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ABSTRACT 

EXAMINING THE SPECIALIZED MATH CONTENT KNOWLEDGE OF 
ELEMENTARY TEACHERS IN THE AGE OF THE COMMON CORE 

 
MAY 2020 

 
STEPHANIE B. PURINGTON, S.B., MASSACHUSETTS INSTITUTE OF 

TECHNOLOGY 
 

M.Ed., UNIVERSITY OF HARTFORD 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Darrell Earnest 
 
 

Mathematical standards for students have increased with the development of the 

Common Core State Standards for Mathematics and its accompanying high stakes 

testing. Teachers need strong conceptual knowledge of the mathematics they teach in 

order to give students the opportunity to learn that math deeply. An earlier study (Ma, 

1999) found that US elementary teachers lack the deep knowledge to teach math 

conceptually. Given the mathematics standards movements of the last two decades, it is 

plausible that the knowledge base of teachers has changed. Using the framework of 

Specialized Content Knowledge (SCK), which is the knowledge required to teach math 

that extends beyond the knowledge to do math, this study examines the current level of 

SCK held by practicing elementary teachers. It also examines themes in the explanations 

they give for the four topics: subtraction with regrouping; multi-digit multiplication; 

division with fractions; and area, perimeter, and proof.  

This study used a multiple-case study design and an interview protocol with 

current elementary teachers (N=18). Analysis of teacher interviews indicates that 

elementary teacher SCK can vary with the topic being addressed, with all but two of the 
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participants falling into different SCK levels across the mathematical content areas. This 

points to the need for assessments that offer topic-level data so we can determine the 

support individual teachers need. Most of the current teachers studied have strong 

Specialized Content Knowledge in areas of whole number calculation, such as 

subtraction with regrouping and multi-digit multiplication. In those topics they are able to 

create representations and justify the standard algorithms. In the areas of division with 

fractions and area, perimeter, and proof, however, Specialized Content Knowledge was 

frequently much lower, and many of the teachers struggled to create representations or 

explain the mathematics contained in the algorithms. This indicates a need for teacher 

education and professional development that extends beyond whole number operations 

and focuses on conceptual understanding of these challenging topics. 
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CHAPTER 1  

INTRODUCTION 

 

The National Governors Association and the Council Chief State School Officers, 

through their Common Core State Standards for Mathematics (CCSSM), have instituted 

rigorous standards for the mathematics students are expected to learn, raising the 

expectations for teachers to be able to teach to those standards (Selling, Garcia, & Ball, 

2016). Because the tests that students take to measure progress in mathematics have 

repercussions for both the students and their schools, there is pressure on districts and 

teacher preparation programs to ensure that teachers have strong content knowledge 

(Zimpher & Jones, 2010; Cochran-Smith et al., 2016). It is logical to claim that teachers 

cannot be expected to teach well any material that they do not know and understand well. 

As Shirvani (2015) found, there is an indication of a direct relationship between teachers’ 

content knowledge and the mathematics that students learn. 

Consider, for example, how one might solve the following problem: 1
ଷ 

ସ
  ÷  

ଵ

ଶ
. 

One common, procedural way to solve the problem is to use the reciprocal of  ½, 2, to 

change the problem to multiplication: 1
ଷ 

ସ
 × 2. Yet consider how you might teach 10-

year-old children to understand – not just compute – the same problem.  When teachers 

do not understand the concepts underlying division with fractions, they do not teach the 

topic with deep conceptual understanding, and their students will not master division with 

fraction concepts. It is crucial, therefore, that we find ways to determine what our 

elementary teachers know deeply and ways to help them deepen knowledge when 

needed.  
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For teachers of upper level math, some states have imposed requirements of 

degrees in mathematics and math-specific licensure tests to address this pressure 

(Gitomer, 2007). Setting requirements for elementary teachers, who are expected, in the 

US, to teach all of the subjects, has been more challenging. While teacher preparation 

programs have generally increased the number of math courses and methods courses 

required, there is no standard for determining if that material has been deeply understood 

(Cochran-Smith, 2005; Cochran-Smith et al., 2016). Different states have differing 

licensure requirements, and in many states, candidates can be certified even if they fail 

the math portion of the licensure test (Cochran-Smith, 2005; Cochran-Smith et al., 2016; 

Evertson, Hawley, & Zlotnik, 1985; Epstein & Miller, 2011). Although there is not 

consensus about how much mathematics is necessary for elementary teachers to know, 

scholars and policy makers agree that elementary teachers must have knowledge of the 

mathematics content they teach – yet the field currently lacks in-depth research on 

whether and how teachers understand fundamental mathematical ideas to teach it. 

Changes in math curriculum and standards over the past three decades have been 

instituted with the goal of deepening conceptual knowledge for students and teachers. As 

the mathematical and educational communities have worked to change the way that 

mathematics is taught, and that classroom mathematics is conceptualized, it has led to an 

evolution in school mathematics standards. (NCTM, 1980; NCTM, 1989; NCTM, 2000; 

CCSSI, 2010). It is unclear, however if these changes to standards and practices have led 

to  increasing teacher knowledge and capacity to understand and teach to the new 

mathematical standards. This teacher knowledge, also known as Specialized Content 
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Knowledge (SCK), has been defined as the mathematics one must know in order to teach 

math that is beyond the knowledge needed to do math (Ball, Thames, & Phelps, 2008). 

Previous studies have indicated that elementary teachers have weak conceptual 

knowledge of fundamental math concepts (Ma, 1999; Ball, 1990), and these results have 

driven some of the calls for reforms in teacher education and licensure (Greenberg & 

Walsh, 2008). These early studies included interview components that gave the 

researchers insight into the thinking and reasoning of teachers that is impossible to garner 

with strictly multiple-choice and content tests, as valuable as such tests might be for 

certain purposes (Hill, Ball, & Schilling, 2008; Hill, Umland, Litke, & Kapitula, 2012). 

The tests that grew out of those studies, however, have measured teacher knowledge 

almost exclusively with multiple-choice tests, and those results have been used to make 

claims about the status of teacher understanding (e.g., Hill, Rowan, & Ball, 2005; Ball, 

Hill, & Bass, 2005; Qian & Youngs, 2016).  

Given that some of the strongest evidence for teachers’ math content knowledge 

resulted from interview studies conducted more than three decades ago, and that such 

studies were conducted prior to the introduction of significant policy documents 

addressing the teaching of mathematics (CCSSI, 2010; NCTM, 2000, 2006), there is a 

need for research that uses interview techniques to study the current status of elementary 

teacher content knowledge of mathematics. Without knowing what our teachers do and 

do not know, we cannot design the most effective and targeted professional development 

nor plan appropriate teacher education courses. 
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1.1 Rationale for the Study 

As a long-time math teacher, I first read Liping Ma’s book “Knowing and 

Teaching Elementary Mathematics” (1999) while enrolled in a ‘train the trainer’ program 

for the curriculum “Developing Mathematical Ideas” (DMI) in 2001. The data she 

presented about the state of US elementary teacher mathematics knowledge was 

alarming, as she concluded that the teachers had little to no conceptual understanding of 

the mathematics they taught, and were confined to presenting procedural explanations. 

For example, Ma found that some of the US teachers described the subtraction algorithm, 

which involves a set of base ten exchanges, through unrelated analogies such as 

borrowing a cup of sugar from a neighbor. She also found that some US teachers believed 

that symbols other than a zero were appropriate as placeholders in a multi-digit 

multiplication problem (Ma, 1999). 

Knowing that I wanted to improve the math experiences of elementary students 

by helping to develop even more knowledgeable math teachers, I decided to pursue my 

PhD in Teacher Education, focusing on elementary mathematics. I had the opportunity to 

sit in on a Master’s level math methods course with two different cohorts in 2016 and 

2017. Ma’s book (1999) was required reading, which is not unusual for this type of 

course. The students were disheartened to read Ma’s findings, and they focused on how 

much better the Chinese teachers in the study seemed to understand the mathematical 

concepts.  I realized that I had read the book fifteen years earlier, and discovered that the 

interviews Ma based her work on were done in the late 1980s. That meant this research 

was almost thirty years old and still being seen by some as the current state of teacher 

knowledge. 
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Given the mathematical standards reform movements that have taken place over 

the past thirty years and the changes in textbooks and teacher education programs those 

movements had triggered, I grew to believe that teacher knowledge, especially 

conceptual understanding of these elementary school math topics, must have improved. 

Were teachers really still explaining subtraction with regrouping as borrowing a cup of 

sugar from a neighbor? Or suggesting that an asterisk could be used as a placeholder in 

multi-digit multiplication? I could find no studies that seemed to replicate or challenge 

Ma’s work, so decided that I would undertake that for my dissertation research. My goals 

were to see what Specialized Content Knowledge teachers demonstrated in their 

explanations of mathematical concepts and to identify important themes in those 

explanations. 

I conducted this study, using teacher interviews, to investigate current elementary 

teachers’ knowledge of mathematics content through the following research questions:  

1. How do teachers’ explanations of mathematics content demonstrate 

Specialized Content Knowledge (SCK) for the following topics? 

a. Subtraction with regrouping? 

b. Multiplying multi-digit numbers? 

c. Division with fractions? 

d. The relationship between area and perimeter? 

2. What themes are found in teachers' explanations for the following topics? 

a. Subtraction with regrouping? 

b. Multiplying multi-digit numbers? 

c. Division with fractions? 
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d. The relationship between area and perimeter?

1.2 Theoretical Framework 

This study uses the concept of Specialized Content Knowledge (SCK), a subset of 

Mathematical Knowledge for Teaching (MKT) as a theoretical frame. In this section, I 

will define the concepts, describe the development of the Mathematical Knowledge for 

Teaching model, and discuss the role of Specialized Content Knowledge within that 

model. 

1.2.1 Pedagogical Content Knowledge 

In the 1970’s and 1980’s there was de-emphasis on content knowledge and a push 

toward effective teaching strategies as the most important facet of teacher knowledge 

(see, for example, Sparks (1983) and Kindsvatter, Ishler, & Wilen (1988)). If a teacher 

could implement the strategies for planning, delivery of lessons, classroom management, 

and classroom climate in the prescribed way, she would be an effective teacher and the 

students would learn, regardless of the content area. This focus on strategies led to the 

creation of checklists of competencies that administrators could use when observing a 

teacher, with the understanding that a teacher with more checkmarks was a more 

competent and effective teacher than one who had fewer (Shulman, 1986; Darling-

Hammond, 2016). 

Feeling that the pendulum had swung too far in the direction of favoring 

pedagogical knowledge over content knowledge for teachers, Shulman (1986) posited 

that good teaching was more than a set of skills to be mastered and more than a body of 

content to know. Good teaching required knowledge of the content, why it was important, 

how the concepts fit together, and how to best engage students in learning the content. 
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Bringing together a focus on teacher knowledge of content with the understanding that 

teachers must also know their students and teaching methods well, Shulman believed that 

strong teacher knowledge was a hybrid that he termed Pedagogical Content Knowledge 

(PCK).  

PCK allowed a teacher to transform their knowledge of content into 

representations, illustrations, and examples for students and understand the conceptions 

and misconceptions that their students would likely hold and develop about the topic of 

study. Shulman also stated that a teacher with strong PCK should understand how the 

material they taught was situated within the other courses their students were taking and 

should understand the content of their subject before and beyond the course they were 

teaching. Shulman’s PCK (1986) was general in nature and did not address any specific 

subject area. 

1.2.2 Mathematical Knowledge for Teaching 

With the concept of PCK in play, scholars worked to define how it looked in 

different academic subject areas. Leading the efforts in mathematics, Deborah L. Ball 

(1988) argued that school children who were learning mathematics at that time were 

unlikely to gain the skills and knowledge to deeply understand the concepts, largely 

because of the way they were being taught. Math was generally presented as a set of 

procedures one could follow to get to a right answer, and there was little effort made to 

explore or understand the concepts that were the foundation of those procedures. Ball 

also posited that knowing mathematics for oneself was arguably different that knowing it 

in a way that one could teach it. And, building on Shulman, she theorized that subject 

matter knowledge and teaching knowledge were intertwined in a way that had not been 
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studied. She defined Mathematical Knowledge for Teaching (MKT) as the set of 

knowledge necessary for a teacher to possess in order to have true competence for math 

instruction (Ball, 1988).  Ball then worked to further define MKT and its components 

while developing measures for MKT. 

1.2.2.1 Developing and Measuring MKT 

Early work on defining and measuring MKT was conducted through the 

University of Michigan’s National Center for Research on Teacher Education (NCRTE), 

which was formed in 1985 and renamed the National Center for Research on Teacher 

Learning (NCRTL) in 1991. Between 1986 and 1990, this center undertook a large, 

multi-site, longitudinal study, called the Teacher Education and Learning to Teach Study 

(TELT), to examine how teacher knowledge for teaching elementary mathematics and 

writing changed as participants transitioned from teacher education programs to 

classroom placements (McDiarmid & Ball,1989; NCRTE, 1991). The mathematics 

portion of this study included a questionnaire, interviews of focal participants, and 

classroom observations of selected participants to see how various approaches to teacher 

education related to mathematics influenced teacher understandings and beliefs, while 

also trying to parse out the impact of elementary preservice teacher preparation programs 

compared with other influences. As part of her doctoral program, Ma worked with Ball’s 

team to transcribe and analyze the teacher interviews, and her dissertation, which became 

the book “Knowing and Teaching Elementary Mathematics” (1999), grew out of that 

research. 

As the researchers attempted to design measures that would test not only content, 

but the pedagogical knowledge that they conceptualized as how teachers saw the 
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relationship between student and concept, they found that their model could be further 

refined, as shown in Figure 1.1 (Hill, Schilling, & Ball, 2004; Hill et al., 2008; Ball et al., 

2008). In this conceptualization, mathematical content knowledge is divided further into 

6 types of knowledge, three of which fall under subject matter knowledge: common 

content knowledge (CCK), which is knowledge that anyone with a solid math 

background should hold; horizon content knowledge (HCK), which is knowledge about 

how the mathematics one is teaching is situated within the larger field and within the 

scope and sequence of school mathematics (Jakobsen, Thames, Ribeiro, & Delaney, 

2012); and Specialized Content Knowledge (SCK), which is the knowledge of 

mathematics that is specific to being able to teach it. SCK houses the knowledge to 

answer the questions students have about how and why the mathematics functions as it 

does.  

Figure 1.1. Domains of Mathematical Knowledge for Teaching (Ball, Thames, & 
Phelps, 2008). 
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The other half of the model contains the elements of pedagogical content 

knowledge, which acknowledge the relationships among knowledge of content, students, 

curriculum, and teaching. As stated earlier, what good is it if one understands how to 

calculate 1 (3 )/4   ÷  1/2   if one does not understand how students learn such a concept, 

what tools are available to help teach the concept, or when it is appropriate to teach the 

concept? The elements of PCK in this MKT model address those types of knowledge and 

decisions.  

This dissertation focuses on the Specialized Content Knowledge domain of MKT, 

which I describe in greater detail below. 

 

1.2.3 Specialized Content Knowledge 

As noted above, Specialized Content Knowledge (SCK) is defined by Ball and 

her colleagues as the knowledge of mathematics that is specific to being able to teach it 

(Ball et al., 2008). Teachers with strong SCK can design, justify, and evaluate 

mathematical explanations and conjectures; be able to explain how and why algorithms 

work; generate relevant contexts, examples, or counter examples to illuminate math 

concepts; evaluate student errors and invented strategies; and know and connect multiple 

representations for mathematical concepts (Hill et al., 2004; Carreño, Ribeiro, & Climent, 

2013; Zembat, 2013; Bair & Rich, 2011; Kazemi, Lesseig, Mumme, Caroll, & Kelley-

Petersen, 2009; Selling et al., 2016). They can not only identify an incorrect answer, but 

can suggest the logical method or faulty reasoning needed to produce it (Markworth, 

Goodwin, & Glisson., 2009). Lin, Chin, & Chiu (2011) argue that  these facets of SCK 

can be categorized into three areas: “explanation – how to provide mathematical 
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explanations for common rules and procedures;  representation – how to choose, make, 

and use mathematical representations effectively and accurately;  and justification – how 

to explain and justify one’s mathematical ideas” (p.1) 

These components of SCK are represented in both the NCTM’s Principles and 

Standards for School Mathematics (2000) and in the Common Core State Standards for 

Mathematics (2010) expectations for students. If we are expecting students to develop the 

ability to explain, represent, and justify their mathematical ideas and processes, we must 

make certain that their teachers have the knowledge to teach in ways that develop those 

skills. 

 

1.2.4 Assessing MKT and SCK 

Throughout the development of the MKT framework, researchers worked to 

develop measures that could test for aspects of MKT in teachers. Ball and her associates, 

as part of the Learning Mathematics for Teaching (LMT) project, developed a catalog of 

over 1000 multiple-choice test items intended to measure aspects of MKT in elementary 

teachers (Hill et al., 2004; Hill et al., 2008). These multiple-choice tests present 

classroom-based scenarios that involve a mathematical decision a teacher must make or 

an explanation that must be given, thereby attempting to provide contexts in which 

responses reflect the interplay of content knowledge with other forms of knowledge 

needed to teach content to students. Researchers found, however that some teachers could 

employ test-taking strategies in order to pare down possible responses in ways that led to 

higher scores, and interviews showed that some teachers who scored well did not 

necessarily have a strong foundation in the topic being assessed (Hill et al., 2008).  
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SCK has generally been assessed using items from the LMT (see Strawhecker, 

2005; Welder & Simonsen, 2011; McCoy, 2011; Swars, Hart, Smith, Smith, & Tolar, 

2007). That test, however, is not intended to be an assessment of individual teachers, but 

was designed to get an overall sense of teacher knowledge from a group of participants, 

and can be used to determine if courses or professional development efforts have 

improved SCK for a group (Selling et al., 2016).  

 While other researchers have developed their own questionnaires (Zembat, 

2013), qualitative tools (Bair & Rich, 2011; Leavy & Hourigan, 2018), and scoring 

rubrics (Ho & Lai, 2012) to try to assess SCK in teachers of K-12 mathematics, these 

have generally been applied to single mathematical topics. While it is important to 

understand the facets of SCK for different mathematical concepts, these single-topic topic 

studies give us a very limited view of teacher knowledge. Current measures of MKT and 

SCK, therefore, rely heavily on multiple choice and paper-and-pencil tests.  As research 

has shown that those tests are not sufficient for determining the mathematical knowledge 

of individual teachers, this study seeks to fill that gap through the use of teacher 

interviews intended to capture the ways that current teachers think about and explain 

several mathematical concepts (Hill et al., 2008; Hill et al., 2012).  

1.3 Overview of Chapters 

Through a review of the literature in Chapter 2, I examine current research related 

to MKT and SCK, noting what those measures highlight and ignore. I then look at 

research related to examining research related to the Common Core State Standards for 

Mathematics, looking specifically at how teacher knowledge of the content standards has 

been studied. The end of the review in Chapter 2 focuses on the four content areas 
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addressed in this study: subtraction with regrouping; multi-digit multiplication; division 

with fractions; and area, perimeter, and proof. I examine the methods that have been used 

to study teacher knowledge and student learning on these topics, as well as what research 

says about the challenges in teaching and learning them. 

In Chapter 3, I present my methodology for the study, including the design, 

description of the participants, methods for data collection, and techniques for data 

analysis. Chapters 4 and 5 contain the findings for the two research questions, with 

Chapter 4 focusing on the Specialized Content Knowledge demonstrated by teacher 

explanations and Chapter 5 examining the themes found in those explanations. Both 

chapters contain excerpts from the interviews that illustrate the findings. Chapter 6 

contains a summary of major findings and a discussion of those findings, which lead into 

implications and recommendations for teacher education. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

The purpose of this study was to examine the Specialized Content Knowledge 

(SCK) demonstrated by current elementary teachers as they explained four different math 

topics and then to describe the themes found in those explanations. The focus on multiple 

content areas allows me to look for variation in SCK across individual participants and 

across different topics. 

This chapter focuses first on studies related to defining and measuring 

Mathematical Knowledge for Teaching and Specialized Content Knowledge, noting that 

the most common measure is a multiple-choice test that does not necessarily predict 

teaching quality (Hill et al., 2008). Since the push for defining and measuring MKT and 

SCK is to allow for stronger teaching, the review then looks at how MKT impacts student 

learning, noting that there are correlations between MKT level and student achievement 

(Hill & Lubienski, 2007), and that our least-resourced students tend to have teachers with 

lower MKT (Ball et al., 2005; Hill et al., 2005; Tatto et al., 2008). I then address the ways 

in which professional development efforts and teacher education have tried to improve 

MKT and SCK in teachers. Moving next to how MKT has made its way into educational 

policy discussions, I note that policy influencers have cited data on teacher knowledge 

that was decades old (Greenberg & Walsh, 2008). 

In order to understand the Specialized Content Knowledge for teaching, we need 

to know what the field currently holds to be best practices, noting that these may have 
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changed since Ma’s study was published in 1999. To that end, I present content 

background, best practices, and studies related to the four topic areas addressed in the 

study: subtraction with regrouping; multi-digit multiplication; division with fractions; and 

area, perimeter, and proof. While these studies do not focus on SCK directly, they do 

look at the concepts and understandings that would be measured when determining SCK. 

In these sections, I note that, except for division with fractions, there is little research on 

how teachers and PSTs understand and engage with these topics. Available research does 

show a focus on algorithms and a lack of conceptual understanding from both in-service 

and preservice teachers.  

Through these studies, it can be seen that we need more current information about 

the state of SCK in teachers around these four topics, as that information can help us to 

determine if our teacher education programs and in-service professional development 

efforts are sufficiently preparing teachers to instruct students in the ways expected by 

today’s high-stakes standards. 

2.2 Mathematical Knowledge for Teaching and Specialized Content Knowledge 

As we consider the current state of elementary teacher Mathematical Knowledge 

for Teaching in light of changing standards, it is important to see what relevant research 

has found with respect to defining and measuring MKT and SCK. It is also important to 

understand how MKT has been shown to impact student learning and achievement. And 

since studies on MKT have sometimes been cited to influence the requirements for 

teachers and set standards for teacher preparation programs (TPPs), we must examine 

research on the educational policies that been informed by those studies.  As I detail 

below, these studies show that MKT, as strong as the underlying theory might be, is 
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challenging to measure and many proxies are used for it; it does have an impact on 

student learning, though the relationship is challenging to generalize; and policy makers 

often use proxies for MKT that have no research basis in determining the qualification of 

new teachers.  

2.2.1 Defining and Measuring MKT and SCK 

Since its conception, researchers have looked for efficient ways to measure 

Mathematical Knowledge for Teaching (MKT). Recall from Chapter 1 that Ball (1988) 

developed the concept of Mathematical Knowledge for Teaching from the foundation of 

Shulman’s (1986) Pedagogical Content Knowledge (PCK). It was obvious to them that 

teachers needed to know more and different mathematics to teach math conceptually than 

one would need to know to do math. She and her colleagues developed a multiple-choice 

test, known as the LMT, as part of the Learning Mathematics for Teaching Project 

(McDiarmid & Ball,1989; NCRTE, 1991). This test was intended to measure MKT, and 

was also used to determine if there were multiple components to MKT. 

The multiple-choice items of the LMT were intended to test for both content and 

pedagogical knowledge of elementary teachers, and researchers also developed interview 

questions that could assess how deeply participants understood mathematical content and 

the strategies for teaching that content (Ball, 1990).  Using the multiple-choice 

instrument, as part of the Teacher Education and Learning to Teach Study (TELT) 

mentioned previously, Ball (1990) looked at the prior mathematical knowledge of 252 

preservice elementary teachers in five different teacher preparation programs and also 

tracked the change in that knowledge throughout the program. She found that the initial 

knowledge the participants brought from their high school and college courses was “rule-
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bound and thin.” In other words, perhaps adequate for non-teachers, but insufficient for 

teaching. Through analyzing both the results of the longitudinally-administered 

questionnaires and the smaller subset of interviews, the researcher found that what is 

learned in K-12 mathematics is generally not sufficient for teaching that mathematical 

content, and that majoring in mathematics in college did not adequately prepare 

participants to teach the content well. She concluded that elementary school mathematics 

is challenging to teach and to learn, and that we should look beyond content in deciding 

who is ready to work in a classroom. This argues for assessment of novice teachers 

beyond content-based licensure tests. 

Using results from an even larger, 1500-participant study associated with the 

teacher questionnaire, researchers attempted to determine if one can measure MKT as a 

singular construct, or if it is further composed of measurable sub-components that emerge 

from the analysis (Hill et al., 2004). They argued that the finding of more than one 

dimension, in this case common content knowledge and Specialized Content Knowledge, 

supports the development of a teacher preparation curriculum that goes into more depth 

than content courses and focuses on the specific work teachers must do to develop strong 

conceptual understanding in their students. While non-teachers can hold common content 

knowledge (CCK) like finding a decimal that is halfway between 1.1 and 1.11, teachers 

need more Specialized Content Knowledge (SCK) in order to examine and appreciate 

multiple representations of a topic, provide clear and correct explanations to students, 

understand and correct student errors, and evaluate unexpected or uncommon methods 

that students may use. While the researchers could identify two components to MKT 

(CCK and SCK), they acknowledged that much more work needed to be done to further 
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identify the elements of the Specialized Content Knowledge that teachers need to best 

help students learn mathematics. 

2.2.1.1 SCK Critiques and Boundaries 

Some scholars have questioned the definition of SCK as the knowledge needed to 

teach math as opposed to the knowledge needed to do math. They ask where the 

knowledge of mathematicians fits into this, and whether there must be some intention for 

teaching for the knowledge to qualify as SCK. They also wonder what the benefits are to 

categorizing math knowledge in these different ways (Flores, Escudero, & Carrillo 

Yáñez, 2013). 

Other scholars have wondered if, by being taught in a conceptual way, K-12 

students can develop SCK as well as CCK, and whether the dividing line between those 

two is blurred or moved (Browning et al., 2013; Selling et al. 2016; Leavy & Hourigan, 

2018). They also have questioned some of the borders between SCK and Knowledge of 

Content and Teaching, and SCK and Knowledge of Students and Teaching, which are 

two of the pedagogical aspects of MKT (Browning et al., 2013; Markworth et al., 2009; 

Carreño et al., 2013).   

Browning and her colleagues (2013) have worked to better define the boundaries 

between SCK, CCK, and the pedagogical knowledges, and have developed some 

examples to show the differences between the categories. For example, when working 

with fractions, they argue that the CCK would involve understanding and solving 

problems with fractions, the SCK would involve understanding multiple representations 

of those problems, and the pedagogical knowledge would include understanding 

children’s struggles and misconceptions around the idea of the unit. Through this type of 
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delineation, it is easy to see that a teacher could have different levels of CCK, SCK, and 

pedagogical knowledge based on the topic.  

SCK appears to be distinctive from CCK and pedagogical content knowledge in 

terms of what it enables a teacher to do, and how it enables them to teach (Leavy & 

Hourigan 2018, Carreño et al., 2013). SCK is “knowledge required by the teacher who 

genuinely wishes their students to understand what they do, and not merely mechanically 

run through [mathematical] procedures” (Carreño et al., 2013). There is clearly 

knowledge that is useful to teachers, but not to others. Jakobsen et al. (2013) illustrate 

this through the topic of factoring trinomials. While we might expect algebra students to 

be able to factor, knowing that a pair of related trinomials are factorable and how to 

generate more factorable pairs would only be expected of teachers. And, while most 

adults remember learning the algorithm for division with fractions, often through a 

mnemonic with little to no mathematical meaning, such as ‘yours is not to question why, 

just invert and multiply’, or ‘keep-change-flip,’ few can explain why the algorithm works 

or understand how it relates to the meaning of division and part-whole relationships (Bair 

& Rich, 2011).  

2.2.2 Mathematical Knowledge for Teaching and Teaching Quality  

Hill et al. (2008) noted the importance of interviews in learning how teachers 

make use of their Mathematical Knowledge for Teaching in the classroom. Expanding 

their work further to determine if higher levels of MKT actually lead to better teaching, 

researchers again used the questionnaire developed for the TELT study and an instrument 

to measure Mathematics Quality of Instruction (MQI), looking for a relationship between 

MKT and MQI (Hill et al., 2008). MQI for the ten participants was measured through a 
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rubric that tried to capture the level of rigor and depth of mathematics in each lesson by 

looking at the representations a teacher used, the explanations and justifications they 

offered, and any errors in the teaching. In other words, how well they demonstrated the 

major facets of Specialized Content Knowledge. Those same participants were also given 

the LMT test to determine their MKT level. The researchers found a strong, positive 

relationship between MKT and MQI in this small sample, though there were two teachers 

who had strong MKT and low MQI. The researchers needed to conduct interviews and 

observations in order to gauge more fully the knowledge that the teachers held and how 

that related to their classroom practices. It was not noted if the classroom observations 

were directly related to the test questions given to determine MKT. 

Based on the above findings, the researchers put forth a recommendation that the 

US consider using teachers with high MKT as math specialists to teach all mathematics 

in elementary schools. This, they argue, would give more students access to teachers with 

the level of MKT that is associated with higher-quality instruction. This specialization is 

practiced successfully in other countries and could be a way to improve the conceptual 

math knowledge of the next generation of students, possibly leading to improved MKT 

levels in future preservice teachers. Given that this specialist structure is not currently 

common in the US, we must work within teacher education to help candidates improve 

their MKT. Improving baseline MKT is especially crucial because research has shown 

that schools with students of low socioeconomic status (SES) are more likely to have 

teachers with low MKT scores (more than one standard deviation below the mean), 

which are linked with lower student achievement (Hill & Lubienski, 2007). When our 

poorest students are more likely to be taught by our least able teachers, their opportunities 
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to learn math deeply and conceptually are reduced, leading to fewer opportunities and 

options.  

These studies show that MKT and its components can be measured, but to gain 

better insight into teacher knowledge and instruction, qualitative interviews and 

observations need to be included. It is also important to note that none of these studies 

considered mathematical standards, either state or NCTM, when generating content 

questions or analyzing findings. Since our students, and our teachers, will be judged on 

how well they perform on standards-related questions, that aspect seems important. 

