40

via some method (e.g., cryptographic hash) with the secret information. The verifiers

(i.e., edge routers) of providers can validate that a user (or network traffic sent by

the user) is authorized for access by validating the credentials. Therefore, only the

user who sends packets with the valid credentials can access the services.

It is important to note that, the “network” we consider in this chapter is not a

domain-specific network with a limited number of users and dominated by strict secu-

rity requirements, but is the future Internet with up to billions of users with billions

of services. From traditional view, an effective checking mechanism may only require

that authorized packets have some property that is hard for attackers to duplicate,

while easy for legitimate users to create. However, when considering the common case

that millions of packets on a link need to be checked by a router simultaneously, it is

critical to develop authentication methods that can be checked with low performance

impact, while providing sufficient security from access by unauthorized attackers.

This chapter proposes a novel design for data plane credential called OrthCreden-

tial(Orthogonal Credential), which enables access control and can be generated and

verified at high data rates with low processing overhead and low storage requirements.

The main idea of OrthCredential is that the user uses a sequence (credential) which

is orthogonal to the verifier’s sequences. And the verifier checks the inner product of

the user’s credential and the sequence on the verifier. The result of the inner prod-

uct equals 0 means the credential is valid. These orthogonal sequences can be easily

constructed from Hadamard matrices. While designing and enriching access control

protocols has received much attention, our focus is on decreasing the cost to satisfy

data plane devices’ computational capability while guaranteeing an acceptable level

of security. The advantage of OrthCredential is in two aspects: 1) the computation

of inner product of two binary sequences can be done by fast integer operations on

CPU; 2) the verifier only needs to save a few basic orthogonal credentials and a sum

of received valid credentials to check the validity of multiple received packets. The

41

OrthCredential scheme has low verification time since inner product computations are

much simpler than cryptographic operations. The main advantages of OrthCredential

can be summarized as follows:

• Low Verification Time: We use an inner product computation to replace

complicated cryptographic operations so that the verification time is signifi-

cantly decreased (less than 350 clock cycles per packet if requiring less than

10−10 attack probability for an attacker to guess a valid credential).

• Enable Powerful Denial-of-Service (DoS) Attack Defense: Though ver-

ifying a valid credential requires a number of inner product computations be-

tween the credential and a set of saved orthogonal sequences, detection of an

invalid credential can typically be done in a single inner product computation

that requires very few operations (less than 50 clock cycles).

• Low Memory Consumption in Router: The verifier (i.e., the network

router) only needs to save the sum of received valid credentials and a small part

of the orthogonal sequences, which leads to very small storage consumption per

flow. In the simulation, we will show that a space consumption of no more than

0.1 KB on the router can promise a random attack probability of less than 10−10

while preventing replay attacks simultaneously.

• Small Overhead in Packets: OrthCredential header in a packet is small

(no more than 28 clock bytes) and thus does not cause significant overhead in

packets in the data plane of the network.

3.2 Preliminaries

Before the introduction of OrthCredential system, we begin the discussion with

a description of security requirements, attacker capabilities and incapabilities. Then,

we list the performance metrics considered in our system.

42

3.2.1 Security Requirements

This work only considers the problem of the source authentication after a contract

has been established between a user and a provider. In 7.1, we assume that the

communications in steps 1-2 of the iterations are private and the service credentials

(or credential seeds) can not be observed by a third party. This end-to-end security

can be achieved by using existing protocols (e.g., TLS). The system must have the

following security properties to be considered as a solution to our problem:

3.2.1.1 Security Requirements

The authentication system of access control must have the following security prop-

erties to be considered as a solution to our problem:

• Security Strength: In order to provide a secure network infrastructure, it is

crucial that credentials are only available to authorized users in the network.

Therefore, credentials should be difficult to be guessed or faked. Brute force

methods must yield a sufficiently low probability of success that the packets

sent by authorized users is unaffected.

• Verification without Trusting Hosts: The verifier should prevent malicious hosts

spoofing packets. Authenticity should be determined solely from the packet

contents and static per-flow information (e.g., public key or shared secret), and

not from any other host information that changes per-packet.

• Replay Prevention: The authentication mechanism should include a means to

detect reused credentials. This implies that state must be updated on a per-

packet basis, but does not violate the previous requirement, provided the verifi-

cation and anti-replay checks are separate, and update happens only after ver-

ification of authenticity. Given a fixed field size in the packet, this requirement

implies that the number of packets that can be verified is bounded; however,

43

it should be large, so that resynchronization is required infrequently, even for

high-data-rate links.

3.2.1.2 Attacker Capabilities

An illegal user, or an attacker, is trying to grant the access to some services

(by sniffing packets from authorized users and extracting the credentials from the

packets, or by some other methods). Figure 3.1 illustrates such attacker’s behavior.

Such attack may interfere with authorized packets, making the user failed to get the

guaranteed service. In some scenarios, this may bring lost revenue to the provider.

Our assumptions about the attacker’s capabilities can be summarized to the following:

• Ability to eavesdrop at some point along the path from the user to the veri-

fier. Sniffing legitimate packets traveling along the path can be accomplished

by breaking into an end system (non-router) connected to a shared-medium

network somewhere along the path.

• Ability to extract the credential information within the packets and pretend to

be the valid users and transmit the packets under correct formats. The valid

credentials can be derived through long-term observation and analysis of the

credentials in the authorized packets.

• Ability to send arbitrary packets or flood a particular link, router, or host to

which it connects, e.g., Denial of Attacks (DoS). By breaking into and taking

control of many end systems within the network, and making them to transmit

bursts of packets addressed to some target simultaneously, the attacker can

cause packets arriving a verifier at a rate close to the capacity of the channel.

Additionally, we constrain the capabilities of the attacker as follows:

• An attacker does not have access to the secret capabilities materials associated

with the credential information between users and providers. As discussed ear-

44

lier, we assume that the delivery of the secret capabilities materials is through

strict encryption.

• An attacker cannot stop the legitimate packets along the path (i.e., cannot drop

the network traffic on a router);

• If an attacker transmits a modified copy of an authorized packet, the packet

cannot arrive before the original one.

It is conceivable that the above assumptions all might be violated, which Orth-

Credential system does not defend against. However, the limitations on the attacker’s

capabilities are necessary to keep the discussion of attack scenarios and security re-

quirements within scope.

3.2.2 Performance Requirements

Our model of verifier processing implies some performance constraints on the

authentication check. We assume that authentication can be pipelined with other

operations, and consider only requirements that follow from the basic architecture of

the verifier (e.g., router). The performance constraints on the verification process are

summarized in the following:

• Verification time: the time spent on verification of an arriving packet is vital

for the verifier. Since credentials need to be validated for every packet that ar-

rives in a verifier, they must be verified with low computational requirements.

Furthermore, different credential system may perform differently on the verify-

ing time for an invalid credential and valid credential. The second one is also

important for the verifier, since there may be floods of DoS attacks within the

network.

• Storage consumption: the storage consumption for the credentials is also crucial

for the verifiers, since there are maybe millions of users who have the access

45

to the same service. Moreover, packets may arrive the verifier out-of-order.

Verification mechanisms need to allow arbitrary packet order and save related

information within a reserved window.

3.3 Related Work and Alternative Solutions

The problem of access control, or message authentication has received extensive

attentions. Each proposed approach may hold a particular objective, however, cost is

not the major concern of them. Therefore, they are perhaps incapable in a large-scale

network with billions of users and services. In this section, we will discuss existing

authentication schemes into different categories, and present some possible solutions

to our problem and analyze their respective infeasibility.

3.3.1 Ingress Filtering

This mechanism is the early work that investigates DoS attacks, which discards

packets that are not actually from the routes or networks that they claim to be

from [32]. In [66], Paxson considers the fact that most of the traffic a router sees

from a source comes in on the same interface, and use RBF to observe the interface

of the packet sources. If it comes from a different interface, it filters the packet. An

extended work is [27] by Duan, which proposes IDPF by using BGP information to

build a relaxed RBF table. These checks have at least two drawbacks. First, ingress

filtering cannot work well when there are asymmetric routes or protected paths in

the network. Besides, these schemes are slow to respond to routing changes, and may

drop legitimate packets.

3.3.2 IP Traceback

This mechanism is to identify attacks to their source and institute protection

measures of the Internet by using routers to create state so that receivers can re-

construct the path of unwanted traffic [70–72]. Some of these mechanisms require

46

logging per-packet information in routers [71], or save the information in the packets

instead [70]. However, this traceback process is a long and difficult process of identi-

fying and punishing an attacker. In [69], a novel packet-marking scheme called Linear

Packet Marking (LPM) is proposed which requires the number of packets equal to

hop distance between attacker and the victim which is less than 31. It shows that

the LPM algorithm performs much better in term of packets required for successful

traceback and in handling large-scale DDoS attacks. LPM generates small storage

overhead on routers; nevertheless, it also requires a long process of identifying an

attacker. In [90], Yu et al. show that accurate traceback is possible within 20 seconds

(approximately) in a large-scale attack network with thousands of “zombies”.

3.3.3 HMAC/UMAC

The most popular methods for access control is Message Authentication Codes

(MAC) (e.g., HMAC-MD5, HMAC-SHA1 and etc.), which usually involves a cryp-

tographic hash function in combination with a secret cryptographic key, providing

data integrity and the authentication of data origin. The authentication of data ori-

gin gives a confirmation that the message originates by the sender, who shares the

used secret key with the receiver. There are a number of algorithms [15, 36, 56, 86]

that have been developed in the last decade for the construction of “robust” MAC.

UMAC [14] is claimed to be the fastest MAC that has been reported on in the cryp-

tographic literature. Small algorithmic changes were made in 2004 and a number

of UMAC options were eliminated for simplicity [50]. Many new Path verification

Mechanisms (PVM) also generates proofs or credentials based on HMAC/UMAC

(e.g., ICING [62], TVA [89]). However, it is inevitable that cryptographic operations

require expensive computations even for small messages: larger than 150 clock cycles

per block. Besides, in order to avoid replay packets, each router should keep a size of

47

window to record received authenticated credentials, which further increase the cost

for each flow that the router supports.

3.3.4 Public-Key Cryptography

A message is encrypted with a recipient’s public key and it cannot be decrypted

by anyone who does not possess the matching private key, who is thus presumed to

be the owner of that key and the person associated with the public key [77]. This is a

classic method of verifying authenticity (e.g., digital signature). It has the advantage

of not requiring any secret information to be distributed to or stored at the verifier.

Only the key associated with the flow is required for verification. Unfortunately,

even the latest signature verification is too computationally expensive. The arriving

packets will trigger credential computations no matter they are valid or not. This

increases the system’s vulnerability to DoS attacks since encryption or decryption

operations require several orders of magnitude more operations than conventional

packet processing [21]. Therefore, digital signature cannot meet the performance

requirements outlined above.

3.3.5 Hop-by-Hop Message Authentication

Some schemes like HCF [42] and HPPD [92], work by associating sources with

hop counts instead of interfaces. The basic principle is that, if a packet comes from

a source with a different hop count, the packet is dropped. The advantage of hop-

by-hop authentication is that it does not require distribution of any shared secret to

verifiers. However, if the attacker can guess the right hop count, spoofing the system

would be easy. Besides, the scheme increases cost because the authentication code of

each packet is both verified and re-generated at each hop.

48

3.3.6 Hidden Credentials

There are also many existing work that focuse on carrying out access control with

hidden credentials [16, 40, 51]. In these schemes, the access control policies are used

as keys to encrypt the data. Only the people who meet the conditions specified

in the policies are able to generate the decryption keys. An important work [33]

is by Frikken et al., which improves the performance of hidden credential schemes.

However, all these schemes have very high running cost due to the complexity of the

committed-integer based oblivious transfer protocols. For example, Frikken’s scheme

needs O(ρmn) encryption operations and O(ρ2mn) communications where m is the

number of credentials, n is the number of attributes in a policy, and ρ is the number

of bits used to represent the attributes.

3.3.7 Path Verification

There are many routing security protocols [18,25,41,43,68,91] that ensure the au-

thenticity and correctness of the topology propagation and route computation (e.g.,

S-BGP [43], RBF [68], SCION [91]). These approaches focus on computing the cor-

rect routes while they actually do not ensure that the resulting routes are used in

packet forwarding. Recently, there are also some working focused on path forwarding

and verification, e.g., ICING [62], TVA [89], SIFF [88]. In TVA [89], a source attaches

capabilities to each packet, and each router verifies one capability. The capabilities

are route-dependent, so if the route changes or multipath forwarding exists, legiti-

mate traffic is dropped. In ICING, Naous et al. design a new networking primitive

that enables path consent and compliance perfectly. However, the spoof generation

requires encryption on the whole payload of the packet, therefore the verification

time will also be large. We think these path forwarding or verification schemes are

orthogonal to our OrthCredential mechanism, where low cost authentication for each

flow in routers is our focus.

49

In the next, we analyze another two simple but possible solutions to our problem

of source authentication, which helps the understanding of this chapter.

3.3.8 Constant Sequence Credentials

This is the simplest solution, which works as follows: the provider delivers one

or a small number of constant credentials to the user, and the user will send packets

with one of them each time. This method has a tiny cost on verifier since it needs

only to save the constant credentials, and compare the received credential bit by bit

when verifying packets. However, once the attacker has observed any valid credential

then it can replay the credential and gain access to the services all the time.

3.3.9 Pseudorandom Sequence Credentials

This method uses dynamic credentials and is first described in [21] to prevent

replay credentials. After the payment of a user, the provider will inform the user a

seed for pseudorandom number generation (PRNG). Each time when the user wants

to send packets, it uses the seed to generate a new credential. The same process is

done by the verifiers. The potential problem is that in a real network, the packets

may arrive out-of-order, which requires a size of window in verifier to save many

credentials in advance. Other than that, this system is vulnerable to DoS attacks.

Because the verifier will compare the incoming packet with every credential in the

window, no matter it is valid or not. Besides, pure random sequence generation for

hardware is nearly impossible and attackers are easy to obtain the pseudorandom

sequence generation method after a long-term analysis of the packets.

3.4 Overview of OrthCredential

In this section, we describe OrthCredential system in a high level, deferring the

design details to Section 3.5.

50

3.4.1 Goals and Non Goals

OrthCredential is an authentication code intended for use in authorizing access

control to reserved network resources to address the requirements in Section 3.2.1.1.

