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ABSTRACT 

DESIGN AND FABRICATION OF COLLOIDAL DELIVERY SYSTEMS TO 

ENCAPSULATE AND PROTECT CURCUMIN: AN IMPORTANT 

HYDROPHOBIC NUTRACEUTICAL 

 

May 2020 

 

MAHESH KHARAT, B.Tech., UNIVERSITY INSTITUTE OF CHEMICAL 

TEHNOLOGY MUMBAI 

 

M.Tech., INSTITUTE OF CHEMICAL TEHNOLOGY MUMBAI 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor David Julian McClements 

 

 

Curcumin is a polyphenolic compound found in Turmeric (Curcuma longa) rhizome 

that has excellent biological benefits such as antioxidant, anti-inflammatory, and anti-

cancer properties to name a few. However, its incorporation in food and pharmaceuticals 

is difficult due to low water solubility and chemical instability. This study focuses on 

developing colloidal delivery systems for efficient encapsulation and increased protection 

of curcumin for maximizing the proposed health benefits of curcumin. 

It was found that the physical and chemical stability of pure curcumin is impacted by 

pH, storage temperature, and molecular environment both in aqueous solutions and in oil-

in-water emulsions. Pure curcumin was highly unstable to chemical degradation in 

neutral and alkaline aqueous solutions (pH ≥ 7.0) and it was most stable in acidic oil-in-

water emulsions. Curcumin stability in emulsions depended on the emulsifier type, and 

the extent of curcumin degradation decreased in the following order: saponins > > gum 

arabic ≈ caseinate ≈ Tween 80. These results suggest that saponin accelerated curcumin 

degradation, which may be due to their ability to promote peroxidation reactions or it 
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may be due to the presence of impurities in them, such as metals. The kinetics of 

curcumin degradation was significantly impacted by the mean droplet diameters (d32). 

The more rapid chemical degradation of the curcumin in the smaller droplets can be 

attributed to the fact that curcumin exchange between the interior and exterior of the 

droplets occurs more rapidly as the droplet dimensions decrease. Antioxidants were 

incorporated to protect curcumin in an emulsion having small droplets. The water-soluble 

antioxidants were more effective at protecting curcumin from degradation than the oil-

soluble ones, which may have been because curcumin degrades faster in water than in oil, 

while the oil-soluble antioxidant actually slightly promoted curcumin degradation. 

Finally, the formation of nanostructured lipid carriers (NLCs) was optimized which, 

unlike O/W emulsion, consists of a solidified fat phase. NLCs were formulated using a 

hot-homogenization approach using fully hydrogenated soybean oil as the lipid phase and 

quillaja saponins as a natural surfactant. Characterization and stability studies revealed 

that NLCs have the potential to replace oil-in-water emulsions in commercial foods. 

Future studies are needed to establish their functional performance for curcumin 

encapsulation and protection. In summary, this study showed that the stability of 

curcumin in emulsions depends on various physicochemical parameters. This knowledge 

is important in designing and fabrication of colloidal systems for curcumin delivery. 

 

 

Keywords: Curcumin; emulsion; degradation, emulsifier type; droplet size; oil-water 

interfacial area; ascorbic acid; antioxidant; nanostructured lipid carrier  
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

Curcumin is a natural, yellow colored polyphenol present in turmeric, the rhizome 

of perennial herb Curcuma longa. For many centuries, dried and powdered turmeric has 

been used as spice for its specific color and flavor. It has been a major ingredient in 

Ayurvedic remedies as well as in Chinese medicine. With over 7000 research 

publications in last five years, the consensus amongst scientist on curcumin’s health 

benefits has grown only stronger (Web of Science, © 2019 Clarivate). Many in vitro and 

in vivo studies have recognized antioxidant, anti-inflammatory, and anticancer properties 

of curcumin to name a few. Moreover, curcumin is shown to selectively attack cancer 

cells and not produce any cytotoxic effects on normal cells (Vecchione et al., 2016). 

Despite its benefits that are proven in vitro and in vivo, poor oral bioavailability of 

curcumin is the biggest challenge in deriving its positive effects in humans (Anand, 

Kunnumakkara, Newman, & Aggarwal, 2007). For example, when 8g of curcumin was 

given to human subjects, curcumin present in plasma as free or unconjugated form was 

mainly undetectable. The highest concentration of curcumin detected after being released 

from its conjugated form was found to be about 41 ng/mL after 6 h (Dhillon et al., 2008). 

This clearly indicates poor absorption and rapid metabolism of curcumin under 

physiological conditions. Moreover, the efficacy of curcumin varies across individuals 

and its bioavailability is greatly dependent on sex (Barber-Chamoux et al., 2018; 

Schiborr, Kocher, Behnam, Jandasek, Toelstede, & Frank, 2014).  
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1.2 Delivery by Design Approach 

To address the challenges of low water solubility, high chemical instability, and 

poor bioavailability, a great number of studies have been carried out to develop delivery 

systems for curcumin. Surfactant micelles and microemulsions, oil-in-water 

nanoemulsions, solid-lipid nanoparticles, nanostructured lipid carriers, and biopolymer 

particles have been shown to increase water dispersibility, enhance chemical stability, 

and improve bioavailability of curcumin. Each of these systems have different 

physicochemical properties like particle size, particle composition, stability, appearance 

and optical properties, and sensory attributes. Also, each system has its own advantages 

and drawbacks which limits application of a single system in broad category of food 

products. Consequently, a delivery system must be composed, and selected according to 

desired properties in the end-product. In this review, we have discussed ‘Delivery by 

Design (DbD)’- a new standardized approach that could facilitate identification and 

selection of a specific delivery system which is aimed at delivering curcumin through 

specific food products (McClements, 2018). This stepwise approach can be discussed in 

several stages: 1. definition of the molecular and physicochemical properties of the active 

agent; 2. definition of the required physicochemical, sensory, and functional attributes of 

the end-product; 3. specification of the required attributes of the colloidal delivery 

system; 4. specification of particle properties and delivery system selection; 5. 

optimization of delivery system manufacturing process; 6. establishment and 

implementation of delivery system testing protocol; and 7. optimization of delivery 

system performance. 
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1.2.1 Stage 1: Active agent definition 

1.2.1.1 Molecular and physicochemical characteristics 

1.2.1.1.1 Chemical formula and structure 

Curcumin has a molecular formula of C21H20O6. Structurally, it has two methoxy 

substituted phenol rings bound through a heptadiene chain having carbonyl moiety at 

positions 3, and 5 (Figure 1). Curcumin is a powerful antioxidant and its mechanism of 

action is highly pH dependent. In acidic conditions, keto form is predominant and the 

central methylene (-CH2) group acts as a hydrogen donor (Jovanovic, Steenken, Boone, 

& Simic, 1999). At alkaline pH, antioxidant properties of curcumin are mainly associated 

to phenolic hydroxyl groups (Priyadarsini et al., 2003). Methoxy groups present at ortho 

position further increase the antioxidative effect (Cuvelier, Richard, & Berset, 1992). 

Moreover, methoxy groups are believed to have an important role in some of the 

biological activities associated with curcumin (Yang et al., 2017). In keto form, due to the 

presence of ,- unsaturated carbonyl group, curcumin can act as Michael acceptor 

which is basis for its reactivity towards many molecular targets, mainly proteins having 

cysteine residues. (Heger, van Golen, Broekgaarden, & Michel, 2014).  

 

 

Figure 1. Structure of curcumin 

 

keto enol
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1.2.1.1.2. Molar mass and density 

Absorption of bioactives in humans is affected by their molecular weight (Fisher, 

Brown, Davis, Parr, & Smith, 1987). Molecular weight of curcumin is 368.38 Da, hence 

it can be considered as low molecular weight compound. Curcumin occurs as yellow-

orange crystalline powder with density of 1.3 g cm-3.  

1.2.1.1.3. Refractive index 

Its predicted refractive index in powder form is 1.643. This is important in 

delivery systems stabilized by curcumin particles. For example, ‘pickering emulsions’ are 

stabilized by solid particles which will scatter or reflect light and influence optical 

properties in a different way than a lipid droplet stabilized by dissolved emulsifier would. 

In many delivery systems, curcumin would be in dissolved form. For example, curcumin 

may be dissolved in medium chain triglyceride (MCT) before preparing curcumin 

encapsulated MCT oil-in water emulsion (Shah, Zhang, Li, & Li, 2016). In this case, 

refractive index of MCT oil-curcumin solution is more important which is 1.447 (1 mg 

curcumin/g MCT oil). 

1.2.1.1.4. Melting and boiling properties 

Curcumin crystals melt around 183 C and vaporizes at 521 C. Such high 

temperatures are rarely experienced in food manufacturing. Usually, curcumin is 

dissolved in oil or aqueous phase at temperatures below 100 C for its incorporation in 

delivery systems. 
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1.2.1.1.5. Partitioning 

In a heterogeneous system such as oil-in-water emulsion, curcumin can be 

distributed in both oil (nonpolar region), and water (polar region) depending on its 

affinity toward both phases. It is represented by the partition co-efficient which is 

logarithm of ratios of curcumin concentration in oil and that in water. As a result, 

partition co-efficient of curcumin changes if either or both the phases are changed. For 

example, octanol-water partition coefficient of curcumin is about 4.12, while that for 

MCT-tween 80 solution (1 wt. %) system is 1.13. 

log 𝑃 = 𝑙𝑜𝑔
[𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛]𝑜𝑖𝑙

[𝑐𝑢𝑟𝑐𝑢𝑚𝑖𝑛]𝑤𝑎𝑡𝑒𝑟
 

1.2.1.1.6. Diffusion coefficient 

Process of diffusion is driven by the concentration gradient. Diffusion of 

curcumin through oil, or water, or the oil-water interface would affect its distribution and 

release characteristics. Theoretical prediction of diffusion co-efficient can be obtained by 

following equation 

𝐷 = 𝑘𝑇/(6  𝑟) 

where, k is Boltzmann’s constant, T is the absolute temperature (K),  is the shear 

viscosity of the solvent (mPa.s), and r is the effective radius of curcumin molecule (4.3 × 

10-10 m). Process of diffusion can also be a key to degradation of curcumin in emulsions. 

Curcumin is known to be very stable in oils whereas it degrades quickly in aqueous 

systems at pH  7.0 (Kharat, Du, Zhang, & McClements, 2017). In emulsion systems, as 



 

6 

 

curcumin degradation proceeds in the aqueous phase, more curcumin can diffuse from oil 

to the aqueous phase as a result of the concentration gradient.  

1.2.1.1.7. Surface tension 

Curcumin has a backbone of two phenol rings connected through heptadiene 

chain giving it a hydrophobic characteristic (Balasubramanian, 2006), while hydroxyl 

groups in phenol rings are hydrophilic in nature (Figure 1). Therefore, curcumin can be 

surface active. Its surface tension is about 54 dyne/cm. 

1.2.1.1.8. Solubility 

As mentioned, curcumin has a log P of 4.12 indicating that it is mainly of 

hydrophobic nature and poorly soluble in water. Hence, it is difficult to incorporate 

curcumin in aqueous based food, such as a beverage. Also, the water solubility of 

curcumin is highly influenced by the pH, which in turn affects its partitioning behavior in 

foods containing both oil and water, for example a dairy beverage. As shown in Figure 2, 

it has negligible charge and is very sparingly soluble in acidic pH. At pH 7.0, its 

predicted water solubility is 24 mg/L.  

Solubility of curcumin in oils and fat is more important when encapsulating it in 

delivery systems like nanoemulsion, and solid-lipid nanoparticles. For example, its 

solubility in corn oil (3 mg/g), medium chain triglyceride (7.9 mg/g), tributyrin (29.8 

mg/g), olive oil (1.18 mg/mL), sunflower oil (1.08 mg/mL) has been reported (Ahmed, 

Li, McClements, & Xiao, 2012; Bergonzi, Hamdouch, Mazzacuva, Isacchi, & Bilia, 

2014). (Ahmed et al.) also found that the solubility increases as the molecular weight of 
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the carrier oil decreases. This was attributed to differential interaction and excluded 

volume effects (Huyskens & Haulaitpirson, 1985). Application of physical treatments 

such as heating, and ultrasonication may also improve the oil solubility of curcumin (Ma 

et al., 2017).  

 

Figure 2. Properties of curcumin as a function of pH 

1.2.1.1.9. Acid dissociation constants (pKa) 

In curcumin, three hydrogen atoms are dissociable with dissociation constant 

(pKa) values of 8.38 (enolic hydrogen), 9.88, and 10.51 (phenyl hydrogens) (Bernabe-

Pineda, Ramirez-Silva, Romero-Romo, Gonzadlez-Vergara, & Rojas-Hernandez, 2004) 

which explains curcumin’s variable solubility and partitioning behavior with pH. 

1.2.1.1.10. Hydrogen bond acceptors and donors 

Oxygen atoms (total 6) present in dicarbonyl, methoxyl, and phenyl hydroxyl 

groups in curcumin can accept hydrogen bonds, whereas hydrogen atoms (total 2) present 

in phenyl hydroxyl groups can donate hydrogen bonds (Heger et al., 2014).  
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1.2.1.2. Stability characteristics 

Stability of curcumin is affected by both physical parameters such as time, 

temperature, and radiation as well as chemical nature of the environment like pH 

(hydroxyl ions), oxygen, metal ions, and antioxidants to mention a few. In acidic aqueous 

solutions, curcumin has relatively low solubility and higher stability. For example, its 

half-life is 4200 h at pH 5.97. However, the degradation rate increases as enolic hydrogen 

dissociates at around pH  7.0 (Tonnesen & Karlsen, 1985b). As a result, the half-life of 

curcumin at pH 7.98 sharply decreases to 2.1 min. Vanillin, ferulic acid, and 

feruloylmethane were believed to be the major alkaline degradation products (Roughley 

& Whiting, 1973; Tonnesen & Karlsen, 1985a),. Recently, bicyclopentadione was 

isolated and identified as the major degradation product of curcumin formed through 

autoxidative pathway (O. N. Gordon & Schneider, 2012). On exposure to visible light, 

curcumin undergoes photodegradation at a higher rate than that due to UV radiation 

(Ansari, Ahmad, Kohli, Ali, & Khar, 2005). Presence of other components such as 

surfactants may promote photodecomposition of curcumin (Tonnesen, 2002). Though 

high temperatures can solubilize more amounts of curcumin (Jagannathan, Abraham, & 

Poddar, 2012), it has significant impact on curcumin stability in aqueous solutions and in 

delivery systems where higher temperature leads to more loss (Mondal, Ghosh, & 

Moulik, 2016; Niu, Ke, et al., 2012). Curcumin can interact with other components 

present in the system which would affect its stability. For example, proteins (Tapal & 

Tiku, 2012), metals like iron, copper, zinc are known to form complexes and improve 

curcumin stability (Wanninger, Lorenz, Subhan, & Edelmann, 2015). Moreover, rate of 

curcumin degradation is significantly reduced in presence of antioxidants like ascorbic 
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acid, and rosmarinic acid (Nimiya et al., 2015). As compared to aqueous solutions, 

curcumin remains much more stable in oils where it is protected from hydroxyl ions, and 

oxygen as they have significantly lower solubility in oils.  

1.2.2. Stage 2: End-product definition 

Food products constitute a wide range such as bread, pasta, dairy, fruit and 

vegetable products, frozen foods, meat and poultry, and so on. Each food type has 

different physical and chemical properties which need to be in certain range for a specific 

food product (Table 1). Physical properties like appearance, color, texture and mouthfeel, 

and viscosity depend on particle size as well as intermolecular interactions. Chemical 

properties such as pH, moisture content and water activity, and ionic strength depend on 

concentration of hydrogen ions, and salts. Other ingredients like minerals, antioxidants, 

surfactants, and emulsifiers would also affect these properties. When delivery system 

containing curcumin is incorporated in to food product, it is likely to affect its 

physicochemical parameters, and components present in the food product may also have 

impact on stability of curcumin and the delivery system itself. Compositional parameters 

of product like pH, and presence of other ingredients (e.g. fat, proteins) would 

considerably impact stability of curcumin. For example, curcumin is likely to be more 

unstable in aqueous beverages having neutral pH than an acidic pH. Also, it will be more 

unstable in an aqueous beverage than a yogurt drink because fat and proteins present in 

latter can solubilize more curcumin and stabilize it against hydrolytic degradation. 

Moreover, storage stability of curcumin in such yogurt drink would likely be higher in a 

container that prevents exposure of inner contents to light (for example by applying an 
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opaque packaging label) compared to a transparent container. Thermal stress and 

exposure to radiation during manufacturing and storage may also have significant effect 

on curcumin stability. For instance, stability of curcumin in a pasteurized beverage 

product is likely to be higher than that in a sterilized product. At the same time, 

incorporation of the delivery system should not significantly affect the viscosity, flavor 

profile, stability, and appearance of the product. For example, curcumin imparts strong 

yellow color to the food. Hence the delivery system could be incorporated easily in a 

product that is expected to have such color or in a product where delivery system would 

positively contribute to the color e.g. mango or orange flavored beverage. On the other 

hand, delivering curcumin through a vanilla flavored beverage may be a challenge as the 

product would not appeal to the consumer’s eyes. Also, curcumin has an earthy, spicy 

flavor which may be a challenge in developing food products. For instance, it would be 

easier to incorporate curcumin in to spice-flavored beverage as compared to a mango 

flavored beverage. Depending on product type, earthy flavor from curcumin could be 

masked or neutralized with use of other ingredients like acids, sugars and gums (Roberts, 

Elmore, Langley, & Bakker, 1996). For these reasons, it is important to identify and 

define properties of the end product. A relatively stable delivery system that do not 

significantly alter the end-product characteristics and provides maximum protection to 

curcumin could then be chosen. To discuss the DbD approach, encapsulation of curcumin 

in a plant-based ‘Golden Milk’ is considered in following sections and its characteristics 

are defined as in Table 2.  
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Table 1. Compositional and physicochemical properties of some commercial food products 

  Compositional 

parameters 

Environmental stress 

parameters 

Physicochemical properties Optical 

properties 

pH Important 

components 

processing Light 

exposure 

State Viscosity 

(mPa.s) 

Flavor and 

texture 

Stability 

Beverage < 

4.0 

water, sugar HTST yes liquid 5-15 smooth no phase 

separation 

cloudy/ 

transparent 

Ice 

cream 

5.5-

6.0 

milk fat HTST (79 

°C) 

no viscoelastic 

solid 

>1×105 creamy, smooth non- grainy, 

non-greasy 

color 

Yogurt 4.4 casein UHT (140 

°C) 

no viscoelastic 

gel 

>4×103 dairy aroma, 

creamy 

no wheying- 

off 

variable 

Yellow 

mustard 

3.5-

6 

mustard oil  - yes viscous solid >1×105 pungent flavor lipid 

oxidation 

yellow 

Dry 

creamer 

- emulsifiers, 

sugars 

spray drying 

(>150 °C) 

no granular solid - free flowing 

powder  

no lumps white 

Liquid 

creamer 

6.75

-7 

water, 

emulsifiers 

sterilization no liquid 20-60 uniform 

consistency 

lipid 

oxidation 

uniform, 

cloudy 

Sauce 3.0-

6.0 

acids, pepper sterilization yes viscous liquid >1×103 uniform flavor 

and consistency 

phase 

separation 

variable 
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Table 2. Physicochemical parameters defining model plant-based ‘Golden Milk’ 

Property Requirement 

Physical form Ideal liquid having a shear viscosity of 2 to 4 mPa.s 

Optical properties Color and opacity- Uniform milky yellow appearance with initial tristimulus color coordinates ranging 85 

to 90 (L*), -16 to -12 (a*), and 58 to 62 (b*).  

Stability 

characteristics 

Physical stability: No visible phase separation and increase in mean particle size > 20% during 

manufacturing, storage, and consumption 

Chemical stability: 1. Curcumin content should not decrease by > 15 % during manufacturing, storage, and 

consumption. 2. The yellowness (b*) should not reduce by > 5% at 20 °C or by > 10 % at 30 °C (6 months, 

in light exposure) 

Functional attributes The product should be fabricated to protect curcumin during digestion so that the total amount reaching the 

blood is more than 50 ng/mL 

Compositional 

factors 

The product should be formulated from plant-based ingredients with following compositional 

characteristics: pH (6.3-6.8), total carbohydrates (≤ 10%) including dietary fibers (≥ 0.25%), total fat (≤ 

5%), protein (≥ 3%), minerals (ionic strength of 90-110 mM), curcumin (150 mg/100g)  

Processing conditions The product should be stable after heat treatment at 72 °C for 15 s 

Storage conditions The product should stay physically and chemically stable at temperatures 0-45 °C for 12 months storage 

Economic aspect The cost of finished product should not be greater than 20 cents per unit 
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1.2.3. Stage 3: Delivery system specification 

After deciding a product through which curcumin is to be delivered, it is essential 

to identify the functional characteristics of delivery system so that it is suitable for 

application in a particular product. Physical form (solid, semisolid, or liquid) and 

rheological attributes (low, medium, or high viscosity) of the delivery system may impact 

end product properties. For instance, if curcumin is to be delivered through a nutritional 

beverage then a delivery system should either be a miscible liquid or a solid powder that 

could be easily dispersed in the liquid. Moreover, the delivery system should either 

enhance optical properties of the desired product or should not change them significantly 

so that the end product is still acceptable to consumers. For instance, curcumin has 

yellow color which may limit the choices of foods that could be used for its delivery.  

Functional attributes of a delivery systems such as loading capacity, encapsulation 

efficiency, protection, retention and release profile, dispersibility are the most important. 

Loading capacity can be defined as maximum amount of the active agent that can be 

encapsulated per unit mass of the carrier. Therefore, loading capacity in turn depends on 

the solubility of curcumin in a specific carrier. For example, solubility of curcumin in 

corn oil is about 3 mg/g, and that in MCT is about 7.9 mg/g. Hence, a delivery system 

fabricated using MCT could have a loading capacity of about 2.5 times more than that 

formulated using corn oil. Alternatively, for a specific amount of curcumin to be 

delivered, about 2.5 times less MCT would be needed. This could be significant as it will 

reduce the fat content and calories in the product. Furthermore, it is also important to 

ensure that the delivery system would provide necessary protection from chemical 
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degradation of curcumin by agents like hydroxyl ions, and oxygen. For example, 

curcumin is more stable when dissolved in edible oil (like MCT oil) than in aqueous 

surfactant solution (Figure 3). This is because hydroxyl ion, and oxygen have much 

lower solubility in oil. Also, retention percent of curcumin inside the delivery system and 

its release characteristics will be different for various delivery systems. For example, it is 

likely that more curcumin would remain encapsulated within a liquid oil droplet than in a 

solid oil droplet, as crystallization would expel curcumin out of the solidified fat core 

over storage (Tamjidi, Shahedi, Varshosaz, & Nasirpour, 2013). Finally, release profile 

for curcumin will depend on particle nature. For instance, release of curcumin will be 

much quicker from surfactant micelles and liposomes, while curcumin in an oil droplet 

would be released slowly over time as lipid droplet need to be digested first in order to 

release curcumin (Li, Liu, Tan, Zhao, Yang, & Pan, 2016).  

To develop a plant-based ‘Golden Milk’ as defined in Table 2, the delivery 

system could be a liquid or dispersible powder that develops yellow milky appearance in 

the final product. It should be stable at pH 6.5, and to presence of salts (90-110 mM), and 

it should not break down inside the product during various manufacturing steps including 

shear mixing, thermal processing (72 °C for 15 s), and storage (0-45 °C for 12 months). 

Importantly, the delivery system should provide maximum protection to curcumin during 

its fabrication, product manufacturing, and storage so that curcumin content at the time of 

consumption is not less than 150 mg/100 g of product. It should also be designed such 

that it releases most of the encapsulated curcumin during digestion. The ingredients 

chosen to fabricate such delivery system should ensure high curcumin bioavailability so 

that total amount reaching the blood after digestion is more than 50 ng/mL.  
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Figure 3. Stability of curcumin in MCT oil, and tween 80 solution (1 wt. % tween 80, pH 

6.5) 

1.2.4. Stage 4: Particle specification and delivery system specification 

Once the desired properties of delivery system are identified, it is possible to 

confirm the particle design and thus the delivery system. There are variety of ingredients 

which act as building blocks in designing a colloidal particle. These include water, lipids, 

proteins, biopolymers, surfactants and emulsifiers, minerals, antioxidants, and so on. 