2.2.3 MKT and Student Learning 

The discussion about Mathematical Knowledge for Teaching is only relevant if 

there is a relationship between MKT and student achievement. Many studies have 

examined which teacher, school, community, classroom, and student factors affect 

student achievement, and a 2002 prospectus study found that between three and thirteen 

percent of variance in student performance is linked to individual classroom teachers 

(Rowan, Correnti, & Miller, 2002); in other words, is linked to individuals’ Mathematical 

Knowledge for Teaching. Their review of research identified that the largest effects on 

achievement correlated with the experience level of the teacher, the use of whole-class 

instruction, and exposure to a rigorous mathematics program. For a rigorous mathematics 

program to be effective, a teacher must know the material well enough to present it 

accurately to students, indicating a measure of MKT.  

Making the case that teachers cannot teach well what they do not know 

themselves, Shirvani (2015) tested 87 preservice teachers in Texas using the mathematics 

portion of the sixth-grade Texas Assessment of Knowledge and Skills (TAKS). He then 
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compared their results to those of the sixth graders who took the same test. More than 

one-third of the preservice teachers failed the measurement portion of the exam, as did 

more than half of sixth graders. While these PSTs were not classroom teachers at the 

time, they were likely representative of those teachers who had entered the field from the 

same teaching preparation programs. Shirvani makes the case that lack of content 

knowledge in teachers is likely affecting student achievement in the specific weak areas. 

This finding is supported by another study, which focused not on teacher knowledge, but 

on the teacher behaviors that predict student achievement (Blazar, 2015). Studying 111 

fourth- and fifth-grade teachers in two school districts, the author found that teachers’ 

unwitting mathematical errors, which are likely strongly linked to teacher knowledge, 

had a significant and negative effect on student achievement. 

Several studies have found that students taught by teachers who scored higher on 

tests measuring Common Content Knowledge (CCK) and Specialized Content 

Knowledge (SCK) performed better on assessments than did those whose teachers had 

lower levels of those aspects of MKT (Ball et al., 2005; Hill et al., 2005). In other words, 

high levels of MKT let to greater student performance. Questions from the TELT study, 

related to those used for my dissertation study, were used in two of the related studies, 

assessing both CCK and SCK. Importantly, researchers found that teacher knowledge as 

measured by these items was a stronger teacher-level predictor of student gains than 

either the average time spend each day on math instruction or qualities of teacher 

background (Hill et al., 2005). In other words, more instruction from teachers with poor 

SCK does not support children’s learning of mathematics. Learning gains for students 

were on the order of two to four weeks more than those whose teachers were at the 
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median of teacher knowledge scores, and the effect size was as large as that as the effect 

of socioeconomic status on student gains. Low SES students tend to show a significant 

achievement gap when they enter school, and that gap increases with each year of 

schooling (Ball et al., 2005).These studies of about 700 first-and third-grade teachers and 

3000 of their students found that higher-knowledge teachers tended to work with non-

minority students, leaving minority students with lower gains that would add up over 

time (Ball et al., 2005).  

Echoing these results on an international stage, a cross-national study that used 

data from the Trends in International Mathematics and Science Study (TIMMS) focused 

on how teachers around the world are prepared to teach elementary and middle-grades 

mathematics (Tatto et al., 2008). Using teacher instruments intended to measure what 

they called mathematical pedagogical content knowledge (MPCK), which was 

conceptualized very similarly to Mathematical Knowledge for Teaching, the researchers 

found that students taught by teachers with higher MPCK scores performed significantly 

better in tenth-grade math than did their peers, when controlling for ninth-grade math 

achievement. 

These studies indicate that we learn much more detail from interviews than from a 

written assessment alone, indicating the need for studies that include more qualitative 

components. They also indicate that teacher MKT is a predictor of student achievement 

in mathematics, which points to the need to make sure all students have access to a 

teacher with strong content and pedagogical knowledge. To address this need, teacher 

preparation programs and in-service professional development programs have designed 
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interventions intended to improve MKT or aspects of MKT. Also indicated is that we 

learn much more Studies of those programs will be discussed in the next section.  

2.2.4 Efforts to Improve MKT and SCK 

The components of MKT, both Specialized Content Knowledge and the 

pedagogical practices, take time to develop. Efforts over the past fifteen years have 

attempted to support and improve in-service and preservice teachers’ MKT. As I was 

examining studies for this literature review, I found much more research focused on 

preservice teachers (PSTs) than on in-service teachers, who were the participants in my 

study. I include those PST-based studies as they give us the starting points for teacher 

SCK and information about the courses, content, and activities that seem to impact SCK 

development. 

Preservice teachers need to be exposed to more facets of actual teaching during 

their teacher preparation coursework and practica to improve their Specialized Content 

Knowledge, according to Morris, Hiebart, & Spitzer (2009). In their study, 30 K-8 PSTs 

who were presented with learning goals for a unit had difficulty identifying subskills or 

sub-concepts, ideas that go beyond common content knowledge, that would be needed to 

meet those goals, and they also struggled to plan or implement lessons appropriate to 

address or assess the goals. The Specialized Content Knowledge required to be successful 

in those tasks requires knowledge of how to determine what students already know, what 

activities and lessons can move them from that point to the new concepts, which teaching 

strategies are most effective, what misconceptions are likely to occur and how to address 

them, and which strategies students are likely to try. This combined knowledge of 

content, students, and teaching, the pillars of MKT, takes time to develop that we 
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normally don’t have time to give it. This leads to teachers entering the field without firm 

skills in place. 

To address the need to improve SCK in preservice teachers, teacher preparation 

programs have designed and studied redesigned or new courses. For example, one course 

for elementary PSTs in a teacher preparation program had participants learning math 

content and also teaching that content in a math enrichment program for seventh and 

eighth graders (Jonker, 2008). This allowed the participants to work on content and 

pedagogy at the same time, seeing how to apply what they were learning and giving it 

greater context. While participants in the program were eloquent in expressing how well 

it worked for them, the author did not give the number of participants or provide formal 

findings. More research into this type of course would be needed to say that it is a model 

to be emulated.  

Preparing and revising videocasts, which are podcasts with a video component, 

was shown to improve MKT by giving teachers the opportunity to think deeply about 

both the content of the lesson and the methods of presenting that content. A rigorously 

studied intervention had both in-service and preservice teachers creating explanatory 

math videocasts, which were intended to both measure and improve MKT over the 

semester (Galligan, Hobohm, & Peake, 2017). Studying four cohorts of 40-50 students, 

the researchers developed surveys and rubrics for assessing both the mathematical 

content and the pedagogical approaches of the participants. The videocasts were to be 

presented as if the participants were teaching the material to middle-school students, 

though the actual grades taught by in-service teachers was not given. Initial results 

showed that the participants were weak in both content and teaching strategies, but with 
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peer and faculty feedback, the participants showed good growth in their MKT through 

improved explanations. Missing from this was any interaction with students, but this type 

of activity could help with the incremental work of building Specialized Content 

Knowledge and practicing without risk while getting ample feedback from others.  

Several studies have explored how to improve SCK in PSTs, especially through 

specially designed math content and methods courses. Looking at 69 preservice 

elementary teachers in the first semester of a year-long sequence of elementary-specific 

math content courses, Welder and Simonsen (2011) found that participant SCK improved 

more than .6 standard deviations, as measured by the multiple-choice test developed by 

Ball and her colleagues, the LMT. These gains were significant, as were the students’ 

gains in CCK. The researchers noted that the courses blended content and pedagogy and 

focused on hands-on activities, manipulatives, and exploring instructional strategies 

through examining student work and errors. 

In a study of similar courses, results indicated that PSTs with higher levels of 

SCK, as measured with the LMT, were more likely to believe that children can construct 

their own knowledge, and that mathematical procedures and processes should be taught 

with conceptual understanding. In this study, researchers looked at teacher beliefs about 

self-efficacy and effectiveness and how those related to SCK in PSTs. The courses were 

designed to promote conceptual understanding of mathematical content, to focus on 

problem solving and representations, and to encourage communication, connections, and 

proof. The researchers did not indicate what, if any, change in Specialized Content 

Knowledge occurred over the course of the study (Swars et al., 2007). 
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Leavy and Hourigan (2018) also found that a focus on a combination of content 

and pedagogy supported SCK improvement. Using lesson study, a professional 

development activity that has small groups of teachers collaboratively develop, discuss, 

and reflect on a lesson, PSTs developed understanding of the complex relationships 

between early number concepts that lead children to strong number sense, and developed 

the knowledge necessary for identifying the sources of children’s errors. The authors 

noted that, in Ireland, teacher education programs are very competitive, with admitted 

students ranking in the top 15% of high school graduates. During their elementary teacher 

education program, elementary PSTs engage in 100 hours of mathematics education 

courses which focus extensively on mathematical pedagogy along with content. This 

study added lesson study to the curriculum for a group of 25 primary-level PSTs. Using 

qualitative thematic analysis similar to the analysis shared in Chapter 5, they analyzed the 

Specialized Content Knowledge of the participants over the semester and found that the 

lesson study enhanced the understanding the preservice teachers had about number 

concept development.  

Also using a qualitative approach to measure SCK, Bair and Rich (2011) found 

that the ability of preservice teachers to pose problems, a teaching skill that involves both 

content and pedagogy, was linked to development of Specialized Content Knowledge. 

The researchers explored the development of SCK in algebraic reasoning and number 

sense for PSTs in a middle school math specialist program. The content courses focused 

on having students unpack their mathematical ideas so that they could better understand 

the conceptual underpinnings of procedures, and on having the PSTs explain and justify 

their mathematical reasoning. Researchers found that many students could explain what 
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they did, but not why they did it. The level to which the preservice teachers could justify 

their answers indicated the depth of their understanding. Problem posing, which they 

defined as being able to formulate new questions relative to a given problem or being 

able to restate a problem while solving it, was found to be tightly tied to SCK 

development. Those PSTs who lacked problem-posing skills tended to stagnate in their 

SCK development, but focused attention on those skills tended to restart the growth in 

SCK. 

Looking at the effects of a mathematics methods course on MKT, Kajander 

(2010) examined the procedural and conceptual knowledge of preservice teachers at the 

start and the end of a one-year teacher preparation program (TPP) over the course of 

three cohorts. Kajander considers procedural knowledge to be a sequence of steps or set 

method one follows to get to an answer, and conceptual knowledge requires an 

understanding of the underlying structure and relationships of the mathematical ideas. 

She found that all of the more than 300 participants were initially weak in both content 

and pedagogy, indicating that their pre-course mathematics was not sufficient to prepare 

them to teach. The mathematics course she was teaching and assessing had a strong 

conceptual focus, and students improved their understandings, but only to what she 

considered a minimally acceptable level for teachers who would need to teach the 

concepts to children in the near future. These results led to the creation of an extra (but 

optional) mathematics course and the institution of a mandatory high-stakes examination 

for those in the TPP, which seemed to be showing promise in increasing Mathematical 

Knowledge for Teaching.  
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These studies indicate that Specialized Content Knowledge can be improved 

through courses that are specifically designed to promote conceptual understanding of 

mathematical ideas and development of pedagogical skills. They also demonstrate that 

researchers have found many ways to measure MKT and its component part SCK, with 

some using the multiple-choice test, the LMT, developed by Ball and her colleagues and 

others using qualitative or quantitative methods they have constructed for that purpose.  

2.2.5 MKT in Policy Discussions  

How we measure MKT and SCK and which proxies we allow to represent them 

are important because policy makers institute requirements for schools and teachers 

based on such measures, or their assumptions about such measures. Some who try to 

influence teacher policy have used Ma’s findings of low Specialized Content Knowledge, 

which she called Profound Understanding of Fundamental Mathematics, of elementary 

teachers as strong evidence that teacher preparation for elementary teachers in the US 

needs to change (Greenberg & Walsh, 2008). The National Council on Teacher Quality 

(NCTQ), a partisan and political research group, has called for higher standards in 

coursework and GPAs and administration of standardized assessment tests before 

students are admitted to teacher preparation programs (TPPs) and calls for changes to 

coursework during those programs. Fuller (2014) looked into the NCTQ review of 

teacher preparation programs and found many questionable practices. The NCTQ has 

established a common set of standards for all subject areas and grade levels without 

sufficient evidence to support those standards, and it did not correlate its quality ratings 

of programs with available data such as licensure test pass rates or states’ value-added 

measures. Sleeter (2014) expanded the critique to note that the NCTQ based their review 
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of TPPs solely on syllabi and student teaching handbooks, never visiting programs or 

examining how graduates actually fare in the classroom. 

Those who have examined the data on teacher preparation and student 

achievement find that there is little evidence to support reforms like higher GPAs, nor is 

there clear research on how much or which math is necessary for those teaching in 

elementary schools (Evertson, Hawley, & Zlotnik, 1985; Cochran-Smith, 2005; Cochran-

Smith et al.,2016). Screening tests, which are largely multiple-choice content tests, have 

been found to disproportionately exclude minority candidates, calling into question the 

generalizability of the test results (Evertson, Hawley, & Zlotnik, 1985). Qian and Young 

(2016) also found little correlation between more college-level mathematics courses for 

teachers and greater math content knowledge or math pedagogical content knowledge. 

Using multiple-country data, they did find a statistically significant association between 

prior math achievement and teacher math content and pedagogical content knowledge 

across the participating countries. This finding indicates that school mathematics is 

important in preparing future teachers, and that we need to make sure prospective 

teachers have access to rich and rigorous mathematics before they attend colleges and 

universities. 

Types of teacher certification (traditional, alternate route, teaching fellow, Teach 

for America, etc.), have been seen as proxies for teacher knowledge and quality, but 

researchers have not found that types of certifications or advanced degrees are well-

correlated with student achievement (Buddin & Zamarro, 2009; Kane, Rockoff, & 

Staiger, 2008). A study in a large New York school district found that student 

achievement did increase with teacher experience, but the link was weak and largely tied 
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to poor outcomes associated with first- and second-year teachers (Buddin & Zamarro, 

2009). Kane et al. (2008) found that classroom effectiveness in the first two years of 

teaching was a more reliable indicator of future effectiveness than was initial certification 

status. They calculated that raising initial effectiveness of New York teachers by one 

standard deviation would have the same impact as the improvement associated with eight 

years of teaching experience. Both studies indicate that we need to find ways to make 

novice teachers more prepared to teach, so that they are safe to practice with students. 

Kane et al. (2008) argue for the development of tools to better evaluate teacher 

performance. 

Darling-Hammond (2010, 2016) agrees that we need better tools to assess 

teaching practices for preservice and novice teachers. Most current licensure tests are 

multiple-choice content tests that cannot assess teaching skill. Several states have 

developed portfolio processes that are meant to evaluate novice teachers in their first two 

years of teaching. These portfolios ask teachers to document their lesson plans, videotape 

and critique their teaching, and collect and evaluate evidence of student learning. 

Darling-Hammond argues that these are much more effective in assessing teaching 

practice than are the checklists of teaching behaviors most schools use. If these types of 

portfolios could be instituted in TPPS, we could better engage our candidates in the daily 

practices of teaching and potentially increase their pedagogical skill. 

It is challenging to translate research into programs that impact teaching practice. 

Sleeter (2014) found that only 6% of 196 articles published in 2012 in four leading 

teacher education journals examined the impact of teacher education on teaching practice 

or student learning. None of those articles addressed the impact of teacher education on 
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mathematics. We need current data on elementary teacher Specialized Content 

Knowledge to inform both teacher preparation programs and policy. This data needs to be 

anchored in more than multiple-choice tests and needs to be rooted in current content 

standards. 

Looking at these studies, it is evident that measuring MKT with multiple choice 

tests alone does not give us a complete picture of the knowledge that a teacher holds, nor 

how a teacher intends to put that knowledge into practice in a classroom. Many proxies 

have been used for MKT, including number of math courses taken and college major, but 

those proxies have not been shown to align with student achievement in mathematics. 

There is a need for a more qualitative study of MKT and, more specifically, SCK, in 

current elementary teachers that replicates the earlier work of Liping Ma. While her work 

has been cited by policy advocates (Greenberg & Walsh, 2008), her research was 

conducted prior to the mathematics standards movements of the past three decades. The 

TELT questions that she used, however, are still well-aligned with current topics and 

expectations in the elementary classroom, and therefore appropriate for use in this study. 

This work can help as we set priorities for teacher education programs and in-service 

professional development. 

The next sections of this literature review will shift to research that addresses each 

of the four topic areas present in this study: subtraction with regrouping, multi-digit 

multiplication, division with fractions, and area, perimeter, and proof. I will look at how 

those topics have been studied, what has been uncovered about teaching and learning 

those topics, and current best practices around those topics. Teachers’ instructional 

practices are nested within a broader educational context that certainly includes state and 
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national policy decisions that districts and schools are required to implement. Research 

related to MKT, often from the early studies of Ma (1999) and Ball (1990), has played a 

consequential role in such policy decisions. As I consider and critique here, at times those 

policy decisions have not appropriately or adequately reflected more recent research on 

the effects of that policy, nor has there been an update to Ma’s work.  

How we measure MKT and SCK and which proxies we allow to represent them 

are important because policy makers institute requirements for schools and teachers 

based on such measures, or their assumptions about such measures. Some who try to 

influence teacher policy have used Ma’s findings of low Specialized Content Knowledge, 

which she called Profound Understanding of Fundamental Mathematics, of elementary 

teachers as strong evidence that teacher preparation for elementary teachers in the US 

needs to change (Greenberg & Walsh, 2008). The National Council on Teacher Quality 

(NCTQ), a partisan and political research group that has cited Ma in their proposals, has 

called for higher standards in coursework and GPAs and administration of standardized 

assessment tests before students are admitted to teacher preparation programs (TPPs) and 

calls for changes to coursework during those programs. Fuller (2014) looked into the 

NCTQ review of teacher preparation programs and found many questionable practices. 

The NCTQ has established a common set of standards for all subject areas and grade 

levels without sufficient evidence to support those standards, and it did not correlate its 

quality ratings of programs with available data such as licensure test pass rates or states’ 

value-added measures. Sleeter (2014) expanded the critique to note that the NCTQ based 

their review of teacher preparation programs solely on syllabi and student teaching 
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handbooks, never visiting programs or examining how graduates actually fare in the 

classroom. 

School mathematics is important in preparing future teachers, and we need to 

make sure prospective teachers have access to rich and rigorous mathematics before they 

attend colleges and universities. Those who have examined the data on teacher 

preparation and student achievement find that there is little evidence to support reforms 

like higher GPAs, nor is there clear research on how much or which math is necessary for 

those teaching in elementary schools (Evertson et al., 1985; Cochran-Smith, 2005; 

Cochran-Smith et al.,2016). Screening tests, which are largely multiple-choice content 

tests, have been found to disproportionately exclude minority candidates, calling into 

question the generalizability of the test results (Evertson et al., 1985). Qian and Youngs 

(2016) also found little correlation between more college-level mathematics courses for 

teachers and greater math content knowledge or math pedagogical content knowledge. 

Using multiple-country data, they did find a statistically significant association between 

prior secondary math achievement and teacher math content and pedagogical content 

knowledge across the participating countries.  

Types of teacher certification (traditional, alternate route, teaching fellow, Teach 

for America, etc.), have been seen as proxies for teacher knowledge and quality, but 

researchers have not found that types of certifications or advanced degrees are well-

correlated with student achievement (Buddin & Zamarro, 2009; Kane, Rockoff, & 

Staiger, 2008). A study in a large New York school district found that student 

achievement did increase with teacher experience, but the link was weak and largely tied 

to poor outcomes associated with first- and second-year teachers (Buddin & Zamarro, 
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2009). Kane, Rockoff, and Staiger  (2008) found that classroom effectiveness in the first 

two years of teaching was a more reliable indicator of future effectiveness than was initial 

certification status. They calculated that raising initial effectiveness of New York teachers 

by one standard deviation would have the same impact as the improvement associated 

with eight years of teaching experience. Both studies indicate that we need to find ways 

to make novice teachers more prepared to teach, so that they are safe to practice with 

students. Kane et al. (2008) argue for the development of tools to better evaluate teacher 

performance. 

It is challenging to translate research into programs that impact teaching practice. 

Sleeter (2014) found that only 6% of 196 articles published in 2012 in four leading 

teacher education journals examined the impact of teacher education on teaching practice 

or student learning. None of those articles addressed the impact of teacher education on 

mathematics. We need current data on elementary teacher Specialized Content 

Knowledge to inform both teacher preparation programs and policy. This data needs to be 

anchored in more than multiple-choice tests and needs to be rooted in current content 

standards. 

Looking at these studies, it is evident that measuring MKT with multiple choice 

tests alone does not give us a complete picture of the knowledge that a teacher holds, nor 

how a teacher intends to put that knowledge into practice in a classroom. Many proxies 

have been used for MKT, including number of math courses taken and college major, but 

those proxies have not been shown to align with student achievement in mathematics. 

There is a need for a more qualitative study of MKT and, more specifically, SCK, in 

current elementary teachers that replicates the earlier work of Liping Ma (1999). While 
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her work has been cited by policy advocates (Greenberg & Walsh, 2008), her research 

was conducted prior to the mathematics standards movements of the past three decades. 

The TELT questions that she used, however, are still well-aligned with current topics and 

expectations in the elementary classroom, and therefore appropriate for use in this study. 

This work can help as we set priorities for teacher education programs and in-service 

professional development. 

2.3 Specialized Content Knowledge in the Four Mathematical Topic Areas 

The next sections of this literature review will shift to research that addresses the 

different Specialized Content Knowledge embedded in each of the four topic areas 

present in this study: subtraction with regrouping, multi-digit multiplication, division 

with fractions, and area, perimeter, and proof. I will look at how those topics have been 

studied, what has been uncovered about teaching and learning those topics, and current 

best practices around those topics. It will be seen that each of these topics is complex and 

has its own unique set of underlying mathematical ideas. As with the prior section, most 

of the research has been conducted with preservice teachers, giving us a lens into the 

starting point for SCK for the various topics. 

2.3.1 Subtraction with regrouping 

Subtraction is when we take one quantity away from another or find the 

difference between two quantities. Regrouping comes into play when we use the 

traditional US algorithm to solve problems like 52-25, where there are more ones in the 

ones place of the subtrahend (the number that is being subtracted) than in the ones place 

of the minuend (the number we are subtracting from). To use the standard US algorithm 

for subtraction with regrouping, we generally rewrite the problem vertically, and 
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exchange one of the tens in the minuend for ten ones. We then subtract the ones and the 

tens, arriving at the difference (see Figure 2.1). 

 

   
        4  

 
 4  

 5 2  
 5 12  

 5 12 
- 2 5  - 2 5  - 2 5 

   
 

   
 

 2 7 
Figure 2.1. Subtraction with regrouping 

 

There are several places students can make errors in this process that generally 

underscore misunderstandings. The first is subtracting up in the ones place, so getting an 

answer of 33 for the given problem. The second is adding one to the ones place in the 

minuend and not ten, so making 43-25. A third is forgetting to change the “5” in the 

minuend into a “4,” so getting an answer of 37. Part of the Specialized Content 

Knowledge for this topic is understanding how each error indicates how a child thought 

about the underlying mathematics. The first error indicates that the student is not thinking 

about each number as a whole, but as unrelated digits. The second error indicates that the 

student thinks of the “borrowed” amount as a one instead of a ten, so is forgetting the 

values associated with each place in the number. The third error can indicate that a 

student is not understanding that the ten is being converted into ten ones and now no 

longer exists. Combatting these misunderstandings requires teachers and students to 

focus on the relationship of the tens to the ones and to the composition of each number.  

Subtraction, with or without regrouping, can also be challenging because it has so 

many more contexts and representations than addition (Van de Walle, Karp, & Bay-

Williams, 2013). While subtraction names a missing part, it can be seen as a “join” 

problem with either the change or the start unknown; a “separate” problem with the 
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result, change, or start unknown; a “part/part/whole” problem with a part unknown; or a 

“compare” problem with either the difference, smaller number, or larger number 

unknown. Providing context and modeling helps students to determine which operation is 

involved and how to set up the problem. Subtraction can also be thought of as a “think-

addition” problem, such as “what would I need to add to 8 to get 14.” 

  Teachers are encouraged to start with student-invented strategies, as students 

tend to make fewer errors and develop number sense in creating them. They also promote 

mental math and can sometimes be faster than the standard algorithm. Van de Walle et al. 

(2013), who speak to best practices supported by research, suggest using models, 

including number lines to teach subtraction. They also suggest a focus on splitting 

numbers apart flexibly, turning 8+5 into 8+2+3, for instance, which can help students 

develop their mental math skills. Bridging the tens and hundreds is a topic they note can 

be particularly challenging for children, and they also suggest that teachers anticipate 

difficulties with zeros, especially when they are in the minuend of the problem, both 

aspects of the MKT teachers need to hold. Manipulatives, especially base 10 blocks, 

model in concrete ways the mathematics embodied in the algorithm, and their use is 

encouraged as teachers introduce the use of the standard algorithm. Using base 10 blocks, 

we could model the number 52 as shown in Figure 2.2. Each small square represents a 

one, and is a cube in a physical set of blocks. The long rectangles are exactly the length 

of ten unit cubes set edge to edge and represent ten. One can exchange one of the tens for 

ten unit cubes and represent the 52 as four tens and 12 ones (see Figure 2.3). Then it is 

much easier to act out the subtraction of 25 by removing two of the tens and 5 of the 
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ones, leaving two tens and seven ones behind, and giving a physical representation to the 

steps of the algorithm. 

 

Figure 2.2. 52 modeled in base 10 blocks. 
 

 

Figure 2.3. Exchanging a ten for ten ones. 
 

As indicated above, subtraction with regrouping involves a coordination of 

multiple mathematical ideas. To capture the varied ideas needed for this mathematical 

topic, Ma (1999) identified what she called the knowledge package for subtraction with 

regrouping and created a web of ideas that build on one another to develop the full 

concept of subtraction with regrouping. She started with addition and subtraction within 

10, then within 20, moved to understanding the decomposition of tens and that our 

number system is based on groups of tens, and connected all of that to the idea that 

addition and subtraction are inverse operations. These elements align well with standards 
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from the Common Core State Standards for Math (CCSSI, 2010), which they predate by 

more than a decade, as shown in Table 2.1. 

Table 2.1 Common Core State Standards for Mathematics as they address the aspects of 
PUFM 
 
Aspect of PUFM –  
Subtraction with regrouping 
(Ma, 1999, p. 19) 

CCSSM Standard 
(CCSSI, 2010) 

Addition and subtraction within 10 
Addition and subtraction within 20 

1.OA.1: Use addition and subtraction within 20 to 
solve word problems involving 
situations of adding to, taking from, putting 
together, taking apart, and comparing, with 
unknowns in all positions, e.g., by using objects, 
drawings, and equations with a symbol for the 
unknown number to 
represent the problem. (p. 15) 
 

Composing and decomposing a higher value unit 
The rate of composing a higher value unit 
Composition within 100 

K.NBT.1: Compose and decompose numbers 
from 11 to 19 into ten ones and some further ones, 
e.g., by using objects or drawings, and record each 
composition or decomposition by a drawing or 
equation (e.g., 18 = 10 +8); understand that these 
numbers are composed of ten ones and one, two, 
three, four, five, six, seven, eight, or nine ones. (p. 
12)  
1.NBT.4: Understand that in adding two-digit 
numbers, one adds tens and tens, ones and ones; 
and sometimes it is necessary to compose a ten. 
(p. 16) 
2.NBT.1: Understand that the three digits of a 
three-digit number represent amounts of hundreds, 
tens, and ones; e.g., 706 equals  
7 hundreds, 0 tens, and 6 ones. Understand the 
following as special cases: 
a. 100 can be thought of as a bundle of ten tens — 
called a “hundred.” (p. 19) 
 

Addition and subtraction as inverse operations 1.OA.4: Understand subtraction as an unknown-
addend problem. For example, 
subtract 10 – 8 by finding the number that makes 
10 when added to 8. (p. 15) 
2.NBT.5: Fluently add and subtract within 100 
using strategies based on place value, properties 
of operations, and/or the relationship between 
addition and subtraction. (p. 19) 
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Composition within 10 K.OA.4: For any number from 1 to 9, find the 
number that makes 10 when added to the given 
number, e.g., by using objects or drawings, and 
record the answer with a drawing or equation. (p. 
11) 
 

Addition without carrying 
Subtraction without regrouping 

1.OA.6: Add and subtract within 20, 
demonstrating fluency for addition and 
subtraction within 10. Use strategies such as 
counting on; making ten(e.g., 8 + 6 = 8 + 2 + 4 = 
10 + 4 = 14); decomposing a number leading to a 
ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using 
the relationship between addition and subtraction 
(e.g., knowing that 8 + 4 = 12, one knows 12 – 8= 
4); and creating equivalent but easier or known 
sums (e.g., adding 6 + 7 by creating the known 
equivalent 6 + 6 + 1 = 12 + 1 = 13). (p.15) 
 

Subtraction with regrouping between 20 and 100 2.NBT.5: Fluently add and subtract within 100 
using strategies based on place value, properties 
of operations, and/or the relationship between 
addition and subtraction. (p. 19) 
 

Subtraction with regrouping of large numbers 2.NBT.7: Add and subtract within 1000, using 
concrete models or drawings and strategies based 
on place value, properties of operations, and/or 
the relationship between addition and subtraction; 
relate the strategy to a written method. Understand 
that in adding or subtracting three-digit numbers, 
one adds or subtracts hundreds and hundreds, tens 
and tens, ones and ones; and sometimes it is 
necessary to compose or decompose tens or 
hundreds. (p. 19) 
 

 

Very few studies were found that focused on the topic of subtraction with 

regrouping. Ma (1999), whose interviews with US teachers were conducted a decade 

before her book was published, found that 77% of the US teachers in her sample limited 

their explanations of how to teach subtraction with regrouping to the procedural steps of 

the algorithm, while Chinese teachers in her sample focused on the concept of 

decomposing tens into ones. One-third of the Chinese teachers showed non-standard 

methods of regrouping, that is, breaking apart numbers other than a ten, and they also 
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focused on the relationships between the non-standard methods and the standard 

algorithm. Where US teachers mentioned manipulatives as a tool they would use to show 

students why and how the algorithm works, the Chinese teachers would have students do 

exploratory work with the manipulatives and then have students discuss what they had 

found and noticed in order to draw out the connections. Ma also found that US teacher 

explanations of the regrouping process included thinking of it as borrowing a cup of 

sugar from a neighbor, which removes the idea of place value and the role of ten entirely.  

