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“ 
As I walk this road will I ever 

Find that solution to my resolution 
And as I take each step will there be that 

Real comprehension of my redemption 
What should I do now and where do I find how 

To find myself… 
Define myself... 

” 
Kaleidoscope – Transatlantic 
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ABSTRACT 

HOW DO ADULT SONGBIRDS LEARN NEW SOUNDS? USING 
NEUROMODULATORS TO PROBE THE FUNCTION OF THE AUDITORY 

ASSOCIATION CORTEX 
 

MAY 2020 

MATHEUS MACEDO-LIMA, B.S., UNIVERSIDADE FEDERAL DE SERGIPE 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Luke Remage-Healey 

 

The ability to associate sounds and outcomes is vital in the life history of many 

species. Animals constantly assess the soundscape for cues associated with threats, 

competitors, allies, mates or prey, and experience is crucial for those associations. For 

vocal learning species such as humans and songbirds, learning sounds (i.e. perception and 

association learning) is also the first step in the process of vocal learning. Auditory 

learning is thought to depend on high-order cortical brain structures, where sounds and 

meaning are bound. In songbirds, the caudomedial nidopallium (NCM) is part of the 

auditory association cortex and is known to be involved in sound learning and perception. 

During songbird development, NCM plays a role in song learning, but in adulthood, 

NCM’s role is less clear and a matter of controversy in the literature. Furthermore, NCM 

is a site of action of neuromodulators including neuroestradiol (E2) and dopamine (DA). 

E2 is known to be produced by NCM neurons that contain the enzyme aromatase, which 

converts testosterone into E2. E2 production is also known to increase in the NCM during 

social interactions, and exogenous E2 modulates neuronal firing, but its effects on 

auditory behavior have not been pinpointed. Effects of E2 within the mammalian and 
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avian hippocampus had been previously reported to support spatial learning. My main 

goal in this dissertation was to clarify the role of NCM in adult zebra finches 

(Taeniopygia guttata). Towards this end, I developed experiments in which I manipulated 

and thus documented the effects of two neuromodulatory systems, E2 and DA. I first 

examined the role of E2 in auditory-dependent behavior. For this, I developed a novel 

operant conditioning task with social reinforcement. Using this task, I showed that 

inhibiting E2 production within NCM during learning impairs acquisition of auditory 

associations. However, after the learning process was completed, I found that E2 

production and even NCM activity were no longer required for maintaining high auditory 

performance, suggesting that NCM does not play a role in memory retrieval or auditory 

discrimination in adults. These findings led me to develop the hypothesis that E2 in NCM 

modulates online associative learning signals. In mammals, plasticity in virtually all 

learning-related brain regions is dependent on dopamine (DA) regulation and E2-DA 

interactions have been reported in several of these regions. Much is known about DA 

signaling in brain areas involved in decision-making and reinforcement learning. I here 

review the literature on motor and, especially, sensory cortical regions and provide a 

comprehensive review of the current knowledge of DA’s roles in cortical regions 

involved in sensory and motor learning, paying especial attention to non-mammalian 

vertebrates. I found that this literature is surprisingly limited in mammals, and often non-

existent in non-mammalian vertebrates. Then, I hypothesized that E2 could be operating 

on dopaminergic (DAergic) signaling in NCM, in which D1 receptor (D1R) mRNA had 

been reported. Since there were no data on the anatomical and functional effects of these 

receptors, I investigated whether D1R protein could be detected and D1R-mediated 



ix 

signaling modulated synaptic plasticity in NCM. Specifically, I found that D1R protein is 

prevalent in NCM neurons, especially in aromatase-, GABA-, and parvalbumin-positive 

neurons. Activating D1R in vitro reduced the amplitude of spontaneous GABAergic and 

glutamatergic currents and increased the frequency of the latter. Similarly, activating 

D1R in vivo reduced firing of putative-inhibitory interneurons, but increased firing of 

putative-excitatory projection neurons. Finally, I showed that D1R activation disrupted 

stimulus-specific adaptation of NCM neurons, a phenomenon reflective of active auditory 

memory formation. In conclusion, this dissertation advances the literature by providing 

direct evidence that E2 production within the auditory cortex affects sensory learning, 

potentially by tapping into the DAergic system, which itself modulates plasticity 

mechanisms associated with learning and memory. I propose that these findings could 

apply to other vertebrates that contain aromatase and DA receptors in their auditory 

cortex, including humans. 
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CHAPTER 1 

INTRODUCTION 

Language learning in humans requires mastering how to receive and send signals 

under different frameworks, such as syntax, grammar, semantics and phonemes. Hence, 

the modern synthesis of spoken language posits that it is inherently multifactorial, 

involving highly complex human-exclusive features (e.g. semantics, grammar), but also, 

more primary components that are not exclusive to humans. Theoretical and empirical 

work has led to the hypothesis that some of these components, including vocal and 

auditory learning, have evolved not just in humans but also in other vertebrates, such as 

songbirds. Studying vocal and auditory learning in songbirds can therefore provide 

insight into the mechanisms of sensorimotor integration as well as spoken language 

[Jarvis, 2019]. More broadly, auditory learning can be vital to many species, 

independently of vocal learning ability. Animals constantly assess their environment for 

cues associated with threats, competitors, allies, mates or prey, and experience plays a 

large role in forming those associations. For example, individual recognition by vocal 

patterns has been reported in a variety of animals, including humans, dolphins, penguins 

and songbirds (Order Passeriformes: suborder Passeri) and vocalizations are used to 

identify mates, neighbors/strangers, group members and parents/offspring [Aubin and 

Jouventin, 1998; Sayigh et al., 1998; Gentner et al., 2000; Goodwin and Podos, 2014]. 

These behaviors are dependent on associative learning mechanisms. For learning of 

spoken language, in particular, the first step in the learning process is to make 

associations between complex sounds and their meaning. The neural circuits that support 
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vocal learning are currently being unpacked and studied, and associative learning in 

general is often thought to rely on high-order cortical brain structures. 

Songbirds have become valuable models for understanding vocal learning, an 

ability that depends on the acquisition and subsequent reproduction of sounds for 

communication [Petkov and Jarvis, 2012; Mello, 2014]. At the onset of their lives, 

songbirds begin intensive auditory learning, after which singing behavior itself emerges. 

Subsequently, auditory learning continues to aid in other critical processes such as 

individual recognition, mate selection and sound-outcome associations [Gentner et al., 

2000; Verzijden et al., 2012]. 

In songbirds, the caudomedial nidopallium (NCM) is a secondary auditory region 

considered analogous to Wernicke’s area, the center for speech comprehension in humans 

[Bolhuis et al., 2010]. Many features of NCM are consistent with a role in active auditory 

memory formation, such as stimulus-specific adaptation, juvenile song memorization and 

adult sound association learning [Jarvis et al., 1995; Chew et al., 1996; London and 

Clayton, 2008; Bell et al., 2015]. Additionally, the songbird NCM is an important target 

of a wide variety of neuromodulators, such as norepinephrine [Ikeda et al., 2015; Lee et 

al., 2018], nitric oxide [Wallhäusser-Franke et al., 1995], neuroestradiol [Saldanha et al., 

2000] and dopamine [Matragrano et al., 2012]. NCM therefore possesses many features 

that support cellular and neural circuit plasticity mechanisms related to the processing 

and association of complex sounds. 

From an evolutionary standpoint, the NCM seems to be highly conserved in its 

structure among sauropsids. In non-avian sauropsids (Reptilia), auditory centers are 

positioned in a very similar anatomical location as in birds within the dorsoventricular 
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ridge (DVR) [Foster and Hall, 1978]. Therefore NCM’s origins are suggested to have 

been present in the common sauropsid ancestor [Butler et al., 2011]. By contrast, E2 

production within NCM by the enzyme aromatase seems to be a feature of the songbird 

lineage, but not of non-songbirds such as ring doves or budgerigars [Metzdorf et al., 

1999]. Since aromatase [Yague et al., 2006] is also abundant in the human temporal 

cortex, E2 signaling in the songbird auditory cortex can provide important comparative 

insights into the effects of E2 on auditory learning. Currently, the functional 

consequences of cortical E2 signaling are largely unexplored for any species. 

Available information on NCM’s specific functions in songbirds is conflicting. 

Data from one research group have suggested that NCM lesions do not affect juvenile 

song learning or adult operant auditory learning, but do impact recovery from a 

reinforcement-driven song plasticity paradigm [Canopoli et al., 2014; Canopoli et al., 

2017]. These findings contrast with findings strongly implicating NCM in vocal learning 

[London and Clayton, 2008; Tsoi et al., 2014; Yanagihara and Yazaki-Sugiyama, 2016] 

and with a few reports of NCM’s supporting adult auditory plasticity [Jarvis et al., 1995; 

Bell et al., 2015]. Therefore, studies that can clarify NCM’s function are warranted, 

especially those aimed at understanding the potential role(s) of NCM in adult songbirds 

once song learning is completed. 

Studies carried out previously by our group showed that E2 production is elevated 

locally in the adult songbird NCM during social interactions and auditory/visual 

playbacks [Remage-Healey et al., 2008; Remage-Healey et al., 2012; Remage-Healey et 

al., 2013], but the behavioral implications of NCM E2 fluctuations have not been 

clarified. In adult males, blockade of NCM E2 synthesis eliminates the natural 
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phonotactic preference for their own songs [Remage-Healey et al., 2010]. However, 

phonotaxis experiments cannot disentangle auditory discrimination, learning, motivation, 

and memory retrieval, and thus the precise function of E2 signaling in NCM remains 

uncertain. 

My dissertation project aimed to better understand neuromodulatory mechanisms 

underlying adult auditory learning. Studying songbirds, I present findings that clarify the 

role of the adult auditory association cortex (NCM). The central hypothesis of my thesis 

is that dopamine (DA) and estradiol (E2) interact to modulate auditory learning and 

memory mechanisms in the adult NCM.  

In Chapter 2 (published in the journal Hormones & Behavior), I present a novel 

behavioral tool to assess auditory learning in songbirds using social reinforcement, which 

circumvents two important caveats of commonly used behavioral paradigms: food 

restriction and complete social isolation. Using this tool, I show that E2 participates in 

auditory learning in adults, such that pharmacologically blocking its production within 

NCM slows acquisition of accurate sound-outcome associations. In this same chapter, I 

further show that the NCM activity is only required in the process of learning, but no 

longer required after sounds have been learned. Finally, I place these findings into the 

context of how, in mammalian hippocampus, estrogens regulate spatial learning. 

Comparisons between avian and mammalian results may help frame our understanding of 

this newfound role of estrogens in regulating sensory learning. 

In the following chapters, I focus on the question of what types of learning signals 

are potentially modulated by E2 in the adult NCM. In mammals, virtually all brain 

regions involved in promoting goal-directed behaviors rely on DA signals [Happel, 
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2016]. Many decades of intense research have been dedicated to understanding how DA 

signals govern decision-making in the mammalian cortex. However, I thoroughly 

reviewed the literature on motor and, especially, sensory cortical regions and found that 

this literature is surprisingly limited in mammals, and often non-existent in non-

mammalian vertebrates. Thus, in Chapter 3, I present a comprehensive review of the 

current knowledge of DA’s roles in cortical regions involved in sensory and motor 

learning. This review pays especial attention to non-mammalian vertebrates as an attempt 

to highlight an important gap in understanding of the evolution of DA signaling in 

motor/sensory learning systems.  

The role of DA signaling has been examined in the songbird brain in the context 

of reinforcement learning for song production and motivation to sing [Leblois et al., 

2010; Schmidt and Ding, 2014; Matheson and Sakata, 2015; Chen et al., 2016], but it has 

been far less studied in the context of auditory processing and learning. Matragrano et al. 

[2012] reported that hearing song rapidly increases production of DA in songbird 

auditory regions, especially in the NCM. Importantly, NCM shows extensive presence of 

mRNA for dopamine receptors [Kubikova et al., 2010], but their function remains 

unexplored. 

In Chapter 4, I present findings on the anatomy and physiology of DA receptors 

in NCM. First, through immunofluorescence I describe the DA D1 receptor-positive 

(D1R+) neuron distribution in NCM and show that most aromatase-positive neurons are 

also D1R+. I further characterize these neurons by showing that D1R neurons are 

predominantly inhibitory. I then test the function of these receptors both in vitro and in 

vivo. In vitro, in whole-cell patch clamp recordings, I find that D1R activation reduces 
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the amplitude of GABAergic and glutamatergic spontaneous currents but increases the 

frequency of glutamatergic currents. In vivo, I employed a novel neuronal recording 

device coupled with a retrodialysis probe; my findings corroborate the in vitro findings, 

such that D1R activation reduces the firing of putative-GABAergic neurons, while 

increases the firing of putative-glutamatergic neurons. Importantly, D1R activation 

disrupts neuronal auditory short-term memory formation in NCM neurons, which 

suggests that DA plays a key role in sound memory formation. Finally, I place these 

findings into the context of how DA signaling is involved in encoding signals related to 

goal-directed behavior, and how DA acts in concert with E2 in several brain regions to 

promote neural plasticity. 

Overall, my dissertation supports the hypothesis that NCM is a key brain region 

for auditory plasticity and learning in adult zebra finches and provides new evidence that 

E2 and DA modulate this process. The significance of each study is discussed in detail in 

the individual chapters. How these findings connect, and what future directions can 

follow are discussed in my final chapter, Final Considerations.  
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CHAPTER 2 

AUDITORY LEARNING IN AN OPERANT TASK WITH SOCIAL 

REINFORCEMENT IS DEPENDENT ON NEUROESTROGEN SYNTHESIS IN 

THE MALE SONGBIRD AUDITORY CORTEX 

Published in Hormones & Behavior 
Authors: Matheus Macedo-Lima and Luke Remage-Healey 
Year: 2020 

2.1 Abstract 

Animals continually assess their environment for cues associated with threats, 

competitors, allies, mates or prey, and experience is crucial for those associations. The 

auditory cortex is important for these computations to enable valence assignment and 

associative learning. The caudomedial nidopallium (NCM) is part of the songbird 

auditory association cortex and it is implicated in juvenile song learning, song 

memorization, and song perception. Like human auditory cortex, NCM is a site of action 

of estradiol (E2) and is enriched with the enzyme aromatase (E2-synthase). However, it is 

unclear how E2 modulates auditory learning and perception in the vertebrate auditory 

cortex. In this study we employ a novel, auditory-dependent operant task governed by 

social reinforcement to test the hypothesis that neuro-E2 synthesis supports auditory 

learning in adult male zebra finches. We show that local suppression of aromatase 

activity in NCM disrupts auditory association learning. By contrast, post-learning 

performance is unaffected by either NCM aromatase blockade or NCM pharmacological 

inactivation, suggesting that NCM E2 production and even NCM itself are not required 

for post-learning auditory discrimination or memory retrieval. Therefore, neuroestrogen 

synthesis in auditory cortex supports the association between sounds and behaviorally 

relevant consequences. 
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2.2 Introduction 

The ability to associate sounds and outcomes is vital to the life history of many 

species. Animals constantly assess the environment for cues associated with threats, 

competitors, allies, mates or prey, and experience plays a large role in forming those 

associations. For example, individual recognition by means of vocalizations has been 

reported in a variety of animals, including humans, dolphins, penguins and songbirds 

(Order Passeriformes: suborder Passeri) and it can be used to identify mates, 

neighbors/strangers, group members and parents/offspring [Aubin and Jouventin, 1998; 

Sayigh et al., 1998; Gentner et al., 2000; Goodwin and Podos, 2014]. These behaviors are 

dependent on associative learning mechanisms in higher-order cortical regions where 

sounds and meaning are bound. 

Songbirds are valuable models for understanding vocal learning, an ability that 

depends on the acquisition and subsequent reproduction of sounds for communication 

[Petkov and Jarvis, 2012; Mello, 2014]. At the onset, songbirds begin intensive auditory 

learning, after which singing behavior itself emerges. Subsequently, auditory learning 

continues to aid individual recognition, mate selection and sound-outcome associations 

[Gentner et al., 2000; Verzijden et al., 2012].  

The avian caudomedial nidopallium (NCM) is a region of secondary auditory 

cortex [Bolhuis et al., 2010] that both processes songs and associates songs and 

behaviorally-relevant consequences [Jarvis et al., 1995]. Neural activity in NCM reflects 

the association between song and reward/punishment outcomes in an operant paradigm 

[Bell et al., 2015].The songbird NCM is also target of neuromodulators, including 

norepinephrine [Ikeda et al., 2015; Lee et al., 2018], nitric oxide [Wallhäusser-Franke et 

al., 1995], dopamine [Matragrano et al., 2012] and neuroestradiol (E2) [Saldanha et al., 
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2000]. E2 rapidly enhances the NCM neural responses to songs in zebra finches 

[Remage-Healey et al., 2010]. Since both aromatase (E2-synthase) [Yague et al., 2006] 

and E2 receptors [González et al., 2007] are abundant in the human temporal cortex, E2 

signaling in the songbird auditory cortex can provide important comparative insights. 

Currently, however, the functional consequences of cortical E2 signaling are unclear for 

any species.  

E2 production is elevated locally in the songbird NCM during social interactions 

and auditory/visual playbacks [Remage-Healey et al., 2008; Remage-Healey et al., 2012; 

Remage-Healey et al., 2013], but the behavioral implications of NCM E2 fluctuations 

have not been clarified. In males, blockade of NCM E2 synthesis eliminates the natural 

phonotactic preference for their own songs [Remage-Healey et al., 2010]. However, 

phonotactic experiments do not disentangle auditory discrimination, learning, motivation, 

and memory retrieval, thus the precise function of E2 signaling in NCM remains 

uncertain. 

The current study introduces a low-cost operant behavioral paradigm to assess 

auditory learning and discrimination/retrieval. The former can be inferred by evaluating 

the trajectory of subjects’ performance when exposed to novel stimuli. The latter can be 

inferred by evaluating performance in response to previously learned stimuli. Our 

approach relies on visual social reinforcement, without depriving animals of food, water, 

or regular social contact. Since all trials are initiated by subjects, social motivation can be 

inferred by quantifying the number of trials initiated. Using this task, we evaluated 

whether E2 synthesis inhibition systemically (oral administration) as well as locally in 

NCM affects auditory performance. We predicted that blocking E2 synthesis would affect 



10 

auditory learning by impairing discrimination ability. Systemic treatments did not 

markedly affect learning rates or post-learning performance, but reduced motivation to 

engage in the learning task. By contrast, we found that blockade of E2 synthesis in the 

NCM does not affect post-learning performance but markedly reduces learning rates for 

new sound-outcome pairs.  

In vertebrates, effects of neuro-E2 on spatial memory formation had been 

previously demonstrated in hippocampus  [Bailey and Saldanha, 2015; Luine, 2016; 

Tuscher et al., 2016; Gervais et al., 2018; Paletta et al., 2018]. Our work provides 

evidence that in sensory pallial cortex [Wang et al., 2010; Jarvis et al., 2013; Briscoe et 

al., 2018], local E2 synthesis modulates sensory associative memory formation. 

2.3 Material and methods 

2.3.1 Animals 

Birds came from the University of Massachusetts Amherst colony (14:10 hour 

light-dark cycle). Birds were not actively breeding (single-sex cages). A total of nine 

males successfully completed all training and testing sessions and were employed in two 

pharmacology experiments. Five of these animals were used for systemic administration 

experiments and five were cannulated (including one that had previously participated in 

the systemic treatment experiment). All procedures were in accordance with the 

Institutional Animal Care and Use Committee at the University of Massachusetts 

Amherst. 

2.3.2 Behavioral apparatus 

. Behavioral automation code was custom-made in Python for control of 

Raspberry Pi computers (Raspberry Pi foundation). The script was designed to run daily 
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and automatically without the need for constant human input or monitoring. Detailed 

instructions for assembly and methodology are part of a separate methods study 

(Macedo-Lima and Remage-Healey, in preparation). 

A male and female were first housed in the same cage inside a sound attenuation 

chamber (Eckel Industries) for 1-2 weeks, then put in adjacent cages separated by a sheet 

of opaque polarized glass. The male’s cage contained an infrared beam break sensor 

mounted on a semi-opaque acrylic rectangle behind which a red LED was positioned.  

Subsequently, training sessions took place 7 days/week at 2-3 hours after lights-

on. Training stages were modified from Gess et al. [2011]: 1) introduction to the 

polarized glass mechanism, 2) training to operate the infrared switch, and finally 3) the 

GO/NO-GO protocol. These training steps are described in detail in the supplementary 

methods. 

2.3.3 GO/NO-GO procedure 

The GO/NO-GO procedure is summarized in Figure 2.1a. Birds initiated all trials, 

triggering the infrared beam. Immediately, a ~65 dB tone (see Stimuli section) was 

played from the speaker pseudorandomly associated with a contingency (GO or NO-GO; 

detailed below). If the bird pecked again within a two second interval, it would receive a 

consequence (reward or punishment). If a GO tone had been played, the glass would turn 

transparent for 6 seconds, resulting in a HIT (i.e., period of visual engagement with the 

adjacent social partner through the transparent barrier); if a NO-GO tone had been 

played, a loud (~75 dB) 2-second burst of white noise would play (punishment) and a 16 

second inactivation (time-out) period would follow, resulting in a FALSE ALARM. If the 
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bird did not respond within 2 seconds a 6-second inactivation period would follow 

resulting in a MISS (GO trial) or CORRECT REJECTION (NO-GO trial).  

Initial training had three stages with 90, 75 and 50% GO-trial rates. In order to 

continue to the next stage, the bird was required to respond (HITS + FALSE ALARMS) 

to more than half the trials initiated. Our rationale for doing this was to keep a high 

reward rate until birds “understood” they had to peck twice to get rewarded. Correctness 

was not evaluated until GO-trial rate was lowered to 50% because it would be 

confounded by the higher GO ratio.  

When 50% reward chance stage was reached, correct responses were monitored 

daily by the formula: % Correct=
#HITS + #REJECTIONS

#TRIALS
 . The learning threshold we 

employed was: 70% Correct on two consecutive days (modified from Gess et al. [2011]). 

Birds needed to reach criterion with two successive tone sets (described below) in order 

to move to the testing stage. 

 
Figure 2.1: Auditory discrimination GO/NO-GO procedure and behavioral testing 
timeline. 
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(a) Auditory discrimination GO/NO-GO procedure. Birds initiate all trials. Solid arrows 
indicate trajectories that yield consequences (reward or punishment); dotted arrows 
indicate trajectories that do not yield consequences. Possibilities after a GO-trial are 
indicated by blue arrows, and the ones after a NO-GO-trial by red arrows. The bird has 2 
seconds to respond after the stimulus is played. Reward consists of the activation of the 
polarized glass and visual access to the other bird for 6 seconds, while punishment 
consists of a loud burst of white noise and the switch being inoperant for 16 seconds. 
Lack of response to stimuli does not yield consequences. (b) Behavioral testing timeline. 
Go/No-go testing happened daily for 4 hours. Once birds reached learning criterion 
(>70% correct on two consecutive days) during training, treatments and the Learning 
stage started. Sound stimuli were switched (absolute and relative frequencies; see 
Methods) when birds reached criterion, except for during the Discrimination stage when 
learned tones were maintained. Shaded boxes represent the treatment stages in Figures 
2.2, 2.5 (Learning), 2.3 and 2.6 (Discrimination). 

2.3.4 Stimuli and testing stages 

NCM neurons respond to song, white noise and pure tones, and show adaptation 

to those in the awake state, consistent with active memory formation [Chew et al., 1996]. 

In view of this, we developed a within-subject protocol well-suited for pharmacological 

manipulations using pure tones, which enabled objective control over discrimination 

difficulty.  

Pure tones (2 seconds in duration) were generated in Adobe Audition 2014 

(Adobe). Fade-in/fade-out filters were applied to first and last 100 ms of the tones. 

Digital sound level was normalized to -25 dB and amplified to ~65 dB in the behavioral 

booths. A two-second white noise burst was generated in the same software, but digital 

sound level was set to -5 dB which, after the same amplification factor used for tones, 

resulted in a sound pressure level of ~75 dB in the behavioral booths. 

The range of frequencies (2-4 kHz) was selected based on the zebra finch 

audibility curve [Okanoya and Dooling, 1987] and natural vocalization range [Elie and 

Theunissen, 2016].The 200 Hz discrimination interval was intended to balance the 

facility of discrimination and of association learning. Importantly, maintaining this 
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frequency gap across treatment conditions ensured that discrimination difficulty would be 

consistent, facilitating comparison across treatments. 

For GO/NO-GO training and testing, 5 pairs of pure tones separated by 200 Hz 

were randomly ordered (random.org). For the first training round with the first tone pair, 

the association between lower or higher tone and either GO or NO-GO trial was also 

randomized (e.g. lower tone with GO trials). After reaching learning criterion, the 

contingencies switched to the next randomized (random.org) tone pair.  Different 

absolute frequencies, and the association between tone frequency and trial type was the 

opposite from the prior “rule” (e.g. if GO trials were the lower they became the higher 

tone). This switch in both absolute and relative frequencies associated with trial type 

requires that animals switch from the previous association rule and yields a new training 

curve. 

In cannulation experiments, birds underwent NCM cannulation surgery (detailed 

below) after reaching criterion with the first tone pair. After recovery from surgery, they 

were retrained with the first tone pair (50% reward rate) until reaching/maintaining 

criterion, then trained with a new tone pair. Finally, after reaching criterion with the 

latter, the Learning stage would begin (see below). GO/NO-GO trial ratio was always 

50%.  

Pharmacology experiments were divided in two stages: Learning and 

Discrimination (Figure 2.1b). For the Learning stage, when birds reached criterion, a new 

tone pair was used. This stage had three treatments: (1) PRE: birds were given vehicle. 

Treatment continued daily until birds reached learning criterion (2) FAD: birds were 

given the aromatase inhibitor fadrozole (FAD; detailed below); treatment was repeated 
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daily until birds reached criterion or initiated a similar number of trials as in PRE (range 

5-15 days in our sample); at least 2 days of vehicle treatment were administered after 

FAD treatment to allow for drug clearance [Alward et al., 2016]; this treatment was 

repeated until criterion was reached or maintained for 2 days. (3) POST: vehicle was 

administered until criterion was reached. 

For the Discrimination stage, which followed the Learning stage, the most 

recently learned tone pair was maintained to assess effects of treatments on post-learning 

performance. This stage unfolded over three phases: (1) PRE: the last two days (above 

learning criterion) of the POST treatment (vehicle) from the Learning stage were used as 

baseline. (2) FAD: FAD treatment was administered for 2 days to test for effects on 

performance independent of learning. In the cannulation experiments, one animal could 

only be treated for 1 day, because the cannula started to detach, and treatment had to be 

suspended. Following initial indications that FAD treatment was not impacting post-

learning performance, we tested whether NCM function itself would affect it. Therefore, 

for 3 cannulated animals, (3) BM followed: baclofen/muscimol (GABA receptor A/B 

agonists) treatment was administered for 2 days to test for effects of NCM inhibition on 

post-learning performance.  

We note that this paradigm does not precisely dissect post-learning performance 

into components such as auditory discrimination or memory retrieval. We label this stage 

as “Discrimination” for simplicity. 

2.3.5 Cannulation surgery 

Cannulas (Plastics One) were custom designed for bilateral NCM targeting. 

Guide, injection and dummy cannulas were 22, 28 and 28 G respectively. Guide cannulas 
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measured 4 mm below pedestal and dummy/injection cannulas projected 300 µm below 

the guide. Interbarrel distance was 1.5 mm. 

After reaching learning criterion for the first time in the GO/NO-GO training 

stage, birds were implanted with guide and dummy cannulas. Dust caps were not used. 

Birds were food deprived for 30 minutes, anesthetized with isoflurane and placed in a 

stereotaxic apparatus. Cannula placement was at 1.1 mm anterior, ~0.7 bilateral and 1.5 

ventral respective to the midsagittal sinus; head was tilted forward at a 50° angle. Skull 

around the cannula was covered with Metabond (C&B), and dental cement was applied to 

secure the cannula to the skull. 