Selection of the ingredients would depend on many factors such as end-product 

properties, processing, cost, consumer perception and market trends and more. For 

example, to develop a clear aqueous beverage containing curcumin, the choice of 
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ingredients may be restricted to surfactants, proteins, and biopolymers that can interact 

with curcumin and improve its water solubility. Moreover, it would also be restricted to 

their amounts as using high concentrations of protein or biopolymers is likely to cause 

turbidity in the product. In addition, antioxidants could be added to enhance chemical 

stability of curcumin (Nimiya et al., 2015). To produce a clear beverage with high protein 

content, thermal processing may be necessary which could affect curcumin stability 

(Etzel, 2004; LaClair & Etzel, 2010). However, if the product is a cloudy dairy beverage 

then lipids, and milk protein could be used in fabricating the delivery system. This would 

be beneficial as oils can solubilize more curcumin and can provide much higher chemical 

and thermal stability (Figure 3). Based on current consumer trend that is shifting towards 

more sustainable plant-based diet, some manufacturers may want to produce a beverage 

that is suitable to vegans. This would require using proteins from plant source such as 

pea, legume, or soy (David Julian McClements & Cansu Ekin Gumus, 2016). If the 

beverage is to combine delivery of both -3 fatty acids and curcumin for increased health 

benefits (Jia et al., 2011), then an oil rich in -3 fatty acids (such as flaxseed, corn, or 

fish oil) will have to be included in the delivery system. However, this would require 

additional strategies to slow down or inhibit lipid oxidation. This could be achieved by 

using emulsifiers that form thick interfacial membrane at the oil-water interface and 

provide steric barrier against prooxidant iron (Fe2+) (Silvestre, Chaiyasit, Brannan, 

McClements, & Decker, 2000). Alternatively, oil-water interface could be engineered to 

produce a positively charged oil droplet that will repel iron from reaching the interface 

and thereby slow down lipid oxidation (Lesmes, Baudot, & McClements, 2010). 

Consequently, process of designing a colloidal particle has to be tailored for a specific 
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application. However, some of the widely studied delivery systems that could be used in 

developing commercial food products are presented in Figure 4 and discussed below. 

 

Figure 4. Different colloidal system for encapsulation and delivery of curcumin 

1.2.4.1 Micelles and microemulsions 

Certain surfactants readily form micelles when dispersed in water above their 

critical micellar concentration. These structures are formed as hydrophilic heads of 

surfactant molecules interact with each other and also with water, while hydrophobic tails 

interact with each other. This reduces thermodynamically unfavorable interactions 

between hydrophilic and hydrophobic regions. Microemulsions are similar to micelles in 
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structure and are formed when oil (usually 1 wt. % or less) is incorporated. Here, 

hydrophobic tails of surfactant encapsulate oil and curcumin can be solubilized in 

hydrophobic regions of both the surfactant and oil.  

Numerous studies have been carried out to assess the potential of micelles and 

microemulsions for encapsulation and delivery of curcumin. For example, non-ionic 

surfactants (tween 20, and tween 80) were shown to increase the water solubility and 

stability of curcumin (Mandal, Banerjee, Ghosh, Kuchlyan, & Sarkar, 2013). In a clinical 

trial, micellar formulation of curcumin and tween 80 was found to increase curcumin 

bioavailability in human subjects by 88-folds compared to curcumin in its native 

powdered form (Kocher, Schiborr, Behnam, & Frank, 2015). Indeed, it has been shown 

that micellar form of curcumin is absorbed more efficiently, and at a faster rate (Yu & 

Huang, 2011). It was also found that curcumin formed complex with cationic surfactants 

at high pH and lowered the surface tension. (Kumar, Kaur, Kansal, Chaudhary, & Mehta, 

2016; Leung, Colangelo, & Kee, 2008; M. N. Wang, Wu, Tang, Fan, Han, & Wang, 

2014). This is because curcumin has negative charge at highly alkaline pH and thus can 

bind to cationic species. Formation of curcumin-surfactant complex also led to increased 

stability of curcumin to degradation. It would be interesting to design such studies using 

cationic surfactants that are more suitable for food applications (Bonnaud, Weiss, & 

McClements, 2010). Peng and others used sophorolipid (biosurfactants synthesized in 

yeast fermentation) micelles to encapsulate curcumin and observed bioavailability as high 

as 3.6-fold compared to that of crystallized form of curcumin (Peng, Li, Zou, Liu, Liu, & 

McClements, 2018).  
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Cui et al. (2009) formulated a self-microemulsifying drug delivery system 

(SMEDDS) with an average particle size of around 20nm that had enhanced curcumin 

solubility (21 mg/g) and over 90% bioavailability (Cui et al., 2009). Microemulsion 

preparation consisting of food grade materials namely Capryol 90 (oil), Cremophor RH40 

(surfactant), and Transcutol P (co-surfactant) could solubilized curcumin at higher level 

(32.5 mg/mL) and showed 22.6-fold increase in curcumin bioavailability when compared 

to that of curcumin suspension (L. D. Hu, Jia, Niu, Jia, Yang, & Jiao, 2012). In an in-

vitro study, Lin et al. (2014) showed that microemulsion having smaller particle size 

were more effective against liver cancer cells. This microemulsion was produced entirely 

from food grade materials such as soybean oil, soy lecithin, and tween 80 with 

application of simple physical processing including mixing, heating (50 C) and 

sonication.  

Micelles and microemulsions are thermodynamically stable systems. Being 

transparent, they are an excellent candidate for delivering curcumin through clear 

beverages and can be incorporated in liquid products in general. However, considerably 

large quantities of surfactants required to produce these structures is a challenge in terms 

of cost and taste. Many of these surfactants are synthetic and therefore have low 

consumer acceptance. Moreover, recent studies indicate about possible adverse health 

effects associated with food grade surfactants like polysorbates which are widely used in 

many commercial products (Chassaing et al., 2015; Weiszhar, Czucz, Revesz, Rosivall, 

Szebeni, & Rozsnyay, 2012). 
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1.2.4.2 Liposomes 

Liposomes are typically formed from phospholipids molecules which are an 

important part of cell membranes. Structurally, they are similar to triacylglycerol 

molecule where one of the fatty acids is replaced by phosphate group. Because of this, 

phospholipids are amphiphilic in nature and readily form bilayers when dispersed in a 

suitable solvent such as water. In bilayers, hydrophobic tails interact with each other 

while polar head groups are in contact with water (Taylor, Davidson, Bruce, & Weiss, 

2005). They can be unilamellar or multilamellar depending on the number of bilayer 

rings formed. Liposomes can be produced using variety of methods such as solvent 

injection, heating, film evaporation, microfluidization, and more (Maherani, Arab-

Tehrany, Mozafari, Gaiani, & Linder, 2011).  

Numerous studies show potential of liposomes for curcumin delivery. They can 

protect curcumin from chemical degradation by solubilizing it in their hydrophobic core 

(Niu, Wang, Chai, Chen, An, & Shen, 2012). In a study, liposomes made of egg lecithin 

were shown to provide substantially higher protection against curcumin degradation in 

serum at physiological pH (Matloob, Mourtas, Klepetsanis, & Antimisiaris, 2014). 

(Takahashi, Uechi, Takara, Asikin, & Wada, 2009) showed in an in-vivo study that 

liposomal curcumin had greater bioavailability with higher rate and extent of absorption 

when compared to curcumin in free form. After 2 h of administration, plasma curcumin 

concentration in rats was about 5 times more for curcumin encapsulated in liposome than 

free curcumin. In an in-vitro study, cellular uptake of curcumin from liposomes was 

found to be preferential over curcumin-loaded albumin (Kunwar, Barik, Pandey, & 

Priyadarsini, 2006). Recently, a simple pH-driven approach was used to load curcumin in 
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liposomes (Cheng, Peng, Li, Zou, Liu, & Liu, 2017). Curcumin bioaccessibility of 

liposomes prepared using this method was comparable to conventional thin-film 

evaporation technique and it was significantly higher than that for ethanol-injection 

approach. In a study, lecithins with varying phospholipid content and composition were 

used to load curcumin and it was concluded that composition of phospholipids may have 

effect on stabilizing curcumin (Peng, Zou, Liu, Liu, & McClements, 2018). Furthermore, 

not only can liposomes protect curcumin, but also curcumin may improve chemical 

stability of liposomes. Many phospholipids contain an unsaturated fatty acid which is 

prone to oxidation. Liposomal curcumin can chelate iron and prevent lipid oxidation 

which otherwise may lead to structural breakdown and instability (Tonnesen, Smistad, 

Agren, & Karlsen, 1993).  

Important advantage of using liposomes as delivery system is that they can be 

prepared using natural ingredients. They may be clear (< 50 nm) or cloudy (> 100 nm) in 

appearance depending on their size. Hence curcumin-loaded liposomes could be added to 

variety of commercial products. The biggest challenge however is their economical 

production on industrial level. Moreover, they are likely to be unstable due to factors 

such as high temperature, and ionic strength (Makino, Yamada, Kimura, Oka, Ohshima, 

& Kondo, 1991; Niu, Wang, et al., 2012). Such instabilities are even more pronounced at 

increased curcumin loading since this would probably change the packing in bilayers. 

Although, biopolymer coatings may be applied to enhance structural stability of 

liposomes (Karewicz et al., 2013). 
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1.2.4.3 Emulsions and nanoemulsions 

Emulsion can be defined as kinetically stable system in which two immiscible 

components, usually oil and water, remain mixed without phase separation. An emulsifier 

(a surface-active agent) is needed for this purpose which adsorbs at the oil-water interface 

and reduces the surface tension between two phases. This prevents droplets from 

aggregation due to either steric or electrostatic repulsion and provides kinetic stability 

(McClements & Rao, 2011). The most common emulsifiers used in the food industry are 

natural and artificial surfactants, proteins, phospholipids, and polysaccharides. Depending 

on the mean size of the oil droplets, they can be termed as emulsions (d  100 nm) or 

nanoemulsions (d  100 nm). Oil-in-water emulsions have been extensively studied for 

curcumin delivery because oil can solubilize curcumin and protect it from chemical 

degradation (Araiza-Calahorra, Akhtar, & Sarkar, 2018).  

Curcumin loaded nanoemulsion was found to slow down lipid oxidation when 

fortified in milk. This was probably because curcumin could diffuse from nanoemulsion 

droplet in to milk and chelate iron (Joung, Choi, Kim, Park, Park, & Shin, 2016). Study 

by Ahmed et al. showed that bioaccessibility of curcumin was higher for medium-chain 

triglyceride emulsion compared to emulsions fabricated using short and long chain 

triglycerides (Ahmed et al., 2012). In a recent study, curcumin loaded emulsions were 

prepared using casein and soy polysaccharide complex. The study demonstrated that 

simulated gastric fluid could extract only 10% of total released curcumin and rest was 

released when mixed with simulated intestinal fluid as lipases digested the fat (Xu, 

Wang, & Yao, 2017). In vivo experiment using mice revealed that nanoemulsion 

formulation had about 11-fold higher bioavailability than micellar curcumin formulation. 
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This reaffirms effectiveness of oil droplets to protect curcumin from degradation in foods 

as well as during digestion. Comparative studies to assess the effectiveness of different 

emulsifiers in fabricating stable curcumin emulsions have also been carried out. It is clear 

that not all emulsifiers would perform equally in all conditions and they have to be 

chosen according to the final application. For example, whey proteins could not result in 

stable emulsion at pH 5.0 as their solubility decreases greatly around isoelectric point, but 

gum arabic, tween 80, and lecithin formed stable emulsions (M. H. Wu, Yan, Chen, & 

He, 2017). Some emulsifiers, such as quillaja saponins, may induce degradation which 

may be due to their chemical nature (M. Kharat, G. D. Zhang, & D. J. McClements, 

2018). An organogel-based nanoemulsion was fabricated using span 20- saturated MCT, 

monostearin, and curcumin as lipid phase and stabilized by tween 20. This nanoemulsion 

had similar bioaccessibility and improved lipid digestibility when compared to the non-

emulsified organogel. It also had significantly greater (about 10x) bioavailability in mice 

than that of curcumin-water suspension (Yu & Huang, 2012). More reports are present 

validating that curcumin loaded nanoemulsion have much greater bioaccessibility when 

compared to crystalline and micellar formulation used in commercial supplements 

(Zheng, Peng, Zhang, & McClements, 2018).  

Emulsions and nanoemulsions have many benefits over other delivery systems. 

For example, they can be fabricated using food-grade ingredients (oils, and emulsifiers) 

that are easily available at lower cost. They can be produced on large scale by techniques 

such as high-pressure homogenization, and microfluidization. Emulsions containing 

curcumin could also be dried in to powder form and used in many different products as 

needed (Y. Wang, Lu, Lv, & Bie, 2009). For example, curcumin powder can be used to 
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disperse in dairy or plant milk, or alternatively curcumin encapsulated protein powders 

could be reconstituted to beverage. Despite these advantages, emulsion and nanoemulsion 

have tendency to break down over time as they are thermodynamically unstable. This can 

happen through various mechanisms such as gravitational separation, flocculation, 

coalescence, Ostwald ripening, and phase inversion (McClements, 2015b). 

1.2.4.4 Solid lipid nanoparticles and nanostructured lipid carriers 

Solid-lipid nanoparticles (SLN) are very similar to oil-in-water nanoemulsions, 

the only difference being that the dispersed lipid droplets phase is solid. Usually, fats 

having high melting point are used to formulate SLN. To prepare them, nanoemulsion is 

first formed using melted fat and emulsifier solution which is usually heated to the same 

temperature as fat. SLN are formed after cooling the hot nanoemulsion below the melting 

temperature of fat (Weiss, Decker, McClements, Kristbergsson, Helgason, & Awad, 

2008). Curcumin containing SLN are obtained by dissolving curcumin in the fat melt 

where it can be solubilized in the hydrophobic cores. Curcumin gets locked in the solid 

interior of SLN and hence diffusion related loss is very negligible in SLN. This is an 

advantage over using nanoemulsion for curcumin encapsulation.  

SLN have been proven to solubilize more curcumin and thus enhance its 

antioxidant activity (T. R. Wang, Ma, Lei, & Luo, 2016). Also, different loading methods 

may result in SLN with variable antioxidant activity. This is because treatments like pH 

adjustment, heating, and sequence of ingredient addition will affect the distribution, 

location, and total amount of curcumin within SLN (Xue, Wang, Hu, Zhou, & Luo, 

2018). In vitro studies have shown that using SLN resulted in prolonged curcumin uptake 
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by cells when compared to curcumin solution (Sun, Bi, Chan, Sun, Zhang, & Zheng, 

2013). This is mainly because curcumin is diffused out of the SLN slowly over a period 

of time. In a study, food grade SLN were prepared using mixture of glycerol stearate, 

propylene glycol esters of fatty acids, and palmitic acid as the lipid phase and stabilized 

by tween 80. Pharmacokinetic experiments showed that plasma concentration of 

curcumin was about 7-fold higher for SLN than that for free curcumin suspension 

(Ramalingam, Yoo, & Ko, 2016). (Kakkar, Singh, Singla, & Kaur, 2011) formulated 

curcumin containing SLN with glyceryl behenate, tween 80, and soy lecithin which were 

stable during 12-month storage at 4 C. Curcumin content in SLNs lowered from 92.3% 

to 82.3% indicating that lipid core was efficient in retaining encapsulated curcumin. Also, 

study on rats showed that total plasma concentration of curcumin for curcumin-SLN 

formulation was 41.99 g/mL while that for free curcumin was only 1.08 g/mL.  

Using SLN to deliver curcumin has many advantages. For example, they can be 

manufactured on a large scale by techniques like high-pressure homogenization. Their 

fabrication is possible by use of food grade ingredients. Moreover, instability issues such 

as coalescence, and Ostwald ripening are usually not seen in SLN as the fat droplet is 

solid. Also, the bioactive suffers less diffusion related loss and remains trapped inside the 

solid matrix for a considerable period. However, SLN are likely to have lower 

bioaccessibility (Aditya et al., 2014). This is because they are digested slowly and 

depending on particle size and concentration, some of the droplets may be left 

undigested. Also, they are usually prepared using saturated fats which have been linked 

to adverse health impacts like cardiovascular disease (Astrup et al., 2011). Consequently, 

consumer acceptance for high saturated food is currently declining. However, if one 
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needs to use SLN for curcumin delivery then focus should be on formulating stearic acid 

based carriers as stearic acid is believed to be neutral against cardiovascular disease risk 

(L. Wang, Folsom, Eckfeldt, & Investigators, 2003). Furthermore, although their solid 

interior restricts the bioactive movement, studies have shown that bioactive loss is still 

seen in SLN because of expulsion. It occurs when crystals transform from less ordered -

lattice to a highly ordered -structure (Müller, Radtke, & Wissing, 2002). This process 

minimizes imperfections between crystals that eventually expels the bioactive out of the 

core and towards SLN surface.  

Expulsion is undesirable especially in case of curcumin, as it will then be more 

exposed to aqueous environment and degrade at a faster rate. To overcome this challenge, 

nanostructured lipid carriers (NLC) were developed. NLC have lipid core that cannot 

form highly ordered crystal structure and hence bioactive remains encapsulated. This can 

be achieved by using mixture of spatially different lipids, or by using specific fats that 

form amorphous solid-lipid particle upon cooling, or by mixing solid fats with liquid oils 

(Müller et al., 2002). For example, curcumin was successfully loaded (entrapment 

efficiency > 75 %) inside NLC fabricated using glycerol monostearate as solid and oleic 

acid as liquid oil (Aditya, Shim, Lee, Lee, Im, & Ko, 2013). This study also demonstrated 

higher cellular uptake of Curcumin-NLCs over free curcumin which resulted in decreased 

cancer cell viability. Application of NLC in the field of food is relatively new and there is 

great scope for research in this area (Tamjidi et al., 2013). One of the challenges in mixed 

type NLC (prepared using combination of solid and liquid fat) could be their stability in 

partially crystalline state (S. A. Vanapalli, J. Palanuwech, & J. N. Coupland, 2002). 
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However, this may be overcome by choosing proper fat combination and optimum 

relative concentration of fats. 

1.2.4.5 Biopolymer particles 

A variety of colloidal systems like biopolymer nanoparticles, microgels, hydrogel 

beads etc. can be fabricated by use of food grade biopolymers like proteins, and 

polysaccharides, and their combination (Joye & McClements, 2014). Generally, these 

biopolymers form a 3-dimensional network in which solvent and bioactive can be 

trapped. For encapsulating curcumin in a hydrophobic biopolymer like zein, it can be 

dissolved in biopolymer solution directly before particle formation. Whereas, 

encapsulation in a hydrophilic biopolymer like alginate would require use of oil or 

surfactants to solubilize curcumin before it can be incorporated inside the particle. 

Fabrication of biopolymer particles could be achieved by various techniques such as 

solvent evaporation, injection-gelation, gelation by phase separation, antisolvent 

precipitation, and emulsion templating methods (Joye et al., 2014). A short list of studies 

carried out to deliver curcumin through a variety of biopolymer based colloidal particles 

is presented in Table 3.  
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Table 3. Examples of biopolymer-based delivery systems for delivery of curcumin 

Biopolymer 

particle type 

Preparation 

technique 

Loading 

capacity 

(% w/w) 

Encapsulation 

efficiency (%) 

Compared 

with 

Important outcomes Reference 

casein pH driven 

solubilization, and 

lyophilization 

7  70 curcumin-

DMSO 

solution 

comparable antioxidant 

activity, and improved 

antiproliferation activity 

(Pan, Luo, Gan, 

Baek, & Zhong, 

2014) 

zein–pectin Electrostatic 

deposition, 

Solvent 

evaporation 

9.46 86.8 ± 1.9 - Small (250 nm) 

particles, hydrophobic 

interaction between 

curcumin and zein 

(K. Hu, Huang, 

Gao, Huang, 

Xiao, & 

McClements, 

2015) 

cationised gelatin-

sodium alginate 

Vacuum drying - 69 Free 

curcumin 

Faster and efficient 

release at pH 5.0 than at 

pH 7.4, higher cellular 

uptake 

(Sarika & 

James, 2016) 

poly(lactic-co-

glycolic acid) 

Solvent 

evaporation 

5.75 91.96 Native 

curcumin 

640-fold higher water 

solubility, 5.6-fold 

increased bioavailability 

(Xie et al., 

2011) 

dextran sulphate–

chitosan 

Simple mixing 4.4 74 - Preferential killing of 

cancer cells over normal 

cells 

(Anitha, 

Deepagan, 

Rani, Menon, 

Nair, & 

Jayakumar, 

2011) 

phosphatidylcholine-

maltodextrin 

high speed 

homogenization 

0.15 65.29 Free 

curcumin 

increased bioavailability 

(130x), 23-fold 

reduction in 50% cell 

growth inhibition 

(Chaurasia, 

Patel, Chaubey, 

Kumar, Khan, 

& Mishra, 

2015) 
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Since many biopolymer-based particles are mainly composed of polysaccharides, 

and proteins they could be perceived healthier as compared to other delivery systems that 

contain lipids. Moreover, some biopolymers like pectin, and carrageenan are soluble 

fibers which do not contribute to calories, but in fact assist in digestion (Topping, 1991). 

Casein based particles could be readily formed during processing and used in dairy based 

products. For example, curcumin could be added to milk before pasteurization step and 

then be used to make yogurt, beverages, and other products. Here curcumin would likely 

be solubilized and stabilized in hydrophobic cores in casein. However, it is a challenge to 

scale up techniques like antisolvent precipitation, and injection gelation that are used to 

fabricate them in small scale laboratories.  

For developing plant-based ‘Golden Milk’, use of micelles, and microemulsions, 

would be least effective. This is because there are not many commercially feasible plant-

based available. Saponins (such as from Quillaja) may be the only choice which are 

approved for food use. However, their plant extracts are unpurified and usually contain 

many other components some of which may be detrimental to curcumin (M. Kharat, G. 

Zhang, & D. J. McClements, 2018). Also, micelles and microemulsions are optically 

transparent and therefore can’t be use in isolation. They will have to be used with some 

other delivery system which develop milky appearance in the product. Liposomes could 

be used since they can be fabricated to produce a milky yellow beverage. However, they 

are less stable during processing and storage, and there would be higher costs associated 

with ingredients (phospholipids), and large-scale production. Oil-in-water nanoemulsions 

and biopolymer-based particles could be preferred choices as they can be fabricate using 

plant-based proteins like soy, pea, lentil, and bean protein (David Julian McClements et 
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al., 2016). Use of proteins would likely to appeal consumer as it enhances nutritional 

quality of the product. An oil that is high in MCT could be used to produce such 

nanoemulsion, for example coconut oil. This is because curcumin has been shown to 

have higher solubility in MCT and enhanced bioaccessibility for MCT based emulsion 

(Ahmed et al., 2012). A smaller fraction of protein would be required to prepare 

curcumin encapsulated nanoemulsion. Rest protein amount may be used to produce 

curcumin-protein nanoparticles to increase the loading and achieve required curcumin 

content as well as protein content in the final product (Chen, Li, & Tang, 2015). Use of 

protein would also impart the desired viscosity to the product when used in proper 

amount. 

1.2.5 Stage 5: Process specification 

After identifying a suitable delivery system, it is important to optimize parameters 

for its preparation at lab scale and subsequently scaling up the process so that commercial 

need for its use is met. For example, if one needs to incorporate curcumin in a transparent 

beverage then suitable delivery system would be amongst micelles, microemulsion, 

liposomes, or biopolymer nanoparticles. There would be specific critical processing 

parameters associated with production of each of these delivery systems.  

Oil-in-water nanoemulsions and curcumin-protein nanoparticles were identified 

as best suitable delivery systems for developing plant-based ‘Golden Milk’. To prepare 

nanoemulsions, curcumin could be dissolved in oil and then homogenized with aqueous 

protein solution using high pressure homogenizer or microfluidizer. In this case, many 

parameters would be needed to optimize such as optimum solubilization temperature, 
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minimum mixing time and mixing rate, optimum protein concentration and number of 

passes through homogenizer to obtain nanoemulsion having required droplet size. To 

prepare curcumin-protein nanoparticles, curcumin has to be solubilized in hydrophobic 

cores in protein. This could be achieved many ways: 1. simply by mixing powdered 

curcumin with aqueous protein solution; 2. thermally assisted solubilization of curcumin 

powder in protein solution; 3. dispersing ethanolic curcumin in protein solution; 4. using 

pH-driven approach to solubilize and encapsulate curcumin in protein network. To 

choose one of these solubilization and encapsulation methods, factors like processing 

time, cost, encapsulation efficiency, loading capacity for each approach have to be 

considered. It is likely that heat assisted solubilization of powdered curcumin may require 

most time, energy, and may also lead to curcumin loss at high temperatures. Also, use of 

organic solvent like ethanol may not be perceived as best technique. On the other hand, 

pH-driven solubilization is quicker, it can be carried out at room temperature requiring 

low energy needs, and it can be done using simple equipment (e. g. mixer). Most 

importantly, curcumin is more soluble and stable at high alkaline pH values (pH > 11), 

which could result in higher encapsulation efficiency. Thus, pH-driven technique may be 

the best for encapsulation purpose. Hence to confirm this, several lab experiments should 

be performed to determine the solubilization time and efficiency, curcumin stability, 

energy requirements and cost. Finally, to prepare nanoparticles, curcumin incorporated 

protein solution may be processed into a powder by techniques such as solvent 

evaporation, vacuum drying, spray drying, and lyophilization. Again, each of these 

techniques should be evaluated with respect to curcumin stability, processing time, 

energy requirements and cost of production.  
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1.2.6 Stage 6: Performance testing 

To evaluate and ensure the performance of delivery system an extensive protocol 

must be established. This would include assessment of physical and chemical stability of 

both curcumin-containing nanoemulsions and protein nanoparticles. The physical 

stability is characterized by changes in droplet size and charge. These can be measured 

by use of static and dynamic light scattering, while droplet charge could be measured by 

laser Doppler microelectrophoresis technique. An optical microscope could be used to 

study the morphology, and a rheometer could provide information about viscoelastic 

behavior. An accelerated physical stability studies could be performed by subjecting 

emulsion to a centrifugal force and analyzing the extent of separation. Chemical stability 

could be established by measuring the amount of curcumin in delivery system over a 

period of time. This could be achieved using one or more of techniques such as 

spectrophotometer, colorimeter, and HPLC. The effect of environmental factors (pH, 

storage temperature, ionic concentration, and ingredient interaction) on physical and 

chemical stability should also be studied.    