Perhaps linked to Ma’s findings that US teachers were lacking conceptual 

understanding of subtraction, one study conducted around the same time as Ma’s work 

(Van Houten, 1993) looked at whether students learned subtraction facts better by rote or 

by using rules. The rules were essentially magic tricks with no conceptual underpinnings 

provided. For example, to subtract nine from a teen number, add one to the number above 

the nine. So, 15-9=6 because 5+1 = 6. The rules method was found to be more efficient 

and accurate than learning the facts by rote, but conceptual understanding was not 

addressed.  

One study conducted not long after Ma and Ball collected their data shows a shift 

from their findings. The study asked preservice (PSTs) and in-service teachers how they 

would respond to students who forgot to regroup while subtracting, incorrectly 

calculating 60-28=48 (Fuller, 1996). Fifteen of the 26 PSTs (58%) and 4 of 28 

experienced teachers (14%) focused exclusively on the procedure, but the others focused 

on a more conceptual response, stating that they would have the students use 

manipulatives to create a representation of the problem. This representation would allow 

students to understand the regrouping necessary to solve the problem. This is in contrast 
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to Ma’s (1999) study which had 83% of the combined group of PSTs experienced 

teachers focusing on the procedure. 

Thanheiser (2009) found that preservice teachers sometimes struggled to 

conceptualize the various ways to represent multidigit whole numbers. Two-thirds saw 

the digits in a number incorrectly in terms of ones at least some of the time. That is, they 

saw a number such as 253 as having only three ones, rather than having 253 ones, or 

some other combination of hundreds, tens, and ones. This could lead to challenges in 

work with regrouping.   

I was unable to find current studies focusing on how teachers think about and 

explain the topic of subtraction with regrouping. None of the cited studies examined 

using number lines or flexible regrouping, which are among the current best practices for 

teaching subtraction (Van de Walle et al., 2013). My study should help to fill the gap on 

how current elementary teachers are engaging their students in subtraction with 

regrouping and what they see as the important elements to its teaching and learning. 

2.3.2 Multi-digit Multiplication 

Multiplication can represent repeated addition, a total number if we have X 

groups with Y elements in each group, and an area of a rectangular figure that is X long 

by Y wide. Van de Walle, et al. (2013) suggest that multiplication can be modeled as an 

array or area model, as equal sets, and as repeated jumps on a number line. They 

encourage flexible methods for computation, with strategies varying with the numbers 

involved and the contexts presented. In approaching multi-digit multiplication, the 

authors suggest using partitioning strategies, cluster problems, area models, and partial 

products, which can then be linked to the standard algorithm. These strategies are all part 
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of the SCK for the topic. They acknowledge that the algorithm is often more efficient in 

calculating products of multi-digit numbers than area models or partial products, but note 

that the algorithm should be taught with reference to the other models in order give 

meaning to the procedure. Efficiency is, of course, relative to the individual. What is 

efficient for an expert is not necessarily efficient or useful for a learner. The Common 

Core State Standards for Mathematics expect that, by the end of the fifth grade, students 

will be able to “Fluently multiply multi-digit whole numbers using the standard 

algorithm” (CCSSI, 2010, p 35) 

An area model is a rectangular diagram in which the side lengths of the rectangle 

represent the numbers being multiplied. If the factors are multi-digit, they are often 

broken down by place value, as shown in Figure 2.4, which represents multiplying 15 by 

17. When students first start using this model, they generally work with graph paper to

create accurate representations of the factors and the related areas. As the numbers get 

larger, creating scale representations gets more challenging, so the model is often 

simplified to be a set of boxes that are not in proportion to the factors they represent, as 

shown in Figure 2.5. This model is sometimes referred to as a box model, but often still 

called an area model. 
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Figure 2.4. An area model representation of 15 x 17. 

 

Figure 2.5. An area model that is not to scale. 
 

These models are useful for representing the partial products embodied in the 

standard algorithm for multi-digit multiplication. In the standard algorithm, the 

multiplicands, also known as factors or numbers being multiplied, are aligned one on top 

of the other, with the ones digits aligned. The number with the fewest digits is generally 

placed on the bottom. The ones digit of the bottom factor is then multiplied by the upper 
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factor, and then the tens digit of the bottom factor is multiplied by the upper factor, as 

shown in Figure 2.6. One can also multiply each of the component parts of the bottom 

number by each of the component parts of the upper number to create four products, 

known as partial products, that align with the products in the separate boxes of the array 

method.  

 

Figure 2.6. The standard algorithm for multiplying 17 x 15 and the corresponding 
partial products version of the algorithm. 

 
Lampert, in 1986, argued that partial products should be accepted as a standard 

algorithm. While the US standard algorithm might be slightly faster, she found that 

participants working with partial products tended to be more accurate. She argued that, if 

speed is the objective, have students use a calculator, but if the goal is to understand the 

process and what it means, a model using partial products seems superior. 

Key elements of multi-digit multiplication that were identified by Ma (1999) in 

her knowledge package included a strong understanding of multiplication by 10 and 

powers of 10, an understanding of the meaning of multiplication, and a working 

knowledge of the distributive property. The Chinese teachers also noted that they would 
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focus on 2-digit by 2-digit problems using partial products with their students to help 

them understand the procedure and then work with larger problems. 

Studies on teacher understanding of multi-digit multiplication have focused 

generally on the standard US algorithm. Do preservice and in-service teachers understand 

why the algorithm works? Can they create a model to justify the algorithm? Can their 

models explain the pattern of zeros in the lines of the solution? 

Ma, who asked both PSTs and in-service teachers how they would respond to 

students who right justified all of their partial products (refer to the multi-digit 

multiplication problem in Chapter 1), found that 77% of US participants said that the 

problem the students had was with the lining-up procedure, and 30% said the students 

didn’t understand the rationale of the algorithm. Most identified zeros as placeholders, as 

opposed to indicators of values, and two participants said that you could use an asterisk 

or another symbol to hold the place, instead of using a zero or leaving a blank. Only 39% 

of US teachers were able to provide a valid conceptual explanation for the procedure, as 

compared to 92% of the Chinese teachers. This difference in knowledge between the 

populations indicate both that Specialized Content Knowledge for this topic is possible, 

and that US teachers may have inadequate SCK for multi-digit multiplication. 

Several studies looked at whether PSTs could relate other strategies to the 

standard algorithm.  When Southwell and Penglase (2005) asked 78 elementary PSTs to 

calculate 47x25 two different ways, the participants struggled to use the distributive 

property and partial products or to look for related numbers (47x100/4, for instance). 

PSTs showed an inflexible idea of multiplication, seeing it only as the standard 

algorithm. Since modern curricula recommend that teachers encourage natural or 
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invented methods, it is concerning that PSTs aren’t showing the flexibility needed to 

accept or understand student-created methods. 

Similarly, a group of PSTs were asked to develop and justify a way to multiply 

22x37 using a first step of either 22x10, 37x10, or 20x30 (Lo, Grant,  & Flowers, 2008). 

Many struggled to justify their reasoning based on a flexible understanding of 

multiplication. They especially struggled to coordinate features (words, context, pictures) 

in their responses. Most participants focused on an equal groups model of multiplication, 

and not an area/array model. The researchers found it challenging to tell if  the PSTs had 

an insufficient knowledge of multiplication or if they didn’t understand what it means to 

justify. The authors suggested those  were linked and that “inability to explain is 

frequently tied to incomplete understanding.” This lack of ability to justify is indicative 

of lower SCK. 

Also showing issues with justification, another group of PSTs was asked to 

describe why an invented algorithm worked, and most of their explanations were 

procedural and focused on memorized definitions. In the solution they were shown, the 

student had multiplied 25x34 as 5x34 then 20x34 instead of 4x25 and 30x25 (Harkness 

and Thomas, 2008). They were told that the student’s teacher had responded in a 

belittling way. Less than 1/3 of the participants demonstrated some level of conceptual 

understanding of the mathematical properties inherent in the solution. As noted above, it 

is important for teachers to have enough SCK about fundamental topics to understand 

why a student’s methods lead to a correct (or incorrect) answer. If teachers do not, they 

must withhold judgement on a student’s process until they can explore the methods and 

think about the validity, based on mathematical properties.  
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Whitacre and Nickerson (2016) found success in working with PSTs to develop a 

stronger understanding of multidigit multiplication, In a required content course, they led 

students in work on partial product in one by two digit multiplication, connecting partial 

products to the area model, understanding partial products in two by two, and then 

justifying the standard algorithm. They felt that this sequence of explorations helped the 

PSTs to create the necessary connections between partial products, area models, and the 

standard algorithm. 

These studies of preservice teachers show that focused attention on the conceptual 

work of multi-digit multiplication can lead to stronger understanding, but most PSTs 

seem to come to their programs without that conceptual understanding. This study can 

provide information about current teachers’ knowledge and understanding of multi-digit 

multiplication, allowing us to see if teacher preparation programs and professional 

development efforts have been implemented and effective for this topic. 

2.3.3 Division by a Fraction 

Division can be seen as finding the number of groups of size X in a total 

(quotitive or measurement division), the number in each of Y groups in a total (partitive 

division). When dividing by fractions, we must consider even more components. Van de 

Walle et al. (2013) state that there are several ways of thinking about fractions (as part of 

a whole, ratios, and division), and several models for representing them (area, length, and 

set models). When looking at division with fractions, they note that people find it 

challenging to think of fraction contexts, but it is helpful to have a context in order to 

model a problem, estimate, and solve.  They also focus on creating visual representations, 

such as number lines, sets of counters, and area models, for these contexts that can help 
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students understand the division problems. In noting what makes division with fractions 

especially challenging, they mention that, in whole number division, the answer to a 

division problem is generally smaller than the dividend, but in fraction division the 

answer is generally larger than the dividend. This can be confusing to those who can’t 

contextualize the problem situation. 

While we tend to think first of the invert-and multiply algorithm for dividing 

fractions, Van de Walle et al. (2013) note that there is also a common denominator 

algorithm that can be developed. Once the divisor and dividend have been rewritten with 

the same denominator, the denominator is superfluous, and the problem simplifies to 

dividing the two whole-number numerators. For example, for the problem 1
ଷ 

ସ
  ÷  

ଵ

ଶ
, we 

could rewrite the dividend as 7/4 and the divisor as 2/4, transforming the problem into 

଻ 

ସ
  ÷  

ଶ

ସ
. This is equivalent to 7 ÷ 2. Having a common denominator also allows for easier 

modeling of the division as repeated subtraction. 

Ma (1999) found that, given a division with fractions problem to solve, only 39% 

of US teachers and 72% of Chinese teachers calculated a correct answer. In this part of 

the question, they were asked only to calculate the answer, not explain it conceptually, 

which would have been even more challenging. Even more alarming was that only one of 

the US teachers was able to present a conceptually correct context, and even that had a 

complication with the units used. Most of the US teachers who attempted a representation 

confused division by ½ with either division by 2 or multiplication by ½, which are 

mathematically equivalent to each other. Ma felt that an “inadequate understanding of 

procedure impedes creating a representation” (p. 69), a sentiment echoed in the CCSSM 

(2010). The Chinese teachers, on the other hand, most of whom could successfully 
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compute the correct answer, also provided conceptual rationales. They frequently 

mentioned the definition of division in justifying the algorithmic step of multiplying by 

the reciprocal of the divisor, and they were able to create many representations and 

models, both measurement (quotitive) and partitive. Ma suggested that an understanding 

of division by fractions was built on a foundation of knowing the meaning of 

multiplication and division with whole numbers, the meaning of multiplication with 

fractions, and the relationship of multiplication and division as inverse operations. 

Understanding that 1
ଷ

ସ
 ÷

ଵ

ଶ
, can be thought of as the inverse of 

ଵ

ଶ
 of what (or 

ଵ

ଶ
 times 

what) is equal to 1
ଷ

ସ
, can lead to the representation shown in Figure 2.7. This 

representation can make it much clearer why we would multiply 1
ଷ

ସ
 by 2 to solve the 

problem. 

½ 

Figure 2.7. Representing the division problem as its multiplicative correlate. 

There is a large body of research on student, preservice teacher, and in-service 

teacher understanding of fractions and division by a fraction, including a 1924 study that 

indicates US students’ struggles with fractions are not a recent phenomenon. In that early 

study (Morton, 1924), 8th grade students were tested on all four operations (addition, 

subtraction, multiplication, and division) with common fractions. No context was given 

for the problems; students were simply asked to perform the calculations. Morton found 

that many of the students had “inadequate conception of the processes involved.” They 

1 ¾ 
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sometimes performed the wrong operations and they struggled to know when one needed 

(or didn’t need) a common denominator.  

Those challenges with understanding how and when to apply the various fraction 

calculation rules have persisted. Preservice teachers were tested on all four operations 

prior to a math content course (Jones Newton, 2008). The questions were not only tests of 

computational skill, but also on basic conceptual understanding, word problems, 

flexibility, and transfer of skills and knowledge. The PSTs had difficulty adding and 

subtracting fractions, as many were unsure what to do with the denominators, and some 

simply added or subtracted the numerators and denominators. Uncertainty was highest 

around division, then subtraction, multiplication, and addition. The researcher found that 

errors were mostly related to misconceptions about fractions and how operations with 

them differ from whole number operations. PSTs seemed to remember procedures, but 

they used them inappropriately, and they did not have the conceptual knowledge to 

reason through the procedures. This low-level of conceptual knowledge around fractions 

would likely lead to teaching that was procedural and focused on the rules without 

understanding. It would also mean that PSTs would lack awareness of the misconceptions 

held by students, as they would be shared misconceptions. The author instituted a 

curriculum intended to boost knowledge of fractions and the four operations. Post-course 

evaluations showed an increase in conceptual understanding, and an improvement in 

choosing the correct operation for contextual problems, though calculation errors 

persisted.  

A Belgian study (Van Steenbrugge, Lesage, Valcke, &  Desoete, 2014) found that 

third-year PSTs made a lot of errors on a test of fraction knowledge, and their procedural 
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knowledge scores were significantly higher than their conceptual scores. More than one-

third of the PSTs did not indicate an understanding that a fraction represents a single 

number. When they were asked to explain the rationale for a procedure, the average score 

was below 25% on the task. This lack of conceptual knowledge would limit the ability of 

these future teachers to teach well for student understanding.  

Experienced teachers have also shown a weakness in the area of fractions. When 

asked to respond to a student misconception about adding fractions, about half of  both 

PSTs and in-service teachers in a study (Fuller, 1996) gave strictly procedural responses. 

The experienced teachers showed a much greater conceptual understanding of whole-

number operations than they did of fractions.  

Fractions are considered challenging for a variety of reasons. As Lortie-Forgues, 

Tian, and Siegler noted (2015), the conceptual basis of fraction operations and procedures 

is not always obvious. We need common denominators for addition and subtraction or 

fractions, but not for multiplication and division of fractions. When multiplying fractions, 

one can multiply the numerators together and the denominators together, but one cannot 

just add or subtract the numerators and denominators for those operations.  Why can we 

invert and multiply when solving division with fractions problems? These larger ideas are 

often linked to algebraic concepts and proofs, which are generally taught after fractions. 

There are a large number of procedures involved in fraction operations which require 

prerequisite skills, as Ma (1999) indicated in the knowledge package for division with 

fractions. Students who lack a conceptual understanding of the procedures cannot then 

reconstruct one if they have forgotten it. Reasons that teachers continue to focus on 

procedure and memorization instead of a conceptual understanding include that they 
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learned it that way, they have no incentive to change, they struggle to understand the 

material themselves and teach it in a conceptual way, and they are avoiding the 

embarrassment of student questions they can’t answer.  

In a review of studies on PSTs and fractions (Thanheiser, Browning, Edson, 

Kastberg, & Lo, 2013), the authors concluded that teachers can perform fraction 

operation algorithms, but lack conceptual understanding to explain them. They also tend 

to apply whole number understandings to fraction problems. Use of representations of 

student thinking can help surface misconceptions and help PSTs to develop stronger math 

knowledge for teaching (MKT). The reviewers also found that PSTs struggle to model 

operations with representations, interpret student-generated algorithms, and identify 

sources of student errors.   

Division with fractions seems to be a particularly challenging topic, when 

compared with the other three operations. PSTs were studied, looking at the 

connectedness of their procedural and conceptual knowledge for the operation, and their 

knowledge of unit relationships in division problems (Simon, 2006). Conceptual 

knowledge was found to be weak in understanding algorithms, the relationship between 

partitive (fair shares) and quotitive  (subtraction or measurement) division,  in linking the 

symbolic representation to the real-world problems, and in identifying units.  

In a study looking at why Chinese students might fare better with the topic of 

division with fractions, as Ma (1999) determined, it was found that Chinese students are 

expected to learn more than the rote procedure of division by fractions (Li, 2008). 

Chinese textbooks recommend extensive lessons on the topic, and those lessons include 

the meaning of and computational rule for division of fractions, application problems, 
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and the interpretation of ratio. Rather than showing the algorithm, the textbook gets to the 

algorithm by solving a problem that leads to that outcome. Understanding of the meaning 

of division by fractions as the inverse of multiplying by fractions is a key and primary 

goal. A comparative study (Son & Senk, 2010) found that US textbooks focused almost 

exclusively on the algorithm. 

That US curriculum does not have the same focus was evident in a study on PST 

understanding of fraction operations (Li & Kulm, 2008). While 90% of PSTs could 

identify the incorrectness of fraction addition and subtraction problems, only 2 of 46 

(4%) identified that the solution to a fraction division problem was computed correctly. 

Because it wasn’t solved in the “standard” keep-change-flip manner, they did not 

recognize the solution was valid, which indicates that the PSTs had very low SCK for 

fraction division.  The researchers note that, on a survey used to measure the PSTs’ 

perceptions of their knowledge for teaching, which asked how ready the felt to teach 

“Representing and explaining computations with fractions using words, numbers, or 

models?’’, 60% of the participants expressed high confidence in their mathematical 

knowledge. Conversely, in a similar survey, Chinese and Korean teachers PSTs 

expressed less confidence in their knowledge, but more than 95% answered correctly 

problems like ‘‘Tell whether 9/11 ÷ 2/3 is greater than or less than 9/11 ÷ 3/4 without 

evaluating. Explain your reasoning.’’ It is clear that people can learn fraction division in a 

conceptual way, but the authors suggest that we need to look at what approaches US 

schools and teacher educators need to incorporate to reach that conceptual understanding. 

Along with struggling with the operation of division with fractions, PSTs struggle 

to create contexts for the operation (Unlu & Ertekin, 2012; Alenazi, 2016; Nillas, 2003; 
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Jansen & Hohensee, 2016; Işik & Kar, 2012; Ma, 1999; Lo & Luo, 2012). Common 

errors and misconceptions included confusing dividing by ½ and dividing by 2, or 

dividing by ½ and multiplying by 1/2 (Nillas, 2003; Işik & Kar, 2012; Ma, 1999), 

inability to accept that the contextual problem involved fractional division (Alenazi, 

2016; Jansen & Hohensee, 2016),  confusion with units (Alenazi, 2016; Işik & Kar, 2012; 

Jansen & Hohensee, 2016), assigning natural number meaning to fractions (Işik & Kar, 

2012), and the inability to establish part-whole relationships (Işik & Kar, 2012; Jansen & 

Hohensee, 2016; Alenazi, 2016). Alenazi (2016) noted the vicious cycle that occurs when 

PSTs enter college with insufficient understanding of fraction division, receive little 

college instruction on this topic, which they then are unprepared to teach when they enter 

the classroom, leading to their students having insufficient understanding of fraction 

division. 

In an attempt to improve PST understanding of multiplication and division with 

fractions, researchers developed a course that focused specifically on those topics 

(Whitehead & Walkowiak, 2017). Pre- and post-course assessments asked the PSTs to 

identify errors in student work on fraction problems and provide rationales for why the 

strategies were faulty.  While 98% of the PSTs had taken a Calculus for elementary 

teachers course, they struggled to explain the common fraction algorithms. Post-course, 

students could explore problems such as ½ of ¾ is 3/8, but they did not tie their 

explorations back to the algorithm of multiplying numerator times numerator and 

denominator times denominator. The professors realized that they had not explicitly 

identified or named those connections during the course and noted that the explication is 

likely necessary for tying the procedural to the conceptual.  



 

 57 

It is clear that fractions are challenging for students, PSTs, and in-service 

teachers, and that fraction division is extremely challenging. These studies indicate that 

conceptual understanding of fraction division is weak for the US population, that it is a 

struggle for US PSTs and in-service teachers to develop contextual approaches to the 

topic, and that some other countries seem to have developed more successful curricula to 

address fraction division. This study will examine if there have been improvements in 

understanding this topic in current elementary teachers and will seek to identify areas of 

strength and areas of concern. 

2.3.4 Area, Perimeter, and Proof 

Area and perimeter are qualities of closed, plane figures called polygons. The 

perimeter is the length of the outer edge of the figure, and the area is the amount of 

surface inside the perimeter (see Figure 2.8). Perimeter is a linear, one-dimensional 

measure and carries a label such as feet or meters. Area is a two-dimensional measure 

and carries a label such as square feet or square meters. Van de Walle et al. (2013) note 

that area, perimeter, and volume are related , but not linearly, which is a part of SCK for 

this topic. They also say that students often confuse area and perimeter concepts, and 

those topics are generally taught with an overemphasis on formulas and very little 

conceptual background.  

 

Figure 2.8. Area and perimeter of a rectangle. 
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Research on teacher knowledge of area and perimeter indicate that both 

preservice and in-service teachers tend to have only a procedural understanding of both 

concepts (Menon, 1998; Kellogg, 2010; Reinke, 1997; Livy, Muir, & Maher, 2012; 

Fuller, 1996; Ma, 1999). In Ma’s study (1999) comparing US and Chinese teachers, she 

asked teachers to respond to an incorrect claim a student made about the relationship 

between perimeter and area, that as perimeter increases, area also increases. Only 13% of 

the US teachers investigated the claim mathematically, as compared to 92% of Chinese 

teachers. The Chinese teachers who explored the claim were much more likely than the 

US teachers to clarify and explain conditions under which the claim could be true.  

Many preservice teachers in a more recent study (Livy et al., 2012) said that the 

student’s claim from the Ma (1999) example was correct, indicating that Ma’s decades-

old findings related to area and perimeter may have persisted despite changing standards. 

Those PSTs (72% of 222 participants) had a procedural understanding of area and 

perimeter and showed similar misconceptions to students, who often think that there is a 

constant relationship between area and perimeter. This misconception persisted for the 

PSTs despite a similar problem in tutorials, on a practice exam question, use of an 

interactive website, and the fact that the test was open note and open book test.  

One of the third-grade standards in the Common Core State Standards for 

Mathematics (CCSSI, 2010) states that students should be able to “[exhibit] rectangles 

with the same perimeter and different areas or with the same area and different 

perimeters” (pg. 25.) Being able to show changing perimeter without increasing area 

should allow students, and teachers, to recognize that the claim from Ma’s (1999) 

example is incorrect. 
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Preservice teachers in another study were unable to determine that there was 

sufficient information to solve problems involving area and perimeter, even when they 

didn’t have to actually calculate the answer (Menon, 1998).  A study (Fuller, 1996) of 

both in-service and preservice teachers found that, while all participants attempted to give 

conceptual answers to a question about the relationship between area and perimeter, the 

responses focused on showing the students an example instead of exploring the 

relationship.  

Teachers with misconceptions about the relationship between area and perimeter 

are unable to help their students dispel the same misconceptions (Kow & Yeo, 2008).  An 

intervention designed to correct PST misconceptions about area and perimeter (Kellogg, 

2010) was successful in improving their ability to anticipate student ideas and 

misconceptions, but the PSTs did not see that the intervention strategy and presentation 

could also be useful in preventing or addressing the same misconceptions with students.   

These studies indicate that preservice teachers are entering their programs with 

shallow understanding of the relationship of area and perimeter, but studies of in-service 

teachers are few and decades old. This study will update our knowledge about in-service 

teacher understanding of area and perimeter, and the conditions necessary for proving the 

relationship between them. 

2.4 Conclusion 

In the review above, I considered research related to Mathematical Knowledge for 

Teaching, Specialized Content Knowledge, and the SCK important to the four 

mathematical topic areas addressed in my study. The studies and reports presented in this 

literature review show the evolution of thinking about Mathematical Knowledge for 
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Teaching and Specialized Content Knowledge and how to measure them. MKT is indeed 

linked to student learning, suggesting that improving MKT and SCK is crucial to giving 

our students a chance to learn math deeply and conceptually. Yet how we determine 

SCK, as in the actual empirical techniques we use, is often problematic. The multiple-

choice instruments used to measure Mathematical Knowledge for Teaching is not 

intended to be used to evaluate individual teachers, nor does it have the fine grain to 

investigate individual topics. It is therefore time to revisit SCK in teachers using Ma’s 

(1999) questions from the Teacher Education and Learning to Teach Study (TELT) and 

conducting interviews to collect data. 

Other than division with fractions, there are few studies on the four mathematical 

topics addressed in Ma’s (1999) work, and most of the prior studies in all four topic areas 

have focused on preservice teachers as opposed to in-service teachers. None of the prior 

studies found addressed the expectations of the current educational standards for students. 

By exploring the four topics found in Ma’s (1999) work, we will be able to look for 

evidence that teachers are showing greater understanding of fundamental mathematics 

and if they seem to have the SCK to teach conceptually in the ways that current standards 

are expecting if students are to gain mastery.  

In Chapter 3, I provide the methodology for this study. I describe the research 

method, the sample, data collection methods, and data analysis techniques. 
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CHAPTER 3  

METHODOLOGY 

In this section I describe the research design, sample, data collection methods, and 

data analysis methods for the study.  

3.1 Research design 

This study employed a qualitative, multiple-case study design (Yin, 2017) to 

answer the following Research Questions: 

1. How do teachers’ explanations of mathematics content demonstrate Specialized 

Content Knowledge (SCK) for the following topics? (RQ1) 

a. Subtraction with regrouping? 

b. Multiplying multi-digit numbers? 

c. Division with fractions? 

d. The relationship between area and perimeter? 

2. What themes are found in teachers' explanations for the following topics? (RQ2) 

a. Subtraction with regrouping? 

b. Multiplying multi-digit numbers? 

c. Division with fractions? 

d. The relationship between area and perimeter? 

A case study is defined as “an empirical method that investigates a contemporary 

phenomenon (the ‘case’) in depth and within its real-world context, especially when the 

boundaries between phenomenon and context may not be clearly evident” (Yin, 2017, p. 

13). Case study design was appropriate for this study because I was examining the 

phenomenon of Specialized Content Knowledge (SCK), which Ma called Profound 
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Understanding of Fundamental Mathematics (PUFM), in individual participants, or cases. 

I used cross-case analysis (Yin, 1981), to both look for commonalities across the cases 

and to compare SCK and themes for my participants with Ma’s findings to see if SCK 

either has improved in consideration of the progression of mathematics standards 

movements. As shown in the literature review, it is unclear if changing standards have 

had an impact on teacher SCK. The research questions for this study require an in-depth 

look at teacher thinking that cannot be captured by the multiple choice, standardized 

assessments that I highlighted in the literature review. The research questions also require 

more than one case, as I am interested in the thinking of more than one teacher. 

Therefore, a multiple-case study design allowed me to see if teacher SCK is keeping pace 

with the new standards. In order to explore the phenomena of SCK, I conducted 

interviews that approximated the real-world context of teaching with questions about 

topics teachers encounter in the classroom. At the same time, this strategy reduced some 

of the complexity that would have been introduced in the actual classroom, allowing me 

to focus specifically on Specialized Content Knowledge.  

In my analysis, I used the case-study approach of pattern matching, defined by 

Yin (2017) as “comparing an empirically based pattern…with a predicted one.”  In this 

dissertation, I compare the patterns I find in my teachers’ responses with those I expect to 

see based on current mathematical standards and practices to answer both research 

questions. To address RQ2, I also employ cross-case comparison (Yin, 1981), looking for 

themes across the participants’ responses. This cross-case comparison is particularly 

appropriate because of the consistency of the contexts and protocols of the interviews I 
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conducted. I compare the themes that I identify to Ma’s findings, in order to evaluate if 

and how response patterns have changed.  

I used one main source for my evidence: the video and written work captured 

during structured interviews that asked teachers to respond to four teaching scenarios by 

both doing and explaining the mathematics involved (see Appendix A for the interview 

questions). I augmented this with information I collected from the teachers using a 

questionnaire (see Appendix B) about their teaching experience and professional 

development in mathematics. 

To answer RQ1, I first developed a coding scheme for analyzing participant 

responses. I used language and content from the “knowledge packages” conceptualized 

by Ma (1999), from the Common Core State Standards for Mathematics (CCSSI, 2010), 

and from the literature on best practices to create criteria for evaluating the SCK teachers 

demonstrated in their explanations. In the analysis for RQ2, which involved themes from 

the responses that illuminated what was important and relevant to the participants for 

each topic, I used thematic coding (Braun & Clarke, 2006), a technique to look for 

themes in the features of the explanations relevant to Ma’s findings (1999), content or 

practice standards (CCSSI, 2010), and other themes that were not pre-defined. 

I elaborate on my sample, data collection, and data analysis in the following 

sections. 

3.2 Sample 

The population for this study is current elementary school teachers in grades 1-6. 

For my sample, I recruited current Massachusetts elementary school teachers who taught 

math to students in grades 1-6 as part of their daily work, and who held or met the 
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requirements for a Massachusetts teaching license, having passed the requisite state 

licensing exam. By staying in one state, I was able to study teachers who all met the same 

minimum standards for certification. The teachers came from a variety of teacher 

preparation programs and educational backgrounds, and have had different teaching 

experiences.  