OrthCredential is different from conventional MACs that use cryptographic algo-

rithms. It uses orthogonal sequences as credentials and determine validity by ob-

serving whether their inner product equals 0. The probability of counterfeiting it

is higher than other crypt-schemes, but it is still low enough to be safe. The goal

of OrthCredential is to achieve high performance and low cost for verification by

eliminating some security guarantees that we have discussed above. It needs to be

emphasized that OrthCredential is not designed as a replacement of conventional

MAC algorithms. We believe many MAC schemes perform very well in end-to-end

data transmission for high security demands, but cannot meet the requirements in a

general service-oriented network with billions of services and users.

There are several functions that OrthCredential is not designed for: (i) OrthCre-

dential does not guarantee the security and integrity of the payload in the packet

during packet forwarding; (ii) OrthCredential does not guarantee the security of the

path that the packet goes on. Actually, a secure path between two nodes can be also

seemed as a service and OrthCredential can only provide the access to these secure

paths which are set up by provides.

3.4.2 Deployment Scenario

The natural deployment scenario for OrthCredential is at layer 3 (the network

layer). Consider a path service with given bandwidth guarantees as an example:

The providers would deploy OrthCredential routers at the ingress of their networks

(i.e., edge routers). Internal routers do not need to verify OrthCredential, just as

internal forwarders may implement a different protocol from that of the edge routers.

As shown in Figure 3.1, after the user established a contract with a provider, the

51

Table 3.1. A full description of the relevant notations in Chapter 3.

Variables Description

seed The secret information sent to the user and the verifier by the
provider.

n Length of each credential.
k The index of generated Hadamard matrices (k = 1, 2, 3...).

H(k) The kth orthogonal matrix generated by user (k = 1, 2, 3...).
hi(k) The ith row of H(k) (1 6 i 6 n).
ri(k) The random vector corresponding to hi(k).
key(k) A secret key corresponding to H(k) which is used to generate ri(k).
ci(k) The ith credential and it satisfies ci(k) = hi(k) + ri(k)
m The number of the saved rows of H(k) in the verifier (1 6 m 6 n).

Hm(k) A number of m rows in H(k) that saved in the verifier (router).
hm,i(k) The ith row of Hm(k) in the verifier (1 6 i 6 m).

c The credential extracted from received packets by verifier.
h The vector computed from c and it is expected to satisfy h = c−ri

for some i.
counter(k) The newest number of the credentials verified as valid, the value

of couter resets when k is updated.
sum(k) The sum vector of vi(k) which is saved in the verifier and sum(k) =∑n

i=1 vi(k), the initial value of sum(k) = 0.
sum bit[i] sum bit[i] saves the ith bit of each entry of sum(k) (1 6 i 6

log2 n + 1).

52

Result

Provider

User Verifier

seed

SeedH

SeedH(1) SeedH(2) SeedH(3)

c

H(1) H(2)

Drop packet

.

.

.

Generating

Hadamard Matrix.

...

seed

h

SeedKey

Key(1) Key(2) Key(3)

hi(k)

ri(k)

+

ci(k)

Key(k)

ri(k)

Data ci(k)

SeedKey

-

SeedH

SeedH(1) SeedH(2) SeedH(3)

Hm(1) Hm(2)

.

.

.

Sum(k)

Hm(k)

Verifying

Valid

update

Invalid

Seed(1) Seed(2) Seed(3) ...

Key(1) SeedH(1)

Generating m rows

of Hadamard Matrix.

...

...

...

Figure 3.2. Credentials generation and verification in OrthCredential .

provider sets up the service and sends a secret generating seed to both the user and

the edge routers along the transmission path. Each time the user uses the path service

of the provider, the user sends packets with a credential generated by the secret seed.

The edge router of the provider only forwards packets that contain a valid credential.

Therefore, only an authorized user can access the bandwidth provided in the path

service. The generation and verification mechanism of a credential is discussed further

in Section 3.5.

3.4.3 Architecture and Components

OrthCredential is based on the technique of generating a series of sequences with

mutual-orthogonal properties known to the user and the verifier. After a user has

pursued some service from a provider, the provider will set up the service and send a

secret generating seed to both the user and the devices along the transmission path.

53

The seed contains the secret information of generating different n×n orthogonal ma-

trices H(k) (k is a numerical order). Besides, the seed also contains the corresponding

keys (denoted as key(k)) for each H(k). Each time a packet is sent, the user chooses

the first unused row vector hi(k) from H(k) (i is the index of rows in c) and generates

a random vector ri(k) by using key(k), then the user can get a credential by:

ci(k) = hi(k) + ri(k), where k = 1, 2, 3, ...

A similar process is in the verifier: the verifier will generate Hm(k) which includes

a number of m rows of H(k), and save it in memory. Once all rows from H(k)

are used, H(k + 1) will be generated from the seed. For every packet arriving at

a router, the router extracts credential c and subtracts the corresponding ri(k) and

results h. Then, h is used to compute the inner product with each hm,i(k), row

vector of Hm(k) (∀1 6 i 6 m), to check its validity. Finally, to prevent replay

attacks, h is used to compute the inner product with sum(k), the saved sum of the

received valid orthogonal credentials, to check if c has been used or not, since a used

credential results in a non-zero inner product. If c is verified as valid, then the router

adds h into sum(k) to prevent replay attacks with credential c. Figure 3.2 shows

the entire process that OrthCredential works, where the details will be discussed in

Section 3.5. The concise definitions of the notations we used in this chapter can be

found in Table 3.1.

The security of OrthCredential is based on a very low probability of an attacker

obtaining a credential satisfying that the results of its inner product with each hm,i(k)

and sum(k) equal 0 simultaneously. Even for a replay packet, the result of the inner

product of h (h = c− ri(k)) and sum(k) equals ||h2|| but not 0 either.

In our OrthCredential system, these orthogonal matrices H(k) are Hadamard ma-

trices. In the next section, we introduce the Hadamard matrices and their important

properties.

54

**

(a) (b) (c)

Figure 3.3. An illustration of Hadamard matrix and its properties.

Table 3.2. Number of Hadamard matrices of different types.

n 2 4 8 12 16 20 24 28 32

Types 1 1 1 1 5 3 60 487 13,707,126

3.4.4 Hadamard Matrix

3.4.4.1 Definition

A Hadamard matrix is an n × n matrix H containing entries from the set Z2 =

{−1, 1}, with the property of HHT = nIn.

This equation implies that all distinct rows or columns of a Hadamard matrix are

linearly independent. Therefore, all rows or columns of a Hadamard matrix H are

mutually orthogonal, i.e., have an inner product of 0. We let (v1, v2) denote the inner

multiple computation, then vectors v1 and v2 are said to be “orthogonal” if and only

if (v1, v2) = 0. For instance, v1 = (−1,−1, 1) is orthogonal to v2 = (−1, 1, 0) because

(v1, v2) = (−1) × (−1) + (−1) × 1 + 1 × 0 = 0. In this chapter, we use an “entry”

to denote an element in a vector, for instance, each entry in a row of a Hadamard

matrix is 1 or -1.

An explanation of a Hadamard matrix can be found in Figure 3.3(a), where black

squares represent ‘-1’s and white squares represent ‘1’s. In our OrthCredential system,

we use 0 to represent -1 in the Hadamard matrix. Then, the verification of checking

whether the result of (c1, c2) equals 0 can be simply achieved by checking whether

55

the number of ‘0’s equals the number of ‘1’s in the result of bitwise AND operation

c1&c2.

3.4.4.2 Properties

It is proved that, an n× n Hadamard matrix exists for n = 1, n = 2, and n = 4k

for any k ∈ N [45]. We further introduce a basic, but very important, property of

Hadamard matrix:

Theorem 1 Several operations on Hadamard matrices preserve its property: (i) Row

permutation, or changing the sign of rows; (ii) Column permutation, or changing the

sign of columns; (iii) Transposition.

This is illustrated in Figure 3.3: Figure 3.3(a) illustrates an 8 × 8 Hadamard

matrix; in Figure 3.3(b), we change the sign of its fifth and sixth column; in Fig-

ure 3.3(c), we further permute the third and seventh row. After these operations, the

transformed matrices are still Hadamard matrices. Strictly speaking, two Hadamard

matrices H, H ′ are said to be different if H ′ cannot be produced from H by opera-

tions (i)-(iii). Therefore, we say that there is only one Hadamard matrix of order 2,

though it has eight different expressions. Table 3.2 shows the number of inequivalent

classes of Hadamard matrices from n = 2 to n = 32 [45]. When n is larger than

32, the different types of Hadamard matrices are even much larger. These properties

enable us to generate a random Hadamard matrix that the attacker cannot guess each

time, which also limit the possibility of forging it. Even if the attacker can guess one

credential accidentally, which will not be legitimate when the next Hadamard matrix

is generated.

3.5 Design Details of OrthCredential

This section details OrthCredential’s design, which aims to meet the requirements

stated in Section 4.3.

56

IP header

version header length credential length

row index

credential

TCP/UDP/ICMP header

protocol

matrix index

user ID

32 bits

8 16 24

Figure 3.4. OrthCredential header, which total overhead in a packet is 16 to 28
bytes.

Table 3.1 describes the notation used throughout our design discussion and our

pseudocode, and Figure 4.3 shows the OrthCredential header format. The header

includes two types of information for each user. The first is the user’s information,

the provider will assign a unique ID for each user who has established a contract

with. The verifier will turn to the corresponding verifying materials by checking this

ID information. The second is the information used for verification: {n, i, k, ci(k)}.

The length of ci(k) (i.e., n) in our current system is 32, 64 or 128 bits. The verifier

will tell the difference by checking n or the “header length” part.

3.5.1 Creating Credentials

As described in Section 3.4.3, a credential ci(k) is given by ci(k) = hi(k) + ri(k).

We generate ri(k) by using a random() function with the seed (key(k), k, i). Each ri(k)

is different due to different sets of (key(k), k, i). The reason why we add ri(k) with

hi(k) in OrthCredential system is, if hi(k) can be easily observed by an attacker, the

attacker can get a valid credential by generating lots of sequences that are orthogonal

to hi(k). Therefore, ri(k) can help decrease the probability for attackers to forge a

valid credential. We next describe how to construct an Hadamard matrix and thus

get hi(k).

57

People have derived many construction methods to generate a Hadamard matrix

for a given n [8]. The Hadamard construction method in our system is a simple, but

efficient one - Kronecker Product Construction: if S, T are matrices, their Kronecker

Product S ⊗ T is the matrix U constructed by replacing each Si,j in S by Si,jT . It

can be proved that the Kronecker Product Hn ⊗Hm is a Hadamard matrix of order

nm if Hn, Hm are Hadamard Matrices of orders n and m. This implies that we can

get a 2n⊗ 2n Hadamard matrix by the product of an n× n Hadamard matrix with

the basic 2× 2 Hadamard matrix of

 +1 +1

+1 −1

 .

An illustration of Hadamard matrix construction in OrthCredential system by

Kronecker Product is in Figure 3.5. Before doing Kronecker Product operation, the

original n × n and the basic 2 × 2 Hadamard matrices will take several transform

operations in Theorem 1 first, respectively. Then, the generated Hadamard matrix

will also take several transform operations. All these transform operations are de-

scribed in seed sent by the provider. For the original n × n Hadamard matrix, we

use a Walsh-Hadamard transform to get it. For instance, in Figure 3.3(a), if we

let the bottom row as 0th row and the leftmost column as the 0th column, then its

(i, j)th entry Hi,j can be written as Hi,j = (−1)
∑n

p=1(ip·jp), where i =
∑n

p=1 ip2
p and

j =
∑n

p=1 jp2
p. The Walsh-Hadamard transform is easy to be realized, since the com-

putation of
∑n

p=1(ip · jp) can be simply achieved by checking the number of ‘1’s in

the result of the bitwise operation i AND j. In real implementations, the verifier will

save a number of basic Hadamard matrices beforehand, since they may be used for

each flow’s verification. In Section 3.6.1.1, we will show that this generation method

can guarantee a very low repeating probability.

58

* * *

Transform operations Kronecker ProductPermutation Sign changes*

Figure 3.5. An illustration of an 8× 8 Hadamard construction.

Each time a packet is sent, the user chooses an unused row vector ci(k) as the

credential and places it together with its index k, i in the packet. Once all rows from

H(k) are used, H(k+1) will be generated from the secret seed. We set the maximum

k to 100, and the user will ask for a new seed from the provider when a number of

k Hadamard matrices are used. Each n-bit credential ci(k) (ci(k) = hi(k) + ri(k))

satisfies the following equations:

(
hi(k), hj(k)

)
= 0, when i 6= j,(

hi(k), hj(k)
)
6= 0, when i = j.

(3.1)

3.5.2 Verifying Credentials

Algorithm 5 Operations of generating a credential

1: if i%(n+ 1) = 0 then
2: k← k + 1, i ← 1
3: key(k) ← seed(k).key
4: H1 ← Hadamard Transform(n

2
)

5: H2 ← Hadamard Transform(2)
6: H1, H2 ← Transform Operation(H1, H2, seed(k))
7: H(k) ← Kronecker Product(H1, H2)
8: H(k) ← Transform Operation(H(k), seed(k))

9: hi(k) ← the ith row of H(k)
10: ri(k) ← Random(key(k), k, i)
11: ci(k) ← hi(k) + ri(k)
12: return (ci(k), k, i)

59

The verifier only generates and saves a number of m rows of H(k) (i.e., Hm(k)),

not the whole matrix. In an implementation, m is ususally 10% − 30% of n. The

value of m depends on the security requirements of the service, and if the verifier

saves the whole H(k) (i.e., m = n) then it can achieve the best protection against

forgery attacks. In Section 3.6, we will show that even a small m can also provide a

very good protection for the access to the service.

For each packet arriving at provider devices, the verifier extracts credential c, then

subtracts the corresponding row ri and finally gets h. Then, h is used to compare

with or compute the inner product with hm,i(k) to verify the validity of c. To avoid

replay attacks, h is also used to compute the inner product with sum(k) to check if c

has been used or not, since a used credential will result in a non-zero inner product.

A received credential c is verified as valid when the following conditions are satisfied:

1. ∃ i (1 6 i 6 m), h = hm,i(k) or

∀ i (1 6 i 6 m),
(
h, hm,i(k)

)
= 0;

(3.2)

2.
(
h, sum(k)

)
= 0. (3.3)

If h satisfies the above equations (i.e., c is a valid credential), the local variable

couter(k) is incremented. Here, couter(k) implies that h is the (couter(k))th valid

credential received by the verifier. In order to protect against a replay attack with

credential c, the verifier will add h with sum(k) and save the result as a new sum(k).