1.2.7 Stage 7: System optimization 

Since fabrication of delivery system is a multi-step process, even a slight variation 

in any of the process/steps may result in a product that do not match the defined 

attributes. Hence, each batch of delivery system and product should be analyzed, and 

results should be recorded to identify the cause of such deviations. This would allow 

optimization of system that sometimes may be possible by just changing the composition 

of processing conditions. For example, a product showing presence of curcumin crystals 
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would indicate its improper solubilization in the oil phase. This may be due to relatively 

larger curcumin particles in a specific lot produced. This problem could easily be solved 

by allowing more time or slightly increasing the temperature to achieve complete 

solubilization. Or sometimes, nanoemulsion may result having relatively larger droplet 

sizes when homogenizer assembly has undergone considerable wear over months of use. 

In this case, increasing the number of passes through homogenizer to produce finer 

nanoemulsion may solve the problem.   

1.3 Conclusion 

Researchers have grown a great interest in encapsulation of curcumin in deliver 

systems so that its health benefits could be realized. Each delivery system has its own 

advantages and shortcomings, and no one system can be used for curcumin delivery 

though wide range of food products. This article attempted to develop a methodical 

approach, called ‘Delivery-by-Design’, to design colloidal delivery systems for 

application in specific products. This tailor-made approach first defines the 

physicochemical properties and functional characteristics of curcumin and the end-

product. This further allows identifying the properties of delivery system that would meet 

pre-defined requirements of the end-product, and then select one or combination of more 

delivery system types that would best suit the application. It then takes into account effect 

of various processes on fabrication of the delivery system and analyze its performance in 

the end-product, a process that could be optimized throughout the development and 

production stages. Scientists could use this strategy to effectively design and develop 

delivery system for curcumin that are aimed at application in specific food products.  
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CHAPTER 2 

PHYSICAL AND CHEMICAL STABILITY OF CURCUMIN IN AQUEOUS 

SOLUTIONS AND EMULSIONS: IMPACT OF PH, TEMPERATURE, AND 

MOLECULAR ENVIRONMENT 

2.1 Introduction 

Many approaches have been studied for their potential to improve the water 

dispersibility, chemical stability, and bioavailability of curcumin. Encapsulate of 

curcumin in delivery systems such as conjugates, molecular complexes, micelles, 

liposomes, suspensions, hydrogels, and emulsions has been discussed in the first chapter. 

Advantages and disadvantages of each of these delivery systems were also discussed and 

‘Delivery-by-Design’ (DbD) approach was elaborated which focuses on application of 

delivery system in a particular food product. In the food industry, oil-in-water emulsions 

are particularly suitable for the encapsulation of hydrophobic nutraceuticals because they 

can easily be manufactured using food-grade ingredients and widely used production 

equipment like high-pressure homogenizers (McClements, 2011). In addition, many food 

products already exist in the form of oil-in-water emulsions (such as beverages, 

dressings, soups, sauces, desserts, and yogurts), and so it is relatively easy to incorporate 

nutraceutical-loaded emulsions into them. Moreover, emulsions can easily be converted 

into a powdered form by freeze- or spray-drying, which means that encapsulated 

nutraceuticals can also be incorporated into solid foods (such as cereals, confectionary, 

and baked goods). For these reasons, the main objective of the current study was to 

examine the impact of incorporating curcumin into emulsion-based delivery systems on 
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its water dispersibility and chemical stability. Numerous previous studies have 

highlighted the potential of emulsion-based delivery systems for improving the stability 

and bioavailability of curcumin (Aditya, Aditya, Yang, Kim, Park, & Ko, 2015; 

Vecchione et al., 2016; X. Y. Wang, Jiang, Wang, Huang, Ho, & Huang, 2008; Yan, 

Kim, Kwak, Yoo, Yong, & Choi, 2011). However, to the author’s knowledge, the current 

study is the first to give a detailed comparison of the impact of storage pH on the physical 

and chemical stability of pure curcumin in aqueous solutions and emulsions. This 

information is important because encapsulated curcumin may be incorporated into 

commercial products with different pH values and because ingested curcumin 

experiences different pH conditions as it travels through the human gastrointestinal tract.  

Most of the previous studies on encapsulated curcumin have used naturally 

occurring curcumin, which is actually a mixture of three major components: curcumin, 

demethoxy-curcumin, and bis-demethoxy-curcumin (Tonnesen, Karlsen, Adhikary, & 

Pandey, 1989). Pure curcumin has different physicochemical and physiological properties 

from demethoxy- and bis-demethoxy-curcumin (Odaine N. Gordon, Luis, Ashley, 

Osheroff, & Schneider, 2015; Price & Buescher, 1997), which may affect the design of 

appropriate delivery systems for this nutraceutical. For this reason, pure curcumin was 

synthesized in the current study and then used to compare the impact of pH on the 

physical and chemical stability of curcumin in aqueous solutions and oil-inwater 

emulsions. The knowledge obtained from this study may facilitate the rational design of 

emulsion-based delivery systems suitable for utilization in foods, supplements, and 

pharmaceuticals. 
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2.2 Materials and methods 

Pure curcumin was synthesized and purified in the Department of Food Science at 

the University of Massachusetts using the method described by Pabon (Pabon, 1964). 

Medium-chain triglyceride (MCT) oil was purchased from Warner Graham Co. 

(Cockeysville, MD, USA). Dimethyl sulfoxide (DMSO), sodium hydroxide (NaOH), 

sodium phosphate anhydrous dibasic, and potassium phosphate monobasic were obtained 

from Fisher Scientific (Fair Lawn, NJ, USA). Curcumin (≥65%), hydrochloric acid 

(HCl), Tween 20, and Tween 80 were purchased from the Sigma-Aldrich Co. (St. Louis, 

MO, USA). All solvents and reagents were of analytical grade. Double distilled water 

from a water purification system (Nanopure Infinity, Barnstead International, Dubuque, 

IA, USA) was used throughout the experiments.  

2.2.1 Dissolution and Stability of Curcumin in Aqueous Buffer Solutions  

A stock curcumin solution was prepared by adding a weighed amount of 

curcumin (65%) or pure curcumin into DMSO and then dissolving it for 2 min using a 

vortex. This solution was stored at 4 °C and used throughout the experiments. An aliquot 

of the stock curcumin solution (4 mM) was diluted in a quartz cuvette (path length 1 cm) 

with phosphate buffer solution (10 mM; 0.25 g/L KH2PO4, and 1.15 g/L Na2HPO4). 

HCl and/or NaOH was added previously to adjust the buffer pH to values ranging from 

2.0 to 8.0. Curcumin degradation was determined at 37 °C by measuring the change in 

absorbance at 433 nm over time using a UV−visible spectrophotometer (Cary 100 

UV−vis, Agilent Technologies). In some experiments, the effect of mixing was studied 
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by agitating the samples continuously to ensure homogeneity using a cross-type stir bar 

(Fisherbrand) driven by a magnetic stirrer.  

2.2.2 Turbidity Measurements 

Turbidity measurements were used to monitor the formation of curcumin crystals 

in aqueous systems. The turbidity (at 600 nm) of freshly prepared curcumin solutions was 

measured at regular time intervals using a UV−visible spectrophotometer, with or without 

sample mixing using a stir bar and magnetic stirrer. All samples were made uniform by 

gentle mixing using a spatula before the turbidity was measured.  

2.2.3 Oil Solubility of Curcumin  

Excess curcumin was added to a weighed amount of MCT oil; the resulting 

mixture was then stirred at 60 °C and 1200 rpm for 2 h and sonicated for 20 min to 

ensure dissolution. This process was repeated again if needed to ensure saturation of the 

curcumin in the oil phase. The mixtures were then centrifuged at 12,000 rpm (accuSpin 

Micro 17, Fisher Scientific) for 20 min at room temperature to remove the curcumin 

crystals. The supernatant was collected and analyzed for curcumin content as described 

later.  

2.2.4 Preparation of Curcumin Emulsions  

An aqueous phase was prepared by mixing surfactant (either Tween 20 or Tween 

80) in phosphate buffer (10 mM, pH 5.0) at room temperature for at least 2 h. An oil 

phase was prepared by dissolving curcumin in MCT (1 mg/g MCT) with constant stirring 
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at 60 °C for 2 h and then sonicating for 20 min. This whole procedure was repeated again 

if needed to completely dissolve the crystals. A stock emulsion was prepared by 

homogenizing the oil and aqueous phases together using a high-speed blender for 2 min 

(M133/1281-0, Biospec Products, Inc., ESGC, Switzerland). The resulting coarse 

emulsion was then passed through a microfluidizer (M110L, Microfluidics, Newton, MA, 

USA) at 12,000 psi for five passes. The final composition of the stock emulsion produced 

was 40% oil phase, 2% Tween 20 or Tween 80, and 58% phosphate buffer by weight. 

Sample emulsions containing 30% w/w oil and a range of different pH values were then 

prepared by diluting the stock emulsion with pH-adjusted buffer solutions. The sample 

emulsions were then incubated at 37 °C throughout the study. Additionally, some 

samples were maintained at 20 and 55 °C to study the effect of storage temperature.  

2.2.5 Curcumin Concentration Measurements  

Curcumin quantification was carried out using the simple spectrophotometric 

method described by Davidov-Pardo et al. (Davidov-Pardo, Gumus, & McClements, 

2016). A specific volume of emulsion (100 μL) was added to DMSO (5900 μL), and the 

contents were mixed well. The bottom layer was withdrawn after centrifugation (2000 

rpm) for 15 min, and the absorbance was measured at 433 nm using a spectrophotometer. 

Preliminary experiments showed that the absorbance of the resulting mixtures was stable 

for at least 1 h for all pH values (data not shown). Linear regression (r2 = 0.9993) 

obtained from curcumin−DMSO standard solutions was used to quantify the amount of 

curcumin present (Appendix, Figure S1).  
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2.2.6 Color Measurements  

The intensity of the yellow color of a sample is a measure of the curcumin 

stability, as well as the overall appearance. For this reason, changes in the color of the 

curcumin emulsion were measured using an instrumental colorimeter (ColorFlez EZ, 

HunterLab, Reston, VA, USA) equipped with a tristimulus absorption filter. A measured 

volume of curcumin emulsion was transferred into a disposable Petri dish and then 

analyzed using a pure black plate as the background.  

2.2.7 Particle Size and Charge Measurements  

The particle size distribution of the emulsions was determined using static light 

scattering (Mastersizer 2000, Malvern Instruments Ltd., Malvern, Worcestershire, UK), 

which utilizes measurements of the angular scattering pattern of emulsions. Samples were 

gently hand-mixed to ensure homogeneity. Phosphate buffer (10 mM) was used as 

diluent and had the same pH as the sample being measured to avoid multiple scattering 

effects. Average particle sizes are reported as the surface-weighted mean diameter (d32). 

An electrophoresis instrument was used to measure the ζ-potential of the droplets in the 

emulsions (Zetasizer Nano ZS series, Malvern Instruments Ltd.). Before analysis, 

emulsions were diluted with phosphate buffer (10 mM) having the same pH as the sample 

to avoid multiple scattering effects.  

2.2.8 Microstructure Analysis  

The microstructures of aqueous solutions and emulsions containing curcumin 

were recorded at various pH values using optical microscopy with a 60× oil immersion 
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objective lens and a 10× eyepiece (Nikon D-Eclipse C1 80i, Nikon, Melville, NY, USA). 

For this, an aliquot of sample was placed on a microscope slide, covered by a coverslip, 

and then microstructure images were acquired using image analysis software (NIS-

Elements, Nikon, Melville, NY, USA). Polarized light microscopy was carried out using 

a cross-polarized lens (C1 Digital Eclipse, Nikon, Tokyo, Japan).  

2.2.9 Statistical Analysis  

Experiments were carried out using two or three freshly prepared samples. The 

results are reported as averages and standard deviations. The significant differences 

among treatments were evaluated using the Tukey multiple-comparison test at a 

significance level of p ≤ 0.05 (SPSS ver.19, SPSS Inc., Chicago, IL, USA).  

2.3 Results and discussion  

2.3.1 Physical and Chemical Stabilities of Curcumin in Aqueous Solutions  

Initially, the physical and chemical stabilities of curcumin added to aqueous 

buffer solutions with different pH values were examined. In the absence of continuous 

stirring, the absorbance of curcumin buffer solutions decreased over time at all pH values 

studied, with the rate of decrease depending on pH (Figure 5A). Under alkaline 

conditions (pH ≥7.0), the solutions remained clear throughout storage, but there was a 

rapid decrease in absorbance during the first 7 min with calculated degradation rates of 

92, 135, and 125 cm−1 /min at pH 7.0, 7.4, and 8.0, respectively. The degradation rates 

were calculated as the slope of absorbance versus time in the initial period, when the 

change in absorbance was approximately linear. This result is in agreement with previous 
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studies that have reported that curcumin is highly unstable to chemical degradation 

around physiological pH (Nimiya et al., 2015). It was also noted that when curcumin− 

DMSO stock solution was first added to the buffers, a distinct red-brown color appeared, 

but that this initial color rapidly changed. As a result, the alkaline curcumin solutions had 

slightly higher initial absorbance values than the acid curcumin solutions. A possible 

explanation for this effect could be the formation of condensation products (such as 

feruloylmethane) under alkaline conditions, which are yellow in color and therefore 

increase the overall absorbance (Tonnesen et al., 1985a). Interestingly, a commercial 

curcumin sample, which actually consisted of a mixture of curcuminoids, appeared to 

have better stability at pH 7 than the pure curcumin sample (Figure 5A). This result is in 

agreement with previous studies (Odaine N. Gordon et al., 2015) and suggests that the 

different constituents of curcuminoids have different pH stabilities, which is important to 

understand during the development of effective delivery systems for this bioactive 

component.   

The decrease in absorbance over time occurred much more slowly for the acidic 

curcumin solutions than for the alkaline ones in the absence of stirring (Figure 5A), 

which is in agreement with previous studies that have shown that curcumin is more 

chemically stable under acidic conditions (Tonnesen et al., 1985b; Y. J. Wang et al., 

1997). Interestingly, the decrease in absorbance over time for the acidic curcumin 

solutions was much faster when they were continuously stirring than in the absence of 

stirring (Figure 5B). These results suggest that stirring altered either the physical or 

chemical stability of the curcumin.  
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Figure 5. Stability of curcumin (40 μM) in phosphate buffer solutions (10 mM) of 

various pH values when the system was unmixed (A) and mixed (B). 
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2.3.2 Crystallization of Curcumin in Aqueous Solutions  

During the spectrophotometric analysis of curcumin stability in aqueous solutions, 

it was observed that yellow crystals appeared in solution and on the surface of the stir 

bar. This observation suggested that mixing promoted the nucleation and crystallization 

of curcumin in solution, which reduced the measured absorbance because some of the 

curcumin molecules were no longer in the path of the UV−visible light beam used to 

analyze the samples. It is known that curcumin has a relatively poor solubility in water, 

especially at lower pH values due to a change in its molecular structure under acidic 

conditions (Tonnesen et al., 1985b; Tonnesen, Masson, & Loftsson, 2002). The formation 

of crystals was confirmed using spectrophotometry to measure the turbidity (at 600 nm) 

of the samples (because curcumin does not absorb light strongly at this wavelength). At 

this wavelength, a decrease in the intensity of the transmitted light (corresponding to an 

increase in measured absorbance) is due to light scattering by any crystalline curcumin 

rather than absorption by the functional groups on curcumin. At acidic pH values (pH 

<7.0), there was an increase in turbidity over time corresponding to crystal formation 

(Figure 6A). At alkaline pH values (pH ≥7.0), there was little change in turbidity over 

time, which can be attributed to the fact that no visible crystals were seen under these 

conditions. Optical microscopy analysis is discussed later which indicated that large 

crystal aggregates were formed under mixing conditions (see Figure 9C), but small 

uniformly dispersed crystals were formed under nonmixing conditions (Figure 9A, and 

Figure 9B). This effect would account for the observation that the turbidity of the 

nonmixed curcumin solutions was greater than that for the mixed solutions (Figure 6B) 

because smaller particles scatter light more effectively, resulting in a higher turbidity. 
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This tendency for curcumin to crystallize in aqueous solutions might account for the 

results of some clinical trials in which curcumin was not detected in the blood or urine 

after ingestion, but was recovered in fecal samples (Sharma et al., 2001).  

Overall, these results indicate that curcumin may either chemically degrade 

(alkaline pH) or crystallize (acidic pH) depending on solution conditions, which limits 

the utilization of aqueous-based delivery systems for this type of nutraceutical.  

 

Figure 6. Turbidity of aqueous curcumin buffer solutions (40 μM) measured at 600 nm: 

(A) effect of pH on turbidity of unmixed samples over a period of 60 min; (B) difference 

in turbidity values after 15 min as affected by agitation. 
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2.3.3 Oil Solubility of Curcumin  

The maximum amount of hydrophobic bioactive components that can be 

incorporated into emulsion-based delivery system depends on their solubility in the oil 

phase.19 The oil solubility of pure curcumin in MCT was found to be 2.90 ± 0.15 mg/g 

of oil. This value is appreciably higher than an earlier value (0.26 mg curcumin/g oil) that 

was determined using a mixture of curcuminoids (Joung et al., 2016). This result 

highlights the importance of using pure forms of curcumin to better understand the 

performance of different types of curcuminoids in delivery systems.  

2.3.4 Chemical Stability of Curcumin in Emulsion Systems  

Initially, oil-in-water emulsions were prepared using MCT as an oil phase and 

Tween 20 as a surfactant. These emulsions were stable to visible phase separation when 

stored at room temperature, but they underwent creaming when stored for >24 h at 37 °C. 

Consequently, this type of surfactant was unsuitable for the long-term storage studies 

used in this research. Further experiments were therefore carried out using oil-in-water 

emulsions prepared using Tween 80 as the surfactant because these remained physically 

stable when stored at 37 °C.  

The initial curcumin content in the stock emulsion (40 w/w % MCT, pH 5.0) was 

around 0.38 mg/mL, which was close to the original amount of 0.39 mg/mL of curcumin 

added, that is, 1 mg curcumin/g MCT. This result suggested that curcumin was not 

degraded or lost during the preparation of the emulsions by homogenization.  

The stock emulsions were diluted with buffer solutions to create a series of 

emulsions with the same initial curcumin level (0.285 mg/mL) and oil content (30% 
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MCT), but different pH values (3.0−8.0). There was an appreciable decrease in the 

curcumin concentration remaining in the neutral-alkaline emulsions (pH ≥7.0), but little 

change in the acidic emulsions (pH <7) during storage for 30 days (Figure 7A). 

Interestingly, the alkaline emulsions had appreciably lower curcumin levels than the 

acidic emulsions on the first day, which implies that curcumin experienced rapid 

degradation after adjustment of the pH. The impact of pH on the amount of curcumin 

retained in the emulsions after 31 days of storage is shown in Figure 7B. Curcumin was 

relatively stable (85−95% remaining) in the acidic emulsions, but unstable (53−62% 

remaining) in the neutral−alkaline emulsions. These results can be explained in terms of 

pH-induced changes in curcumin structure and physicochemical stability. Curcumin has a 

hydrophobic backbone consisting of an aliphatic chain with aromatic rings attached on 

either side. However, both the aliphatic chain (carobonyl) and aromatic rings (hydroxyl 

and methoxy) have polar groups attached that give the molecule some amphiphilic 

characteristics. Consequently, one would expect curcumin molecules to adsorb to 

oil−water interfaces, such as oil droplet surfaces. In the alkaline emulsions, both 

oxidative and hydrolytic degradation reactions may occur at the oil−water interface, 

which lead to reaction products such as bicyclopentadione, ferulic acid, and 

feruloylmethane (O. N. Gordon, Luis, Sintim, & Schneider, 2015; Tonnesen et al., 

1985b). Many of these degradation products are relatively hydrophilic and are therefore 

likely to move into the aqueous phase. To restore the equilibrium, more curcumin 

molecules would then migrate from the oil phase to the interface, and so the degradation 

process would continue. At acidic pH, curcumin exists primarily in an enolic structure 

(Tonnesen et al., 1985b), and therefore the major degradation mechanism is oxidative 



 

47 

 

rather than hydrolytic. As a result, the curcumin may have been more stable in the 

emulsions under acidic pH conditions. Moreover, the curcumin was less prone to 

crystallize in the emulsions than in the aqueous solutions because curcumin has a much 

higher solubility in oil than in water (LogP = 3.2).  

The storage temperature also affected the stability of the encapsulated curcumin 

(Figure 7C). The amount of curcumin remaining after 31 days of storage decreased as 

the storage temperature of the emulsions increased, particularly for the emulsions stored 

at pH 7.0. This result suggests that it would be advisable to store curcumin-loaded 

emulsions at lower temperatures to increase the physicochemical stability of curcumin. In 

another experiment, the amount of curcumin that remained stable when it was dispersed 

in bulk MCT for 31 days at 55 °C was measured. In this case, there was no significant 

change in curcumin concentration compared to the initial value, which indicated that the 

curcumin was relatively stable to degradation when it was dissolved in pure oil. This 

result indicates that the molecular environment (oil versus water) has a major impact on 

the chemical stability of curcumin and suggests that curcumin degradation in emulsions 

probably occurs at the surfaces of oil droplets rather than in their interiors.  
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Figure 7. Stability of curcumin in oil-in-water emulsions (30 wt % oil) at 37 °C: (A) 

change in curcumin concentration; (B) curcumin retention in emulsions after 1 month of 

storage; (C) comparison of residual curcumin in emulsions stored at different pH values 

and temperatures 

 

2.3.5 Changes in Emulsion Appearance during Storage  

If emulsion-based delivery systems are going to be used to encapsulate curcumin, 

then it is important that they remain physically stable throughout storage. For this reason, 
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we measured changes in the physical properties of the emulsions over time and compared 

them to aqueous solutions of curcumin.  

Unstirred curcumin solutions had a fairly intense yellow color when stored at 

acidic pH values but exhibited rapid color fading when stored at alkaline pH values 

(Figure 8A). The curcumin crystals were difficult to see in the nonstirred acidic solutions 

because they were very small and uniformly dispersed throughout the sample. However, 

large yellow crystals were observed in the stirred acid solutions, which can be attributed 

to the fact that mixing promoted aggregation of the crystals. Curcumin crystallization 

resulted in a reduction in the intensity of the yellow color in the acidic solutions. The 

appearances of emulsions before and after storage at 37 °C for 31 days were measured 

(Figure 8B, and Figure 8C). There was no visible creaming or phase separation in any of 

the samples after storage. Also, no major visual distinction could be made between fresh 

and stored emulsions, demonstrating that the curcumin in the emulsions was reasonably 

stable under the storage conditions used. Nevertheless, slight color fading was observed 

in the pH 7.4 and 8.0 samples compared to the acidic emulsions, highlighting the fact that 

some degradation had occurred at the higher pH values.  
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Figure 8. Visual appearance of curcumin buffer solution (40 μM) incubated at 37 °C for 

15 min (A) and MCT-in-water emulsion (30 wt % oil) incubated at 37 °C taken on day 1 

(B) and day 31 (C). The labels on day 31 are the same as those on day 1 
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The observed differences in the visual appearances of the emulsions were 

supported by instrumental color measurements (see Table 4 and Figure S2 in the 

Appendix). The intensity of the yellow color (positive b* value) decreased only slightly 

for the acidic emulsions during storage, indicating that little chemical degradation of the 

curcumin occurred. Conversely, there was a steeper decrease in the yellow color of the 

emulsions stored at the more alkaline pH values, indicating that the curcumin degraded 

more rapidly under these conditions. The colorimetry measurements therefore support the 

chemical degradation measurements presented earlier (Figure 7). As proposed earlier, 

this effect can be attributed to hydrolytic degradation of curcumin molecules located at 

the droplet surfaces under alkaline pH conditions.  