I chose to recruit teachers from a group of elementary schools that were part of a 

regional cooperative, sharing a superintendent, a common curriculum, and common 

professional development opportunities. In order to gain permission from the office of the 

Superintendent to conduct the research, I first had to obtain written consent from each of 

the principals. Three principals agreed to allow me access to the teachers in their school. 

Two of the elementary schools qualify for Title 1 funds, indicating that they serve a large 

percentage of low-income students. One of the elementary schools did not qualify for this 

funding. Demographics for the three schools are shown below (Table 3.1). 

Table 3.1. Demographics for the three schools. 

School 1 School 2 School 3 

Race White 
Hispanic 
Black 
Asian 
Multi-race 

77% 
11% 
4.4% 
2.2% 
5.2% 

43.9% 
24.9% 
9.4% 
12.9% 
8.4% 

48.6% 
21.6% 
7.3% 
15.2% 
7.3% 

Academic 
profile 

ESL 
ELL 
Disability 
High needs 
Economically 
disadvantaged 

3% 
.7% 
22.2% 
36.3% 
19.3% 

30.5% 
18.8% 
21.3% 
48.2% 
29.4% 

26.7% 
13.7% 
25.1% 
51.1 % 
37.1% 

State rating Meeting 
targets 

Focused/targeted 
support 

Partially 
meeting 
targets 

Average math 
score 

(500 state 
average) 

510 492 499 
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The principals each sent an email on my behalf to their faculties, seeking 

participants. The email noted that I was looking for teachers currently certified in and 

teaching math in grades 1-6. A small incentive in the form of a gift card was offered for 

participation. I also asked colleagues for suggestions of teachers they knew from the 

district who might be willing to participate and sent the email directly to those teachers. I 

also used purposive snowball sampling to garner more participants (Devlin, 2018). At the 

end of each interview, I asked the participants if they could suggest other teachers, and 

sent emails directly to those who were suggested. I also directly emailed teachers whose 

email addresses were available on the school websites. In all, 18 teachers agreed to be 

interviewed. The participants are described below in Table 3.2. Across participants, they 

ranged in years of experience from 0 to 34, were mostly female, and taught a range of 

grades. Most had some familiarity with the Common Core State Standards for 

Mathematics (CCSSI, 2010), but few had received professional development pertaining 

to the standards.  
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Table 3.2. Description of Participants 
Participant Years of 

Experience 
Gender Current 

Grade level 
Familiarity 
with 
CCSSM? 

PD on 
CCSSM 

1 34 F 3 Pretty No 
2 14 M 4 NA NA 
3 9 F 5 Generally Standards-

based grading 
4 2 F 4 Mostly Graduate 

school 
5 19 M 4 Not very NA 
6 22 F 5 Familiar No 
7 12 F 1 NA NA 
8 30 F 4 Somewhat No 
9 23 F Math 

specialist 
Very No 

10 28 F Math 
specialist 

Very No 

11 10 M 4 Mostly Yes 
12 1 F 6 Fairly No 
13 0 F 4 Yes No 
14 7 M 6 NA NA 
15 2 F 3 NA NA 
16 13 F 6 Very No 
17 13 F 2 Somewhat No 
18 10 F 2 Familiar No 

 
The two math specialists served multiple grade levels and worked with students in 

classrooms and sometimes one-on-one. The participant with zero years of experience had 

worked in one of the schools as a paraprofessional for two years at several grades levels, 

had just completed a year of student teaching at the school, and had met all of the 

requirements for her elementary certification, which was pending. All participants except 

Participant 12 held an advanced degree. 

The chosen district curriculum was Everyday Mathematics (The University of 

Chicago Schools Mathematics Project, McGraw-Hill Education) for grades 1-5, and Big 

Ideas (Big Ideas Learning, LLC) for grade 6. Of the teachers in grades 1-5, ten expressed 

dissatisfaction with the chosen curriculum. Two teachers had obtained permission to 
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teach a different curriculum, and seven others reported that they supplemented heavily 

from other resources. 

3.3 Data Collection 

There were two components of my data collection. First, I asked participants to 

fill an online Qualtrics questionnaire asking them about their teacher education histories, 

their teaching experiences, and their participation in math-related professional 

development. The questions are shown in Figure 3.1 (see also Appendix B). 

 

 
Figure 3.1. Items from the Qualtrics questionnaire. 

 
I asked that each participant complete this survey before our in-person interview, 

so I could clarify if there were any questions about the survey responses. In many cases, 

the participants had not completed the survey ahead of the scheduled interview, so I 

reminded them at the interview and then sent follow up emails after the interview. In all, I 

received completed surveys from 14 of the 18 participants. 

1. What teaching licenses do you hold? 
2. How long have you been teaching?  
3. What grade level(s) do you teach/have you taught? How long at each? 
4. Where and when did you complete your undergraduate education? 
5. What was your major? 
6. If you have an advanced degree, where and when did you complete 

that? 
7. What professional development have you participated in for math?  
8. Were these school-based, district-based, or from another organization, 

such as NCTM? 
9. Are you a member of NCTM or similar math-education organization? 
10. How familiar are you with the current standards for math teaching and 

learning? 
11. Have you gotten specific PD or training on these standards? 
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To collect the rest of the data, I conducted in-person interviews that asked the 

TELT-developed questions used by Liping Ma (1999) in her research (see also Appendix 

A). The four questions were: 

1. Let’s spend some time thinking about one particular topic that you may 

work with when you teach, subtraction with regrouping. Look at these questions: 52 −

25, 91 − 79, etc.). How would you approach these problems if you were teaching second 

grade? What would you say pupils would need to understand or be able to do before they 

could start learning subtraction with regrouping? 

2. Some sixth-grade teachers noticed that several of their students were 

making the same mistake in multiplying large numbers. In trying to calculate: 

 

the students seemed to be forgetting to “move the numbers” (i.e., the partial products) 

over on each line. They were doing this: 

  

Instead of this: 
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While these teachers agreed that this was a problem, they did not agree on what to 

do about it. What would you do if you were teaching sixth grade and you noticed that 

several of your students were doing this? 

 

3. People seem to have different approaches to solving problems involving 

division with fractions. How do you solve a problem like this one? 

    

Imagine that you are teaching division with fractions. To make this meaningful for 

kids, something that many teachers try to do is relate mathematics to other things. 

Sometimes they try to come up with real-world situations or story-problems to show the 

application of some particular piece of content. What would you say would be a good 

story or model for 1
ଷ 

ସ
  ÷  

ଵ

ଶ
  ? 

 

4. Imagine that one of your students comes to class very excited. She tells 

you that she has figured out a theory that you never told the class. She explains that she 
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has discovered that as the perimeter of a closed figure increases, the area also increases. 

She shows you this picture to prove what she is doing: 

 

What would you respond to this student? How would you engage with her around this 

idea? 

During the interviews, I asked questions to probe teacher meaning and sometimes 

offered a conjecture or context that was intended to provoke a deeper response. I then 

asked one final questions of participants: What has been the greatest influence on how 

you currently think about and teach math?  

All but one of the interviews were conducted in the teachers’ classrooms, with the 

remaining interview taking place in a local coffee shop. Interviews took place either 

before or after school or, in the case of those conducted after the school year was 

complete, around scheduled end-of-year teacher meetings. They ranged in length from 25 

to 60 minutes, with an average length of 38 minutes, and were both audio- and video-

recorded, with the video camera focused on the written work the teacher was doing as 

opposed to the participant’s face. Both video and audio files were transferred to a 

portable hard drive and to a secure, cloud-based storage platform. Each participant was 

given a piece of paper with each mathematical problem written out and was told to feel 
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free to write or draw on it in order to capture their thinking. Those documents were 

scanned and uploaded to the portable hard drive and cloud-based storage. After each 

interview, I dictated a memo, which was also transcribed and archived, to capture my 

impressions of the participant, the classroom, and the flow and content of the interview. 

This gave me three sources of data: the survey responses, the video/audio files, and the 

written work done by each participant. IRB approval was granted for all recruitment and 

data collection procedures. 

In the next section, I describe how I analyzed the data. 

3.4 Data Analysis 

Before analyzing the data, I had all interviews transcribed. Transcripts and document 

scans were then loaded into nVivo, a qualitative data analysis computer software. I 

created topic files by separating each interview into the four topic areas and adding in the 

images from the document scans that went with each participant’s responses.  

3.4.1 Coding for Specialized Content Knowledge 

Most efforts to measure SCK have relied on a score from the multiple-choice test 

(LMT) designed by Ball and her colleagues (Hill et al., 2004; Hill et al., 2008). As I was 

evaluating interview data, I had to develop a strategy for identifying indicators of SCK 

for each content area. I first considered the elements of SCK as described by Lin et al. 

(2011), explanation, justification, and representation, and referred to three sources for 

elements that I could look for in those categories. The first source I consulted was the 

Common Core State Standards for Mathematics (CCSSM) content standards and 

Standards for Mathematical Practice (SMP) (CCSSI, 2010), and I identified those 

relevant to the questions I was asking my participants. As most topics are developed 
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across grade levels, I looked at the standards for all grade levels up until I found a 

standard that implied mastery of that topic. Because multiple operations can be included 

in a single strand in the CCSSM, the standards I chose are not necessarily sequential. For 

example, for subtraction with regrouping, I include standards 2.NBT.1 and 2.NBT.5, but 

exclude the standards between them, which were not related to the topic of subtraction 

with regrouping, such as 2.NBT.3 (CCSSI, 2010, pg. 19), which calls for students to 

“Read and write numbers to 1000 using base-ten numerals, number names, and expanded 

form.” Abbreviated versions of the chosen standards are shown in Table 3.3. 

Table 3.3. Relevant CCSSM Standards 
Topic CCSSM Standards  
Subtraction with  regrouping K.NBT.1: Compose and decompose numbers 

from 11 to 19 into ten ones and some further 
ones. 
1.OA.4: Understand subtraction as an 
unknown-addend problem. 
1.OA.5: [R]elate counting to addition and 
subtraction (e.g., by counting on 2 to add 2). 
1.OA.6: Add and subtract within 20, 
demonstrating fluency for addition and 
subtraction within 10. 
2.NBT.1: Understand that the three digits of a 
three-digit number represent amounts of 
hundreds, tens, and ones. 
2.NBT.5: Fluently add and subtract within 100 
using strategies based on place value, 
properties of operations, and/or the 
relationship between addition and subtraction. 
 

 

Multi-digit multiplication 3.OA.7. Fluently multiply and divide within 
100, using strategies such as the relationship 
between multiplication and division or 
properties of operations. By the end of Grade 
3, know from memory all products of two 
one-digit numbers. 
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3.NBT.3. Multiply one-digit whole numbers 
by multiples of 10 in the range 10–90 using 
strategies based on place value and properties 
of operations. 
4.NBT.5. Multiply a whole number of up to 
four digits by a one-digit whole number, and 
multiply two two-digit numbers, using 
strategies based on place value and the 
properties of operations. Illustrate and explain 
the calculation by using equations, 
rectangular arrays, and/or area models. 
5.NBT.1. Recognize that in a multi-digit 
number, a digit in one place represents 10 
times as much as it represents in the place to 
its right and 1/10 of what it represents in the 
place to its left. 
5.NBT.2. Explain patterns in the number of 
zeros of the product when multiplying a 
number by powers of 10. 
5.NBT.5. Fluently multiply multi-digit whole 
numbers using the standard algorithm. 
 

Division with fractions 4.NF.4. Apply and extend previous 
understandings of multiplication to multiply a 
fraction by a whole number. 
a. Understand a fraction a/b as a multiple of 
1/b. For example, use a visual fraction model 
to represent 5/4 as the product 5 × (1/4), 
recording the conclusion by the equation 5/4 
= 5 × (1/4). 
5.NF.6. Solve real world problems involving 
multiplication of fractions and mixed 
numbers. 
5.NF.7. Apply and extend previous 
understandings of division to divide unit 
fractions by whole numbers and whole 
numbers by unit fractions. 
6.NS.1. Interpret and compute quotients of 
fractions, and solve word problems involving 
division of fractions by fractions. 
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Area, perimeter, and proof 3.MD.5. Recognize area as an attribute of 
plane figures and understand concepts of area 
measurement. 
3.MD.7. Relate area to the operations of 
multiplication and addition. 
3.MD. 8. Solve real world and mathematical 
problems involving perimeters of polygons, 
including finding the perimeter given the side 
lengths, finding an unknown side length, and 
exhibiting rectangles with the same perimeter 
and different areas or with the same area and 
different perimeters. 
4.MD.3. Apply the area and perimeter 
formulas for rectangles in real world and 
mathematical problems. For example, find the 
width of a rectangular room given the area of 
the flooring and the length, by viewing the 
area formula as a multiplication equation with 
an unknown factor, 
SMP 3.Construct viable arguments and 
critique the reasoning of others. 

 

 

I then looked at Ma’s (1999) findings from her work on Profound Understanding 

of Fundamental Mathematics, which I describe in the literature review, noting which of 

those elements I expected to see in the responses from my participants, based on the 

phrasing of the questions. I also looked at the best practices noted by Van de Walle et al. 

(2013), as mentioned in Chapter 2, and noted which of those were key to showing strong 

Specialized Content Knowledge. Drawing from these sources, I created a list of criteria 

for each topic that would indicate to me that a teacher had strong Specialized Content 

Knowledge in that area.  

While looking through the interviews, it became clear to me that I could not just 

give a rating of “yes, this teacher has SCK”, or “no, this teacher does not have SCK.” 
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There seemed to be a range of SCK demonstrated for each of set of responses, with some  

teachers showing very strong SCK, some showing low SCK, and a group that fell 

between those two groups. Therefore, I decided to use three levels of SCK to describe the 

teachers’ responses, and adjusted my coding manual to include criteria for all three 

levels. For subtraction with regrouping, I identified six criteria for Strong SCK. As the 

interviews were semi-structured and time limited, I could not expect the teachers to 

address both base ten and number line representations in each explanation, so I decided 

that exhibiting four out of the six criteria would demonstrate Strong SCK. 

After using the manual to categorize each response, I recruited a colleague to help 

me determine the reliability of my coding scheme. We went through three participants’ 

explanations for each topic, which I had selected to represent the various levels of SCK, 

and I confirmed with her that the SCK levels matched the criteria. She then coded six 

randomly selected explanations per topic and brought clarification questions to me. We 

worked together to modify the codebook to address her questions and re-examined those 

six cases per topic, and then compared the SCK levels we had assigned each explanation. 

For the topics of subtraction with regrouping, multi-digit multiplication, and division 

with fractions, we achieved agreement on 89% of the ratings. We then discussed those we 

disagreed on until we reached 100% agreement. I then reviewed and adjusted my coding 

for the remaining cases, based on the revised codebook and our collaborative coding. For 

the topic of area, perimeter, and proof, we had a lower level of agreement (67%) after the 

re-examination of our codes, and so we collaboratively coded all 18 of the cases until we 

reached 100% agreement. The final coding manual is shown in Table 3.4– Table 3.7. 
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Table 3.4. SCK Coding Manual for Subtraction with Regrouping 
 
Level of SCK Criteria Examples 
Strong 
 
(4 or more of the 
criteria) 

Flexibly breaks up 
numbers.  

 
 
 
 
 

Uses counting up 
and/or down as a 
strategy.  

 
Notes relationship 
between addition 
and subtraction.  
 
Provides at least 
one visual 
representation 
(number lines, 
manipulatives, 
etc.) or model. 

  
Mentions 
usefulness or 
difficulty of 
moving around 
and over decades. 

 
Talks about place 
value, such as 40 
= 4 tens, 10 = ten 
ones, 52 = 4 tens 
and 12 ones. 
 

So to set it up this way as well, that there are 
multiple ways to set up a number. 79 isn't just 7 
10s and 9 1s, always. I can make it anyway I want. 
Right? What if make 5 10s and 29 1s.. We already 
know that we can make numbers infinite numbers 
of ways. You know? (P12) 

 
There were number lines with counting up but then 
also counting back. (P15) 

 
 

[W]e try to teach it like, "Here's addition, and now 
the opposite of addition is subtraction." (P4) 

 
 

 
 
                                      (P9) 
 
 

Being able to comfortably go back 30 or go back 
20 (P17) 
 
 
 
 
…be able to describe it as five tens and two tens 
rather than just 52 (P11) 
 

 
Moderate 

 
Generally focused 
on the algorithm 
while noting that 
"borrowing one is 
really borrowing 
ten". 

 
 

Talks about place 
value, such as 40 
= 4 tens, 10 = ten 

 
Someone might say, "One." I'll say no, we're not 
borrowing one at all, we're borrowing 10. If we're 
going to borrow 10, this doesn't become 3, it 
becomes 12. I talk about the fact that, when we're 
doing math, we're following procedures so that 
when problems are harder, we have a routine. Then 
we'll just go through the steps of solving that. (P5) 

 
…be able to describe it as five tens and two tens 
rather than just 52 (P11) 
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ones, 52 = 4 tens 
and 12 ones. 

   
 

Low Focus is only on 
the algorithm with 
no mention of 
"borrowing one is 
really borrowing 
10" 

[There were no examples for this level] 

 
 
Table 3.5. SCK Coding Manual for Multi-digit Multiplication 
 
Level of SCK Criteria Examples 
Strong (all three 
criteria required) 
 
 

Use of area model/box 
model/array/partial 
products that ties 
strongly back to the 
algorithm.  

 
 
 

 
 
 
 
 
 
Understanding of 
multiplication by ten.  

 
 
 
 
Zero represents a value, 
not just a place holder. 

But knowing that this line [of the 
algorithm] represents 123 times five and 
that that's where the algorithm is more 
efficient. Here [in the area model] we have 
nine pieces, here we're going to have only 
three pieces. So helping them connect and 
see where that comes from…actually 
giving them the chance to see if they can 
figure out where the 615 is on their area 
model and make that connection 
themselves. (P3) 
 

 ‘[W]hat's happening when you're [putting] 
a zero on the end?’ And I really try to get 
them at least to verbalize ‘I'm multiplying 
it by a power of ten.’ (P1) 
 

But you can only put a digit in there. They 
are, maybe they are placeholders, but you 
have to put a digit. There's no value, then 
you can put zero. That's why zero's so 
important. I a place holder. It's the only 
place holder that you're allowed to use. 
(P2) 

 
Moderate (at least 
two of the criteria) 

 
Focusing on the 
procedure of 
multiplication.  

 
 
 

 
I think really kind of breaking it down into 
what are our steps, why do we have to do 
that? (P15) 
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Provides area model or 
box model, but seen as 
"managing" the process 
instead of providing 
essential understanding. 
(It's just another 
procedure.)  

Zero as a value, not a 
placeholder. 

So just to emphasize to them that this is a 
way to save time and effort and improve 
their understanding. We start with just 
talking about it that way, but then we use 
the area model as a way for them to 
manage it. (Mr. Fields) 

But you can only put a digit in there. They 
are, maybe they are placeholders, but you 
have to put a digit. There's no value, then 
you can put zero. That's why zero's so 
important. It’s a place holder. It's the only 
place holder that you're allowed to use. 
(P2) 

Low (one of the 
following criteria) 

Expressed not knowing 
how to approach the 
problem. 

Did not reference the 
meaning of place value 
at any point. 

Described zero as a 
placeholder. 

But I'm not 100% sure how I would 
approach this because I'm not as fully 
confident in it. (P15) 

Table 3.6. SCK Coding Manual for Division with Fractions 
Level of SCK Criteria Examples 
Strong (all three 
criteria 
required) 

Participant could 
solve the problem 
without using the 
algorithm.     

So another way would be on the number line 
to think about. So if I have one and three-
fourths, so there's my zero. Okay. So there's 
my one and three-fourths. I know when I 
think about how many halves go into that 
and so there is a half, there's a half and 
there's a half. So then noticing that okay, so 
I know that four halves would go into two 
and it's taking two of those pieces to make a 
half. So I have only part of a half in that 
case. So if you map it onto here I can see 
that there's one half, there's one half and 
then if I'm noticing it's taking four of those 
pieces to make a half I can switch and do it 
this way. Here's a half and that I only have a 
half of a half left. So then noticing that I 
have three halves but then there's this little 
half of a half. So if I have a fourth leftover. 
So those are my pieces that I have. (P3) 
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Correct context 
and/or 
representation.  

Talked about what 
the problem is 
asking. (What does it 
mean to divide?) 

I need 1 3/4 cups of flour, but I only have a 
1/2 cup scoop. How many of them are am I 
going to need? I need 3 1/2 scoops full to 
get my whole 1 3/4 cups of flour. (P12) 

They've foundationally been taught that 
that's what dividing is. Which doesn't 
change here. Basically, what I tell them is, 
to understand what's happening here, if I 
have 7/4, how many groups of 1/2s can I 
make? They can't necessarily concept that in 
their head, but at least they know what we're 
doing. I'm trying to break up 7/4 into pieces 
that are a size of a 1/2. So that's why that 
dividing by fractions makes it bigger, 
because I can fit multiple 1/2s in there. 
(P12) 

Moderate (both 
criteria 
required) 

Could solve without 
the algorithm  

Could not provide a 
correct context or 
representation. 

But if I did it this way, I would just keep 
subtracting. So you would come up with, so 
you did it at one, two, three, the remainder, 
one fourth. Would that be right? Is that 
right? 
[We rarely write remainders with fractions.] 
Oh, it's half of the half. So it'd be three and a 
half. 
(P2) 

You have a whole sandwich and three 
quarters, and you want to divide that in half 
so two people can share them. (P18) 

Low (all three 
criteria 
required) 

Could not solve or 
could only solve 
with the algorithm. 

No sense of how or 
why the algorithm 
works.  

This is a mixed number and so the mixed 
number has to be changed into a fraction. So 
that's four times one, add three is seven 
fourths and then reversing the operation and 
flipping the fraction, don't ask me why, and 
we're doing  14 fourths and then that can be 
reduced. (P18) 

I really have no idea. I remember that you're 
supposed to switch, change, flip. But I have 
no idea why and I think that that is a 
testament to my own math education. (P15)
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Could not provide a 
correct context or 
representation. 

You have a whole sandwich and three 
quarters, and you want to divide that in half 
so two people can share them. (P18) 
 

 
Table 3.7. SCK Coding Manual for Area, Perimeter, and Proof 
Level of SCK Criteria Examples 
Strong (meets 
both criteria) 
 

Suggested trying 
other 
combinations.  
   
 
 
 
 
 
 
 
 
 
Created 
representations 
that were a 
counterexample  
AND/OR 
Mentioned 
keeping either 
Area or 
Perimeter 
constant and 
showing the 
variety of 
combinations the 
other factor 
could be to 
illustrate a 
counterexample. 

I would say, "Good on you. Let's check 
this out further. Right? Let's just extend 
this and see if it's always, always true."  
Because we talk about math laws, 
right? And then we explore a lot of 
different examples, but we don't want 
to get to the point where we go, "That 
is always true. It's a math law. We feel 
confident." So I would say like, "What 
do we think? Do we think it's a math 
law? Let's explore a lot of different 
cases." (Ms. Blake) 
 
I might go for an area of say 100, 
because that's a nice friendly number 
and if this kid clearly knows their 
multiplication, then I can say, "Hmm I 
have a 100 plus ten times ten is 100 and 
yet the perimeter is only forty".  
So I think that's what I would have 
them look at other factors for the 
number, because I'm also thinking 
about you could have this, but you 
could have fifty times two. And so now 
your perimeter is 108. For exactly the 
same area. So why are the perimeters 
that much bigger? (P1) 
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Moderate (all 
three criteria 
required) 

Suggested trying 
other 
combinations 
and played with 
some.   
 
 
 
 
 
Could not think 
of a 
counterexample. 
 
Did not arrive at 
a conclusion 
about correctness 

And so, then I might ask them, "Okay, 
so you're telling me with this problem 
and this problem, we've confirmed that 
what you said is true, but now we have 
to test your theory again." Because, the 
whole point of a theory is that we have 
to keep testing it, and if you find that 
one time that your theory doesn't hold 
up, it's not true. (P4) 
 
Absence of a counterexample 
 
 
 
So I still don't think I have a definitive 
answer to theirs because they are just 
saying if the perimeter increases that 
the area also increases. (P3) 
 

Low (at least one 
criteria met) 

Could not or did 
not engage with 
the problem.  
 
 
Focused only on 
formulas.  
 
 
 
 
 
 
 
Reply to student 
was good job or 
they thought the 
student's work 
looked 
sufficient. 

I think, yeah. I would obviously spend 
some time saying, "Oh, I'm so excited 
you see this." Other than that, I'm kind 
of at a loss. (P16) 
 
You have to define the terms for them 
first. Once we get perimeter down, and 
they talk about the formula for it, then 
we talk about what about the inside, the 
surface? Then here's the area of my 
hand, how do you measure that?  
Talking about labeling units and so 
forth. (Mr. Fields) 
 
Yeah, I don't know if this ever said that 
to me. I think it's true. Yes. It makes 
sense. So I say, “ Great….” I don't 
know. It makes sense. It's a great 
observation. (Mr. Fields) 
 

 

3.4.2 Selecting the Focal Cases 

Throughout Chapters 4 and 5, I use examples from participants’ explanations to 

describe my findings and, in addition, I select three participants as focal case studies to 
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illuminate the status of SCK across content areas for individual teachers. To select the 

participants who best seemed to represent the different levels of SCK in this study, I first 

gave each SCK level a numerical value: Strong=3, Moderate=2, Low=1. This allowed me 

to compare average SCK levels of the participants. I then grouped the participants into 

groups by their average ratings, with Strong having an average of 2.5 or greater (n=6, 

33%), Moderate having an average between 2 and 2.5 (n =8, 44%), and Low having an 

average of 1.75 or lower (n =4, 22%). Within each group, I considered the attempted 

thoroughness of the teacher responses, and the match of those responses to the elements 

in the criteria for determining SCK, in order to select participants who seemed to best 

illustrate a teacher who had an overall rating of Strong, one who had an overall rating of 

Moderate, and one who had an overall rating of Low SCK. The three selected 

participants, who are described fully in Chapter 4, gave very thoughtful responses and all 

expressed a goal of teaching math conceptually. Also, because some of my participants 

were math specialists or had experience teaching elementary math content at a college 

level, I chose focal participants who were representative of the general classroom teacher. 

The selected participants were Participants 3, 5, and 8. I have given them the pseudonyms 

of Ms. Sutton, Mr. Fields, and Ms. Blake, respectively, for the remainder of this study. 

3.4.3 Coding for Themes in the Explanations 

To code for the second research question, focusing on themes I identified that 

reflected what teachers themselves saw as important, I employed thematic analysis 

(Braun & Clarke, 2006), which they describe (pg. 79) as “ a method for identifying, 

analyzing and reporting patterns (themes) within data. It minimally organizes and 

describes your data set in (rich) detail.” This was a theoretical analysis, as opposed to 
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inductive, as I was coding for elements that answered the specific research question, and I 

had preconceived ideas as to the type of codes I would use, given the focus on 

explanation, representation, and justification (Lin et al., ), though I was also open to 

finding unanticipated codes and themes. I was also looking at the data on a semantic 

level, taking the teachers comments at face value as opposed to trying to read into the 

teachers’ comments and interpret any deeper meaning. Braun and Clarke (2006, pg. 87) 

lay out six phases of thematic analysis: 

1. Familiarizing yourself with your data 

2. Generating initial codes 

3. Searching for themes 

4. Reviewing themes 

5. Defining and naming themes 

6. Producing the report. 

I followed the six phases of thematic analysis by (1) familiarizing myself with the 

data, then (2) generating initial codes. These initial codes noted if the work was correct, 

and what elements of explanation, representation, or justification I was seeing in the 

interview transcripts. I kept a running list of elements of the features of the explanations, 

such as “number lines”, “manipulatives”, or “place value” mentioned by participants, and 

kept a tally of the number of participants per topic who included those elements. I then 

(3) grouped the elements into categories, such as “representations”, “justifications”, and 

“context”, in order to search for themes, while also creating categories for unexpected 

themes. For example, with the topic Subtraction with Regrouping, I put mentions of base 

10 blocks, Cuisenaire rods, and number lines into the category of representations. I 
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noticed that some of those representations (base 10 blocks and Cuisenaire rods) require 

regrouping a power of ten, while others (number lines) do not, so identified “Multiple 

ways of regrouping” as one of my themes, which was not an anticipated theme . There 

was not a firm threshold of comments needed for something to rise to the level of a 

theme, but generally it was an element seen in at least one-third (i.e., at least 6) of the 

responses. 

I (4) reviewed the themes, then (5) defined and named them. The final step was 

(6) producing this report, offering excerpts from the interviews to illustrate the various 

themes and to provide the “vivid, compelling extract examples” suggested by Braun and 

Clarke (2006, pg. 87) to illustrate the findings.  

3.5 Delimitations 

In any study, choices must be made that can impact the nature and generalizability 

of the findings. For this study, I chose to do one-on-one interviews, which led to a smaller 

sample, which does mean the data is illustrative but not generalizable to the population. It 

was important to me, however, to get a fuller picture of the math understandings held by 

teachers than could be obtained through a multiple-choice test or survey. 

Also, while I asked my participants how they would teach or explain a topic, I did 

not watch them teach to see if their responses were confirmed in practice. Given that I 

was trying to evaluate SCK for four different topics that would be addressed at four 

different grade levels, it would have been impractical to see all the topics from any one 

teacher, and it was important for the study that I was able to get information about a 

broader set of math concepts from each participant.  
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There were also situations when, in reading through the transcripts, I see times 

when I could have asked better follow-up questions when time wasn’t as much an issue. 

As the interviews progressed, the quality and nature of those questions improved. 