It must be emphasized that: (i) the addition here is between two vectors not two

numbers; (ii) though we use 0 represent −1 in h during verification (as described in

Section 3.4.4), but during this addition operation, h should be the original vector with

entries 1 or −1. Thus, the value of each entry of sum(k) is an integer in the range of

[−n, n]. We next explain the verification details during real implementations:

60

… …

Figure 3.6. An example which shows the relations between sum(k) and {sum bit[i]}
when n = 32.

Step 1: Verify Equation (3.2). The operations of verifying whether the result

of (h, hm,i(k)) equals 0 can be achieved by checking whether the number of ‘0’s equals

the number of ‘1’s in the result of bitwise operation h AND hm,i(k).

Step 2: Verify Equation (3.3). The cost of the verification process mainly

depends on the operations between h and sum(k) when m is small. An intuitive

solution would be represent sum(k) as an array with n integers which are in the

range of [−n, n], and use n iterations to calculate the inner product. However, we

can use the following schemes to decrease the cost to O(log2n):

• Remove negatives in sum(k): during the addition operation between h and

sum(k), we update sum(k) with the result of sum(k) + h + en, where en =

(111...11)n. Therefore, the value range of each entry in sum(k) becomes [0, 2n].

• Recompose sum(k): we use a set of {sum bit[i]} to represent sum(k), where

1 6 i 6 log2 n+ 1. Each sum bit[i] is an n-bit local variable in the verifier and

the jth bit of sum bit[i] denotes the ith bit of the jth entry of sum(k). Figure 3.6

is an example which shows the relations between sum(k) and sum bit[i] when

n = 32. From the above discussion, we know that, each time sum(k) updates

by adding the result of h + en whose each entry is 2 or 0, therefore each entry

61

of sum bit[1] is always 0. In real implementations, the verifier does not save

sum bit[1] to decrease the storage consumption.

Algorithm 6 Operations of verifying a credential

1: ri(k) ← Random(key(k), k, i)
2: h ← c− ri(k)

B Step 1: Verify h = hm,i(k) or (h, hm,i(k)) = 0
3: for 1 6 i 6 m do
4: if h = hm,i(k) then
5: break
6: else
7: result ← number of 1s in (h⊕ hm,i(k))
8: if result 6= n/2 then
9: return InValid

B Step 2: Verify (h, sum(k)) = 0
10: result ← 0
11: number h0 ← number of 0s in h
12: number h1 ← number of 1s in h
13: for 1 6 i 6 log2 n+ 1 do
14: number0 ← number of ‘0’s in (h̄ & sum bit[i])
15: number1 ← number of ‘1’s in (h & sum bit[i])
16: result ← result+ 2i−1(number1 − number0)
17: if result 6= couter(k) · (number h1 − number h0) then
18: return InValid

B Step 3: Update sum(k)
19: for 2 6 i 6 log2 n+ 1 do
20: if i = 2 then
21: carry ← h
22: else
23: temp← carry ⊕ sum bit[i]
24: carry ← carry & sum bit[i]
25: sum bit[i]← temp

26: couter(k)← couter(k) + 1;
27: return Valid

By the above schemes, Equation (3.3) could be written as:

couter(k) · (h, en) =
∑log2n+1

i=1
2i−1 · (h, sum bit[i]).

62

The computations of inner product in the above equation can be realized by simple

bitwise operations as the same as computing (h, hm,i(k)). Therefore, we reduce the

processing time of verifying Equation (3.3) from O(n) to O(log2 n).

Step 3: Update sum(k). An intuitive solution of updating sum(k) with the

result of sum(k) + h would also need n iterations to accumulate the sum of each

entry in sum(k) and the corresponding entry (1 or −1) in h. However, with the

above representation of sum bits, we can also decease the processing time of updating

sum(k) from O(n) to O(log2 n). As described above, we actually update sum(k) with

sum(k) + h + en, where each entry of the result of h + en is 2 or 0. Therefore, in

real implementations, we will let each entry of sum bit[2] plus 1 if the corresponding

entry of this result is 2. If the addition on a entry of sum bit[2] produces a carry,

then reset this entry and transmit a carry to the corresponding entry of sum bit[3],

and so forth.

In addition to the verifying operations in Step 1, the whole verifying time (count

in clock cycles) is in a scale of O(m + log2 n). In Section 3.6, we will present the

running time under real implementations. The pseudo codes of these algorithms for

generation and verification of a credential are shown in Algorithms 5 and 6.

3.5.3 Attacks

The security of OrthCredential is based on a very low probability of an attacker to

obtain credentials that satisfies Equations (3.2) and (3.3) simultaneously. We briefly

analyze how OrthCredential counters various threats.

An attacker may try to obtain credentials by brute force. We use a part

of n mutually orthogonal vectors (i.e., Hm(k)) to make these “grope around” attacks

impossible. Though the probability that a random vector is (with entries “-1” or

“1”) orthogonal to hm,i(k) cannot be concluded theoretically, we verify the very low

probability for random successful attack by experiments. In our implementation of

63

OrthCredential system, this random attack successful probability would be even lower

because a valid credential also has to be orthogonal with sum(k). The results of the

experiments are shown in Section 3.6.

An attacker may try to obtain credentials by replaying the valid creden-

tials sent by the user. We use a sum(k) to perfectly prevent this kind of attack.

It works since once h is verified to be valid, then it will be added into sum(k). Thus,

we have (h, sum(k)) = (h, h) = |h|2 6= 0. If h is expired for k, h will be also verified

to be invalid due to a very low probability that h is orthogonal to each new hm,i(k).

An attacker may try to obtain credentials by generating Hadamard

matrices. OrthCredential provides double protection against this attack. First, as

discussed in Section 3.5.1, the properties of Hadamard matrices guarantee a very low

probability that an attacker generates the same matrix as the user’s. Besides, we use

a dynamic random vector ri(k) to “encrypt” each row of the generated Hadamard

matrix. If the attacker obtains the information of some ri(k) of a user, the attacker

can derive hi(k) by observing the packets sent by the user, it is still very far away

from breaking through the verifier. This is because hi(k) cannot be used directly, the

attacker needs to generate vectors that are orthogonal to hi(k). However, it is still a

very low probability that these generated vectors are orthogonal with all the hm,i(k)

in the verifier.

An attacker may eavesdrop the communications between the user and

the provider. Each time when the credentials generated from seed are run out of, the

user will ask its service provider for a new credential seed. In OrthCredential system,

any end-to-end traffic between the user and provider will be encrypted using existing

protocols (e.g., TLS/SSL). There is no way for an attacker to obtain secret information

by this behavior.

64

There are also other attacks described in Section 3.2.1.2 that are out of our as-

sumption of the attackers’ incapabilities and OrthCredential cannot defend against.

Actually, it’s a future work we will consider in OrthCredential.

3.6 Evaluation

In this section, we evaluate the performance of security, verification time and

storage consumptions in OrthCredential. We have implemented the algorithm in

C++. We use a PC with an Intel Core2 Quad CPU Q9400 running at 2.66GHz to

test the algorithm’s performance. The operating system is Ubuntu 14.04 64-bit with

kernel version 3.13.0-24 and gcc version 4.8.2. Both the credential generation and

verification codes are compiled in one program with gcc -O3 optimize level. We do

not use platform specific instructions and assembly codes. The time consumed by

each step is measured by CPU clock cycles.

3.6.1 Performance Evaluation

Now, we evaluate the OrthCredential system’s performance on its security, verifi-

cation latency and storage consumption, respectively.

3.6.1.1 Security

We first run simulations to ensure a very low probability of generating a same

Hadamard matrix by the construction method which is described in Section 3.5.1.

During the generating process, we take 3 basic transform operations each time (per-

mutation, changing signs or transposition). We generate 100, 000 Hadamard matrices

for n = 32, 64 and 128 and find the number of the same generated Hadamard matri-

ces among them. The repeatability result is that, when n = 32, the repeatability is

0.18% and it is nearly 0 when n = 64 or 128. Considering that a dynamic random

vector ri(k) will also “encrypt” each row of the Hadamard matrix, we believe that it

is impossible for an attacker to guess a valid credential.

65

We then simulate a scenario that an attacker sends random credentials to brute

force the verification process. As discussed in Section 4.5.3, the first step of verifying

a valid credential is to determine whether this credential is orthogonal with each

hm,i(k) while a random credential is hard to achieve this. Figure 3.7 shows the success

probability of such random attack. It can be observed that, when the credential length

(i.e., n) is 128, m > 10 can guarantee the breakthrough probability less than 10−9,

which can be considered safe enough. We can get that, even if the packet transmission

rate of an attacker is as high as 1M pkt/s, then it still needs nearly an hour to guess

a valid credential. Besides, in reality, the Hm,t(k) may change many times during an

hour. For some services with low-security requirements, we consider 32-bit or 64-bit

credentials can also be used with a proper chosen m.

We also simulate a scenario that an attacker sends replay packets, the result is that

all these replay packets are discarded by the verifier no matter the choose of n and

m. There are also other attacks in reality that we cannot simulate, the discussions

can be found in Section 3.5.3.

3.6.1.2 Verification Time

In OrthCredential system, we use computations of inner product to replace compli-

cated cryptographic operations so that the verification time is significantly decreased,

most of the possible computations are simplified to use the basic bitwise operations.

We have tested the different credential length (i.e., n) and different number of

rows of a Hadamard matrix stored on the verifier (i.e., m). Figure 3.9(a) shows the

time needed to verify a valid credential. When m is relatively smaller than n, the

time increases almost linearly with m. That is because, in this case, the probability

that h (calculated from the received credential c) equals a saved hm,i(k) is relatively

small, thus a valid user’s credential has to be calculated against all the m rows of

Hm(k) to get verified. When m approaches n, the verifier has a larger probability of

66

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of saved rows on verifier (m)

R
a
n
d
o
m

 a
tt
a
c
k
 s

u
c
c
e
s
s
fu

l
p
ro

b
a
b
ili

ty

n=16

n=32

n=64

n=128

Figure 3.7. Success probability of attacks using random generated credentials.

saving a hm,i(k) that equals h, which makes the verification process jump to the sum

verification, therefore the curve becomes gradual.

As discussed in Section 4.5.3, it requires three steps to verify a valid credential,

which runs in a scale of O(m + log2 n) time. The main cost depends on Step 1 and

Step 2 since they both need an operation to count the number of ‘1’s or ‘0’s in a

vector (i.e., POPCOUNT operation), while Step 3 only does the basic AND or XOR

bitwise operations. 16-bit POPCOUNT is done by looking up twice in a 8-bit lookup

table, while 32 and 64-bit POPCOUNT uses a variable-precision SWAR algorithm

introduced in [5]. Because the lookup table method is faster, we can see the time

for n = 16 is almost half of the time when n = 32. 32-bit and 64-bit credential cost

almost the same time, because for a 64-bit CPU, operating a 64-bit integer is as fast as

a 32-bit integer. 128-bit credential needs twice the time of 64-bit credential, because

the CPU cannot do 128-bit integer calculation natively, all the calculations must be

performed as two 64-bit operations. It is worth noting that although some new Intel

x86 CPUs have SSSE3 and SSE4.2 instructions that can do fast POPCOUNT [38],

67

0 1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of inner product computations required for verifying invalid packet

P
ro

b
a

b
il

it
y

 d
is

tr
ib

u
ti

o
n

n=16

n=32

n=64

n=128

Figure 3.8. Probability distribution of the number of the inner product computa-
tions for an invalid packet.

we do not use it because OrthCredential system is platform dependent. If we use it,

the speed can be further improved. Figure 3.9(b) shows the average time needed to

verify a random attack credential. Theoretically, the verifier can discard the invalid

credential within the first few inner product computations in Step 1 due to the low

random attack successful probability. Therefore, the time is much less compared to

verify a valid credential, and it is also nearly irrelevant to m. When n = 16, it takes

a longer time to verify a random credential, this is due to the higher random attack

successful probability, which will lead to a longer verification process. 3.8 shows the

probability distribution of the number of the inner product computations required

for a random credential before it is discarded by the verifier.

3.9(c) shows that the replay attack credentials take almost the same verification

time as a valid credential, albeit none of them will be verified to be a valid one.

This is because a replay credential will not be identified until completing Step 2 –

inner product computation with sum(k). While Step 3 only does serval basic AND

or XOR bitwise operations that require less than 10 clock cycles to proceed, the error

of experiments can cover up this slight difference between 3.9(a) and 3.9(c).

68

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

Number of saved rows on verifier (m)

C
P

U
 c

lo
c
k
 c

y
c
le

s

n=16

n=32

n=64

n=128

(a) A valid credential.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

Number of saved rows on verifier (m)

C
P

U
 c

lo
c
k
 c

y
c
le

s

n=16

n=32

n=64

n=128

(b) A random attack credential.

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

Number of saved rows on verifier (m)

C
P

U
 c

lo
c
k
 c

y
c
le

s

n=16

n=32

n=64

n=128

(c) A replay attack credential.

Figure 3.9. The time for OrthCredential system to verify different types of packets.

Conventional cryptographic schemes will take much more verification time. Ta-

ble 3.3 shows the experiment results of the average per-packet verification cost for

some classical conventional cryptographic algorithms for 500-byte packets (an average

packet length in Internet). These algorithms are also implemented in C++ without

platform specific instructions and assembly codes. To make more comparisons, we

also list the cost of some path verification mechanisms (ICING [62], TVA [89] and

DPCP [81]) in the table. By comparing Table 3.3 with Figure 3.9, we can see the

enormous advantages on the verification speed, especially considering the case that a

DOS attacker floods a path with lots of random attack packets (the verification time

of the schemes in Table 3.3 does not change for random attack packets).

3.6.1.3 Storage Consumption

As illustrated in 4.3, the total overhead of OrthCredential header in a packet is

16 to 28 bytes. In OrthCredential, the storage consumption of the verifier for each

user depends on two parts: a number of m rows of an n × n Hadamard matrix and

a set of {sum bit[i]} where 2 6 i 6 log2 n+ 1. Thus, the whole storage consumption

in the verifier is mn + n log2 n bits. It must be noted that this storage consumption

is under a consideration of preventing replay packets. Many authentication schemes

(e.g., HMAC/UMAC, ICING) cannot provide anti-replay protection naturally and

have to keep a window to save received authorized credentials. In this point of view,

69

Table 3.3. Average verification costs of different schemes for 500-byte packets .

Algorithm Cycles/Packet

HMAC (MD5) 5,335
HMAC (SHA-1) 8,931

AES/CTR (128 bit key) 7,277
DMAC (AES) 12,223
ICING (x-hop) 2,080x + 19,520
TVA (x-hop) 3,264x

DPCP (512-bit credential) 34,780

our OrthCredential does not need to save all the newest authenticated credentials,

but uses a sum of the received authenticated credentials instead, which decreases the

storage consumption efficiently. For instance, if OrthCredential uses 64-bit credentials

with 5 rows of a 64× 64 Hadamard matrix to implement verification, then the router

only requires a space of 80 bytes to prevent all possible replay packets while other

conventional cryptographic schemes may need a space of 512 bytes to achieve it.