 

Table 4. Yellowness (b*), Mean Particle Diameter, and Electrical Characteristics (ζ-

Potentials) of Emulsions at Days 1 and 31 

pH of 

emulsion 

mean particle diameter (nm) zeta potential (mV) 

day 1 day 15 day 1 day 15 

2.0 301 ± 3 299 ± 2 -0.48 ± 0.17 -0.55 ± 0.30 

3.0 295 ± 4 300 ± 1 -1.85± 1.13 -1.40 ± 0.31 

4.0 296 ± 2 298 ± 3 -1.75 ± 0.64 -1.67 ± 0.23 

5.0 298 ± 1 300 ± 1 -1.96 ± 0.14 -2.37 ± 0.16 

6.0 299 ± 1 300 ± 1 -2.48 ± 0.14 -2.99 ± 0.20 

7.0 299 ± 1 298 ± 3 -2.83 ± 0.06 -3.50 ± 0.48 

7.4 299 ± 1 301 ± 1 -3.30 ± 0.08 -4.30 ± 0.13 

8.0 299 ± 3 299 ± 1 -5.33 ± 0.49 -6.74 ± 0.38 
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2.3.6 Detection of Curcumin Crystals in Emulsions  

As discussed earlier, curcumin crystals formed in some of the aqueous solutions during 

storage. Optical microscopy was therefore used to determine whether crystals also 

formed in the curcumin-loaded emulsions during storage. Interestingly, curcumin crystals 

with dimensions around 10−50 μm were observed in both aqueous solutions and 

emulsions when stored at pH 3, 5, and 7 (Figure 9). In general, the number of crystals 

present was higher in acidic curcumin solutions than in neutral or basic ones (data not 

shown), which supported the turbidity experiments (Figure 6). The formation of crystals 

in the aqueous solutions would be expected because the water solubility of curcumin is 

known to be very low (11 ng/ mL) (O. N. Gordon et al., 2015; Nimiya et al., 2015). The 

fact that crystals were also observed in the emulsions suggests that the equilibrium 

solubility of the curcumin in this system was also exceeded. This was unexpected 

because the curcumin was dissolved in the oil phase (MCT) used to prepare the 

emulsions at a level (1 mg/g oil) below the experimentally determined equilibrium 

solubility (2.9 mg/g oil). A possible reason for this phenomenon is that the chemical 

degradation of curcumin led to the formation of reaction products that had a lower 

solubility than that of the parent molecule, thereby leading to crystal formation 

(McClements, 2012). 
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Figure 9. Micrographs showing curcumin crystals in (A) unmixed aqueous buffers (scale 

bar = 10 μm), (B) emulsions (scale bar = 10 μm), and (C) mixed aqueous buffers (images 

taken using cross-polarizer, scale bar = 20 μm; (i–iii) pH 3.0, 5.0, and 7.0, respectively 

2.3.7 Physical Properties of Emulsions during Storage  

Immediately after preparation, the curcumin-loaded emulsions had fairly similar mean 

droplet diameters (d32 ≈ 298 ± 2 nm) and monomodal particle size distributions (see 

Figure S3 in the Appendix). Moreover, there was no significant change in particle size 

over a period of 31 days (Table 4). This suggests that the emulsions had relatively good 

kinetic stability over a wide range of pH values. The mean particle sizes of both the 

curcumin-loaded and curcumin-free emulsions (pH 5.0) were similar. Hence, it can be 

concluded that the presence of curcumin in the oil phase did not influence the size of the 
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droplets produced during homogenization. Similarly, for a specific pH, there was no 

significant change in the electrical properties (ζ-potential) of the lipid droplets over 31 

days. The ζ-potential on the surfactant-coated oil droplets was close to zero across the 

entire pH range studied, which suggests that the emulsions were mainly stabilized by 

steric rather than electrostatic repulsion. This would be expected for oil droplets coated 

by a nonionic surfactant such as Tween 80, because this type of surfactant has 

hydrophilic polymer groups (polyoxyethylene) that protrude into the aqueous phase. 

Overall, this study has highlighted the important role that pH plays on the physical and 

chemical stability of curcumin in aqueous solutions and emulsions. Under acidic 

conditions, curcumin has a tendency to form small crystals that may aggregate when the 

sample is stirred. Under alkaline conditions, curcumin tends to chemically degrade 

through an autoxidation process. The encapsulation of curcumin within oil droplets 

appears to improve its physicochemical stability, which may be an advantage for the 

design of effective emulsion-based delivery systems. These delivery systems could be 

used to facilitate the incorporation of curcumin into functional foods, supplements, and 

pharmaceuticals designed to improve human health and well-being. In future studies, it 

would be useful to examine the stability of curcumin under conditions found in 

commercial products and to assess its stability and release from the emulsion-based 

delivery systems under gastrointestinal conditions.  
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CHAPTER 3 

STABILITY OF CURCUMIN IN OIL-IN-WATER EMULSIONS: IMPACT OF 

EMULSIFIER TYPE AND CONCENTRATION ON CHEMICAL 

DEGRADATION  

3.1. Introduction 

The previous study showed that degradation of curcumin in MCT-in-water 

emulsions was pH dependent with about 62% curcumin retention after 1 month when 

emulsions were stored at 37 °C . The ability of an emulsion to act as a good oral delivery 

system for curcumin depends on its composition and structure (Araiza-Calahorra et al., 

2018).  Consequently, it is important to optimize these parameters in order to develop 

effective delivery systems that can be utilized in a range of food and other products.  The 

purpose of the current study was to examine the impact of emulsifier type on the 

formation and stability of curcumin-loaded oil-in-water emulsions.  A variety of synthetic 

and natural emulsifiers are available for application in food products (Hartel & 

Hasenhuettl, 2013). However, there is growing interest in the use of natural emulsifiers in 

the food industry due to consumer concerns about health, environmental, and 

sustainability issues (D.J. McClements & C.E. Gumus, 2016).  In this study, we therefore 

compared the efficacy of three natural emulsifiers (sodium caseinate, gum arabic, and 

quillaja saponins) at forming and stabilizing curcumin-loaded emulsions with a 

commonly used synthetic surfactant (Tween 80).  A highly pure form of curcumin, which 

was synthesized and purified in our laboratories, was used in this study to facilitate the 

interpretation of the results, rather than a complex mixture of curcuminoids.    
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3.2. Materials and methods  

3.2.1. Materials 

Synthesis and purification of curcumin was carried out in the Department of Food 

Science at the University of Massachusetts using a method reported previously (Pabon, 

1964).  Medium chain triglyceride (MCT) oil was obtained from Warner Graham Co. 

(Cockeysville, MD), which was reported to mainly consist of caprylic (58.1 %), and 

capric (41 %) acids.  Dimethyl sulfoxide (DMSO), sodium hydroxide (NaOH), sodium 

phosphate anhydrous dibasic, and potassium phosphate monobasic were obtained from 

Fisher Scientific (Fair Lawn, NJ). Sodium azide, hydrochloric acid (HCl), gum arabic 

(GA), and Tween 80 (T80), were purchased from the Sigma-Aldrich Company (St. Louis, 

MO). Sodium salt of casein (NaC) was product from MP Biomedicals (Solon, OH). 

Foamation® QB Dry (SAP), a spray dried purified aqueous Quillaja saponaria extract, 

was obtained from Ingredion Inc. (Westchester, IL).  The manufacturer reported that this 

ingredient had a saponin content between 10-30 wt. %, with the remainder being mainly 

maltodextrin and fish gelatin (as processing aids).  All solvents and reagents were of 

analytical grade. Double distilled water from a water purification system (Nanopure 

Infinity, Barnstaeas International, Dubuque, IA) was used throughout the experiments. 

3.2.2. Determination of emulsifier surface load  

First, an aqueous phase was prepared by mixing emulsifier (NaC, T80, SAP, or 

GA) in phosphate buffer (10 mM, pH 7.0) until a clear solution was obtained. For the 

GA, the solution was then centrifuged twice at 36,000×g for 1 h (Thermo Scientific, 

Waltham, MA) prior to utilization to remove a small amount of insoluble fraction. To 
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prepare stock emulsions, both MCT oil and aqueous phase were mixed together for 2 min 

using a high-speed blender (M133/1281-0, Biospec Products, Inc., ESGC, Switzerland). 

The resulting coarse emulsion was then passed through a single-channel microfluidizer 

(M110L, Microfluidics, Newton, MA) at an operating pressure of 12,000 psi for 5 passes. 

The emulsifier-to-oil (E:O) ratio in the final emulsions ranged from 0.01 to 2.00. All 

operations were carried out at ambient temperature (~25 °C). 

3.2.3. Preparation of curcumin-loaded emulsions  

To prepare curcumin-loaded emulsions, an oil phase was prepared by dissolving 

powdered curcumin into MCT oil at a level of 1 mg curcumin per gram of MCT oil. The 

resulting mixture was heated to 60 °C and stirred at 1200 rpm for 2 h, and then sonicated 

for 20 mins. This process was repeated if needed to ensure complete solubilization of 

curcumin in the oil phase.  Emulsions were then prepared using the process described in 

the previous section.  After preparation, sodium azide solution was added as an 

antimicrobial agent, and the emulsions were adjusted to either pH 3 or 7 using HCl and/or 

NaOH (0.01, 0.1, or 1N).  Finally, the emulsions were diluted with phosphate buffer of 

the appropriate pH to obtain the final emulsions.  The final emulsions contained 9.0 wt. 

% MCT oil, 0.02 wt. % sodium azide, and had emulsifier concentrations of 0.5, 0.6, 0.8, 

and 10.0 wt. % for caseinate, Tween 80, saponin, and gum arabic, respectively.  These 

emulsifier levels were selected because they represent the values where the oil droplets 

surfaces were fully saturated with emulsifier, and small droplets were obtained (see 

Section 3.3.1. Impact of emulsifier type on emulsion formation).  



 

58 

 

To study if excess emulsifier affected curcumin stability, another set of emulsions 

was prepared that contained twice the amount of emulsifier in the aqueous phase. These 

emulsions therefore had emulsifier concentrations of 1.0, 1.2, and 1.6 wt% for the 

systems stabilized with caseinate, Tween 80, and saponin, respectively. For the emulsions 

prepared with excess gum arabic, an emulsifier concentration of 15 wt% was used 

because higher values led to emulsion instability.  Blank emulsions were prepared having 

the same composition as the corresponding test emulsion, but where the oil phase only 

contained MCT without added curcumin. All sample and blank emulsions were stored in 

temperature-controlled rooms (37 or 55 oC), and samples were collected periodically for 

analysis. 

3.2.4. Curcumin concentration measurements 

Curcumin quantification was carried out using a spectrophotometric method 

described earlier (Davidov-Pardo et al., 2016). An aliquot of emulsion was added to 

DMSO and then the system was mixed well using a vortex. The bottom layer was 

withdrawn after centrifugation (2000 rpm for 15 min), and then the absorbance was 

measured at a wavelength of 433 nm using a UV-visible spectrophotometer (Cary 100 

UV-Vis, Agilent Technologies). Preliminary experiments showed that the absorbance of 

the resulting mixtures was stable for at least 1 h at all pH values (data not shown) 

indicating the stability of the curcumin in the emulsion-solvent mixture. A blank 

measurement was included for each sample and was prepared using a blank emulsion 

having the same composition as the test emulsion but containing no curcumin. A linear 
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calibration curve (r2 = 0.99) was obtained using curcumin-DMSO standard solutions, and 

was used for curcumin quantification. 

3.2.5. Color measurements  

The intensity of the yellow color of curcumin-loaded emulsions provides an 

indication of the curcumin stability. Therefore, changes in the color of the curcumin 

emulsions were analyzed using an instrumental colorimeter (ColorFlez EZ, HunterLab, 

Reston, VA) equipped with a tristimulus absorption filter. An aliquot of curcumin 

emulsion was placed into a transparent disposable petri dish.  An illuminant/observer 

combination of D65/10 was used by the instrument. The L*a*b* measurements were 

recorded using a black cup as a background.  

3.2.6. Particle size and charge measurements 

The mean particle size and particle size distribution of the emulsions was 

determined using a static light scattering instrument (Mastersizer 2000, Malvern 

Instruments Ltd., Malvern, Worcestershire, UK), which utilizes measurements of the 

angular scattering pattern from small droplets. The refractive indices of aqueous and oil 

phases were set to 1.33, and 1.44, respectively and the absorption of each phase was set 

as 0.  Blank measurement was taken using phosphate buffer (10 mM) having the same pH 

as the sample to be measured.  Emulsion samples were gently mixed by inverting the 

container several times to ensure homogeneity and then added to buffer to achieve a light 

obscuration value of about 4.5. Mean particle sizes are reported as the surface-weighted 

mean diameter (D32).  
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An electrophoresis instrument was used to measure the -potential of the 

emulsion droplets (Zetasizer Nano ZS series, Malvern Instruments Ltd. Worcestershire, 

UK).  This instrument measures the movement of charged particles under a well-defined 

applied electric field using a light scattering device. For analysis, samples were diluted 

with phosphate buffer (10 mM) with the same pH as the sample to avoid multiple 

scattering effects. 

3.2.7. Microstructure analysis 

An optical microscope equipped with a 60× oil immersion objective lens and 10× 

eyepiece (Nikon D-Eclipse C1 80i, Nikon, Melville, NY, USA) was used to record the 

microstructures of emulsions containing curcumin. For the analyses, an aliquot of sample 

was centered on a microscope slide, covered by a glass slip, and then microstructure 

images were captured using image analysis software (NIS-Elements, Nikon, Melville, 

NY). 

3.2.8. Statistical analysis 

Experiments were carried out in 2 replicates. In each replicate, measurements for 

at least two freshly prepared samples were obtained. The mean and the standard 

deviations were calculated using Microsoft Excel 2016 package. The significant 

differences among treatments were evaluated using the Tukey multiple-comparison test at 

a significance level of p ≤ 0.05 (SPSS ver.19, SPSS Inc., Chicago, IL, USA). 
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3.3. Results and Discussions 

3.3.1. Impact of emulsifier type on emulsion formation 

Emulsifiers vary in their ability to form and stabilize the lipid droplets in oil-in-

water emulsions depending on their molecular and physicochemical characteristics 

(McClements, 2015b).  The impact of emulsifier type on emulsion formation was 

therefore evaluated by plotting the mean particle diameter (D32) as a function of 

emulsifier concentration under fixed homogenization conditions (Figure 10).  For all 

emulsifiers, D32 initially decreased with increasing emulsifier concentration because there 

was more emulsifier present to cover the surfaces of all the small oil droplets generated 

inside the homogenizer.  However, D32 reached a fairly constant value at higher 

emulsifier concentrations because the droplet size was then limited by the ability of the 

homogenizer to further disrupt the small oil droplets.  This is because the Laplace 

pressure, which opposes droplet disruption, increases as the droplet diameter (D) 

decreases and the oil-water interfacial tension (γ) increases: ΔP = 4γ/D (McClements, 

2015b).  Consequently, it gets harder and harder to break up the droplets as their size 

decreases during homogenization.    
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Figure 10. Effect of emulsifier type and concentration on the mean droplet diameter 

(D32) of MCT oil-in-water emulsions produced using a high-pressure homogenizer 

(microfluidizer). 

 

The change in D32 with emulsifier concentration depended on emulsifier type 

(Figure 10).  For the emulsions stabilized by caseinate, Tween 80, and saponin the mean 

droplet diameter decreased steeply with increasing emulsifier concentration, and then 

reached a relatively constant value above 1 wt% emulsifier.  Nevertheless, there were 

some slight differences in the D32 versus emulsifier profiles for these three emulsifiers.  

For instance, at a fixed emulsifier concentration of 1 wt%, the mean droplet diameters 
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were 0.14, 0.11, and 0.18 µm for caseinate, Tween 80, and saponin, respectively.  This 

suggests that the non-ionic surfactant was most effective at forming small droplets during 

homogenization.  The emulsions stabilized by gum arabic behaved quite differently from 

those stabilized by the other emulsifier types.  For gum arabic, the mean droplet diameter 

was much larger than in the other emulsions when used at an equivalent emulsifier level 

and it did not reach a constant value even at the highest emulsifier level used (17.5%).  

The differences between the emulsifiers can be attributed to two main effects.  First, the 

relatively large gum arabic molecules may adsorb to the droplet surfaces more slowly 

than the other emulsifiers, which leads to some droplet coalescence inside the 

homogenizer (Chanamai & McClements, 2001).  Second, the gum arabic molecules have 

a higher surface load than the other emulsifiers, and therefore a greater amount is 

required to cover the surfaces of the oil droplets formed in the homogenizer (Bai, Huan, 

Gu, & McClements, 2016).   

The performance of an emulsifier during emulsion formation can be quantified by 

its surface load (Γ), which is the mass of emulsifier per unit surface area: 

 

Γ =
𝐷32𝐶𝑆

6𝜑
  (1) 

 

Here, Cs is the concentration of emulsifier in the emulsion (kg/m3), Γ is the surface load 

of the emulsifier at saturation (kg/m2), φ is the dispersed phase volume fraction 

(dimensionless), and D32 is the surface-weighted mean droplet diameter (m) 

(McClements, 2007). This equation assumes that all of the emulsifier is adsorbed to the 
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droplet surfaces at low emulsifier concentrations (emulsifier-limited regime).  This 

assumption is likely to be valid for the surfactant and protein but may not be valid for the 

gum Arabic because it contains a mixture of many different biopolymers with different 

surface activities.  The surface load of the emulsifiers was calculated from this equation 

and from knowledge of the oil droplet concentration (φ=0.091), emulsifier concentration 

(0.1–17.5%, or 1–175 kg/m3), and the measured mean droplet diameters (D32). First, 

Equation 1 was rearranged to give: 

 

𝐷32 = 6Γϕ (
1

𝐶𝑆
)  (2) 

 

Then, the surface load was calculated from the slope (6 Γϕ) of a plot of D32 versus 

the reciprocal of the emulsifier concentration (1/CS).  Only the data points in the region 

where the droplet diameter fell steeply with increasing emulsifier concentration were 

used in these calculations, i.e., where the droplet size was limited by the emulsifier 

concentration rather than by the ability of the homogenizer to disrupt the droplets.  

The calculated surface loads of the caseinate, Tween 80, saponin, and gum arabic 

were 1.5, 1.6, 2.0, and 55.3 mg/m2, respectively.  The much higher surface load for gum 

arabic than for the other three emulsifiers is probably because of its unique molecular 

structure.  It has an amphiphilic polypeptide chain that anchors it to the oil-water 

interface, and a much larger hydrophilic polysaccharide chain that protrudes into the 

surrounding aqueous phase (Dickinson, 2003).  Consequently, a much larger mass of this 

emulsifier is required to saturate the droplet surfaces than for the smaller protein and 
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surfactant emulsifiers used, which would be expected to form thinner and denser 

interfacial layers.  Our results are in agreement with those of previous studies that have 

also compared the interfacial properties of different types of emulsifiers (Bai et al., 2016; 

Bos & van Vliet, 2001; Chazelas, Razafindralambo, Dumont de Chassart, & Paquot, 

1995; Euston & Hirst, 2000).  In summary, our results show that a much higher 

concentration of gum arabic is required to stabilize the emulsions than for the other three 

emulsifiers, which may have important practical consequences for commercial 

applications.   

In the following experiments, emulsions were prepared using two different 

emulsifier levels.  Emulsions prepared using a critical level had just enough emulsifier to 

saturate the droplet surfaces, while those prepared at an excess level had twice the critical 

level, so there would be some free emulsifier present in the aqueous phase surrounding 

the droplets.  These experiments were carried out because food manufacturers often want 

to minimize the level of emulsifier used in their products to reduce costs.  On the other 

hand, non-adsorbed emulsifiers may be able to improve the physical and chemical 

stability of emulsions (Gumus, Decker, & McClements, 2017).  

Experimentally, the critical level was defined as the emulsifier concentration 

where a linear line drawn from the region where D32 decreased with increasing CS 

intersected with another linear line extrapolated from the region where D32 was 

independent of CS.  The critical levels were found to be 0.5, 0.6, and 0.8 wt% for 

caseinate, Tween 80, and saponins, respectively. The critical value could not be 

determined for gum arabic using this approach because the mean droplet diameter kept 

decreasing with increasing emulsifier concentration (Figure 10).  In this case, the critical 
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value was arbitrarily taken to be 10 wt% gum arabic, and the excess value was taken to 

be 15 wt%, because higher levels led to some emulsion instability, probably due to 

depletion flocculation (Chanamai et al., 2001).   

3.3.2. Impact of emulsifier on color fading of curcumin-loaded emulsions 

The chemical degradation of curcumin leads to a reduction in the intensity of its 

orange-yellow color (Heger et al., 2014; Kharat et al., 2017).  For this reason, visual 

observations and instrumental colorimetry measurements were carried out to determine 

the impact of storage temperature, pH, emulsifier type, and emulsifier level on the 

stability of encapsulated curcumin to degradation in the emulsions. 

3.3.2.1. Preliminary experiments 

Initially, curcumin-loaded oil-in-water emulsions were prepared from the four 

different emulsifiers and stored at pH 3 and 7 at 37 oC.  All of the initial emulsions had a 

bright yellow color (Figure 11), and there were no obvious differences in their 

appearance when the emulsifier concentration was varied (not shown).  The only 

exception was the caseinate-stabilized emulsion that was adjusted from pH 7 to pH 3, 

which exhibited extensive droplet aggregation and creaming (not shown).  This effect can 

be attributed to the fact that irreversible flocculation of the caseinate-coated oil droplets 

occurred when the pH passed through the isoelectric point of the adsorbed proteins 

(Jourdain, Leser, Schmitt, Michel, & Dickinson, 2008).  For this reason, this emulsion 

was not used in the color fading experiments.  After 15 days storage at 37 °C, none of the 

emulsions exhibited any obvious changes in their visual appearance when held at pH 3, 
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but the emulsions stabilized by Tween 80 and saponins exhibited a small amount of 

creaming when held at pH 7.  The visual observations were supported by instrumental 

colorimetry measurements, which showed that there was little change in the tristimulus 

color coordinates of the emulsions when they were stored at 37 oC at pH 3 or 7 (Figure 

S4. A and B in Appendix).  Indeed, after 15 days storage the magnitude of the changes in 

the L*, a*, and b* values of the emulsions were less than 2.5, 7, and 7.5, respectively.   

 

Figure 11. Photographs of curcumin-loaded oil-in-water emulsions prepared at the 

critical emulsifier concentration when stored under different conditions (pH 7.0).  

Emulsions were stabilized by sodium caseinate (NaC), Tween 80 (T80), quillaja saponins 

(SAP) or gum 

 



 

68 

 

Because our preliminary experiments showed that there was little color fading in 

the emulsions when they were stored at 37 oC, further experiments were carried out using 

a higher storage temperature and neutral pH since these conditions have been shown to 

accelerate curcumin degradation in previous studies (Heger et al., 2014; Kharat et al., 

2017).  After 15 days storage at 55 °C and pH 7, all the emulsions exhibited noticeable 

color fading indicating that appreciable chemical degradation of the encapsulated 

curcumin occurred (Figure 11).  For this reason, this higher storage temperature was 

used for the remainder of the studies. 

3.3.2.2. Color stability 

Further insights into color fading were obtained using instrumental colorimetry 

measurements of the curcumin-loaded emulsions.  Changes in the tristimulus color 

coordinates (L*a*b*) of the emulsions were measured throughout storage at 55 °C for 15 

days at pH 7 (Figure 12).  Under these storage conditions, there was a relatively fast 

change in the color coordinates of the emulsions over time.  Only the kinetic results for 

the emulsions containing an excess level of each emulsifier type are shown, since the 

emulsions containing the critical level of corresponding emulsifier behaved very 

similarly, as seen by the overall changes in the b*-values after 15 days storage (Figure 

13). The color differences between emulsions containing critical and excess emulsifier 

levels can be mainly attributed to the color contributed by the emulsifiers themselves.  

For instance, the sodium caseinate, Tween 80, quillaja saponin, and gum arabic solutions 

used to prepare the emulsions were hazy white, clear, clear brown, and clear light brown, 

respectively.    
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Figure 12. Change in tristimulus color coordinates (L*, a*, b*) of curcumin-loaded oil-

in-water emulsions during storage at pH 7 and 55 C. 
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Figure 13. Impact of emulsifier type and concentration on the yellowness (b*-values) of 

emulsions stored at pH 7 and 55 C for 15 days. 

 

There was a gradual decease in the lightness (L*) of all the emulsions during 

storage, except in those stabilized by saponins, which showed a sudden decrease from 

Day 1 to 3 followed by a more gradual decrease afterwards.  This effect may have been 

due to some chemical change in the saponins themselves, e.g., a browning reaction.  All 

the emulsions initially had slightly negative a*-values and strongly positive-b* values, 

indicating that they initially had a slightly green/strongly yellow color.  The a*-values 

became slightly less negative during storage, which suggests that the emulsions became 

less green.  Similarly, the b*-values became less positive during storage, which suggests 
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that the emulsions became less yellow.  This type of behavior is consistent with color 

fading caused by curcumin degradation (Y. J. Wang et al., 1997).  