In Chapter 4, I describe my findings for the first research questions, examining 

SCK demonstrated by the teachers’ explanations. Chapter 5 addresses the second research 

question, exploring the themes I found in those explanations. 
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CHAPTER 4 

FINDINGS –SPECIALIZED CONTENT KNOWLEDGE 

4.1 Introduction 

The purpose of this first research question was to determine if current teachers are 

offering strictly algorithmic explanations or more conceptual explanations that require a 

higher level of Specialized Content Knowledge (SCK), in alignment with the 

expectations new state and national math standards have placed on math instruction. The 

methodology used to analyze the level of SCK was presented in Chapter 3. This chapter 

consists of results that answer research question 1 by  exploring the SCK levels found for 

each topic.  Illustrations are offered through the explanations given by three focal 

participants.  

The research questions examined for this section are:  

How do the explanations given by the participants demonstrate Specialized 

Content Knowledge (SCK) for the following topics? 

a. Subtraction with regrouping?

b. Multiplying multi-digit numbers?

c. Division with fractions?

d. The relationship between area and perimeter?

4.2 Overview of Findings: Specialized Content Knowledge 

Table 4.1 shows the level of Specialized Content Knowledge (SCK) shown by 

each participant for each of the four mathematical topic areas. As described in Chapter 3, 

I developed criteria for the three levels of SCK for each topic, using the Common Core 

State Standards for Mathematics (2010), Ma’s (1999) findings on profound 
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understanding of fundamental mathematics, and best practices as described by Van de 

Walle et al. (2013). I then compared each participant’s explanation to the criteria and 

assigned an SCK level for each topic. 

As Table 4.1indicates, SCK varied greatly by participant and by topic. Table 4.2. 

shows the number of participants who were in each SCK level by topic. While 13 (72%) 

of participants showed Strong SCK in Subtraction with Regrouping, only four (22%) 

showed Strong SCK in  Area, Perimeter, and Proof. Division with Fractions had the 

largest number categorized as having Low SCK (n=11, 61%), while only two participants 

(11%) showed Low SCK in Multi-digit Multiplication. This indicates that SCK can vary 

greatly by topic for a given participant. There was no clear relationship between grade 

level taught or number of years of teaching experience and SCK for any of the topic 

areas. 

Table 4.1. Level of Specialized Content Knowledge for each topic area.  
 

Participant Subtraction 
with 
Regrouping 

Multi-digit 
Multiplication 

Division 
with 
Fractions 

Area, 
Perimeter, 
and Proof 

Participant 
Average 
rating 

1 Strong  Strong  Strong  Strong  3 
2 Strong  Strong  Moderate Moderate 2.5 
Ms. Sutton Strong  Strong  Strong  Moderate 2.75 
4 Strong Strong  Low Moderate 2.25 
Mr. Fields Moderate Moderate Low Low 1.5 
6 Moderate Moderate Moderate Moderate 2 
7 Strong  Moderate Low Moderate 2 
Ms. Blake Strong  Moderate Low Strong  2.25 
9 Strong  Moderate Low Low 1.75 
10 Strong  Strong  Strong  Moderate 2.75 
11 Strong  Strong  Low Strong  2.5 
12 Moderate Strong  Strong  Moderate 2.5 
13 Strong  Strong  Low Low 2 
14 Moderate Moderate Low Low 1.5 
15 Strong  Low Low Strong  2 
16 Moderate Strong  Strong  Low 2.25 
17 Strong  Low Low Low 1.5 
18 Strong  Strong  Low Low 2 
Topic 
Average 
Rating 

2.7 2.4 1.7 1.8  
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Table 4.2. Number of Participants in Each SCK Level by Topic 
 
Topic Strong Moderate Low 
Subtraction with 
Regrouping 

13 (72%) 5 (28%) 0 (0%) 

Multi-digit 
Multiplication 

10 (56%) 6 (33%) 2 (11%) 

Division with Fractions 5 (28%) 2 (11%) 11 (61%) 
Area, Perimeter, and 
Proof 

4 (22%) 7 (39%) 7 (39%) 

 

Below are descriptions of the three teachers selected as focal cases for the 

remainder of the finding sections. Then I address the specific findings for each topic area, 

illustrated by excerpts from the interviews with the three focal teachers. 

4.3 Selection of Focal Cases 

Using the selection process described in Chapter 3, the following three cases were 

chosen: 

4.3.1 Focal Case 1: Ms. Sutton 

Ms. Sutton has been teaching for 9 years with experience in grades 5 and 6. She 

holds an undergraduate degree from a liberal arts college in a field other than education, 

and has two Master’s degrees, one in Teaching. For professional development, she has 

participated in a university-based math fundamentals course, along with three courses on 

math remediation offered to district teachers. Two of the courses focused on whole 

numbers and operations, while the third dealt with fractions. Ms. Sutton noted that she 

finds the Everyday Mathematics (The University of Chicago Schools Mathematics 

Project, McGraw-Hill Education) curriculum very algorithm focused, and so tries to 

supplement with conceptual explanations of the algorithms. She has not been a member 

of any math-related organization, such as NCTM. Regarding the CCSSM, she reports 
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having general familiarity with the standards, but she “can’t quote specifics.” She has 

received some professional development around standards-based grading, but not around 

the standards themselves. 

Ms. Sutton and I met before school, so there was a definite time limit to the 

interview, but it did not feel rushed. She seemed to enjoy having someone to talk with 

about math and the professional development she had been taking. Student desks were 

arranged in clusters, and it looked like she had a relatively small class size, on the order 

of 16 students.  

The recent professional development on both number sense and fractions 

significantly influence how she currently thinks about and teaches math. She was excited 

to show me the books that the trainings were based on, as well as the notebooks created 

for the professional development sessions. She also mentioned the program several times 

when explaining concepts, noting that the technique she was using was based on recent 

learning from the PD.   

Ms. Sutton had an average SCK rating of 2.75, placing her in the highest group. 

She received ratings of Strong in subtraction with regrouping, multi-digit multiplication, 

and division with fractions. Her SCK in area, perimeter, and proof was evaluated as 

Moderate. 

4.3.2 Focal Case 2: Ms. Blake 

Ms. Blake has been teaching for 30 years, with experience in grades 3 through 7 

and as a math interventionist, with the bulk of her teaching at grade 4 (24 years). She 

holds a bachelor’s degree in Elementary Education, with a Master’s in Education. For 

professional development in mathematics, she indicated that she participated in a three-
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year cycle of courses at a local community college, with each semester focusing on a 

different topic. She also participated in three courses on math remediation that were 

offered to district teachers. Two of the courses focused on whole numbers and operations, 

while the third dealt with fractions. Ms. Blake felt that the courses on whole numbers and 

operations were very worthwhile, but that the resources for the fraction course were not 

as well-developed or usable. In the past, she has been a member of NCTM and a regional 

math organization, but is not currently involved with either. She reports being somewhat 

familiar with the CCSSM, but has not received and professional development relative to 

the standards. 

I met with Ms. Blake in her classroom one morning before school. Her classroom 

was set up with desks in pairs, all facing the same direction. While we had a strict time 

limit before the students arrived, the interview did not feel rushed in any way, and Ms. 

Blake seemed to engage with each question, giving them a lot of thought.  

When I asked her about the greatest influences on how she currently thinks about 

and teaches math, she started by saying, “…not my teaching degree. That was worthless.” 

She went on to mention that, earlier in her career, she was in a school that used the 

Investigations curriculum. “…We didn't have a lot of great training on it, so I was really 

like fumbling in the dark. I went through the motions for an entire year not knowing what 

I was doing or why I was doing it. But I think that second year was like, ‘Oh, that's...This 

makes so much sense’ You know what I mean? Things began to sort of fall into place 

gradually. Then, we did get some more training, which helped a lot, and then once you 

have drunk the Kool-Aid, I mean, you're all in.” 
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She then sought out more training, including those at a local community college, 

mentioned above. “They were kind of brutal because it was all day Saturday, but they 

were so good, it was worth it. You know that feeling where you feel like, ‘I feel so bad 

for all the kids that I taught before, because I didn't know what the hell I was doing.’” 

Ms. Blake felt that the two district courses on whole numbers and operations were 

“great,” and that they had given her many tools for determining student understanding of 

structuring, numeracy, and ordering, and also activities for remediating 

misunderstandings or bringing students up to grade level. She did not find the fractions 

unit as helpful, noting that the materials felt poorly written and hard to follow. She 

follows the general expectations of the adopted curriculum, but finds her own resources 

for delivering the material, as she finds Everyday Mathematics (The University of 

Chicago Schools Mathematics Project, McGraw-Hill Education) too focused on 

procedure and thinks that the spiraling does not give students adequate time to engage 

with the mathematical ideas. 

At the end of the interview, Ms. Blake commented that she likes math “a lot,” and 

that “It's really interesting to me and there's a big payoff for me, because it's fun, and 

when you see kids being really excited about math and making connections, this is great.” 

She tries to share her excitement with both her students and her fellow teachers.  

Ms. Blake had an average SCK rating of 2.25, placing her in the middle group. 

She received ratings of Strong in subtraction with regrouping and area, perimeter, and 

proof, Moderate in multi-digit multiplication, and Low in division with fractions. 
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4.3.3 Focal Case 3: Mr. Fields 

Mr. Fields has been teaching for 19 years, but only 9 of those have been as a 

classroom teacher. He taught 3rd grade for one year and has taught 4th grade for 8 years. 

His undergraduate major was in Elementary Education, and he has earned both a 

Master’s degree and an EdD. He has not participated in any math professional 

development, nor joined any math-related organizations, such as NCTM. In reference to 

the CCSSM, he rated himself as not very familiar with them, and said that he has not 

received any professional development relative to the standards. He adheres faithfully to 

the Everyday Mathematics (The University of Chicago Schools Mathematics Project, 

McGraw-Hill Education) curriculum adopted by the district. 

Our conversation took place after school in Mr. Fields’ classroom. The desks 

were clustered in groups facing the white board, there was a large carpeted area in one 

corner and a well-stocked reading area separate from that. The classroom felt quite 

spacious and comfortable. While Mr. Fields was welcoming, he also seemed tired at the 

end of a busy school day near the end of the school year, and he didn’t linger over any of 

the questions.  

When I asked him about the greatest influences on how he currently teaches math, 

he started by mentioning the curriculum the school uses. “You read the lessons and think 

about the approaches they are using now.” He noted that he has been using the current 

curriculum for seven years and, “I think that as time goes on, you recognize the key 

aspects of the concepts and emphasize those more.” He mentioned that the curriculum 

materials do not call for using manipulatives or white boards, but that he has found those 

tools important for student learning of the concepts. His average SCK rating was 1.5, 
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which put him in the lowest group. He earned a rating of Moderate in subtraction with 

regrouping and multi-digit multiplication, and Low in division with fractions and area, 

perimeter, and proof. 

4.4 Specialized Content Knowledge by Topic  

In this section, I report on the level of Specialized Content Knowledge (SCK) 

evidenced by the explanations for each topic and provide illustrations from the focal 

participants. 

4.4.1 Subtraction with Regrouping 

The question leading to responses for this topic, as described in Chapter 3, was: 

Let’s spend some time thinking about one particular topic that you may 

work with when you teach, subtraction with regrouping. Look at these 

questions: 52 − 25, 91 − 79, etc.). How would you approach these 

problems if you were teaching second grade? What would you say pupils 

would need to understand or be able to do before they could start learning 

subtraction with regrouping? 

As described in Chapter 3, these responses were coded as showing Strong 

Specialized Content Knowledge (SCK), Moderate SCK, or Low SCK. Criteria for SCK 

levels for Subtraction with regrouping are shown in Table 4.3.  
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Table 4.3. Coding manual for Specialized Content Knowledge for Subtraction with 
Regrouping 

 
Level of SCK Criteria Examples 
Strong (4 or more 
of the criteria) 

Flexibly breaks up 
numbers.  

 
 
 
 
 

 
Uses counting up 
and/or down as a 
strategy.  

 
Notes relationship 
between addition 
and subtraction.  

 
 
Provides at least 
one visual 
representation 
(number lines, 
manipulatives, 
etc.) or model. 
  
 
Mentions 
usefulness or 
difficulty of 
moving around 
and over decades. 

 
Talks about place 
value, such as 40 
= 4 tens, 10 = ten 
ones, 52 = 4 tens 
and 12 ones. 

So to set it up this way as well, that there 
are multiple ways to set up a number. 79 
isn't just 7 10s and 9 1s, always. I can 
make it anyway I want. Right? What if 
make 5 10s and 29 1s.. We already know 
that we can make numbers infinite 
numbers of ways. You know? (P12) 
 
There were number lines with counting up 
but then also counting back. (P15) 
 
 
[W]e try to teach it like, "Here's addition, 
and now the opposite of addition is 
subtraction." (P4) 
 
 
 

 
 
                                      (P9) 
 
 
Being able to comfortably go back 30 or go 
back 20 (P17) 
 
 
 
 
…be able to describe it as five tens and 
two tens rather than just 52 (P11) 
 

 
Moderate (meets 
both criteria) 

 
Generally focused 
on the algorithm 
while noting that 
"borrowing one is 
really borrowing 
ten". 
 
 
 

 
Someone might say, "One." I'll say no, 
we're not borrowing one at all, we're 
borrowing 10. If we're going to borrow 10, 
this doesn't become 3, it becomes 12. I talk 
about the fact that, when we're doing math, 
we're following procedures so that when 
problems are harder, we have a routine. 
Then we'll just go through the steps of 
solving that. (Ms. Fields) 



 

 95 

Talks about place 
value, such as 40 
= 4 tens, 10 = ten 
ones, 52 = 4 tens 
and 12 ones. 

…be able to describe it as five tens and 
two tens rather than just 52 (P11) 
 

   
 

Low Focus is only on 
the algorithm with 
no mention of 
"borrowing one is 
really borrowing 
10" 

[There were no examples for this level] 

 

Thirteen participants (72%) were judged to show Strong SCK for Subtraction 

with Regrouping. Features of Strong SCK included the use of a visual model that related 

to the regrouping used. Those who used base 10 models, for example, would focus on 

breaking up a ten, and those who used number lines would talk about flexibility in 

breaking up numbers. Other features included a focus on counting up and/or down 

(especially noting issues with the decades) and noting the relationship between addition 

and subtraction.  

Five (28%) showed Moderate SCK (see Table 4.4). Features indicating Moderate 

SCK were a focus on the algorithm without a provided representation, while noting the 

importance of understanding that a ten is 10 ones, or that 40 is 4 tens. 

No participant was placed in the Low SCK category. Recall that the criterion for 

Low SCK was that a participant focused only on the subtraction algorithm without 

reference to place value or other features of Moderate or Strong SCK. Contrasting with 

the decades-old finding of Ma (1999), this finding that no teacher had Low SCK indicates 

that my participants had a more conceptual grasp of subtraction and how to teach that 
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content than Ma saw in her study. Note that this result on its own does not speak to 

participants’ SCK in other content areas. 

Table 4.4. Level of SCK for each participant for subtraction with regrouping 
 

Participant Level of SCK 
1 Strong 
2 Strong 

Ms. Sutton Strong 
4 Moderate 

Mr. Fields Moderate 
6 Moderate 
7 Strong 

Ms. Blake Strong 
9 Strong 

10 Strong 
11 Strong 
12 Strong 
13 Strong 
14 Moderate 
15 Strong 
16 Moderate 
17 Strong 
18 Strong 

 

All of the participants who showed the elements of Strong SCK used number 

lines in their explanations, and several mentioned a second form of representation or 

visualization, such as base ten blocks or Cuisenaire rods. 

4.4.1.1 Multiple Case Study Analysis for Subtraction with Regrouping 

I present the cases in order of SCK, from higher SCK to lower. Both Ms. Blake 

and Ms. Sutton were determined to show Strong SCK through their explanations of 

subtraction with regrouping, and Mr. Fields showed Moderate SCK. 

Ms. Blake, whose response indicated a Strong SCK, displayed evidence of 5 of 

the 6 features in Table 4.3: flexibly breaking up numbers, counting up or down, visual 

representation, difficulty of decades, and place value. Ms. Blake approached the problem 

differently, noting that she would likely introduce this in a math talk, which is a short 



 

 97 

discussion usually featuring a problem that students have been asked to solve mentally, 

and in which they share their different solution strategies. She would expect students to 

offer solutions that involved counting up, doing the standard algorithm mentally, or with 

a model involving base ten blocks. She saw her role as faithfully recording their 

responses.  Ms. Blake’s response indicated Strong SCK. She created several visual 

representations, including number lines and base 10 blocks, which was one of the criteria 

for that SCK level. 

 

For the number line offering, she would expect at student to say:  

"Well, I started at 25, and I went up 5," then I would be doing, "Oh, so you started 

at 25, and you went up five. And then what did you do?"  You'll answer it, "30. 

What was your next move?" Oh, and then I did whatever. Maybe I did... Where 
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am I going, 52? So maybe I did 20, and then maybe I did 2. Right? And then I 

went up a total of 27. 

Ms. Blakes statements reflected flexibly breaking up numbers (splitting the jump into a 5, 

a 20, and a 2) and counting up (moving from 25 to 52), each of which are criteria for 

Strong SCK. When asked about what students need to know or be able to do in order to 

tackle subtraction with regrouping, Ms. Blake, addressed counting up and moving across 

decades, both indicators of Strong SCK. 

What is it they really need to know? …it's that ability to count up, which it seems 

to be pretty intact, except when they're going over the decades, and sometimes, 

you'll go over the hundreds. Does that interfere? I'm not totally sure.  

She then went on to talk about place value, which is another criterion for Strong SCK.  

I wonder if the structure of numbers is partly what is tripping them up? Right? If 

I'm not understanding that 91 is nine 10s and one 1, and that 79 is seven 10s and 

nine 1s. 

While Ms. Blake did not address the relationship of addition and subtraction, she did talk 

about the difficulty her students have with subtraction. 

 [B]ut it seems something about that operation that is most problematic for them. 

There's something about that taking away, and maybe it's because it can be 

represented… it can be a difference, right? It can be a taking away. It can be a 

comparison. Maybe that's part of what messes them up is, it presents itself in 

different ways that look like something other than their default. 

Ms. Blake’s explanation was typical of those with Strong SCK, and similar to Ms. 

Sutton’s reply. 
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Ms. Sutton, also judged to indicate Strong SCK in subtraction with regrouping, 

provided a response reflecting 4 of the 6 criteria: flexibly breaking up numbers, counting 

up or down, creating a visual representation, and working around and with decades. 

Similar to Ms. Blake, she also used number lines in modeling subtraction with 

regrouping, but she didn’t specify if she would present the material or have students 

come up with the “jumps” themselves. She starts by talking about jumping decades, 

counting up, and flexibly breaking up numbers, which address three of the criteria. 

So, for example, if we've been practicing jumping to the decade then we might 

have practiced with a number line and so if we're starting with our 25 and we're 

basically going to add up to trying to get to our 52. So I might jump first up five 

to get to the decade of 30 and then noticing here that I might jump up 10 more to 

get to 40 and then 10 more to get to 50 and then I have my two left. So that's my 

distance because subtraction we can think about it as taking away, but it's also 

thinking of the distance between those two numbers. So I can think about I have 

10, 20, 25 [pointing to the five], 26, 27 [pointing to the 2] as my distance between 

25 and 52. 

She also presents a visual representation of the number lines, meeting a fourth criteria, as 

shown below. 
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When asked what she thinks students need to know or be able to do before they 

can take on subtraction with regrouping, Ms. Sutton pointed to flexibility with grouping 

numbers, further addressing this criterion for Strong SCK, as she describes below:  

So they have to be able to do problems that involve regrouping. They have to be 

able to partition numbers and think of them in different ways. So we traditionally 

think of a very strict place value that that's a 50 and that's a two. That that's a 20 

and that's a five. But there's a lot of other ways that you can do that.  

So in this case it was convenient for me to break apart 25 into a 20 and a five or 

rather 10 and 10 and five. But then thinking about that there might be other ways 

that are just as useful.  

Ms. Sutton’s use of number lines and flexibly breaking up numbers was very typical of 

the participants who showed Strong SCK in subtraction with regrouping. 
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Mr. Fields was one of the teachers who focused extensively on the procedure of 

the subtraction, and his response, shown below, was determined to indicate Moderate 

SCK for subtraction with regrouping, meaning that Mr. Fields did not create a 

representation for the operation, use counting up or down for a strategy, flexibly break up 

numbers, or mention issues students have with decades. He did, however, talk about 

place value. In responding to the initial prompt, Mr. Fields replied: 

I would say that, write it vertically and emphasize the place value obviously. I'd 

say, at the ones column, we can't do that. What steps do we take?  

This was determined to show ‘Generally focused on the algorithm while noting 

that "borrowing one is really borrowing ten",’ which is consistent with a Moderate SCK 

level (see Table 4.3).  He also focuses on place value, noting that the “one” that is 

borrowed is actually a ten, which is worth ten ones, as he describes below. 

We usually call it...I haven't used regroup. We'd say borrowing. So I'd say, " 

We're going to need to borrow from the tens column because we don't have 

enough in the ones. Let's turn this into 4. How much are we borrowing?" 

Someone might say, "One." I'll say no, we're not borrowing one at all, we're 

borrowing 10. If we're going to borrow 10, this doesn't become 3, it becomes 12. 

So, I have everyone do that before we go. Some of the kids are like, "I already 

know the answer." I talk about the fact that, when we're doing math, we're 

following procedures so that when problems are harder, we have a routine. Then 

we'll just go through the steps of solving that. 
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While he talks about wanting students to have conceptual understanding of the 

topic, his response indicated that he wants them to be able to justify the algorithm, but he 

does not seem open to other strategies or to exploring student thinking. 

 When asked what he thought students needed to know or be able to understand in 

order to before they could learn subtraction with regrouping, he noted a need to 

understand place value and the meaning of subtraction, but he did not elaborate on what 

that meaning was. Note that place value is a critical aspect to the subtraction algorithm 

but, without being accompanied by representations or ideas about flexibly breaking apart 

numbers, it is not enough on its own to be considered Strong SCK.  

The majority of participants demonstrated a Strong SCK for subtraction with 

regrouping, and all showed at least a moderate level of SCK for subtraction with 

regrouping in the ways that they said they would explain the topic to students. Two-thirds 

showed a high level of SCK by providing strong representations, focusing on the 

importance of flexibility in regrouping numbers, and noting the multiple meanings of 

subtraction and why that is challenging for students, consistent with expectations from 

current standards and best practices (CCSSO, 2010; Van de Walle et al., 2013). 
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4.4.2 Multi-Digit Multiplication 

The question leading to responses for this topic, as described in Chapter 3, was: 

Some sixth-grade teachers noticed that several of their students were 

making the same mistake in multiplying large numbers. In trying to 

calculate: 

123 

 x  645 

the students seemed to be forgetting to “move the numbers” (i.e., the 

partial products) over on each line. They were doing this: 

123 

 x 645 

615 

492 

738 

      1845 

Instead of this: 

 123 

 x   645 

 615 

 492 

738 

79335 



104

While these teachers agreed that this was a problem, they did not agree on 

what to do about it. What would you do if you were teaching sixth grade 

and you noticed that several of your students were doing this? What would 

you say pupils would need to understand or be able to do before they 

could start learning multi-digit multiplication? 

As described in Chapter 3, these responses were coded as showing Strong 

Specialized Content Knowledge (SCK), Moderate SCK, or Low SCK. Criteria for SCK 

levels for Multi-digit Multiplication are shown in Table 4.5.  

Table 4.5. Coding manual for Specialized Content Knowledge for Multi-digit 
Multiplication 

Level of SCK Criteria Examples 
Strong (all three 
criteria required) 

Use of area model/box 
model/array/partial 
products that ties 
strongly back to the 
algorithm.  

Understanding of 
multiplication by ten. 

Zero represents a value, 
not just a place holder. 

But knowing that this line [of the 
algorithm] represents 123 times five and 
that that's where the algorithm is more 
efficient. Here [in the area model] we have 
nine pieces, here we're going to have only 
three pieces. So helping them connect and 
see where that comes from…actually 
giving them the chance to see if they can 
figure out where the 615 is on their area 
model and make that connection 
themselves. (Ms. Sutton) 

 ‘[W]hat's happening when you're [putting] 
a zero on the end?’ And I really try to get 
them at least to verbalize ‘I'm multiplying 
it by a power of ten.’ (P1) 

But you can only put a digit in there. They 
are, maybe they are placeholders, but you 
have to put a digit. There's no value, then 
you can put zero. That's why zero's so 
important. I a place holder. It's the only 
place holder that you're allowed to use. 
(P2) 
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Moderate (at least 
two of the criteria) 

Focusing on the 
procedure of 
multiplication.  

Provides area model or 
box model, but seen as 
"managing" the process 
instead of providing 
essential understanding. 
(It's just another 
procedure.)  

Zero as a value, not a 
placeholder. 

I think really kind of breaking it down into 
what are our steps, why do we have to do 
that? (P15) 

So just to emphasize to them that this is a 
way to save time and effort and improve 
their understanding. We start with just 
talking about it that way, but then we use 
the area model as a way for them to 
manage it. (Ms. Fields) 

But you can only put a digit in there. They 
are, maybe they are placeholders, but you 
have to put a digit. There's no value, then 
you can put zero. That's why zero's so 
important. It’s a place holder. It's the only 
place holder that you're allowed to use. 
(P2) 

Low (one of the 
following criteria) 

Expressed not knowing 
how to approach the 
problem. 

Did not reference the 
meaning of place value 
at any point. 

Described zero as a 
placeholder. 

But I'm not 100% sure how I would 
approach this because I'm not as fully 
confident in it. (P15) 

Ten of the explanations were judged to indicate Strong SCK for multi-digit 

multiplication, as they created representations (area models, arrays, partial products) that 

tied strongly back to an understanding of the algorithm and showed an understanding of 

the value of zero as a result of multiplication by a power of ten. Six explanations showed 

Moderate SCK as they focused on the procedure of multiplication and, if they provided a 

model, it was presented as another procedure rather than a tool for understanding the 

algorithm. Those explanations also featured an understanding of the role of zero as a 

value and not simply a placeholder. Two of the explanations were evaluated as showing 
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Low SCK, reflecting a level that did not emerge in data for subtraction with regrouping. 

Those participants coded as showing Low SCK either did not know how to approach the 

problem or saw zero as strictly a placeholder with no understanding of multiplying by 

powers of ten. A summary of SCK level by participant is shown in Table 4.6. Illustrations 

of the features of the explanations are then offered for the three focal participants. 

Table 4.6. Level of SCK for each participant for multi-digit multiplication 
 

Participant Level of SCK 
1 Strong  
2 Strong  

Ms. Sutton Strong  
4 Strong  

Mr. Fields Moderate 
6 Moderate 
7 Moderate 

Ms. Blake Moderate 
9 Moderate 

10 Strong  
11 Strong  
12 Strong  
13 Strong  
14 Moderate 
15 Low 
16 Strong  
17 Low 
18 Strong  

  

4.4.2.1 Multiple Case Study Analysis for Multi-digit Multiplication 

I present the cases in order of SCK, from higher SCK to lower. For multi-digit 

multiplication, Ms. Sutton was determined to show Strong SCK, and Ms. Blake and Mr. 

Fields showed Moderate SCK through their explanations. 

Ms. Sutton addressed all three of the criteria for Strong SCK for multi-digit 

multiplication: using a model that ties to the algorithm, understanding of multiplication 

by ten, and addressing properly the role of zeros. She used an area model, which she 

directly connected to the algorithm, addressing the first criterion.  
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Our curriculum is very algorithm centric but really wanting to make sure students 

understand the numbers and what's going on. So often times I go back and look at 

the area model since that's a way that we've taught. So if I'm breaking apart 123, 

what makes the most sense is by place value. 100, 20 and 3.  

She then created the area model representation and talked about the factors that would be 

multiplied to fill each box: 

She pointed to the upper left box of the model, saying: 

Making sure that they understand that this is the 600 times 100 . Helping them see 

that here's my 100 times my five, my 20 times my five and my three times five 

which all line up to be this line here. [K]nowing that this line represents 123 times 

five and that that's where the algorithm is more efficient. Here we have nine 

pieces; here [with the algorithm]we're going to have only three pieces. So, helping 

them connect and see where that comes from.  
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She noted that they would not start with three-by-three digit numbers: 

We would start with two-digit numbers or a much more simplified problem. But 

helping them actually do both versions of [area model and algorithm] and actually 

giving them the chance to see if they can figure out where the 615 is on their 

[calculation] or on their area model and make that connection themselves. So that 

they’re noticing what was actually being multiplied here and while that's kind of 

the trick of the algorithm, I always tell them, “You're not thinking of the four as a 

40, you're thinking of it as a four times a three, a four times a two. A four times a 

one,” that's the trick of the algorithm. And why people really like it is because 

you're keeping the digits and numbers small. But really you have to always have 

that conceptual understanding and know what you're doing for the algorithms to 

really be effective of knowing that that four is actually a 40. So knowing then that 

this line is not four times 123, but that it's 40 times 123 and then what different 

people do to account for that. 

In the interview, the participant discussed what should be placed in the “empty” 

spots in the presented problem. Through that discussion, Ms. Sutton addressed both 

multiplication by ten and zero as a value, both criteria for Strong SCK. Ms. Sutton noted 

that: 

So some students have learned to place an X [instead of a zero] and this is often I 

inherit them when they come to fifth or sixth grade where they already have a 

strategy where some of them are placing X's and some are doing these funky 

filled in zeroes. So they have a wide variety of things. Some students just put a 

traditional zero there.  
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Mathematically what is the most accurate would be a zero. But I think what some 

of the other teachers might be trying to accommodate for is if there's a zero would 

be the next digit. 

In this she showed understanding of the role of zero, then went on to talk about 

multiplication by ten, focusing on the language some teachers and students use when 

describing the placement of zeros in multi-digit multiplication problems.  

I was like all right, well then if you take a number and you add zero what do you 

get? So talking about our language and making sure when we're saying like oh, 

you're meaning are we multiplying by 10 or are you saying we're moving a place 

value over? We're not adding a zero. So rather than say you add two zeroes 

because it's not a six it's 600. Then you're saying well actually you're multiplying 

by 10 and then you're multiplying by 10 again or you're multiplying by 100 so 

you placed two zeroes at the end of the number or something like that. It's not 

adding.  