Birds were allowed to recover for 1 week after surgery in their behavioral cages 

adjacent to their partners’ cage with the smart glass turned transparent. After 1 week, 

GO/NO-GO training resumed. The same previously learned tone pair was used to certify 

auditory regions were intact. After reaching/maintaining criterion, the second tone pair 

was used, and, after reaching criterion this time, GO/NO-GO Learning stage started. 

To confirm cannula placement (Supplementary figure 2.6), the animal was 

transcardially perfused with cold 0.1 M phosphate buffered saline followed by 4% 

paraformaldehyde. Brain was postfixed in the same fixative overnight in 4 °C, 

cryoprotected in 30% sucrose and sectioned at 40 µm in a cryostat. Sections were 

mounted with Prolong Diamond (ThermoFisher). Images were taken at 10x 

magnification with a confocal microscope (Nikon A1 Spectral Detector Confocal) and 

stitched. 

2.3.6 Drugs and treatment 
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In cannulation experiments, in PRE and POST conditions, birds were injected 

with artificial cerebrospinal fluid (vehicle; in mM: 199 NaCl, 26.2 NaHCO3, 2.5 KCl, 1 

NaH2PO4, 1.3 MgSO4, 2.5 CaCl2, 11 Glucose; pH 7.4); in the FAD condition, fadrozole 

(Novartis; 2 mM) was dissolved in ACSF the day before the first day of treatment and 

injected.  

Concentrations of 100 µM have been established to modulate acute changes in 

neuronal activity when administered via retrodialysis [Remage-Healey et al., 2010] and 

similar intracerebral injections (~150 mM) of vorozole, another aromatase inhibitor, 

affect Japanese quail behavior [Seredynski et al., 2013]. Importantly, FAD targets 

aromatase with high specificity in rat [Browne et al., 1991] and zebra finch tissues [Wade 

et al., 1994].  

Our rationale for increasing the concentration of previously published results 

using retrodialysis [Remage-Healey et al., 2010] is the following. A key feature of 

retrodialysis drug delivery is the ability to maintain concentrations throughout the 

duration of the infusion. Most likely, the same cannot be achieved with a single, acute 

(bolus) injection. Maximum concentration would only be present at the beginning right 

after injection and would decay due to clearance and diffusion. Furthermore, since our 

behavioral testing occurred over 4 hours, we were unsure about how long our single 

injection would remain in bioactive concentrations. Therefore, we tried to overcome the 

unpredictability about tissue concentration and bioactivity duration in our treatments by 

increasing the dose previously used for retrodialysis 20-fold. 

Treatments were administered via bilateral cannulas (Plastics One; see 

supplementary methods), daily, 10 minutes before testing. Bilateral dummy cannulas 
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were removed, and injection cannulas were inserted (28 G). Animals were handled for 

less than 2 minutes. Injection cannulas were coupled to tubing and to two 15 µL 

Hamilton syringes mounted on a syringe pump (Harvard Apparatus PHD2000). A 500 nL 

volume was injected over one minute for all conditions.  

Following initial indications that FAD treatment was not impacting post-learning 

performance, we tested whether NCM function itself would affect it. Therefore, In a 

subset of animals (n=3), a 1 mM baclofen-0.1mM muscimol (BM; GABA receptor A/B 

agonists) solution in ACSF was injected to test for effects of NCM inhibition on post-

learning performance and for potential drug leakage into primary auditory regions (field 

L), which could potentially affect sound perception. 100, 200 and 500 nL volumes were 

administered over 3 successive days. The same cocktail was verified efficacious for 

silencing auditory forebrain neurons in electrophysiological recordings in anaesthetized 

birds (Supplementary material). 

In addition to central treatments, systemic treatments were performed to test 

whether our task was sensitive to other aromatase-containing nuclei [Saldanha et al., 

2000], many of which known to be involved in the social behavior network, such as the 

medial amygdala, midbrain and medial preoptic area [Newman, 1999]. 

For the systemic treatment experiments, treatments were administered by mouth 

with a pipette 1 hour before testing. In the PRE and POST conditions, birds were given 

vehicle (0.9% saline in distilled water). In the FAD condition, fadrozole (30 µg in 30 µL 

in vehicle; dose of ~2 µg/g body weight) was given. Animals were handled for less than a 

minute. Similar systemic doses were shown to inhibit aromatase and impact behavior in 
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zebra finches [Wade et al., 1994; Rensel et al., 2013]. Following the treatment, a 1-hour 

timer was set for the start of the behavioral assay. 

2.3.7 Statistics and software 

Behavioral data were analyzed through custom-made Python and R scripts. The 

code supporting this article was uploaded to a public repository (github.com/HealeyLab). 

For single-factor comparisons, the normality of the data was assessed by Shapiro-

Wilk tests. When test results indicated violation of normality, data were analyzed by non-

parametric tests (Wilcoxon or Friedman tests). Alternatively, parametric tests (one and 

two-sample t-tests and repeated measures ANOVAs) were used. Effect sizes were 

estimated by Cohen’s d (d; for t and Tukey tests), r-statistic (r; for Wilcoxon tests), η2 

(for ANOVAs) and the Kendall’s W (KW; for Friedman tests). 

Zebra finches exhibit on average differential learning curves and strategies 

towards GO vs. NO-GO trials in a food reward paradigm [Anand and Nealen, 2019]. 

Therefore, in addition to % Correct, which combines both trial types, we computed hit 

(HR) and rejection rates (RR) with the formulas: HR=100×
#HITS 

#GO TRIALS
; 

RR=100×
#REJECTIONS

#NO-GO TRIALS
. Whole-day performances (HR, RR and % Correct) were 

compared between the first and the last day of each treatment in the Learning stage. To 

control for length of each treatment, the last day was capped at the earliest day each 

subject reached criterion (above 70% Correct on two consecutive days) across PRE and 

FAD treatments (e.g. if subject reached criterion on day 4 during PRE, but on day 8 

during FAD, the first day of FAD was compared with day 4 of FAD). Data were analyzed 

by 2-way repeated measures ANOVA with Treatment and Day as factors.  
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Because whole-day performance analyses do not consider individual variability in 

the number of trials, performance was also evaluated by logistic regression [Cox, 1958]. 

For each treatment condition, raw trial-by-trial performances were concatenated and 

binarized, i.e. correct responses were scored as 1; incorrect responses as 0. Because birds 

initiated all trials, to correct for the number of trials across treatments the maximum 

number of trials included for analysis was capped at the minimum number of trials 

performed by each bird across the PRE and FAD drug treatments (e.g. if a bird performed 

350 trials during PRE, 200 during FAD and 250 during POST, only the first 200 trials of 

each treatment were included). Then, a logistic regression curve was fit for each 

treatment and their odds-ratio, area-under-curve (AUC) and intercept were compared. 

Learning rates before and after cannulation surgery (presurgery vs postsurgery; no 

pharmacological treatment) were analyzed in a similar way, as was post-learning 

performance (PRE vs FAD in the Discrimination stage). A higher odds-ratio can be 

interpreted as a faster rate of change towards predominantly correct responses. A higher 

AUC can be interpreted as a predominance of correct responses. A lower intercept can be 

interpreted as an initial deficit in performance. We analyzed total trials (Hit=1, 

Rejection=1, Miss=0, False-alarm=0), only GO (Hit=1, Miss=0) and only NO-GO trials 

(Rejection=1, False-alarm=0) separately.  

At the beginning of the first day after a change in tones, birds need to extinguish 

the previous association in order to learn the new one, a process often called reversal 

learning. To infer reversal learning capacity, we compared performances at the beginning 

of the first day of each treatment to performances at the end of the previous day. We 

restricted performance measures to the first 50 trials of each treatment’s first day and 
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compared those with the last 50 trials of the previous day, which always consisted of 

vehicle treatment (or no treatment for PRE). Data were analyzed by 2-way repeated 

measures ANOVA with Treatment and Day as factors. 

We quantified response bias according to Macmillan and Creelman [1990]: 𝑐 =

 −0.5 ×  [𝑍(𝐻𝑅) +  𝑍(𝐹𝐴𝑅)], where HR is the hit rate, FAR is the false alarm rate as 

described above and Z is the inverse cumulative distribution value at those probabilities. 

Positive values suggest a bias towards not responding to tones, negative values suggest a 

bias towards responding to tones, and zero suggests the lack of bias. We applied this 

formula to the whole-day trial analyses (first vs last day of treatments) and to the reversal 

learning data (50 trials of the first day of each treatment).  

To control for the number of trials on response bias, we performed a similar 

analysis as described above for logistic regressions. To create a response bias regression, 

we scored Hits and False Alarms as 1, and Misses and Rejections as 0 and performed 

logistic regressions. Higher values on these curves indicate higher probability of 

indiscriminate response.  

Because the entire task was self-initiated, each animal’s motivation to engage in 

the task was inferred by the daily number of trials. Because the number of days during 

the Learning stage varied across animals, each animal’s daily trial numbers were 

averaged for statistical testing. 

Statistical analyses of pharmacological data do not include washout periods 

(POST) because of the variable duration of the FAD treatment among animals, which 

could result in unpredictable differences in clearance or long-term effects of aromatase 

inhibition. 
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Statistical significance was accepted when p < 0.05. All statistical results are 

included in tables (Tables 2.1-2.2, supplementary tables 2.3-2.4).  

2.4 Results 

2.4.1 Aromatase inhibition in NCM impairs learning of new sounds 

Each treatment’s first vs last day (whole-day) performance is shown in Figure 

2.2a-c (statistical results in Table 2.1). Analyzing all trials combined (GO + NO-GO), 

FAD treatment reduced % Correct (Figure 2.2a). Analyzing GO trials only, there was a 

trend for an interaction between treatment and day of training, underlay by a mean 

decrease in hit rates on day 1 due to FAD (Figure 2.2b). In NO-GO trials, there was a 

trend for a decrease in rejection rates (Figure 2.2c). Therefore, these results suggest that 

daily FAD treatments in NCM reduce the rate auditory learning in whole-day 

performances, possibly affecting GO trials on the first day, and NO-GO trials throughout 

the treatment. 

Because whole-day performance analyses do not encompass individual variability 

in the number of trials, we looked at the same data using logistic regressions on the raw 

trial-by-trial performance (see Methods). In the all-trial learning curves (GO + NO-GOS), 

FAD reduced the area under the curve (AUC) without affecting the odds-ratio or the 

intercept (Figure 2.2d). GO trial curves did not significantly change with treatment, but 

there was a trend for a lower intercept due to FAD (Figure 2.2e). The detriment in 

learning was attributed to learning deficits in NO-GO trials specifically, in which FAD 

reduced the AUC, but not the odds-ratio or the intercept (Figure 2.2f). These results show 

that daily FAD treatments in NCM impair acquisition of sound-outcome associations, 

particularly in NO-GO trials. 
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Because of the trends observed on day 1 of the Learning stage during FAD, 

particularly in GO trials, we restricted our analyses to the beginning of treatments. In this 

stage, animals must extinguish the previous sound-outcome association, i.e. reversal 

learning. Reversal learning capacity was inferred by comparing the first 50 trials of each 

treatment vs the 50 last trials of the day before (i.e., prior tone-pair regime, see Methods). 

FAD reduced reversal learning of overall trial % Correct on the first day (Figure 2.2g) 

and reduced hit rates in the GO trials (Figure 2.2h), but not NO-GO trial rejection rate 

(Figure 2.2i). Since reversal learning reflects extinction of the previous association, the 

results on reversal learning impairments in GO trials indicate that FAD in NCM affects 

the extinction of the previous ‘rule’ for relative frequency (e.g. higher tone associated 

with NOGO) that became newly associated with GO trials.  

Because we observed different trends in hit and rejection rates due to treatment 

(FAD reduced hit rates only initially while reducing rejection rates throughout), we 

analyzed response bias (i.e., indiscriminate responses to both stimuli). There was a trend 

for an interaction between day and treatment on whole-day response bias, underlay by a 

more negative (i.e. stronger) response bias on the last day due to FAD (Supplementary 

figure 2.8a). However, after controlling for the number of trials in the logistic 

regressions, this effect was not significant (Supplementary figure 2.8b). Finally, in the 

reversal learning analyses, response bias did not significantly change (Supplementary 

figure 2.8c). These results suggest that the reduction in rejection rates due to FAD did not 

systematically result in an increase in response bias (indiscriminate responses to GOs and 

NO-GOs).  
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Figure 2.2: NCM fadrozole (FAD) injections impair performance in an auditory 
learning task. 
Performance was analyzed using combined (left), GO (middle) or NO-GO trials (right). 
(a-c) First vs last day whole-day performances. FAD decreased combined trial 
performance (a). There was a trend for a decrease in hit rates on the first day (b) and a 
trend for an overall reduction in rejection rates (c). (d-f) Logistic regressions. FAD 
decreased the area under the curve of the combined-trial performance (d). There was a 
trend for a reduction in the intercept of the GO trials (e). FAD reduced the area under the 
curve of the NO-GO trial performance (f). Insets in d-f are all from one representative 
subject. Dots around 0 and 1 represent incorrect and correct responses respectively, 
which are the data used for the logistic regressions. (g-i) Reversal learning (first 50 trials 
of day one versus last 50 of previous day). FAD impaired performance on the first day of 
combined trials (g) and of GO trials (h), but not NO-GO trials (i). *p < 0.05; **p < 0.01; 
#p < 0.1. 
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Table 2.1: Intra-NCM fadrozole experiments 
Figure 

number 
Testing stage Descriptive Test n Factor Results and effect size Post-hoc 

2.2a Learning 
Whole-day % 

Correct 
2-way RM-ANOVA (PRE vs 

FAD) 
5 

Treatment 
F(1,16) = 11.684, p = 

0.016, η2 = 0.252 
- 

Day 
F(1,16) = 25.194, p = 

0.002, η2 = 0.544 
- 

Interaction 
F(1,16) = 3.519, p = 

0.138, η2 = 0.076 
- 

2.2b Learning Whole-day Hit rate 
2-way RM-ANOVA (PRE vs 

FAD) 
5 

Treatment 
F(1,16) = 0.977, p = 

0.352, η2 = 0.049 
- 

Day 
F(1,16) = 6.190, p = 

0.068, η2 = 0.309 
- 

Interaction 
F(1,16) = 3.735, p = 

0.089, η2 = 0.187 
- 

2.2c Learning 
Whole-day 

Rejection rate 
2-way RM-ANOVA (PRE vs 

FAD) 
5 

Treatment 
F(1,16) = 7.550, p = 

0.051, η2 = 0.262 
- 

Day 
F(1,16) = 6.556, p = 

0.063, η2 = 0.227 
- 

Interaction 
F(1,16) = 5.464, p = 

0.080, η2 = 0.189 
- 

2.2d Learning 
Combined-trial 

logistic regression 

Paired t-test (PRE-FAD) 5 
Area-

under-
curve 

t4 = 2.787, p = 0.049, d 
= 0.737 

- 

Paired t-test (PRE-FAD) 5 Odds-ratio 
t4 = 1.115, p = 0.327, d = 

0.263 
- 

Paired t-test (PRE-FAD) 5 Intercept 
t4 = 2.065, p = 0.108, d = 

0.721 
- 

2.2e Learning 
GO-trial logistic 

regression 

Paired t-test (PRE-FAD) 5 
Area-

under-
curve 

t4 = 0.910, p = 0.414, d = 
0.248 

- 

Paired t-test (PRE-FAD) 5 Odds-ratio 
t4 = -1.345, p = 0.250, d 

= -0.623 
- 

Paired t-test (PRE-FAD) 5 Intercept 
t4 = 2.261; p = 0.087, d = 

0.609 
- 

2.2f Learning 
NO-GO-trial logistic 

regression 

Paired t-test (PRE-FAD) 5 
Area-

under-
curve 

t4 = 2.930, p = 0.043, d 
= 0.742 

- 

Paired t-test (PRE-FAD) 5 Odds-ratio 
t4 = 1.540, p = 0.198, d = 

0.749 
- 

Paired t-test (PRE-FAD) 5 Intercept 
t4 = 0.360, p = 0.737, d = 

0.268 
- 

2.2g Learning Reversal % Correct 
2-way RM-ANOVA (PRE vs 

FAD) 
5 

Treatment 
F(1,16) = 4.545, p = 

0.100, η2 = 0.046 
- 

Day 
F(1,16) = 71.178, p = 

0.001, η2 = 0.726 
- 

Interaction 
F(1,16) = 15.721, p = 

0.017, η2 = 0.160 

Previous day: t6.7 = -0.289, p 
= 0.781, d = -0.158 

First day: t6.7 = 3.907, p = 
0.006, d = 1.16 

2.2h Learning Reversal Hit rate 
2-way RM-ANOVA (PRE vs 

FAD) 
5 

Treatment 
F(1,16) = 4.270, p = 

0.073, η2 = 0.125 
- 

Day 
F(1,16) = 5.760, p = 

0.074, η2 = 0.169 
- 

Interaction 
F(1,16) = 15.460, p = 

0.004, η2 = 0.454 

Previous day: t6.7 = -1.319, p 
= 0.224, d = -0.592 

First day: t8 = 4.241, p = 
0.003, d = 0.731 

2.2i Learning 
Reversal Rejection 

rate 
2-way RM-ANOVA (PRE vs 

FAD) 
5 

Treatment 
F(1,16) = 1.218, p = 

0.291, η2 = 0.25 
- 

Day 
F(1,16) = 34.02, p < 

0.001, η2 = 0.692 
- 

Interaction 
F(1,16) = 0.032, p = 

0.862, η2 = 0.001 
- 

2.3b Discrimination 
Combined-trial 

logistic regression 

Paired t-test (PRE-FAD) 5 
Area-

under-
curve 

t4 = -1.787, p = 0.148, d 
= -0.483 

- 

Wilcoxon test (PRE-FAD) 5 Odds-ratio 
V = 11, p = 0.438, r = 

0.422 
- 

Wilcoxon test (PRE-FAD) 5 Intercept 
V = 4; p = 0.438, r = -

0.422 
- 

2.3c Discrimination 
Combined-trial 

logistic regression 

RM-ANOVA (PRE vs 
BM100nL vs BM200nL vs 

BM500nL) 
3 

Area-
under-
curve 

F(3,6) = 0.507, p = 
0.692, η2 = 0.188 

- 

RM-ANOVA (PRE vs 
BM100nL vs BM200nL vs 

BM500nL) 
3 Odds-ratio 

F3,6 = 0.04, p = 0.99, η2 = 
0.016 

- 

Friedman test (PRE vs 
BM100nL vs BM200nL vs 

BM500nL) 
3 Intercept 

χ2= 0.403, p = 0.615, KW 
= 0.120 

- 
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2.4.2 NCM aromatase inhibition does not affect performance with previously-
learned sounds 

To test whether the FAD effects on learning were due to impairments in post-

learning performance, after animals eventually reached learning criterion in the POST 

condition (i.e. daily ACSF injections), FAD was given again, but tone-contingency pairs 

were not changed. Whole-day performances are shown in Figure 2.3a. FAD treatment did 

not affect whole-day performances (RM-ANOVA; PRE vs FAD; all p > 0.293). 

Similarly, performance logistic curves were not different between PRE and FAD 

(Figure 2.3b). Further, hit and rejection rates (Figure 2.3b insets), as well as response bias 

(not shown), were all unchanged (all p > 0.110). These results indicate that FAD in NCM 

does not affect performance with previously-learned sounds. 

Since neuroestrogen synthesis inhibition had no effect on post-learning 

performance we were curious about the extent that NCM activity itself is necessary for 

this ability. To address this possibility, we silenced NCM neuronal activity 

pharmacologically with baclofen/muscimol (BM). In 3 animals BM was given following 

the FAD treatment above in 3 different injection volumes (100, 200 and 500 nL). Whole-

day performances are shown in Figure 2.3a. BM treatment did not affect whole-day 

performances (RM-ANOVA; PRE vs BM; all p > 0.175). 

Similarly, performance logistic curves were not different among PRE and BM 

treatments (Figure 2.3c). Further, hit and rejection rates (Figure 2.3c insets), as well as 

response bias (not shown), were all unchanged (all p > 0.102). Therefore, NCM does not 

appear to be necessary for the performance with previously-learned tones.  
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Figure 2.3: Discrimination of previously learned tones is not impaired by NCM 
fadrozole (FAD) and baclofen/muscimol (BM) injections. 
BM was administered in 3 increasing volumes: 100, 200 and 500 nL. Neither drug 
affected discrimination of previously learned tones. Daily performance (different colors 
are different animals) is shown in (a); logistic regressions in (b, c). Insets in (a-c) show 
GO and NO-GO trial performances. 

2.4.3 NCM aromatase inhibition did not affect motivation  

Daily trial initiation counts are shown in Supplementary Figure 2.5. NCM FAD 

treatment did not affect mean daily trial initiation, indicating that motivation to engage in 

the task was unaffected by aromatase inhibition within NCM.  

2.4.4 NCM cannulation damage transiently reduced auditory learning 

After undergoing at least one round of learning in the GO/NO-GO task with 50% 

GO-trial rate, birds (n=5) were implanted with bilateral cannulas targeting NCM 

(Supplementary figure 2.6). One week after surgery GO/NO-GO training resumed and 

the previous (before surgery) tone pair was employed to certify auditory function was 

intact. After reaching/maintaining criterion (range 2-6 days in our sample), a new tone 

pair was used to verify learning capacity. Comparison between whole-day performances 

before and after surgery during new tone learning is shown in Supplementary figure 2.7 

(statistical results in supplementary Table 2.3). Neither % Correct (Supplementary figure 

2.7a) or hit rate (Supplementary figure 2.7b) differed between pre- and post-surgery. 

However, there was a decrease in rejection rate (RR) in the post-surgery (Supplementary 
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figure 2.7c). Therefore, NCM cannulation surgery affected whole-day performance by 

decreasing RR, resulting in a more indiscriminate response to NO-GOs.  

Whole-day performance analyses do not consider variability in the number of 

trials, while logistic regressions do take this into account. Combined trial (GO + NO-GO) 

-logistic learning curves were not different when comparing pre vs. post-surgery 

(Supplementary figure 2.7d), and neither were GO learning curves (Supplementary figure 

2.7e), but surgery reduced the AUC of the NO-GO learning curve (Supplementary figure 

2.7f).  

Regarding response bias, there was no effect in the whole-day analyses 

(Supplementary Figure 2.4a). However, when correcting for the number of trials, there 

was an increase in the AUC of the response bias logistic curve (Supplementary figure 

2.9b). Therefore, NCM cannulation, after 1 week-recovery, impaired learning of NO-GO 

trials, without significantly affecting GO trials and the overall learning, resulting in an 

increase in response bias (when controlling for the number of trials performed). These 

results are consistent with NCM’s role in auditory learning. Importantly, this effect 

returned to before-surgery levels by the time drugs were delivered > 2 weeks after 

surgery (compare to PRE values in Figure 2.2). 

Because for some birds the pre-surgery tones were their first exposure to tone 

learning, we could not analyze reversal learning. 

We observed that whole-day performance generally returned to before-surgery 

levels ~2-3 weeks later (compare supplementary figure 2.7 with main Figure 2.2). 

Specifically, % Correct did not differ, hit rates increased and rejection rates did not 

change (supplementary Table 2.3). Furthermore, there was a trend for a more negative 
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response bias (compare supplementary figures 2.8 and 2.9). When adjusting for the total 

number of trials (logistic regressions), no differences were found in either all-trial, GO, 

NO-GO or response bias curves’ parameters (not shown; all p > 0.095). 

2.4.5 Systemic aromatase inhibition did not affect post-learning performance but 
reduced motivation 

 Systemic FAD (orally administered) before the task reduced the combined-trial 

whole-day learning (Figure 2.4a; statistical results in Table 2.2). While hit rates are not 

affected (Figure 2.4b), there was a trend for a reduction in rejection rates (Figure 2.4c). 

However, when correcting for the number of trials, FAD did not significantly affect the 

combined-trial learning curves (Figure 2.4d), the GO learning curves (Figure 2.4e) or the 

NO-GO learning curves (Figure 2.4f). These results indicate that daily oral FAD 

treatment before the task might impact daily learning, but this effect is not observed when 

correcting for the number of trials performed. 

In the reversal learning analyses, FAD did not impact all-trial reversal learning 

(Figure 2.4g), but there was a trend for an increase in hit rates (Figure 2.4h). There was 

also a trend for a decrease in rejection rates on the first day of FAD (Figure 2.4i). 

Therefore, oral FAD treatment did not systematically impact reversal learning. 

Because we observed trends in both hit and rejection rates due to treatment 

changing in different patterns, we analyzed response bias. In whole-day analyses there 

was no effect of FAD on response bias (Supplementary figure 2.11a; statistical results in 

supplementary Table 2.4). Similarly, in the logistic regressions, FAD did not change most 

of the curve parameters, except for inducing a trend for a higher intercept under FAD  

(Supplementary figure 2.11b). Finally, in the reversal learning analyses, FAD produced a 
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trend for an increase in response bias on the first day (Supplementary figure 2.11c). 

Therefore, systemic FAD treatment did not systematically impact response bias. 

Daily trial initiation counts are shown in Supplementary figure 2.12; systemic 

FAD treatment reduced mean daily trial initiation, consistent with a reduction in 

motivation with systemic aromatase inhibition. 

After animals learned in the POST condition, FAD was given again, but tones 

were not changed. Whole-day performances are shown in Figure 2.5a. FAD did not affect 

whole-day performance (% Correct, HR and RR all p > 0.205). Likewise, combined-trial 

performance logistic curves were not different between PRE and FAD (Figure 2.5b) nor 

were GO and NO-GO curves (insets; all p > 0.280), indicating that the systemic FAD 

treatments did not impact the performance with previously-learned stimuli. 
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Figure 2.4: Oral fadrozole (FAD) administrations before auditory learning task. 
Performance was analyzed using combined (left), GO (middle) or NO-GO trials (right). 
(a-c) First vs last day whole-day performances. FAD decreased combined-trial whole-day 
performance (a). Hit rates were unchanged, but (b) there was a trend for an overall 
reduction in rejection rates (c). (d-f) Logistic regressions. FAD did not affect any learning 
curves parameters, except for producing a trend for a higher intercept in the GO trials due 
to FAD. Insets in d-f are all from one representative subject. Dots around 0 and 1 
represent incorrect and correct responses respectively, which are the data used for the 
logistic regressions. (g-i) Reversal learning (first 50 trials of day one vs last 50 of 
previous day). FAD did not affect combined trials (g), but there were trends for an 
increase in hit rates on the first day (h) and for a decrease in rejection rate on the first day 
(i). *p < 0.05; #p < 0.1. 
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Table 2.2: Systemic fadrozole experiments 
Figure 

number 
Testing stage Descriptive Test n Factor Results and effect size Post-hoc 

2.4a Learning Whole-day % Correct 
2-way RM-ANOVA 

(PRE vs FAD) 
5 

Treatment 
F(1,16) = 5.927, p = 

0.031, η2 = 0.054 
- 

Day 
F(1,16) = 87.519, p < 

0.001, η2 = 0.801 
- 

Interaction 
F(1,16) = 2.567, p = 

0.135, η2 = 0.024 
- 

2.4b Learning Whole-day Hit rate 
2-way RM-ANOVA 

(PRE vs FAD) 
5 

Treatment 
F(1,16) = 1.366, p = 

0.307, η2 = 0.054 
- 

Day 
F(1,16) = 13.958, p = 

0.020, η2 = 0.549 
- 

Interaction 
F(1,16) = 0, p = 0.996, η2 

= 0 
- 

2.4c Learning 
Whole-day Rejection 

rate 
2-way RM-ANOVA 

(PRE vs FAD) 
5 

Treatment 
F(1,16) = 4.881, p = 

0.058, η2 = 0.112 
- 

Day 
F(1,16) = 23.475, p = 

0.001, η2 = 0.538 
- 

Interaction 
F(1,16) = 2.476, p = 

0.154, η2 = 0.057 
- 

2.4d Learning 
Combined-trial 

logistic regression 

Paired t-test (PRE-
FAD) 

5 
Area-

under-
curve 

t4 = -1.401, p = 0.234, d = 
0.395 

- 

Paired t-test (PRE-
FAD) 

5 Odds-ratio 
t4 = 0.771, p = 0.484, d = 

0.354 
- 

Paired t-test (PRE-
FAD) 

5 Intercept 
t4 = 0.149, p = 0.889, d = 

0.108 
- 

2.4e Learning 
GO-trial logistic 

regression 

Wilcoxon test (PRE-
FAD) 

5 
Area-

under-
curve 

V = 3, p = 0.313, r = -
0.541 

- 

Paired t-test (PRE-
FAD) 

5 Odds-ratio 
t4 = 0.997, p = 0.375, d = 

0.378 
- 

Paired t-test (PRE-
FAD) 

5 Intercept 
t4 = -2.523, p = 0.065, d = 

-0.334 
- 

2.4f Learning 
NO-GO-trial logistic 

regression 

Paired t-test (PRE-
FAD) 

5 
Area-

under-
curve 

t4 = 1.250, p = 0.279, d = 
0.480 

- 

Paired t-test (PRE-
FAD) 

5 Odds-ratio 
t4 = 0.002, p = 0.999, d = 

0.001 
- 

Paired t-test (PRE-
FAD) 

5 Intercept 
t4 = 1.343, p = 0.250, d = 

0.442 
- 

2.4g Learning Reversal % Correct 
2-way RM-ANOVA 

(PRE vs FAD) 
5 

Treatment 
F(1,16) = 0.109, p = 

0.758, η2 = 0.001 
- 

Day 
F(1,16) = 87.110, p < 

0.001, η2 = 0.904 
- 

Interaction 
F(1,16) = 0.286, p = 

0.621, η2 = 0.003 
- 

2.4h Learning Reversal Hit rate 
2-way RM-ANOVA 

(PRE vs FAD) 
5 

Treatment 
F(1,16) = 0.372, p = 

0.575, η2 = 0.008 
- 

Day 
F(1,16) = 21.529, p = 

0.010, η2 = 0.472 
- 

Interaction 
F(1,16) = 17.413, p = 

0.014, η2 = 0.381 

Previous day: t5.19 = 0.949, p 
= -0.931 

First day: t5.19 = -2.085, p = 
0.089, d = 0.631 

2.4i Learning 
Reversal Rejection 

rate 
2-way RM-ANOVA 

(PRE vs FAD) 
5 

Treatment 
F(1,16) = 0.642, p = 

0.468, η2 = 0.008 
- 

Day 
F(1,16) = 62.779, p < 

0.001, η2 = 0.795 
- 

Interaction 
F(1,16) = 4.206, p = 

0.074, η2 = 0.053 
- 

2.5b Discrimination 
All-trial logistic 

regression 

Wilcoxon test (PRE-
FAD) 

5 
Area-

under-
curve 

V = 8, p = 1, r = 0.060 - 

Paired t-test (PRE-
FAD) 

5 Odds-ratio 
t4 = -0.727, p = 0.508, d = 

-0.281 
- 

Paired t-test (PRE-
FAD) 

5 Intercept 
t4 = 1.004; p = 0.372, d = 

0.236 
- 
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Figure 2.5: Discrimination of previously learned tones is not impaired by oral 
fadrozole. 
Whole-day combined-trial performance is shown in (a); combined-trial logistic 
regressions in (b, c). Insets show GO- and NO-GO-trial performances. 