There were pronounced differences in the rate and extent of color fading in the 

different emulsions indicating that emulsifier type played an important role in curcumin 

degradation (Figure 12 and Figure 13).  Since the emulsions appeared predominantly 

yellow to the eye, the b*-values were used as a convenient measure of color fading.  The 

rate of color fading (b* units / day) in the emulsions followed the order: saponins (1.52) 

>> Tween 80 (0.86)  caseinate (0.67)  gum arabic (0.60).  These results suggest that 

the curcumin was least stable to color fading when trapped inside of lipid droplets coated 

by the saponins.  This effect may be due to the fact that saponins contain conjugated 

double bonds, which have previously been reported to promote lipid peroxidation in 

microsomal membranes (Babu, Sarkar, Ghosh, Saha, Sukul, & Bhattacharya, 1997).  

These authors suggested that the conjugated unsaturated system in the saponins generated 

free radicals that accelerated peroxidation.  Indeed, free radicals are known to be potent 

hydrogen abstractors that can initiate curcumin auto-oxidation (O. N. Gordon et al., 

2015).  

3.3.3. Impact of emulsifier on chemical stability of curcumin in emulsion systems 

Additional information about the impact of emulsifier type and concentration on 

the stability of curcumin to chemical degradation was obtained by measuring the amount 

remaining during storage.  As expected from the color fading measurements, there was 

only a slight decrease in the level of curcumin remaining in the emulsions stored at 37 °C 

for 15 days at both pH 3 and 7 (Figure 14).  Indeed, there was > 90% curcumin retention 
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in all of the emulsions after storage, with the exception of the ones stabilized by gum 

arabic at pH 7 where there was around 80% curcumin retention.  The retention of 

curcumin was fairly similar or slightly higher for the emulsions stored at pH 3 than at pH 

7.  

 

Figure 14. Impact of emulsifier type and concentration on curcumin retention in 

emulsions stored at pH 3 and 7 at 37 C for 15 days 

 

The rate of curcumin degradation was therefore accelerated by storing the 

emulsions under neutral conditions (pH 7) at a higher temperature (55 °C) so as to more 
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Figure 16).  There was a steady decrease in the amount of curcumin remaining in the 

emulsions throughout storage, with the most rapid decrease occurring in the emulsions 

stabilized by the saponins.  These results are therefore in good agreement with the color 

fading measurements at 55 °C, which showed that the color of the emulsions stabilized 

by the saponins faded more rapidly than for the emulsions stabilized by the other three 

emulsifiers (Figure 12 and in appendix Figure S5. A).  Again, the emulsifier level in the 

emulsions had little impact on the extent of curcumin degradation after 15 days of storage 

(Figure 16), which is in agreement with the color fading measurements (Figure 13). 

Figure S5. A also suggests that colorimetric analysis may provide an indication of 

curcumin content in emulsions and therefore can be used in rapid quality control and 

quality assurance analysis of commercial products. 

 

Figure 15. Impact of emulsifier type on curcumin retention in emulsions during storage 

at pH 7 and 55 C 
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Figure 16. Impact of emulsifier type and concentration on curcumin retention in 

emulsions stored at pH 7 and 55 C. 

 

In summary, these measurements suggest that the saponins are the least effective 

emulsifier at inhibiting curcumin degradation in the emulsions, while the other three 

emulsifiers behave fairly similarly.    

3.3.4. Impact of emulsifier on physical stability of curcumin-loaded emulsions 

The curcumin-loaded emulsions had similar mean droplet diameters and particle 

size distributions as the corresponding curcumin-free emulsions, which suggested that the 
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presence of curcumin did not interfere with the homogenization process (data not shown).  

As mentioned earlier, the emulsions stabilized by caseinate, Tween 80, or saponins 

contained droplets that were considerably smaller than those in the emulsions stabilized 

by gum arabic (Table 5).  In general, the emulsions prepared using excess emulsifier 

levels had similar or only slightly smaller mean particle diameters than those prepared 

using critical emulsifier levels.  This might be expected since most of the excess 

emulsifier will remain in the aqueous phase.  The impact of the pH of the emulsions on 

the mean particle diameter depended on the nature of the emulsifier used.  For Tween 80 

and gum arabic, the particle size did not depend strongly on pH. For sodium caseinate, 

the emulsions underwent irreversible flocculation when the pH was adjusted from 7 to 3 

because they passed through the isoelectric point (pI 4.6) of the protein-coated droplets.  

For this reason, these emulsions were not tested in other experiments.  For the saponin, 

the mean particle diameter was much smaller at pH 7 (D32 = 0.20 µm) than at pH 3 (0.54 

µm).  This effect can be attributed to protonation of the carboxylic groups on the 

saponins, which reduced the negative charge on the droplets (Table 5) thereby reducing 

the electrostatic repulsion between them.  Interestingly, in the presence of excess 

emulsifier the increase in mean particle diameter when the saponin-stabilized emulsions 

were adjusted from pH 7 (D32 = 0.20 µm) to pH 3 (0.35 µm) was considerably smaller.  It 

is possible that the reduction in droplet charge allowed more saponin molecules to adsorb 

to the oil droplet surfaces, which partially protected them from aggregation at lower pH 

values.  
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Table 5. Mean droplet diameter (D32) and electrical characteristics (ζ-potentials) of 

curcumin emulsions at Day 1 and Day 15 (37 °C) 

Emulsifier type, 

concentration, and pH 

Mean droplet diameter (µm) ζ-potential (mV) 

Day 1 Day 15 Day 1 Day 15 

NaC Excess 7.0 0.18 ± 0.00 0.19 ± 0.00 -42.4 ± 1.0 -41.4 ± 1.2 

Critical 7.0 0.18 ± 0.00 0.18 ± 0.01 -48.7 ± 1.1 -46.1 ± 1.6 

T80 Excess 3.0 0.13 ± 0.00 0.13 ± 0.00 -2.3 ± 0.3 -2.5 ± 0.6 

7.0 0.13 ± 0.00 0.13 ± 0.00 -9.3 ± 0.5 -9.4 ± 0.4 

Critical 3.0 0.14 ± 0.01 0.19 ± 0.02 -2.2 ± 0.3 -1.6 ± 0.2 

7.0 0.13 ± 0.00 0.15 ± 0.00 -9.2 ± 0.7 -9.6 ± 0.7 

SAP Excess 3.0 0.35 ± 0.01 0.35 ± 0.01 -12.8 ± 1.0 -14.5 ± 0.8 

7.0 0.20 ± 0.00 0.21 ± 0.01 -65.3 ± 2.4 -64.1 ± 1.3 

Critical 3.0 0.54 ± 0.06 0.56 ± 0.07 -11.8 ± 1.5 -13.0 ± 0.7 

7.0 0.20 ± 0.00 0.24 ± 0.01 -57.3 ± 1.4 -60.7 ± 1.4 

GA Excess 3.0 0.38 ± 0.02 0.39 ± 0.02 -13.7 ± 0.3 -14.3 ± 0.9 

7.0 0.37 ± 0.02 0.39 ± 0.02 -31.7 ± 0.6 -31.1 ± 0.9 

Critical 3.0 0.38 ± 0.02 0.39 ± 0.02 -13.8 ± 0.9 -14.5 ± 0.8 

7.0 0.37 ± 0.02 0.38 ± 0.02 -31.8 ± 0.7 -31.6 ± 0.8 

 

There was an appreciable increase in the mean particle diameter in all of the 

emulsions stored at pH 7 at 55 °C for 15 days, which suggested that the elevated storage 

temperature promoted droplet aggregation (Appendix Figure S6).  This may have been 

because the droplets moved around more rapidly and collided with each other more 
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frequently at higher temperatures because of the greater thermal energy and reduced 

viscosity of the system.  In addition, partial dehydration of the polar groups of the 

adsorbed emulsifier molecules at elevated temperatures may also have reduced the 

repulsive interactions between the droplets.     

Changes in the droplet size of the emulsions were also confirmed by optical 

microscopy experiments (Figure 17). After preparation (Day 1), all the emulsions 

contained relatively small droplets that were evenly dispersed throughout the system. 

After 15 days of storage, the emulsions containing excess emulsifier had a distinctly 

different appearance to those containing the critical level of emulsifier. In particular, 

there appeared to be more individual large oil droplets in the emulsions containing the 

lower emulsifier concentration, which suggested that some droplet coalescence had 

occurred.  This effect was particularly evidenced in the emulsions prepared from Tween 

80, which indicated that this emulsion was the least stable to coalescence during storage 

at higher temperatures.  Oil-in-water emulsions stabilized by non-ionic surfactants are 

known to be unstable to droplet coalescence at higher temperatures due to partial 

dehydration of the surfactant head group (Kabalnov & Wennerstrom, 1996). 

Additionally, the ester linkage between the hydrophilic head group and hydrophobic tail 

group in Tween 80 is prone to hydrolysis at low pH values (Bates, Nightingale, & Dixon, 

1973), which may cause loss of emulsifier properties and hence instability in the 

emulsion.   
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Figure 17. Micrographs of curcumin-loaded emulsions after storage at pH 7 and 55 °C at 

Day 1 and 15. 

3.3.5. Electrical characteristics of emulsion droplets 

 Further insights into the impact of emulsifier type and concentration on the 

properties of the emulsions was obtained by measuring their electrical characteristics.  

The ζ-potential of all the emulsifier-coated oil droplets was negatively charged, but the 

magnitude of the charge depended strongly on emulsifier type and pH (Table 5). At pH 

7, the caseinate, saponin, and gum arabic stabilized emulsions had relatively high 

negative charges of -48.7, -57.3, and -31.8 mV, respectively.  For the caseinate-coated 

droplets, this is because the protein is well above its isoelectric point (pI = 4.6) and so 

there are more anionic carboxyl groups (-COO-) than cationic amino groups (-NH3+).  For 

the saponin-coated, the carboxyl groups in the glucuronic acid residues are almost fully 

charged at pH 7: -COO-, pKa = 3.25.  Similarly, for the gum arabic-coated droplets the 
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carboxyl groups on the hydrophilic carbohydrate chains are also almost fully charged at 

neutral pH: -COO-, pKa = 3.5 (Renard, Lavenant-Gourgeon, Ralet, & Sanchez, 2006).  

The slight negative charge on the Tween 80-coated droplets can be attributed to the 

presence of some anionic impurities (e.g. free fatty acids) in the commercial surfactant 

product.  Adjusting the system to pH 3 resulted in an appreciable lowering in the 

magnitude of the negative charge in all the emulsions, which can be attributed to partial 

protonation of the carboxylic acid groups (-COOH). There was no substantial change in 

the electrical characteristics of the droplets after 15 days storage at either 37 or 55 °C, 

which suggests there was little change in the electrical properties of the interface. 

3.4. Conclusions 

This study has shown that the type and amount of emulsifier used to coat the lipid 

droplets in a curcumin-loaded oil-in-water emulsion impacts the rate and extent of 

curcumin degradation.  This may be important for developing emulsion-based delivery 

systems for curcumin that can be used in commercial food, supplement, or 

pharmaceutical products.  Ideally, an emulsion should remain both physically and 

chemically stable within a commercial product prior to ingestion.  Sodium caseinate was 

able to make emulsions that had small droplet sizes, good physical stability to creaming 

(at neutral pH), and good chemical stability to curcumin degradation during storage.  This 

natural emulsifier may therefore be particularly suitable for forming emulsion-based 

delivery systems from label-friendly ingredients.  On the other hand, the emulsions 

prepared using saponin had relatively poor stability to curcumin degradation and color 

fading, which suggested that this was not a good emulsifier to use for this kind of 
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product.  In future studies, it will be important to establish the impact of emulsifier type 

on the gastrointestinal fate of the curcumin, e.g., its bioaccessibility, transformation, and 

absorption.  In addition, it will be important to determine whether the emulsifier-coated 

oil droplets remain stable under the environmental stresses that they experience in 

commercial products, such as chilling, freezing, pasteurization, sterilization, or 

dehydration. 
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CHAPTER 4 

STABILITY OF CURCUMIN-ENRICHED OIL-IN-WATER EMULSIONS: 

ROLE OF INTERFACIAL SURFACE AREA 

4.1. Introduction 

In previous chapters, it was found that curcumin degradation occurs mostly due to 

the presence of aqueous phase in the oil-in-water emulsion. Curcumin is a relatively 

hydrophobic molecule (logP = 3.29) and so it is primarily located within the oil phase of 

oil-in-water emulsions. Nevertheless, a small fraction of the curcumin is also present 

within the aqueous phase, where it is more susceptible to chemical degradation (Kharat & 

McClements, 2019). We hypothesized that the rate of curcumin degradation in oil-in-

water emulsions would increase as their droplet size decreases, because the exchange of 

curcumin molecules between the oil and water phases would occur more rapidly for 

smaller droplets. As a result, more of the curcumin would be exposed to the water phase 

where it would chemically degrade more rapidly. In the pharmaceutical industry, studies 

of the chemical stability of a hydrolytically susceptible hydrophobic drug (phenyl 

salicylate) showed that their degradation depended on droplet size (Krickau, Mueller, & 

Thomsen, 2007). In this case, the transfer of phenyl salicylate from the oil phase to the 

water phase occurred more rapidly when the droplet size decreased (surface area 

increased), which resulted in greater degradation. In the present study, we therefore 

studied the effect of droplet size on the chemical stability of curcumin in oil-in-water 

emulsions. The information obtained should facilitate the rational design of more 

effective curcumin delivery systems for application in the food industry.  
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4.2 Materials and methods 

4.2.1 Materials 

Sodium hydroxide (NaOH), sodium phosphate anhydrous dibasic (Na2HPO4), 

sodium phosphate anhydrous monobasic (Na2HPO4), and dimethyl sulfoxide (DMSO) 

were obtained from Fisher Scientific (Fair Lawn, NJ). Quillaja saponins (QS) (Q-

Naturale 200®) having an actual saponin content of this ingredient was between 10-30 wt. 

% was a gift from Ingredion Inc. (Westchester, IL). Medium chain triglycerides (MCT) 

was secured from Warner Graham Co. (Cockeysville, MD) mainly consisting of caprylic 

(58.1 %), and capric (41 %) acids. Synthesized curcumin (purity > 97%) was obtained 

from TCI Chemical Company (Portland, OR). Hydrochloric acid (HCl) was purchased 

from the Sigma-Aldrich Company (St. Louis, MO). The chemical reagents and solvents 

used in this study were all of analytical grade. A water purification system (Nanopure 

Infinity, Barnstaeas International, Dubuque, IA) was used to prepare the double distilled 

water utilized in our experiments. 

4.2.2. Preparation of curcumin-loaded emulsions 

Powdered curcumin was dispersed in MCT oil at 75 °C and then stirred at 1200 

rpm for 2h, followed by sonication (20 mins) to obtain an oil phase containing 1 mg 

curcumin/g oil phase. To prepare the aqueous phase, filtered liquid QS extract was 

dispersed into phosphate buffer solution (5 mM, pH 7.0). Four different emulsions were 

then prepared by blending the oil and aqueous phases together using different 

homogenizing equipment Table 6. to produce a range of different droplet sizes (and 

hence surface areas). A large emulsion was prepared using a simple high-shear handheld 
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blender. This emulsion was then further processed using different approaches to obtain 

the medium, small, and very small emulsions. The final composition of all the emulsions 

was as follows: 9.99 wt. % MCT oil, 0.01 wt. % curcumin, 1 wt. % QS liquid extract, and 

89 wt. % phosphate buffer solution (pH 7.0, 5 mM).  

Table 6. Different emulsion types, and their preparation 

Emulsion 

droplet type 

Equipment used Parameters 

Large Hand-held blender 

(M133/1281-0, Biospec Products, Inc., 

ESGC, Switzerland) 

Low speed setting 

processed for 2 min 

Medium Ultrasonicator 

(model 500, Sonic Disembrator, Fisher 

Scientific, Pittsburgh, PA) 

Frequency = 20 kHz  

amplitude = 20 %,  

duty cycle = 1 s 

processed for 2 min 

Small Air-driven microfluidizer 

(M110L, Microfluidics, Newton, MA) 

Air pressure= 4 kpsi 

1 pass 

Very small Air-driven microfluidizer 

(M110L, Microfluidics, Newton, MA) 

Air pressure= 12 kpsi 

3 passes 

Note: In case of emulsions containing medium, small, and very small droplets, a coarse 

emulsion was first prepared and then it was further processed to obtain the corresponding 

emulsion. 

4.2.3 Appearance 

A digital camera was used to record the overall appearance of the emulsions. The 

optical properties of the emulsions were also quantified using a dual-beam 

spectrophotometer (ColorFlex® EZ, HunterLab, Reston, VA). The sample was 

illuminated by a xenon lamp emitting artificial daylight (400-700 nm). An aliquot (10 

mL) of curcumin-enriched emulsion was placed in a clear petri dish and illuminated 

using simulated daylight conditions (D65/10) with a black cup used as a background. The 
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intensity of the reflected light was measured and converted to CIE L*a*b* values. The 

degradation of curcumin was monitored by determining the b* value, which provides a 

quantitative measure of the intensity of the yellowness of the emulsion.  

4.2.4 Curcumin concentration measurements 

Curcumin quantification was done spectrophotometrically as described in 

previous chapter with slight modification. Briefly, about 0.3 mL of curcumin emulsion 

was mixed with acidified DMSO (5.7 mL) solution and vortexed. About 1 mL of hexane 

was then added to emulsion-DMSO mixture and vortexed. Contents were then 

centrifuged (500  g for 15 min) and the lower layer, which contained the curcumin, was 

collected. The absorbance of this solution was measured at 433 nm using a UV-visible 

spectrophotometer (Cary 100 UV-Vis, Agilent Technologies).  

4.2.5. Particle characterization 

Emulsion droplets were characterized by measuring their particle size distribution 

and mean diameter using a static light scattering device (Mastersizer 3000, Malvern 

Instruments Ltd., Malvern, Worcestershire, UK). The electrical characteristics of the oil 

droplets (-potential) was determined using an electrophoresis technique (Zetasizer Nano 

ZS series, Malvern Instruments Ltd.). Samples were diluted with phosphate buffer (10 

mM, pH 7.0) to avoid multiple light scattering events and to ensure accurate 

measurements. 
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4.2.6. Particle morphology 

The morphology of the emulsions was studied using a fluorescence microscope at 

a magnification of 600× (Nikon D-Eclipse C1 80i, Nikon, Melville, NY, USA). A small 

amount (~ 6 L) of sample was put on a glass microscope slide and then covered using a 

glass slip. A laser attachment was used to excite the emulsion sample at 488 nm and 

images were recorded and analyzed using the instrument software (NIS-Elements, Nikon, 

Melville, NY). Large and medium emulsions were observed under a 20× objective lens 

through a 10× eyepiece, while small and very small emulsions were observed using an oil 

immersion objective lens (60×). Curcumin produced green fluorescence when excited 

with the monochromatic laser light, which provided details about its distribution and 

emulsion microstructure.  

4.2.7. Statistical analysis 

Experiments were carried out using two replicates and each replicate was 

measured twice. The mean and standard deviations were then calculated from these four 

values using Microsoft Excel. Significant differences among treatments were evaluated 

using the Tukey multiple-comparison test at a significance level of p ≤ 0.05 (SPSS 

ver.19, SPSS Inc., Chicago, IL, USA). 

4.3 Results and discussions 

4.3.1. Emulsion droplet characteristics  

Initially, we characterized the properties of the oil droplets in the curcumin-loaded 

emulsions prepared using the different homogenization approaches (Table 7 and Figure 
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18). As expected, the emulsion prepared using only a hand-held blender contained the 

largest droplets, while the emulsion prepared using multiple passes through the 

microfluidizer at high pressure contained the smallest droplets. The mean diameters (d32) 

of the droplets in the large, medium, small, and very small emulsions were 20.9  0.8 

m, 2.53  0.19 m, 0.26  0.01 m and 0.083  0.015 m, respectively. The emulsions 

produced using the blender (large) and the sonicator (medium) had bimodal distributions, 

whereas the ones produced by the microfluidizer (small and very small) had monomodal 

distributions (Figure 18). The specific surface area (AS) of the oil droplets in the 

emulsions, which is the oil-water interfacial area per unit mass of oil (m2 kg-1), was 

calculated using the following expression: AS = 6/(0d32), where 0 is the density of the 

oil phase (940 kg m-3) and d32 is the surface-weighted mean droplet diameter (m) 

(McClements, 2007). The calculated AS values were approximately 300, 2,500, 24,000, 

and 80,000 m2 kg -1 for the large, medium, small, and very small emulsions, respectively 

(Table 7). There was no significant change in the surface-weighted mean droplet 

diameter of the emulsions after the completion of study, with the exception of the small 

emulsion where there was a slight increase (Figure S7 in Appendix). This suggested that 

the majority of the droplets in the emulsions were resistant to aggregation during storage. 

On the other hand, there was an appreciable increase in the volume-weighted mean 

diameter (d43) of the emulsions after storage, which can be attributed to the fact that some 

of the droplets aggregated. The d43 value is highly sensitive to the presence of a few large 

particles in an emulsion, so if there is even a little droplet aggregation during storage, 

then there will be an appreciable increase in d43.(McClements, 2015a)  
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Initially, the -potentials for the emulsions containing large, medium, small, and 

very small droplets were all strongly negative: -72.3  4.4, -76.9  1.7, -62.0  1.5, and -

48.3  1.4 mV, respectively (Figure 19). The lipid droplets were coated by saponins, 

which would be expected to have a strong negative charge at pH 7.0 due to the presence 

of deprotonated glucuronic acid groups (pKa = 3.25). In general, the magnitude of the -

potential decreased with decreasing droplet size, which may have been due to changes in 

droplet surface chemistry or due to a measurement artefact associated with limitations in 

the mathematical model used to analyze the electrophoresis data.(McClements, 2015a) 

After 17 days storage at 55 C, the -potential on the emulsion droplets changed, but in 

no consistent manner. For instance, the negative charge decreased in the large and 

medium emulsions but increased in the small and very small emulsions. The 

physicochemical origin of these effects is currently unknown.  It could be due to changes 

in the surface chemistry of the lipid droplets, e.g., due to the generation of charged 

reaction species caused by the chemical degradation of the curcumin or saponin. 

Alternatively, it could be due to changes in the adsorption/desorption of charged species 

at the oil-water interface during storage. 

Table 7. Emulsion droplet characteristics after emulsion preparation (Day 0) 

Emulsion 

droplet type 

Mean droplet size, D32 

(m) 

Specific surface area (m2 kg-1) 

measured rounded-off 

Large 20.917  0.751 304  11 300 

Medium 2.525  0.187 2526  187 2500 

Small 0.261  0.007 24313  645 24000 

Very small 0.083  0.015 78085  13137 80000 
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Figure 18. Droplet size distribution of different emulsion types 

 

Figure 19. Change in the electrical characteristics of droplets before and after storage 
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4.3.2. Microstructure analysis  

Figure 20 shows changes in the microstructure of the emulsions during storage 

monitored by confocal microscopy. The microscopy images were consistent with the 

light scattering analysis of particle size, with the dimensions of the individual oil droplets 

in the emulsions decreasing in the order: large > medium > small > very small. Green 

fluorescence staining confirmed that most of the curcumin was encapsulated inside the oil 

droplets. Initially, the individual droplets in the small and very small emulsions were too 

little to be seen directly in the microscopy images. At the end of storage, however, some 

relatively large individual droplets were observed in these emulsions, suggesting that 

some droplet coalescence had occurred. Coalescence may have been promoted because 

droplet-droplet collisions are more frequent at the relatively high temperature used in the 

storage study (55 C) due to the decrease in aqueous phase viscosity. Moreover, the 

headgroups of the surfactant molecules may have become partially dehydrated at elevated 

temperatures, which would have allowed the droplets to come closer 

together.(McClements, 2015a) It should be noted that a thin layer of free oil was 

observed at the top of the small and very small emulsions after prolonged storage, which 

is also indicative of droplet coalescence and oiling off. 
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Figure 20. Micrographs of curcumin-loaded emulsions having different specific surface 

area taken at Day 0 (Initial) and Day 17 (After storage, pH 7, 55 °C). Scale bars represent 

20 µm. 

 

4.3.3. Impact of droplet size on emulsion appearance.  

Initially, all the curcumin-loaded emulsions had a milky yellow appearance after 

preparation (Figure 21). However, the large emulsion was less turbid than the others, 

which can be attributed to the reduced light scattering associated with larger 

droplets.(McClements, 2015a) The emulsions containing small and very small droplets 

were relatively stable to gravitational separation (creaming) during storage because of the 

weak gravitational forces acting upon the droplets. Conversely, rapid gravitational 

separation was observed in the emulsions containing medium and large droplets because 

the creaming velocity increases with the square of the droplet size.(McClements, 2007) 

After 3 days storage, the oil droplets in the large emulsions had moved to the top of the 

test tubes forming a bright yellow cream layer above a clear serum layer, which had a 
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slightly yellow appearance. The slight yellow tinge of the serum layer suggested that a 

small fraction of the curcumin was solubilized in the water phase, which is consistent 

with the theoretical partitioning calculations discussed later. Interestingly, the intensity of 

the yellow color in the serum layer decreased over time, which is indicative of rapid 

chemical degradation of solubilized curcumin.  