3.6.2 Deployment on GENI

We have deployed OrthCredential on ExoGENI [9] to demonstrate that the pro-

tocol can work on a real network. We use Netfilter Queue [3] to modify the packets.

The sender inserts a OrthCredential header between IP and TCP header, and sends it

to the verifier. The verifier verifies and removes the header, then forwards the packets

to the receiver. An attacker can send traffic with random credentials. The topology

is shown in Figure 3.10.

We use iperf to generate TCP traffic from both the sender and the attacker to the

receiver. The parameters of the TCP traffic are identical. So if the total traffic of

the sender and the attacker exceeds 100Mbps, they will compete for the bandwidth

to the receiver. The test is divided into 4 scenarios as shown in Table 3.4. When

there is no verification and no attacker’s traffic, the sender can occupy most of the

100Mbps bandwidth. When the attacker joins, it takes almost half of the 100Mbps

70

Figure 3.10. Test setup on ExoGENI using flukes.

Table 3.4. Throughput under different scenarios.

scenario verification
has throughput

attacker sender attacker
1 disabled no 89 -
2 disabled yes 42 49
3 enabled no 82 -
4 enabled yes 80 0

bandwidth because of the fairness of TCP. When verification is enabled (with n = 64,

m = 5), the attacker’s traffic can not get through, so the sender can get most of the

bandwidth again. This proves the access control ability of OrthCredential.

Comparing Scenarios 1 and 3, we can see that enabling or disabling the verification

does not have noticeable effect on the sender’s throughput. This is because the

packet forwarding takes far more clock cycles than the verification process. This

demonstrates the low verification time of OrthCredential. Varying n and m also has

little impact on the throughput in our experiment.

3.7 Conclusions

This chapter introduces a novel credential design to provide efficient source au-

thentication in the data plane of a network. A new credential design, OrthCredential,

is presented to solve the problem of protecting reserved services with very low over-

71

head in terms of verification time and memory consumption, while guaranteeing good

security performance. The prototype implementation has shown a small credential

header (e.g., 20 bytes) can be checked in less than 300 processor cycles and require

less than 800 bits of memory per flow on a router. We believe that OrthCredential

presents an important contribution toward the future service-oriented Internet.

72

CHAPTER 4

PATH VALIDATION

In the last chapter, we presents OrthCredential, which is a novel technique for the

source authentication with very low overhead in routers. This chapter will present

Orthogonal Sequence Verification (OSV), which is a great extension of OrthCreden-

tial, to achieve both source authentication and path validation simultaneously. OSV

also uses orthogonal credentials to enable source authentication and path verification

simultaneously. The verification of these orthogonal credentials is based on inner

product computations, which can be easily realized by basic bitwise operations in a

processor. Therefore, OSV can also significantly reduce computational cost compar-

ing the conventional cryptographic approaches. We present evaluation results which

show that OSV is three orders of magnitude faster than the current approaches based

on cryptographic operations. Therefore, we believe that our work presents an impor-

tant contribution toward realizing high-performance, secure network protocols and

network attack defenses in practice. Some of the material in this chapter have been

published in [19].

4.1 Introduction

Source authentication and path validation are two important concepts in net-

working that help construct higher-level security mechanisms, such as mitigating

denial-of-service (DoS) attack, ensuring path compliance and packet attribution, and

protecting against flow redirection [48]. Source authentication is the verification of

the source address of a host that sends a packet and is designed to determine whether

73

this packet indeed originated from the claimed source. Path validation, in particular,

is to validate that the packet indeed traversed the path known to (or selected by) the

host (i.e., the source). The latter is used when senders, receivers or operators would

like to ensure that a packet’s path adheres to their preferences. For example, an

enterprise might want to dictate that incoming traffic passes through certain services,

such as deep packet inspection [53]. Path validation provides a way to enforce this

path compliance according to the policies of ISPs, enterprises, and data centers.

The current Internet, however, is unable to provide efficient means for source

authentication and path validation by routers or end-hosts. For example, a network

provider cannot determine if traffic is sent by neighboring providers along paths that

match service-level agreements; a receiver cannot be sure whether a packet is from

a specific source, since an attacker can spoof source addresses in packets. Widely

used end-to-end encryption and authentication schemes (e.g., TLS/SSL) are not able

to solve these issues, since they are agnostic to which path the packets have been

forwarded on. A stronger approach is needed, which enables routers and destinations

to perform source authentication and path validation.

In recent work, various methods have been proposed for source authentication

(such as TVA [89], SNAPP [65], StopIt [54], AITF [7], NetFence [55], Passport [62],

DPCP [81], and OrthCredential [20]), which cannot be used for path validation.

Current proposed approaches for a combination of source authentication and path

validation are ICING [53] and OPT [48]. However, they are both based on expensive

cryptographic operations that require considerable computational resources. To make

source authentication and path validation feasible for broad deployment, it is critical

to develop methods that have low implementation cost while still providing reasonable

security guarantees.

In this chapter, we present a novel technique for both source authentication and

path verification, called Orthogonal Sequence Verification (OSV). OSV uses capabili-

74

ties, i.e., special tokens in the packet, that are checked by routers along the path of a

flow. The main idea of OSV is that the sender and routers use “orthogonal sequences”

of suitably chosen +1 and -1 values. The sender uses its orthogonal sequence as a

credential that identifies the source, and routers add their own orthogonal sequence as

credentials that capture which nodes a packet has traversed. The routers and desti-

nation check the result of the inner product of the sender’s credential and their saved

orthogonal sequences. A valid result (i.e., inner product of zero) indicates that the

packet is from the claimed sender. Similarly, downstream routers and the destination

can verify whether the packet has been forwarded by each of the nodes along the

determined path based on the orthogonal sequence information that is incrementally

updated in the packet. This technique provides an efficient and effective means to

achieve source authentication and path verification. The main advantages of OSP

can be summarized as follows:

• Low Verification Time: We use an inner product computation to replace com-

plicated cryptographic operations so that the verification time is significantly

decreased. The verification time of OSV is less than 0.01µs while ICING is

usually needs more than 24.4µs. OPT could achieve the same verification time

as OSV, but it needs at least 4ms for the key setup process beforehand.

• Low Packet Overhead: OSV header in a packet is small (about 125 bytes).

ICING and OPT’s header size are nearly the same as OSV’s when the path

length is below 4, but they increase rapidly as the path length increases. E.g.,

when the path length is 10, OSV’s packet header is 128 bytes while ICING’s

and OPT’s are 410 bytes and 196 bytes, respectively.

• Independence of Path Length: the properties of orthogonal sequences provides

the advantage of OSV that the packet processing time in routers is almost

75

independent of the number of hops that are traversed by the packet. OSV’s

packet header overhead is also almost constant (2 bytes for each one more hop).

4.2 Related Work

Source authentication has been studied extensively, the related work on source

authentication are discussed in Section 3.3.

Current techniques for both path validation and compliance have been proposed

in ICING [53] and OPT [48]. In ICING, the source pre-computes a MAC, Vi, for

each intermediate router Ri. When the packet arrives at router Ri, the router first

reconstructs the MACs for the source and each upstream router using the secret keys

shared with the source and each router and verifies whether the calculated results are

equivalent to each Vi. Then, Ri computes new MACs for each downstream router

using the shared secret key and updates each Vj (j ≥ i). OPT designs a Dynami-

cally Recreatable Key (DRKey) protocol that enables routers to create or recreate

symmetric keys shared with end-hosts on the fly. OPT does not require routers to

store keys shared with sources or other routers, nor perform a MAC computation for

every router on the path. Therefore, this protocol requires each router Ri to compute

much less MAC operation per packet compared to ICING. However, the key setup

process of OPT will take a very long time instead (e.g., about 20ms processing time

in destination node for an 8-hop path). Our evaluation in Section 4.6 shows that

our proposed OSV can significantly reduce the processing latency for packets at the

source, intermediate routers, and the destination.

4.3 Preliminaries

Before we present the design of OSV in Section 4.4, we first describe the design

goals, our security model, and limitations.

76

4.3.1 Goals

OSV is designed to achieve both source authentication and path validation with

very low overhead on routers, while guaranteeing an acceptable level of security. The

destination and each intermediate router should be able to determine whether the

packet indeed originated from the claimed source and traversed a specific path. While

many cryptography-based techniques perform very well in terms of security, they do

not meet the performance requirements for environments where source authentication

and path validation are performed for every flow (e.g., service-oriented network with

millions of services and billions of users [85]).

4.3.2 Security Model

In order to provide a rigorous discussion of the security properties of OSV, we

now define the following security requirements and attacker capabilities.

4.3.2.1 Security Requirements

Any system that aims to achieve source authentication and path validation must

have the following security properties to be considered as a solution to this problem:

1. Credential strength: Valid credentials (or capabilities) in packets can only be

generated by an authorized sender in the network. Therefore, credentials must

be based on secret information and be difficult to guess or fake. Brute force

methods must yield a sufficiently low probability of success that they are not

useful in practice.

2. Verification without trust chains: An entity verifying a packet must be able to

do so without having to trust other nodes that have been visited along the path.

Necessarily, the receiver needs to trust the sender since secret key material is

exchanged. However, routers along the path do not need to trust other routers

(and the receiver does not need to trust other routers). Authenticity should be

77

determined solely from the packet headers and local per-flow information (e.g.,

public key or shared secret).

3. Identification of denial-of-service (DoS) attack source: Sources of DoS attacks

should be identifiable in order to isolate the attack.

4.3.2.2 Attacker Capabilities

The capabilities1 of attackers that aim to disrupt the source authentication and

path validation system are assumed to be following:

1. Ability to eavesdrop at any point along the path from the source to the destina-

tion. Sniffing legitimate packets traveling along the path can be accomplished

by hacking into an end-host or router or by observing a shared-medium network

link along the path.

2. Ability to send arbitrary packets or flood a particular link, router, or host. This

attack can aim to create a DoS attack, e.g., using a botnet. A packet replay

attack is a special case of this kind of packet injection that also utilizes the

previously described capability.

3. Ability to cause path deviation, which leads to packets being forwarded along

a path other than the path previously determined. For example, an attack can

control an intermediate router and redirect the packet to skip other routers in

the path.

4. Awareness of OSV operation. An attacker may be aware of the computation

process of OSV such as the credential generation and verification.

Additionally, we constrain the capabilities of the attacker as follows:

1Unfortunately, the term “capabilities” is used for two different concepts: tokens carried in
packets and abilities available to an entity. In this case, we refer to the latter.

78

5. An attacker does not have access to the secrets associated with the credential

information between users and providers. We assume that the delivery of secret

key material is done through established cryptographic protocols.

6. An attacker cannot stop legitimate packets along the path. Techniques for

avoiding such black hole attacks are beyond the scope of this chapter and are

addressed in related work.

7. If an attacker transmits a modified copy of an authorized packet, this packet

cannot arrive before the original one. This ordering necessary to ensure that

when detecting the replay of a valid credential, the original packet can be iden-

tified by the earlier arrival time. This constraint is typically easy to achieve

since an attacker may require additional computation and potentially routing

detours to create and deliver modified packets with replayed credentials.

In Section 4.6.1, we discuss how the proposed OSV achieves the stated security

requirements.

4.3.3 Limitations

While OSV is effective for source authentication and path validation, there are

several functions OSV is not designed for:

1. OSV does not guarantee the security and integrity of the packet during forward-

ing; After a packet departs a node, any downstream node can send it anywhere.

It seems extremely hard to prevent such misbehavior. However, OSV can con-

tain it: honest nodes drop packets that do not contain a proof of having passed

through every intended prior node on the path.

2. OSV does not provide authenticated information about the location of silent

errors or failures on the path. Intermediate routers or the destination can send

79

SourceSource Node 1Node 1 Node 2Node 2 Node kNode k

Provider 1Provider 1 Provider 2Provider 2 Provider kProvider k

. . .

. . .

Figure 4.1. OSV’s forwarding process.

an error message to the source, but the source cannot discover where this error

happened if none of the upstream routers initiates the message.

3. OSV does not provide information about whether a packet received any contracted-

for service at a node. For instance, if a sender chooses to send a packet through

a particular node because the node advertised a virus-scanning service, the re-

ceiver can check if the packet was forwarded through the node, but cannot verify

that the packet was actually scanned.

4. OSV nodes can copy packets and send them elsewhere, or pass packets through

hidden nodes. This, too, seems very hard to prevent in a federated environment.

However, unlike in the status quo, OSV senders and receivers can restrict the

path to providers that they trust not to leak their packets.

4.4 OSV Overview

In this section, we describe OSV system in general terms, deferring some design

details to Section 4.5.

OSV is a mechanism that allows each node on a selected path to verify that a

packet indeed originated from the claimed source and followed the selected path. A

deployment scenario for OSV is to implement this verification during layer 3 forward-

ing on OSV nodes at the ingress point of a provider’s network. Internal routers (or

forwarders) do not need to run OSV, just as the internal routers may implement a

80

Table 4.1. A full description of the relevant notations in Chapter 4.

Symbols Description

k The path length.
n The length of the credentials, currently we choose n=128.
S The source node.
Ni The nodes in the path, including the intermediate routers and the

destination. (1 ≤ i ≤ k)
c The credential in the forwarded packet which is generated by S.

PV Fi Field in the packet enabling Ni to verify the traversed path. PV Fi

is updated when the packet is forwarded on each intermediate
node.

OVi Field in the packet enabling Ni to verify the traversed path. OVi

is generated by S and remains the same during the forwarding
process.

sumi A sum vector of the valid credentials c received by Ni to prevent
replay attacks. The initial value of sumi is 0.

H The selected n× n Hadamard matrix.

mS The number of rows (i.e., hjS) saved in S.

mi The number of rows (i.e., hjNi
) saved in Ri.

KS Local secret of S.
KNi Local secret of Ni.
F (·) Pseudorandom function.

hjS The jth orthogonal sequence in {h1S , ..., h
mS
S } that is saved in S.

hjS is used to generate c, PV Fi and OVi. (1 ≤ j ≤ n).

hjNi
The jth orthogonal sequence in {h1Ni

, ..., hmi
Ni
} that is saved in Ni.

hjNi
is used to both verify the packet source and path.

rjS A pseudorandom sequence corresponding to the jth orthogonal
sequence in {h1S , ..., h

mS
S } using secret KS , where rjS = F (KS |j).

rjNi
A pseudorandom sequence corresponding to the jth orthogonal
sequence in {h1S , ..., h

mS
S } using secret KNi , where rjNi

= F (KNi |j).