2.5 Discussion 

In this study we employ a novel behavioral task for the study of auditory learning 

with social reinforcement in zebra finches. Our main finding is that neuroestrogen 

synthesis is important for auditory learning, but not post-learning performance, in adult 

males. More specifically, our findings can be summarized as follows: inhibiting 

aromatase locally in the auditory association cortex (caudomedial nidopallium; NCM) is 

sufficient to impair learning of new sounds, but it does not impair performance after 

sounds are learned. We provide evidence that neuroestrogen production in a cortical 

region is important for sensory learning. 

Our data indicate that NCM, and more specifically aromatase activity within 

NCM, plays a key role in the online process of associating sounds with behaviorally 

relevant consequences in adult songbirds, consistent with previous observations regarding 

NCM function [Jarvis et al., 1995; London and Clayton, 2008; Bell et al., 2015], and with 

our findings that NCM cannulations transiently (~1 week after surgery) impaired learning 

of new sounds (Supplementary figure 2.7). However, once the learning process is 

completed, NCM might no longer be required for active discrimination (see Figure 2.3). 

We note that our task does not allow for precisely dissecting post-learning performance 
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into its contributing features, i.e. discrimination and memory retrieval. Therefore, we 

propose that the adult NCM is acting in the encoding/consolidation process of auditory 

associations, rather than in their retrieval or in sound discrimination after learning. This is 

reminiscent of hippocampal function, which is required for encoding, consolidation and 

retrieval of early/detailed memories but not involved in the retrieval of sedimented 

memories [Wiltgen et al., 2010]. Interestingly, recent studies in the mammalian and avian 

hippocampus have also observed a role for estrogens in learning, both locally-produced 

and from the circulation [Bailey and Saldanha, 2015; Luine, 2016; Tuscher et al., 2016; 

Gervais et al., 2018; Paletta et al., 2018]. 

Blocking E2 production in the adult zebra finch NCM had been previously shown 

to impair phonotactic preference towards the bird’s own song [Remage-Healey et al., 

2010]. However, sound preference experiments do not provide a complete answer 

regarding the nature of the behavior, since they conflate auditory memory, 

discrimination, and preference. Our behavioral task provides the opportunity to dissect 

different components of auditory-dependent behaviors. Our results suggest that NCM 

itself and E2 production within NCM are likely involved in auditory memory formation 

processes, rather than post-learning discrimination/retrieval. We hypothesize that in the 

phonotaxis study mentioned above, blocking E2 production in NCM might have affected 

some aspect of auditory memory formation, e.g. spatial associations, or perhaps sound 

valence signaling.  

Developmentally, auditory learning serves several important purposes in 

songbirds. Juveniles need to form auditory memories of their tutor song in order to 

develop their own song. After song crystallization, auditory learning is no longer required 
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for song production but continues to be relevant for environmental sound-consequence 

associations and individual recognition [D’Amelio et al., 2017; Elie and Theunissen, 

2018]. Indeed, in adults, NCM lesions impair the phonotactic preference for tutor song 

over novel conspecific song [Gobes and Bolhuis, 2007]. Neuronal responses in awake 

restrained zebra finches show adaptation to sounds played repeatedly, which is an 

indication of active memory formation [Chew et al., 1996]. In spite of these features, data 

from one group have suggested NCM lesions do not affect juvenile song learning or adult 

auditory learning, but do impact recovery from a reinforcement-driven song plasticity 

paradigm [Canopoli et al., 2014; Canopoli et al., 2017]. These findings contrast with our 

present results (both from aromatase inhibition and from cannulation surgery damage) 

and previous findings implicating NCM in vocal learning [London and Clayton, 2008; 

Tsoi et al., 2014; Yanagihara and Yazaki-Sugiyama, 2016] and adult auditory learning 

[Jarvis et al., 1995; Bell et al., 2015]. The lack of comparable effects on vocal/auditory 

learning found in the lesion studies might have been due to NCM regeneration [see Fig 2 

in Canopoli et al., 2014; our data] or some other unknown lesion-reactive plasticity 

mechanism. 

E2 modulates neuronal activity in the NCM of male zebra finches as young as 25 

days post-hatch, even before singing onset [Vahaba et al., 2017], but unilateral FAD 

infusions in NCM during tutoring do not impair song learning. This E2 production 

blockade during juvenile tutoring increased neuronal firing to tutor song playback when 

the same animals became adults [Vahaba et al., 2019]. During song playback, E2 

production is increased in the adult NCM [Remage-Healey et al., 2008], but is reduced in 

the juvenile NCM followed by an immediate increase after song playback [Chao et al., 
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2014]. Assuming that sound-outcome encoding is a general feature of NCM which 

extends to song-reinforcement learning in juveniles, our data indicate that E2 production 

in NCM is important during adult auditory learning, predicting an opposite result in the 

juvenile NCM during a similar auditory learning task. Interestingly, some areas directly 

implicated in juvenile song learning and production also contain aromatase fibers and/or 

neurons, such as HVC and HVC shelf [Ikeda et al., 2017]. Future research should address 

whether E2 production/signaling directly in these cortical areas support song learning in 

juveniles, and what other roles they are playing in adults, in which these areas mostly 

support song production. 

To modulate goal-directed auditory learning, E2 could be acting in concert with 

and/or modulating reinforcement signals, such as midbrain dopamine (DA) release. In 

striatum and preoptic area of both birds and mammals, E2 and DA systems interact 

[Becker, 1990; Lammers et al., 1999; Balthazart et al., 2002; Tozzi et al., 2015] and DA 

and E2 can interact with the same receptors [Olesen and Auger, 2008; Tozzi et al., 2015]. 

In the mammalian auditory cortex, DA signaling regulates auditory learning [Schicknick 

et al., 2012] and DA is controlled by steroid hormones in zebra finch NCM [Matragrano 

et al., 2011; Rodríguez-Saltos et al., 2018]. We have recent evidence that the majority of 

aromatase-expressing neurons in NCM also express dopamine receptors (unpublished 

observations). Therefore, studying E2 and DA interactions in the auditory cortex could 

provide important network and cellular mechanisms for the behavioral phenomena 

observed here. 

We show that systemic FAD reduces motivation to engage in a socially motivated 

task. Concordantly, in other birds, aromatase inhibition has been linked to reductions in 
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social behavior measures. In adult Japanese quail, systemic and whole-brain aromatase 

inhibition have been shown to reduce socio-sexual motivation, such as proximity to an 

opposite sex individual [Seredynski et al., 2013; de Bournonville et al., 2016], attributed 

to aromatase in the medial preoptic area in males [de Bournonville et al., 2019]. 

Furthermore, in male canaries, motivation to sing was reduced by systemic FAD [Alward 

et al., 2016]. We note that the dose of FAD used in our experiments was 15-fold lower 

and administered orally vs intraperitoneally comparing to Alward et al. [2016]. In our 

paradigm, higher oral doses might be needed to observe effects on learning, but those 

might produce a further reduction in motivation, which can obscure interpretation of 

learning data.  

It is possible that the trends for increases in response bias due to FAD treatment 

reflect an impairment of impulse control. Interestingly, an involvement of 

aromatization/E2 in impulsive behavior has been suggested in humans [Smith et al., 

2014] and rodents [Svensson, 2010; Bayless et al., 2013]. Future implementations of our 

behavioral task could help illuminate the comparative aspects of this proposed 

relationship between neuroestrogens and impulsive behavior in songbirds and other 

species.  

One caveat is that our study was only performed in male songbirds. Data from our 

group have shown that the same dose of oral fadrozole used here did not impair 

immediate early gene EGR1 expression in the female NCM, but it did in males [Krentzel 

et al., 2019]. Furthermore, unlike in males, NCM electrophysiological responses in 

females were unaffected by modulation of G-protein coupled E2 receptors [Krentzel et 

al., 2018]. It is possible that, since females also possess an ovarian source of E2, drugs 
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that affect E2-signaling are needed in higher doses to produce an effect. Finally, in males, 

NCM contains higher density of aromatase fibers than in females (although not of 

aromatase neurons), which points towards a higher dependency on local aromatization in 

males [Saldanha et al., 2000; Peterson et al., 2005]. Nevertheless, females are also 

motivated to engage in the same task (unpublished observation) which provides an 

interesting avenue of future research, particularly for the exploration of sex differences in 

the role of aromatase in auditory learning. 

Estrogens are important modulators of auditory function in vertebrates, including 

humans [for review see Caras, 2013]. In women, auditory sensitivity, working memory, 

and speech perception in noise are modulated by estrogens, both endogenous [Walpurger 

et al., 2004; Al-Mana et al., 2010; Sao and Jain, 2016] and exogenous [Kilicdag et al., 

2004]. In seasonally-breeding songbirds, estrogens, in particular 17β-estradiol (E2), are 

known to be higher during the breeding season and shift auditory responses in the 

periphery [Lucas et al., 2007] and also likely in the forebrain [Caras et al., 2012; Caras et 

al., 2015]. Indeed, in the opportunistically-breeding zebra finch, E2 infusions in the NCM 

rapidly increase neuronal responses to song stimuli while FAD infusions change neuronal 

firing patterns [Remage-Healey et al., 2010]. Our results build on this literature by 

unveiling the functional consequences of neuroestrogen production in the auditory 

association cortex, which helps clarify the difference between peripheral effects reported 

in the literature vs central effects reported here. It is possible that in the periphery (e.g. 

hair cells), E2 enhances sound sensitivity and detection, while central E2 may be 

affecting neuronal plasticity and sound memory formation.  
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Studies in humans had previously linked infant E2 levels with increased language 

capacity [Wermke et al., 2014; Schaadt et al., 2015], but a causal relationship has not 

been tested. An interesting question is whether, like in songbirds, E2 production by the 

auditory cortex [Yague et al., 2006] impacts language learning, or more broadly, auditory 

learning in humans during development and/or adulthood. 

In conclusion, we demonstrate that aromatase activity in the secondary auditory 

cortex of adult songbirds is important for auditory learning, but not post-learning auditory 

performance. Furthermore, we show that NCM itself might not be required for online 

auditory performance with previously learned sound-outcome associations. Our findings 

suggest that NCM E2 (and NCM itself) plays a role in the pairing between sounds and 

behaviorally relevant consequences, and that this signal is likely distributed and stored in 

other brain regions after the initial association.  

Effects of neuro-E2 production had been previously demonstrated in mammalian 

and avian hippocampus [Bailey and Saldanha, 2015; Luine, 2016; Tuscher et al., 2016; 

Gervais et al., 2018; Paletta et al., 2018]. Our study builds on this literature by providing 

direct evidence that E2 production within the auditory cortex affects sensory learning. 

We hypothesize that these findings could apply to other vertebrates that contain 

aromatase in their auditory cortex, including humans.  
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2.8 Supplementary methods 

2.8.1 Behavioral task 

Before GO/NO-GO, birds were introduced to the polarized glass mechanism and 

trained to operate the switch. Details of these tasks are provided below. 

2.8.1.1 Introduction 

So that birds were introduced to the function of the polarized glass, this stage 

consisted of turning the glass transparent for the duration of 6 seconds at pseudorandom 

intervals between 30 and 60 seconds. This training stage lasted for 4 hours and was 

repeated for two days. 

2.8.1.2 Shaping 

Following the two days of introduction, birds were trained to operate the switch. 

In the first day of shaping, the switch was baited with egg food supplement (Quiko 

Exotic) attached to a red tape. When birds ate from the tape, the infrared beam would be 

triggered, and the glass would turn transparent for 6 seconds. The red LED would turn on 
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to signal when the switch was active and turned off when the glass was transparent and 

when the training was over. 

The performance files generated by the software were constantly monitored. If the 

number of activations were higher than ~30, the tape was removed, and training 

continued. If the activation count was not higher than 100 in 4 hours, shaping would be 

extended for 7-8 more hours (until lights-off), and the same rationale was used the next 

day. Shaping was repeated daily until birds achieved the following 2 criteria two days in 

a row: (1) consistently triggered the beam without the tape (more than 100 activations) 

and (2) did so during a 4-hour trial. If (1) was achieved during an extended trial, a 4-hour 

trial (without tape) was applied the following day. After two consecutive days of 

achieving both criteria, the next training stage was started in the following day. 

2.8.2 Anaesthetized electrophysiological recordings 

Recording drives were made in-house and consisted of 8 tetrodes (4x25 µm NiCr 

wires; Sandvik; impedance adjusted to 200-300 kΩ by gold-plating) arranged in a bundle 

coupled to a microdialysis probe (CMA11; Harvard Apparatus) and routed into a custom-

made circuit board (modified from Open Ephys board by Daniel Pollak; Advanced 

Circuits). Before recording, wires were dipped in DiI-594 (ThermoFisher) for electrode 

placement confirmation. Recordings were sampled at 20 kHz using Intan Technologies 

amplifier and evaluation board (RHD2000; courtesy of Joseph Bergan).  

Two female zebra finches were used for this experiment. Females were used 

instead of males because this experiment was originally part of another project. They 

were retrieved from our aviary, anaesthetized with isoflurane, implanted with headposts 

secured with dental cement and craniotomies were performed exposing the brain 
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overlaying the auditory lobule. The following day, they were deeply anaesthetized with 

20% urethane (3x 30 µL intramuscular injections; 40 min intervals) and head-fixed for 

recordings. The recording drive was inserted in the craniotomies with the wires targeting 

the auditory lobule (Field L/NCM), and the probe just lateral to that (caudocentral 

nidopallium/caudomedial mesopallium). Coordinates (relative to midsagittal sinus) were 

0.5-0.9 mm lateral, 1.1 mm anterior, and 1-2.0 mm ventral. Head was tilted forward at a 

45° angle. Both hemispheres were used for recordings. Once a stable recording site was 

achieved, drug infusions at 2 µL/min took place using a microdialysis pump (Harvard 

Apparatus PHD2000). 

Recordings were common median filtered and 300 Hz high-pass filtered. Single 

unit sorting was performed with Kilosort [Pachitariu et al., 2016]. Sorting results were 

manually curated and only well-isolated units (high signal-to-noise ratio; no 

contamination with other units; segregation in waveform PCA space) were used for these 

analyses (15 from left; 3 from right hemisphere). 

 

Supplementary video. Operant task with social reinforcement. The first section of the 

video is of a GO trial resulting in a HIT; the second section is of a NO-GO trial resulting 

in a FALSE ALARM. Note that this animal activates the switch while perching on the 

switch itself, while other animals trigger it from the wood perch in front of the switch. 

Also note that this bird sings when he gains visual access to the female. Finally, note in 

the NO-GO trial that the white noise burst is aversive enough to cause the animal to leave 

the perch, but he promptly returns after the noise ceases. 
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Figure 2.6: Supplementary – NCM cannula placement confirmation. 
Dotted lines are an approximation of NCM’s anatomical boundaries. Asterisk marks the 
tip of the cannula.  

 

 
Figure 2.7: Supplementary – One week after cannulation surgery, animals show 
mild impairments in sound learning. 
(a-c) Comparing first vs last day performances, neither all-trial (a) or hit rate (b) are 
significantly affected, but rejection rates are significantly decreased after surgery (c). 
Logistic learning curves are shown in (d-f). All-trial (d) and GO-trial (e) curves are not 
affected but, NO-GO-trial’s (f) area under curve is reduced after surgery. Insets in d-f are 
all from one representative subject. Dots around 0 and 1 represent incorrect and correct 
responses respectively, which are the data used for the logistic regressions. *p < 0.05. 
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Figure 2.8: Supplementary – Response bias analyses during NCM fadrozole (FAD) 
administrations before auditory learning task. 
(a) First vs last whole-day response bias analyses. There is a trend for an increase of 
response bias on the last day of training with FAD treatments. (b) Indiscriminate response 
(hit or false alarm) logistic curves are not significantly changed with FAD. (c) Reversal 
response bias (first vs previous day of each treatment) is not significantly changed with 
FAD. #p < 0.1 

 

 
Figure 2.9: Supplementary – Response bias during auditory learning before vs one 
week after NCM cannulation surgery. 
(a) First vs last day response bias are not significantly changed. Negative values indicate 
bias towards responding, while positive values indicate bias towards non-responding to 
tones. b) Indiscriminate response (hit or false alarm) logistic curve’s area-under-curve is 
increased following surgery, indicating an increase in response bias. **p < 0.01. 

 
Figure 2.10: Supplementary – Average daily trial initiation is not affected by NCM 
fadrozole injections. 
Training data correspond to post-surgery learning trials without handling and injections.  
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Figure 2.11: Supplementary – Response bias analyses during oral fadrozole (FAD) 
administrations before auditory learning task. 
Negative values (a,c) indicate bias towards responding, while positive values indicate 
bias towards non-responding to tones. (a) FAD did not significantly affect first vs last 
whole-day response bias analyses. (b) Indiscriminate response (hit or false alarm) logistic 
curves are not significantly changed with FAD, but there was a trend for a higher 
intercept due to FAD. (c) Reversal response bias (first vs previous day of each treatment). 
There was a trend for a more negative (stronger) response bias on the first day of FAD. 
#p < 0.1. 

 
  

 
Figure 2.12: Supplementary – Average daily trial initiation was reduced by oral 
fadrozole administration. 
Training data correspond to learning trials without handling and injections. *p < 0.05  

 
Figure 2.13: Supplementary – Baclofen/muscimol (1/0.1 mM) retrodialysis reduces 
spontaneous activity of single units in the auditory lobule. 
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(a) Electrode tracts in magenta (DiI-594); background fluorescence in cyan. (b) Tetrode 
(8x) array coupled with microdialysis probes for drug delivery. (c) Example neurons 
recorded in different tetrodes. (d) Firing rate of 17 single units was decreased after 
baclofen/muscimol infusion. Values were normalized by the first minute. Statistically 
significant decreases were observed starting at 23 minutes after the start of the 
microdialysis pump (RM-ANOVA; Time: F29,493 = 6.975; p < 0.001; Dunnett post-hoc 
test vs first minute). *p<0.05; **p<0.01; ***p<0.001. 
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Table 2.3: Supplementary – Intra-NCM fadrozole experiments 
Supplementary figure number Testing stage Descriptive Test n Factor Results and effect size Post-hoc 

2.7a 
Pre- vs post-

surgery 
learning 

Whole-day % Correct 2-way RM-ANOVA 5 
Treatment F(1,16) = 2.567, p = 0.149, η2 = 0.024 - 

Day F(1,16) = 95.432, p < 0.001, η2 = 0.895 - 
Interaction F(1,16) = 0.059, p = 0.822, η2 = 0.001 - 

2.7b 
Pre- vs post-

surgery 
learning 

Whole-day Hit rate 2-way RM-ANOVA 5 
Treatment F(1,16) = 0.067, p = 0.805, η2 = 0.003 - 

Day F(1,16) = 10.566, p = 0.017, η2 = 0.514 - 
Interaction F(1,16) = 0.101, p = 0.768, η2 = 0.005 - 

2.7c 
Pre- vs post-

surgery 
learning 

Whole-day Rejection rate 2-way RM-ANOVA 5 
Treatment F(1,16) = 8.758, p = 0.042, η2 = 0.434 - 

Day F(1,16) = 2.942, η2 = 0.146, p = 0.162 - 
Interaction F(1,16) = 0.578, p = 0.489, η2 = 0.029 - 

2.7d 
Pre- vs post-

surgery 
learning 

Combined-trial logistic 
regression 

Paired t-test 5 Area-under-curve t4 = 1.554, p = 0.195, d = 0.603 - 
Paired t-test 5 Odds-ratio t4 = -0.081, p = 0.940, d = -0.027 - 
Paired t-test 5 Intercept t4 = 0.920, p = 0.410, d = 0.266 - 

2.7e 
Pre- vs post-

surgery 
learning 

GO-trial logistic regression 
Paired t-test 5 Area-under-curve t4 = -1.125, p = 0.324, d = -0.654 - 
Paired t-test 5 Odds-ratio t4 = -0.249, p = 0.816, d = -0.088 - 
Paired t-test 5 Intercept t4 = -1.308, p = 0.261, d = -0.394 - 

2.7f 
Pre- vs post-

surgery 
learning 

NO-GO-trial logistic regression 
Paired t-test 5 Area-under-curve t4 = 3.722, p = 0.020, d = 0.605 - 
Paired t-test 5 Odds-ratio t4 = 0.347, p = 0.746, d = 0.101 - 
Paired t-test 5 Intercept t4 = 1.982, p = 0.119, d = 0.451 - 

Compare supplementary figure 
2.7a with main figure 2.2a 

Presurgery vs 
PRE (ACSF) 

learning 
Whole-day % Correct 2-way RM-ANOVA 5 

Treatment F(1,16) = 2.873, p = 0.165, η2 = 0.045 - 
Day F(1,16) = 50.889, p = 0.002, η2 = 0.804 - 

Interaction F(1,16) = 0.010, p = 0.925, η2 = 0.000 - 

Compare supplementary figure 
2.7b with main figure 2.2b 

Presurgery vs 
PRE (ACSF) 

learning 
Whole-day Hit rate 2-way RM-ANOVA 5 

Treatment F(1,16) = 19.328, p = 0.002, η2 = 0.498 - 
Day F(1,16) = 8.658, p = 0.042, η2 = 0.223 - 

Interaction F(1,16) = 1.762, p = 0.221, η2 = 0.045 - 

Compare supplementary figure 
2.7c with main figure 2.2c 

Presurgery vs 
PRE (ACSF) 

learning 
Whole-day Rejection rate 2-way RM-ANOVA 5 

Treatment F(1,16) = 0.580, p = 0.489, η2 = 0.023 - 
Day F(1,16) = 15.742, p = 0.017, η2 = 0.631 - 

Interaction F(1,16) = 1.746, p = 0.339, η2 = 0.047 - 
Compare supplementary figure 
2.8a with supplementary figure 

2.4a 

Presurgery vs 
PRE (ACSF) 

learning 
Whole-day Response bias 2-way RM-ANOVA 5 

Treatment F(1,16) = 5.910, p = 0.072, η2 = 0.350 - 
Day F(1,16) = 0.058, p = 0.822, η2 = 0.003 - 

Interaction F(1,16) = 1.670, p = 0.266, η2 = 0.099 - 

2.8a Learning Whole-day response bias 2-way RM-ANOVA (PRE vs FAD) 5 
Treatment F(1,16) = 3.826, p = 0.086, η2 = 0.193 - 

Day F(1,16) = 0.465, p = 0.533, η2 = 0.023 - 
Interaction F(1,16) = 4.727, p = 0.061, η2 = 0.238 - 

2.8b Learning Response bias logistic regression 
Paired t-test (PRE-FAD) 5 Area-under-curve t4 = -2.039, p = 0.111, d = -0.388 - 
Paired t-test (PRE-FAD) 5 Odds-ratio t4 = -1.550, p = 0.196, d = -0.540 - 
Paired t-test (PRE-FAD) 5 Intercept t4 = 0.500; p = 0.643, d = 0.186 - 

2.8c Learning Reversal response bias 2-way RM-ANOVA (PRE vs FAD) 5 
Treatment F(1,16) = 0.480, p = 0.508, η2 = 0.032 - 

Day F(1,16) = 0.519, p = 0.511, η2 = 0.034 - 
Interaction F(1,16) = 2.508, p = 0.152, η2 = 0.166 - 

2.9a 
Pre- vs post-

surgery 
learning 

Whole-day Response bias 2-way RM-ANOVA 5 
Treatment F(1,16) = 3.616, p = 0.116, η2 = 0.307 - 

Day F(1,16) = 0.363, p = 0.580, η2 = 0.023 - 
Interaction F(1,16) = 0.391, p = 0.550, η2 = 0.020 - 

2.9b 
Pre- vs post-

surgery 
learning 

Response bias logistic regression 
Paired t-test 5 Area-under-curve t4 = -4.817, p = 0.009, d = -0.622 - 
Paired t-test 5 Odds-ratio t4 = 0.615, p = 0.572, d = 0.284 - 
Paired t-test 5 Intercept t4 = -1.807, p = 0.145, d = -0.587 - 

2.10 Learning Mean daily trial initiation Wilcoxon test (PRE-FAD) 5 Trials/day V = 6, p = 0.813, r = -0.181 - 
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Table 2.4: Supplementary – Systemic fadrozole experiments 
Supplementary 
figure number 

Testing 
stage Descriptive Test n Factor Results and effect size Post-hoc 

2.11a Learning Whole-day Response 
bias 

2-way RM-ANOVA 5 

Treatment F(1,16) = 4.218, p = 0.108, η2 = 
0.245 

- 

Day F(1,16) = 0.004, p = 0.952 - 

Interaction F(1,16) = 0.490, p = 0.522, η2 = 
0.028 

- 

2.11b Learning Response bias logistic 
regression 

Paired t-test (PRE-
FAD) 

Paired t-test (PRE-
FAD) 

Paired t-test (PRE-
FAD) 

5 
5 
5 

Area-
under-
curve 

t4 = -1.272, p = 0.272, d = -
0.401 - 

Odds-ratio t4 = 0.355, p = 0.740, d = 0.201 - 

Intercept t4 = -2.254, p = 0.087, d = -
0.441 - 

2.11c Learning 
Reversal response 

bias 
2-way RM-ANOVA 

(PRE vs FAD) 5 

Treatment F(1,16) = 0.496, p = 0.508, η2 = 
0.032 

- 

Day 
F(1,16) = 0.213, p = 0.665, η2 = 

0.014 - 

Interaction 
F(1,16) = 4.565, p = 0.095, η2 = 

0.295 - 

2.12 Learning Mean daily trial 
initiation 

Paired t-test (PRE-
FAD) 5 Trials/day t4 = 5.960, p = 0.004, d = 0.357 - 
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CHAPTER 3 

DOPAMINE MODULATION OF MOTOR AND SENSORY PERFORMANCE 

AMONG VERTEBRATES 

Manuscript in preparation 
Authors: Matheus Macedo-Lima and Luke Remage-Healey 

3.1 Abstract 

Goal-directed learning is a key contributor to evolutionary fitness in animals. 