There was also a distinct yellow cream layer formed at the top of the emulsions 

containing the medium droplets after 3 days storage, but in this case the serum layer had 

a more turbid yellow appearance. This effect can be attributed to the fact that the medium 

emulsion contained a population of relatively small droplets (d < 1 m) that only 

creamed slowly (Figure 18 and Figure 20). Interestingly, the yellow color of the serum 

layer faded much more quickly than that of the cream layer. This visual observation 

suggested that curcumin was more susceptible to degradation in smaller oil droplets than 

in larger ones, which was confirmed in the experiments described later.  

As mentioned earlier, the emulsions containing the small and very small droplets 

were much more stable to gravitational separation because of the weaker gravitational 

forces acting upon the droplets. However, visual observation of these samples indicated 

that the rate of color fading was much faster than in the emulsions containing the large 

droplets. Indeed, the emulsions with the very small droplets appeared almost white after 

17 days storage (Figure 21), suggesting that considerable curcumin degradation had 

occurred. 
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Figure 21. Photographs of curcumin-loaded oil-in-water emulsions with different 

specific surface area of droplets (300, 2500, 2400, 80000 m2, left to right) during storage 

(55 °C). Emulsions composition: oil 10 wt.%, curcumin 0.01 wt.%, Quillaja saponin 

extract 1 wt.%, and rest phosphate buffer (pH 7.0, 5 mM) 

4.3.4. Impact of droplet size on color fading  

A more quantitative analysis of the impact of droplet size on the rate of color 

fading was obtained using an instrumental colorimeter. In this case, the emulsions were 

gently agitated prior to analysis to ensure they were homogeneous. Initially, the 

yellowness (b*) of all the emulsions was relatively high, and all samples had fairly 
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similar b* values, with the exception of the large emulsion for which the b* value was 

slightly lower (Figure 22A). This latter effect is mainly because the droplets in this 

emulsion are much larger (~ 20 m) than the wavelength of visible light (400-700 nm) 

leading to a reduced light scattering intensity.(Chantrapornchai, Clydesdale, & 

McClements, 1998) The b* value of all the emulsions decreased during storage, which is 

indicative of color fading. This decrease was fairly gradual in the large, medium, and 

small emulsions but relatively rapid in the very small emulsions (especially during the 

first 3 days), which agrees with the visual observations.  

The rate of color fading was clearly dependent on the lipid droplet size. An 

estimation of this effect was obtained by calculating the yellowness retention, which was 

defined as the percentage of instrumental yellowness (b*) remaining after 17 days storage 

compared to the initial value. There was only a slight decrease in the yellowness retention 

of the large and medium emulsions after storage, a more pronounced decrease in the 

small emulsions, but a much more dramatic decrease in the very small emulsions (Figure 

22B). The loss in yellowness after storage increased in the following order: 13.8 ± 0.2 % 

(large) < 14.7 ± 0.2 % (medium) < 20.0 ± 0.5 % (small) << 43.9 ± 2.8 % (very small). 

Since the yellow color of the emulsions was due to the presence of curcumin, these 

results suggest that curcumin degradation occurred more rapidly as the droplet size 

decreased (surface area increased). For this reason, the concentration of curcumin 

remaining in the emulsions during storage was quantified using a spectrophotometric 

method.  



 

94 

 

 

 

Figure 22. Impact of specific surface area of droplets on change (A) and retention (B) in 

tristimulus color coordinate (b*) of curcumin-loaded oil-in-water emulsions during 

storage at pH 7 and 55 °C. 
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4.3.5. Impact of droplet size on chemical stability of curcumin  

Previous studies have shown that the stability of curcumin encapsulated within 

oil-in-water emulsions is controlled by many physicochemical factors, including pH, 

temperature, emulsifier type, and emulsifier concentration (Kharat et al., 2017; Mahesh 

Kharat et al., 2018). In this series of experiments, we focused on the impact of droplet 

size on the chemical stability of the encapsulated curcumin. As mentioned earlier, as the 

droplet size decreases, the specific surface area of the oil droplets increases, which would 

be expected to impact the transfer rate of curcumin in and out of the droplets, and 

therefore it’s chemical stability.  

As shown in Figure 23A, the curcumin concentration in all the freshly prepared 

emulsions was close to 100 g/mL, which was the amount added initially. The curcumin 

concentration in the large, medium, and small emulsions decreased gradually with time, 

whereas that in the very small emulsions decreased rapidly during the first 3 days but 

then decreased more gradually afterwards. These results are therefore consistent with the 

instrumental colorimetry measurements discussed earlier. In general, the curcumin 

degradation rate increased as the droplet size decreased (surface area increased). For 

instance, the curcumin remaining at the end of the storage period decreased in the 

following order: 91.4  1.5 %, 77.3  6.6 %, 66.7  1.9 %, and 30.6  2.8 % for the large, 

medium, small, and very small emulsions, respectively (Figure 23B). In designing and 

manufacturing a commercial product which is aimed at delivering curcumin, it would be 

important to control the droplet size (hence surface area) characteristics in order to ensure 

the functional characteristics of the product as well as to maintain the product stability. 

The final amount of curcumin present in a product could be determined by calculating the 
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curcumin degradation rate. As shown in Figure 23C, curcumin degraded at a much 

higher rate of 4.1 ± 0.2 g mL-1 day-1 at an AS = 300 m2 kg -1 for very small emulsions 

compared to a rate of 0.5 ± 0.1 mL-1 day-1 in large emulsions having AS = 80,000 m2 kg -1. 

This is important to know to from commercial viewpoint because one can optimize the 

product performance by selecting a suitable droplet size. 
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Figure 23. Impact of specific surface area of droplets on change (A) and retention (B) in 

curcumin concentration, and (C) rate of curcumin degradation, k, in oil-in-water 

emulsions during storage at pH 7 and 55 ° 
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droplet size was reduced. In our study, the curcumin was added to the oil phase before 

preparing the emulsions but the impact of droplet size on curcumin stability followed a 

similar trend. 

Physicochemical origin of curcumin degradation. Our results clearly show that 

the chemical stability of curcumin decreases as the oil droplet size decreases, which can 

be partly attributed to the increase in surface area of oil exposed to the surrounding 

aqueous phase. In this section, we provide some insights into the physicochemical origin 

of this phenomenon. The distribution of curcumin between the oil and water phases of an 

oil-in-water emulsion is important because curcumin is known to be more stable to 

chemical degradation when it is surrounded by oil than by water (Kharat et al., 2017). 

Based on a mass balance calculation, the fraction of curcumin in the oil phase of an oil-

in-water emulsion is given by: 

Θ = (1 +
(1−∅)

𝐾∅
)

−1
       (1) 

Here,  is the disperse phase volume fraction (oil droplet concentration) and K is 

the equilibrium oil-water partition coefficient (K = 10logP). Curcumin is a relatively 

hydrophobic molecule with a logP value of around 3.29 (chemspider.com), while the 

emulsion used in this study had an oil concentration of 10 wt% (  0.1). Inserting these 

values into the above equation shows that about 99.5% of the curcumin should be present 

inside the oil droplets while only 0.5% should be present in the surrounding water phase. 

Based on previous studies, one would expect the small fraction of curcumin in the water 

phase to chemically degrade much faster than the large fraction of curcumin within the 

oil phase.(Kharat et al., 2017)   
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It should be noted, however, that curcumin molecules continuously exchange 

between the interior and exterior of the oil droplets due to their Brownian motion.  

Consequently, all of the curcumin molecules in the system will eventually be exposed to 

the water phase. However, the rate of curcumin exchange between the oil and water 

phases increases as the oil droplet size decreases because of the increase in the specific 

surface area of the oil-water interface (AS  1/d). As a result, one would expect the 

curcumin to degrade more rapidly in an emulsion containing smaller droplets because the 

curcumin molecules are exposed to the water phase more quickly.      

We could not find a theoretical model that deals with this specific problem, but 

we can obtain an indication of the impact of droplet size on the mass transport of 

bioactive molecules from the theories developed to model drug release from colloidal 

particles. The release of curcumin from a spherical particle under similar conditions can 

then be described by the Crank model (McClements, 2015a): 

𝑀(𝑡)

𝑀(0)
= 1 − 𝑒𝑥𝑝 [−

4.8𝐷𝜋2𝑡

𝐾𝑑2 ]        (2) 

Here, D is the translational diffusion coefficient of the curcumin through the oil 

phase. The diffusion coefficient can be calculated from the Stokes-Einstein equation: 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟
        (3) 

Here, kB is Boltzmann’s constant (1.38×10−23 J K-1), T is the absolute temperature 

(328 K),  is the viscosity of the oil phase, and r is the radius of hydration of the 

curcumin molecule. The viscosity of the MCT oil (assumed to be similar to that of 

coconut oil) at 55 oC has been reported to be 16 mPa s, while the radius of hydration of 

curcumin has been reported to be 0.690 nm.(Patsahan, Ilnytskyi, & Pizio, 2017) This 
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leads to a diffusion coefficient of 2.2×10−11 m2s-1 for curcumin in the interior of the oil 

droplets. Predictions made using the Crank equation show that the rate of transfer of the 

curcumin molecules from inside the oil droplets to the surrounding water phase (or vice 

versa) increases as the droplet size decreases (Figure 24). This phenomenon would 

therefore account for the fact that the curcumin degrades more rapidly in the smaller 

droplets – there is a faster exchange of curcumin molecules between the oil phase (where 

it is relatively stable to degradation) to the water phase (where it is relatively unstable) as 

described in Figure 25.   

 

Figure 24. Effect of droplet size on the release profiles of curcumin from a spherical oil 

droplet as derived from the Crank model. 
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Figure 25. Hydrophobic curcumin is distributed between the oil and water phases 

according to its LogP value (3.29). The rate of exchange is faster in emulsions with 

smaller droplet, leading to faster degradation since each curcumin molecule spends more 

time in the water 

 

4.4 Conclusions 

In summary, in this study we have shown that the size of the oil droplets in 

emulsion-based delivery systems plays a critical role in determining the chemical 

stability of encapsulated curcumin. This knowledge is important for formulating 

functional food and beverage products that can keep the curcumin in a bioactive form 

during storage. Ideally, the size of the oil droplets in the emulsion should be relatively 

large to protect the curcumin, but this may cause a reduction in the creaming stability and 

bioaccessibility. The problem with droplet creaming may be overcome by adding 

thickening agents to inhibit the upward movement of the large droplets. In commercial 

products with relatively low viscosities, such as beverages, it is important to utilize 

relatively small oil droplets to inhibit creaming. In these products, it is therefore 
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important to utilize alternative strategies to retard curcumin degradation during storage. 

For instance, curcumin degradation can be inhibited by storing at a low temperature, 

ensuring the product has a mildly acidic pH, adding antioxidants, solidifying the lipid 

phase, or controlling the interfacial properties using emulsifier technology.  
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CHAPTER 5 

ENHANCEMENT OF CHEMICAL STABILITY OF CURCUMIN-ENRICHED 

OIL-IN-WATER EMULSIONS: IMPACT OF ANTIOXIDANT TYPE AND 

CONCENTRATION 

5.1. Introduction 

In previous chapters, we found that curcumin is susceptible to degradation in 

emulsions, especially those stabilized with natural quillaja saponins. As the use of such 

natural emulsifiers is greatly increasing in commercial products, it is important to 

optimize emulsion properties to ensure good curcumin stability in foods and beverages. 

Antioxidants have been proven to be effective in protecting curcumin against chemical 

degradation in aqueous solutions (Nimiya et al., 2015). In the present study, the efficacy 

of various antioxidants in protecting curcumin from degradation in emulsions was 

compared. The impact of antioxidant polarity was investigated by using water-soluble 

(ascorbic acid and Trolox), amphiphilic (ascorbic acid 6-palmitate), and oil-soluble (-

tocopherol) antioxidants (Table 8). As curcumin is known to degrade at a higher rate in 

aqueous solutions, we hypothesized that water-soluble antioxidants would be better at 

protecting it than oil-soluble ones. 

5.2 Materials and methods 

5.2.1 Materials 

Sodium hydroxide (NaOH), sodium phosphate anhydrous dibasic (Na2HPO4), 

sodium phosphate anhydrous monobasic (Na2HPO4), and dimethyl sulfoxide (DMSO) 
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were obtained from Fisher Scientific (Fair Lawn, NJ). Quillaja saponins (QS) (Q-

Naturale 200®) having an actual saponin content of this ingredient was between 10-30 wt. 

% was a gift from Ingredion Inc. (Westchester, IL). Medium chain triglycerides (MCT) 

was secured from Warner Graham Co. (Cockeysville, MD) mainly consisting of caprylic 

(58.1 %), and capric (41 %) acids. Synthesized curcumin (purity > 97%) was obtained 

from TCI Chemical Company (Portland, OR). Hydrochloric acid (HCl), and all 

antioxidants including ascorbic acid ( 98%), ascorbic acid 6-palmitate ( 98%), -

tocopherol ( 96%), and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (or 

Trolox, 97%) were purchased from the Sigma-Aldrich Company (St. Louis, MO). The 

chemical reagents and solvents used in this study were all of analytical grade. A water 

purification system (Nanopure Infinity, Barnstaeas International, Dubuque, IA) was used 

to prepare the double distilled water utilized in our experiments. 

Table 8. Molecular structure and partition coefficients of antioxidants used in this study 

Antioxidant Molecular Structure log P* 

ascorbic acid 

 

-0.2 

trolox 

 

1.3 

ascorbic acid 

6-palmitate 

 

6.0 

-tocopherol 

 

10.7 

*obtained from http://www.chemspider.com/ 

http://www.chemspider.com/
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5.2.2. Preparation of curcumin-loaded emulsions 

An oil phase containing 1 mg of curcumin per gram of oil was produced by 

stirring a mixture of powdered curcumin and MCT at 75 °C at 1200 rpm for 3h, and then 

sonicating for 20 mins. If required, mixing and sonication were carried out for longer to 

make sure that all the curcumin was fully dissolved. For oil-soluble antioxidants 

(ascorbic acid 6-palmitate, or -tocopherol), the final oil phase was prepared by mixing 

the antioxidants with the curcumin-enriched MCT oil and then heating again (if required) 

to make sure all components were dissolved. An aqueous phase was made by dispersing 

liquid QS extract into the phosphate buffer (5mM, pH 7.0). Water soluble antioxidants 

were also dissolved in the buffer. An emulsion pre-mix was obtained by mixing oil and 

aqueous phases using a high-shear mixer for 2 min (M133/1281-0, Biospec Products, 

Inc., ESGC, Switzerland). The emulsion pre-mix was then homogenized further by 

passing it three-times through a microfluidizer (M110L, Microfluidics, Newton, MA) 

using a pressure of 12,000 psi. The emulsions resulting from this procedure contained 10 

wt. % MCT oil, 1 wt. % QS liquid extract, 0.01 wt. % curcumin, 600 M antioxidants, 

and the rest was comprised of phosphate buffer (pH 7.0, 5 mM). This antioxidant 

concentration was selected based on a few factors including their typical concentrations 

in foods, their permitted levels in foods, and their solubility characteristics (Aguilar et al., 

2015; Bele, Matea, Raducu, Miresan, & Negrea, 2013).  

In one study, the effect of antioxidant concentration was examined by using 

ascorbic acid dissolved at various levels in the aqueous phase (15, 50, 100, 300, and 600 

M), with the concentration of the other ingredients remaining the same as described 

above. A control emulsion was prepared that did not contain antioxidant. For the control 
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and all antioxidant emulsions, a corresponding blank emulsion was also prepared that 

contained no curcumin. All emulsions were stored in a temperature-controlled incubator 

(55 oC, quiescent conditions) to accelerate degradation, and samples were periodically 

collected for analysis. 

5.2.3 Appearance 

Emulsion appearance was recorded using a digital camera, while instrumental 

optical properties were quantified using colorimetry (ColorFlex® EZ, HunterLab, 

Reston, VA). In this dual-beam spectrophotometer, sample is illuminated by artificial 

daylight (400-700 nm) flashes using a xenon lamp. Curcumin-enriched emulsion was 

poured into a transparent petri dish, and a black cup was utilized as a background. The 

sample was then illuminated and observed using simulated daylight conditions (D65/10). 

The intensity of the reflected light was measured and converted to CIE L*a*b* values. 

Curcumin degradation in the emulsions was monitored by determining the b* value, 

which provides a measure of the intensity of the yellow color.  

5.2.4 Curcumin concentration measurements 

Curcumin quantification was done as described previously. A portion of emulsion 

(0.3 mL) was mixed with acidified DMSO (5.7 mL) solution and the resulting mixture 

was vortexed. A small volume of hexane (1 mL) was then added and the contents were 

mixed to solubilize the curcumin within this organic solvent. This mixture was then 

centrifuged (500  g for 15 min) and the lower layer, which contained the curcumin, was 

collected. The absorbance of this solution was measured at 433 nm using a UV-visible 
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spectrophotometer (Cary 100 UV-Vis, Agilent Technologies). The final absorbance was 

obtained after comparing with the corresponding blank measurement. A linear calibration 

curve (r2 = 0.99) was prepared using DMSO solutions of known curcumin concentration. 

The concentration of curcumin extracted from the samples was then determined by 

comparing the measured absorbance to the calibration curve. 

5.2.5. Particle characterization 

The droplet size characteristics were determined by static light scattering 

(Mastersizer 3000, Malvern Instruments Ltd., Malvern, Worcestershire, UK). The droplet 

charge characteristics (-potential) were determined using electrophoresis (Zetasizer 

Nano ZS series, Malvern Instruments Ltd.). Samples were diluted with phosphate buffer 

(10 mM, same pH as original sample) to obtain a light scattering signal in an appropriate 

range for measurement. 

5.2.6. Particle morphology 

Emulsion morphology was studied using a fluorescence microscope at a 

magnification of 600× (Nikon D-Eclipse C1 80i, Nikon, Melville, NY, USA). For the 

analyses, a small volume of sample was centered on a microscope slide and then covered 

using a glass slip. Samples were excited at 488 nm using a laser and images were 

recorded and analyzed using the instrument software (NIS-Elements, Nikon, Melville, 

NY).  The microscopy images provided information about emulsion microstructure and 

curcumin distribution (since curcumin naturally fluoresces under the conditions used).  
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5.2.7. Statistical analysis 

Experiments were carried out using two replicates, with two measurements being 

made on each replicate (leading to four total measurements). The mean and standard 

deviations were calculated using Microsoft Excel. Significant differences among 

treatments were evaluated using the Tukey multiple-comparison test at a significance 

level of p ≤ 0.05 (SPSS ver.19, SPSS Inc., Chicago, IL, USA). 

5.3 Results and discussions 

5.3.1. Impact of Antioxidants on appearance of curcumin loaded emulsions 

Curcumin-enriched emulsions had a milky, bright yellow appearance (Figure 26). 

All emulsions looked alike after preparation and it was not possible to visually 

differentiate the control and antioxidant-containing emulsions. The majority of the 

antioxidants used in this study were colorless and hence did not change the optical 

characteristics of the emulsions. The -tocopherol, however, had a reddish-brown color 

in its pure form, but it did not significantly affect the color of the curcumin emulsions 

because it was used in such a highly diluted form (600 M). Visually, the intensity of the 

yellowness of all the emulsions faded after storage. Fading was especially prevalent in 

the control and -tocopherol-containing emulsions when compared to those containing 

the other antioxidants. It was difficult, however, to draw a visual difference within these 

groups. 



 

109 

 

 

Figure 26. Photographs of curcumin-loaded oil-in-water emulsions incorporated with 

different antioxidants. Emulsions composition: oil 10 wt.%, curcumin 0.01 wt.%, Quillaja 

saponin extract 1 wt.%, antioxidants (600 M), and rest phosphate buffer (pH 7.0, 5 

mM). 

 

The instrumental analysis of color revealed minute differences in color 

characteristics. As shown in Figure 27. A, the yellowness (b*) of all emulsions was 

quantitively similar except for the ascorbyl palmitate emulsion for which the b* value 

was slightly lower. When stored at 55 C, the drop in yellowness followed a higher rate 

during the initial period and it became slower eventually later in the storage. The visual 

analysis was confirmed by colorimetry study which showed that color fading in the -

tocopherol emulsion was the highest followed by the control. Emulsions containing 

ascorbic acid, Trolox, and ascorbyl palmitate incurred lower b* reduction at the end of 

storage (Figure 27. B) with retention of 89.5, 89.8, and 88.9% respectively. While the 

DAY 1 DAY 17
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extent of yellowness retention in the control and -tocopherol emulsion was 76.7 and 

72.7% respectively. As color coordinates measured in this analysis result due to exposure 

to light in a wide visible spectrum range (400-700 nm), lowering in b* value could only 

suggest possible degradation of curcumin in emulsions. To specifically quantify the 

amount of curcumin lost during storage, a spectrophotometric analysis was done as 

explained below.  

 

Figure 27. Impact of antioxidant type on change (A) and retention (B) in tristimulus 

color coordinate (b*) of curcumin-loaded oil-in-water emulsions during storage at pH 7 

and 55 C. Antioxidant concentration, 600 M. 

5.3.2. Impact of antioxidant type on chemical stability of curcumin 

Previously, the degradation of emulsified curcumin has been found to depend on 

the type of emulsifier used to coat the curcumin-loaded oil droplets. For instance, quillaja 

saponin-stabilized emulsions exhibited a greater curcumin loss than caseinate-, Tween 

80-, or gum arabic-stabilized ones (Mahesh Kharat et al., 2018). This was attributed to 

several factors including the ability of the saponins to promote peroxidation reactions, as 

well as the presence of impurities (like metal ions) that could enhance the oxidative or 
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hydrolytic degradation of curcumin. The food industry, however, has been promoting the 

use of natural emulsifiers in commercial foods. It is, therefore, important to find 

strategies to mitigate curcumin degradation when it is used with natural emulsifiers that 

may promote curcumin degradation. Redox active antioxidants have been shown to 

inhibit the breakdown of curcumin dispersed within aqueous solutions (Nimiya et al., 

2015).  

Since curcumin can be distributed amongst oil, water, and interfacial domains in 

emulsions, we studied the effect of water soluble (ascorbic acid, and Trolox), oil soluble 

(-tocopherol), and amphiphilic (ascorbyl palmitate) antioxidants. It was found that 

water soluble antioxidants were more effective in protecting curcumin from degradation 

than interfacial or oil soluble antioxidants (Figure 28. A). At the start, all the emulsions 

contained a fairly similar amount of curcumin: 100 g curcumin/mL of emulsion, except 

the ascorbyl palmitate one which contained 96 g curcumin/ mL of emulsion. According 

to colorimetric analysis, curcumin degradation occurred rapidly within the control and -

tocopherol-containing emulsions during the first few days of storage but then degraded 

slower during the remainder of storage. On the other hand, ascorbic acid-, Trolox-, and 

ascorbyl palmitate-containing emulsions followed a slower curcumin loss in the later 

stages of storage. This result clearly highlights the importance of antioxidant location on 

their efficacy to protect curcumin from degradation.  

Previous studies have shown that curcumin is highly resistant to degradation 

when dissolved in oil, but degrades relatively quickly when dissolved in aqueous 

solutions, especially under neutral or alkaline conditions (Kharat et al., 2019). This result 

suggests that curcumin degradation mainly occurs in the aqueous phase of oil-in-water 
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emulsions. It should be noted that even though curcumin is a relatively hydrophobic 

molecule (LogP  3), a fraction of it will be located within the aqueous phase of an oil-

in-water emulsion. Moreover, curcumin molecules close to the surfaces of the lipid 

droplets will also be in proximity to the surrounding aqueous phase. The curcumin 

molecules surrounded by, or close to, water molecules may therefore be more susceptible 

to degradation. This phenomenon would explain why higher amounts of curcumin (82.2 

and 82.6%) remained in the emulsions containing ascorbic acid and Trolox, because these 

two antioxidants were mainly located within the aqueous phase and could therefore 

protect the curcumin more effectively (Figure 28. B).  