81

different protocol from that of the border router. In this chapter, each provider or

node along the path is assumed that they do not trust each other, therefore they do

not share secrets.

To communicate with a destination, a source node S chooses the path that it

wants. In this chapter, we do not discuss how S finds that path since our focus is on

the verification. The forwarding process of OSV is shown in Figure 4.1. We divide

this process into 4 steps, which are described in the following. The notation we use

in this chapter is summarized in Table 4.1.

After determining the path, the source node S first communicates with the providers

of the nodes along the path to deliver the credential information (Step 1 in Figure 4.1).

In OSV system, the credential information that is used for verification is generated by

the source node S. During the communication process in Step 1, source node S will

deliver different credential information to each node Ni, respectively. This credential

information is based on the generation of a Hadamard matrix, which was introduced

in Section 3.4.4. In Section 4.5.1, we describe what is the credential information and

how it is generated and delivered to the providers. The generated credentials certify

the provider’s consent to carry packets along that path. In addition, S uses the cre-

dential information to construct the Path Validation Field (PVF) in the packet, which

enables the nodes in the path to verify that the correct path has been followed so far.

During this communication process, the providers also get necessary information for

verification, which they pass on to their respective OSV nodes (Step 2 in Figure 4.1).

Before each packet’s transmission, S uses the credential information to construct

the verification fields in the packet header (Step 3 in Figure 4.1). The packet header

format is shown in Figure 4.3 (the explanation of the lengths of PV F and OVi are in

Section 4.6). Credential c is used for source authentication, PV F and OVi (Original

Validation) are used for path validation.

82

When receiving a packet, node Ni performs the following verification steps (Step

4 in Figure 4.1):

• Source authentication: Verify credential c to check whether the packet was sent

from S;

• Path Validation: Verify PV Fi and OVi to check whether the packet is forwarded

on the selected path;

• Field update: If the packet is verified as valid, (1) update the saved vector

sumi, which is the sum of the received valid credentials and used to prevent

replay attacks; (2) update PV Fi to prove to the downstream nodes that Ni has

forwarded the packet.

The details of the verfication is in Section 4.5.3. Finally, when the packet arrives

the destination (node Nk), the same verification process is used to achieve end-to-end

source authentication and path validation.

We note that OSV only considers the problems of the packet authentication in

Steps 3 and 4. We assume that the communications in steps 1 and 2 for connection

setup are private and the service credentials (or credential seeds) are not observed by

a third party. This end-to-end security can be achieved by using existing protocols

(e.g., TLS/SSL). Almost all the related work have made this assumption.

4.5 Design Details of OSV

In this section, we provide details on OSV’s design. We first introduce the setup of

the OSV protocol and then describe the details of packet initialization and verification.

83

Table 4.2. Credential information saved in source node S and each node Ni along
the path.

node S node Ni

saved H, KS, {h1Ni
, ..., hmi

Ni
},

information {KN1 , ..., KNk
} KS, KNi

hN1
1hN1
1

......

hN1

m1 hN1

m1

hhNi
11hNi
1

......

hNi

mi hNi

mi

...

1

...

......

hNk
1hNk
1

......

hNk

mk hNk

mk

Node N1’s rows.

Node Ni’s rows.

Node Nk’s rows.

hS
1hS
1

......

hS
mshS
ms

Source node S’s rows.

Figure 4.2. An illustration of the splitting of a generated Hadamard matrix.

4.5.1 OSV Initialization

We introduce what are the source/router credential “secrets” and how they are

transmitted between the source node and all the routers, which are Steps 1 and 2 in

Figure 4.1.

When a path of nodes (i.e., < N1, N2, ..., Nk >) is determined by the source

node S, S generates a random n× n Hadamard matrix H locally. Related work has

derived many construction methods for generating a Hadamard matrix for a given

n [8]. The Hadamard construction method in our system is a simple, but efficient one

– Kronecker Product Construction (a detailed description of this construction method

84

can be found in Section 3.6. H is different for each connection in the network since

we use random transform operations during the construction process, where a proof

by experiments can be also found in Section 3.6. In Step 1 in Figure 4.1, source node

S delivers to each node Ni several different rows of H (through standard security

protocols that ensure authenticity, integrity, and privacy). Node Ni saves these rows

locally. The remaining rows of H are used by source node S to construct credentials.

The different rows saved in each node Ni are used to verify the further packets sent

from the source node S. An illustration of the splitting of the generated Hadamard

matrix H is shown in Figure 4.2.

In our system, the number of rows, mi, that each node Ni selects is a very small

fraction of H, so that they cannot be used to construct the original H. Besides, each

node Ni is not able to generate the rows saved in other nodes. For example, in our

prototype implementation, n = 128 and mi = 3. Only the source node S is aware of

each node Ni’s orthogonal sequences, while nodes in the network do not know other

nodes’ sequences. We denote the rows of H saved in Ni as {h1Ni
, h2Ni

, ..., hmi
Ni
}. The

rows used as credentials by S are denoted as {h1S, h2S, ..., h
mS
S }. Therefore, the n× n

Hadamard matrix H generated by source node S can be expressed as:

H = {h1N1
, h2N1

, ..., hm1
N1
, ..., h1Ni

, h2Ni
, ...,

hmi
Ni
, ..., h1Nk

, h2Nk
, ...hmk

Nk
, h1S, h

2
S, ..., h

mS
S }, (4.1)

where mS +
∑k

i=1mi = n.

In addition, source node S also shares its local secret KS with each node Ni, and

Ni also shares its local secret KNi
with S. But any given node does not know another

node’s local secret. These secrets KS and KNi
are used to generate the pseudorandom

sequence r by a pseudorandom function (PRF) F .

In summary, in Step 1, (1) source node S generates a hadamard matrx H locally;

(2) source node S then delivers specific rows {h1Ni
, h2Ni

, ..., hmi
Ni
} to each corresponding

85

IP header

version header length credential length

row index

credential

TCP/UDP/ICMP header

protocol

matrix index

user ID

32 bits

8 16 24

Figure 4.3. OSV header.

provider or node Ni, respectively; (3) source node S delivers its local secret KS to

each node Ni, and each node Ni also delivers its own secret KNi
to source node

S. In Step 2 in Figure 4.1, each provider delivers these credential information to

their corresponding nodes for verification and forwarding. Table 4.2 summarizes the

credential information saved in source node S and each node Ni.

4.5.2 Packet Initialization

After introducing the setup of credential information between S and Ni, we now

describe the detailed computing process of an OSV packet initialization. which is the

Step 3 in Figure 4.1:

4.5.2.1 Credential Generation

Each time when source node S wants to send a packet on the selected path, it

puts a credential c in the packet header. Each node Ni along the path then uses the

credential c to verify whether this packet comes from source node S. Each credential

c is constructed by using an unused row in {h1S, h2S, ..., h
mS
S }. When all the rows are

used, source node S will generate a new Hadamard matrix and repeat the Step 1

in Figure 4.1. In real implementations, the source node generates multiple different

Hadamard matrices locally at a time, and deliver multiple sets of {h1S, h2S, ..., h
mi
Ni
} to

each node Ni to avoid repeating step 1.

86

We use j to denote the index of an unused row. S chooses this unused row, denoted

as hjS, and computes a pseudorandom sequence rjS = F (KS|j). The credential, c, then

is

c = hjS + rjS = hjS + F (KS|j). (4.2)

The reason why we add rjS with hjS is that, if hjS is observed by an attacker, the attacker

can get a valid sequence by generating lots of sequences that are orthogonal to hjS.

Therefore, rjS can help decrease the probability for attackers to forge a valid credential.

The pseudorandom sequence rjS can help decrease the probability for attackers to forge

a valid credential significantly. Note that each Ni is able to regenerate rjS since KS is

shared with them and the index j can be found in OSV packet header.

4.5.2.2 OVi Generation

For each node Ni, S first computes corresponding pseudorandom sequence rjNi
by

rjNi
= F (KNi

|j). Then, the corresponding OVi for each node Ni is calculated by

OVi = hxNi
·
(
rjS +

i−1∑
p=1

rjNp

)
, (4.3)

where x is a random chosen integer between 1 and mi. In particular, OV1 = hxN1
· rjS.

The symbol ‘·’ denotes an inner product computation.

We use a random x to increase the variability of OVi in each packet sent from S

leading to a higher security. Because the inner product result of hpNi
(1 6 p 6 mi)

of node Ni and hp
′

N ′i
(1 6 p′ 6 m′i) of node N ′i is always zero, no matter which row is

chosen. More details can be found in Section 4.5.3.

87

4.5.2.3 PV F Generation

S generates PV F0, the initial PV F value, as

PV F ← PV F0 = hjS + rjS. (4.4)

During the packet’s forwarding process, PV F is updated by each node Ni along the

path, while the credential c and each OVi never change.

After the source node computes c, OVi and PV F , it inserts these values into the

packet header and transmits the packet toward the first node N1. The pseudo code

of the algorithm for packet initialization is shown in Algorithm 7.

4.5.3 Packet Verification and Forwarding

We now describe what each node Ni does when forwarding the packet, which is

Step 4 in Figure 1. This step contains two parts – packet verification and update.

The first part can be further divided into source authentication and path validation.

The second part is performed only when the packet is verified as valid.

4.5.3.1 Source Authentication

This verification step uses credential c in the OSV header. Node Ni computes

source node S’s corresponding pseudorandom sequence rjS = F (KS|j), yielding the

calculated orthogonal sequence (denoted as h, where h = c− rjS). The credential c is

valid when it satisfies

∀p (1 6 p 6 mi), h · hpNi
= 0. (4.5)

In Section 3.6, experiments show that it is a very low probability (below 10−5)

for a random h that is orthogonal to all hpNi
(1 6 p 6 mi). Furthermore, to prevent

a replay attack, h is also used to compute the inner product with sumi to check if c

has been used or not. An unused and used c (c = h+ rjS) always satisfies h · sumi = 0

and h · sumi = |h|2 6= 0, respectively.

88

4.5.3.2 Path Validation

This verification step uses PV Fi−1 and OVi in the OSV header. A packet that

has passed through all the upstream nodes satisfies the following equation:

∃p (1 6 p 6 mi), h
p
Ni
· PV Fi−1 = OVi. (4.6)

The above equation is true since node Ni−1 will update the value of PV F in the

packet from PV Fi−2 to PV Fi−1 as the following:

PV Fi−1 = PV Fi−2 + hxNi−1
+ rjNi−1

. (4.7)

Note that PV F0 = hjS + rjS, so we can get

PV Fi−1 = hjS + rjS +
i−2∑
p=1

(hxNp
+ rjNp

) + hxNi−1
+ rjNi−1

= hjS + rjS +
i−1∑
p=1

(hxNp
+ rjNp

). (4.8)

As with Equation 4.3, x is a randomly chosen integer ranging from 1 to mp.

Assuming x′ is an integer that satisfies 1 6 x′ 6 mi, Equation 4.6 is true since

hx
′

Ni
· PV Fi−1

= hx
′

Ni
· hjS︸ ︷︷ ︸

equals 0

+
i−1∑
p=1

(hx
′

Ni
· hxNp︸ ︷︷ ︸

equals 0

) + hx
′

Ni
· rjS +

i−1∑
p=1

(hx
′

Ni
· rjNp

)

= hx
′

Ni
· rjS +

i−1∑
p=1

(hx
′

Ni
· rjNp

). (4.9)

The right side of the above equation equals OVi when x′ = x in Equation 4.3. There-

fore, OSV can achieve the path validation through updating PV F by each node Ni

along the path.

89

We describe the verification on node N1 as an example. When a packet is sent

from S to N1, N1 does the following computation using different hpN1
(p = 1, ..,m1):

hpN1
· PV F0 = hpN1

· (hjS + rjS) = hpN1
· rjS. (4.10)

N1 finds a specific hpN1
that makes the result equal to OV1 (OV1 = hxN1

· rjS). Note

that computations with different hjN1
do not cause much overhead since mi is typically

very small in OSV (less than 5). After the verification, N1 updates PV F from PV F0

to PV F1:

PV F1 = PV F0 + hxN1
+ rjN1

= hjS + hxN1
+ rjS + rjN1

, (4.11)

where rjN1
= F (KN1|j) isN1’s corresponding pseudorandom sequence. We can observe

that hpN2
· PV F1 = hpN2

· (rjS + rjN1
), where the result equals to OV2 when p equals to

the x chosen by source node S.

4.5.3.3 Field Update

When the packet passes both source authentication and path validation, node Ni

update PV F in the packet to prove to downstream nodes that it has forwarded the

packet. The operations are discussed above and are shown in the following equation:

PV F ← PV Fi = PV Fi−1 + hxNi
+ rjNi

, (4.12)

where x is a random chosen integer ranging from 1 to mi.

In addition, node Ni needs to update its local variable sumi with sumi ← sumi +

hjS. This sumi can be used to identify replay attacks. This is because, for a replay

packet, the result of the inner product of h (h = c − rjS) and sumi equals ||h2|| but

90

Algorithm 7 OSV header initialization pseudo code.

1: function Source Initialization
Require: (a) Generated Hadamard matrix H; (b) Secrets KS and each KNi

that Ni

shares with S, respectively.
B The detailed method of generating H is in [20]

2: if all rows in {h1S, h2S, ..., h
mS
S } in H are used then

3: Generate a new H = {h1S, h2S, ..., h
mS
S , h1N1

, h2N1
,

..., hm1
N1
, ..., h1Ni

, h2Ni
, ..., hmi

Ni
, ..., h1Nk

, h2Nk
, ...hmk

Nk
}

4: j ← the index of an unused row in {h1S, h2S, ..., h
mS
S }

5: rjS ← F (KS|j)
6: c← hjS + rjS
7: PV F ← PV F0 = hjS + rjS
8: for each node Ni on the path, where 1 6 i 6 k do
9: rjNi

← F (KNi
|j)

10: x← a random chosen integer between 1 and mi

11: OVi ← hxNi
·
(
rjS +

∑i−1
p=1 r

j
Np

)
12: end function

not 0 either. When a new Hadamard matrix is used, Ni resets the value of sumi to

zero.

Using the above process, source authentication and path validation can be achieved.

The pseudo code of the algorithm for packet validation and update is shown in Algo-

rithm 8.

4.6 Evaluation

We present an evaluation of OSV consisting of three aspects: a security analysis

based on our security model, a performance evaluation based on emulation of a broad

design space, and a prototype evaluation based on an implementation in a testbed.