Over the past decades we have learned much about the neural mechanisms that mediate 

learning, and the neuromodulator dopamine (DA) is commonly implicated. In higher 

order cortical regions, most of what is known about DA’s role is derived from few cases, 

in brain regions involved in motivation and decision-making, while significantly less is 

known about DA’s potential role in regulating structures involved in improving an 

animal’s motor performance and sensory sensitivity in pursuing rewards or avoiding 

punishments (e.g. motor/sensory cortices). Moreover, rodent and primate research 

represents over 95% of publications in the field, while little beyond basic anatomy is 

known in other vertebrate groups. This significantly limits our general understanding of 

how DA signaling systems have evolved and allowed organisms to adapt to their 

environments. This review takes a pan-vertebrate view of the literature on the role of DA 

in motor/sensory cortical regions, highlighting, when available, research on non-

mammalian vertebrates. We provide an evolutionary perspective on DA function and 

emphasize that DA-induced plasticity mechanisms are widespread across all cortical 

systems resulting in motor/sensory adaptations. Continued research progress in a wide 

span of vertebrates will be crucial to further our understanding of how the DA system can 
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persist or change in face of evolutionary pressures, and how it can become disrupted in a 

neural disease context. Important gaps in the current literature are also identified. 

 

 
Figure 3.1: Plasticity effects of dopamine onto sensory/motor cortex (graphical 
abstract) 
Highly complex phenomena such as motor, visual and auditory learning depend on 
midbrain dopamine signaling directly onto motor/sensory cortical structures. The color 
pattern in panels, arrows and brain structures (ellipses) indicate the specificity of the 
dopamine projections and their effects.  

3.2 Introduction 

Research on dopamine (DA) has a rich history. This molecule was first described 

as a neurotransmitter and suggested to be involved Parkinson’s disease six decades ago 

by Arvid Carlsson [Carlsson et al., 1958], part of a research trajectory for which he was 

awarded the 2000 Nobel Prize. Parallel to Carlsson’s studies, Peter Olds and James 
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Milner published pioneering research on the electrical stimulation of “pleasure centers” 

in the rodent brain, which included basal centers for DA action [Olds and Milner, 

1954].These seminal findings have driven a large research effort focused on 

reinforcement processing and motor disorders in the basal ganglia and in the role of DA 

therein. Two decades later, DA was found also to be present in the rat cortex, detected 

after ablation of the noradrenergic system [Thierry et al., 1973; Berger et al., 1974].  

 The years that followed saw an explosion of research on DA, and effects in many 

brain regions have since been discovered. In mammals, the majority of the DA has been 

found to be produced in midbrain and hypothalamus, and four main projection pathways 

have been identified: the tuberoinfundibular, nigrostriatal, mesolimbic and mesocortical 

pathways [Björklund and Dunnett, 2007]. The latter comprises projections from the 

midbrain (e.g. tegmentum, substantia nigra) to virtually all cortical regions. An 

interesting feature of the mammalian cortical DA system is that the density of cortical 

DA projections generally decreases from anterior to posterior, being the highest in the 

frontal lobe and lowest in the occipital lobe [Descarries et al., 1987].The current body of 

literature seems to parallel the anatomy, that is, the areas with the most DA fibers have 

received the lion’s share of research attention. As such, many recent reviews have 

concentrated on the wealth of data about DA effects on the prefrontal cortex (PFC), 

mediating phenomena such as reinforcement processing, motivation and attention [e.g. 

Clark et al., 2014; Chaua et al., 2018; Thiele and Bellgrove, 2018; Weele et al., 2018]. 

Interestingly, to this point, a recent study proposed that hominid evolution was 

significantly shaped by striatal DA and its role in sociality [Raghanti et al., 2018].  By 

contrast, relatively few address DA’s direct effects on other cortical regions [motor: 
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Vitrac and Benoit-Marand, 2017; sensory: Jacob and Nienborg, 2018]. Another large 

body of literature has focused on learning and behavioral plasticity due to dopaminergic 

(DAergic) effects on striatum/nucleus accumbens circuits [Cerovic et al., 2013; Sulzer et 

al., 2016; Gallo, 2019; Woolley, 2019]. Our goal in this review is to address some of the 

gaps in the literature, specifically by examining  effects of DA on cortical regions that 

modify motor/sensory performance and direct (local) actions of DA in these regions, 

rather than by means of indirect input from the PFC, striatum or other subcortical regions. 

Additionally, this review synthesizes available data about DAergic effects on cortical 

systems in non-mammalian vertebrate species (see below), in order to provide an 

evolutionary perspective on DA function in less studied cortical systems. 

3.3 Cortical DA as a reinforcement-dependent, performance-enhancing signal 

After experiencing a rewarding situation, for example, many animals will attempt 

to replicate the same conditions in which such reward was received so it can experience 

the reward again in the future. This process requires not only the positive experience 

signal associated with the reward, but also the encoding of environmental conditions that 

accompanied or preceded it. Intrinsic motivation to seek subsequent reinforcement can 

lead to improvements in motor and sensory performance. 

Reinforcement learning (be it reward or punishment) is known to recruit several 

brain regions to signal valence and form memories about environmental information. 

Notably, the ventral tegmental area (VTA) is a key region in this process. It integrates 

inputs from areas that process multimodal information such as the prefrontal cortex (e.g. 

decision-making; attention) and the dorsal striatum (e.g. sensory and motor information) 

[Beier et al., 2015]. The VTA then sends DA-containing projections to regions such as 
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the striatum, the nucleus accumbens and the cortex. The firing of these DAergic neurons 

is intimately linked to reinforcement processing and inducing changes in the target 

regions [e.g. Menegas et al., 2018]. Reinforcement and decision-making networks that 

include VTA, striatum, nucleus accumbens and prefrontal cortical structures appear to be 

necessary for the installation of the reward-seeking (and punishment-avoiding) behaviors. 

VTA projections to motor and sensory cortices are associated with improving and fine-

tuning responses to the environment in order to achieve the desired behavioral outcome 

more efficiently [McGann, 2015].  

It is important to note that the findings mentioned so far are derived mostly from 

experiments in laboratory rodents and primates. As studies on other vertebrate species 

have emerged, it has become evident that this system can be involved in many goal-

directed behaviors, such as learning of song in birds [Woolley, 2019]. To fully appreciate 

the deep evolutionary history of DA signaling, it is also important to derive lessons from 

work on invertebrate species, which have a rich history of studies on DA regulation of 

sensory, motor, learning and other processes [Verlinden, 2018]. The phylogenetic 

“myopia” focusing on rodents and primates, as noted by Brenowitz and Zakon [2015], 

greatly hinders our understanding of the evolution of nervous systems and may be 

preventing scientific breakthroughs sparked by studying non-traditional organisms 

[Manger et al., 2008; Carlson, 2012; Remage-Healey et al., 2017]. To this point, in an 

excellent review on the evolution of DA systems in chordates, Yamamoto and Vernier 

[2011] emphasize that tracing back the origin of DA systems in vertebrates and how they 

evolved is an important step to better understand brain DA functions and how they can 

become maladaptive in a disease context. As an illustration of these biases, the literature 
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on the roles of DA in the reinforcement processing and decision-making circuitry is vast 

as compared to the one on the role of DA in improving motor/sensory performance. A 

non-exclusive PubMed search with the keywords dopamine AND (accumbens OR 

striatum OR "prefrontal cortex") returns ~43,000 results, while dopamine AND ("motor 

cortex" OR "auditory cortex" OR "somatosensory cortex" OR "visual cortex") returns 

only ~1300 results, a ~33-fold discrepancy. In a similar way, the literature that includes 

the term rodent exceeds the literature that includes any other non-mammal species ~29-

fold, while including the term monkey exceeds the same literature ~14-fold – dopamine 

AND brain AND rodent NOT (reptile OR bird OR fish OR amphibian) returns ~58,000 

items; dopamine AND brain AND monkey NOT (reptile OR bird OR fish OR amphibian) 

returns ~28,000 items; dopamine AND brain AND (reptile OR bird OR fish OR 

amphibian) returns ~2,000.  

A key distinction for understanding DA modulation concerns indirect versus 

direct effects of DA on cortical regions. For simplicity, in this review, we classify as 

indirect those effects of DA on the striatum or other subcortical structures, which in turn 

may modify their connections with the cortex; or actions on the prefrontal cortex, which 

can modify other cortical regions by affecting top-down attentional and motivational 

mechanisms. For example, DA in the prefrontal cortex has been found to modulate 

attention through its connections to the visual cortex [Noudoost and Moore, 2011]. By 

contrast, we classify direct effects as actions of DA-containing fibers that synapse 

directly on the cortical region in focus.  

Molecularly, DA binds to a plethora of different receptors, with modulatory 

actions (seconds to minutes timescales) that can increase or decrease of circuit 
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excitability [reviewed by Beaulieu and Gainetdinov, 2011]. In the current review, we will 

mostly refer to the D1 class of receptors (D1a, D1b, D1c, D1d) as simply D1 or D1-like, 

and to the D2 class (D2, D3, D4) as D2 or D2-like.  

The ratio of D1- to D2-like receptors and their expression in different cell types 

largely accounts for whether a neural circuit’s excitability will be activated or suppressed 

due to the effects of DA. Such effects are achieved by modulating the activity of the 

excitatory (glutamatergic) or inhibitory (GABAergic) fast neurotransmission of 

downstream neurons. These effects are now known to be highly nuanced, often referred 

to D1- or D2-dominated states, respectively linked to high activation-high robustness-low 

flexibility and low activation-high perturbation-high flexibility states [Durstewitz and 

Seamans, 2008].  

It is important to note that generalizing DA action across structures should be 

done with caution. For example, inhibition of either D1 or D2 receptors in motor cortex 

can impair motor learning and long-term potentiation [Molina-Luna et al., 2009], which 

contradicts (or at least complicates) the “textbook definition” of D1 and D2 receptor 

effects’ being mutually-antagonistic, as is often assumed for the striatum/accumbens 

[Beaulieu and Gainetdinov, 2011]. 

It should also be pointed out that while the VTA provides the largest source of 

DA to the mammalian cortex, it is not the sole source. To illustrate, substantia nigra pars 

compacta neurons send diffuse projections into the cortex [Gaspar et al., 1992]. 

Additionally, locus coeruleus neurons co-release norepinephrine and DA throughout the 

cortex [Devoto et al., 2005], and DA can bind to adrenergic receptors [Cornil and Ball, 
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2008]. This perspective will become increasingly important as we learn more about how 

cortical sensory and motor circuits are shaped by DAergic inputs. 

 Across vertebrates, cortical systems vary markedly in macro-anatomy, but share 

fundamental features including embryonic origin, connectivity, function, and gene 

expression patterns. Through identifying shared patterns, homologues to the mammalian 

six-layered pallial cortex have been hypothesized in all major vertebrate groups, although 

in fishes telencephalic homology is less clear [Bruce and Neary, 1995; Dugas-Ford et al., 

2012; Pfenning et al., 2014; Yamamoto and Bloch, 2017; Tosches et al., 2018]. In 

mammals, the neocortex is the outermost structure of the telencephalon, while in other 

vertebrates, cortical structures may be distributed in discrete nuclei across the pallium. 

We adopt in this review the nomenclature “cortex/cortical structure” to refer to the 

identified/proposed cortical homologues to mammalian cortical pallium in other 

vertebrates (Table 3.1).  

As some caveats, there are no conclusive data on specific cortical motor/sensory 

subdivisions of fish, amphibian and reptile telencephalon; in birds, motor regions besides 

the vocal production nuclei are largely unknown and data on taste cortical homologues in 

any non-mammalian species are essentially nonexistent. However, even when homology 

is unclear or not present, cortical structures that share similar principles due to convergent 

evolution can be equivalently informative for understanding general principles of such 

systems and the evolutionary pressures that mold them [Katz, 2019]. 

As part of our review we ask the following questions: since DA is present in 

motor and sensory cortices, what roles does DA play in these structures? Do the 

principles of DA effects in motor/sensory cortices mirror those in reinforcement 
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processing centers and the basal ganglia? Furthermore, are DA’s effects generalizable 

across other vertebrates? How did this modulatory system evolve?  

3.4 Dopamine-induced plasticity in motor cortex 

The context and timing of DA signaling is crucial for behavioral plasticity. Prior 

to the key association of cues with consequences, DA signaling by VTA is purely 

subsequential, that is, the signal follows reward consumption. However, with repetition 

of the pairing of environmental conditions with consequences, DA signaling starts to 

anticipate the consequence, and then becomes a predictive signal. If a prediction or 

expectation about the consequence is violated, DA neurons will now signal when the 

consequence was predicted to happen and will inform the direction of this violation (good 

or bad surprise), by increasing or decreasing their firing rates, respectively. The literature 

classically refers to this “algorithm” as reward prediction error [Barto et al., 1981; 

Schultz et al., 1997]. This algorithm not only signals when an animal should make a 

decision to pursue a reward, but also how to achieve this reward with more ease or 

accuracy. For example, this algorithm is implemented when repetition of a motor pattern 

to achieve reinforcement leads to fine-tuning of the movement. Therefore, the DAergic 

signals that are used to reinforce the decision-making network could also be used to 

reinforce and tune motor performance. 

3.4.1 DA fiber and receptor distribution suggest topographical specificity 

The VTA is the major DAergic projection to the mammalian primary motor 

cortex (M1) [Scheibner and Törk, 1987] and most M1-projecting VTA neurons project 

solely to the motor cortex (i.e. no collaterals) (Hosp et al., 2015; Hosp et al., 2011). In the 

rat M1, axons containing tyrosine hydroxylase (TH; enzyme upstream of the DA 
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production chain) that lack DA β-hydroxylase (DBH; enzyme that converts DA into 

norepinephrine) are abundant [Berger et al., 1985]. Similar findings were reported in 

macaques [Noack and Lewis, 1989; Williams and Goldman-Rakic, 1993] and humans, 

where TH fibers are particularly dense in layers I and V/VI [Gaspar et al., 1989].  

DA receptors of both D1 and D2 families are present in M1. In macaques, D1 

receptors are mainly found in layers I-III and V-VI while D2 is more concentrated in 

layer V [Lidow et al., 1990; Lidow et al., 1991]. Together with the TH fiber distribution, 

these findings suggest some topographical specificity of DAergic projections in M1. 

Superficial (layer I) projections may target mainly D1 receptors, while deeper (layer V) 

projections target both D1 and D2 receptors.  

3.4.2 DA effects in motor cortex cannot be predicted by effects in other regions 

Like the PFC, the rat M1 in vitro exhibits both long-term depression and 

potentiation (LTD and LTP) [Hess and Donoghue, 1996]. After a motor skill learning 

task, the rat M1 shows stronger local connections (field potentials) in vitro, which 

suggests that LTP can be induced by behavioral training [Rioult-Pedotti et al., 1998]. 

However, unlike in the PFC, D1 and D2 receptors in M1 can be synergistic for LTP 

induction. Molina-Luna et al. [2009] have shown that blocking either D1 or D2 receptors 

prevents electrical tetanus-induced LTP formation in M1 in vitro. These findings are 

seemingly in contrast with data on prefrontal cortex (PFC) slices, where D1 but not D2 

receptors are involved in in vitro electrical tetanus-induced LTP formation [Huang et al., 

2004]. Notably, however, both receptors are involved in spike timing-dependent LTP in 

the PFC [Xu and Yao, 2010]. These results reflect the diversity of DAergic mechanisms 

in shaping neuronal plasticity among different cortical areas.  
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Experiments in humans suggest that DA can have local effects within the motor 

cortex. L-DOPA (DA precursor) enhanced performance in a training-dependent motor 

learning task in both young [Flöel et al., 2005] and elderly adults, and increased DA 

release (measured by displacement of radioligands) in the elderly [Floel et al., 2008]. 

Using transcranial magnetic stimulation (TMS), Ziemann et al. [1997] found that motor 

cortex activity can be modulated by systemic D2 receptor agonists and antagonists, 

effects potentially due to local actions of DA. Meintzschel and Ziemann [2006] expanded 

these findings in another training-dependent motor task, where a D2 agonist enhanced 

learning while an antagonist decreased it. These data confirm that DAergic function is 

important for goal-directed, practice-dependent motor plasticity in humans, but in order 

to clarify whether these effects are direct or indirect (e.g. via striatum or prefrontal 

cortex) more targeted approaches are needed. 

3.4.3 DA effects in non-mammalian motor cortex are largely unexplored 

Midbrain DAergic nuclei that participate in reward-seeking and learning are a 

highly conserved feature in all vertebrates [reviewed by Martínez-García and Lanuza, 

2018], which implies that research in other organisms could greatly inform about how 

these circuits operate in mammals and vice versa. Here, we summarize the relatively 

scant literature on the effects of DA on non-mammalian motor systems (also see table 

3.2). 

As in mammals, TH-containing projections are clearly evident in the proposed 

cortical homologues [gecko: Smeets et al., 1986; Iberian ribbed newt: González and 

Smeets, 1991; zebra finch: Bottjer, 1993; African cichlid fish: O’Connell et al., 2011a; 
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túngara frog: O’Connell et al., 2011b] and DA receptors [zebra finch: Kubikova et al., 

2010; African cichlid fish: O’Connell et al., 2011a].  

Data are lacking for DA receptors in reptile and amphibian cortex, but receptor 

presence has been inferred by the expression of DARPP-32, a protein commonly 

associated with D1 receptors in mammals [gecko: Smeets et al., 2001; túngara frog: 

O’Connell et al., 2011b]. The extent to which DARPP-32 receptors and D1 receptors in 

non-mammals are associated is unknown and deserves investigation. In fact, in zebra 

finch telencephalon these two sets of receptors do not always colocalize in neurons (own 

unpublished observations). To the best of our knowledge, the function of this system has 

only been explored in the vocal motor cortex songbird (suborder Passeri). 

3.4.4 DA in the song control/production cortical system in songbirds 

The song system has been studied intensively in songbirds, but regarding the 

effects of DA, striatal regions have received greater attention than cortical regions. The 

songbird striatum contains a region (Area X) dedicated to song learning of and song 

motor plasticity. Area X receives massive DAergic inputs from VTA [Lewis et al., 1981] 

and plays a vital role in song learning in development [Sohrabji et al., 1990]. In the 

context of song production, a reward prediction learning function arriving in Area X from 

DAergic neurons in the avian VTA was identified [Gadagkar et al., 2016]. Optogenetic 

manipulations of these fibers, as well as pharmacological manipulations of DA receptors 

in Area X affected both adult song plasticity and juvenile song learning [Hisey et al., 

2018]. The effects of DA on this striatal system have been reviewed elsewhere [Kubikova 

and Košťál, 2010; Simonyan et al., 2012].  
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In the avian cortex (pallium), the sensorimotor region HVC (acronym is the 

proper name) and the motor region robust nucleus of the arcopallium (RA) are two 

crucial areas for song learning and production. They contain dense TH fiber tracts 

[Bottjer, 1993] derived mainly from the mesencephalic central gray, but also from VTA 

[Appeltants et al., 2000; Appeltants et al., 2002]. Concordantly, both motor cortical 

regions express mRNA for D1A, D1B (D1 family), D2 and D3 (D2 family) receptors. 

D1B and D3 receptors are expressed in higher intensity in HVC and RA, as compared to 

the surrounding brain regions [Kubikova et al., 2010].  

Few studies have examined DAergic physiology in the songbird vocal motor 

cortex. Adult male European starlings (Sturnus vulgaris) exposed to high quality song 

playbacks (presumed higher quality competitors) sang more and showed decreased levels 

of DA metabolites in HVC but not RA. [Salvante et al., 2010]. In vitro, RA projection 

neurons exhibited increased resting membrane potential and firing rate in response to DA 

and a D1 agonist, while a D2 agonist had no such effect [Liao et al., 2013]. In HVC, DA 

projections from the periaqueductal gray to HVC are crucial for song learning during 

development in zebra finches. This signal seems to convey social context and/or 

motivation in the juveniles when engaging with live tutors. VTA projections to HVC are 

significantly less dense in juveniles (as in adults), but their function was not explored 

[Tanaka et al., 2018]. 

In sum, DA effects on motor cortex are evident in mammals and are related to 

goal-directed, practice-dependent motor skill improvement. There are limited parallels in 

non-mammalian vertebrates, with notable recent progress in birdsong production and 

learning. It would be interesting to know, from an evolutionary standpoint, to what extent 
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DA is involved in cortical motor plasticity in other vertebrates. For instance, behaviors 

such as flight or the perfection of hunting skills are examples of natural goal-directed 

motor learning that likely involve the DAergic system in motor areas, and which could 

thus provide important future study opportunities. 

3.5 Dopamine-induced plasticity in the visual cortex 

Across vertebrates, the visual system plays a crucial role in the optimization of 

visual information processing during reinforcement learning. For example, in macaques 

reinforcement following a visual stimulus has been shown to increase visual 

performance, such that larger rewards produced faster reaction times in a saccade visual 

task, and neural activity in the DAergic midbrain during the task reflected strong reward 

prediction error encoding [Nomoto et al., 2010].  

DAergic fibers in the primary visual cortex (V1) were first shown in cats [Törk 

and Turner, 1981] and later shown to be present in rats [Descarries et al., 1987; Phillipson 

et al., 1987] and primates, including humans [Phillipson et al., 1987; Berger et al., 1988]. 

Their region-specificity resembles that in motor cortex, where most DAergic fibers can 

be found in deeper layers (V and VI), and at a lesser density in layer I [Descarries et al., 

1987; Berger et al., 1988]. Receptor binding assays corroborate the TH fiber architecture, 

since D1 receptor binding is strongest in the layers I-III and V/VI, while D2 binding is 

strongest in layer V of the macaque visual cortex [Lidow et al., 1990]. 

3.5.1 Sparse DAergic fiber presence yet clear effects in visual cortex 

There is evidence that DA acts locally within V1, but data are not as abundant as 

in the motor cortex. On the whole, the mammalian cortex has an anterior-posterior 

gradient of decreasing DA content and projections. Located in the posterior-most 
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occipital lobe, the mammalian primary visual cortex is the target of the sparsest DAergic 

projections [Descarries et al., 1987] and shows the lowest detectable DA content of all 

regions in the cortex [Brown et al., 1979]. It is important to note that higher-order visual 

association cortical areas such as the rhinal and the posterior parietal cortices are 

localized more anteriorly. Nevertheless, stimulus-evoked DA release in rat visual cortical 

areas could be detected by microdialysis [Müller and Huston, 2007]. Furthermore, in the 

cat V1, local application of DA decreased neural activity in deeper layers, but not in 

superficial layers [Reader, 1978]. A similar effect was observed in the rat V1 [Gottberg et 

al., 1988]. Interestingly, both these studies observed mostly decreases in neuronal firing 

following DA application. When using specific agonists, a D1 agonist decreased, but a 

D2 agonist mildly increased firing rates (both applied in deeper layers) [Gottberg et al., 

1988]. It is possible that in V1, D1- vs. D2-receptor activation could yield different 

effects contrary to the majority of other systems studied (i.e. associated with different g-

protein-coupled signaling pathways). Alternatively, D1-D2 receptor distribution might 

differ – e.g. D1 receptors may be present in mostly inhibitory interneurons in the deeper 

cortical layers and thereby shape overall excitability.  

In the macaque rhinal cortex, an associative region that integrates multimodal 

sensory information, D2 receptors seem to be essential for learning of visual cues. 

Reducing the production of D2 receptors specifically in this region, Liu et al. [2004] 

showed that macaques were no longer able to learn visual cues that predicted rewards. 

Moreover, fMRI data from awake rhesus macaques showed that visual cortical regions 

are strongly modulated by reward prediction error signaling which could be attenuated by 

a systemic D1 receptor antagonist [Arsenault et al., 2013]. 
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3.5.2 Visual cortex activity in primates can be mediated by DA in the PFC  

Studies in anesthetized macaques report that effects of DA signaling on visual 

performance can happen through DA modulation of prefrontal regions [Noudoost and 

Moore, 2011; Zaldivar et al., 2018] but not through direct V1 manipulations [Zaldivar et 

al., 2014]. Different types of anesthesia produce different effects on VTA firing 

rates/patterns and possibly DA release, which could render effects of exogenous DA 

difficult to interpret [reviewed by Marinelli and McCutcheon, 2014]. Therefore, it 

appears that local effects of DA in the monkey visual cortex warrant more attention and 

should not be definitively ruled out. 

Research with human subjects also points towards an important indirect 

prefrontal-mediated effect on visual cortex activity. Transcranial magnetic stimulation 

(TMS) on the visual cortex (V5/MT) normally disrupts  visual performance. However, 

activating both D2 and D1 receptors simultaneously prevented TMS-induced interference 

of visual performance, but no such effect was observed with a D2 agonist alone. Because 

none of the treatments affected local visual cortex excitability by TMS, the authors 

assumed the effects are mediated by prefrontal effects on visual performance [Yousif et 

al., 2016].  

In view of these studies, it is plausible that DA modulation in the visual cortex is 

secondary or residual in primates, acting mainly on frontal circuits. Alternatively, local 

effects of DA on the visual cortex could be unveiled through tasks that involve more 

specific visual learning or conditioning. 

3.5.3 Anatomical data support DA modulation in non-mammalian visual cortex 
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In non-mammalian vertebrates, some interesting visual plasticity phenomena 

correlate with anatomical substrates of DAergic systems. However, in many cases 

conclusive experimental data that would solidify such a link are lacking. Birds are the 

only non-mammal group in which the visual cortical system has been explored in detail. 

In songbirds, there is correlational evidence that DA plays a role in visual 

recognition. Avian visual processing is distributed between two separate cortical regions: 

the entopallium and the hyperpallium. Lesions of the thalamo-recipient entopallium 

impaired performance of birds trained to identify a feeder based on visual pattern 

identification [Watanabe et al., 2008]. Lesions of the hyperpallium (another higher-order 

visual association cortical region) impaired performance of birds trained to identify 

feeders based on location [Watanabe et al., 2011] – the authors suggest that the 

entopallium and hyperpallium are analogous to the ventral and dorsal streams of 

mammalian visual processing, which process “what” and “where” objects are, 

respectively [Goodale and Milner, 1992]. In Indian house crows (Corvus splendens), 

neuron activation in the hyperpallium (entopallium was not sampled), VTA and SNc 

were implicated in spatial and visual pattern recognition performance [Taufique and 

Kumar, 2016]. These three studies point to these two cortical areas as important loci for 

visual learning and memory. The crow study further suggests that midbrain DAergic 

nuclei play a role in this process, but determining the causal relationship requires further 

experimentation. 

Anatomical work further strengthens this hypothesis. The hyperpallium in the 

zebra finch brain is a hotspot of D1-like receptors, but is largely devoid of D2-like 

receptors. Conversely, the entopallium can be anatomically delineated by the absence of 
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DA receptors [Kubikova and Košťál, 2010]. TH fibers seem to follow a similar pattern in 

the canary (Serinus canaria) [Appeltants et al., 2001]. Interestingly, the entopallium has 

been proposed to be homologous to mammalian cortical layer IV, and the hyperpallium 

to layers IV and/or V [Dugas-Ford et al., 2012]. Because mammal visual cortex layer IV 

is virtually devoid of DA signaling, while layer V is not, DA signaling in these cortical 

areas of songbirds seems to map onto this homology hypothesis.  