Ascorbyl palmitate is a surface-active antioxidant because it contains a 

hydrophobic palmitate group that prefers being surrounded by oil phase and a hydrophilic 

ascorbate group that prefers to be surrounded by aqueous phase. The antioxidant group 

on ascorbate palmitate is similar to that of ascorbic acid, and therefore it might be 

expected to exhibit a similar antioxidant activity if it is located in the region where 

oxidation occurs. Curcumin retention in the ascorbyl palmitate-containing emulsions was 

around 79.5%, which was only slightly lower than that of the water-soluble antioxidant-

containing emulsions (Figure 28. B). This result suggests that curcumin degradation may 

have occurred within the aqueous phase, but close to the oil droplet interface, which is 

consistent with studies that have shown that degradation occurs more quickly in 

emulsions with a higher surface area (Zou et al., 2015). 
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Figure 28. Impact of antioxidant type on change (A) and retention (B) in curcumin 

concentration of oil-in-water emulsions during storage at pH 7 and 55 C. Antioxidant 

concentration, 600 M 

 

Oxidative degradation of curcumin is considered to have some similarities to lipid 

oxidation, where hydrogen is first abstracted from the phenolic group to form a phenolic 

radical before oxygen addition (O. N. Gordon et al., 2015; Nimiya et al., 2015). Studies 

have shown that -tocopherol can act as a prooxidant, especially when used without co-

antioxidants (Kontush, Finckh, Karten, Kohlschutter, & Beisiegel, 1996). Under such 

conditions, singlet-oxygen can oxidize tocopherol to a tocopheroxyl radical that can then 

abstract hydrogen from the phenolic group in curcumin and promote its degradation 

(Combs & McClung, 2017). Additionally, hydrophobic -tocopherol molecules are 

primarily located within the oil droplets where curcumin is already relatively stable to 

chemical degradation, and hence it is not very effective as an antioxidant in this kind of 

system.  
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5.3.3. Impact of antioxidant concentration on chemical stability of curcumin 

After studying the effectiveness of various antioxidants, we also considered the 

effect of antioxidant concentration on the degradation of curcumin. We decided to carry 

out this experiment using ascorbic acid as it is naturally found in many foods, and it is 

generally recognized as safe (GRAS) by the USDA for addition in numerous food and 

beverage products. The amount of curcumin used was about 100 g/mL of emulsion at 

the start of the experiment. In all emulsions, there was a rapid loss of curcumin during the 

initial storage period, followed by a more gradual loss at later times (Figure 29. A). The 

rate of curcumin degradation decreased as the ascorbic acid concentration in the 

emulsions increased. As shown in Figure 29. B, curcumin retention at the end of the 

experiment decreased in the order: AA, 600 M (82.2%) ~ AA, 300 M (82.1%) > AA, 

100 M (71.1%) ~ AA, 50 M (71.4%) > AA, 15 M (64.3%) > control (57.9%). 

Previous in vitro studies have reported that ascorbic acid was effective at protecting 

curcumin from degradation in aqueous solutions (Nimiya et al., 2015). Presumably, 

increasing the antioxidant concentration enhances its protective effects by scavenging 

more free radicals that initiate curcumin degradation or by donating more protons to the 

curcumin radical to regenerate curcumin. This effect, however, reached a plateau after 

which adding more antioxidant did not increase curcumin retention. For instance, the 

final curcumin concentration in emulsions with 300 and 600 M ascorbic acid was 83.0  

0.6 g/ mL and 82.6  1.9 g/ mL, respectively.  
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Figure 29. Impact of antioxidant concentration on curcumin concentration (A) and 

retention (B) in oil-in-water emulsions during storage at pH 7 and 55 C. 

5.3.4. Impact of antioxidant addition on physical stability of curcumin-loaded 

emulsion 

The particle size characteristics of the curcumin-enriched emulsions were similar 

to those of the corresponding blank emulsions, indicating that the incorporation of 

curcumin into the oil phase did not influence droplet formation during homogenization 

(data not shown). As shown in Figure 30. A, the droplets were relatively smaller (~ 0.1 

m) in the control emulsion, as well as in all antioxidant-containing emulsions. This 

suggests that quillaja saponins, which is as a natural plant-based emulsifier, has 

comparable performance to synthetic polysorbates and animal-based milk proteins 

(Uluata, McClements, & Decker, 2015). The mean droplet diameter of the ascorbic acid- 

and Trolox-containing emulsions was slightly less than the others. This suggests that 

these water-soluble surfactants may have been able to enhance droplet disruption during 

homogenization or prevent droplet flocculation after homogenization. For instance, the 

presence of more ions in the solution may have decreased the thickness of the interfacial 
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double layer. As a result, it was easier for negatively charged saponins to approach and 

adsorb onto the oil-water interface (W. J. Wu, Hu, Guo, Yan, Chen, & Cheng, 2015). 

Earlier reports have suggested similar results where addition of salts enhanced the 

adsorption of anionic surfactants (Rao & He, 2006). Moreover, a strong negative charge 

was generated at the interface at pH 7.0 due to the adsorbed anionic saponin molecules 

(pKa ~ 3.25), which may have kept the oil droplets from aggregating (Figure 30. B).  

The -potentials for the control, ascorbic acid, Trolox, ascorbyl palmitate, and -

tocopherol emulsions were: -48.2  3.2, -48.7  2.2, -49.6  2.9, -55.7  2.3, and -49.3  

2.5 mV, respectively. The significantly higher negative charge for the emulsion 

containing ascorbyl palmitate is consistent with its adsorption to the droplet surfaces in 

the form of an ascorbate ion. After 17 days of storage at 55 C, the surface-weighted 

droplet diameter did not change significantly except for the emulsions containing the 

water-soluble antioxidants. The surface potential of the oil droplets become more 

strongly negative after storage, which may have been due to the formation of some 

surface-active reaction products.  
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Figure 30. Effect of antioxidant type (A) and ascorbic acid concentration (B) on the 

mean droplet diameter (D32) of MCT oil-in-water emulsions produced using a high-

pressure homogenizer (microfluidizer). 

5.3.5. Microstructure analysis 

Changes in the emulsion droplet microstructure during storage were also 

monitored using confocal microscopy (Figure 31). All emulsions consisted of small oil 

droplets uniformly distributed throughout the images. Green fluorescence staining 

confirmed that most of the curcumin was encapsulated inside the oil droplets. At the end 

of storage, bigger droplets were observed in all the emulsions confirming the occurrence 

of coalescence. Coalescence may have been promoted because droplet-droplet collisions 

are more frequent at higher storage temperatures (55 C) due to the decrease in viscosity. 

The intensity of the green color was lower in the control and ascorbyl palmitate-

emulsions after storage, which suggests there was less curcumin present, thereby 

agreeing with the spectrophotometric studies (Figure 28).  
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Figure 31. Micrographs of curcumin-loaded emulsions added without and with different 

antioxidants at Day 1 and Day 17 (pH 7, 55 C). Scale bars represent 20 m. 

5.4 Conclusions 

In summary, this study showed that antioxidants can be utilized to improve the 

chemical stability of curcumin in oil-in-water emulsions. The type and amount of 

antioxidant used impacted the rate and extent of curcumin degradation. This information 

may be helpful for developing emulsion-based delivery systems for curcumin that could 

be used in foods, supplements, or pharmaceutical products. Water-soluble antioxidants, 

ascorbic acid and Trolox, were highly effective as they could suppress oxidative 

degradation of curcumin in the aqueous phase. Ascorbic acid may be the best choice for 

commercial applications because it is already naturally present in many foods or can be 

added as a label-friendly ingredient. Furthermore, our study showed that an antioxidant 

concentration of 300 M or more may be required for maximum curcumin stabilization. 

On the other hand, oil soluble -tocopherol was the least effective in protecting curcumin 

and hence its utilization may not be beneficial. 

 

control ascorbic acid trolox ascorbyl palmitate a-tocopherol 

Day 1

Day 17
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CHAPTER 6 

FABRICATION AND CHARACTERIZATION OF NANOSTRUCTURED LIPID 

CARRIERS (NLC) USING A PLANT-BASED EMULSIFIER: QUILLAJA 

SAPONINS 

6.1. Introduction 

In past chapters, we studied use of nanoemulsions to encapsulate and stabilize 

curcumin. Nanoemulsions can be used to deliver both hydrophilic (water-soluble) and 

hydrophobic (oil-soluble) bioactives by dispersing them in either the continuous or 

dispersed phases, respectively. Their rheological properties can be manipulated by 

changing their composition (fat content, salts, thickeners) and microstructure (droplet 

size). Also, their optical properties can be manipulated from clear to opaque by 

controlling the droplet size and concentration. Nanoemulsions also tend to have good 

long-term stability because the small droplet size reduces the tendency for gravitational 

separation and aggregation to occur. The small size of the lipid droplets in nanoemulsions 

can be used to increase the oral bioavailability of encapsulated hydrophobic bioactives 

(McClements & Xiao, 2012; Silva, Cerqueira, & Vicente, 2012). Another advantage of 

nanoemulsions is that they can be produced economically on a large scale using 

conventional processing methods such as high-pressure homogenization and 

microfluidization. Moreover, nanoemulsions can be simply incorporated into a broad 

range of foods, including beverages, creamers, sauces, dressings, and desserts.  

Despite their various advantages, there are some drawbacks to using 

nanoemulsions for encapsulation and delivery of bioactive agents. In particular, their 
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small size, high specific surface area, and fluid interior make it difficult to protect 

encapsulated components from chemical degradation induced by components within the 

surrounding aqueous phase or to control their release profile (Figure 32) (McClements, 

Decker, & Weiss, 2007). For example, β-carotene and curcumin were shown to undergo 

chemical degradation in nanoemulsions during storage (Mahesh Kharat et al., 2018; 

Yuan, Gao, Zhao, & Mao, 2008). In principle, some of these disadvantages can be 

overcome by crystallizing the lipid phase inside the droplets to create SLNs (Thrandur 

Helgason, Salminen, Kristbergsson, McClements, & Weiss, 2015; Salminen et al., 2019). 

SLNs have a similar structure to nanoemulsions but the lipid particles are completely 

solidified at ambient temperature (Salminen, Gommel, Leuenberger, & Weiss, 2016; 

Santos, Ribeiro, & Santana, 2019). It has been hypothesized that crystallization of the 

lipid phase would increase the stability of the lipid droplets to coalescence, enhance the 

stability of the encapsulated bioactives to chemical degradation, and lead to slower 

release profiles (McClements, 2005; Salminen et al., 2016).  

 

Figure 32. Potential loss of bioactive agents by simple diffusion from liquid oil droplets 

in nanoemulsions (a) or expulsion from homogeneous crystal matrices in solid lipid 

nanoparticles (b).  Potential entrapment of bioactives in heterogeneous crystal matrix in 

nanostructured lipid carriers (c). Modified from (Müller et al., 2002) 
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In practice, however, these beneficial attributes of SLNs may not be realized 

(Weiss et al., 2008). When the oil droplets in a hot nanoemulsion are cooled during the 

formation of a SLN, the lipid phase can form a highly regular crystalline phase that can 

causes the lipid nanoparticles to change their morphology from spherical to irregular. As 

a result, there is an increase in the surface area of the lipid nanoparticles, which can 

promote extensive aggregation because some hydrophobic patches are exposed (T. 

Helgason, Awad, Kristbergsson, McClements, & Weiss, 2009). Moreover, the highly 

ordered structure of the crystals within the solidified lipid nanoparticles can promote the 

expulsion of the bioactives (Das, Ng, & Tan, 2012), which makes them more prone to 

chemical degradation (Qian, Decker, Xiao, & McClements, 2013). Changes in particle 

morphology and bioactive expulsion are often a result of a polymorphic transition of the 

lipid phase, from the less ordered α-form, to the more ordered β-form (Mehnert & Mäder, 

2001; Salminen et al., 2016).  

Another kind of colloidal delivery system, nanostructured lipid carriers (NLCs), 

was developed by the pharmaceutical industry to overcome the shortcomings of both 

nanoemulsions and SLNs (Santos et al., 2019). NLCs are formulated from fats that have a 

broad melting range, which leads to the formation of a solidified lipid phase containing 

imperfections (Figure 32) (Muller, Radtke, & Wissing, 2002). The more irregular 

packing of the lipid molecules prevents particle morphology changes and bioactive 

expulsion. Thus, NLCs are able to overcome some of the disadvantages of nanoemulsions 

and SLNs (Müller et al., 2002). For example, it has been shown that the degradation of β-

carotene was only about 47.3% in NLCs but 94.8% in nanoemulsions (Zhang, Hayes, 

Chen, & Zhong, 2013). Another recent study also showed that NLCs could be used to 
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effectively encapsulate and protect β-carotene (Pezeshki et al., 2019). In another study, it 

was found that the bioaccessibility of encapsulated quercetin in NLCs (52.7%) was only 

slightly lower than that in nanoemulsions (58.4%), but considerably higher than that in 

SLNs (39.7%) (Aditya et al., 2014). Food-grade NLCs have also been developed to 

encapsulate various other hydrophobic nutraceuticals and vitamins (Babazadeh, 

Ghanbarzadeh, & Hamishehkar, 2016; Karimi, Ghanbarzadeh, Hamishehkar, Mehramuz, 

& Kafil, 2018; Mohammadi, Pezeshki, Abbasi, Ghanbarzadeh, & Hamishehkar, 2017; 

Seo, Lee, Chun, Park, Lee, & Kim, 2019). Recently, the fabrication, characterization, and 

application of NLCs in foods has been reviewed (Tamjidi et al., 2013).  

The objective of the current research was to examine the feasibility of formulating 

food-grade NLCs using hydrogenated vegetable oil as a lipid phase and quillaja saponin 

as a natural emulsifier (Reichert, Salminen, & Weiss, 2019). Unlike partially 

hydrogenated oils (PHOs), fully hydrogenated oils contain a negligible amount of trans 

fats. Moreover, since they are comprised of a range of fatty acids with different melting 

points, we hypothesize that they are excellent candidates to fabricate stable NLCs that 

could replace delivery systems fabricated from PHOs. These NLCs may therefore be 

useful for application in functional foods and beverages. 

6.2 Materials and methods 

6.2.1 Materials 

Fully hydrogenated oils (coconut, HCO; cottonseed, HCtO; palm, HPO; palm-

kernel, HPKO; and soybean, HSO) were a gift from Cargill (Charlotte, NC). The major 

fatty acids present in HSO, which was used to assemble the NLCs, were: C16:0, 11.9%; 
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C18:0, 85.8%; C18:1, 0.4%; and C20:0, 0.6%. Sodium hydroxide (NaOH), sodium phosphate 

anhydrous dibasic, and sodium phosphate monobasic were obtained from Fisher 

Scientific (Fair Lawn, NJ). Hydrochloric acid (HCl) was purchased from the Sigma-

Aldrich Company (St. Louis, MO). Q-Naturale 200® (QN), an extract from Quillaja 

Saponaria, was obtained from Ingredion Inc. (Westchester, IL). The manufacturer 

reported that this ingredient had a saponin content between 10‐ and 30 wt. %. All solvents 

and reagents were of analytical grade. Deionized water obtained from a water purification 

system (Nanopure Infinity, Barnstaeas International, Dubuque, IA) was used for all the 

experiments. 

6.2.2. Differential scanning calorimetry (DSC) 

The thermal behavior of the various fats was characterized using DSC (Q100, TA 

Instruments, New Castle, DE). A small amount (~ 5 mg) of sample was weighed in an 

aluminum pan and then sealed hermetically with an aluminum lid. A hermetically sealed 

empty pan was used as a reference. The heating and cooling rate employed were both 

10 °C/min. The onset temperatures of crystallization and melting of the fat phase were 

determined using the instrument software (TA Universal Analysis 2000). 

6.2.3 Preparation of NLC 

Quillaja saponin (emulsifier) was filtered through Whatman 41 paper to remove 

any insoluble matter. An aqueous phase was then prepared by mixing the filtered saponin 

with phosphate buffer (10 mM, pH 7.0) and then heating to 75 °C with continuous stirring 

(75 rpm). The oil phase consisted of completely hydrogenated soybean oil (30 wt. %) 
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which was melted prior to use. The samples were maintained at a hot temperature 

throughout the homogenization process to avoid fat phase crystallization. First, a coarse 

emulsion was prepared by adding the heated aqueous phase to the heated melted fat phase 

and then blending for 2 min using a hand-held mixer (M133/1281‐0, Biospec Products, 

Inc., ESGC, Switzerland). The sample was maintained at 75 °C during mixing to avoid 

fat crystallization. The hot coarse emulsion (75 °C) was then passed through a single-

channel microfluidizer (M110 L, Microfluidics, Newton, MA) under a pressure of 

12,000 psi to obtain a nanoemulsion. The internal surfaces of the microfluidizer were 

brought to the required temperature by passing hot water through the instrument before 

introducing the coarse emulsion. The temperature of the hot nanoemulsion leaving the 

microfluidizer was around 63 °C, which was still well above the crystallization point of 

the emulsified oil phase. Finally, the NLCs were obtained by cooling the hot 

nanoemulsion. 

The hot microfluidization process was optimized by examining the impact of a number of 

the operating parameters on nanoemulsion formation: 

1. Effect of number of passes: The nanoemulsion obtained after the first pass was 

reheated to 75 °C and then passed through the microfluidizer again. 

2. Effect of cooling rate and stirring: The hot nanoemulsion obtained after one pass was 

cooled to 10 °C with varying cooling rates: fast (10 °C/min, using an ice bath), moderate 

(5 °C/min, using a water bath), and slow (1 °C/min, first by natural air-cooling and then 

using cold water). The effect of stirring was examined by applying no stirring or stirring 

(75 rpm) conditions to the nanoemulsions during the cooling process. 
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3. Effect of emulsifier concentration: This was studied to find the optimum emulsifier 

concentration to form relatively small and stable lipid nanoparticles during 

microfluidization. NLCs were therefore prepared with a fixed HSO content (30 wt %) and 

varying Quillaja saponin content (3, 6, 9, and 12 wt. %). The remainder of the system 

consisted of phosphate buffer (67, 64, 61, and 58 wt. % respectively). 

6.2.4 Droplet size and charge measurements 

The mean particle size and particle size distribution of the NLCs was obtained 

using a laser diffraction instrument (Mastersizer 3000, Malvern Instruments Ltd., 

Malvern, Worcestershire, UK). The refractive indices of the aqueous and lipid phases 

used in data interpretation were 1.33, and 1.60, respectively and the absorption 

coefficient was assumed to be 0.001. Phosphate buffer (10 mM, pH 7.0) was used as a 

dispersant to avoid multiple scattering effects. NLC samples were thoroughly mixed by 

inverting the container a few times and then added to the buffer solution to achieve a 

laser obscuration value of around 4.5. The particle size was reported as the volume-

weighted mean diameter (D43) as well as Sauter mean diameter (D32). 

The ζ-potential of the particles in a colloidal dispersion provides an indication of their 

electrical surface potential. The ζ-potential of the particles in the NLC suspensions was 

measured using a laser Doppler micro-electrophoresis technique (Zetasizer Nano ZS 

series, Malvern Instruments Ltd. Worcestershire, UK). Samples were diluted (2000×) 

with phosphate buffer (10 mM, pH 7.0) to avoid multiple scattering. 
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6.2.5. Thermal analysis of NLC and estimation of solid fat content 

The melting and crystallization of the emulsified lipid particles within the NLC 

suspensions was studied using the DSC method (described in section 5.2.2. ). The solid 

fat content (SFC) versus temperature profile of the NLCs was calculated from the relative 

area under the heat flow versus temperature profile. The SFC in the lipid phase (ϕ) was 

calculated as a function of temperature (T) using the following expression: 

(T) =
∫ 𝑄(𝑇)𝑑𝑇

𝑇

𝑇1

∫ 𝑄(𝑇)𝑑𝑇
𝑇2

𝑇1

 

Here, Q(T) is the heat released at temperature T as a result of the phase transition, 

and T1 and T2 are the temperatures at which crystallization begins and ends respectively 

(McClements, Dungan, German, Simoneau, & Kinsella, 1993). 

6.2.6. Turbidity measurements 

The turbidity of a colloidal dispersion depends on the refractive index of the 

particles and can therefore be used to provide information about changes in the physical 

state of lipid nanoparticles: solid fat has a higher refractive index than liquid oil. To study 

this, a quartz cuvette containing diluted NLC (6% QN) sample was heated in a cell 

holder, and the turbidity (at 600 nm) was recorded using a spectrophotometer (Cary 100 

UV–Vis, Agilent Technologies) during heating and cooling cycles carried out at a rate of 

10 °C min−1. 
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6.2.7. Rheology analysis 

The tendency for lipid nanoparticles to aggregate in colloidal dispersions can be 

assessed by measuring changes in the rheological properties of the systems. For this 

reason, the shear viscosity of the NLC suspensions was characterized using a dynamic 

shear rheometer equipped with a cup-and-bob measurement cell (Kinexus Rheometer, 

Malvern Instruments Ltd., MA, U.S.A.). A shear rate from 0.1 to 100 s− 1 was applied to 

samples incubated at 25 °C. The instrumental software (Kinexus rSpace, version 1.30, 

Malvern Instruments Ltd., MA) was used to control the measurement parameters and 

acquire the data. The apparent shear viscosity results were reported at 10 s− 1. 

6.2.8. Color measurements and physical appearance 

The tristimulus color coordinates of the NLC suspensions were determined using 

a benchtop instrumental colorimeter (ColorFlez EZ, HunterLab, Reston, VA). An aliquot 

of NLC suspension (~ 10 mL) was placed in a transparent disposable petri dish and the 

sample was exposed to an illuminant/observer combination of D65/10. A black cup was 

used as a background to obtain the L* values (lightness) of the samples. 

6.2.9. Aggregation stability 

The stability of the NLCs to aggregation was studied at a number of selected 

temperatures where the particles were believed to have different physical states, which 

was identified by DSC analysis. After preparation, the final nanoemulsion was cooled to 

specific temperatures at which the lipid nanoparticles were liquid (40 °C), partially 

crystalline (32–36 °C), or fully crystalline (20 °C). NLC suspensions were stirred 
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(75 rpm) continuously at these temperatures for 24 h and then the particle size was 

analyzed as described in section 2.4. 

6.2.10. Transmission electron microscopy (TEM) 

NLC samples were diluted with Milli-Q water at a ratio of 1:5000, stained with 

uranyl acetate, and then dried on carbon film (CF400-Cu-UL, Electron Microscopy 

Science, Hatfield, PA). Their structure was then examined using a TEM instrument 

(JEOL JEM-2200FS). 

6.2.11. Temperature-dependent optical microscopy analysis 

The temperature-dependence of the phase transitions in the NLCs were studied 

using optical microscopy. For this, NLC suspensions (30% HSO, 6% QN, 64% phosphate 

buffer) were formulated from coarse emulsions using a hand-held blender but not passed 

through the microfluidizer (see Section 5.2.3 ). Microfluidization was not used so that it 

was possible to obtain lipid particles large enough to observe using optical microscopy. A 

glass slide containing the diluted sample was placed inside a covered heating stage 

(Linkam LTS120, Tadworth, Surrey, UK) and equilibrated at 70 °C for 5 min. The 

temperature was then decreased gradually to 30 °C using a temperature control device 

(Linkam PE94). After equilibration at specific temperatures, polarized light images were 

captured on a microscope (Nikon D-Eclipse C1 80i, Nikon, Melville, NY, USA) 

equipped with a 40× objective lens and 10× eyepiece. Image analysis software (NIS-

Elements and EZ-CS1, Nikon, Melville, NY) was used to record the microstructure of the 

samples. 
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6.2.12. Statistical analysis 

Experiments were carried out in replicates (minimum 2). At least two samples 

were freshly prepared and were measured twice in each replicate. Microsoft Excel was 

used to calculate the mean and the standard deviations. The significant differences among 

treatments were evaluated using the Tukey multiple-comparison test at a significance 

level of p ≤ 0.05 (SPSS ver.19, SPSS Inc., Chicago, IL, USA). 

6.3 Results and discussions 

6.3.1. Thermal behavior of lipid phase 

The crystallization and melting characteristics of a fat depend on its fatty acid 

composition. Initially, we therefore characterized the thermal behavior of a number of 

hydrogenated bulk fats to identify the one that had the most appropriate 

melting/crystallization properties for forming NLCs. The bulk fats examined included 

hydrogenated soybean oil, palm oil, cottonseed oil, coconut oil, and palm kernel oil: 

HSO, HPO, HCtO, HCO, and HPKO, respectively. The HSO, HPO, and HCtO all 

showed fairly similar behavior: there was a single endothermic peak during 

crystallization and two exothermal peaks during melting (see Appendix: Figure S8). 

Based on previous studies, the crystallization peak observed during cooling was 

associated with the conversion of the liquid melt into fat crystals in either the α- 

and/or β’-polymorphic form (Nelis, Declercle, De Neve, Moens, Dewettinck, & Van der 

Meeren, 2019). The two melting peaks seen during heating were associated with melting 

of the α/β′-form crystals (lower temperature) and then melting of the β-form crystals 

(higher temperature), suggesting that there was a α/β′-to-β transformation during 
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incubation at the lower temperatures. The crystallization and melting peaks were broader 

for the bulk HCO and HPKO, possibly due to the presence of a wider range of lipids with 

different melting points, which is in agreement with previous studies (Nassu & Guaraldo 

Gonçalves, 1999). The enthalpy changes and onset temperatures for the melting and 

crystallization transitions of the bulk fats obtained from the DSC data are summarized 

in Table 9. 