When I asked her what students need to know or be able to do before they can 

successfully engage in multi-digit multiplication, she said: 

Being able to work with numbers more fluently with partitioning and being able 

to break apart numbers. So while with multiplication it's most common to break 

apart based on place value, there are times where that doesn't make sense. Having 

familiarity with strategies about doubling and having familiarity with multiples of 

10 so they're not using the algorithm to multiply 123 times 600. It's really much 

more efficient when they know their basic multiplication facts as well. 
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Ms. Sutton connected her representation to the algorithm, focused on 

multiplication by ten, and recognized that zero has value and is the only appropriate 

placeholder in the multiplication problem. These facets of her explanation place her 

solidly in the Strong SCK category. 

Ms. Blake offered a response that indicated Moderate SCK in the area of multi-

digit multiplication, meeting two of the three criteria: providing partial products that are 

not connected to the algorithm and using zero to represent the place values. She focused 

on the use of partial products to calculate the answer, noting that in the fourth grade they 

do not address the algorithm at all. While she mentions an area model, she did not 

demonstrate its connection to the partial products or the algorithm. She justifies the focus 

on partial products, saying: 

We do the partial products, and just leave it there.  And so that does address that 

problem to some extent. Because this idea that, is that a 4 [in 645]? Not really. It's 

a 40. So I think that does help keep that place value intact. They have an efficient 

strategy. It demonstrates place value much more explicitly than the standard 

algorithm does. I'm going to use some smaller numbers.  



 

 111

 

She included all of her zeros in the partial products, to show the effects of multiplying by 

ten (“is that a 4? [referring to the 4 in 645] Not really. It's a 40.”), and indicating that as 

the only proper value. 

When I  asked what she felt students needed to know or be able to do before 

engaging with multi-digit multiplication, she mentioned skip counting, being able to 

move fluently around the number line by different numbers, and opportunities to play 

around with creating equal groups, both physically (like 8 bowls each holding 7 balls) 

and through drawn representations of those scenarios. 

Ms. Blake seems to have foundational knowledge for building multiplication 

skills, but did not address the heart of the student error shown in the problem. Because 

she did not connect the partial product model to the algorithm shown, her explanation 

met the criteria for Moderate SCK. 
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Mr. Fields, whose response also indicated Moderate SCK, met all of the criteria 

for that level: focusing on the procedure,  providing a model that was seen as managing 

the procedure, and recognizing zero as a value. He focused primarily on the traditional 

algorithm for multi-digit multiplication. He also offered an area model, but presented it in 

an algorithmic way instead of as a tool for understanding the procedure.  

Again, it's about place value. This is just the six or two until you teach them what 

the coding is essentially. So, I would definitely want to do that first. Generally, 

the approach we've taken is, I would have them put the larger number on top, 

especially in this particular problem because of the fact these [digits in 123] are 

much easier numbers to manage. 

He then went through the procedure for the multiplication. When he got to multiplying by 

the 20, he said: 

Now we're in the 10’s column. How are we going to account for that? Sometimes 

I'll let them make the mistake in saying, " All right 2 times 5 is 10. No, but that's 

not really 2" So I talk about what's called a place holder. We fill [the zero] in as a 

way to impress in their minds about what you're doing rather than just put a zero. 

Okay, now we are in the hundreds column we need two places so just so we can 

start there [placing two filled in zeros].  
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He then brought in the area model, but noted that it was used to manage the 

multiplication, never tying it in to the algorithm.  

We also, obviously, for smaller problems we use an area model. So, something 

like 12 times 23 or something. I wait to talk about how [23] there and [12] goes 

here, and then, let's break it apart, so it's more manageable.  

 

So just to emphasize to them that [multiplication] is a way to save time and effort 

[over repeated addition] and improve their understanding. We start with just 

talking about it that way, but then we use the area model as a way for them to 

manage it. Then eventually move on to the algorithm itself.  

I mentioned the use of the filled in circles (the zeroes)  and asked him if it matters 

what is used in those spaces. He stated that it should be some form of a zero, as that 

addresses the need to fill in that place value. The use of asterisks or elephants would just 
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distract the students from what they are doing and from conceptual thinking. By noting 

that zero is a value, he fulfilled the final criteria for Moderate SCK.  

When I asked him what students need to know or be able to do before learning 

multi-digit multiplication, he said place value, and noted its importance in understanding 

the algorithm.  

Lots of things that can happen if they don't understand how the columns are lined 

up and what their purpose is. All you're doing is teaching them a formula. You're 

not teaching them a concept. I know how to do this because Mr. Fields said how. 

Instead we want to have them thinking, I'm starting on the tens column. I can start 

with the ones. That's to me like the key. Most of them get it.  

While he rails against just “teaching them a formula,” Mr. Fields seems to 

concentrate heavily on the steps of the algorithm. And even though he is seeking to 

justify the steps of the algorithm, he does not connect a representation to the standard 

algorithm, even the partial products model he drew. Because his focus tended to be on 

managing the algorithm, Mr. Fields showed Moderate SCK for multi-digit multiplication. 

For multi-digit multiplication, all but one of the participants indicated what 

conceptual misunderstanding the students in the problem were having, and all but two of 

the participants showed at least a moderate level of SCK. Ten of the teachers were able to 

offer representations that tied strongly to the algorithm and could explain the placement 

of zeroes into the partial products, and six others offered some strategies for addressing 

the place value issues, even though they didn’t create linked representations. The two 

participants who were evaluated as having low SCK for this topic could not provide any 

strategy for addressing the misconception with students. 
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4.4.3 Division with Fractions 

The question leading to responses for this topic, as described in Chapter 3, was: 

People seem to have different approaches to solving problems involving 

division with fractions. How do you solve a problem like this one? 

1
ଷ 

ସ
  ÷  

ଵ

ଶ
 =

Imagine that you are teaching division with fractions. To make this 

meaningful for kids, something that many teachers try to do is relate 

mathematics to other things. Sometimes they try to come up with real-

world situations or story-problems to show the application of some 

particular piece of content. What would you say would be a good story or 

model for 1
ଷ 

ସ
  ÷  

ଵ

ଶ
  ? What would you say pupils would need to

understand or be able to do before they could start learning division with 

fractions? 

As described in Chapter 3, these responses were coded as showing Strong 

Specialized Content Knowledge (SCK), Moderate SCK, or Low SCK. Criteria for SCK 

levels for Division with Fractions are shown in Table 4.7. 
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Table 4.7. Coding manual for Specialized Content Knowledge for division with fractions 
 
Level of SCK Criteria Examples 
Strong (all three 
criteria required) 
 
 

Participant could solve 
the problem without 
using the algorithm.     
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correct context and/or 
representation.  
 
 
 
Talked about what the 
problem is asking. 
(What does it mean to 
divide?) 
  

So another way would be on the number line to 
think about. So if I have one and three-fourths, 
so there's my zero. Okay. So there's my one and 
three-fourths. I know when I think about how 
many halves go into that and so there is a half, 
there's a half and there's a half. So then noticing 
that okay, so I know that four halves would go 
into two and it's taking two of those pieces to 
make a half. So I have only part of a half in that 
case. So if you map it onto here I can see that 
there's one half, there's one half and then if I'm 
noticing it's taking four of those pieces to make 
a half I can switch and do it this way. Here's a 
half and that I only have a half of a half left. So 
then noticing that I have three halves but then 
there's this little half of a half. So if I have a 
fourth leftover. So those are my pieces that I 
have. (Ms. Sutton) 
 

I need 1 3/4 cups of flour, but I only have a 1/2 
cup scoop. How many of them are am I going to 
need? I need 3 1/2 scoops full to get my whole 1 
3/4 cups of flour. (P12) 
 
They've foundationally been taught that that's 
what dividing is. Which doesn't change here. 
Basically, what I tell them is, to understand 
what's happening here, if I have 7/4, how many 
groups of 1/2s can I make? They can't 
necessarily concept that in their head, but at least 
they know what we're doing. I'm trying to break 
up 7/4 into pieces that are a size of a 1/2. So 
that's why that dividing by fractions makes it 
bigger, because I can fit multiple 1/2s in there. 
(P12) 
 

 
Moderate (both 
criteria required) 

 
Could solve without 
the algorithm  
 
 
 
 
 
 
 
 

 
But if I did it this way, I would just keep 
subtracting. So you would come up with, so you 
did it at one, two, three, the remainder, one 
fourth. Would that be right? Is that right? 
[We rarely write remainders with fractions.] 
Oh, it's half of the half. So it'd be three and a 
half. 
(P2) 
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Could not provide a 
correct context or 
representation. 

You have a whole sandwich and three quarters, 
and you want to divide that in half so two people 
can share them. (P18) 

Low (all three 
criteria required) 

Could not solve or 
could only solve with 
the algorithm.  

No sense of how or 
why the algorithm 
works.  

Could not provide a 
correct context or 
representation. 

This is a mixed number and so the mixed 
number has to be changed into a fraction. So 
that's four times one, add three is seven fourths 
and then reversing the operation and flipping the 
fraction, don't ask me why, and we're doing  14 
fourths and then that can be reduced. (P18) 

I really have no idea. I remember that you're 
supposed to switch, change, flip. But I have no 
idea why and I think that that is a testament to 
my own math education. (P15)  

You have a whole sandwich and three quarters, 
and you want to divide that in half so two people 
can share them. (P18) 

Five participants (28%) were judged to show Strong SCK for Division with 

Fractions (see Table 4.8), meeting the criteria of solving the problem without using the 

algorithm, creating a context or representation, and talking about the meaning of division. 

Two participants (11%) showed Moderate SCK, meaning they could solve the problem 

without using the algorithm but could not create a correct context or representation. 

Eleven participants (61%) were placed in the Low SCK category, indicating that they 

could not solve the problem or could only solve it with the algorithm, that they did not 

know how the algorithm worked, and they could not provide a correct context or 

representation. Focal participant responses will show the aspects of these features.   
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Table 4.8. Level of SCK for each participant for division with fractions 

Participant Level of SCK 
1 Strong 
2 Moderate 

Ms. Sutton Strong 
4 Low 

Mr. Fields Low 
6 Moderate 
7 Low 

Ms. Blake Low 
9 Low 

10 Strong 
11 Low 
12 Strong 
13 Low 
14 Low 
15 Low 
16 Strong 
17 Low 
18 Low 

4.4.3.1 Multiple Case Study Analysis for Division with Fractions 

I again present the cases in order of strongest SCK to lowest SCK. For the topic 

of division with fractions, Ms. Sutton was in the Strong category, and both Ms. Blake and 

Mr. Fields were in the Low category.  

Ms. Sutton showed Strong SCK for Division with Fractions, meeting all three 

criteria: solving the problem without using the algorithm, providing a correct context, and 

offering a strong understanding of what division with fractions means. In solving the 

problem, she started by talking about what division means, meeting the third criterion. 

She led into her explanation by focusing on what 3 divided by 1 would mean. 

[O]ne strategy that I'm teaching my students is to change the numbers and make

sure they understand what's going on. So literally, I'm going to do a three divided 

by a one. All right, so what does that mean? If I'm thinking about if I have three 

of something and I'm dividing that among one. So I'm thinking about how many 
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times does the one and even using words if need be. How many times, so then we 

talk about the connection, …and both multiplication and division are thinking in 

groups. So how many times does the one fit into the three? Or how many groups 

of one fit into the three? That language.  

She then talked about how that would relate to 3 divided by ½. 

So then if I'm like all right if you have that sense with whole numbers, default to 

one-half right. So try it with where you have a whole number and then you have a 

half. Half is the most familiar of the fractions. Students have been working with it 

maybe from second grade. So thinking about now how many times or how many 

groups of one-half fit into three wholes. So then I'm going to think about I'm 

going to actually draw a picture for this one. Now I'm going to think about if each 

of those are my wholes that I'm making halves and now I can see my halves in 

there and I can actually, literally, count my halves.  

After setting up the idea of what it means to divide, and to divide by a fraction, which 

meets the third criterion, she then focuses on the problem given.  

So now I'm going to think about and go back to my original numbers. So making 

sure they really conceptually have an idea, going all the way back to whole 

numbers if need be, and then introducing a fraction piece by piece into that idea.  

So now I have a fraction of something. I have a whole and a fraction of 

something. So if I have my one whole and I have my three-fourths now I have to 

think about how many halves are in there which is really tricky to think about.  
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She then drew a representation of the given problem, showing the halves located in the 

1
ଷ 

ସ
.

Extending her thinking further, she proposed a number line model for determining 

the answer: 

So another way would be on the number line. So there's my one and three-fourths. 

I know when I think about how many halves go into that and so there is a half, 

there's a half and there's a half. So then noticing, I can see that there's one half, 

there's one half and here's a half and that I only have a half of a half left. So then 

noticing that I have three halves but then there's this little half of a half. So if I 

have a fourth leftover. So those are my pieces that I have. 

She was able then to determine that the answer was 3½ halves. Using this number line 

model to calculate the answer met the first criterion for Strong SCK.  

Ms. Sutton then noted that sixth graders learn the algorithm for solving division 

with fractions problems: 
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But that again is a magic trick where they sometimes learn what keep change flip. 

It's just a trick. It's like a magic trick and there's really not this conceptual 

understanding of what it means. I find both with division problems and 

subtraction problems those are the ones where conceptually understanding what's 

going on is probably the hardest part.  

This led directly into her providing a context for the problem, meeting the second 

criterion for Strong SCK. She didn’t hesitate at all in being able to produce it. 

So if I have a cup and three-fourths and then I want to take half cup measurements 

out of that how many portions would that be and building a granola sort of 

problem or something like that. 

When I asked her what students need to understand or be able to do in order to 

work with division of fractions, she was able to offer many background skills and 

knowledge. 

Fractions are really not elementary at all. Students have to know how to exhaust 

the whole so that when they're creating their fractional pieces they're using the 

entire whole. They have to know that they have to make equal parts within that. 

They have to understand that there's always this reference to the whole. Students 

will sometimes figure out a problem of well it's a half of a fourth and I'm like 

okay well we don't usually go to the store and say I need a half of a fourth of a 

pound of flour. We always go back and refer to what one whole is. So they have 

to be able to hold those parts. So they have to be able to coordinate quite a few 

units.  
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She commented more on the coordination of units in working with fractions, showing 

deep understanding of the issues students face when learning these concepts. 

So in this case they have to be able to hold the whole. They have to be able to 

hold the fractional part and then they also have to be able to hold in this case, they 

have to be able to hold the, only I don't even know what to call it. The other 

fractional unit. So if this fractional unit is thinking in fourths but then they also 

have to be able to hold the concept of one-half at the same time. But when a 

student isn’t yet able to coordinate three levels of unit, it's like how I'm expecting 

you to memorize the magic trick and it's not meaningful and they get tripped up 

really easily. 

Ms. Sutton then mentioned a key idea – that fractions are numbers in their own right and 

not just parts of a whole. 

So there's all of this work that is within just understanding parts to a whole, but 

then there's all this part extending beyond that and seeing individual fractions as 

numbers themselves. Then being able to work with that. Then the magic trick part 

has this whole idea of reciprocals in there and inverse relationships and the 

connection between multiplication and division and that's a third layer of 

understand fractions. So if a student isn't yet coordinating that with whole 

numbers and then now I'm expecting them to do it with yet even a third layer and 

to do it with fractional numbers they're not ready yet. 

Ms. Sutton’s firm understanding of representations of division with fractions, her 

ability to develop a context for that operation, and her strong understanding of the 

foundational concepts that lead to the operation met all three criteria for strong SCK for 
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the topic, and her description of what students need to understand showed a deep 

understanding of the concepts underlying this topic. 

Ms. Blake was placed in the Low SCK category for division with fractions, as she 

could only solve with the algorithm, did not know how the algorithm worked, and was 

unable to generate a correct context for the problem. In offering her solution, she 

mentioned a mnemonic she learned for the algorithm: 

Oh God, this is like beyond my fourth-grade abilities here. Right? Well, I think 

I'm going to do it like “Yours is not the reason why. Yours is just to invert and 

multiply.” I'm going to do it that way, because that's the way, how I was taught. 

All right, so that'd be what? 7 fourths, and then it would be... I don't even know if 

I'm right. Am I right? It'll go 14 over 4, which would be like 3 and one half? 

Okay. But if I were really doing it right, it'd be like I got one whole, I have 3 

fourths of another whole and I'm dividing that by half. What the heck does that 

mean? Right? Honestly, what on earth does that mean? Right? To divide by ½? 

Given her question and that, as a fourth grade teacher, she does not encounter 

division with fractions, I hoped to further understand the character of her SCK for 

division with fractions by first describing division by 2, something that comes up in 

Grade 3 and sometimes Grade 2. I asked her what it mean to divide by two, which we 

agreed could be thought about as finding how many groups of two are in a number. So 

dividing by ½ would indicate how many groups of ½ are in a number. 
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She then drew: 

And said: 

Oh, so I have 1, 2, 3 halves, but I got 3 and a half. 

I pointed out that she still had the ¼ to account for, which she then reasoned was half of a 

half. She then noted, “[W]hen you see 3 and a half, you think three wholes and a half. But 

it's referring to 3 and a half halves.” 

This highlights the coordination of units struggle that Ms. Sutton mentioned in her 

description of what students need to know or understand in order to learn division with 

fractions. 

The context she provided was problematic as she started with  1
ଷ 

ସ
 pizzas and

wanted to give half a slice of pizza to every person. She expressed that it was challenging 

to figure out the relationship of the part to the whole, again struggling with coordinating 

the units, which she mentioned when I asked her what students needed to know in order 

to tackle division with fractions.  

With fractions, it feels like that ability to hold on to those layers of units. Right?  I 

can hold on to what the whole is, I can hold on to what the units are that make up 

that whole, and like here, I don't know how many layers there are, but there's a lot 
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of layers in units. Right? I mean, we have the wholes, and then we're defining 

basically the half as a whole when we're dividing. So that becomes whole, right? 

She also noted:  

I did a lot more number line work with fractions this year, which I felt was like a 

way to think about them that I hadn't done. It's not just area with fractions. Right? 

It's also number line, and I feel like that helped a lot too. It keeps kind of 

widening that idea about what a fraction is. 

Ms. Blake’s  SCK for Division with Fractions was judged to be low. Her only 

strategy for solving the problem was the standard algorithm, which she expressed she did 

not understand conceptually, and her context was problematic.  

Mr. Fields was one of the participants who did not attempt to solve the problem, 

nor to provide a context, indicating Low SCK for division with fractions. As he said, “I 

may not be able to solve it myself, [but] I can talk about working with fractions.” 

His expression indicated a level of fear, so I did not push him initially to work 

with the problem given, but instead listened to how he works with fractions in his 

classroom. He spoke of adding and subtracting fractions and the need for both a common 

denominator and the ability to compare the fractions. He continued by saying: 

I would teach that using what we call the super one. Have you heard of that? 



126

We’ll start the concept thinking by saying, "What do you get when you multiply 

that number by one, 784 times 1 is 1 [sic]. "What do you get when you multiply a 

triangle by 1, you get 1 [sic]." The same thing with fractions. When we multiply 

them by 1, we get the fraction but in a different form which is what's cool. One 

half …We can multiply it by one over one. We'll talk about how 2 over 2 is a 

form of 1. So, what's 1 times 2? It's 2. What's 2 times 2 is 4.  

He then focused on converting mixed numbers into improper fractions, saying: 

We talk about ways that they need to think about the fractions, so they can decide 

which one is going to be changed. Can we turn three fourths into halves? Well, so 

they'll start thinking like that. Let's try it. They really wouldn't know division with 

fractions. I wouldn't say, “Oh, we can divide it by a super one." I'd say, “Well, 

let's do change this one because we know we can do it.” Most of them could 

handle this right now, except as a multiplication or division. 

He converted the 1
ଷ 

ସ
 into 7/4 and the ½ into 2/4, focusing again on the fact that

his students had been working with common denominators. 

Hoping to determine if he could use the common denominator method of solving 

the problem, I posed the following question to him: 

 So if we got the seven fourths and the two fourths, I'm just wondering if they 

could do it like a repeated subtraction problem and think about it that way. It's 

almost like doing seven somethings divided by two somethings, 
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He did not take up the suggestion and offered that his students were just diving into 

division and working with partial quotients, so to add fractions into the mix would be 

daunting.  

When I asked him what students need to know or be able to do in order to work 

with fraction division, he noted that they would need to understand what division is 

doing, and suggested modeling using things they could hold on to, noting that he prefers 

Cuisenaire rods, but he did not offer sufficient elaboration to know exactly what this 

means to him. He then mentioned using the idea that division is the opposite of 

multiplication. When I suggested that perhaps that strategy could be used on the fraction 

question I had asked, asking what times a half is 1
ଷ 

ସ
, he said that he didn’t think they

could think that way with multiplication of fractions. While he mentioned that 

understanding the meanings of division and multiplication were important, he didn’t 

elaborate on what those meanings are. His responses indicated that he did not have an 

understanding of either multiplication or division with fractions, and, though he 

mentioned representing multiplication with a manipulative,  he did not offer any contexts 

for division, leading to an evaluation of Low Specialized Content Knowledge for this 

topic. 

4.4.4 Area, Perimeter, and Proof 

The question leading to responses for this topic, as described in Chapter 3, was: 

Imagine that one of your students comes to class very excited. She tells 

you that she has figured out a theory that you never told the class. She 

explains that she has discovered that as the perimeter of a closed figure 
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increases, the area also increases. She shows you this picture to prove 

what she is doing: 

What would you respond to this student? 

As described in Chapter 3, these responses were coded as showing Strong 

Specialized Content Knowledge (SCK), Moderate SCK, or Low SCK. Criteria for SCK 

levels for Area, Perimeter, and Proof are shown in Table 4.9.  
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Table 4.9. Coding manual for Specialized Content Knowledge for area, perimeter, and 
proof 

Level of SCK Criteria Examples 
Strong (meets both 
criteria) 

Suggested trying 
other 
combinations.  

Created 
representations 
that were a 
counterexample  
AND/OR 
Mentioned 
keeping either 
Area or Perimeter 
constant and 
showing the 
variety of 
combinations the 
other factor could 
be to illustrate a 
counterexample. 

I would say, "Good on you. Let's check 
this out further. Right? Let's just extend 
this and see if it's always, always true."  
Because we talk about math laws, right? 
And then we explore a lot of different 
examples, but we don't want to get to the 
point where we go, "That is always true. 
It's a math law. We feel confident." So I 
would say like, "What do we think? Do we 
think it's a math law? Let's explore a lot of 
different cases." (Ms. Blake) 

I might go for an area of say 100, because 
that's a nice friendly number and if this kid 
clearly knows their multiplication, then I 
can say, "Hmm I have a 100 plus ten times 
ten is 100 and yet the perimeter is only 
forty".  
So I think that's what I would have them 
look at other factors for the number, 
because I'm also thinking about you could 
have this, but you could have fifty times 
two. And so now your perimeter is 108. 
For exactly the same area. So why are the 
perimeters that much bigger? (P1) 

Moderate (all three 
criteria required) 

Suggested trying 
other 
combinations and 
played with some. 

Could not think of 
a counterexample. 

Did not arrive at a 
conclusion about 
correctness 

And so, then I might ask them, "Okay, so 
you're telling me with this problem and this 
problem, we've confirmed that what you 
said is true, but now we have to test your 
theory again." Because, the whole point of 
a theory is that we have to keep testing it, 
and if you find that one time that your 
theory doesn't hold up, it's not true. (P4) 

Absence of a noted counterexample 

So I still don't think I have a definitive 
answer to theirs because they are just 
saying if the perimeter increases that the 
area also increases. (Ms. Sutton) 
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Low (at least one 
criteria met) 

Could not or did 
not engage with 
the problem.  

Focused only on 
formulas.  

Reply to student 
was good job or 
they thought the 
student's work 
looked sufficient. 

I think, yeah. I would obviously spend 
some time saying, "Oh, I'm so excited you 
see this." Other than that, I'm kind of at a 
loss. (P16) 

You have to define the terms for them first. 
Once we get perimeter down, and they talk 
about the formula for it, then we talk about 
what about the inside, the surface? Then 
here's the area of my hand, how do you 
measure that?  Talking about labeling units 
and so forth. (Mr. Fields) 

Yeah, I don't know if this ever said that to 
me. I think it's true. Yes. It makes sense. 
So I say, “ Great….” I don't know. It 
makes sense. It's a great observation. (Mr. 
Fields) 

Four of the explanations (22%) were judged to indicate Strong SCK for area, 

perimeter, and proof, as they suggested trying other combinations to test the theory set 

forth by the student and then created either a single counterexample or looked at 

rectangles with either constant areas or perimeters to show that the theory was false. 

Seven explanations (39%) showed Moderate SCK as they suggested testing other 

combinations, but either focused primarily on the formula or failed to correctly determine 

the validity of the claim. Seven of the explanations (39%) were evaluated as showing 

Low SCK, as those participants either did not engage with the problem at  all, or focused 

on the formulas to determine that the theory was correct. A summary of SCK level by 

participant is shown in Table 4.10. Illustrations of the features of the explanations are 

then offered for the three focal participants. 
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Table 4.10. Level of SCK for each participant for area, perimeter, and proof 

Participant Level of SCK 
1 Strong 
2 Moderate 

Ms. Sutton Moderate 
4 Moderate 

Mr. Fields Low 
6 Moderate 
7 Moderate 

Ms. Blake Strong 
9 Low 

10 Moderate 
11 Strong 
12 Moderate 
13 Low 
14 Low 
15 Strong 
16 Low 
17 Low 
18 Low 

4.4.4.1 Multiple Case Study Analysis for Area, Perimeter, and Proof 

I present the cases in order of SCK, from Strong to Low. Ms. Blake’s response 

was determined to show Strong SCK, Ms. Sutton’s to show Moderate SCK, and Mr. 

Fields’ to show Low SCK.  

Ms. Blake’s response met both criteria for Strong SCK for this topic, as she both 

suggested trying other combinations and created a counterexample. She was one of the 

few participants who went beyond the counterexample and suggested finding conditions 

under which the claim was true. 

 She first addressed the issue of proof, noting that a single example does not prove 

a math law: 

Good on you. Let's check this out further. Right? Let's just extend this and see if 

it's always, always true."  Because we talk about math laws, right? The ones that 
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are always, always true.  So I would say like, "What do we think? Do we think it's 

a math law? Let's explore a lot of different cases." Right? 

So what if it were... So you're saying 4 by 4 is 16, area was 16. Increase the 

perimeter to 24, the area increased. So let's try, I don't know, let's try a 2 by 8, let's 

say. Right? That would be a 16 area, and it would be, what, 8 and 8 is 16, and 4, 

that'd be a 20 perimeter. 

This created a clear counterexample to the theory by finding a rectangle with a larger 

perimeter (20) than the one on the left (16), but having the same area (16). Since the 

perimeter increased and the area did not, the student’s conjecture does not hold. 

 

Ms. Blake went on to suggest a whole class exploration of the topic to try to determine 

the conditions under which the conjecture could be true: 

And, then, can we throw this up on a chart, can we begin to explore this? Let's 

pretend there's other people in the class. What do they think? Maybe this would 

be a great morning math. Right? Like, "So and so thinks they have a math law. 

What do we think?" 
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And could we make it a math law with some revisions? 

Could we say, "Well this is true if, right, or only if..." or whatever? 

Could we revise it in a way that it is, we do feel confident that it's a math law? 

When I asked her what types of knowledge, skills, and understandings students need in 

order to work with perimeter and area, she said:  

We start small, we build stuff, but certainly the idea of adding, and the idea of 

multiplying become huge. That array model becomes a huge part of it, and that 

ability to connect it to all the other things. Right? If you're already figuring out 

multiplication using array model, well, you're already doing area. Right? You got 

it. It's there. It might be presented to you in a different way, but it is what you're 

already doing. 

So, yeah, definitely connecting to multiplication, I think, is really big, and then 

kids always get confused. "Is it the inside, and which one's the perimeter?" 

Ms. Blake’s suggestion to try other combinations and her creation of a clear 

counterexample, combined with her sense of what it would mean to justify a theory or 

create conditions under which a theory was true, were indications of Strong SCK for this 

topic. 

Ms. Sutton was found to have a Moderate level of SCK for this topic, meeting the 

criteria of suggesting trying other combinations, absence of a noted counterexample, and 

not arriving at a conclusion about correctness. She said that she would reply: 

So then I would say that there are instances where something seems to be a 

pattern that was established, but that if we just have to make sure it really is a 

pattern. So sometimes students can see a pattern and they run with it. Then it's 
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like it's not always a pattern. So I guess I would encourage them to try then 

another example of that.  

She went on to suggest a strategy for testing other combinations, 

So their theory was that when the perimeter increases that the area also increases.  

So then I'm trying to think. It would be cool to somehow come up with a 

systematic chart that has every combination in between. But then there's also 

thinking about how they can change ... you can have the same area but your 

perimeter can change. So all of the options of this one. So if I'm keeping my area 

the same that I could also ... well do I want to keep my area the same or do I want 

to keep my perimeter the same?  

So yeah, I guess I would just encourage them to continue to play with it as I 

clearly do not have an exact no you're right, yes you're wrong solution.  

During this time, she drew the following representation, creating rectangles with the same 

area but different perimeters, and then a set with the same perimeter but different areas.  
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While these examples of changing perimeters with a constant area provide a 

counterexample to the claim that increasing perimeter also increases area, she was unable 

to state an opinion of the claim. I asked her to reflect further on the rectangles she 

created, and she said: 

So here I even played with the idea of, I'm going to keep the area the same and 

see what is happening and then over here I had to say that I will keep the 
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perimeter the same and see what happened. So when I did that at first I was like 

okay, those are getting larger. Nope, now my perimeters are getting smaller. So 

here I have it showing those different connections there. So I still don't think I 

have a definitive answer to theirs because they are just saying if the perimeter 

increases that the area also increases.  

When I asked her what skills or knowledge she thought students needed in order 

to engage in this exploration or type of learning, she answered:  

Well I think there's noticing patterns. There's clearly multiplication skills and 

understanding the different between area and perimeter and what each of them 

means and how to calculate them. There's understanding of units, although they 

could have those all wrong and still have the correct numbers for their area and 

their perimeter. But I think it's noticing pattern and using that and then also 

noticing that you can't necessarily make ... I mean you can make a theory based 

on part of a pattern but that it doesn't necessarily ... you have to continue the 

pattern farther sometimes to notice.  