Outside of songbirds, there is evidence suggesting that DA could be affecting 

visual imprinting in chickens. Domestic chicks (Gallus gallus) can be experimentally 

imprinted on artificial objects (colored rotating cubes or cylinders) and thereafter display 

attraction behaviors towards them. The anterior mesopallium, a polysensory cortical 

region, is involved in visual imprinting and its neurons respond selectively to imprinted 

visual (but also auditory) stimuli [Nicol et al., 1995]. TH fibers are present in this region 

[Metzger et al., 1996], as are D1-like receptors [Schnabel et al., 1997]. However, to our 

knowledge there have been no experimental manipulations of DA to test its effects on 

visual imprinting (but see next section for auditory). 

Among other vertebrate groups, data on DA function in visual cortical regions are 

even rarer and only reported in amphibians and reptiles. In the common toad (Bufo bufo), 

prey-catching strategy could be modified by systemic D1/D2 agonist apomorphine 

[Glagow and Ewert, 1999], but it is not clear whether the visual system itself is directly 

responsible for this. The medial pallium was suggested as a visual cortical target in 

amphibians [Scalia, 1976; Kicliter, 1979] and this area contains DA/TH fibers in a newt 

[González and Smeets, 1991] and gymnophionan [González and Smeets, 1994] but not in 

anurans [González et al., 1993; O’Connell et al., 2011b]. In red-eared slider turtles 
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(Trachemys scripta), a visual cortical region called the dorsal cortex shows spatial 

adaptation (plasticity) and encodes information about spatial and temporal features 

[Fournier et al., 2018]. TH fibers and DARPP-32-positive cell bodies can be detected in 

this region in Tokay gekkos (Gekko gecko) [Smeets et al., 2001]. These studies identify 

potential anatomical substrates for studying DAergic modulation of visual inputs in 

amphibians and reptiles and could be an interesting area to pursue evolutionary and 

comparative questions. 

3.6 Dopamine-induced plasticity in the auditory cortex 

Associating sounds with consequences is an important survival trait in many 

species. Cues associated with, for example, competitors vs allies or predators vs prey are 

constantly being surveilled. Additionally, many animals rely on auditory recognition of 

individuals for social interactions [Aubin and Jouventin, 1998; Sayigh et al., 1998; 

Gentner et al., 2000; Goodwin and Podos, 2014]. The auditory system is highly plastic 

and able to form complex auditory associations, which makes it a highly attractive system 

for studying neuromodulation. 

3.6.1 DA signaling locally in auditory cortex supports auditory learning 

As with other cortical systems in mammals, DAergic projections in the 

mammalian auditory cortex are mainly from VTA and SNC [Budinger et al., 2008] and 

are stratified, mostly in layers I and V/VI [Campbell et al., 1987]. A detailed 

quantification of DA receptor distribution in the auditory cortex seems to be lacking, but 

qualitative inspections of rat brains suggest a distribution pattern that parallels that in 

other cortical regions – D1 in layers I-III and V/VI and D2 mostly present in layer V 

[Boyson et al., 1986].  
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The first pieces of evidence that DA and VTA play a role in auditory plasticity 

were shown in rodents. In an auditory conditioning task with Mongolian gerbils 

(Meriones unguiculatus), levels of homovanillic acid (DA metabolite) detected via 

microdialysis increased significantly in auditory cortex only during the first day of the 

task, which suggests that DA signaling locally is important during the initial stages of 

learning [Stark and Scheich, 1997]. VTA was shown to exert a profound effect on the 

organization of the primary auditory cortex (A1). Pairing VTA stimulation with pure tone 

playbacks, Bao et al. [2001] observed an enhanced representation of the paired tone in the 

anesthetized rat A1, an effect that could be blocked by combined systemic D1 and D2 

receptor antagonists.  

The importance of local DAergic signaling in the auditory cortex for auditory 

learning was demonstrated formally through lesions of DAergic signaling with 6-

hydroxy-DA in rats [Kudoh and Shibuki, 2006] and by local infusions of D1 modulators 

in Mongolian gerbils [Schicknick et al., 2008; Schicknick et al., 2012]. The relevance of 

D2 receptors locally still needs to be confirmed experimentally. 

LTP can be induced by electrical tetanus in the rat primary A1 [Kudoh and 

Shibuki, 1994], but to our knowledge LTP modulation in A1 by DA has not been directly 

tested. This surprising gap is an important area for future research. 

Local DA effects were also demonstrated in monkeys. Recordings from the 

auditory cortex in long-tailed macaques (Macaca fascicularis) showed clear evidence of 

reward prediction error signaling [Brosch et al., 2011]. VTA to auditory cortex synapses 

were modulated by D1 receptor inhibitor injected either systemically or in the auditory 

cortex [Mylius et al., 2014]. 
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In humans, DA-dependent auditory plasticity has been hypothesized. Daily L-

DOPA treatment enhanced association of objects with new (artificial) words presented in 

audio form [Knecht et al., 2004], and a D1/D2 receptor agonist decreased it [Breitenstein 

et al., 2006]. This suggests that increased availability of a DA precursor is beneficial, 

while persistent activation of DA receptors is prejudicial for auditory associative 

learning. Therefore, controlled timing of phasic DA release might be the mechanism by 

which humans engage in auditory learning takes place. Whether such effects are intrinsic 

to the auditory cortex awaits confirmation. 

3.6.2 Anatomical substrate of DAergic signaling in avian auditory association 
cortex  

The DAergic midbrain has been shown to be engaged after exposure to 

behaviorally relevant sounds in a variety of vertebrates [midshipman fish: Petersen et al., 

2013; spadefoot toad: Burmeister et al., 2017; e.g. zebra finch: Barr and Woolley, 2018], 

but its involvement in cortical plasticity has only been explored in birds.  

Auditory imprinting seems to be DA-dependent since it can be blocked by 

systemic D2 antagonist in chicks [Gruss and Braun, 1996; Gruss et al., 2003], but no data 

on cortical manipulations is yet available. 

In songbirds, TH/DAergic fibers are conspicuous across the secondary auditory 

cortex (NCM and the caudomedial mesopallium, CMM) but not the primary auditory 

cortex, field L2 [Reiner et al., 1994]. DA receptors follow a similar pattern: D1-like 

receptors are abundant in NCM and CMM, and D2-like receptors are abundant in CMM 

but not in NCM. Neither receptor is evident in the thalamo-recipient Field L, primary 

auditory cortex [Kubikova et al., 2010].  In female white-throated sparrows (Zonotrichia 

albicollis), exposure to conspecific song increased the activation (phosphorylation) of TH 
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fibers and the levels DA metabolites   in the caudomedial nidopallium (NCM), part of the 

songbird auditory association cortex [Matragrano et al., 2012]. Furthermore, in juvenile 

zebra finches, song tutoring increased VTA activation [Chen et al., 2016]. These studies 

show that DA is likely involved in plasticity mechanisms triggered by auditory events in 

songbird cortex. Since NCM is an area involved in auditory associations, DA likely 

facilitates synapse strengthening for the formation of auditory memories, although this 

possibility is currently untested. 

3.7 Dopamine-induced plasticity in the olfactory cortex 

In dynamic environments, the ability to associate meaning to odors is an 

important evolutionary adaptation present in virtually all vertebrates. Multiple brain areas 

have been implicated in odorant processing and associative learning, including the 

olfactory bulb, olfactory tubercle (part of the striatum), medial amygdala, orbitofrontal 

cortex, entorhinal cortex, piriform cortex and others. DAergic signaling is pervasive in 

these systems. Of note, the olfactory bulb contains one of the major DA-producing cell 

groups in vertebrates, whose neurons are continuously generated throughout the lifespan 

[Hinds, 1968; Pérez-Cañellas and García-Verdugo, 1996; Kornack and Rakic, 2001; but 

see Bergmann et al., 2012]. DA/GABAergic interneurons regulate the activity of local 

olfactory projection neurons (mitral/tufted cells), a feature that seems to be evolutionarily 

conserved across vertebrates [Hsia et al., 1999; Davison et al., 2004; Kawai et al., 2012]  

and even invertebrates [Perk and Mercer, 2006]. The role of these neurons has been 

intensely studied and recently reviewed elsewhere [Pignatelli and Belluzzi, 2017]. Of 

note, some external tufted cells can also be DAergic in rats [Halász et al., 1981], 

macaques and humans [Smith et al., 1991], but these do not seem to project outside of the 
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olfactory bulb. Rather, they modulate the activity of periglomerular cells [De Saint Jan et 

al., 2009]. 

While DA effects on the olfactory bulb and olfactory striatum [Zhang et al., 2017] 

are known, the role of DA in other olfactory cortical regions has been relatively 

understudied. 

3.7.1 Does DA in the piriform cortex facilitate olfactory memory formation? 

The olfactory bulb projection neurons send diffuse projections to the piriform 

cortex (PC), which is proposed as the olfactory memory association cortex [Haberly, 

2001; Wilson and Sullivan, 2011; Bekkers and Suzuki, 2013]. It receives dense DAergic 

projections from VTA and locus coeruleus with an unconventional anterior-to-posterior 

increase in density in the rat. DA fibers are more abundant in deeper layers II and III (PC 

is a paleocortical region with only 3 layers) [Datiche and Cattarelli, 1996]. D1 receptors 

are most abundant in layer II and more prevalent than D2 receptors, which are virtually 

absent  [Boyson et al., 1986; Santana et al., 2009]. 

The effects of DA on PC activity are poorly understood but reports confirm 

modulation by both D1 and D2 receptor action. In rat PC in vitro, D2 receptor agonists 

and antagonists decreased and increased, respectively, DA release and turnover, 

presumably by activating D2 autoreceptors located on axon terminals [Bannon et al., 

1983; Plantjé et al., 1987]. In vivo, local injections of D1/D2 agonists in tandem, but not 

separately, increased the firing rate of PC neurons and impaired social interactions in rats. 

Interestingly, the same treatment did not impair short-term olfactory memory formation 

[Zenko et al., 2011].  
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Data from human studies also point to an involvement of the PC in olfactory 

learning. MRI data reveal a progressively higher activation to the conditioned stimulus in 

this area with olfactory Pavlovian conditioning [Gottfried et al., 2002], but data on DA 

effects have not yet been reported. 

3.7.2 The olfactory entorhinal cortex is affected by local DA 

Another cortical region directly modulated by DA is the entorhinal cortex (EC). 

In macaque EC, TH fibers are considerably dense, especially in the medial portion, called 

the olfactory EC [Akil and Lewis, 1993]. DA reduced layer V pyramidal neuron 

excitability in rat lateral EC, in vitro, through D1 but not D2 receptors [Rosenkranz and 

Johnston, 2006]. Increased synaptic DA through a reuptake inhibitor impaired LTP and 

LTD at PC to EC synapses in awake rats [Caruana et al., 2007]. Rodent behaviors such as 

the Coolidge effect or individual recognition through olfactory cues are impaired by EC, 

but not hippocampus lesions [Bannerman et al., 2001; Bannerman et al., 2002; Petrulis 

and Eichenbaum, 2003], and could be under the regulation of DA. 

In sum, both PC and EC are important sites of olfactory processing and learning 

in mammals, and both are directly modulated by DAergic projections from VTA 

[Aransay et al., 2015]. Specific data in humans are lacking, but a similar function is 

likely. 

3.7.3 The PC is conserved across vertebrates 

The three-layered PC is thought to be a highly evolutionarily conserved structure, 

reminiscent of the similarly three-layered reptilian/avian lateral olfactory cortex [Aboitiz 

et al., 2002]. It is reasonable to suggest, therefore, that the effects of DA on olfactory 

plasticity in non-mammals might be similar as those reviewed above. Concordantly, 
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olfactory cortical regions contain significant TH and/or DARPP-32 protein 

immunoreactivity in non-mammals [ball python: Smeets, 1988; e.g. canary: Appeltants et 

al., 2001; túngara frog: O’Connell et al., 2011b; lungfish: López and González, 2017]. In 

birds, the piriform cortex [Rieke and Wenzel, 1978; Reiner and Karten, 1985] seems to 

contain both D1 and D2 receptors, although more detailed investigation was not 

performed [Kubikova et al., 2010]. No studies were found on DA modulation of olfactory 

function in non-mammals. 

3.8 Dopamine-induced plasticity in the taste cortex 

3.8.1 DA in the insular cortex modulates taste learning 

In many species, taste learning is crucial for survival. Formation of aversion 

memory to toxic or spoiled foods after negative consequences from a first contact ensures 

that animals do not make the same mistake in the future. Taste responses converge in the 

insular cortex (IC), along with other experiences such as enteroception, addiction and 

complex emotional reactions, being described as a hub for integrating several systems 

[Gogolla, 2017]. Interestingly, the IC has a bidirectional connection with VTA, which 

could be the anatomical substrate through which the IC both receives and modulates 

reward processing signals [Ohara et al., 2003].  

Taste learning has been shown to involve DA signaling in the rodent IC. In the 

rat, D1 receptors expression is greater in deep layer VI, followed by layer II; D2 

receptors are mostly concentrated in layer V [Gaspar et al., 1995]. In DA-depleted mice, 

LTP in the IC can be rescued by a DA reuptake inhibitor [Moreno-Castilla et al., 2016]. 

Inhibition of D1 receptors locally in the rat IC before a taste aversion task impaired 

memory formation, but not retrieval of a previously learned association [Berman et al., 
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2000]. Activation of D1 but not D2 receptors in mice leads to phosphorylation of the 

subunit NR2 of the NMDA receptor in both IC and hippocampus [David et al., 2014], 

which is an attractive mechanistic model for how taste memory formation takes place.  

While a local effect to the IC is evident in rodents, human data on DA and taste 

responses only exist for subcortical structures. For example, hunger and food modulate 

extracellular DA in the striatum [Volkow et al., 2002; Wang et al., 2004; Wang et al., 

2014]. Systemic amphetamine, which boosts DA release, changes IC responses to sucrose 

in women [Melrose et al., 2016], but it is not possible to infer whether DA directly 

modulates the IC. To our knowledge there are no available studies that explore the role of 

DA in human taste learning, although the human IC is known to receive reward 

prediction error signals [Preuschoff et al., 2008]. In sum, DA is known to modulate 

responses and taste learning in rodents, with an important effect on the IC. However, data 

on human taste learning, and more specifically, on the involvement of DA in the process, 

are lacking. 

3.8.2 Taste learning in non-mammals is an open field of study 

Taste learning has been reported in other vertebrate groups. Aversion learning to 

food laced with lithium-chloride (an emetic) could be induced in several lizard species, 

but not in frogs or salamanders [Paradis and Cabanac, 2004]. Curiously, this type of 

learning could be successfully induced in goldfish, and was impaired by whole 

telencephalon or dorsomedial telencephalon lesions [Martín et al., 2011]. As it could also 

be successfully induced in birds [bobwhite quail: Wilcoxon et al., 1971; buteo hawk: 

Brett et al., 1976], it is possible that taste aversion learning was a secondary loss in 

amphibians. We could not find further published data on DA effects, or more broadly, on 
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the neural mechanisms of taste processing in non-mammalian vertebrate cortex. Given 

the extreme diversity in feeding habits across vertebrates, this area of study could bring 

interesting insight on how taste processing systems evolved. 

3.9 Dopamine-induced plasticity in the somatosensory cortex 

3.9.1 DA projections and receptor distribution in somatosensory cortex is species-
specific within mammals 

DAergic fibers in the somatosensory cortex (SSC) originate mostly from VTA 

and seem to follow the traditional pattern found in other neocortical regions. They are 

denser in layer I in squirrel monkeys [Lewis et al., 1987], but denser in deep layer VI in 

rats [Descarries et al., 1987]. DA receptors somewhat map onto these distributions: D1 

receptors are denser in superficial layers I-III, while D2 receptors are denser in area V in 

Rhesus macaques [Lidow et al., 1991], while in the rat, D1 receptors are denser in deeper 

layers V-VI, and D2 in layer V [Gurevich and Joyce, 2000]. These differences might 

arise due to these species’ natural histories and further strengthen the argument for the 

importance of avoiding generalizations, and for studying a broad range of organisms to 

gain true insight the evolution of neural systems. 

3.9.2 DA signaling modulates damage-reactive plasticity in somatosensory cortex 

Reports of local effects of DA in the SSC suggest that DA plays a key role in 

plasticity, especially when there is a need for cortical reorganization after an injury. 

Intracortical injections of either D1 or D2 antagonist increased the responses of the 

sensorimotor cortex (transition between somatosensory and motor cortices) to muscle 

stimulation in anesthetized rats [Hosp et al., 2011a]. Furthermore, peripheral nerve 

transection progressively increased levels of DA metabolites in the rat somatosensory 
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cortex, suggesting that the increase in DA signaling might be related to the reorganization 

of the cortex when sensory information from an appendage is eliminated [Jiménez-

Capdeville et al., 1996]. Similarly, unihemispheric stroke induction in rats increased DA 

levels in the contralateral hemisphere, and D2 antagonist prevented recovery of 

nociceptive response in the weeks following the stroke. In the event of a stroke, the 

contralateral hemisphere is thought to undergo reorganization in order to aid in physical 

recovery and compensation, with DA involved in this process [Obi et al., 2018].  

Interestingly, DA receptors may also play an organizational role in the SSC. In 

the developing rat, D3 receptors are transiently highly expressed in layer IV and correlate 

with the development of the barrels (cortical representation of the whiskers) [Gurevich 

and Joyce, 2000]. These authors did not examine the origin of the DA input to this 

system, nor did they follow up with DA manipulations. These would be interesting topics 

to explore, since this system is known for being experience- and critical period-dependent 

for proper development [Erzurumlu and Gaspar, 2012].  

Finally, spike timing-dependent plasticity in corticostriatal synapses can be 

prevented by D1 antagonist and modulated by D2 antagonist [Pawlak and Kerr, 2008]. 

Whether these effects are due to cortical versus striatal receptors has not been explored. 

3.9.3 DA modulates human somatosensory cortex excitability 

Somatosensory learning in humans is an important component of the formation of 

pain memories and plays a role in learning of textures and patterns. Braille reading is an 

example of highly specialized tactile learning that requires plasticity in the SSC 

[Debowska et al., 2016]. However, human data exploring DA function on the SSC could 

only be found for Parkinson patients, likely justified by the well-characterized 
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degeneration of the DA systems and consequent motor and sensory impairments. 

Systemic DAergic medication may alter perception of tactile stimuli [Nelson et al., 2012; 

Nelson et al., 2018] and may reduce somatosensory cortex excitability in Parkinson 

patients [Palomar et al., 2011]. However, it might be premature to extrapolate these 

findings to healthy humans, since in Parkinson’s patients, the DAergic system has been 

deteriorating. For instance, one of these studies reports that somatosensory cortex 

excitability is lower in Parkinson’s patients than in healthy controls [Nelson et al., 2018]. 

Studies examining the effects of DAergic drugs on healthy humans are needed for a 

better understanding of these effects under wide-ranging physiological conditions.  

3.9.4 DA receptors and fibers are present in non-mammal somatosensory cortex 

Somatosensory cortical regions have been mapped in a variety of non-mammalian 

vertebrates [leopard frog: Kicliter, 1979; crocodile: Pritz and Northcutt, 1980; e.g. 

rockfish: Ito et al., 1986; pigeon: Wild, 1987]. The same regions are known to express 

TH/DAergic fibers [gecko: Smeets et al., 1986; Iberian ribbed newt: González and 

Smeets, 1991; pigeon: Wynne and Güntürkün, 1995; African cichlid fish: O’Connell et 

al., 2011a; túngara frog: O’Connell et al., 2011b]. Still, no studies could be found in 

which DA systems were manipulated and their effects on somatosensory plasticity 

observed. However, future comparative work in this system seems promising given the 

emerging anatomical literature. For example, phenomena such as electrosensory learning 

in electric fish or toxic food aversion learning in general should engage somatosensory 

cortical regions and potentially rely on DA signaling. 

3.10 Final considerations 
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In view of the literature discussed here, it is evident that DA plays roles in 

virtually all mammalian cortical circuits, but systems can vary remarkably at both 

molecular and anatomical levels. For example, variation occurs in the cortical layer 

distribution of receptors and DAergic fibers, and in the receptor activation effects and 

plasticity outcomes (facilitation/inhibition). Additionally, in different species these 

factors may vary with evolutionary history. Because of this, the current perspective 

emphasizes that findings in one cortical system do not necessarily generalize to other 

systems or across species. We were particularly surprised to find that, after reviewing the 

literature, the presence of LTP modulation by DA in auditory, visual, and olfactory 

(piriform) cortical systems are commonly assumed but rarely demonstrated directly, or 

even tested. It is thus an open question as to whether the fundamental properties of neural 

systems plasticity observed in the PFC/striatum extend to other cortical modalities. 

Our review also illustrates that there is a strong anatomical basis – DA fibers and 

receptor distributions – to hypothesize that cortical DA effects are widespread across 

vertebrates. However, there are limited reports on this subject, which highly constrains 

our understanding about how these circuits adapted and evolved. Since the anatomy of 

cortical structures is widely variant among vertebrates – e.g. three layered, nucleated, six 

layered, super vs subventricular –, understanding how projections from evolutionarily 

conserved midbrain structures (VTA/SNc) have reshaped with evolving cortical 

projection targets could be helpful for understanding midbrain-cortex synapse formation 

and these synapses contribution to behavior in healthy and diseased brain states. 

DA release is frequently under the control of, or acting in concert with, other 

neuromodulator systems. Much is known about interactions between the DA system and 
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other traditional neuromodulators such as norepinephrine [reviewed by Xing et al., 2016], 

oxytocin [reviewed by Baskerville and Douglas, 2010] and acetylcholine [reviewed by 

De Kloet et al., 2015]. Less explored are interactions between the DA system and steroid 

hormones. In mammalian and avian striatum and preoptic area, estradiol (E2) and DA 

interact to regulate one another’s production, release and receptor expression [Becker, 

1990; Lammers et al., 1999; Balthazart et al., 2002; Tozzi et al., 2015]. In the mammalian 

striatum, E2 infusions rapidly increase dopamine release [Xiao et al., 2003], and DA 

agonists reverse the decrease in LTP induced by an E2-production inhibitor [Tozzi et al., 

2015]. In fact, there is some evidence that DA and E2 could bind to the same receptors 

[Olesen and Auger, 2008; Tozzi et al., 2015]. 

Specifically, in cortex, data about possible interactions between DA and steroids 

are scarcer. In male rats, gonadectomy and hormone replacements affected DA levels in 

the PFC, but not the motor cortex [Aubele and Kritzer, 2011]. In healthy normocycling 

women, E2 levels are associated with DA neurotransmission in the PFC, and both 

systems interact to regulate working memory [Jacobs and D’Esposito, 2011]. In the 

songbird secondary auditory cortex (NCM), TH fiber density and DA release seem to be 

under control of steroid hormones [Matragrano et al., 2011; Rodríguez-Saltos et al., 

2018], but direct evidence of functional interaction is lacking. Studying E2 and DA 

interactions in the auditory cortex is an interesting avenue of research and of potential 

relevance to human auditory function, since both aromatase (E2-synthase) [Yague et al., 

2006] and E2 receptors [González et al., 2007] are abundant in the human temporal 

cortex. 
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Finally, in this review we identify important gaps in the DA research literature 

regarding effects on mammalian motor and sensory cortices and on non-mammalian 

vertebrate cortices. Overall, it is clear that DA-induced plasticity mechanisms are 

widespread across all cortical systems and induce motor/sensory adaptations to achieve 

behavioral goals more efficiently. Furthermore, studying basal vertebrates might prove 

crucial for advancing our understanding of (I) how the DA system can change in face of 

evolutionary pressures, (II) what other functions this system might express and (III) how 

it contributes mechanistically in a neural disease context. 
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Table 3.1: Cortical homology across vertebrates 
Modality Group Cortical area Key references 

Motor 

Amphibians ? - 
Reptiles DVR* [Distel, 1978] 

Birds HVC; RA (vocal) 
[Nottebohm et al., 1976; Nottebohm and Arnold, 

1976] 

Visual 

Amphibians Medial pallium [Kicliter, 1979] 
Reptiles Dorsal cortex [Gusel’nikov et al., 1972; Fournier et al., 2018] 

Birds Hyperpallium; Entopallium 
[Hodos and Karten, 1970; Pettigrew and Konishi, 

1976; Watanabe et al., 2011] 

Auditory 

Amphibians Medial pallium [Northcutt and Ronan, 1992] 
Reptiles DVR* [Foster and Hall, 1978] 

Birds Field L; NCM; CMM 
[Karten, 1968; Kelley and Nottebohm, 1979; Vates 

et al., 1996] 

Olfactory 

Amphibians Lateral pallium [Hoffman, 1963; Scalia et al., 1968] 
Reptiles Lateral cortex [Goldby, 1937] 

Birds Piriform cortex 
[Rieke and Wenzel, 1978; Reiner and Karten, 

1985] 

Gustatory 
Amphibians ? - 

Reptiles ? - 
Birds ? - 

Somatosensory 

Amphibians Medial pallium [Kicliter, 1979] 
Reptiles DVR* [Pritz and Northcutt, 1980] 

Birds 
Hyperpallium apicale; anterior 

nidopallium 
[Wild, 1987] 

CMM: caudomedial mesopallium; DVR: dorsoventricular ridge; NCM: caudomedial 
nidopallium; RA: robust nucleus of the arcopallium; *Specific subdivisions within the 
DVR are unexplored. Fishes were not included in this table since cortical homology 
parallels with other vertebrates are largely unclear. 
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Table 3.2: Anatomical distribution of dopaminergic markers across vertebrate 
telencephalons 

Area (cortical) Group Tyrosine hydroxylase 
D1-like 

receptors 
D2-like 

receptors 
Key references 

Motor 

Amphibians ?* ?*# ? - 
Reptiles ?* ?*# ? - 

Birds +(HVC; RA) +(HVC; RA) +(HVC; RA) 
[Bottjer, 1993; Kubikova 

et al., 2010] 

Mammals + + + 
[Scheibner and Törk, 

1987; Lidow et al., 1990; 
Lidow et al., 1991] 

Visual 

Amphibians 

+(newt/gymnophionan: 
medial pallium) 

−(anurans: medial 
pallium) 

?#* ? 

[González and Smeets, 
1991; González et al., 
1993; González and 

Smeets, 1994; 
O’Connell et al., 2011b] 

Reptiles +(dorsal cortex) ?#* ? [Smeets et al., 1986] 

Birds 
+(hyperpallium) 
−(entopallium) 

+(hyperpallium) 
−(entopallium) 

−(hyperpallium) 
−(entopallium) 

[Metzger et al., 1996; 
Schnabel et al., 1997; 
Appeltants et al., 2001; 
Kubikova et al., 2010] 

Mammals + + + 
[Törk and Turner, 1981; 

Lidow et al., 1990] 

Auditory 

Amphibians ?* ?*# ? - 
Reptiles ?* ?*# ? - 

Birds 
+(NCM; CMM) 

−(Field L2) 
+(NCM; CMM) 

−(Field L2) 
+(CMM) 

−(NCM; Field L2) 
[Reiner et al., 1994; 

Kubikova et al., 2010] 

Mammals + + + 
[Boyson et al., 1986; 

Campbell et al., 1987; 
Budinger et al., 2008] 

Olfactory 

Amphibians +(lateral pallium)* ?*# ? 
[González and Smeets, 
1991; O’Connell et al., 

2011b] 

Reptiles +(lateral cortex)* ?*# ? 
[Smeets et al., 1986; 

Smeets, 1988; Smeets 
et al., 2001] 

Birds + + + 
[Appeltants et al., 2001; 
Kubikova et al., 2010] 

Mammals + + + 

[Boyson et al., 1986; 
Datiche and Cattarelli, 
1996; Santana et al., 

2009] 

Gustatory 

Amphibians ?* ?*# ? - 
Reptiles ?* ?*# ? - 

Birds ? ? ? - 

Mammals + + + 
[Gaspar et al., 1995; 
Ohara et al., 2003] 

Somatosensory 

Amphibians 

+(newt/gymnophionan: 
medial pallium) 

−(anurans: medial 
pallium) 

?*# ? 