Table 9. Enthalpy changes and onset temperatures for the melting and crystallization of 

hydrogenated bulk fats. 
 

Melting enthalpy 

(J/g) 

Crystallization 

enthalpy (J/g) 

Onset temperature (°C) 

Melting Crystallization 

HCO 108 94 16.1 16.1 

HCtO 132 120 48.9 46.9 

HPKO 100 84 22.3 24.8 

HPO 115 119 48.2 44.0 

HSO 97 106 51.7 48.7 

 

Ideally, we wanted to use a lipid phase that would remain in the solid state in the 

NLCs when they were stored at ambient temperature. Secondly, it is better to choose a 

hydrogenated fat that has high stearic acid content and low concentration of other 

saturated fats. This is because stearic acid is known to be non-atherogenic (Bonanome & 

Grundy, 1988) and it does not pose a risk for heart disease when compared to other 

saturated fatty acids (Hunter, Zhang, & Kris-Etherton, 2010; L. Wang et al., 2003). For 

these reasons, we used the fully hydrogenated soybean oil for the remainder of the 

experiments. 
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6.3.2. Optimizing NLC formation 

6.3.2.1. Number of passes through microfluidizer 

A hot oil-in-water nanoemulsion was prepared from the HSO as a template for 

formation of the NLCs. Ideally, this nanoemulsion should contain small uniform lipid 

droplets that are stable to aggregation and gravitational separation prior to NLC 

formation. Initially, we therefore examined the impact of the number of passes of the hot 

nanoemulsion through the microfluidizer. Previous studies have shown that increasing 

the number of times a nanoemulsion is passed through a microfluidizer decreases the 

particle size and polydispersity (Qian & McClements, 2011). We found that there was a 

decrease in mean particle diameter when the hot nanoemulsion obtained after the first 

pass was recirculated through the microfluidizer. But, a cream/oil layer was observed at 

the top of the nanoemulsion after repeated circulation, which was presumably because the 

relatively high homogenization temperature used (75 °C) promoted droplet coalescence. 

For this reason, the coarse emulsions were only passed through the microfluidizer once in 

the remainder of the experiments. Despite this, the nanoemulsions obtained containing 

relatively small droplet sizes and monomodal particle size distributions, provided 

sufficient emulsifier was used. 

6.3.2.2. Cooling rate and stirring conditions 

Another factor expected to impact the formation of stable NLCs was the 

conditions employed to cool the hot nanoemulsions and promote lipid phase 

crystallization. The impact of cooling rate and stirring conditions on the formation and 

stability of the NLCs was therefore examined. We hypothesized that the cooling rate 
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might impact the stability of the nanoemulsions to partial coalescence. Partial 

coalescence leads to the formation of clumps of particles because crystals from one 

droplet penetrate into the liquid region of another droplet, thereby forming a link between 

them (Fredrick, Walstra, & Dewettinck, 2010). We therefore anticipated that faster 

cooling would lead to smaller particles being formed in the NLCs because the lipid phase 

would remain in a partially crystalline state for a shorter time, thereby limiting partial 

coalescence. We also hypothesized that stirring would increase the collision frequency of 

the oil droplets during cooling, which would again promote partial coalescence (Fredrick 

et al., 2010). 

In practice, no significant difference was observed in the mean particle diameter 

of the NLC suspensions (6% QN) when the hot nanoemulsions were cooled at different 

cooling rates (i.e., slow, moderate, and fast = 1, 5, and 10 °C /min) with or without 

stirring (Appendix, Figure S9). Even so, the NLCs formed by cooling at the moderate 

rate had slightly smaller mean particle diameters: D43 = 0.525 ± 0.017 μm. For this reason, 

NLCs were prepared by cooling at a moderate rate under non-stirring conditions in the 

remainder of the studies, as these were the most practical and convenient preparation 

conditions. The reason that cooling conditions had little impact of the stability of the 

NLCs may have been because the interfacial coating formed around the lipid particles by 

the quillaja saponin prevented partial coalescence. Indeed, previous studies have shown 

that certain types of emulsifier are able to prevent the fat crystals from one droplet 

penetrating into another droplet (Goibier, Lecomte, Leal-Calderon, & Faure, 2017; 

Thanasukarn, Pongsawatmanit, & McClements, 2004). 
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Figure 33. Effect of emulsifier concentration on the mean particle diameter (A) and 

particle size distribution (B) of 30 wt% fully hydrogenated soybean oil-in-water 

emulsions prepared using a high-pressure homogenizer (microfluidizer). 

 

6.3.2.3. Effect of emulsifier concentration on droplet size 

The mean particle diameter of the NLCs decreased as the concentration of 

Quillaja saponin used to prepare them was increased from 3 to 12 wt. % (Figure 33.A). 

The reduction in particle size was greatest (from 0.82 ± 0.17 to 0.53 ± 0.06 μm) when the 

emulsifier concentration was increased from 3 to 6 wt. %, but then did not change 

considerably when the emulsifier level was raised further. This suggests that the lipid 

droplet surfaces were completely covered by emulsifier molecules above this level and 

that the microfluidizer could not break down the droplets any further. 

At the lowest Quillaja saponin concentration used, the particle size distribution was 

multimodal, which suggests that there was insufficient emulsifier present to cover all the 

droplets formed inside the microfluidizer. Conversely, at higher emulsifier levels, all the 

NLCs had monomodal particle size distributions (Figure 33.B), which is often an 
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advantage for commercial applications. The NLC suspension formulated using 6% QN 

was therefore used for the remainder of the studies because it contained the lowest 

emulsifier level required to form stable suspensions with small particles. 

6.3.3. Properties of NLC suspensions 

6.3.3.1. Thermal behavior of NLC 

Knowledge of the thermal behavior of the lipid phase of NLCs is important for 

optimizing their formation, stability, and functional performance. For this reason, we 

characterized the thermal properties of the NLCs using both DSC and temperature-

scanning spectrophotometry (Figure 34). The thermal transitions of the emulsified fat 

were clearly different from those observed in bulk fat and depended on emulsifier 

concentration (Table 9). Compared to the bulk fat, there was a bigger difference between 

the onset crystallization and onset melting temperatures for the emulsified fat (Figure 

34.A). This phenomenon can be explained by the different nucleation mechanisms 

occurring inside the lipid droplets. During cooling of melted bulk fat, even a small 

number of impurities can act as nucleation sites that initiate the formation of crystals that 

spread through the entire volume of the system. As a result, nucleation occurs through a 

heterogeneous mechanism and the crystallization temperature is relatively high. 

Conversely, after emulsification, the impurities in the lipid phase are spread throughout a 

huge number of different lipid droplets and so the probability of finding a nucleus within 

any particular droplet is very low. In this case, nucleation occurs through a homogeneous 

mechanism and the crystallization temperature is greatly suppressed i.e., a high degree of 

supercooling occurs (McClements, 2012). This phenomenon of deep supercooling of 
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emulsified lipids has been reported in numerous earlier studies (Siva A. Vanapalli, Jirin 

Palanuwech, & John N. Coupland, 2002). 

 

Figure 34. DSC profiles of hydrogenated soybean oil (HSO) in bulk form and NLC 

suspension form (30% HSO, 6% QN) during heating and cooling at a controlled rate of 

10 °C min−1; (B) Turbidity analysis of the same NLC suspensions. 

 

Interestingly, the emulsified lipids in the NLC suspension exhibited a distinct 

melting peak around 53 °C and a rather small peak around 61 °C during heating, whereas 

the bulk fat exhibited two distinct melting peaks at 55 °C and 63 °C. This suggests that 

the emulsification of the lipids altered their thermal transition behavior. As mentioned 

earlier, the lower peak is associated with the melting of α/β′ crystals, whereas the higher 

peak is due to melting of β crystals. Consequently, there may have been a reduction in the 

fraction of βcrystals generated inside the lipid droplets compared to within the bulk fat. 

The slight decrease in the melting temperature for the emulsified lipids can be attributed 

to a thermodynamic effect: the melting point of a material is known to decrease as the 

droplet size decreases due to curvature effects (McClements, 2012). 
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Temperature-scanning spectrophotometry was used to provide additional 

information about the thermal transitions occurring inside the NLCs during heating and 

cooling (Figure 34.B). The turbidity of a colloidal dispersion depends on the refractive 

index contrast between the particles and surrounding liquid (Bohren & Huffman, 2008). 

When a lipid undergoes a liquid-to-solid transition its refractive index increases, which 

causes more intense light scattering and therefore an increase in turbidity (Linke & 

Drusch, 2018). Moreover, there may also be changes in the size and shape of the particles 

after a phase transition (Bunjes, Steiniger, & Richter, 2007), which also causes changes 

in light scattering and turbidity (Bohren et al., 2008). As a result, turbidity measurements 

can provide valuable information about the phase transitions occurring inside the 

particles in colloidal dispersions. 

When the NLC suspension was heated from 20 to 50 °C, there was a slight 

decrease in turbidity, which can be attributed to expansion of the solid lipid particles, 

which reduces their refractive index (Alvarado, 1995). However, when the NLCs were 

heated further, there was a steep fall in the turbidity around 50 to 53 °C, which can be 

attributed to melting of the solid lipid particles. As discussed earlier, the lipid phase 

would be expected to be in the α/β’-form in the solidified lipid particles, and so this first 

transition was probably caused by the melting of this polymorphic form. Interestingly, 

there was a very small peak in the turbidity scan around 58 °C when the NLCs were 

heated further, which was attributed to the formation and subsequent melting of the β-

polymorphic crystalline form. As pointed out previously, a relatively large peak was 

observed around 53 °C and a small peak around 61 °C in the DSC thermograms (Figure 

34.A), which supports this hypothesis. 
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During cooling, the absorbance of the NLC suspensions increased steeply when 

the temperature fell below about 45 °C, which is indicative of the onset of crystallization, 

and is fairly similar to the temperature where crystallization was observed by DSC.  

The NLCs formulated with different levels of Quillaja saponin exhibited different 

thermal profiles in the DSC ( 

Table 10 and Figure 35.A). The solid fat content (SFC) versus temperature 

profile of the samples was calculated by integration of the heat flow curves measured by 

DSC during cooling (Figure 35.B) 

 

Table 10. Comparison of thermal behavior (transition enthalpies and onset temperatures) 

of NLCs and bulk fats formulated from hydrogenated soybean oil. The NLCs were 

formulated using different Q-naturale levels 
 

Melting 

enthalpy (J/g) 

Crystallization 

enthalpy (J/g) 

Onset temperature (°C) 

Melting Crystallization 

Bulk 97 106 51.7 48.7 

3% QN 39 37 51.0 39.0 

6% QN 36 40 50.5 34.5 

9% QN 30 35 51.8 30.5 

12% QN 32 36 50.7 30.5 
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Figure 35. DSC profiles (A), and solid fat content as a function of temperature (B) in 

emulsified HSO (30 wt. %) prepared with varying emulsifier concentrations. Samples 

were analyzed at a rate of 10 °C min−1. 
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The crystallization temperature decreased with increasing emulsifier 

concentration, which can at least partly be attributed to the reduction in droplet size. 

From a thermodynamic point of view, the crystallization point of materials is known to 

decrease as their droplet size decreases due to changes in the interfacial curvature 

(McClements, 2012). From a kinetic point of view, the temperature where crystals are 

first observed may decrease as the droplet size decreases because homogeneous 

nucleation is more likely for smaller droplets. Other studies have also reported that the 

crystallization temperature of emulsified fats decreases with decreasing droplet size 

(McClements et al., 1993). 

There were also differences in the melting behavior of the emulsions depending 

on emulsifier concentration and, therefore, droplet size (Figure 35). For the system 

containing the largest lipid particles (3% QN), two distinct peaks were observed during 

heating: a relatively large one at 53 °C and a smaller one at 62 °C. This behavior was 

fairly similar to that observed for the bulk hydrogenated soybean oil. Conversely, for the 

systems with the smaller lipid particles (6 to 12% QN), a large peak was also observed 

around 53 °C but a much smaller one was observed at 62 °C. This suggests that the 

melting behavior of the lipids was different in the smaller droplets, presumably because 

of their more confined interiors. In particular, it seems like the formation and melting of 

the β-form of the lipids was suppressed in the NLCs containing the small lipid particles. 

When the NLC samples were heated and cooled a second time, the crystallization peak 

did not coincide with that observed in bulk fat, which suggested that they were stable to 

coalescence and oiling off during the DSC measurements (data not shown). 
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6.3.3.2. Rheology of NLC 

The flow behavior of the NLC suspensions was characterized using shear 

rheology (Figure 36.A). For all suspensions, the applied shear stress increased linearly 

(R2 > 0.999) with increasing shear rate (0.1 to 100 s−1), which suggested they had ideal 

(Newtonian) characteristics in the shear range studied. In all samples, the shear viscosity 

was relatively low (< 5 mP.s), which suggested that extensive droplet flocculation did not 

occur. The shear viscosity appeared to increase slightly with increasing emulsifier 

concentration (Figure 36.B). This may be because the effective volume of the particles in 

a colloidal dispersion increased as the droplet size decreased, due to the contribution of 

the emulsifier layer (McClements, 2015b). 

 

Figure 36. Rheological properties of NLC suspensions. (A) Flow behavior studied by 

measuring shear stress at variable shear rates; (B) Effect of emulsifier concentration on 

shear viscosity of NLC suspensions. 

6.3.3.3. Appearance of NLC suspensions 

Visually, the NLC suspensions had a uniform milky appearance and no phase 
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emulsions. Their lightness (L*) decreased with increasing emulsifier concentration while 

their perceived yellowness increased. This effect was mainly attributed to the brownish 

color of the Quillaja saponin solution used to formulate the NLCs. These color changes 

may be important in some food and beverage products because it could negatively impact 

their desired appearance. 

 

Figure 37. Visual appearance of NLC suspensions with QN contents of 3, 6, 9, and 

12 wt. % (left to right). L* values represent lightness of dispersion. 

6.3.3.4. Microstructure of coarse NLCs during thermal transitions 

The small particles in conventional NLCs (d < 500 nm) are too small to be seen 

using conventional optical microscopy. For this reason, we prepared NLCs from coarse 

emulsions so that we could visualize the changes occurring in the lipid particles during 

melting and crystallization (Figure 38). Polarized light microscopy images showed that 

L*=   89.5 87.8 86.2 84.8

QN=    3% 6% 9% 12%



 

142 

 

the lipid droplets were spherical at 70 °C and contained no visible crystals (white 

regions). When these emulsions were cooled using a temperature-controlled microscopy 

stage, the first evidence of crystal formation inside the droplets was observed at 50 °C. 

When these systems were cooled to 40 °C and below, there was evidence of many 

crystalline lipid particles within the emulsions. The crystallization of the lipid phase in 

oil-in-water emulsions may occur via homogeneous or heterogeneous nucleation 

mechanisms. Homogeneous nucleation occurs when the lipid droplets are so small that 

the chance of finding an impurity within a single droplet is infinitesimal. The presence of 

impurities is important because they act as nucleation sites where subsequent crystal 

growth can occur. Conversely, heterogeneous nucleation occurs when each lipid droplet 

is likely to contain one or more impurities. The emulsified lipids in emulsions undergoing 

homogeneous nucleation typically exhibit a much higher degree of supercooling than 

bulk oils. This phenomenon is highlighted in the SFS versus temperature profiles, which 

showed that droplet crystallization occurred at a much higher temperature in the coarse 

emulsions than for any of the nanoemulsions that had been passed through the 

microfluidizer (Figure 35.B). 

During heating, some of the crystalline lipid particles in the coarse NLCs melted 

around 50 °C, as demonstrated by the fact that the number of white dots in the polarized 

light images decreased (Figure 38). Upon further heating, all the lipid particles melted 

when the temperature exceeded 65 °C. The Mean Gray Value (MGV) of the microscopy 

images was used to provide some information about changes in the fraction of crystalline 

lipid particles with temperature during heating and cooling. The MGV is the number of 

pixels with grey values below some critical value divided by the total number of pixels 
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within the selected area. The MGV was obtained for each image after processing for 

background thresholding (Figure 39.A). As expected, the MGV decreased during heating 

as more lipid particles melted and increased during cooling as more fat droplets 

crystallized. The data obtained from polarized light microscopy analysis of the coarse 

NLC suspensions therefore agrees with that obtained from DSC (Figure 39.B). 

 

Figure 38. Microscopy images of coarse NLC suspensions during heating and cooling on 

an optical microscopy stage with crossed-polarizers (30% HSO, 6% QN, 64% phosphate 

buffer). 
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Figure 39. Mean Grey Value analysis of optical microscopy images (A) and DSC 

analysis (B) of coarse NLC (30% HSO, 6% QN, 64% phosphate buffer). 

6.3.3.5. Transition electron microscopy 

The morphology of the lipid nanoparticles within the NLCs produced from oil-in-

water nanoemulsions (6% QN) was determined using TEM (Figure 40). These images 

showed that the lipid particles had a roughly spherical appearance, but that they also had 

some plate-like dark structures at certain locations on their surfaces. We postulated that 

these platelet structures were small fat crystals adsorbed to the oil-water interface. 

Previous studies have shown that the appearance of platelets in electron microscopy 

images depends on their alignment relative to the electron beam (Jores, Mehnert, 

Drechsler, Bunjes, Johann, & Mäder, 2004). As a result, some platelets can have needle-

like structures in the images. 
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Figure 40. Transmission electron microscopy images of NLC suspensions (30% HSO, 

6% QN). The scale bar represents 500 nm. 

6.3.4. Stability of NLC to thermal stress 

The long-term stability of the NLC suspensions was measured by storing them for 

one-month at ambient temperature. There was no significant change in the mean particle 

diameter of the NLCs after 1 month of storage. Also, visible phase separation of the 

suspensions was not observed at the end of storage. Together, results suggest that the 

NLCs had good stability to flocculation, coalescence, partial coalescence, and 

gravitational separation. This was probably because the adsorbed layer of quillaja saponin 

was effective at increasing the steric and electrostatic repulsion between the lipid 

particles. 

When the NLC (6% QN) suspension was heated and cooled repeatedly in 

hermetically sealed aluminum pans using the DSC instrument, it was found that both the 

heating and cooling peaks overlapped each other. Previous studies have shown that the 

thermal profiles of emulsions change appreciably if they undergo droplet coalescence 

because this alters the nucleation mechanism (Thanasukarn et al., 2004). Our results 

therefore indicate that the NLC suspensions were relatively stable to thermal stresses. 



 

146 

 

When different cooling rates (1, 5, 10, and 20 °C/min) were applied to the NLC (6% QN) 

suspensions, the onset crystallization temperature decreased slightly as the cooling rate 

was reduced (Figure S10). For instance, the onset crystallization temperatures were 33.5, 

32.0, 31.2, and 30.1 °C at cooling rates of 1, 5, 10, 20 °C/min, which may have been due 

to more supercooling at faster rates. Conversely, the onset melting temperature remained 

relatively constant (50.5 ± 0.1 °C) at different heating rates. Overall, the heating and 

cooling rates did not appear to have a major influence on the thermal characteristics of 

the NLCs. 

Changes in the mean diameter of the particles in the NLC (6% QN) dispersion 

were also measured during cooling over the temperature range where the liquid-to-solid 

transition occurred (i.e., 36 to 32 °C). The mean particle diameter remained relatively 

constant (0.50 ± 0.01 μm) when the emulsions were stirred for 24 h period at the specified 

incubation temperatures (Figure S11), which suggested that the NLCs were highly stable 

to aggregation. Earlier studies have reported droplet flocculation and coalescence can 

occur in partially crystalline fat droplets (Vanapalli & Coupland, 2001). In our study, the 

lipid particles in the NLC suspensions had roughly spherical shapes, with no sharp 

crystals penetrating into the aqueous phase (Figure 40). As a result, it would have been 

more difficult for a crystal from one droplet to penetrate into another droplet (Siva A. 

Vanapalli et al., 2002). Moreover, the lipid particles were covered by a layer of natural 

surfactant (Quillaja saponin) that generated a strong electrostatic and steric repulsion 

between them, thereby preventing them coming close enough for the crystals in one 

particle to penetrate into another. 
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6.4 Conclusions 

This study showed that NLCs could be successfully prepared using nature-derived 

ingredients. The solidified lipid phase of the NLCs was formulated using fully 

hydrogenated oils, which are a good alternative to PHOs. Indeed, PHOs recently lost their 

GRAS status in the USA due to their link to health problems such as heart disease. NLCs 

fabricated from completely hydrogenated oils have similar appearances and rheological 

properties as conventional oil-in-water emulsions, which means that they may be used in 

many of the same products, such as beverages, creams, sauces, dressings, desserts, and 

soups. 

We showed that stable NLC suspensions containing small particles could be 

formulated by optimizing the thermal behavior of the hydrogenated oil, homogenization 

conditions (such as number of passes and emulsifier level), as well as the cooling 

conditions. In future studies, it will be useful to assess the ability of NLCs to encapsulate 

bioactive components, as well as to establish their stability in real food products and their 

behavior under gastrointestinal conditions. Moreover, it will be important to compare 

their performance with alternative colloidal delivery systems, such as nanoemulsions and 

solid lipid nanoparticles. 
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CHAPTER 7 

CONCLUSION AND FUTURE STUDIES 

Our study showed that the chemical stability of curcumin depends greatly on 

physical factors such as temperature, and chemical factors like pH and the molecular 

environment. Its stability could be significantly improved by encapsulating in oil droplets 

that effectively protect curcumin from oxidation and hydrolysis. We showed that oil-in-

water emulsion could significantly prevent curcumin from chemical degradation. It was 

found that factors like emulsifier type affect curcumin stability, and droplet surface area 

plays an important role in modulating chemical alteration in curcumin that is 

encapsulated in oil-in-water emulsion. We also found that antioxidants could efficiently 

control the rate and extent of curcumin degradation in emulsions especially when the 

antioxidants are water soluble. Another strategy of chemically protecting curcumin is to 

control the interfacial phenomena such as diffusion and molecular transport. For this 

purpose, we modified the properties of the lipid phase and successfully optimized the 

process of fabricating nanostructured lipid carriers using completely hydrogenated 

soybean oil and saponins.  

In the future studies, it may be interesting to encapsulate curcumin in 

nanostructured lipid carriers and compare their performance with oil-in-water emulsions 

and solid-lipid-nanoparticles. It will also be important to test these delivery systems for 

their relative bioavailability in-vivo models and possibly in human subjects.  
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APPENDIX  

Supplementary Figures 

 

 

Figure S1. Standard curve for curcumin quantification. 
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Figure S2. Change in yellowness (b* value) of oil-in-water emulsions (30% wt% oil) 

incubated at 37 °C. 
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Figure S3. Particle size distribution of oil-in-water emulsions (pH 5.0) with and without 

curcumin at day 1 and day 31. Similar results were obtained for emulsions at other pH 

values (data not shown). 
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Figure S4. Measurement of tristimulus color coordinates (L*, a*, b*) of curcumin 

emulsions. A) Change in coordinate values (ΔL, Δa, Δb) after 15 days of storage at 37 

°C; B) color coordinates as a function of storage period (emulsion pH = 7.0, incubation 

temperature = 55 °C) 



 

153 

 

 
A 



 

154 

 

 
B 

Figure S5. A) correlation between retention (%) values of curcumin content and color 

coordinate b*; B) Effect of emulsifier concentration on retention (%) of curcumin in 

emulsions at various storage period intervals (emulsion pH = 7.0, incubation temperature 

= 55 °C) 
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Figure S6. Droplet size distribution of curcumin containing MCT-in-water emulsions at 

Day 1 and Day 15. The number above distribution graph represents corresponding D32 

value. Emulsion was maintained at pH 7.0 and stored at 55 °C 
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Figure S7. Sauter mean, D32 (A) and De Brouckere mean, D43 (B) droplet diameter of 

MCT oil-in-water emulsions droplets having different specific surface area   

0

5

10

15

20

Large Medium Small Very Small

M
ea

n
 d

ia
m

et
er

, 
D

3
2

(µ
m

)
Day 1

Day 17

A

300 m2 2500 m2 24000 m2 80000 m2

*

0

5

10

15

20

25

30

Large Medium Small Very Small

M
ea

n
 d

ia
m

e
te

r,
 D

4
3

(µ
m

)

Day 1

Day 17

B

300 m2 2500 m2 24000 m2 80000 m2

* **



 

157 

 

 
 

Figure S8. DSC analysis of completely hydrogenated fats (coconut, cottonseed, palm-

kernel, palm, soybean) 
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Figure S9. Effect of cooling rate and stirring conditions on the mean droplet diameter of 

30% completely hydrogenated soybean oil-in-water emulsions (6 wt. % QN) prepared 

using a high-pressure homogenizer (microfluidizer). 
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Figure S10. DSC analysis of NLC (30% HSO, 6% QN, 64% phosphate buffer) at 

different thermal rates (1, 5, 10, 20 C/min) 
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Figure S11. Mean droplet diameter of NLC6 measured after stirring at specific 

temperature for 24 h. 
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