While Ms. Sutton was able to engage with the problem and test various areas and 

perimeters, she was unable to use the evidence to come to a conclusion. For that reason, 

her SCK for area, perimeter, and proof was judged to be at the Moderate level. 

Mr. Fields was one of the participants who was rated as having Low SCK for 

area, perimeter, and proof, as he did not engage with the problem, focused on the 

formulas, and thought the student had reached a good conclusion. When asked how he 

would respond to the student he said: 
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Yeah, I don't know if this was ever said that to me. I think it's true. Yes. It makes 

sense. So I say, “ Great. Let's try it out, show me some examples.” I don't know. It 

makes sense. It's a great observation. 

This lack of engagement and agreement with the claim were two of the criteria for 

Low SCK. When I asked what students need to know or be able to  understand as they 

start working with perimeter and area, his reply indicated a focus on the formulas, the 

final criteria for Low SCK: 

You have to define the terms first. Once we get perimeter down, and then talk 

about the formula for it, then we talk about what about the inside the surface? So 

here's the perimeter of my hand. And how do you measure that? …Then here's the 

area of my hand, how do you measure that?  Talking about labeling units and so 

forth, to make sure that they understand. Then with area, obviously they're 

multiplying, so we teach them that formula too once we get perimeter solid. 

Mr. Fields was focused almost entirely on the formulas used to calculate the area 

and perimeter, and in making certain his students understood the vocabulary for both. 

While he mentioned “show me some examples,” he indicated that he thought the theory 

was correct and that those examples were only for further illustration. At no time did he 

question the correctness of the theory or mention that further examination for a 

counterexample would be needed. These were all indicators of Low SCK for the topic. 

4.5 Specialized Content Knowledge Across Participants 

SCK varies not only by participant over the set of topics, but also by topic for the 

participants. In this section, I look at how SCK varies by topic for different participants, 

specifically those chosen as focal cases.  
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As described in Chapter 3, I assigned each SCK level a numerical rating: 3 for 

Strong, 2 for Moderate, and 1 for Low. I used the average SCK rating for each participant 

to separate the participants into three categories: Strong overall, Moderate overall, and 

Low overall. I then chose one participant from each of those categories who was 

representative of the teachers in that group. As Table 4.1shows, only two of the 

participants (11%) had the same SCK level for all four topics. The other 16 participants 

(89%) had SCK that varied over the topics. The three focal participants all had varied 

SCK levels, as shown in Figure 4.1. 

Figure 4.1. SCK levels for the focal participants across the four topics. 

Ms. Sutton was able to provide conceptual explanations, representations, and 

justifications for the first three topics (subtraction, multiplication, and fraction division), 

and she also explored the topic of area, perimeter, and proof using a mathematically 

appropriate strategy. She was, however, unable to use that representation to conclude that 

the student’s conjecture was not correct. Her Strong SCK in the first three areas did not 

ensure Strong SCK in the fourth. A variation in SCK was true for 5 of the 6 participants 

Subtraction with
Regrouping

Multi-digit
Multiplication

Division with
Fractions

Area, Perimeter, and
Proof

Ms. Sutton Ms. Blake Mr. Fields

Strong 

Moderate 

Low 
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in the Strong SCK group, indicating that Strong SCK in one or more topics areas does not 

necessarily lead to Strong SCK in others. 

Ms. Blake was typical of the Moderate group, as 7 out of the 8 (88%) of those 

participants also showed a variation in SCK. Her SCK was Strong in subtraction and 

area, perimeter, and proof, Moderate in multiplication, and Low in division with 

fractions, where she struggled to conceptualize what 1
ଷ 

ସ
  ÷  

ଵ

ଶ
 means. It would be

challenging to predict Ms. Blake’s SCK for a new topic based on the variation she 

demonstrated in these four areas. 

Mr. Fields’ explanations tended to be thin and procedural, despite his stated desire 

for students to understand the math conceptually. He was typical of the 4 (22%) 

participants in the Low group, who all had variations in SCK over the four topics. While 

these participants all showed Low SCK for at least two of the topics, they each had areas 

in which they could demonstrate some level of understanding of the explanations, 

representations, and justifications of the mathematics they encountered. Their struggle 

came in knowing how to connect those elements. Two of those participants (11%) were 

rated as showing Strong SCK in subtraction with regrouping, further illustrating that an 

SCK level in one topic is not necessarily a predictor of SCK in another area.  

4.6 Summary of Findings: Specialized Content Knowledge 

A level of Specialized Content Knowledge (SCK) was determined for each 

participant for each topic. These SCK levels varied greatly from topic to topic and from 

participant to participant, as indicated in Table 4.11. Participants showed the greatest 

SCK for subtraction with regrouping and multi-digit multiplication, but overall lower 

levels of SCK for division with fractions and the area/perimeter/proof problem. Fewer 
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than one-third of participants showed Strong SCK in division with fractions and the area 

problem, indicating that many teachers are not adequately prepared to teach those topics 

at the elementary level. Subtraction with regrouping is expected to be mastered by the 

end of second grade, multi-digit multiplication by the end of fifth grade, division with 

fractions by the end of sixth, and area and perimeter relationships by the end of third 

grade. There did not appear to be a relationship between years of math teaching 

experience and level of SCK on these topics, except perhaps for division with fractions. 

The sample size is too small to make a conclusion as to the significance of that 

relationship. SCK also varied for almost all of the participants over the four topics. A 

participant could show Strong SCK in one or more areas and Moderate or Low SCK in 

others, as seen in Figure 4.1.  

In Chapter 5, I describe the themes I found in the participants’ responses, looking 

at the features that indicate explanation, representation, and justification.  In Chapter 6, I 

will discuss the findings of these chapters, in conjunction with the relevant literature, and 

suggest some implications of the findings. I will also suggest areas for further research as 

we continue to work on improving teacher SCK. 
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CHAPTER 5  

FINDINGS – THEMES IN TEACHER EXPLANATIONS 

5.1 Introduction 

The purpose of the second research question was to explore the themes in the 

features and representations teachers highlight when explaining math concepts and 

procedures to students. In particular, it focused on topics that have often been taught in a 

strictly algorithmic manner (subtraction with regrouping; multi-digit multiplication; 

division with fractions; and proof involving area and perimeter) to see if the explanations 

have features that can be considered more conceptual. Conceptual explanations would be 

in alignment with the expectations new state and national math standards have placed on 

math instruction, and would require a higher level of Specialized Content Knowledge.   

The methodology used to analyze this question was presented in Chapter 3. This 

chapter consists of results that answer research question 2 by first offering an overview of 

the findings, then noting the themes found in the explanations given by participants for 

each topic, especially in light of the variation in SCK for each topic. Illustrations for the 

themes are offered throughout each section. The following chapter will discuss the 

findings from this chapter and the previous chapter and offer implications and areas of 

future research.  

The research questions examined for this section are:  

What themes are found in teachers' explanations for the following topics? 

a. Subtraction with regrouping? 

b. Multiplying multi-digit numbers? 

c. Division with fractions? 

d. The relationship between area and perimeter? 
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5.1.1 Overview of Findings 

Themes found in the teacher explanations revolved around representing and 

justifying the algorithms for each type of calculation. In this overview, I consider each of 

the four content areas. Similar to the way SCK varied across the four topics, themes were 

not necessarily consistent across content areas. As I further describe in this chapter, some 

themes were not necessarily associated with Strong, Moderate, or Low SCK, while other 

themes were. 

For subtraction with regrouping, most teachers were able to provide a conceptual 

foundation for their strategies, and several teachers used more than one strategy, which 

was coded as “multiple ways of regrouping.” While some of the explanations focused on 

representing and justifying the standard algorithm of borrowing ten using base ten 

models, others bypassed the algorithm entirely by using number line models and flexible 

regrouping to introduce subtraction with regrouping. Participants also noted that 

“subtraction is challenging,” because it has multiple contexts and meanings, and because 

the language we use for it has common meanings that can make it confusing for students. 

For multi-digit multiplication, similar results were found. Teachers tended to 

choose a representation that justified the algorithm, such as an area model or use of 

partial products, and some teachers suggested that learning the algorithm was not 

important in light of those other strategies. This led to the theme of “Representations 

explain the algorithm.” The participants also focused on place value misunderstandings 

as the source of student error (“the nature of the error”), and were nearly unanimous in 

declaring that zeros are the only appropriate values to act as placeholders in the 

traditional multiplication algorithm (“zero has meaning”).  
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Teachers tended to struggle with division with fractions. Though most of the 

participants could solve the problem (“long live the algorithm”), only about one-third 

could do so without using the standard algorithm (“what does it mean to divide?). Only 

two of the 18 participants (11%) attempted to justify the algorithm. The teachers 

struggled to develop contexts for the given division problem, and many confused 

dividing by half with dividing in half (“context was an issue”). When discussing 

important fraction knowledge for approaching the topic of division with fractions, most 

of the participants focused on “features of fractions” and vocabulary, along with the part-

whole definitions of fractions.  

For the topic of area, perimeter, and proof, most teachers suggested that a student 

test their theory to look for counterexamples, thus showing an understanding of the 

rigorous nature of proof. Few teachers could suggest a strategy for testing the theory, 

many did not arrive at a conclusion about the truth of the claim, and some teachers 

thought the claim was correct. A link was seen between a teacher’s conclusion about the 

claim and the suggestions they made about exploring the claim, leading to the sole theme 

“teacher knowledge affected the response.”. 

Each of the topic areas has a theme that touches on representation, whether 

through relating it to the algorithm (subtraction with regrouping and multi-digit 

multiplication), creating a model or context (division with fractions), or creating a 

counterexample (area, perimeter, and proof). Other themes are more topic-specific, such 

as the role of zero in multi-digit multiplication. 
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5.2 Subtraction with regrouping 

The question leading to responses for this topic, as described in Chapter 3, was: 

Let’s spend some time thinking about one particular topic that you may 

work with when you teach, subtraction with regrouping. Look at these 

questions: 52 − 25, 91 − 79, etc.). How would you approach these 

problems if you were teaching second grade? What would you say pupils 

would need to understand or be able to do before they could start learning 

subtraction with regrouping? 

As described in Chapter 3, I employed a thematic analysis to identify relevant 

mathematical aspects of participants’ responses to the subtraction with regrouping 

prompt. Recall that I grouped features of responses that seemed to be related, such as 

“representation” or “vocabulary” or “context.” and then examined those groups to look 

for commonalities or differences that seemed to highlight a mathematical idea. I did not 

see the boundaries of the themes as sharply delineated, but as aspects of the participants’ 

explanations. For subtraction with regrouping, I identified two themes: multiple ways of 

regrouping, and subtraction is challenging. I first present the major elements of strategies 

and responses noted for the topic and describe the themes that I defined based on those 

elements. I then provide excerpts from the interviews that illustrated each theme. 

The first theme identified was “Multiple ways of regrouping,” referring to the fact 

that participants presented different strategies to address the need to regroup. 

Descriptions that fit this theme were provided by 14 of 18 teachers (77%). One strategy 

for teaching subtraction with regrouping is to use the standard algorithm which has 

students “borrowing” a ten to gain more ones, sometimes accompanies by a base ten 
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representation, such as base 10 blocks. While 3 participants (17%)  in this study did 

suggest using a base-ten representation only, 5 (28%) instead only used flexible 

regrouping and number lines to perform the subtraction calculations, and 6 (33%) 

teachers presented both of those strategies.  

The second theme identified for this topic was “Subtraction is challenging.” Eight 

participants (44%) noted that subtraction is more challenging for students to learn than is 

addition, as there are more contexts and meanings for subtraction. The use of number 

lines with both counting up and counting down strategies was seen as a way to more 

closely match the context of a subtraction problem to its representation. 

Data and quotes to illustrate both themes are presented in the next sections. 

5.2.1 Multiple ways of regrouping 

There was variety in the ways that teachers described regrouping, with some 

providing strong mathematical justification for the standard algorithm and others using 

techniques that did not address the mathematical underpinnings of the algorithm. The two 

main strategies participants used to address the topic of subtraction with regrouping were 

number lines and base ten representations. Five of the teachers (28%) mentioned only 

number lines, three (17%) suggested they would use only base ten representations to 

justify the algorithm, and six (33%) used both number lines and base ten representations 

in their explanations. Among the remaining participants, two (11%) would explain how 

to use the algorithm, one (6%) mentioned moving from number line strategies to the 

algorithm without mentioning a base ten representation, and one (6%) mentioned 

counting objects to work with the subtraction problems. The use of the number line 

strategies with flexible regrouping and the justification of the algorithm using base ten 
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representations were both characteristics of Strong Specialized Content Knowledge as 

described in Chapter 4. 

Base ten representations included base 10 blocks (n=10, 55%) and place value 

counters (n=1, 6%). The ten participants who included this representation as part of how 

they would explain the topic of subtraction with regrouping to students used drawings of 

base 10 blocks to indicate the tens and ones in the problem 52-25, as shown in Figure 5.1. 

The dots indicate unit-cubes from a set of base 10 blocks, which represent ones, and the 

vertical lines reflects  “rods,” which each represent ten (see Chapter 2). In the actual 

physical manipulatives, each rod is exactly the length of ten unit-cubes placed end to end. 

For example, Participant 17 (Strong SCK in subtraction with regrouping) initially drew 

five ten-rods and two one cubes, as illustrated in Figure 5.1. 

 

Figure 5.1. Illustration of 52 with base 10 representation. 

 She explained the technique as follows: 

[W]e have to take away five ones, can we? And we talk about how, no, there's 

only two ones. So we talk about trading in a 10. And what I do is we put a T on it 

to show that we're trading it. (See Figure 5.2.) (P17) 
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Figure 5.2. Trading in one of the ten-rods for 10 unit cubes. 
 

 [She draws in the ten dots to represent the ten ones]… so we've traded that in, 

and I emphasize when I'm first teaching this. And then we can take away the five 

ones, and then how many tens do we have to take away? And we talk a lot at the 

beginning how this [points to the ten with a T drawn on it] is not [still there]... We 

traded that. We have to take away, and we do Xs for taking away.  

She marks Xs on two of the ten-rods and slashes through five of the unit-cubes. (See 

Figure 5.3) 

 

Figure 5.3. Taking away 25 by crossing out the rods and cubes. 

And then we count what's left, which would be 10, 20, 21, 22, 23, 24, 25, 26, 27. 

And that's the answer. So that's like the most concrete way. And this is the first 

way I go about it, but most kids don't stay with this very long because it's 

cumbersome. (P17) 
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She then wrote the problem to show how the representation represented the 

algorithm in expanded form, as shown in Figure 5.4. She rewrote the 52 as 50 + 2 and the 

25 as 20 + 5. In order to subtract the five ones, she needed more than two ones in the 

minuend, so traded in one of the tens for ten ones, leaving her with four tens, or 40, and 

12 ones. She then subtracted by place value, subtracting the five ones from the 12 ones 

and the 20 from the 40, leaving a difference of 27. 

 

Figure 5.4. Representation of the expanded form algorithm that matched the base 
ten representation in Figure 5.3 (P17). 

 
Like Participant 17, other participants noted that using this type of representation makes 

it clear that there is a ten, and not a one, that is being “borrowed” from the minuend. 

There was not a common vocabulary used in the trading in of a ten for ten ones, with 

participants using borrow, trade, and exchange for the process, and sometimes using 

more than one of the terms in the same explanation. 

The number line strategy, on the other hand, bypasses the need to exchange a ten 

for ten ones, and instead requires a more flexible type of regrouping. While there was 

only one type of base ten representation offered for each subtraction problem, there are 

three types of number line representations possible: working down from the minuend to 

the subtrahend and counting the total of the jumps working down from the minuend by 

the subtrahend and noting the location after the final jump, and working up from the 

subtrahend to the minuend and counting the total of the jumps. Two of these were offered 
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as representations by the participants: counting down by the subtrahend and counting up 

to the minuend. One participant described her counting down strategy as follows, 

illustrated in Figure 5.5: 

[If] I wanted to do a taking away from my 52, I could subtract away 20 first. So 

then students would get more facile at being able to just immediately take away 

the 20 and get to a 32 and then think through ‘now I need to partition my five 

because I'm going across a decade’. So I might want to take away a two first and 

then I might want to take away a three next in order to get to my answer. (Ms. 

Sutton) 

 

  

Figure 5.5. Number line representation counting down from the minuend to the 
difference by the subtrahend. 

 
Using a counting up strategy, as shown in Figure 5.6, Ms. Sutton (Strong SCK in 

subtraction with regrouping) said: 

But one of the things that they have in there is practicing with jumping different 

moves that they have. So for example, if we've been practicing jumping to the 

decibel then we might have practiced with a number line and so if we're starting 

with our 25 and we're basically going to add up to trying to get to our 52. So I 

might jump first up five to get to the [decade] of 30 and then noticing here that I 

might jump up 10 more to get to 40 and then 10 more to get to 50 and then I have 

my two left. So that's my distance, because subtraction we can think about it as 
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taking away, but it's also thinking of the distance between those two numbers. So 

I can think about I have 10, 20, 25, 26, 27 as my distance between 25 and 52. (Ms. 

Sutton) 

Figure 5.6. Number line representation counting up from the subtrahend to the 
minuend. 

For the number line strategies, there are not prescribed jumps a student has to 

take. Participants mentioned that they expected different students to take different sizes 

and orders of jumps to reach the answer, depending on the students’ comfort level with 

moving around and over decades. I note that concern for students’ own entry points, 

consistent with the attention to comfort level here, is consistent with best practices for 

teaching mathematics (see Van de Walle et al., 2013). The participants expected most 

students would add or subtract to or by a decade or group of decades, then work with the 

remaining numbers to arrive at the difference. A student who was counting up from 25 to 

52 might go by a five (to 30), then by ten (to 40), another ten (to 50), and two (to arrive at 

52). They could then add the jumps to conclude the difference was 27. They could also 

start at the 25, add 20 (to 45), and know that seven more would get them to 52, also 

arriving at an answer of 27. The teachers noted that using a number line strategy requires 

students to be able to flexibly break apart numbers. They need to see 25 as two tens and 
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five ones, but also as a ten, another ten, and a five; or two tens, a three, and a two. 

Flexible regrouping was also a criteria of Strong SCK in Chapter 4. 

Participant 10 (Strong SCK in subtraction with regrouping), along with presenting a 

number line model, used a strategy that employed Cuisenaire rods. These are colored 

rods, with each color representing a different value as indicated by its length. Unlike base 

10 blocks, Cuisenaire rods do not reflect base ten properties in their design. She proposed 

using them to demonstrate the need to increase the ones in order to subtract, but in a way 

that bypasses exchanging the ten for ten ones. Through this role play, one child represents 

the ones place and another represents the tens place, with a third child representing the 

number being subtracted. 

She described it in the following way: 

I would have one child holding five orange rods [with a value of ten each] and 

one child holding a red [which has a value of two]. And then I have a person who 

says, 'excuse me. Do you have five that you can give me.' And the ones place will 

say, 'no, just a moment. I'm going to get some help.' And so this person turns to 

the next door neighbor and says, 'can you please help?' And the next-door 

neighbor is this whole thing. Because it's tens and the one. And the next-door 

neighbor is only ever allowed to give one of what they have. And so then they 

would say, 'sure. I'm happy to help you.' And then they just slide a ten over. 

Now the child representing the ones place is holding a ten and a two, instead of twelve 

ones as would be standard when using base ten blocks. She goes on to say: 

So it doesn't actually involve regrouping. It doesn't involve trading anything, you 

just move that over. It's quite elegant. So that this then becomes, when it slides 
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over, now I have my 12 and now I have 40 and then I always say to them, 'wait. 

Did you take anything away yet? I see you have 40 and 12. Have you given 

anything away?' 'no, no. 40 plus 12 is 52. I haven't done anything, I've just 

renamed my number.' And the interviewer comes, 'can I have five?' And the 12 

says, 'sure, you can have five.' And then at that point it gets pretty easy question to 

figure out what the difference is between five and 12. 

So then they say, 'sure, I can give you [five].' So then they'll give him the [five] 

and then they'll say, 'okay, and now I still have my 20 and my 20 has to be taken 

away from the four tens. So can I do that? Yes.' And so there we go. (P10) 

She did not explain how the giving away of the five would be represented by the 

students, nor how the remaining seven would be shown.   

5.2.3 Subtraction is challenging 

Several participants (n =8 , 44%) commented on the challenge that subtraction 

poses for their students, first because it has so many more contexts and meanings than 

does addition, and second because of the vocabulary we use. Addressing the first point, 

Ms. Blake (Strong SCK in subtraction with regrouping) said: 

But it seems something about that operation that is most problematic for them. 

There's something about that taking away, and maybe it's because it can be 

represented. It can be a difference, right? It can be a taking away. It can be a 

comparison. Maybe that's part of what messes them up is, it presents itself in 

different ways that look like something other than their default. (Ms. Blake) 

Where addition is seen as joining or combining, subtraction could be, according to 

the participants, comparison, taking away, difference, distance, or a missing addend. 
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These different contexts can lead to different choices in representation: counting up to the 

total, counting down to the subtrahend, or counting down by the subtrahend. In 

considering these contexts, number line representations are seen as bringing meaning to 

the various contexts in ways the standard algorithm cannot, even if at the same time the 

number line does not well reflect the regrouping that is part and parcel of multidigit 

subtraction.  

Participant 18 (Strong SCK for this topic) highlighted a different challenging 

aspect of subtraction, the vocabulary we use, which has everyday meanings as well as 

mathematical meanings. The multiple meanings can be challenging for students, 

especially those who are just learning English. 

And then just understanding the difference, which I find especially with ELL 

students, that's a challenging concept in math because when we talk about 

difference in math, it's very different. Like what's the difference between 91 and 

79 and they'll say, well, 91 is bigger. It has nine tens or one you know? And it's 

like, what's the distance? I try to encourage that. What's the distance? How many 

spaces in between those numbers is the difference? (P18) 

While subtraction can be seen as a very basic operation, the participants brought 

forth these ideas about why subtraction is challenging for students, and how they try to 

encourage understanding through multiple strategies and clarifying vocabulary. As noted 

in Chapter 4, the majority of teachers had Strong SCK in this topic area, and the rest had 

Moderate SCK. Their Specialized Content Knowledge level is corroborated by their 

descriptions of why subtraction is challenging, and what would be supportive 

pedagogically to help students overcome any challenges. 
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5.3 Multi-digit multiplication 

The question leading to responses for this topic, as described in Chapter 3, was: 

Some sixth-grade teachers noticed that several of their students were 

making the same mistake in multiplying large numbers. In trying to 

calculate:  

123 

           x  645 

the students seemed to be forgetting to “move the numbers” (i.e., the 

partial products) over on each line. They were doing this: 

 123 

                 x 645 

 615 

 492 

 738 

                  1845 

Instead of this: 

     123 

                   x   645 

     615 

   492 

 738     

 79335 
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While these teachers agreed that this was a problem, they 

did not agree on what to do about it. What would you do if 

you were teaching sixth grade and you noticed that several 

of your students were doing this? What would you say 

pupils would need to understand or be able to do before 

they could start learning multi-digit multiplication? 

For multi-digit multiplication, I identified three themes: the nature of the error, 

representations explain the algorithm, and zero has meaning. Since themes are 

interwoven within a teacher’s explanations, they are not always presented with the 

phrasing I have chosen to represent the themes. Therefore, theme boundaries are not 

sharply delineated. 

Multi-digit multiplication has traditionally been taught as a procedure that 

involves moving partial products “over” as one proceeds through the place values of the 

multiplier, and often needs “carrying” or regrouping in the process. The first theme for 

this topic is “The nature of the error,” as 17 of the 18 participants (94%) identified that 

the error was in place value understanding and not in misunderstanding the procedure.  

The second theme is “Representations explain the algorithm,” which notes the 

ways in which participants justified or bypassed the algorithm. While three of the 

participants (17%) addressed the error by simply restating the procedure, the rest (n=15, 

83%) focused instead on a representation that justified the procedure or could even be 

used to bypass it. The representations and justifications were characteristics of Strong 

Specialized Content Knowledge as discussed in Chapter 4. 
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Participants were also nearly unanimous (n=15, 83%) in the call for including all 

zeros in the partial products, which were not present in the given problem, to indicate that 

there were no ones or tens in those places, leading to the third theme of “Zero has 

meaning.” 

Data and quotes to support these themes are found in the following sections. 

5.3.1 The nature of the error 

A lack of understanding of place value was the reason given by almost all (n = 17, 

94%) of the participants as the cause of the error in the students’ work. In referring to 

place value, the teachers seemed not to be implying that the students had forgotten which 

place the product should start in, but rather the teachers recognized that the students were 

seeing the four in 645 as a single digit of four, rather than understanding that it 

represented 40. As Participant 12 noted, “So this 4 doesn't mean I'm multiplying 

everything by 4, I'm multiplying everything by 40.”   Not surprisingly, then, the 

representations they chose to address the mistake were intended to illustrate the place 

values of the digits in the multiplicand and/or the multiplier, as described below. 

5.3.2 Representations explain the algorithm 

Participants generally used array models or partial product models to justify the 

standard algorithm and to make it make sense to students (n=15, 83%). Several noted that 

the algorithm is not just a set of steps, but a shorthand way of working through the 

separate multiplications that comprise it. The array model, also called the box model or 

area model, was used by ten (56%) of the participants. In this model, the factors are 

presented as sides of a rectangle that has been divided into regions. Students find the area 
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of each region, then add the areas together to find the total area or product. As Participant 

1 (Strong SCK for multi-digit multiplication) explained, as illustrated in Figure 5.7: 

I'm going with the open array. I guess I need three [sections], so that you would 

have your 100, your 20 and your 3. Your 600, your 40 and your 5. I look at this 

and say, "Well I know I have to multiply each of these parts". Because it looks 

like somebody's like okay, so I know I'm supposed to multiply that part and I 

know I'm supposed to multiply that part, but I'm forgetting that it's really 40 times 

three.  

But now I can do all of these pieces. [She found the product of each set of 

factors.] There's your 500, your 100 and your 15. So there's my 615 right there. 

[Pointing at the row headed by the 5.] This is a 615, but this [pointing to the row 

headed by the 40] is not 492 and this [pointing to the row headed by the 600] is 

not 738, has to be 7,3800.  (P1) 

Figure 5.7. An array model of multi-digit multiplication. 
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With an array model, each element of the product is shown separately, and the 

partial products are added to find the total product. Some participants tried to scale the 

regions to represent the lengths assigned, but most did not, in keeping with creating a 

reasonably-sized model. Some found the array model to be cumbersome beyond 

multiplying two-digit numbers, as expressed by Participant 2 (Strong SCK for this topic), 

who said:  

I don't mind if kids are doing partial product. And you know what I mean by 

partial product? Instead of doing the algorithm. And it's, it looks much nicer when 

it's two by two. Three by starts to get really junky. (P2) 

By “junky” this participant seemed to indicate that the number of cells in the model or 

elements in the partial products begin to get unwieldy for adding once the factors expand 

beyond two-by-two digit numbers.  

Partial products, mentioned by eight (44%) of the participants can also be found 

without the array, in a way that generates fewer elements to be added together, as shown 

in Figure 5.8. For this problem, one participant broke the original problem down into 

three multiplication problems that can be calculated by  multiplying by a single digit and 

then applying the appropriate place value. The three partial products align with the three 

product lines from the standard algorithm and can be helpful in understanding why the 

values need to be “moved over.”  

 

Figure 5.8. Partial products method for multi-digit multiplication. 
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While performing a similar calculation on a smaller, two-by-two, multiplication 

problem, as shown in Figure 5.9, Ms. Blake (Moderate SCK for this topic) described the 

process as: 

Because we had 56 times 24, so it'd be, okay, 4 x 6, that's 24. 4 times 50, that's 

200. 20 times 6, that's 120, and 20 times 50 would be 1,000, and then I have my 

four partial products, and then add them up. (Ms. Blake) 

 

Figure 5.9. Illustrating the partial products method of multi-digit multiplication. 

She even challenged the use of the standard algorithm, stating : 

Well, in fourth grade, we honestly never get to the standard algorithm. We do the 

partial products, and just leave it there. And so that does address that problem to 

some extent. Because, this idea that, is that a 4? Not really. It's a 40. So I think 

that does help keep that place value intact. Where you're just doing the partial 

products, and again, we decided like let's not rush to the standard algorithm. 

Why? They have an efficient strategy. It demonstrates place value much more 

explicitly than the standard algorithm does. (Ms. Blake) 

Connecting representations and their related algorithms is key for creating strong 

mathematical understanding of a topic. That so many participants worked to create those 

connections is further illustration of their Strong SCK for this topic.  
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5.3.3. Zero has meaning 

Fifteen of the sixteen participants (94%, or 83% of the whole sample) who 

addressed the question of what should be in the empty spots in the given problem noted 

that the only appropriate placeholders for the given problems were zeros, and several of 

the participants were very uncomfortable that the zeros were left out of the presented 

problem. The teachers voiced that the missing values were zeros, and should be included 

to indicate that there were no ones or no tens. Zero is not “nothing, nor merely a 

placeholder, but it is a value that needs to be shown for clarity. I categorized this 

separately from “the nature of the error,” as one could know that the student error was 

with place value and still believe that it was acceptable to omit the “placeholder” zeros or 

to use another symbol to represent the placeholder. 

As Participant 12 (Strong SCK for multi-digit multiplication) noted, 

The 0 is really important, because it's ... Yes, it's a placeholder, but you need to 

know what place value you're working in. Because that changes everything. 10 is 

hugely different from 10,000.  So you need to have those 0s to help structure that. 

And I don't think that telling kids that it doesn't matter, trying to put that in their 

head is helping that. 