[González and Smeets, 
1991; González et al., 
1993; González and 

Smeets, 1994; 
O’Connell et al., 2011b] 

Reptiles ?* ?*# ? - 

Birds 
+(hyperpallium apicale) 
+(anterior nidopallium) 

+(hyperpallium 
apicale) 

+(anterior 
nidopallium) 

+(hyperpallium 
apicale) 

+(anterior 
nidopallium) 

[Reiner et al., 1994; 
Kubikova et al., 2010] 

Mammals + + + 
[Descarries et al., 1987; 
Lewis et al., 1987; Lidow 

et al., 1991] 

CMM: caudomedial mesopallium; DVR: dorsoventricular ridge; NCM: caudomedial 
nidopallium; RA: robust nucleus of the arcopallium; ?: No data were found; *: In reptiles 
and amphibians, there are reports of markers in the DVR, but specific subdivisions within 
the DVR are unknown; #: There is data on the presence of DARPP-32 protein, but 
whether DARPP-32 and D1 receptors are colocalized in non-mammals is unknown. 
Fishes were not included in this table since cortical homology parallels with other 
vertebrates are largely unclear.  
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CHAPTER 4 

DOPAMINE D1 RECEPTOR SIGNALING DRIVES AUDITORY PLASTICITY 

IN THE SONGBIRD AUDITORY CORTEX  

Manuscript in preparation 
Authors: Matheus Macedo-Lima, Hannah M. Boyd and Luke Remage-Healey 

4.1 Abstract 

Learning to process and interpret sounds is one of the first steps in the process of 

vocal learning and is thought to depend on high-order cortical brain structures, where 

sounds and meaning are associated. In songbirds, the caudomedial nidopallium (NCM) is 

part of the auditory association cortex and is important for sound learning and perception 

throughout life. NCM is also site of action of neuromodulators including neuroestradiol 

(E2) and dopamine (DA). E2 plays a role in association learning in NCM, but how it 

affects learning circuits is unknown. We hypothesized that DA regulates learning circuits, 

perhaps by interacting with local E2 signaling in NCM. Here, using male and female 

adult zebra finches, we first show that NCM D1 receptor (D1R) protein is found in ~33% 

of neurons containing E2-synthase (aromatase). NCM D1R-expressing neurons are 

predominantly GABAergic (~61%) and most parvalbumin+ neurons contain D1Rs 

(~55%). We show that pharmacologically activating D1Rs with SKF-38393 in vitro 

reduces the amplitude of GABAergic currents and glutamatergic currents, but also 

increases the frequency of the latter. Corresponding in vivo results show that D1R 

activation reduces the firing of putative fast-spiking interneurons, while it increases the 

firing of putative excitatory projection neurons. Finally, D1R activation renders neurons 

unable to further adapt to novel stimuli, and most likely places them into a pre-adapted 
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state. Our data suggest that D1Rs modulate learning and memory in the songbird sensory 

cortex. 

4.2 Introduction 

Vocal and auditory learning have evolved in humans and other organisms, such as 

songbirds. Studying these features in songbirds can provide insight into the mechanisms 

that enable spoken language [Jarvis, 2019]. The first step in the spoken language learning 

process is to make associations about complex sounds, which engages high-order cortical 

brain structures, where sounds and meaning are bound. 

In songbirds, the caudomedial nidopallium (NCM; Fig. 4.1A) is a high-order, 

secondary auditory region considered analogous to the center for speech comprehension 

in humans, Wernicke’s area [Bolhuis et al., 2010]. Neuronal responses in awake 

restrained zebra finch NCM show stimulus-specific adaptation to sounds played 

repeatedly, consistent with active memory formation [Chew et al., 1996]. The NCM is an 

important target of a wide variety of neuromodulators, such as norepinephrine [Ikeda et 

al., 2015; Lee et al., 2018], nitric oxide [Wallhäusser-Franke et al., 1995], neuroestradiol 

[Saldanha et al., 2000; Macedo-Lima and Remage-Healey, 2020] and dopamine (DA) 

[Matragrano et al., 2012]. NCM therefore is a highly plastic structure involved in the 

processing, and perhaps association, of complex sounds. 

In addition to neuromodulators, NCM is rich in NMDA receptors [Saldanha et al., 

2004], which are classically regarded as key players in cellular memory formation 

processes, such as long-term potentiation (LTP) and depression [Lüscher and Malenka, 

2012]. Stimulus-specific adaptation in NCM neurons has been extensively studied, and it 

reflects familiarity with songs, as well as song-consequence associations [Chew et al., 
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1996; Bell et al., 2015; Lu and Vicario, 2017]. However, the receptors involved and 

neuromodulatory mechanisms underlying associations between sound and context in 

higher-order circuits like NCM have not been elucidated. 

Dopaminergic (DAergic) fibers permeate the secondary auditory regions NCM 

and the caudomedial mesopallium (CMM), but not the thalamo-recipient auditory region, 

Field L [Reiner et al., 1994]. DA receptor mRNA maps onto this architecture, such that 

D1 receptors (D1Rs) are abundant in NCM and CMM, and D2 receptors are abundant in 

CMM but not in NCM. Neither receptor is evident in the primary auditory cortex Field L 

[Kubikova et al., 2010]. DA signaling seems to be a key distinctive feature between 

secondary versus primary auditory cortex in songbirds, providing an anatomical circuit-

basis for DA-dependent auditory learning.  

 Functionally, the role of DA and DAergic midbrain nuclei have been examined in 

the songbird brain in the context of reinforcement learning for song production and 

motivation to sing [Leblois et al., 2010; Schmidt and Ding, 2014; Matheson and Sakata, 

2015; Gadagkar et al., 2016]. Much less is known about how DA signaling might 

regulate auditory processing and association. Hearing song rapidly increases production 

of DA in songbird auditory regions, especially in the NCM [Matragrano et al., 2012]. 

Accordingly, DA signaling has been proposed as a key component of NCM plasticity, 

related to the encoding and processing of song. 

In this study, we hypothesized that DA signaling via D1 receptors (D1Rs) 

promotes NCM neural circuit plasticity. We obtained both anatomical and physiological 

evidence to test this hypothesis. First, using immunofluorescence, we show that there is 

high rate of coexpression of D1R and aromatase (neuroestradiol-synthase) in NCM 
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neurons and that most D1R-expressing neurons are inhibitory. Furthermore, we show that 

activating D1R decreases the amplitude of GABAergic, while it increases the frequency 

of glutamatergic currents in vitro. In awake birds, we extend these findings, such that 

activating D1Rs decreases the firing of putative-inhibitory interneurons, while it 

increases the firing of putative-excitatory projection neurons, and that stimulus-specific 

adaptation to complex signals (songs) is regulated by D1Rs. These findings inform 

several circuit models we present for NCM regulation by DA.  

DA signaling modulates auditory association learning in primary cortex [Bao et 

al., 2001; Schicknick et al., 2008; Schicknick et al., 2012; Reichenbach et al., 2015]. In 

these studies, DA activation was paired with simple stimuli such as pure tones and 

sweeps. However, there is limited work on the role of DA in processing complex auditory 

signals, in high-order cortical structures. In humans, systemic DA-enhancing treatments 

enhanced auditory language learning [Breitenstein et al., 2004; Knecht et al., 2004]. Here, 

we show in a songbird that DA signaling specifically in a high-order sensory cortex can 

modulate the encoding of complex auditory signals by shifting inhibitory-excitatory 

balance. 

4.3 Material and methods 

4.3.1 Animals 

A total of 31 adult (> 90 days old) zebra finches (24 males) were used in this 

study. Birds came from the University of Massachusetts Amherst colony (14:10 hour 

light-dark cycle) and were not actively breeding (single-sex cages). All procedures were 

in accordance with the Institutional Animal Care and Use Committee at the University of 

Massachusetts Amherst. 
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4.3.2 Immunofluorescence, imaging and quantification 

Four males and three females were used for immunofluorescence experiments, to 

characterize the phenotype of D1 receptor-positive (D1R+) cells. Briefly, animals were 

taken from the aviary, deeply anesthetized and perfused with ice-cold phosphate buffered 

saline followed by room-temperature phosphate-buffered 4% paraformaldehyde. Brains 

were extracted, postfixed in the same fixative overnight, cryoprotected in 30% sucrose 

and frozen until processing. With a cryostat, 40 µm parasagittal sections were made and 

sampled in 4 subseries collected in cryoprotectant solution and stored at –20 °C until 

processed.  

Tissue from 2 males and 2 females was processed for D1R, aromatase (ARO) and 

tyrosine hydroxylase (TH) triple immunofluorescence; tissue from all 4 males and 3 

females was processed for D1R, GABA and parvalbumin (PV) triple 

immunofluorescence. 

Sections containing NCM were selected and transferred from cryoprotectant to 

phosphate buffer (PB) and washed 3x15 min. They were then incubated in 10% normal 

goat serum (NGS; Vector Labs) in 0.3% Triton-X in PB (PBT) for 2 h. Primary antibody 

solutions (Table 4.1) were prepared in 10% NGS in 0.3% PBT. To confirm antibody 

specificity, in a subset of sections the D1R antibody was preincubated for 1 h with 

blocking peptide (Fig. 4.1B). Sections were incubated with primary antibodies for 1 h at 

room temperature, followed by 2 days at 4 °C. Then, sections were washed 3x15 min in 

0.1% PBT and transferred to secondary antibody solutions (goat polyclonals; 

ThermoFisher; 1:200) prepared in 0.3% PBT. Finally, sections were washed in 3x10 min 

in 0.1% PBT and kept in the same solution in the fridge until mounted (1 or 2 days later) 

and coverslipped with ProLong Diamond with DAPI (ThermoFisher).  
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Images were taken with a confocal microscope (Nikon A1si). First, NCM was 

localized and a 4x4 large image was taken at 10x magnification. Then, using only the 

DAPI channel, the microscope stage was digitally controlled and moved to selected 

locations on the 10x images, at the ventral and dorsal posterior edges of NCM (Fig. 

4.1C). Then, 15 µm (1 µm step size) z-stack images were taken at 60x magnification, 

starting from the top-most surface of the section. Two sections per hemisphere per animal 

were imaged. All laser intensities were maintained uniform across all images within 

experiments. 

D1R antibody penetration noticeably decayed at ~5 µm deep into the tissue, 

therefore only the top 5 µm of each z-stack was quantified. Cell counts were performed 

manually by a blinded experimenter using Fiji (ImageJ; NIH). Briefly, color histograms 

were set individually for each image so that background was predominantly dark and 

only strong signals were counted. Only antibody localization around the nuclei (DAPI) 

was included. Only cells with large, ovoidal nuclei (presumably neurons) were counted. 

Antibody quantification was done using the z-stack, while DAPI quantification was done 

using the z-max-projection image.  

Table 4.1: Primary antibody table 
Antibody Type Host Dilution Company 
anti-D1DR Polyclonal Guinea pig 1:100 Alomone Labs 
D1DR peptide - Rat 1:10 Alomone Labs 
anti-Aromatase Polyclonal Rabbit 1:2000 Azac 
anti-Tyrosine Hydroxylase Monoclonal Mouse 1:2000 Immunostar 
anti-GABA Polyclonal Rabbit 1:1000 Sigma 
anti-Parvalbumin Monoclonal Mouse 1:10000 Millipore 

4.3.3 In vitro whole-cell patch clamp 
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4.3.3.1 Recordings 

Fifteen males were used for slice recordings across two experiments. We focused 

these experiments on males to further understand the mechanisms of a previous 

behavioral study [Macedo-Lima and Remage-Healey, 2020]. We note that we did not 

observe systematic sex differences in the immunofluorescence and in vivo 

electrophysiology finding. However, we do not discard the possibility of sex differences.  

After swift decapitation, the top of the skull was resected and the head was 

immediately immersed in a Petri dish filled with ice-cold carbogen-aerated cutting 

solution (0-Mg2+ cutting; in mM: 222 glycerol, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 0.5 

CaCl2, 34 glucose, 0.4 ascorbic acid, 2 Na2-pyruvate, 3, myoinositol. Standard: idem 

except 25 glucose and 3 MgCl2; ~320 mOsm/kg, pH 7.4). In the Petri dish, the 

cerebellum was resected and the brain was removed from skull. Then, brain was removed 

from the cutting solution and placed on an ice-cold Petri dish lid covered with KimWipe 

(KimTech). The lateral forebrain of both hemispheres was cut parasagittally to yield flat 

lateral surfaces, and cerebral hemispheres were bisected. The lateral edges of each 

hemisphere were then dabbed dry on the KimWipe, glued (cyanoacrylate) to the cutting 

stage and immediately immersed in the vibratome (Leica VT1000S) chamber filled with 

ice-cold carbogen-aerated cutting solution. Slices were cut at 250-300 µm starting from 

the medial edge which contains NCM. NCM does not have clearly defined lateral 

boundaries, but song-inducible gene expression experiments indicate strong responses 

that extend ~1 mm from the midline [Mello and Clayton, 1994], thus only the first three 

sections (750-900 µm) were used for recordings. After cutting, slices were transferred to 

37 °C carbogen-aerated 0-Mg2+ or standard recording solution (0-Mg2+; in mM: 111 



 

90 

NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 28 glucose, 0.4 ascorbic acid, 2 Na-

pyruvate, 3 myo-inositol; standard: idem except 25 glucose and 3 MgCl2; ~320 

mOsm/kg, pH 7.4). After a 30-minute recovery at 37 °C and a 30-minute stabilization at 

room temperature, recordings started. All recordings were performed at room 

temperature.  

Recording pipettes (borosilicate glass) were pulled with a vertical pipette puller 

(Narishige PC-10) and had a tip resistance of 4-7 MΩ when submerged in the recording 

solution and backfilled with either K-gluconate- or CsCl-based solution, for excitatory 

(EPSC) and inhibitory (IPSC) postsynaptic currents recordings, respectively (K-

Gluconate: in mM: ~95 K-gluconate, 20 KCl, 0.1 CaCl2, 5 HEPES, 5 EGTA, 3 MgATP, 

0.5 NaGTP, 20 creatine-phosphate disodium; osmolarity adjusted to ~295 mOsm/kg with 

K-gluconate; pH 7.4; CsCl: in mM: ~120 CsCl, 8 NaCl, 10 TEA-Cl, 0.2 EGTA, 10 

HEPES, 2 MgATP, 0.2 NaGTP; osmolarity adjusted to ~295 mOsm/kg with CsCl; pH 

7.4). Internal solutions also contained 0.1% AlexaFluor-488-hydrazide (ThermoFisher) 

and 0.1% Neurobiotin (Vector) for “online” and post hoc detection (see below) of the 

cell, respectively. 

Cells were identified with an inverted microscope (Nikon FN-1) with DIC optics. 

Recordings were made with an EPC-10 amplifier and recorded and compensated (series 

resistance, slow/fast capacitance) with PatchMaster software (HEKA). Liquid junction 

potential was automatically subtracted. Traces were digitized at 20 KHz. Recordings 

were made in voltage clamp mode at -70 mV. After whole-cell configuration was 

achieved, cells were allowed to stabilize for 5 min. Then, baseline drug cocktails 

(bicuculline or DNQX) were delivered and allowed to act for a minimum of 2 min. Drug-
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containing solutions were gravity-delivered and flow-matched to a ~2 mL/min peristaltic 

pump (Cole-Palmer MasterFlex L/S) outtake. Tissue chamber capacity was ~1 mL. 

Recording quality was constantly monitored between recording blocks and recordings 

were aborted if series resistance compensation rose above 40 MΩ. 

Nine males were used for AMPA/kainate/NMDA EPSCs (sEPSCs) recordings. 

For sEPSC isolation, bicuculline (20 µM; Santa Cruz) was added to the 0-Mg2+ recording 

solution. For most recordings, after bicuculline was delivered and allowed to take effect, 

a 1-min baseline recording was made, but for a few cells (9 out of 25), a 7-min rundown 

recording followed. Then, ±-SKF-38393 hydrochloride (10 or 50 µM; abcam) [Ding and 

Perkel, 2002] was delivered and a 7-min recording was timed to the start of the delivery. 

Maximum concentration of drug is estimated to have been achieved within 1 min. 

Finally, a 10-min washout recording was timed to the start of SKF-38393 clearance, and 

complete washout is estimated to have been achieved within 1 min. Finally, to confirm 

the nature of the currents, D-AP-5 (50 µM; abcam, Santa Cruz or Alomone) was 

delivered and currents were monitored for ~5 min. 

Six males were used for spontaneous GABA IPSCs (sIPSCs) recordings. For 

sIPSC isolation, DNQX (20 µM; Tocris) was added to the standard recording solution. 

Recordings were made similar to EPSC recordings, except different cells were used for 

SKF (n=7) and rundown experiments (n=4). After a 1-min baseline recording, either 

SKF-38393 (10 µM) or nothing (rundown) was added to the recording solution and 

currents were monitored for 7 min. Then, a 10-min washout (or continued rundown) 

followed. Finally, to confirm the nature of the currents, bicuculline (20 µM) was added to 

the recording solution and currents were monitored for ~5 min. 
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After recordings were completed, the recording pipette was slowly retrieved, and 

slices were drop-fixed overnight in 4% paraformaldehyde in PB. Then, they were 

transferred to cryoprotectant solution and kept at -20 °C until processed. 

4.3.3.2 Analyses 

Recordings were analyzed in IgorPro 6. All traces were downsampled (5x) and 

lowpass filtered at 500 Hz.  

In sEPSC experiments, for amplitude measurements, cells were only included 

(n=9) in the analysis if series resistance did not change by more than 20% from baseline 

values. For frequency recordings, all cells (n = 25) were analyzed, as recording quality 

fluctuations are not expected to interfere with their detection, due to their high amplitude 

(>50 pA; noise band ~5 pA). Currents were thresholded and manually curated with 

NeuroMatic [Rothman and Silver, 2018]. After curation, currents were automatically 

measured by custom IgorPro code. 

For sIPSC recordings, cells whose series resistance changed more than 20% from 

baseline were excluded from all analyses. For each cell, one template current was 

manually selected and spontaneous PSCs were automatically detected using a 

spontaneous current detection algorithm [Clements and Bekkers, 1997] implemented by 

Dr. Geng-Lin Li for IgorPro. After detection, all IPSCs were measured automatically by 

custom IgorPro code.  

For imaging cells containing neurobiotin, slices were washed 3x15 min in PB and 

incubated in 10% NGS in 0.3% PBT for 2 h. Sections were then incubated with rabbit 

anti-aromatase diluted 1:2000 in 10% NGS in 0.3% PBT for 1 h at room temperature, 

followed by 2 days at 4 °C. Then, sections were washed 3x15 min in 0.1% PBT and 
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transferred to 0.3% PBT containing goat anti-aromatase at 1:200 and Streptavidin-

DyLight-488 (Vector) at 1:200. Finally, sections were washed in 3x10 min in 0.1% PBT 

and kept in the same solution in the fridge until mounted (1 or 2 days later) and 

coverslipped with ProLong Diamond with DAPI (ThermoFisher). Cells were imaged 

using a confocal microscope (Nikon A1si) at 20 and 100x magnification. 

4.3.4 In vivo awake head-fixed electrophysiology 

4.3.4.1 Headpost implantation and craniotomy surgery  

Five males and four females were retrieved from the single-sex cages and 

implanted with headposts. Briefly, under isoflurane anesthesia, custom-made headposts 

were lowered on the top of the beak and secured with dental cement. Markings over the 

lateral-anterior edges of NCM (1.1 lateral, 1.4 anterior) were performed, large 

craniotomies over NCM were made and meninges were resected. A small craniotomy 

was made in an anterolateral part of the skull for the implantation of a silver ground wire 

using cyanoacrylate. Craniotomies were sealed with Kwik-Cast (WPI), and birds were 

allowed to recover from anesthesia. Recordings were performed within 4 days of surgery. 

4.3.4.2 Retrodialysis-microdrive (RetroDrive) fabrication 

Custom retrodialysis probe-coupled multielectrode drives (RetroDrives) were 

assembled in house. RetroDrives consisted of a circular printed circuit board (PCB; 

Sunstone Circuits) soldered to a 36-pin connector (Omnetics; A79026-001), and a 5 mm 

17G guide tube (stainless steel; Component Supply Company). A strand of 28G 

enameled copper magnet wire (Remington Industries) was soldered to the PCB ground. 

Three polyimide tubes (2x 198 µm; 1x 100 µm diameter) were inserted through the guide 

tube, glued side-by-side on the wall of the guide tube and cut to be flush with the guide 



 

94 

tube. Tetrodes were made by twice-folding and twisting polyimide-coated NiCr tetrode 

wire (Sandvik) with a tetrode spinner (LabMaker). Tetrodes were inserted through the 

larger polyimide tubes (4 in each) and pinned to the PCB. A single reference wire (50 µm 

polyimide-coated NiCr wire; Sandvik) was inserted through the smaller polyimide tube 

and pinned to the PCB. Wires were glued to the top of the polyimide tubes. A 

microdialysis cannula (CMA8011085; Harvard Apparatus) was glued adjacent to the 

polyimide tubes containing tetrodes, such that a minimum of 3 mm of cannula protruded 

from the guide tube. Tetrodes were cut with tetrode-cutting scissors (FST 14058-11) to 

~0.5 mm from the tip of the cannula. Reference wire was cut to a similar length at an 

acute angle. When 1 mm membrane probes (CMA8011081; Harvard Apparatus) were 

inserted, the tips of the probe and wires were offset by ~0.5mm. Importantly, the 

horizontal distance between probe wires were ~0.2 mm. Finally, tetrodes were gold-

plated to 200-250 kΩ impedance and all wires and pins were covered with liquid 

electrical tape (Gardner Bender) and allowed to dry. RetroDrives were confirmed to 

successfully operate in NCM using baclofen/muscimol delivery to locally silence neurons 

within minutes in an earlier study [Macedo-Lima and Remage-Healey, 2020].  

4.3.4.3 Recording protocol 

On the day of the recording, a microdialysis probe was perfused with artificial 

cerebrospinal fluid (aCSF; described below) using a microinjection pump (PHD2000, 

Harvard Apparatus). RetroDrive wires were dipped in 6.25% DiI (ThermoFisher) in 200-

proof ethanol for visualization of electrode tracks. Then, the animal was comfortably 

restrained and head-fixed. The Kwik-Cast was removed from the craniotomy over one of 

the hemispheres. Animal and RetroDrive grounds were connected using alligator clips. 
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The microdialysis probe was inserted through the cannula and the RetroDrive was 

lowered to NCM (~1.5-2 mm from brain surface). Importantly, tetrodes were positioned 

medial to the probe such that wires were ~0.5 mm lateral from the stereotaxic zero.  

Recordings were made while animals listened to auditory stimuli and aCSF (PRE) 

followed by SKF-38393 (SKF) followed by aCSF (POST) were infused during song 

playback to assess within-subject the effects of SKF on responses to auditory stimuli 

(described in detail below). Recordings were completed within 4 hours of restraint.  

Recordings were made from both hemispheres in different days. When recording 

in the first hemisphere was completed, the craniotomy was resealed with Kwik-Cast and 

the animal was returned to the home cage. Within 2 days, the second hemisphere 

recording was made, after which the animal was overdosed with isoflurane and 

decapitated. The brain was drop-fixed and cryoprotected in 30% sucrose in 10% 

formalin, and frozen until cutting. Cryostat sections were obtained at 40 µm and imaged 

to confirm location of wires and probe.  

Recordings were amplified and digitized by a 32-channel amplifier and evaluation 

board (RHD2000 series; Intan technologies) and sampled at 30 kHz using Intan software. 

An Arduino Uno was connected to the recording computer to deliver TTL pulses to the 

evaluation board’s DAC channel bracketing the beginning and end of the audio stimuli 

(described below) to optimize detection. Audio playback and TTL pulses were controlled 

by a custom-made MatLab script which also controlled the Arduino and sent a copy of 

the audio analog signal to the evaluation board ADC channel. 
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4.3.4.4 Stimuli 

Zebra finch songs were obtained from multiple databases 

(http://ofer.sci.ccny.cuny.edu/song_database), therefore unlikely to have been familiar to 

our subjects. Twenty-four song files from unrelated birds were bandpass filtered at 0.5-15 

kHz and trimmed to include two consecutive motifs without introductory notes in Adobe 

Audition (Adobe) and mean amplitude-normalized to 70 dB in Praat [Boersma and van 

Heuven, 2001]. Songs were randomly and equally split into two sets, then into 3 subsets 

containing 4 songs each. For each animal, 1 set was used per hemisphere and, within a 

hemisphere recording, 1 subset was used per treatment. This was done to ensure that for 

each treatment birds listened to novel stimuli, because NCM neurons exhibit stimulus-

specific adaptation [Chew et al., 1996]. Importantly, there was no consistent difference 

among neuronal responses to different subsets, as a function of the responses to each 

stimulus and within each neuron (Mixed-effects GLM/ANOVA: Subset: F5,2=0.539, 

p=0.746). Therefore, responses across treatments are comparable as they were presumed 

to reflect responses to novel stimuli. 

Each playback session consisted of 4 conspecific songs, repeated 30 times each in 

pseudorandomized order. Interstimulus interval was pseudorandom within the interval 

5±2 s. Audio pressure was amplified to ~65 dB as measured by a sound level meter 

(RadioShack). Playback trial duration lasted ~20 min. 

Recordings were made from each hemisphere on different days. For each animal’s 

first recording, the starting hemisphere was randomized in the first subjects, then 

counterbalanced between sexes. The stimulus set was also initially randomized, then 
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counterbalanced across sexes and hemispheres, but the subset selected for each treatment 

was always randomized (www.random.org).  

4.3.4.5 Drugs and treatment 

SKF-38393 (abcam) aliquots were made in double-distilled water (20 mM; 10 

µL) [Schicknick et al., 2012] and kept at -20 °C. On the day of the experiment, one 

aliquot was added to 1 mL (final concentration 0.2 mM as in [Schicknick et al., 2012]) of 

previously frozen aCSF aliquots (in mM: 199 NaCl, 26.2 NaHCO3, 2.5 KCl, 1 NaH2PO4, 

1.3 MgSO4, 2.5 CaCl2, 11 Glucose, 0.15 bovine serum albumin; pH 7.4). All aliquots 

were filtered before being loaded into the RetroDrive. Treatment and playback timeline 

are described in Fig 5. After each round of playback, treatment syringes were switched 

and a 30 min infusion period elapsed. Retrodialysis speed was set to 2 µL/min [as in 

Remage-Healey et al., 2010; Remage-Healey and Joshi, 2012; Vahaba et al., 2017].  

4.3.4.6 Analyses 

Sound playback was detected using a custom audio convolution algorithm in 

MatLab. 

Recordings were highpass filtered at 300 Hz and common-median filtered in 

MatLab (MathWorks). Single-unit sorting was done with Kilosort [Pachitariu et al., 

2016]. Sorting results were manually curated in Phy (https://github.com/cortex-lab/phy) 

and only well-isolated units (high signal-to-noise ratio; low violation of refractory period; 

low contamination with other units; segregation in waveform PCA space) were used.  

After sorting, for each single-unit, 2000 waveforms were selected 

pseudorandomly and measured (peak-to-peak duration and ratio; Fig 4a) in MatLab. All 

further data processing was done in Python and R.  
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Baseline firing rates were calculated using 500 ms preceding each stimulus 

playback trial. Within each treatment condition, baseline and stimulus firing rates were 

averaged across stimuli and trials. Peristimulus time histograms (PSTHs) were generated 

using 10-ms time bins. 

Z-scores were calculated by the formula 𝑍 =  
( ) ( )

( ) ( ) – ( ( , ))
, where S 

and B are the stimulus and baseline firing rates across stimulus trials, respectively. After 

computing z-score by stimulus, those were averaged to yield a single z-score per unit per 

treatment. 

Adaptation rates were calculated using trials 6-25, which is the approximate-

linear phase of the adaptation profile in NCM [Phan et al., 2006]. For each stimulus, the 

stimulus firing rate across trials was normalized by the firing on trial 6 (set to 100%). 

Then, a linear regression was calculated between trials 6 and 25. For each treatment, the 

minimum (steepest) adaptation slope across stimuli was used for each unit. 

Latency to respond to stimuli were calculated as in Ono et al. [2016]. Briefly, for 

each stimulus, 5-ms PSTH were generated and convolved with a 5-point box-filter. The 

latency to respond to a stimulus was the time after stimulus onset in which the filtered 

PSTH rose above 3 standard deviations of the average preceding baseline period (100 

ms). If threshold was not crossed within 400 ms, that stimulus was excluded from 

analyses. 