4.6.1 Security Analysis

We describe how OSV meets the security requirements described in Section 4.3.2.

OSV achieves source authentication and path verification by merely requiring that the

source and each node Ni along the path are trusted (since they exchange secret key

information to generate matrices used in OSV). However, no entity along the path

91

Algorithm 8 OSV header validation and update (in Node Ni) pseudo code.

1: function OSV header validation and update
Require: (a) Received OSV packet header that contains c, j, OVi, PV F and etc;

(b) Secrets KS and KNi
; (c) Rows {h1Ni

, ..., hmi
Ni
} from H.

2: rjS ← F (KS|j)
3: h← c− rjS

B 1) Source authentication (the detailed method is in [20])
4: for 1 6 p 6 mi do
5: if h · hpNi

6= 0 then
6: Drop the packet

7: if h · sumi 6= 0 then
8: Drop the packet

B 2) Path Validation
9: (Note PV F in OSV header = PV Fi−1)

10: flag ← False
11: for 1 6 p 6 mi do
12: if hpNi

· PV Fi−1 == OVi then
13: flag ← True
14: break
15: if flag ==False then
16: Drop the packet

B 3) Field Update
17: x← A random chosen integer between 1 and mi

18: Update PV F ← PV Fi = PV Fi−1 + hxNi
+ rjNi

19: Update sumi ← sumi + hjS
20: end function

needs to trust another entity. This property holds on any network configuration,

including ones that have malicious routers. Thus, item 2 of the security requirements

is met by design. To examine the other two security requirements, we consider various

potential attacks.

Attack by brute force: The router uses orthogonal sequences hjNi
to make these

attacks very difficult. A randomly generated credential has a very low probability to

be orthogonal with all hjNi
. For instance, when n = 128 and mi = 3, this probability

is below 10−4.5 (this results is described in more detail in Section VI of [20]). Besides,

this kind DoS attack cannot exhaust computational resources on routers, either, since

the packet is discarded within very few inner product computations, as shown in the

92

experiment results in Section 4.6.2.2. Thus, we can achieve item 1 of the security

requirements in Section 4.3.2.

Replay attack: Replay attacks are prevented by use of the sum vector sumi that

is stored in routers. The detection of a replayed credential works because once one

row from a Hadamard matrix (denote as h) has been verified to be valid, then it is

added into sumi by node Ni. Thus, we have (h, sumi) = (h, h) = |h|2 6= 0 while the

use of a valid, unused h still results in 0. Together with item 7 of attacker capabilities,

we can thus ensure that item 1 of the security requirements is ensured under replay

attacks.

Attack by controlling the intermediate router: It means that the attacker

can compromise and learn some set of rows in the matrix H. However, it is impossible

for the attacker to generate the original H since each router Ni only saves a very

small fraction of H (less than 5 rows in a 128 × 128 H). It is also a very low

probability (below 10−5) for a random generated credetnial that is orthogonal to all

hpNi
(1 6 p 6 mi) in any other Node Ni. Besides, the matrix H will change when the

rows {h1S, h2S, ..., h
mS
S } in source node S are all used.

Path deviation attack: OSV ensures that a successful verification of PV Fi−1

against OVi implies that a received packet Ni has traversed all routers in the intended

path in correct order. The attacker does not possess KS and hjNi
, which is required to

compute PV Fi and OVi. The verification in Equation 4.6 does not succeed if PV Fi

has not been updated by routers or has been updated in an incorrect order. This

verification ensures that a malicious router cannot mount and attack where traffic

skips routers or traverses them out-of-order. Besides, if a malicious router selects a

path not intended by the source, an honest intermediary router rejects the packet.

Thus, we can achieve item 3 of the security requirements since traffic must come from

the specified source along the intended path.

93

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

path length

p
a
c
k
e
t

la
te

n
c
y
 (

n
s
 i
n

 l
o

g
1
0
 s

c
a
le

) Source node

router (valid packets)

router (replay packets)

router (arbitrary packets)

Figure 4.4. Packet processing latency of OSV (in a log10 scale).

Attack that compromises secrets: Even if an attacker knows every process-

ing step taken by the source and routers, it cannot create valid credentials or PV Fi

since it does not have the whole secret key material (item 5 of attacker capabilities),

which is shared through established end-to-end security protocols (e.g., TLS/SSL).

The Hadamard matrices are also difficult to be guessed due to their variability. Fur-

thermore, during a packet’s forwarding, we add a pseudorandom sequence r with

orthogonal sequence h, which avoids that an attacker can observe h directly.

Based on these considerations, we conclude that OSV achieves the stated security

requirements and thus provides effective source authentication and path validation.

4.6.2 Performance Evaluation

Next, we evaluate OSV with respect to the desired performance properties. We

have implemented the credential generation and verification algorithms in C++. We

use a PC with an Intel Core2 Quad CPU Q9400 running at 2.66GHz to obtain per-

94

formance results. The operating system is Ubuntu 14.04 64-bit with kernel version

3.13.0-24 and gcc version 4.8.2. For our evaluation, we choose n = 128 and mi = 3.

4.6.2.1 Setup Latency

We first briefly evaluate the processing costs of Step 1 in Figure 4.1. The main

cost in this setup process is the time for the source node S to generate the Hadamard

matrix H. As mentioned in Section 4.5.2, S generates multiple Hadamard matrices at

a time to avoid repeating Step 1 frequently. In our implementation, we let S generate

100 Hadamard matrices at a time, which can guarantee transmitting about 10,000

packets without repeating Step 1. We run the experiments by using paths with a

number of 3, 5, 8 and 10 hops, respectively. The results have minor difference and

concentrate around 0.15ms. This is much lower than OPT, e.g., for a 8-hop path,

OPT needs about 20.68ms to setup the connection according to Table 3 in [48] (there

is no result for the setup time for ICING).

4.6.2.2 Packet Processing Latency

We evaluate the processing costs of an OSV packet initialization in source node

S, and the verification in nodes Ni along different hops in the path. The results of

our experiments are shown in Figure 4.4 (note that the unit is ns and y-axis is in a

log10 scale). We can see that the packet process latencies of OSV in source node and

routers are all below 0.01 µs.

We first measure the time of a source S to initialize a packet. We let S initialize

the packets with different Hadamard matrices H and different secret keys (KS and

KNi
). The results in Figure 4.4 show the average time by running 1 million iterations.

The latency for initializing a packet in source node S increases linearly with the path

length, since a longer path requires the source to perform more calculations on OVi.

For the verification time on routers (node Ni in the path). We use a kernel packet

generator to generate different packets and send them through the software router

95

implemented on our experimental platform. For each run, the packet generator sends

1 million packets of each type to the router. We record the average time for the router

to process each type of packet. We use 3 types of packets for this evaluation: packets

with valid credentials, packets with replayed credentials, and packets with random

credentials. The latter use arbitrary bit values for credentials, PV F and OVi. The

results show that the verification time for a replay packet or an arbitrary packet are

much less than for a valid packet. The reason is that invalid packets are discarded

in the credential verification process. In particular, arbitrary packets are discarded

within very few inner product computations with hjNi
. We also observe that the

verification time in routers is independent of the path length, because the router does

not perform any computation that depends on the path length. (Actually, a router

in OSV has no information about the path length in OSV.) The latency of verifying

the packet in Ni is less than generating a packet in S. We believe that this slight

difference does not affect of the efficiency of OSV, since the source node S typically

has a lower traffic throughput than routers.

Since OSV uses inner product computations to replace expensive cryptography

computations, its processing time is significantly lower compared to ICING and OPT.

The verification time of ICING [53] in routers is 2.6k + 24.4µs (k is the path length)

for each valid packet, which is hundreds of times more than in OSV. In OPT, the

verification time in routers is in the same scale as OSV’s. But the time for the setup

packet is too long, for instance, for a 8-hop path, OPT needs about a time of 20.68ms

to setup the connection.

4.6.2.3 Packet Overhead

We first examine how we decide the length of PV F and OVi in the OSV header,

which is shown in Figure 4.3. According to Equation 4.3 (which is an inner product

computation), the maximum value of OV is 128 log k, where k is the path length.

96

2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

path length

p
a
c
k
e
t

o
v
e
rh

e
a
d

 (
b

y
te

s
)

OSV

ICING

OPT

Figure 4.5. Packet overhead varying with increasing path length in bytes.

Therefore, we believe 2 bytes is sufficient to save this value. According to Equation 4.7

(which results in a vector), the maximum length of PV F is 128 log k (note that it is

the length, not the value).

Considering that paths with more than 30 hops are very rare in the Internet [44],

we set the length of PV F as 80 bytes. Based on these assumptions, an OSV header

includes 12+16+80=108 bytes that do not depend on the packet’s path length. Only

2 bytes that are needed for each node Ni. An comparison of the packet overhead

of OSV, ICING, and OPT is shown in Figure 4.5 for varying path lengths. Using

the same pessimistic estimate of an average provider-level path length of 5, as in

ICING [53], our packet header overhead is 118 bytes, which is 57.5% and 89.3% of

the overhead of ICING (205 bytes) and OPT (132 bytes), respectively. Besides, in

Figure 4.5, we can observe that the packet overhead of OSV is almost independent of

the path length. Therefore, OSV has a smaller network bandwidth overhead compared

to ICING and OPT.

97

4.6.2.4 Storage Consumption

We now evaluate the storage overhead in the source node and routers. As discussed

in Section 4.5.1, the source node needs to save the Hadamard matrix H, a table of the

indices of the selected rows in H by each node, and k secret keys KNi
of each node

Ni. Note that during the setup process of Step 1 in Figure 4.1, S generates multiple

Hadamard matrices and deliver multiple sets of {h1Ni
, ..., hmi

Ni
} to corresponding Ni.

But, after that, S only saves one Hadamard matrix locally. When the rows of the

current matrix are all used, it will generate a new one and also only save the new one.

Compared to ICING and OPT, OSV requires more space on the source node, be-

cause saving H and a table of indices required about 3 kilobytes. Each node Ni needs

to store mi orthogonal sequences (16 × 3 = 48 bytes), the secret key KS (16 bytes)

and a sum vector sumi (16× log 128 = 96 bytes). This leads to a total requirement of

160 bytes. Note that the router storage overhead is under a consideration of prevent-

ing replay attacks. Many authentication scheme including ICING and OPT cannot

provide anti-replay protection by default and have to keep a modestly sized cache

at each node: From this point of view, OSV can decrease the storage consumption

since it only saves the sum of the received valid credentials while other authentication

schemes need to save all the received valid credentials. For example, when OSV uses

a space of 96 bytes to prevent all replay packets, other authentication schemes need a

16× 16 = 256 bytes space. Even if the additional cache for preventing replay attacks

is not considered, the storage overhead for OSV in routers is almost the same as for

ICING and OPT.

4.6.3 Deployment on Testbed

We have deployed OSV on ExoGENI [9] to demonstrate that OSV can work in

a real network. We use the Netfilter Queue to insert the OSV header between TCP

and IP headers. In the experiment, we let source node S generate traffic at a rate of

98

200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

Packet payload (bytes)

B
a

n
d

W
id

th
 (

M
b

p
s

)

Throughput without OSV (4 hops)

Throughput with OSV (4 hops)

Goodput with OSV (4 hops)

Throughput without OSV (12 hops)

Throughput with OSV (12 hops)

Goodput with OSV (12 hops)

Figure 4.6. Throughput and goodput of OSV for 4-hop and 12-hop paths, in the
context of varying payload sizes.

100Mbps and we observe the traffic sent from the intermediate routers. We compare

the throughput when the nodes use and not use OSV protocol, and show OSV is a

lightweight and scalable protocol.

We first examine OSV’s overhead in terms of per-packet processing by measuring

both the throughput and the goodput (the bandwidth used to transmit the payload of

the packets, excluding OSV header). The results are shown in Figure 4.6. We can see

that no matter what size of the payload is, enabling or disabling OSV protocol does

not have noticeable effect on the throughput. This is because the packet forwarding

takes far more time than the OSV process. This demonstrates the low verification

time of OSV which is shown in Section 4.6.2.2. Cryptography schemes like ICING

and OPT, in contrast, have lower throughput for small packet sizes due to computa-

tional demands. For instance, ICING can only achieve about 50% of the maximum

throughput when the payload size is 256 bytes. We can also observe the goodput of

99

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Path length

B
a
n

d
W

id
th

 (
M

b
p

s
)

Throughput without OSV (256B)

Throughput with OSV (256B)

Goodput with OSV (256B)

Throughput without OSV (1024B)

Throughput with OSV (1024B)

Goodput with OSV (1024B)

Figure 4.7. Throughput and goodput of OSV for 256B and 1024 packets, in the
context of varying path lengths.

OSV increases as the packet size increases. This is because OSV header represents a

smaller fraction of the total packet size as the payload size increases. The goodput

of OSV with a 4-hop path is slightly higher than that with a 12-hop path is due to a

smaller OSV header size. Besides, the source node needs to generate new Hadamard

matrices and deliver the credential information to each router more frequently when

the path length increases.

We then examine the OSV’s scalability with respect to the path length. We

perform tests with a minimum path length of 2 hops and a maximum path length of

16 hops. The results are shown in Figure 4.7. As the same in Figure 4.6, enabling

or disabling OSV protocol does not have noticeable effect on the throughput. The

goodput of OSV decreases slowly when the path length increases. This is because the

OSV header size only increases 2 bytes for each additional hop, and the computing

process of OSV in the router is irrelevant to the hops of the selected path. ICING

100

and OPT’s goodput both show a faster decrease with increasing path length. We use

the results from Figure 4.7 to compare with Figure 7 in [48]: when the packet size

is 256 bytes, OSV’s per-hop goodput degradation ratio is 57.8−51.0
57.8·14 = 0.84%, while

OPT’s is 3.03% and ICING’s is 5.74%; when the packet size is 1024 bytes, OSV’s

per-hop goodput degradation ratio is about 74.7−69.2
74.7·14 = 0.53%, while OPT’s is 1.25%

and ICING’s is 2.80%. Furthermore, when the path length is 2, OSV’s goodput

is 57.8
83.0

= 69.6% (for 256B packet size) and 74.7
83.0

= 90.0% (for 1024B packet size),

respectively, which is also better than OPT and ICING (they are both 62% for 256B

packet size and 85% for 1024B packet size). Therefore, OSV always has a better

goodput compared to ICING and OPT.