4.3.5 Experimental Design and Statistical Analyses 

All statistical analyses and plotting were performed using libraries for R and 

Python, respectively.  
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Our general statistical approach was to perform general linear modeling (GLM; 

‘lme4’ R package) for multiple-factor analyses followed by ANOVA with Kenward-

Roger’s degree-of-freedom approximation. For single-factor analyses, we performed 

GLM and assessed normality and homoscedasticity of residuals (Shapiro-Wilk and 

Levene tests, respectively). If data violated either of those tests, data were log-

transformed when possible (non-negative, non-zero data) and GLM/ANOVA was run on 

transformed data. When log-transformation was not possible (i.e., zeroes in the dataset) 

or data still violated normality-homoscedasticity assumptions, non-parametric analyses 

were performed (Kruskal-Wallis followed by Dunn’s post-hoc tests, Friedman test or 

Wilcoxon signed rank tests). 

For immunofluorescence data, quantifications of the two sections belonging to the 

same hemisphere and animal were averaged. Data were analyzed by mixed-effects GLM 

followed by ANOVA, with Hemisphere and Area (dorsal vs ventral) as repeated factors 

over Subjects. For the GABA-D1-PV analyses, tissue from the right hemisphere of one 

female was excluded because NCM could not be confidently localized (off-plane 

section). Although animals of both sexes were used, we did not have power to detect sex 

differences. Nevertheless, no qualitative sex differences were observed. To test 

coexpression proportions, chi-square tests were performed on the total sum of cells per 

label to form a 2x2 contingency table (e.g. ARO+/ARO– vs D1R+/D1R–). Pearson’s z-

scored residuals were analyzed to obtain corresponding one-tailed p-values. 

For patch clamp recordings, minute-by-minute-binned data were analyzed by 

mixed-effects GLM followed by ANOVA, using Time bins (60 seconds) as a repeating 

factor over Cells, and Treatment or Dose as independent factor. Bin 1 corresponded to the 
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minute before SKF treatment; bins 2-8 corresponded to the SKF treatment. Washout was 

excluded from these analyses and is presented for visualization in all figures. When main 

factors were significant, post-hoc Dunnett tests were used to compare treatment bins with 

bin 1 (control). When interactions were significant, single-factor repeated-measures 

ANOVA were performed in each Experiment individually, followed by post-hoc Dunnett 

tests. 

For in vivo recordings, cell types were classified using 2-D hierarchical clustering 

(‘stats’ R package) on peak-to-peak duration vs ratio measurements. The optimal number 

of clusters was determined using the package Nbclust [Charrad et al., 2014] with the gap 

statistic method. After clustering, each unit’s auditory responsiveness was tested by 

Wilcoxon tests (30x baseline vs 30x stimulus trials per song during aCSF infusion). Cells 

responsive to at least one song were included in all following analyses. Before-drug 

(PRE) differences among cell types were tested using Kruskal-Wallis tests and Dunn’s 

post-hoc tests with Benjamini-Yekutieli false-discovery rate adjustments. Treatment data 

were analyzed by mixed-effects GLM followed by ANOVA using Treatment (repeated) 

and Cell type as factors; Tukey post-hoc tests were used when ANOVA was significant. 

Due to statistical power limitations, we performed separate analyses excluding Cell type 

and including Hemisphere and Sex as factors. However, no systematic sex or hemisphere 

differences with treatment were detected. Washout (POST) was excluded from analyses. 

4.4 Results 

4.4.1 Aromatase and D1-receptor proteins are coexpressed by NCM neurons 

We found that D1-receptor-protein-positive (D1R+) neurons are often found 

coexpressing aromatase, representing 29.6 and 35.4% of the aromatase+ (ARO+) 
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neuronal subpopulation in dNCM and vNCM respectively (Fig. 4.1C). Moreover, the 

population of D1R+/ARO+ neurons represents 6.6 and 10% of the neuronal population 

(DAPI nuclei) in dNCM and vNCM, respectively. A chi-square test analyzing these 

proportions yielded a significant relationship between D1R and ARO counts 

(χ2(1)=22.210, p<0.001), with double-labeled cells significantly more frequent than 

expected (ARO+/D1R+ Pearson’s residual=3.609, p<0.001).  

Interestingly, we frequently observed tyrosine hydroxylase+ (TH+) fibers 

enveloping D1R+/ARO+ neurons (Fig. 4.1D; not formally quantified). 

D1R+ neurons were observed in similar densities and proportions (over DAPI) 

between hemispheres and between vNCM and dNCM. However, we found that vNCM 

contains significantly higher percentage of ARO+ neurons (Hemisphere: F1,9=0.105, 

p=0.753; Area: F1,9=9.179, p=0.014, Hemisphere*Area: F1,9=0.435, p=0.526). 

Interestingly, vNCM also had a higher percentage of double-labeled D1R+/ARO+ 

(Hemisphere: F1,9 =1.707, p=0.224; Area: F1,9=11.211, p=0.009, Hemisphere*Area: 

F1,9=2.182, p=0.174), but not of  D1R–/ARO+ (Hemisphere: F1,9=0.165, p=0.694; Area: 

F1,9=2.310, p=0.163, Hemisphere*Area: F1,9=0.014, p=0.909). Of note, dorsal NCM 

(dNCM) contained higher density of DAPI nuclei (in 103×cells/mm3; dNCM: 776±31.3; 

vNCM: 642±22.4; Hemisphere: F1,9=0.267, p=0.618; Area: F1,9=18.411, p=0.002, 

Hemisphere*Area: F1,9=0.000, p=1.000), the same regional pattern as recently 

demonstrated in juveniles [Vahaba et al., 2020]. This potentially underlies the increase in 

the percentage of ARO+ and D1R+/ARO+ neurons we observed (since neither of these 

densities change). Together these data show that D1R protein is prevalent in NCM 
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neurons and that D1R+ neurons represent a significant population of NCM neurons. 

Moreover, ARO+/D1R+ neurons are also prevalent, particularly in vNCM. 

 
Figure 4.1: Aromatase and D1 receptor (D1R) proteins are coexpressed by NCM 
neurons. 
(A) Songbird auditory circuits. Lighter-to-darker colors illustrate the trajectory of 
auditory (blue) and motor (red) information. (B) Specificity confirmation of the anti-D1R 
antibody used here. Preincubation with blocking peptide virtually eliminated cellular 
staining. (C) Triple immunofluorescence staining for D1R, aromatase and tyrosine 
hydroxylase (TH). Magenta and cyan arrows indicate single-labeled D1R and aromatase+ 
neurons, respectively. White arrows indicate double-labeling. (D) TH fibers are 
frequently found in association with double-labeled neurons. Note that fibers tightly 
envelop double-labeled soma. 
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4.4.2 D1R+ neurons are predominantly GABA+ 

We found that the majority (58.7 and 64.2%) of D1R+ neurons are GABA+, and 

these colabeled neurons represent 21.9 and 26.4% of the neuronal population in dNCM 

and vNCM, respectively. The reciprocal is also true, such that 54.6% (dNCM) and 56.5% 

(vNCM) of GABA+ neurons also contain D1R (Fig. 4.2A). A chi-square test analyzing 

these proportions yielded a significant relationship between D1R and GABA counts 

(χ2(1)=759.6, p<0.001), with double-labeled cells significantly more frequent than 

expected (GABA+/D1R+ Pearson’s residual=17.791, p<0.001). Similarly, we observed 

that the majority (~55%) of parvalbumin+ (PV+) neurons also express D1R, combining 

vNCM and dNCM (Fig. 4.2B), and these represent ~4% of the NCM neuronal population 

(Fig. 4.2A). A chi-square test analyzing these proportions yielded a significant 

relationship between D1R and PV counts (χ2(1)=29.3, p<0.001), with double-labeled 

cells significantly more frequent than expected (PV+/D1R+ Pearson’s residual=4.044, 

p<0.001). 

We did not find differences in the densities or percentages (over DAPI) of D1R+, 

GABA+ or D1R+/GABA+ neurons between hemispheres or areas. However, a greater 

percentage of D1R+ neurons contained GABA in the left hemisphere and in the vNCM 

(Hemisphere: F1,10.265=10.542, p=0.005; Area: F1,14.040=10.617, p =0.006, 

Hemisphere*Area: F1,14.040=1.173, p=0.297). Altogether, these results show that D1R+ 

neurons are predominantly GABA+ and represent a significant subpopulation in NCM. 

Of note, our data show that the majority of PV+ neurons express D1Rs, which suggests 

this subpopulation is of particular interest for dopamine modulation of auditory 

processing. 
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Figure 4.2: D1 receptor (D1R)-containing neurons are predominantly GABA+. 
(A) Triple immunofluorescence stain for D1R, GABA and parvalbumin (PV). Magenta, 
cyan and yellow arrows indicate single-labeled D1R, GABA and PV+ neurons, 
respectively. White arrows indicate triple-labeling. (B) The majority of PV+ neurons also 
express GABA and D1Rs. 

4.4.3 D1R activation reduces the amplitude of GABAergic currents in NCM in 
vitro 

We recorded spontaneous postsynaptic currents from neurons in NCM in vitro 

(Fig. 4.3A).  Inhibitory currents were isolated with the AMPA receptor antagonist DNQX 

(sIPSCs; Fig. 4.3B). In separate sets of cells, we either applied 10 µM SKF or nothing 

(rundown) to the bath. 

For amplitude measurements, GLM analyses comparing treatments (SKF or 

rundown) detected a significant interaction between Time and Treatment (log-

transformed data: Time: F7,63=3.219, p=0.006; Treatment: F1,9=0.337, p=0.576; 

Time*Treatment: F7,63=2.706, p=0.016). Examining each experiment individually, SKF-

38393 significantly reduced the sIPSC amplitude (RM-ANOVA on log-transformed data: 
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F7,42=5.716, p<0.001; Dunnett’s post-hoc test vs before-treatment: p<0.05 between 

minutes 4-7 of SKF). Rundown experiments did not show the same reduction (RM-

ANOVA on log-transformed data: F7,21=0.790, p=0.603). For frequency measurements, 

GLM analyses contrasting treatments did not detect significant differences between SKF-

38393 and rundown, but detected a significant reduction of sIPSC frequency over time 

(Time: F7,63=4.531, p<0.001; Treatment: F1,9=0.042, p=0.843; Time*Treatment: 

F7,63=0.265, p=0.965; Dunnett’s post-hoc test vs before-treatment: p<0.05 between 

minutes 5-7). These results show that SKF-38393 treatment significantly reduced the 

amplitude of GABAergic currents. The reduction in frequency observed in SKF-38393 

treatments did not differ from rundowns indicating that, regardless of treatment, the 

number of detected sIPSCs decayed over time. 
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Figure 4.3: D1R activation reduces spontaneous GABAergic (sIPSC) and 
glutamatergic (sEPSC) currents amplitude but increases sEPSC frequency. 
(A) Representative neuron in NCM visualized during (left; Alexa-488) and after 
recording (Neurobiotin-Streptavidin-488 stain; aromatase stain to confirm NCM 
location). (B) Representative sIPSCs recording from NCM neuron, before and during 10 
µM SKF-38393 infusion (left panel). Amplitude of sIPSCs (middle panel) was 
significantly different from rundowns (aCSF) and reduced from baseline by SKF (4-7 
min). Frequency (right panel) was also reduced but did not differ from rundown 
experiments (5-7 min). Waveforms show representative sIPSC (mean±SEM during 1 
min) before (PRE), on the last minute of (SKF) and on the last minute after (POST) drug 
infusion. (C) Representative AMPA/NMDA/Kainate sEPSCs recording from NCM 
neuron, before and during 10 µM SKF-38393 infusion (left panel). Amplitude of sEPSCs 
(middle panel) was significantly reduced by 10 and 50 µM (no dose difference) SKF (6-7 
min). However, frequency (right panel) was increased by SKF (2-5 min). In these 
experiments, rundowns were done before treatment and did not significantly change. 
Waveforms show representative sEPSC (mean±SEM during 1 min) before (PRE), on the 
last minute of (SKF) and on the last minute after (POST) drug infusion. 
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4.4.4 D1R activation reduces the amplitude but increases the frequency of 
glutamatergic currents in NCM in vitro 

Excitatory NMDA/AMPA/Kainate currents (sEPSCs) were isolated in 0-Mg2+ 

bath containing the GABAa-receptor antagonist bicuculline (Fig. 4.3C). For these 

experiments we used two doses (10 and 50 µM) of SKF-38393 in different sets of cells. 

In these experiments we performed rundown experiments before SKF-38393 treatment in 

a subset of cells (n=4 for amplitude; n=8 for frequency; see methods). Both amplitude 

and frequency of sEPSCs were stable during 7 minutes before treatment (RM-ANOVA: 

Amplitude: F6,24=0.673, p=0.673; Frequency: F6,48=1.200, p=0.323). 

For amplitude measurements after SKF-38393 treatment, we performed a GLM 

analysis on the effect of different doses of SKF-38393 over time. These analyses showed 

a reduction in the amplitude of sEPSCs over time due to treatment, but no difference 

between doses (Time: F7,35=4.292, p=0.002; Dose: F1,5=0.009, p=0.930; Time*Dose: 

F7,35=0.427, p=0.878; Dunnett’s post-hoc test vs before-drug: p<0.05 on minute 7 of 

SKF). For frequency measurements, GLM analyses showed a trend for a change in 

sEPSC frequency (Time: F7,98=1.998, p=0.063; Dose: F1,14=0.163, p=0.163; Time*Dose: 

F7,98=0.499, p=0.833).  

Since no effects of dose were observed, we combined the datasets and performed 

simpler model analyses for increased power. A 1-way RM-ANOVA showed a decrease 

in amplitude of sEPSCs due to SKF-38393 treatment (log-transformed; F7,42=4.868, 

p<0.001; Dunnett’s post-hoc test vs before-drug: p<0.05 between minutes 6-7 of SKF). 

Further, this analysis demonstrated an increase in frequency of sEPSCs due to SKF-

38393 treatment (F7,105=2.819, p=0.010; Dunnett’s post-hoc test vs before-drug: p<0.05 
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between minutes 2-5 of SKF). These experiments show that SKF-38393 treatment 

reduces the amplitude but increases the frequency of sEPSCs. 

In summary, D1R activation in vitro reduced the amplitude of both GABA and 

glutamatergic spontaneous currents but increased the frequency of the latter. These 

findings establish the prediction that D1R activation in vivo causes differential effects 

depending on cell type, namely downregulate and upregulate GABAergic and 

glutamatergic neuron firing, respectively. 

4.4.5 Cell type separation based on waveform measurements in in vivo recordings 

We isolated 107 single-units from 9 adult birds in awake head-fixed recordings 

using the RetroDrive. We measured peak-to-peak duration and ratio of each unit and 

analyzed the data using an unsupervised hierarchical clustering algorithm (see methods; 

Fig. 4.4A). The gap-statistic results show that the variance in clustering is better and 

more parsimoniously explained by 4 clusters. The classification commonly used in the 

literature of narrow- and broad-spiking neurons in songbird cortex uses only peak-to-

peak duration and a division boundary of ~0.4 ms [Schneider and Woolley, 2013; 

Yanagihara and Yazaki-Sugiyama, 2016; Vahaba et al., 2017; Aurore et al., 2019]. Our 

data provides evidence of 2 further subdivisions; therefore, we named our clusters to 

extend the previous classification: NS1 and NS2 – narrow-spiking; peak-to-peak < 0.4 

ms; and BS1 and BS2 – broad-spiking; peak-to-peak > 0.4 ms. 

Following clustering, non-auditory-responsive cells were excluded from the 

analyses (see methods) and 92 units were further analyzed. This sample consisted of 21 

(L) and 23 (R) units from females and 34 (L) and 14 (R) units from males. Representative 

PSTHs and adaptation slopes of a NS1 and a BS1 are shown in Fig. 4.4B.  
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Cell type classification reflected on differences in physiology phenotypes 

assessed during aCSF infusion (Fig. 4.4C). Cell types differed in baseline firing rates 

(Kruskal-Wallis test: χ2(3)=24.554, p<0.001; Dunn’s post-hoc: p<05 in NS1–BS2 and 

NS2–BS2), stimulus firing rates (Kruskal-Wallis test: χ2(3)=23.199, p<0.001; Dunn’s 

post-hoc: p<05 in NS1–BS1, NS1–BS2 and NS2–BS2), z-scores (Kruskal-Wallis test: 

χ2(3)=20.682, p<0.001; Dunn’s post-hoc: p<05 in NS1–BS1 and NS1–BS2), adaptation 

slopes (Kruskal-Wallis test: χ2(3)=8.488, p=0.037; Dunn’s post-hoc: all p>0.05), 

latencies to respond (Kruskal-Wallis test: χ2(3)=12.715, p=0.005; Dunn’s post-hoc: p<05 

in NS1–BS2) and in the % of songs responded to (Kruskal-Wallis test: χ2(3)=17.994, 

p<0.001; Dunn’s post-hoc: p<05 in NS1–BS1 and NS1–BS2). Therefore, the 4 cell types 

clustered by waveform shape in our recordings also differ in physiological profile. NS1 

cells have symmetrical and narrow action potentials, high firing rates and z-scores, as 

well as fast response latencies and lower selectivity, which all parallel features of 

mammalian cortical high-firing inhibitory interneurons. All other cell types show 

statistically similar physiological features among themselves, with the exception that BS 

cells are statistically more selective than NS1. However, they do differ in waveform 

shape: NS2 cells have asymmetrical and narrow spike shapes; BS1 cells have 

asymmetrical and broad spike shapes; and finally, BS2 cells have the most asymmetrical 

and broadest spike shapes. 
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Figure 4.4: Cell type separation based on waveform measurements in in vivo 
recordings. 
(A) Unsupervised hierarchical clustering results using peak-to-peak ratio vs duration 
optimally yielded 4 distinct clusters. Traces illustrate waveform averages by cluster type. 
The correlation plot shows the 4 distinct clusters and the kernel-density estimations of the 
distributions along single-axis with mean±SEM on top. (B) Representative PSTHs and 
adaptation slopes of NS1 (left) and BS1 (right) cell types. Representative examples in B 
are highlighted in all graphs according to cluster type. (C) Physiology parameters of the 
different cluster types. From left to right: baseline and stimulus firing rate, z-score, 
adaptation slope, latency to respond to song and percentage of songs responded to. Post-
hoc test results are shown at the bottom. Significant differences (p < 0.05) are assigned 
different letters. 

 
Figure 4.5: Timeline for drug infusions and playbacks starting after auditory site 
localization within NCM. 

4.4.6 D1R activation reduces baseline and stimulus firing of NS1, but increases 
baseline firing of BS1 neurons in vivo 
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We next analyzed how SKF-38393 (SKF; 0.2 mM) affected single-unit responses 

to sound playback (timeline on Fig. 4.5).  

Representative PSTHs for NS1 and BS1 cells are shown in Fig. 4.6A.  

For baseline firing rate, GLM analyses followed by ANOVA comparing 

Treatment and Cell-Type show that SKF reduced the firing of NS1, while increased the 

firing of BS1 cells (Fig. 4.6B; Treatment: F1,88=0.023, p=0.881; Cell-Type: F3,88=7.132, 

p<0.001; Treatment*Cell-Type: F3,88=4.397, p=0.006; Tukey’s post-hoc test; PRE–SKF: 

NS1: t88=2.893, p=0.005; NS2: t88=–0.02, p=0.984; BS1: t88=–2.139, p=0.035; BS2: t88=–

0.503, p=0.616).  

For stimulus firing rate, GLM/ANOVA results showed that SKF decreased firing 

of NS1 cells (Fig. 4.6C; Treatment: F1,88=2.399, p=0.125; Cell-Type: F3,88=10.873, 

p<0.001; Treatment*Cell-Type: F3,88=4.090, p=0.009; Tukey’s post-hoc test; PRE–SKF: 

NS1: t88=3.862, p<0.001; NS2: t88=0.065, p=0.948; BS1: t88=–0.506, p=0.614; BS2: t88=–

0.043, p=0.966).  

To further illustrate the change in baseline vs stimulus firing due to SKF, we 

show a correlation between the %-change in baseline versus stimulus firing induced by 

SKF (Fig. 4.6D). Values above 0 in either axis indicate an increase in firing due to SKF. 

On average BS1 and BS2 data points are situated above 0 in both axes, while NS1 and 

NS2 data points are below 0. Changes in baseline vs stimulus firing are highly correlated 

(Pearson’s r=0.876, p<0.001). Interestingly, the regression line slope’s 95% confidence 

interval [0.693; 0.875] does not include and is lower than the slope of the identity line 

(slope=1), which suggests that baseline firing was more affected than stimulus firing. 
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For z-scores, GLM/ANOVA results showed that SKF decreased overall z-scores 

regardless of cell type  (Fig. 4.6E; Treatment: F1,88=6.701, p=0.011; Cell-Type: 

F3,88=14.939, p<0.001; Treatment*Cell-Type: F3,88=1.417, p=0.243).  

Altogether, these data show that the D1R agonist SKF-38393 affects cell types 

differently, i.e. by reducing the firing of NS1 and increasing the firing of BS1. Moreover, 

regression analyses suggest that D1R activation is primarily mediating changes in 

baseline firing. 

SKF-38393 treatment increased latency to respond (Fig. 4.6F; Treatment: 

F1,86.488=5.250, p=0.024; Cell-Type: F3,87.124=3.851, p=0.012; Treatment*Cell-Type: 

F3,86.720=0.397, p=0.756).  

Finally, SKF-38393 treatment decreased the % of songs units responded to (Fig. 

4.6G; Treatment: F1,88=7.350, p=0.008; Cell-Type: F3,88=10.247, p<0.001; 

Treatment*Cell-Type: F3,88=1.409, p=0.245) regardless of cell type. 
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Figure 4.6: Effects of D1R activation in vivo on firing characteristics of NCM 
neurons. 
(A) Representative PSTHs of a NS1 (top) and BS1 (bottom) cell in response to SKF. 
Note the change in stimulus and baseline firing in NS1 and BS1, respectively, due to 
SKF-38393 (0.2 mM). Representative cells are highlighted in all plots according to their 
cell type. (B) Baseline firing rate. D1R agonist reduced firing of NS1, but increased firing 
of BS1 cells. (C) Stimulus firing rate. D1R agonist reduced firing of NS1 cells. (D) 
Correlation between baseline and stimulus %-change during SKF infusion accompanied 
by kernel-density estimations of the distributions along single-axis with mean±SEM on 
top. Regression line across all datapoints is shown (solid line). Identity line is shown as a 
dotted line. The regression slope 95% confidence interval (shaded area) is less than and 
does not encompass 1, suggesting that baseline changes are higher than stimulus changes. 
(E) D1R agonist reduced Z-score, (F) increased latency and (G) decreased responsiveness 
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of NCM cells. Relevant statistical effects are highlighted on top of each plot. Post-hoc 
Tukey test results are displayed on the plots when interaction was significant. *p<0.05, 
**p<0.01. 

4.4.7 D1R activation disrupts neuronal stimulus-specific adaptation in vivo 

NCM neurons show stimulus-specific adaptation when birds are presented to 

repetitions of the same stimuli, which reflect short/medium-term memory formation 

[Chew et al., 1996; Lu and Vicario, 2017]. Therefore, we asked whether D1R activation 

would result in changes in adaptation to novel stimuli. Trial-by-trial stimulus firing rate 

were used for deriving adaptation slopes (see methods). Eight cells (3 BS1, 5 BS2) had to 

be removed from the analyses, because firing rate on the first trial used for the regression 

(trial 6; see methods) was 0 during either PRE or SKF playbacks. Representative rasters 

and corresponding slopes of an NS1 cell is shown in Fig. 4.7A. Fig. 4.7B depicts the 

slope through the normalized firing rate of trials 6-25 averaged by cell type. 

GLM/ANOVA analyses showed that SKF-38393 infusion reduced adaptation slopes, 

regardless of cell type (Fig. 4.7C; Treatment: F1,80=8.794, p=0.004; Cell-Type: 

F3,80=6.672, p<0.001; Treatment*Cell-Type: F3,80=1.665, p=0.181). Note, however that 

this effect seems to be driven by all cell types but for BS2, which on average appears to 

remain unchanged by SKF. In fact, BS2 cells are the only group that retain non-zero 

slopes during SKF treatment (One-sample Wilcoxon signed-rank tests versus 0; NS1: 

p=0.308; NS2: p=0.549; BS1: p=0.052; BS2: p<0.001). Therefore, D1R activation 

disrupts stimulus-specific adaptation profiles of NCM neurons, which suggests adaptation 

and memory formation in NCM are modulated by local D1-receptors.  
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Figure 4.7: D1R activation disrupts neuronal stimulus-specific adaptation in vivo. 
(A) Representative PSTHs from NS1 highlighting a decrease in adaptation slope to a new 
stimulus due to SKF-38393 (0.2 mM) treatment. (B) The slope through the normalized 
firing rate of trials 6-25 averaged by cell type. (C) Adaptation slopes quantifications show 
a reduction in the slope due to SKF-38393. Relevant statistical effect is displayed on the 
top of the plot. *p<0.05. 
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Figure 4.8: Network connectivity models hypothesized from present data.  
SKF-38393 effects are shown in red. (A) Models for in vitro results with sIPSCs 
(GABAergic) and sEPSCs (glutamatergic). GABAergic model 1 hypothesizes that D1R 
agonist binds preferentially to a GABAergic neuron upstream from the ones providing 
input to the recorded neuron. Binding of D1R agonist increases its GABA tone resulting 
in a reduction of GABA release immediately upstream of the recorded neuron. 
GABAergic model 2 suggests D1R effects directly cause a reduction in GABA release by 
the upstream neuron. Glutamatergic effects can be explained by a direct effect of D1R 
agonist on a glutamatergic neuron directly upstream from the recorded neuron, causing a 
reduction (perhaps a depletion) of glutamate release but an increase in firing rate. (B) 
Models for in vivo results. Connected models only depict cell types with changes in firing 
rate. Model one hypothesizes that D1R agonist binds to and excites a GABAergic neuron 
upstream of NS1 cells, which results in a reduction of NS1 firing and consequent 
disinhibition of BS1 cells. Model 2 offers a direct effect of D1R agonist on NS1 cells, 
resulting in a reduction in their firing, which results in disinhibition of BS1 cells. In the 
disconnected model, the effects observed here are due to D1R’s binding to all cell types 
individually (except BS2, in which no effects were observed). 

4.5 Discussion 
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In this study, we show that dopamine D1 receptors (D1R) mediate synaptic 

plasticity in the secondary association cortex (NCM) of a songbird. Specifically, we show 

that D1R protein is prevalent in NCM neurons, especially in aromatase-, GABA-, and 

parvalbumin-positive neurons. Activating D1R in vitro reduces the amplitude of 

GABAergic currents and decreases the amplitude but increases the frequency of 

glutamatergic currents. Activating D1R in vivo reduces firing of putative-inhibitory 

interneurons, while increases firing of putative-excitatory projection neurons. Finally, we 

show D1R activation disrupts stimulus-specific adaptation in NCM neurons, a 

phenomenon reflective of auditory memory formation. 

A distinct feature of NCM among the auditory forebrain nuclei is the intense 

labeling for somatic aromatase, an enzyme that mediates conversion of testosterone into 

estradiol (E2) [Saldanha et al., 2000]. E2 production in NCM is elevated during social 

interactions and song playbacks [Remage-Healey et al., 2008; Remage-Healey et al., 

2012], and extrinsic E2 application increases neuronal response to song playbacks 

[Remage-Healey et al., 2010]. We recently showed that blocking aromatase locally in 

NCM slows auditory association learning in an operant task [Macedo-Lima and Remage-

Healey, 2020]. This finding led to the hypothesis that dopamine (DA) interacts with E2 

signaling in NCM to support association learning. This line of reasoning is also supported 

by reports that DA in the auditory cortex mediates auditory association learning in gerbils 

[Schicknick et al., 2012], and that DA innervation and release are increased by steroid 

hormones in songbird NCM [Matragrano et al., 2011; Rodríguez-Saltos et al., 2018].  In 

the present study, we provide anatomical evidence to support this hypothesis, since ~33% 

of aromatase+ neurons coexpress D1R protein and these co-labeled neurons represent 
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~8% of all neurons in NCM (Fig. 4.1C). Interestingly, in striatum and preoptic area, E2 

and DA systems cross-modulate [Becker, 1990; Lammers et al., 1999; Balthazart et al., 

2002; Tozzi et al., 2015] and DA and E2 have been suggested to cross-activate each 

other’s receptors [Olesen and Auger, 2008; Tozzi et al., 2015]. Our data suggests that in 

NCM E2 and DA signaling are acting in tandem to modulate learning and memory in the 

songbird auditory cortex. Thus, we hypothesize that this framework could apply to other 

vertebrates and brain circuits that contain aromatase and DA receptors, such as human 

auditory cortex [Yague et al., 2006]. 

Inhibition fundamentally controls neuronal responses to sounds [Wang et al., 

2002; Razak and Fuzessery, 2009] and is required for associative learning in mammal 

auditory cortex [Letzkus et al., 2011]. DA receptors are prevalent in mammalian cortical 

inhibitory interneurons, especially in parvalbumin-expressing neurons [Le Moine and 

Gaspar, 1998].  Here, we show in the songbird NCM that D1R and inhibitory markers are 

frequently coexpressed by NCM neurons, representing more than half of the total 

GABA+ and D1R+ population, and about 24% of the total NCM population.  

Parvalbumin-positive (PV+) cortical interneurons are generally characterized by 

their fast action potentials and high sustained firing frequency and play a central role in 

regulating microcircuits, mediating learning processes in hippocampus and cortex 

[Donato et al., 2013]. In the songbird song control circuit, PV+ neurons are recruited 

during singing, and PV+ neuron numbers correlate with critical period closure for song 

learning [Balmer et al., 2009; Yildiz and Woolley, 2017]. In the NCM, PV and calbindin 

seem to be expressed in different neuron subpopulations, such that PV+ but not 

calbindin+ neurons can express aromatase [Ikeda et al., 2017]. Here, we show that PV+ 
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neurons represent ~8% of all NCM neurons, and ~11% of GABA+ neurons. Furthermore, 

55% of the parvalbumin-expressing neurons in NCM also express D1R. We hypothesize 

that many of the effects we observed in vivo and in vitro can be attributed to this 

subpopulation. This hypothesis is also supported by the waveform phenotype of the NCM 

neurons we observe are sensitive to SKF-38393 (see below).  

D1Rs are generally assumed to increase circuit excitability through Gαs-protein 

coupling [Beaulieu and Gainetdinov, 2011]. In our in vitro experiments, D1R agonist 

SKF-38393 caused a seemingly counterintuitive reduction in the amplitude of 

GABAergic and glutamatergic currents. However, D1R-mediated depression is well 

documented in the mammalian nucleus accumbens for both GABAergic and 

glutamatergic (especially NMDA-mediated) synapses and is attributed to presynaptic 

plasticity [Pennartz et al., 1992; Zhang et al., 2014]. In contrast, in mammalian cortex, 

excitability-reducing effects are typically attributed to postsynaptic D2R-mediated 

effects, while D1Rs mediate excitability increases [Gonzalez-Islas and Hablitz, 2003; 

Darvish-Ghane et al., 2016]. In our in vitro proposed model (Fig. 4.8A), for the reduction 

of GABA release we suggest two scenarios: 1) D1Rs are predominantly mediating an 

increase in GABAergic tone by neurons upstream to those providing input to the 

recorded neuron, therefore reducing GABA release downstream and 2) D1Rs are acting 

directly on neurons providing input to the recorded neuron causing a direct reduction in 

GABA release. For the reduction of glutamatergic current amplitude, we suggest a 

presynaptic mechanism, perhaps explained by a depletion in presynaptic glutamate stores, 

resulting from the increased firing induced by D1R activation. Alternatively, SKF-38393 

could be acting directly on the recorded neuron (postsynaptically) to result in amplitude 



 

120 

reductions. Further experiments with miniature events or with synaptic stimulation could 

help clarify these questions. 

We are at the beginning of our understanding of how non-layered cortical 

microcircuits operate, including their component cell types. Most of the 

electrophysiology studies reporting in vivo waveform shape segregation in NCM has 

relied on a non-statistical split of peak-to-peak ratio at ~0.4 ms to divide recorded 

waveforms into the categories narrow- (NS) and broad-spiking (BS) units [Schneider and 

Woolley, 2013; Yanagihara and Yazaki-Sugiyama, 2016; Vahaba et al., 2017; Aurore et 

al., 2019]. One study using intracellular sharp-electrode recordings has reported 4 

subtypes based on visual inspection of waveform shape and firing rates [Bottjer et al., 

2019]. Our findings with unsurpevised hierarchical clustering using solely waveform 

shapes generally corroborates the latter finding, such that their two NS types displayed 

high and low firing rates, similar to our NS1 and NS2 respectively. Our two BS subtypes, 

however, are contained within the range of one of their BS subtype measurements. Their 

other BS subtype (termed double-trough) was not representative in our sample, possibly a 

limitation of extracellular recordings. 

The firing characteristics of the cell types identified here led us to formulate 

hypotheses based on characteristics of mammalian cortical neurons. NS1 neurons are 

highly reminiscent of mammalian fast-spiking PV+ interneurons, exhibiting short and 

symmetrical action potentials, high firing, short latency to respond and low stimulus 

selectivity [Atallah et al., 2012; Tremblay et al., 2016]. The other cell types identified 

here do not exhibit statistically distinctive physiological characteristics among 

themselves, but BS1 and BS2 respond to fewer songs than NS1. Because of the narrower 
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waveform and lower firing rate, we suggest that NS2 resemble late-spiking interneurons, 

such as somatostatin+ or VIP+ interneurons [Tremblay et al., 2016]. Despite their distinct 

waveforms, we did not observe physiological features that distinguish BS2 vs BS1, other 

than the complete lack of response to SKF-38393 in BS2. We found ~33% of NCM 

neurons do not express either GABA or D1Rs (Fig. 4.2A). Therefore, it is possible that 

BS2 cells are part of a circuit in which D1R-signaling does not participate to produce 

effects on variables analyzed in this study.  

Alternatively, some synaptic plasticity effects can require simultaneous D1- and 

D2-family receptor activation [Calabresi et al., 1992; Ichihara et al., 1992], and these 

receptors often heterodimerize and mutually regulate [Bordet et al., 2000; Marcellino et 

al., 2008]. D2-like receptors are not abundant in NCM, but their presence cannot be ruled 

out [Kubikova et al., 2010]. In fact, systemic D2 receptors have been shown to mediate 

song preference in adult female zebra finches [Day et al., 2019]. Therefore, simultaneous 

modulation of D1- and D2-family receptors, or of D2-family receptors alone, might be 

necessary to emulate DA effects in NCM. 

We propose three models (Fig. 4.8B) for the effects we observed in vivo. If the 

cell types we recorded are part of the same microcircuit, it is plausible they are affecting 

each other’s firing properties. Therefore, in our “connected model 1”, we suggest that the 

D1R activation might be increasing the tonic firing of a GABAergic neuron upstream to 

NS1 cells, thus inhibiting them and disinhibiting BS1 cells. This model resembles a 

disinhibitory circuitry discovered in mammalian cortex for auditory associative learning, 

in which learning activates layer 1 inhibitory interneurons, which inhibit layer 2/3 PV+ 

interneurons, thus disinhibiting pyramidal neurons. These layer 1 neurons are activated 
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by cholinergic signaling [Letzkus et al., 2011], and are known to be 5HT3a+/VIP– 

interneurons [Tremblay et al., 2016]. Alternatively, our “connected model 2” depicts a 

single synapse and inhibitory effects of SKF-38393 on NS1 cells. Finally, our 

“disconnected model” summarizes our findings in each cell type and depicts isolated 

effects of the D1R agonist. Future experiments involving genetic targeting of specific 

neuronal subtypes could clarify these circuit properties. 

Acetylcholine has been shown to affect SSA in mammalian auditory cortex and 

inferior colliculus [Metherato and Weinberger, 1989; Ayala and Malmierca, 2015]. 

However, to our knowledge, dopamine modulation of stimulus-specific adaptation (SSA) 

in vertebrate auditory cortex has not been explored. In mammalian auditory cortex, D1R-

induced changes in microcircuit excitability have been shown to improve signal detection 

in an auditory avoidance task [Happel et al., 2014], and local D1R activation improves 

association learning [Schicknick et al., 2012]. In humans, systemic DAergic treatments 

have been shown to improve auditory language associative learning [Breitenstein et al., 

2004; Knecht et al., 2004]. Since DA signaling in auditory cortex is involved in learning, 

it is plausible to hypothesize that DA could be affecting SSA. In songbird NCM, SSA has 

been shown to parallel familiarity with sounds, such that novel sounds will produce more 

negative slopes (i.e. higher SSA) than familiar, previously adapted sounds [Chew et al., 

1996]. In fact, after successful behavioral association learning, learned sounds produce 

less SSA than novel sounds [Bell et al., 2015]. Here, we provide evidence that D1Rs are 

involved in this process, such that pharmacological D1R activation disrupts SSA in NCM 

neurons.  



 

123 

Our experiments were designed to test the prediction that blunt D1R activation 

would produce cellular plasticity in NCM. However, it is important to note that 

naturalistic DA signaling regulation is likely much more spatially and temporally 

targeted. Ventral tegmental area (VTA) neural activity reflects two signaling timescales, 

phasic and tonic firing, which produce differential DA release in terminals [Grace, 1991; 

Floresco et al., 2003]. More recently, DA release regulation at synaptic terminals in the 

rat nucleus accumbens was discovered to be independent of VTA source cell firing and 

signals reward expectation [Mohebi et al., 2019]. Therefore, it is likely that the effects 

observed here are a result of indiscriminate application of D1R agonist, when in reality, 

DA synaptic effects, as well as DA release are expected to be more nuanced spatially and 

in timing. With these aspects in mind, we hypothesize that indiscriminate D1R activation 

forces the NCM circuit into a “preadapted” state making it unable to adapt to subsequent 

presentation of novel sounds. Perhaps dopaminergic activation more precisely paired 

with sound stimuli would produce more specific changes. Therefore, future work should 

examine whether D1R activation in NCM paired with sounds would promote changes in 

SSA and association learning, including juvenile song learning.  

We note that circuit origins of DA fibers to NCM are still an open question in the 

field. There are 8 major subpallial DAergic nuclei, which are fairly well conserved across 

vertebrates [Reiner et al., 1998]. One preliminary report suggests the caudal ventral 

tegmental area projects to NCM [Barr et al., 2019], which, if confirmed, would be an 

interesting avenue for studying auditory reward prediction learning. Other reports suggest 

that the locus coeruleus (LC) projects to NCM to provide norepinephrinergic (NErgic) 

input [Ikeda et al., 2015; Chen et al., 2016]. NE is a precursor to DA, and LC neurons are 
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known to release DA in addition to NE throughout the cortex [Devoto et al., 2005]. DA 

released by the LC onto dorsal hippocampus is involved in spatial learning and memory 

in rodents, independently of NE release [Kempadoo et al., 2016; Takeuchi et al., 2016]. 

Furthermore, future studies should clarify through neuronal tract tracing which specific 

nuclei provide DAergic inputs to NCM and whether the effects observed in this study can 

be mimicked by DA release from such nuclei. 

In conclusion, we show that D1R signaling mediates key components of auditory 

circuitry, response and plasticity in the songbird auditory association cortex by shifting 

inhibitory-excitatory balance. Furthermore, we show that aromatase (estradiol-synthase) 

and D1R proteins are frequently found coexpressed in the same neurons. We propose that 

D1R effects in combination with E2 modulation could be mediating learning and memory 

in the sensory cortex. 
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CHAPTER 5 

FINAL CONSIDERATIONS 

In this dissertation, I examined the role of a high-order auditory cortical region in 

adult zebra finches by pharmacologically manipulating neuromodulatory signals. My 

experiments support the hypothesis that this brain region, the caudomedial nidopallium 

(NCM), is involved in binding sounds with outcomes in adult birds, which has been a 

matter of debate in the literature. Moreover, this dissertation provides insight into the role 

of neuroestradiol (E2) production within sensory cortical regions. In mammals, 

hippocampal E2 is a known modulator of spatial memory, but no conclusive data existed 

regarding similar phenomena in sensory cortical regions. I showed that in the NCM, 

inhibiting aromatase (E2 synthase) disrupted association learning in a novel operant task 

with social reinforcement, while it did not affect auditory retrieval/discrimination after 

the learning process was completed. I further showed that NCM activity itself was not 

required after the learning process was completed, such that inhibiting its neurons with 

GABA agonists after learning did not affect auditory performance. Together, these 

findings suggest that, after consolidation, auditory memories are not stored in or retrieved 

by NCM, and/or NCM is not needed for auditory discrimination. These findings led me 

to develop the hypothesis that local E2 modulates online associative learning signals in 

NCM. Specifically, E2-synthesizing cells could be themselves the target of learning 

signals (e.g., neuromodulation, ionic conductance changes), resulting in changes in E2 

production. These, in turn could be affecting neuronal excitability, modulating afferent 

neurotransmitter release and/or perhaps even interacting with channels and receptors at 

the synapse. In mammals, plasticity in virtually all learning-dedicated brain regions is 
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dependent on dopamine (DA) regulation. Therefore, I hypothesized that E2 could be 

operating on DAergic signaling in NCM, which was reported to express D1 receptor 

(D1R) mRNA. Since there were no data on the cellular effects of activating these 

receptors (or even the cellular distribution of the proteins involved), I investigated 

whether DA signaling modulated synaptic plasticity in NCM. Specifically, I showed that 

D1R protein is prevalent in NCM neurons, especially in aromatase-, GABA-, and 

parvalbumin-positive neurons. Activating D1R in vitro reduced the amplitude of 

spontaneous GABAergic and glutamatergic currents and increased the frequency of the 

latter. Similarly, activating D1R in vivo reduced firing of putative-inhibitory 

interneurons, but increased firing of putative-excitatory projection neurons. Finally, I 

showed that D1R activation disrupted stimulus-specific adaptation in NCM neurons, a 

phenomenon reflective of active auditory memory formation. These data suggest that 

D1Rs are involved in inhibitory-excitatory balance in NCM at the anatomical, in vitro 

and in vivo levels. These findings led me to hypothesize putative network connectivity 

models for the NCM microcircuit. The most parsimonious scenario is that D1R activation 

preferentially increases GABAergic tone onto inhibitory interneurons, which reduces 

their firing and consequently increases the firing of downstream excitatory neurons (see 

Fig. 4.8).  

A second aspect of the behavioral experiments reported in my second chapter led 

to a new set of concepts. Specifically, the findings suggest that the adult NCM and 

specifically aromatase activity within it play key roles in associating sounds with 

behaviorally relevant consequences. These findings corroborate previous reports that 

NCM neuronal activity reflects association learning in adults [Jarvis et al., 1995; Bell et 
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al., 2015] and song learning in juveniles [London and Clayton, 2008]. However, the 

novel task described in this dissertation does not allow for precisely dissecting post-

learning performance into its components, namely sound memory retrieval and sound 

discrimination. After learning, to achieve high performance, birds need to both excel at 

discriminating among sounds and retrieving the memory about which sound is associated 

with reward. I showed that inhibiting NCM after learning does not affect performance, 

which suggests that NCM is not involved in either discrimination or retrieval. This is 

reminiscent of hippocampal function, which is required for encoding, consolidation and 

retrieval of early/detailed memories but not involved in the retrieval of sedimented 

memories [Wiltgen et al., 2010]. Interestingly, recent studies in the mammalian and avian 

hippocampus have also observed a role for estrogens in learning, both locally-produced 

and from the circulation [Bailey and Saldanha, 2015; Luine, 2016; Tuscher et al., 2016; 

Gervais et al., 2018; Paletta et al., 2018]. Moreover, in addition to neuromodulators, 

NCM is rich in NMDA receptors [Saldanha et al., 2004], which are classically regarded 

as key players in cellular memory formation processes, such as long-term potentiation 

and depression, in most mammalian excitatory synapses [Lüscher and Malenka, 2012]. 

Therefore, NCM possesses the major components of the molecular toolkit that together 

support hippocampal learning and memory, including machinery for E2 signaling, DA 

signaling and AMPA/NMDA receptors. A theoretical framework formulated by this 

dissertation is that NCM acts as an “auditory hippocampus”, in which associations are 

formed then distributed to other brain regions for long term storage. 

Another question raised here is whether E2 is acting through a genomic or 

membrane-mediated to affect association learning. Classically, steroid hormones are 
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referred to as “organizers” of nervous systems (particularly of sex differences) through 

genomic regulation, typically over extended timescales (days-months). More recently, 

great emphasis has been made on steroid actions at faster timescales (seconds-minutes), 

frequently through actions on membrane-bound receptors [Remage-Healey, 2014]. 

Results from this dissertation do not allow for direct conclusions about whether E2 acts 

rapidly or on membrane receptors to affect auditory learning. That said, I showed that 

NCM aromatase inhibition had an effect on reversal learning at the start of behavioral 

testing, suggesting a rapid effect, in line with a previous report that systemic aromatase 

inhibition rapidly reduced sound-induced immediate early gene expression in the NCM 

of male zebra finches [Krentzel et al., 2019]. In the future, application of specific 

antagonists for membrane-bound versus nuclear-acting receptors during auditory learning 

could help answer this question. 

It is important to note that the behavioral experiments in my second chapter were 

performed in male songbirds. In females, fadrozole given orally did not impair immediate 

early gene EGR1 expression in NCM, but it did in males [Krentzel et al., 2019]. 

Similarly, unlike in males, NCM electrophysiological responses in females were 

unaffected by modulation of G-protein coupled E2 receptors [Krentzel et al., 2018]. It is 

possible that, since females also possess an ovarian source of E2, drugs that affect E2-

signaling are needed in higher doses to produce an effect. Moreover, in males, NCM 

contains higher density of aromatase fibers than in females (although not of aromatase 

neurons), which suggests that local aromatization may be more important in males 

[Saldanha et al., 2000; Peterson et al., 2005]. This prediction can now be tested using the 

operant behavioral paradigm presented in Chapter 2. In preliminary behavioral 
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experiments, I found that females are also motivated to engage in the same behavioral 

task which provides an interesting avenue of future research, particularly for the 

exploration of sex differences in the role of aromatase in auditory learning. 

The operant paradigm described in this dissertation was developed as a viable 

alternative tool to study goal-directed behavior in social animals. Many studies using 

operant conditioning paradigms for songbirds and other species have relied on food 

reinforcement [Cynx and Nottebohm, 1992; Benney and Braaten, 2000; Gentner and 

Margoliash, 2003; Gess et al., 2011; Schneider and Woolley, 2013; but see Tokarev and 

Tchernichovski, 2014; Chen and ten Cate, 2015], which requires not only food but social 

deprivation for hours before testing and thus possible distress for highly social species 

such as the zebra finch [Astheimer et al., 1991; Zann, 1996]. To mitigate these 

drawbacks, my dissertation describes a low-cost behavioral tool to assess auditory 

learning in zebra finches without the need for food deprivation or complete social 

isolation. In this task, birds learn to operate a switch to gain visual access to an individual 

in an adjacent cage. Future studies should explore, for example, if motivation to engage 

in the task is reflective of different social relationships (e.g. juveniles, novel vs familiar, 

pair-bonded individuals), and perhaps differing social systems in species that are not as 

socially-gregarious as zebra finches [Goodson and Kingsbury, 2011]. The brain regions 

and neurotransmitter systems that contribute to this phenomenon should also be explored. 

An interesting question raised by this work is whether E2 production by the 

human auditory cortex [Yague et al., 2006] impacts language learning, or more broadly, 

auditory learning during development and/or adulthood. Interestingly, plasma E2 was 

found to be a strong positive predictor of language development in children of both sexes, 
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while testosterone was a strong negative predictor [Schaadt et al., 2015]. E2 levels also 

strongly correlated with melodious crying in infants, a predictor of language outcomes 

[Wermke et al., 2014]. Furthermore, aromatase gene mutations in humans were 

associated dyslexia and language processing and production [Anthoni et al., 2012]. These 

studies point towards an important role of E2 in human language development, but a 

causal relationship has not yet been established.  

That said, in developing songbirds, E2 production inhibition during tutoring did 

not impair song learning, but resulted in increased neuronal firing to tutor song playback 

when the same animals became adults [Vahaba et al., 2020]. In adults, E2 production is 

increased during song playback [Remage-Healey et al., 2008], but is reduced in the 

juvenile NCM followed by an immediate increase after song playback [Chao et al., 

2014]. Assuming that sound-outcome encoding is a general feature of NCM which 

extends to song-reinforcement learning in juveniles, my dissertation’s data indicate that 

E2 production in NCM is important during adult auditory learning, predicting an opposite 

result in the juvenile NCM during a similar auditory learning task. Interestingly, some 

areas directly implicated in juvenile song learning and production also contain aromatase 

fibers and/or neurons, such as HVC and HVC shelf [Ikeda et al., 2017]. Future research 

should address whether E2 production/signaling directly in these cortical areas support 

song learning in juveniles, and what other roles they are playing in adults, in which these 

areas mostly support song production and not learning. 

One curious finding of my second chapter is that inhibiting aromatase during 

learning resulted in a trend for an increase in response bias, i.e. indiscriminate responses 

to GO and NO-GO trials. One interpretation for this is that aromatase inhibition could 
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affect impulse control. Indeed, an involvement of aromatization/E2 in impulsive behavior 

has been suggested in humans [Smith et al., 2014] and rodents [Svensson, 2010; Bayless 

et al., 2013]. Future implementations of our behavioral task could help illuminate the 

comparative aspects of this proposed relationship between neuroestrogens and impulsive 

behavior in songbirds and other species. However, an alternative explanation for these 

findings is that zebra finches revert to response bias when performance is impaired. The 

task presented here consisted of two trial types (GO/NO-GO) and involved mild 

punishment (white noise burst). It is possible that learning impairments resulted in birds 

responding indiscriminately to trials, so they could still achieve high reward rates. To 

answer this question, future work could modulate punishment/reward saliency balance. I 

predict that increasing punishment intensity or decreasing reward quality/duration could 

result in a no-response bias in a learning impairment challenge.  

To modulate goal-directed auditory learning, E2 could be acting in concert with 

and/or modulating reinforcement signals, such as midbrain dopamine (DA) release. In 

striatum and preoptic area of both birds and mammals, E2 and DA systems interact 

[Becker, 1990; Lammers et al., 1999; Balthazart et al., 2002; Tozzi et al., 2015] and DA 

and E2 can interact with the same receptors [Olesen and Auger, 2008; Tozzi et al., 2015]. 

This line of reasoning is also supported by reports that DA in the auditory cortex 

modulates auditory association learning in gerbils [Schicknick et al., 2012], and that DA 

innervation and release are increased by steroid hormones in songbird NCM [Matragrano 

et al., 2011; Rodríguez-Saltos et al., 2018]. Indeed, results in my fourth chapter show that 

33% of aromatase-expressing neurons in NCM also express DA receptors and these 

double-labeled cells represent 8% of all NCM neurons. Therefore, studying E2 and DA 
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interactions in the auditory cortex could provide important insights about the network and 

cellular mechanisms behind the learning deficits induced by aromatase inhibition. 

In my fourth chapter, I report that D1R activation impairs stimulus-specific 

adaptation (SSA) in NCM neurons. The neuromodulatory mechanisms underlying SSA 

are essentially unexplored. In mammalian auditory cortex and inferior colliculus 

acetylcholine has been shown to affect SSA [Metherato and Weinberger, 1989; Ayala 

and Malmierca, 2015], but DA modulation of stimulus-specific adaptation (SSA) in 

vertebrate auditory cortex has not been studied. In mammalian auditory cortex, D1R-

induced changes in microcircuit excitability have been shown to improve signal detection 

in an auditory avoidance task [Happel et al., 2014], and local D1R activation improves 

association learning [Schicknick et al., 2012]. Interestingly, systemic DAergic treatments 

in humans have been shown to improve auditory language associative learning 

[Breitenstein et al., 2004; Knecht et al., 2004]. These reports show that DA signaling in 

auditory cortex is involved in auditory learning, but it remains to be tested whether DA is 

mediating learning through modulating SSA in mammals.  

This dissertation provides evidence that D1Rs are involved in SSA, such that 

pharmacological D1R activation disrupts SSA in NCM neurons, which might seem 

counterintuitive. These experiments were designed as proof of the concept that blunt D1R 

activation would produce cellular plasticity in NCM. However, naturalistic DA signaling 

regulation is likely much more sophisticated. For example, ventral tegmental area (VTA) 

neurons have different firing regimens, which produce different DA outputs in target 

regions [Grace, 1991; Floresco et al., 2003]. DA release can also be regulated at the 

synapse, independently of VTA neuron firing [Mohebi et al., 2019]. Thus, I propose that 



 

133 

the effects observed in this dissertation resulted from indiscriminate D1R activation, 

when DA synaptic effects, as well as DA release are expected to be more nuanced in 

more physiological conditions.  

In songbird NCM, SSA has been shown to parallel familiarity with sounds, such 

that novel sounds will produce more negative slopes (i.e. higher SSA) than familiar, 

previously adapted sounds [Chew et al., 1996]. In fact, after successful behavioral 

association learning, learned stimuli produce less SSA than novel [Bell et al., 2015]. 

Therefore, these studies raise the hypothesis that the indiscriminate D1R activation in my 

experiments forced the system into a “preadapted” state making it unable to adapt to 

subsequent presentation of novel sounds. Perhaps dopaminergic activation more precisely 

paired with sound stimuli would produce more specific changes. By extension, whether 

SSA modulation by D1Rs reflect changes in auditory learning in adults and song learning 

in developing songbirds are open questions. 

This dissertation did not establish what the neural circuit origins of DA fibers to 

NCM are, and this is still an open question in the field. There are 8 major subpallial 

DAergic nuclei, which are fairly well conserved across vertebrates [Reiner et al., 1998]. 

One preliminary report suggests the caudal ventral tegmental area projects to NCM [Barr 

et al., 2019], which, if confirmed, would be an interesting avenue for studying auditory 

reward prediction learning. Other reports suggest that the locus coeruleus (LC) projects to 

NCM to provide norepinephrinergic (NErgic) input [Ikeda et al., 2015; Chen et al., 2016]. 

NE is a precursor to DA, and LC neurons are known to release DA in addition to NE 

throughout the cortex [Devoto et al., 2005]. DA released by the LC onto dorsal 

hippocampus is involved in spatial learning and memory in rodents, independently of NE 
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release [Kempadoo et al., 2016; Takeuchi et al., 2016]. Therefore, future work should 

clarify through neuronal tract tracing which specific nuclei provide DAergic inputs to 

NCM and whether the effects observed in this dissertation can be mimicked by inducing 

DA release from such nuclei. 

In conclusion, this dissertation provides evidence that the NCM is a key region for 

online auditory association learning in adult songbirds. The findings here also suggest 

that E2 production within NCM – and NCM itself – plays a role in the pairing between 

sounds and behaviorally relevant consequences, and that this signal is likely distributed 

and stored in other brain regions after the initial association. This work also provides 

evidence that DAergic signaling is a likely target of E2 modulation, since a significant 

portion of aromatase-positive neurons contain D1Rs. My studies show that D1R signaling 

regulates key components of auditory circuitry, response and plasticity in NCM by 

shifting inhibitory-excitatory balance. I propose that D1R effects in combination with E2 

modulation might be modulating learning and memory in the sensory cortex. Effects of 

neuro-E2 production had been previously demonstrated in mammalian and avian 

hippocampus for learning and memory [Bailey and Saldanha, 2015; Luine, 2016; Tuscher 

et al., 2016; Gervais et al., 2018; Paletta et al., 2018]. This dissertation builds on this 

literature by providing direct evidence that E2 production within the auditory cortex 

affects sensory learning potentially through tapping into the DAergic system, which itself 

modulates plasticity mechanisms associated with learning. This raises the hypothesis that 

these findings could apply to other vertebrates that contain aromatase and DA receptors 

in their auditory cortex, including humans. 
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