4.7 Conclusions

In this chapter, we present a novel technique for both source authentication and

path verification, called OSV (Orthogonal Sequence Verification). OSV uses orthogo-

nal capabilities that are carried in packets for verification, which can be implemented

efficiently by basic bitwise operations on a processor. Our experimental results show

that the verification time in OSV is much lower than that existing approaches while

providing the necessary security guarantees. We believe that Orthogonal Sequence

Verification represents an important step toward more security in networks by pro-

viding efficient and effective source authentication and path validation.

101

CHAPTER 5

DEPLOYMENT ON CONTAINERS

In this chapter, we will use “Docker” [1] as the tool to evaluate the effectiveness

and performance of our proposed path validation mechanism. Container is a form of

lightweight virtualization, which provides an alternative means to partition hardware

resources among users and expedite application deployment. Container technique is

gaining increasing attention in recent years and has become an alternative to tra-

ditional virtual machines. Some of the primary motivations for the enterprise to

adopt the container technology include its convenience to encapsulate and deploy

applications, lightweight operations, as well as efficiency and flexibility in resources

sharing [74].

5.1 Setup

A single host can have multiple containers running on it. The containers may have

to communicate with each other and by using docker networking. There are multiple

container networking modes on a single host, where we choose “bridge mode” in our

deployment. As shown in Figure 5.1, Docker creates a bridge named docker0 in the

host OS once the Docker daemon dockerd is launched. When a new container is

started, a pair of veth ports are created to connect the container to docker0. All

containers connecting to Docker0 belong to one virtual subnet and can communicate

with each other using private IP addresses. Bridge mode alone does not connect

containers to external networks and relies on other services, such as NAT and overlay,

for inter-host communication. Bridge mode allows each container to own an isolated

102

Figure 5.1. Container networking on a single host.

network namespace and an IP address, and all intercontainer communications need

to go through the docker0 bridge.

We deploy two different docker containers as a source node and a router on a single

host. The host is a PC with an Intel Core i7 Quad CPU running at 2.7 GHz.These two

containers are connected to one Docker0 bridge and have no connection to external

networks, so that we can evaluate their performance. These two containers both

boot from a Ubuntu18 docker image and are allocated with a separate cpu core [2],

respectively. The source node and route use python scripts to generate, send, receive

packets and do verification on the credentials in them. Figure 5.2 shows the usage

of the scripts on source node and router. In the deployment, we will evaluate the

performance when the credential length is 32, 64 and 128.

5.2 Defense on Packets with Random Credentials

We first want to show the security effectiveness of our algorithm that can defend

the attacks from the packets with random credentials. Figure 5.3 shows an example of

using scripts to send and receive packets with random credentials between source and

router (credential length is 64). We can see that the verification results are “false”.

103

(a) Usage of python script on source node. (b) Usage of python script on router.

Figure 5.2. Usage of the python scripts on source node and router to generate, send,
receive packets and do verification on the credentials in them.

We simulate a scenario when an attacker sends random credentials with different

credential lengths (i.e., n) and the number of credentials used on the router (i.e.,

m). As explained in Section 4.5.3, a credential is verified as “valid” should satisfies

two conditions. The first condition is that the credential passes the verification of

the saved credentials in the router, another condition is that the credential passes

the verification of the saved sum of received credentials in the router. If the router

does not receive any valid credential yet, the sum will be zero and any credential

can satisfy the second condition. So our simulation includes the cases of the router

received valid credentials or not.

Figure 5.4 shows the success probability of such random attack varying with an

increasing number of saved credentials in the router. We can see that, after the router

receives valid credentials (labeled as “with sum” in the figure), the success probability

becomes lower. It can be also observed that, when n = 128 and m > 8 or when n = 64

and m > 12, it can guarantee the breakthrough probability less than 10−6, which can

be considered safe enough. We can get that, even if the packet transmission rate of

an attacker is as high as 10,000 pkt/s, then it still needs nearly 2 minutes to guess

a valid credential. During the 2 minutes, the source node might already change a

104

(a) Send packets with random credentials on source
node (credential length is 64).

(b) Receive packets with random credentials on
router.

Figure 5.3. Send and receive packets with random credentials between source node
and router (credential length is 64).

Figure 5.4. Successful probability of attacks of packets using random credentials,
including the cases that the router received valid credentials or not.

multiple of Hadamard Matrices. For some services with low-security requirements,

we consider 32-bit or 64-bit credentials can also be used with a proper chosen m.

5.3 Defense on Packets with Duplicate Credentials

In this section, we simulate a scenario where an attacker sends replay packets. We

send a number of packets with valid credentials to the router first. Then, we send the

same packets to the router again and the result is that all these replay packets are

discarded by the verifier no matter what the credential length is. Figure 5.5 shows

an example of using scripts to send and receive packets with duplicate credentials

between source and router (credential length is 64). We can see that the verification

results are “false”.

105

(a) Send packets with duplicate credentials on
source node (credential length is 64).

(b) Receive packets with duplicate credentials on
router.

Figure 5.5. Send and receive packets with duplicate credentials between source node
and router (credential length is 64).

(a) When the number of creden-
tials used on router is 3.

(b) When the number of creden-
tials used on router is 10.

(c) When the number of creden-
tials used on router is 20.

Figure 5.6. The forwarding rate of the router varies with increasing sending rate of
the source node when the credential length is 64 and the number of credentials used
on router is 3, 10 and 20, respectively.

5.4 Evaluation on Verification Overhead

In this section, we evaluate the overhead of the router that takes the verification

on the receiving packets from the source node. Our experiments records the packet

forwarding rate on the router with increasing packet sending rate from the source

node with and without our verification mechanism. As mentioned in Section 5.1, the

source node and router uses a different CPU core and both have enough memories,

so we think they do not interfere with each other. When the experiment is running,

we can use command “docker stat” to observe the cpu usages of the source node and

the router, which are both nearly 100%.

Figure 5.6 shows the forwarding rate of the router varies with increasing sending

rate of the source node when the credential length is 64 and the number of credentials

used on router is 3, 10 and 20, respectively. The experiments record the results when

the source node sends packets with valid, random and replay credentials, respectively.

106

Figure 5.7. The maximum forwarding packet rates with increasing number of cre-
dentials used on the router with different credential length.

Besides, in order to analyze the overhead of the router due to the extra verification,

we also record the results when the source node send packets without credentials. In

this situation, the router does not need to do verifications on them. We can observe

that, when the number of credentials used on the router is 3, the forwarding rate

of the router goes to a limit that is around 2500pkts/s for verifying the valid or

replay packets. This number is around 2300 and 2000pkts/s when the the number

of credentials is 10 and 20, respectively. However, the forwarding rate is around

3150pkts/s and does not change much when the the number of credentials changes.

This is because the router can discard the invalid credential within the first very few

inner product computations.

As shown in Figure 5.7, we compare the maximum forwarding packet rates with

different credential length and different number of credentials used on the router. We

can observe that the forwarding packet rates for packets with random credentials are

very close when the credential length changes. The reason is because the inner product

107

computation does not take much resource no matter the length of the credential is.

We can calculate the overhead is about extra 15% processing time for the router. For

the packets with valid and replay credentials, the overheads vary with the increasing

credential lengths. From Figure 5.4, we can know that it would be secure enough when

number of credentials used in the router is 10 for the 128-bit credential. Therefore, we

can calculate that the maximum possible overhead for verifying the valid and replay

packets are about extra 50% processing time in the router.

108

CHAPTER 6

SUMMARY

The exponential growth of the current Internet has been extraordinary. An impor-

tant developing trend of the current Internet is that the network owners and operators

has more controls on their infrastructure and data flows, allowing customization and

optimization, and reducing the overall capital and operational costs. The benefits of

convenient controlling the whole map of the entire network enables the introduction

of new features in Internet becomes less manual, less prone to error, and faster to

implement.

This work addresses some fundamental problems in the current Internet. The first

one is the path finding, i.e., determining a path for traffic to flow between communi-

cating end-system, which is a core functionality in such networks with the data flow

control. In typical networks, path finding is based on a single criterion, such as path

length, delay, or an artificially defined weight. However, networks have grown in leaps

and bounds so that single-criterion shortest paths no longer fit the whole spectrum

of services that exist in todays networks. Multi-Criteria path problem has been ad-

dressed in several contexts, for example Quality of Service (QoS) routing. But when

there are multiple optimization metrics, most approaches rely on an combinatorial

optimization function, which combines all metrics into a single metric (e.g., weighted

sum). In contrast to these algorithms, our aim is to search the whole spectrum of all

the possible optimal paths that have advantages even on any one metric, which can

help the network owner or operator is able to take a full consideration.

109

Another fundamental problem this work address is the path verification, which

can be divided into source authentication and path validation further. Most of the

existing approaches are either unable to satisfy security requirements or need signif-

icant computational resources due to cryptographic operations, thus limiting their

suitability in practice where potentially every packet needs to be checked at line rate.

This work presents OrthCredential(orthogonal vredentials) and OSV (orthogonal se-

quence verification), two lightweight and scalable technique to address the source

authentication and path validation, respectively. OrthCredentialand OSV both use

orthogonal capabilities to enable source authentication and path verification simul-

taneously. The verification of these orthogonal capabilities is based on inner product

computations, which can be easily realized by basic bitwise operations in a processor.

Therefore, OrthCredentialand OSV significantly reduces computational cost, while

achieving the necessary security properties.

We believe the design and implementation of the path finding and verification

algorithms in this work represents an important step toward more efficiency and

security in networks.

110

BIBLIOGRAPHY

[1] docker. https://www.docker.com.

[2] Docker runtime options with Memory, CPUs, and GPUs. https://docs.

docker.com/config/containers/resource_constraints/.

[3] libnetfilter queue. http://www.netfilter.org/projects/libnetfilter_

queue/.

[4] Albert, Réka, and Barabási, Albert-László. Topology of Evolving Networks:
Local Events and Universality. Phys. Rev. Lett. 85 (Dec 2000), 5234–5237.

[5] AMD. AMD Athlon Processor x86 Code Optimization Guide, 2002.

[6] Anderson, Tom, Roscoe, Timothy, and Wetherall, David. Preventing Internet
denial-of-service with capabilities. SIGCOMM Comput. Commun. Rev. 34, 1
(2004), 39–44.

[7] Argyraki, K., and Cheriton, D.R. Scalable network-layer defense against internet
bandwidth-flooding attacks. IEEE/ACM Transactions on Networking 17, 4 (Aug
2009), 1284–1297.

[8] Assmus Jr., E. F., and Key, J. D. Designs and their codes. Cambridge University
Press, Cambridge, Great Britain, 1992.

[9] Baldine, Ilia, Xin, Yufeng, Mandal, Anirban, Ruth, Paul, Heerman, Chris, and
Chase, Jeff. Exogeni: A multi-domain infrastructure-as-a-service testbed. In
Testbeds and Research Infrastructure. Development of Networks and Commu-
nities, vol. 44 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer Berlin Heidelberg,
2012, pp. 97–113.

[10] Barabasi, Albert-Laszlo, and Albert, Reka. Emergence of Scaling in Random
Networks. Science 286, 5439 (1999), 509–512.

[11] Barber, C. Bradford, Dobkin, David P., and Huhdanpaa, Hannu. The Quickhull
algorithm for convex hulls. ACM Transactions on Mathematical Software 22, 4
(1996), 469–483.

[12] Barrett, Chris, Bisset, Keith, Holzer, Martin, Konjevod, Goran, Marathe, Mad-
hav, and Wagner, Dorothea. Engineering Label-Constrained Shortest-Path Al-
gorithms. In Proceedings of the 4th International Conference on Algorithmic
Aspects in Information and Management (2008), AAIM ’08, pp. 27–37.

111

[13] Bellman, Richard. On a routing problem. Quarterly of Applied Mathematics 16,
1 (Jan. 1958), 87–90.

[14] Black, John, Halevi, Shai, Krawczyk, Hugo, Krovetz, Ted, and Rogaway, Phillip.
UMAC: Fast and secure message authentication. In Proc. of (CRYPTO)
(Springer-Verlag, 1999), pp. 216–233.

[15] Boncelet, C.G., Jr. The NTMAC for authentication of noisy messages. Informa-
tion Forensics and Security, IEEE Transactions on 1, 1 (2006), 35–42.

[16] Bradshaw, Robert W., Holt, Jason E., and Seamons, Kent E. Concealing complex
policies with hidden credentials. In Proc. of ACM CCS (New York, NY, USA,
2004), pp. 146–157.

[17] Bu, T., and Towsley, D. On Distinguishing between Internet Power Law Topol-
ogy Generators. In INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE (2002),
vol. 2, pp. 638–647 vol.2.

[18] Butler, K., Farley, T.R., McDaniel, P., and Rexford, J. A survey of BGP security
issues and solutions. Proc. of the IEEE 98, 1 (January 2010), 100–122.

[19] Cai, H., and Wolf, T. Source authentication and path validation in networks
using orthogonal sequences. In 2016 25th International Conference on Computer
Communication and Networks (ICCCN) (2016), pp. 1–10.

[20] Cai, Hao, Chen, Xinming, and Wolf, T. OrthCredential: A new network capa-
bility design for high-performance access control. In Network Protocols (ICNP),
2014 IEEE 22nd International Conference on (Oct 2014), pp. 233–244.

[21] Calvert, K.L., Venkatraman, S., and Griffioen, J.N. FPAC: fast, fixed-cost
authentication for access to reserved resources. In Proc. of IEEE INFOCOM
(March 2002), pp. 1049–1058.

[22] Castro, Ignacio, Panda, Aurojit, Raghavan, Barath, Shenker, Scott, and Gorin-
sky, Sergey. Route Bazaar: Automatic Interdomain Contract Negotiation. In
15th Workshop on Hot Topics in Operating Systems (HotOS XV) (Kartause It-
tingen, Switzerland, May 2015), USENIX Association.

[23] Chen, Shigang, and Nahrstedt, K. On Finding Multi-constrained Paths. In
Communications, 1998. ICC 98. Conference Record. 1998 IEEE International
Conference on (Jun 1998), vol. 2, pp. 874–879 vol.2.

[24] Chen, X., Cai, H., and Wolf, T. Multi-criteria routing in networks with path
choices. In 2015 IEEE 23rd International Conference on Network Protocols
(ICNP) (Nov 2015), pp. 334–344.

[25] chun Hu, Yih. Efficient security mechanisms for routing protocols. In Proc. of
Network and Distributed System Security Symposium (NDSS) (2003), pp. 57–73.

112

[26] Dijkstra, Edsger W. A note on two problems in connexion with graphs. Nu-
merische Mathematik 1 (Dec. 1959), 269–271.

[27] Duan, Zhenhai. Constructing inter-domain packet filters to control IP spoofing
based on BGP updates. In Proc. of IEEE Infocom (2006), pp. 1–12.

[28] Dutta, Rudra, Rouskas, George N., Baldine, Ilia, Bragg, Arnold, and Stevenson,
Dan. The SILO architecture for services integration, control, and optimization
for the future Internet. In Proc. of IEEE ICC (2007), pp. 1899–1904.

[29] Ehrgott, Matthias, and Gandibleux, Xavier. A Survey and Annotated Bibliogra-
phy of Multiobjective Combinatorial Optimization. OR-Spektrum 22, 4 (2000),
425–460.

[30] Ergun, Funda, Sinha, Rakesh, and Zhang, Lisa. An Improved FPTAS for Re-
stricted Shortest Path. Inf. Process. Lett. 83, 5 (Sept. 2002), 287–291.

[31] Farrel, Adrian, Vasseur, Jean-Philippe, and Ash, Jerry. A Path Computation
Element (PCE)-Based Architecture. RFC 4655, Network Working Group, Aug.
2006.

[32] Ferguson, P., and Senie, D. Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing. RFC Editor.

[33] Frikken, K., Atallah, M.J., and Li, Jiangtao. Attribute-based access control with
hidden policies and hidden credentials. Computers, IEEE Transactions on 55,
10 (October 2006), 1259–1270.

[34] Gandibleux, Xavier, Beugnies, and Randriamasy, Sabine. Martins’ Algorithm
Revisited for Multi-objective Shortest Path Problems with a MaxMin Cost Func-
tion. 4OR 4, 1 (2006), 47–59.

[35] Garroppo, Rosario G., Giordano, Stefano, and Tavanti, Luca. A Survey on Multi-
constrained Optimal Path Computation: Exact and Approximate Algorithms.
Comput. Netw. 54, 17 (Dec. 2010), 3081–3107.

[36] Ge, R., Arce, G.R., and Di Crescenzo, G. Approximate message authentication
codes for N-ary alphabets. Information Forensics and Security, IEEE Transac-
tions on 1, 1 (2006), 56–67.

[37] Hansen, Pierre. Bicriterion Path Problems. In Multiple Criteria Decision Mak-
ing Theory and Application, Gnter Fandel and Tomas Gal, Eds., vol. 177 of
Lecture Notes in Economics and Mathematical Systems. Springer Berlin Heidel-
berg, 1980, pp. 109–127.

[38] Haque, Imran S., Pande, Vijay S., and Walters, W. Patrick. Anatomy of high-
performance 2d similarity calculations. Journal of Chemical Information and
Modeling 51, 9 (2011), 2345–2351.

113

[39] Hedrick, C. Routing Information Protocol. RFC 1058, Network Working Group,
June 1988.

[40] Holt, Jason E., Bradshaw, Robert W., Seamons, Kent E., and Orman, Hilarie.
Hidden credentials. In Proc. of the ACM Workshop on Privacy in the Electronic
Society (WPES) (New York, NY, USA, 2003), pp. 1–8.

[41] Hu, Yih-Chun, Perrig, Adrian, and Sirbu, Marvin. SPV: Secure path vector
routing for securing BGP. In Proc. of ACM SIGCOMM (New York, NY, USA,
2004), pp. 179–192.

[42] Jin, Cheng, Wang, Haining, and Shin, Kang G. Hop-count filtering: an effective
defense against spoofed DDoS traffic. In Proc. of ACM CCS (2003), pp. 30–41.

[43] Kent, S., Lynn, C., and Seo, K. Secure border gateway protocol (S-BGP).
Selected Areas in Communications, IEEE Journal on 18, 4 (April 2000), 582–
592.

[44] Kent, Stephen, Lynn, Charles, Mikkelson, Joanne, and Seo, Karen. Secure Bor-
der Gateway Protocol (S-BGP). IEEE Journal on Selected Areas in Communi-
cations (JSAC) 18 (2000), 103–116.

[45] Kharaghani, H., and Tayfeh-Rezaie, B. Hadamard matrices of order 32. Journal
of Combinatorial Designs 21, 5 (May 2012), 212–221.

[46] Khetrapal, Gautam, and Sharma, Saurabh Kumar. Demystifying Routing Ser-
vices in Software-Defined Networking. Tech. rep., Aricent Inc., 2013.

[47] Khondoker, R., Reuther, B., Schwerdel, D., Siddiqui, A., and Muller, P. Describ-
ing and selecting communication services in a service oriented network architec-
ture. In Kaleidoscope: Beyond the Internet? - Innovations for Future Networks
and Services, 2010 ITU-T (2010), pp. 1–8.

[48] Kim, Tiffany Hyun-Jin, Basescu, Cristina, Jia, Limin, Lee, Soo Bum, Hu, Yih-
Chun, and Perrig, Adrian. Lightweight source authentication and path valida-
tion. In Proceedings of ACM Conference on SIGCOMM (2014), pp. 271–282.

[49] Korkmaz, Turgay., and Krunz, Marwan. Multi-constrained Optimal Path Selec-
tion. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE (2001), vol. 2, pp. 834–
843 vol.2.

[50] Krovetz, T. UMAC: Message Authentication Code using Universal Hashing.
RFC 4418 (Informational), March 2006.

[51] Li, Jiangtao, and Li, Ninghui. Policy-hiding access control in open environment.
In Proc. of ACM PODC (New York, NY, USA, 2005), pp. 29–38.

114

[52] Li, Zhenjiang, and Garcia-Luna-Aceves, J. J. A Distributed Approach for Multi-
constrained Path Selection and Routing Optimization. In Proceedings of the 3rd
International Conference on Quality of Service in Heterogeneous Wired/Wireless
Networks (New York, NY, USA, 2006), QShine ’06, ACM.

[53] Liu, Xin, Li, Ang, Yang, Xiaowei, and Wetherall, David. Passport: Secure and
adoptable source authentication. In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2008), pp. 365–378.

[54] Liu, Xin, Yang, Xiaowei, and Lu, Yanbin. To filter or to authorize: Network-
layer dos defense against multimillion-node botnets. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication (Seattle, WA, USA, Aug.
2008), SIGCOMM ’08, pp. 195–206.

[55] Liu, Xin, Yang, Xiaowei, and Xia, Yong. NetFence: preventing internet denial of
service from inside out. SIGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2010).

[56] Liu, Yu, and Boncelet, C.G. The CRC-NTMAC for noisy message authentica-
tion. Information Forensics and Security, IEEE Transactions on 1, 4 (2006),
517–523.

[57] Lloyd, Stuart P. Least Squares Quantization in PCM. Information Theory,
IEEE Transactions on 28, 2 (Mar 1982), 129–137.

[58] Martins, E. Q. V. Bibliography of papers on Multiobjective Optimal Path Prob-
lems. http://www.mat.uc.pt/∼eqvm/cientificos/biblio/mo.ps.Z, 1996.

[59] Martins, Ernesto Queirs Vieira. On a Multicriteria Shortest Path Problem. Eu-
ropean Journal of Operational Research 16, 2 (1984), 236 – 245.

[60] Medina, Alberto, Lakhina, Anukool, Matta, Ibrahim, and Byers, John. BRITE:
An Approach to Universal Topology Generation. In Proceedings of the Ninth
International Symposium in Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (Washington, DC, USA, 2001), MASCOTS ’01,
IEEE Computer Society, pp. 346–.

[61] Moy, John. OSPF version 2. RFC 2328, Network Working Group, Apr. 1998.

[62] Naous, Jad, Walfish, Michael, Nicolosi, Antonio, Mazières, David, Miller,
Michael, and Seehra, Arun. Verifying and enforcing network paths with ICING.
In Proc. of ACM CoNEXT (New York, NY, USA, 2011), pp. 30:1–30:12.

[63] Open Networking Foundation. Software-defined Networking: The New Norm for
Networks, 2012.

[64] Pan, Jianli, Paul, Subharthi, and Jain, Raj. A survey of the research on future
internet architectures. IEEE Communications Magazine 49, 7 (2011), 26–36.

115

[65] Parno, Bryan, Perrig, Adrian, and Andersen, Dave. SNAPP: Stateless network-
authenticated path pinning. In Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security (ASIACCS) (2008),
pp. 168–178.

[66] Paxson, Vern. An analysis of using reflectors for distributed denial-of-service
attacks. SIGCOMM Comput. Commun. Rev. 31, 3 (July 2001), 38–47.

[67] Pelegrin, Blas, and andez, Pascual Fern. On the sum-max bicriterion path prob-
lem. Computers & Operations Research 25, 12 (1998), 1043 – 1054.

[68] Popa, Lucian, Egi, Norbert, Ratnasamy, Sylvia, and Stoica, Ion. Building exten-
sible networks with rule-based forwarding. In Proc. of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI) (Berkeley, CA,
USA, 2010), pp. 1–6.

[69] Saurabh, S., and Sairam, A.S. Linear and remainder packet marking for fast IP
traceback. In Fourth International Conference on Communication Systems and
Networks (COMSNETS) (2012), pp. 1–8.

[70] Savage, Stefan, Wetherall, David, Karlin, Anna, and Anderson, Tom. Practical
network support for IP traceback. SIGCOMM Comput. Commun. Rev. 30, 4
(2000), 295–306.

[71] Snoeren, Alex C., Partridge, Craig, Sanchez, Luis A., Jones, Christine E., Tchak-
ountio, Fabrice, Kent, Stephen T., and Strayer, W. Timothy. Hash-based IP
traceback. In Proc. of ACM SIGCOMM (New York, NY, USA, 2001), pp. 3–14.

[72] Song, Dawn Xiaoding, and Perrig, A. Advanced and authenticated marking
schemes for IP traceback. In Proc. of IEEE INFOCOM (2001), vol. 2, pp. 878–
886.

[73] Spring, N, Mahajan, R, Wetherall, D, and Anderson, T. Measuring ISP topolo-
gies with Rocketfuel. Networking, IEEE/ACM Transactions on 12, 1 (2004),
2–16.

[74] Suo, K., Zhao, Y., Chen, W., and Rao, J. An analysis and empirical study of
container networks. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications (2018), pp. 189–197.

[75] Tsaggouris, George, and Zaroliagis, Christos. Multiobjective Optimization: Im-
proved FPTAS for Shortest Paths and Non-linear Objectives with Applications.
In Algorithms and Computation, Tetsuo Asano, Ed., vol. 4288 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2006, pp. 389–398.

[76] Ulungu, E. L., and Teghem, J. Multi-objective Combinatorial Optimization
Problems: A Survey. Journal of Multi-Criteria Decision Analysis 3, 2 (1994),
83–104.

116

[77] Wang, Haodong, Sheng, Bo, Tan, C.C., and Li, Qun. Comparing symmetric-key
and public-key based security schemes in sensor networks: A case study of user
access control. In Proc. of the 28th IEEE International Conference on Distributed
Computing Systems (ICDCS) (June 2008), pp. 11–18.

[78] Wang, Z., and Crowcroft, J. Quality-of-service routing for supporting multimedia
applications. Selected Areas in Communications, IEEE Journal on 14, 7 (Sep
1996), 1228–1234.

[79] Warburton, A. Approximation of Pareto Optima in Multiple-objective, Shortest-
path Problems. Oper. Res. 35, 1 (Feb. 1987), 70–79.

[80] Waxman, B.M. Routing of multipoint connections. Selected Areas in Communi-
cations, IEEE Journal on 6, 9 (Dec 1988), 1617–1622.

[81] Wolf, T., Natarajan, S., and Vasudevan, K. T. High-performance capabilities for
1-hop containment of network attacks. IEEE/ACM Transactions on Networking
21, 6 (December 2013), 1931–1946.

[82] Wolf, Tilman. Service-centric end-to-end abstractions in next-generation net-
works. In Proc. of IEEE ICCCN (Arlington, VA, 2006), pp. 79–86.

[83] Wolf, Tilman, Griffioen, James, Calvert, Kenneth L., Dutta, Rudra, Rouskas,
George N., Baldin, Ilya, and Nagurney, Anna. ChoiceNet: Toward an Economy
Plane for the Internet. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014),
58–65.

[84] Wolf, Tilman, Griffioen, James, Calvert, Kenneth L., Dutta, Rudra, Rouskas,
George N., Baldine, Ilia, and Nagurney, Anna. Choice as a principle in network
architecture. In Proc. of ACM Annual Conference of the Special Interest Group
on Data Communication (SIGCOMM) (Helsinki, Finland, Aug. 2012), pp. 105–
106. (Poster).

[85] Wolf, Tilman, Griffioen, James, Calvert, Kenneth L., Dutta, Rudra, Rouskas,
George N., Baldine, Ilia, and Nagurney, Anna. ChoiceNet: toward an economy
plane for the Internet. ACM SIGCOMM Computer Communication Review 44,
3 (July 2014), 58–65.

[86] Xie, Liehua, Arce, G. R., and Graveman, R. F. Approximate image message
authentication codes. Multimedia, IEEE Transactions on 3, 2 (2001), 242–252.

[87] Xue, Guoliang, Zhang, Weiyi, Tang, Jian, and Thulasiraman, K. Polynomial
Time Approximation Algorithms for Multi-Constrained QoS Routing. Network-
ing, IEEE/ACM Transactions on 16, 3 (June 2008), 656–669.

[88] Yaar, Abraham, Perrig, Adrian, and Song, Dawn. SIFF: A stateless internet
flow filter to mitigate ddos flooding attacks. In IEEE Symposium on Security
and Privacy (May 2004), pp. 130–143.

117

[89] Yang, Xiaowei, Wetherall, David, and Anderson, Thomas. TVA: a DoS-limiting
network architecture. IEEE/ACM Transactions on Networking 16, 6 (December
2008), 1267–1280.

[90] Yu, Shui, Zhou, Wanlei, Doss, R., and Jia, Weijia. Traceback of ddos attacks
using entropy variations. Parallel and Distributed Systems, IEEE Transactions
on 22, 3 (March 2011), 412–425.

[91] Zhang, Xin, Hsiao, Hsu-Chun, Hasker, Geoffrey, Chan, Haowen, Perrig, Adrian,
and Andersen, David G. SCION: Scalability, control, and isolation on next-
generation networks. In Proc. of IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2011), pp. 212–227.

[92] Zhou, Xiaobo, Ippoliti, Dennis, and Boult, Terrance. Hop-count based prob-
abilistic packet dropping: Congestion mitigation with loss rate differentiation.
Comput. Commun. 30, 18 (2007), 3859–3869.

118

	DESIGN AND IMPLEMENTATION OF PATH FINDING AND VERIFICATION IN THE INTERNET
	Recommended Citation

	tmp.1590591143.pdf.SH28m