Mathematically what is the most accurate would be a zero. (P12) 

When I asked if another symbol could be used to be the placeholder, Participant 2 (Strong 

SCK for this topic) said, 

No. No. But you can only put a digit in there. They are, maybe they are 

placeholders, but you have to put a digit. There's no value, then you can put zero. 
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That's why zero's so important. It's the only place holder that you're allowed to 

use. My Hero. Zero. (P2) 

Some of the participants mentioned the phrasing that is often used when teachers talk 

about the zeros that result from multiplying by powers of ten. As Participant 1 (Strong 

SCK for this topic) mentioned, 

That's like oh you just add a zero at the end and I'm like, "No, you don't just add a 

zero at the end", and I know we have a fifth grade teacher who said she slapped a 

zero on the end and I'm like, we're not slapping numbers around here. It means I 

have zero, and I really try to use that language of saying I have zero ones. There's 

nothing there. Slapping zero on the end. No, and actually what I say to them is 

‘what's happening when you're slapping a zero on the end?’ And I really try to get 

them at least to verbalize ‘I'm multiplying it by a power of ten.’ (P1) 

Two participants (11%) noted that they recommend students use filled-in zeros as 

placeholders, which seemed odd to me, as this is not an approach I have seen mentioned 

in resources like Van de Walle et al. (2013), and there does not seem to be a 

mathematical meaning communicated through the shading of a numeral. Ms. Sutton 

(Strong SCK in multi-digit multiplication) teacher, however, explained the practice. 

Mathematically what is the most accurate would be a zero. But I think what some 

of the other teachers might be trying to accommodate for is if there's a zero would 

be the next digit. (Ms. Sutton) 

That is to say, if we were multiplying 23 by 5, there would be a zero from the power of 

ten in 20 times 5, but also another zero created by the 5 times 2. By using a filled-in zero, 
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students could potentially recognize the difference between the zero required from place 

value considerations and a zero that was the result of a non-zero digit calculation. 

Participants mentioned the importance of understanding multiplication by powers 

of ten, saying, 

I had to understand place value. I had to understand multiplying by [multiples of 

ten] is more than tacking on zeros on the end, or adding on zeros on the end. (P9) 

and, when asked about foundational knowledge, 

having familiarity with multiples of 10 so they're not using the algorithm to 

multiply 123 times 600. (Ms. Sutton) 

Participants in this study were able to identify the mathematical nature of the error 

in the given problem, and generally created representations that would encourage 

conceptual understanding of the traditional algorithm and the place value concepts 

inherent in it. They also recognized the importance of using zeros in the “placeholder” 

positions that were left blank in the problem that was presented, and that the zeros were 

representative of value. 

5.4 Division with fractions 

The question leading to responses for this topic, as described in Chapter 3, was: 

People seem to have different approaches to solving 

problems involving division with fractions. How do you 

solve a problem like this one? 

1
ଷ 

ସ
  ÷  

ଵ

ଶ
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Imagine that you are teaching division with fractions. To make this 

meaningful for kids, something that many teachers try to do is relate 

mathematics to other things. Sometimes they try to come up with real-

world situations or story-problems to show the application of some 

particular piece of content. What would you say would be a good story or 

model for 1
ଷ 

ସ
  ÷  

ଵ

ଶ
  ? What would you say pupils would need to 

understand or be able to do before they could start learning division with 

fractions? 

I identified four themes for the topic of division with fractions: long live the 

algorithm, what does it mean to divide?, context was an issue, and part-whole definitions 

of fractions. 

 Fifteen of the 18 participants (83%) were able to correctly solve the given 

problem, one (6%) solved it incorrectly, and two (11%) did not attempt a solution. 

Twelve (67%) of the participants used the traditional algorithm, noting either “invert and 

multiply” or “keep-change-flip,” and seven (39%) were able to illustrate the solution by 

determining how many halves were in 1¾. One (6%) of the participants used algebraic 

properties to justify the algorithm, and one (6%) cited the definition of division (that 

dividing by a number is the same as multiplying by its reciprocal) in justifying 

multiplying by the reciprocal. The focus on the algorithm led me to the first theme of 

“Long live the algorithm.” The ways in which some of the participants addressed the 

problem without using the algorithm is the focus of the second theme, “What does it 

mean to divide?”. 
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My third theme, “Context was an issue,” addresses the errors made when teachers 

tried to develop contexts. Confusing dividing by half and dividing in half was the most 

common error when teachers tried to generate a context or representation, leading me to 

wonder about the language we use in describing those operations.  

Participants tended to talk about fractions in terms of vocabulary, procedures, and 

part-whole definitions, which could complicate their understanding of both dividing by 

fractions and creating contexts for division.  I address this in the theme “Features of 

fractions.” 

Data and quotes to support these themes are presented in sections below. 

5.4.1 Long live the algorithm 

Ms. Blake, who was rated as Low in SCK for division with fractions, was 

representative of  participants who relied on the traditional algorithm to solve the 

problem, mentioning different mnemonics they used to remember the procedure. She 

said:  

Well, I think I'm going to do it like "yours is not to reason why. Yours is just to 

invert and multiply." I'm going to do it that way, because that's the way, how I 

was taught. All right, so that'd be what? 7 fourths, and then it would be... I don't 

even know if I'm right. Am I right? It'll go 14 over 4, which would be like 3 and 

one half? Okay. But if I were really doing it right, it'd be like I got one whole, I 

have 3 fourths of another whole and I'm dividing that by half. What the heck does 

that mean? Right? (Ms. Blake) 

An illustration of that calculation is shown in Figure 5.10. 
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Figure 5.10. Solving the division with fractions problem using the standard 
algorithm. 

 
 Several participants also noted that they had no idea why or how the algorithm 

worked. As Participant 15 (Low SCK for this topic) said, 

I really have no idea. I remember that you're supposed to switch, change, flip. But 

I have no idea why and I think that that is a testament to my own math education. 

I was not the most confident math student growing up and so I don't even 

remember this and I'm like ugh right now. (P15) 

And Participant 18 (Low SCK for division with fractions) noted, 

This is a mixed number and so the mixed number has to be changed into a 

fraction. So that's four times one, add three, is seven fourths and then reversing 

the operation and flipping the fraction, don't ask me why, but that said, then we're 

doing 14 fourths and then that can be reduced. Like [dividing] that by two and 

that by two and then turning that into a mixed fraction is saying three and one 

half, which I had no idea if that would be right or not, or why we do it. (P18) 

Several of the teachers talked about the challenge of teaching the topic, and the 

tendency to revert to teaching it strictly algorithmically. 

But in sixth grade they then learn the algorithm…But that again is a magic trick 

where they sometimes learn keep change flip. It's just a trick. It's like a magic 

trick and there's really not this conceptual understanding of what it means. I find 
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both with division problems and subtraction problems, those are the ones where 

conceptually understanding what's going on is probably the hardest part. (Ms. 

Sutton – Strong SCK) 

When I suggested some ideas for contexts and activities to Participant 14 (Low 

SCK), he replied, 

That's too much work. But this is one of the most difficult things to teach…You 

want them to be able to do it with something in their hands, but it's just like... it's 

so difficult to teach. Like I've tried to do it this way. I had to prep myself a lot. 

And then expect a million frustrated kids in the classroom. So it just usually ends 

up being just, "Keep change, flip". We try this [hands-on or conceptual work] for 

a couple of days and after a while I was just like, "Yeah, you're probably not 

going to use this very often, so let's just give you the formula". (P14) 

Only two (11%) of the participants justified the algorithm, Participant 16 (strong 

SCK) using algebraic properties, as described below and shown in Figure 5.11. While her 

use of the word “side” is incorrect in this context, the horizontal nature of her equation 

likely led to the misnomer. 

But then I also teach them, for the algorithm, the shortcut that you are allowed to 

use. By this time they've done algebra, so we can say whatever I do to this side, I 

can do to this side. So if I multiply with the reciprocal to this, I'm essentially 

turning it into one, and I can multiply the same thing that I did to this side, I can 

do to this side. I've just created the shortcut. (P16) 
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Figure 5.11. Justifying the algorithm using algebraic properties. 

Participant 11 (Low SCK) used the definition of division to justify multiplying by 

the reciprocal, 

Yeah. Okay. You know, and so ... So, one is equivalent to, like ... four and four, 

and so ... so I might have, like, seven, four ... and by ... one half, and I know when 

we are dividing by a half, that would be equivalent of multiplying by two, and so 

twice as much is seven over four is 14 fours, and then I would just simplify that, 

and so maybe ... seven halves, and then if I wanted the mixed number again ... 

three, and ... one half. (P11) 

Just over one-third of the participants (n=7, 39%) had a strategy other than the 

algorithm they could use to approach solving this problem. The reliance on the algorithm, 

largely without a way to justify its use, was common among the teachers in this study, 

and was also a factor in so few teachers showing Strong specialized content knowledge 

for the topic, as seen in Chapter 4. 

5.4.2 What does it mean to divide? 

Those participants who had a non-algorithmic strategy approached the problem by 

asking, “what does it mean to divide by ½?” They then noted that it was asking how 
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many halves were in the 1¾ given in the problem. From there, they either used repeated 

subtraction or a drawing to determine the answer. Participant 16 (Strong SCK) said, 

We talk about how division is a quick way to subtract. We say if we have one and 

three fourths, how many halves can we take out of it? Because kids need pictures, 

if I have a whole, and I have another three fourths, then I'm wondering how many 

halves I can get out of that? I can get out a half, another half, so there's one. 

There's two, there's three, and then there's a half of a half, so there's three and a 

half. (P16) 

She drew one full circle and one three-quarters of a circle, then shaded in the three half 

circles, as shown in Figure 5.12. The one-quarter of a circle left represented the “half of a 

half” mentioned above. 

Figure 5.12. Representing division of fractions as finding groups of ½. 

Participant 2 (Moderate SCK for this topic), after struggling to try to justify or 

understand the algorithm for several minutes, noted, 

Well what is division? It's repeated subtraction. So you can just keep taking, 

subtracting. That's probably where I honestly would start (see Figure 5.13). But if 

I did it this way, I would just keep subtracting. And this is a really long way to do 

it, …So you would come up with, so you did it at one, two, three, the remainder, 

one fourth. (P2) 
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When I pointed out that we generally don’t write the answer to a fraction division 

problem with a remainder, he worked to figure out what the fourth represented, finally 

arriving at, 

Oh, it's half of the half. So it'd be three and a half. (P2) 

Figure 5.13. Using subtraction to answer the division with fractions problem. 

Those participants who could work through the problem in a way other than strictly the 

algorithm, which was a criterion for Strong SCK, were generally able to create a context 

for the problem, as described below. 

5.4.3. Context was an issue 

When asked about creating a context for the division problem, six out of the 18 

(33%) created a context that correctly aligned with the problem, four (22%) created 

incorrect contexts, and eight (44%) were unable to create any context at all. Eight of the 

participants (44%) struggled with the difference between divided BY one half and 

divided IN half, and their solutions and contexts reflected that confusion. Creation of a 

correct context was a criterion for strong SCK. 

Correct contexts were generally aligned with the measurement, or quotitive, 

model, such as the two shown below, 

I love to bake, so immediately that comes to my mind. I need 1 3/4 cups of flour, 

but I only have a 1/2 cup scoop. How many of them are am I going to need? I 
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need 3 1/2 scoops full to get my whole 1 3/4 cups of flour. And we actually use 

baking as a way to solidify this. One day I baked cupcakes with them. (P12) 

I have one and three fourths feet of rope and I need a half of a foot. How many 

halves of a foot will I be able to get? I need halves of a foot for a project. So how 

many pieces of rope will I get? (P10) 

Incorrect contexts generally aligned with fair-shares, or partitive, thinking about 

fractions, and involved dividing the numerator IN half, rather than BY half, as shown in 

the following examples. 

"So, you ordered one and 3/4 of a pizza, yeah, because you're weird. You decided 

you wanted 3/4 of a pizza," And it gets them laughing, totally engaged, I'm like, 

"... and you decided you were going to eat half now and half later. How much do 

you eat?" (P4) 

 You have a whole sandwich and three quarters, and you want to divide that in 

half so two people can share them. (P18) 

No one created a multiplication problem, such as “If half of the distance around 

the lake is 1 ¾ miles, how far is the full distance around the lake?” which could be 

converted it into a quotitive division problem, to create a context. 

5.4.4 Features of fractions 

In talking about what students need to know or understand about fractions before 

learning division with fractions, participants tended to focus on vocabulary and 

procedures such as converting improper fractions to mixed numbers, finding equivalent 
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fractions, and finding reciprocals (n=8, 44%). Three of the teachers (17%) mentioned that 

being able to coordinate units was a key idea. As one said, 

So students have to know how to exhaust the whole so that when they're creating 

their fractional pieces that they're using the entire whole. They have to know that 

they have to make equal parts within that. They have to understand that there's 

always this reference to the whole. Students will sometimes figure out a problem 

of well it's a half of a fourth and I'm like okay well we don't usually go to the 

store and say I need a half of a fourth of a pound of flour. We always go back and 

refer to what one whole is. So they have to be able to hold those parts. So they 

have to be able to coordinate quite a few units.  

So in this case they have to be able to hold the whole. They have to be able to 

hold the factional part and then they also have to be able to hold in this case, they 

have to be able to hold the only don't even know what to call it. The other 

fractional unit. So if this fractional unit is thinking in fourths but then they also 

have to be able to hold the concept of one-half at the same time. (Ms. Sutton) 

Many participants (n = 9, 50 %) mentioned the importance of knowing that a 

fraction represents part of a whole. This definition is limiting when considering division 

of fractions. No one mentioned 7/4 as 7 * ¼, which can be useful when thinking through 

the division problem, as 7 ¼ s divided by 2 ¼ s per group is similar to 7 apples divided 

by 2 apples per group. Only two participants (n=2, 11%) mentioned that students needed 

to understand that fractions were numbers in their own right and not just part of a whole. 
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5.5 Area, perimeter, and proof 

The question leading to responses for this topic, as described in Chapter 3, was: 

Imagine that one of your students comes to class very excited. She tells 

you that she has figured out a theory that you never told the class. She 

explains that she has discovered that as the perimeter of a closed figure 

increases, the area also increases. She shows you this picture to prove 

what she is doing: 

 

What would you respond to this student? 

When looking at how participants said they would address the claim with a 

student, I noticed that there seemed to be a relationship between their approach and the 

conclusion they had reached about the correctness of the claim. This led me to identify a 

theme of “Teacher knowledge affected the response.”  

Nine of the participants (50%) did not state an opinion or conclusion as to the 

correctness of the claim, three (17%) said that the claim was correct, and six (33%) 

concluded that the claim was incorrect. One (6%) participant was able to indicate under 

which conditions the claim would be true. Four of the participants (22%) focused on the 

formulas used and verified that the student had performed the calculations correctly, 
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while twelve (67%) noted that the student was putting forth a theory that needed further 

testing to see if it always held true. 

Data and quotes to illustrate that theme are found below. 

5.5.1 Teacher knowledge affected the response 

There were four main responses teachers said they would offer to the student: 1) 

that it was a theory that needed further testing, but with no strategy for exploration; 2) 

great thinking!, with no further exploration; 3) a strategy for exploration that would lead 

to a counterexample; and 4) showing a counterexample that would disprove the theory. 

The determination participants made about the correctness of the theory seemed to have a 

strong impact on how they would respond to the student. Eight of the nine participants 

who were uncertain as to the correctness of the claim made by the student - that as the 

perimeter of a figure increases, its area also increases – said that they would respond to 

the student that the claim needed more testing. As Participant 4 (Moderate SCK for this 

topic) said, 

And so, then I might ask them, "Okay, so you're telling me with this problem and 

this problem, we've confirmed that what you said is true, but now we have to test 

your theory again." Because, the whole point of a theory is that we have to keep 

testing it, and if you find that one time that your theory doesn't hold up, it's not 

true. (P4) 

And Participant 6 (Moderate SCK) said similarly, 

If you're going to have a theory, you've got to do many, many, many examples of 

[that] theory. And I would actually bring this up during class, because I really like 
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it. I always say, "You [students] think differently than I do often. So this is 

someone's theory, let's prove it or disprove it." (P6) 

While these participants did not have a clear strategy for the further testing and 

exploration of the concept, they knew that two examples were not enough to prove a 

theory and that one counterexample was enough to disprove a theory.  

Six of the participants (33%) identified that the student’s proposed relationship 

between area and perimeter was not true in all cases. Of those participants, four said they 

would suggest a strategy of exploration to the student that would lead to a 

counterexample. These strategies generally involved creating multiple rectangles that had 

the same area but were created by different side lengths, as shown in Figure 5.14, leading 

to differing perimeters. By having the student discover that a range of perimeters could 

all have the same area, they could help her realize that her theory was not correct as 

stated. This exploration is one of the third grade standards in the Common Core State 

Standards for Mathematics (CCSSO, 2010), and one of the criteria for Strong Specialized 

Content Knowledge as seen in Chapter 4.  
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Figure 5.14. Exploring figures with the same area, but different perimeters. (Ms. 
Sutton) 

Ms. Blake (Strong SCK) would take it further and ask the class to decide under 

which conditions the claim could be true, saying, 

And could we make it a math law with some revisions? Could we say, "Well this 

is true if, or only if..." (Ms. Blake) 

The other two participants who determined the theory to be incorrect would tell 

the student that, and would show a counterexample to disprove the claim, rather than 

presenting it as an exploration. As Participant 11 (Strong SCK) described, 

But, I might also introduce another shape where I knew that maybe that wasn't the 

case. And so, if we had maybe a shape that was just one unit wide, and so let's say 

it was like one by eight ... and so I'd ask what the perimeter is in this case. The 

perimeter would be greater than the area. (P11) 

Of the three participants (17%) who thought the student was correct in the 

relationship of area and perimeter, two offered no further work on the topic beyond a 
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“well done,” while Participant 18 (Low SCK) said that she would ask the student to 

explain why it is true, 

Could she predict what the next ones would be? I would be interested to know if 

she could explain why that's happening. (P18) 

Participants who knew that the theory was false tended to have strategies they 

could suggest to the student, while those who did not have as clear a picture on the 

correctness of the theory did not, even though they knew the student needed to further 

test the proposition. This seems to indicate a link between a teacher’s own knowledge 

and their ability to teach to a topic. Those with Strong SCK in this topic could lead 

students through explorations that could address misconceptions, but those with Low 

SCK could not. 

5.6 Summary 

The teachers in this study were generally able to offer conceptual explanations for 

subtraction with regrouping, and highlighted multiple ways of regrouping. They 

recognized the challenges students face with the topic of subtraction, noting its multiple 

contexts and confusing vocabulary. Their explanations of multi-digit multiplication also 

showed use of multiple representations, with both partial products and array models 

explaining the algorithm. Most identified the problem students were having as 

misunderstandings about place value and not confusion about the algorithm, and they 

strongly supported including the “placeholder” zeros as those indicate important values. 

For division with fractions, though most participants could solve the problem, few 

even attempted to justify the algorithm, and most could not develop a context for the 

problem. Those who could solve the problem without the algorithm called on the 
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definition of division to create representations, and they were generally able to create a 

context.  

The participants struggled to suggest strategies for investigating a claim about 

area and perimeter, though most did show understanding of the nature of proof. Teacher 

responses to the hypothetical student seemed closely linked to whether or not they 

believed the claim to be true and whether or not they had a strategy for examining the 

claim. 

In the next chapter I will discuss the findings from this chapter and the chapter 4, 

noting how they are different from or similar to findings from previous studies, especially 

Ma’s study. I will also highlight the implications of these findings and offer suggestions 

for areas of further research. 
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CHAPTER 6  

DISCUSSION AND IMPLICATIONS 

6.1 Overview of the Chapter 

In this chapter, I will first summarize the major findings from Chapters 4 and 5. I 

will then discuss how those findings relate to those of other studies, especially the work 

of Liping Ma (1999). Following the discussion, I will set forth implications of this 

research and suggest further topics of study to build on my findings. The findings were in 

response to the two research questions: 

1. How do teachers’ explanations of mathematics content demonstrate Specialized Content

Knowledge (SCK) for the following topics?

a. Subtraction with regrouping?

b. Multiplying multi-digit numbers?

c. Division with fractions?

d. The relationship between area and perimeter?

2. What themes are found in teachers' explanations for the following topics?

a. Subtraction with regrouping?

b. Multiplying multi-digit numbers?

c. Division with fractions?

d. The relationship between area and perimeter?

6.2 Summary of Findings  

6.2.1 Specialized Content Knowledge 

My findings indicate that  a teacher’s Specialized Content Knowledge (SCK) can 

vary greatly by topic. While some participants, such as Ms. Sutton, showed fairly 
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consistent levels of SCK, others, such as Ms. Blake, showed a wide range of SCK levels. 

Most participants showed stronger SCK in subtraction with regrouping and multi-digit 

multiplication than in division with fractions and area, perimeter, and proof. In fact, no 

one showed a higher level of SCK in division with fractions that they did in multi-digit 

multiplication, though one participant was stronger in division with fractions than in 

subtraction with regrouping. 

That only 28% of participants were Strong in SCK in division with fractions is 

concerning, as is the small number of teachers (n = 4, 22%) who showed Strong SCK in 

area, perimeter, and proof. There did not seem to be a relationship between the grade 

level taught and the SCK in each topic area, indicating that being required to teach a topic 

does not necessarily mean one attains the necessary level of content knowledge to do so 

conceptually.  

6.2.2 Themes in Explanations 

Themes in the explanations were clustered around the use of representation, 

justifying algorithms, and the factors participants noted as important in the teaching and 

learning of each topic. For the topics of subtraction with regrouping and multi-digit 

multiplication, the participants generally gave conceptual explanations that included 

representations and justifications. Their explanations were more procedural for the topics 

of division with fractions and area, perimeter, and proof, with few teachers providing 

representations and justifications for their work. 

The teachers in this study were generally able to offer conceptual explanations for 

subtraction with regrouping, and highlighted multiple ways of regrouping. Some of the 

explanations used base ten representations to justify and explain the standard algorithm, 
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while others employed number line models that used flexible regrouping which avoided 

the need for the “borrowing” found in the standard algorithm. Participants recognized the 

challenges students face with the topic of subtraction, noting its multiple contexts and 

confusing vocabulary.  

There did not seem to be common vocabulary for the “borrowing” action in the 

standard algorithm, with participants using trading, exchanging, and borrowing as the 

most common terms. Participants were clear, however, that there was a decomposition of 

a ten into ten ones to provide enough ones to do the subtraction.  

In the explanations of multi-digit multiplication, participants also used multiple 

representations. Array models and partial products were both used to justify the 

algorithm, but those strategies could also be used to bypass the need for the algorithm. 

Participants used the array and partial product strategies to keep students from losing the 

place values of the digits being multiplied. They identified mathematical 

misunderstandings about place value, and not just a misunderstanding of the procedure, 

as the source of the student error in the given problem. Participants were nearly 

unanimous in their assertion that the zeros should be included in the partial products of 

the multiplication problem, as they indicate a value for the digit in that spot and are not 

just placeholders. 

Participants struggled with the topic of division with fractions. Though many 

were able to solve the problem using a standard algorithm, resulting in the theme “long 

live the algorithm,” no one created a representation to justify the algorithm, and only two 

participants had other strategies for justifying the algorithm. The teachers also struggled 

to create a context for the given problem, with many participants not providing one and 
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many others giving a context that would generate a dividing “in half” instead of dividing 

“by half.” This type of mathematical misunderstanding indicates a lack of connection of 

division with whole numbers and division with fractions among my participants. The use 

of an “in half” context in a classroom would likely lead to significant confusion for 

students as they are trying to make sense of division with fractions. When describing 

what students needed to know or be able to do in order to be successful with division 

with fractions, most of the participants focused on features of fractions such as 

numerators, denominators, and converting mixed numbers to improper fractions, instead 

of concepts such as how multiplication and division are related or what the meaning of 

division is. This procedural focus is a further indicator that the participants did not have 

strong conceptual understanding of the operation themselves, so could not identify the 

key ideas students would need to hold. 

The area/perimeter/proof problem was also challenging for many participants. 

The few participants who recognized or determined that the conjecture was false were 

able to suggest a strategy for a student to arrive at a counterexample. Those who were not 

able to draw a conclusion about the claim tended to suggest that the student keep testing 

to ensure there was not a counterexample, but they could not provide a strategy for that 

testing. Participants who thought the claim was correct did not suggest further testing or 

discuss the nature of proving a conjecture true or false.  
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6.3 Discussion 

6.3.1 SCK is Topic-Dependent 

Using this multiple case-study approach (Yin, 2018), I was able to look at each 

participant across the set of topics and find that a teacher’s Specialized Content 

Knowledge can vary greatly by topic. Recall that Ms. Blake’s responses on subtraction 

with regrouping and area, perimeter, and proof showed Strong SCK, while her 

explanation of multi-digit multiplication showed Moderate SCK, and division of fractions 

showed Low SCK. This provides a possible lens for understanding the findings of Hill et 

al. (2008), who struggled to correlate the teaching quality of those who scored in the 

middle 50% on the multiple-choice assessment. Teachers who earned high MKT scores 

in that study had strong SCK across topics, and those who earned low MKT scores likely 

had low SCK across topics, and that likely played out in observations of teaching quality. 

Those in the middle 50% likely had a mix of SCK across topics and could have been 

observed teaching a topic they were either very strong, creating higher quality scores than 

expected, or a topic they were not strong in, creating lower quality scores than expected. 

One can imagine that Ms. Blake would appear to have high quality math instruction if we 

were to observe her teaching subtraction with regrouping, where she was able to address 

representations of the algorithm, but low quality math instruction teaching division with 

fractions, where she struggled to explain what the problem was asking or to create a 

context. 

I developed my criteria for Strong SCK to reflect the expectations of the Common 

Core State Standards for Mathematics (CCSSI, 2010) as well as the best practices 

described by Van de Walle et al. (2013), which both encourage conceptual understanding 
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of a topic. While most of the participants in my study seemed ready to teach subtraction 

with regrouping  or multi-digit multiplication to children in a way that addresses the new 

standards, few show an understanding of division with fractions or area, perimeter, and 

proof that indicate the same level of readiness. When teachers do not hold strong 

Specialized Content Knowledge in a topic they are teaching, it is their students who are 

shortchanged.  

6.3.2 Changes from Ma’s Findings 

My findings from the cross-case comparison (Yin, 1981) suggest that current 

elementary teachers are understanding and teaching both subtraction with regrouping and 

multi-digit multiplication in more conceptual ways than have been seen in the past. 

Where Ma (1999) found that 77% of her US participants limited their explanation to the 

procedural steps of the algorithm, only two of my participants (11%) focused primarily 

on the procedure of subtracting using the standard algorithm. My participants who did 

feature the standard algorithm focused on the decomposition of a ten into ten ones when 

they talked about borrowing, and half (n =9) linked their explanations to base ten 

representations. Eleven (61%) of my participants used strategies that did not require the 

standard algorithm at all, and instead focused on flexible regrouping to count up or count 

down, generally using a number line, to determine the difference. These strategies help 

students to develop mental representations of subtraction and can be helpful for mental 

calculations. If teachers Specialized Content Knowledge includes this flexibility, they can 

draw upon flexible approaches in their teaching, so that their students will have the 

opportunity to develop flexible thinking about these topics. Ma did not report any use of 
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number line representations by her Chinese participants, but one-third did use non-

standard regrouping to talk about another way of thinking through the subtraction.  

Almost half of my teachers (n = 8, 44%) commented that students tend to find 

subtraction significantly more challenging than addition, suggesting that the large number 

of contexts is the most significant factor in that challenge. Van de Walle et al. (2013) 

agree with that conjecture and suggest that teachers start first with student-invented 

strategies for subtraction, use manipulatives to model contexts, work with number line 

representations, and support flexible regrouping. They note that counting up, a strategy 

they call “think addition”, is often the most logical strategy for students in modeling 

certain situations. This strategy was mentioned by 11 (61%) of my participants in their 

explanations, showing that they are familiar with current best practices. 

My participants generally used representations such as area models (n=10, 56%) 

and partial products (n =8, 44%) to justify the standard algorithm for multi-digit 

multiplication. In some cases, they advocated skipping the algorithm and only focusing 

on other representations, at least for multiplying two-digit by two-digit numbers, a 

position advanced by Lampert in 1986. The majority 77% of Ma’s (1999) participants 

mentioned a lack of understanding of the procedure for the algorithm as the source of the 

error in the given multi-digit multiplication problem. This was in stark contrast to my 

findings that all but one of my participants (94%) identified the error as mathematical, 

that is, a lack of understanding that the 4 in 645 represented 40. The area model and 

partial products strategies are designed to explicitly focus on the place value each digit 

represents, so there is less likelihood a student will forget that their multiplication 

involves powers of ten. That so many of my participants were able to link the algorithm 
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to either partial products or an array model shows growth in conceptual understanding 

when compared to earlier studies (Harkness & Thames, 2008; Lo et al., 2008; Southwell 

& Penglase, 2005). As my participants have come from different preservice education 

programs, have different years of teaching experience, and have participated in different 

amounts and types of professional development, this improvement in conceptual 

knowledge suggests a collective improvement in the way math educators teach multi-

digit multiplication. 

The participants in this study also recognized that zeros, which were not shown in 

the given problem, are the only appropriate “placeholder” for multi-digit multiplication, 

and that students will be less likely to have place value errors if those zeros are included 

when writing the partial products. This is dramatically different from the US teachers in 

Ma’s (1999) study, who focused on the role of zeros only in the way that they help 

children properly line up the partial products. In fact, two of Ma’s participants suggested 

that one could use another symbol, such as an asterisk, as a placeholder in lieu of a zero, 

showing a lack of understanding of the role of the zero in the problem, and focusing only 

on the procedure of lining up the digits. While two of my participants, including Mr. 

Fields, suggested the use of a filled in zero, it was to distinguish it from a zero that might 

result from multiplying the significant digits and not simply a procedural placeholder. 

These improvements in teacher explanations of subtraction with grouping and 

multi-digit multiplications, when compared with Ma’s (1999) findings, indicate that we 

have made progress in teacher conceptual understanding of whole number operations. 

Many of my participants have developed a repertoire of representations for subtraction 

and multiplication and can justify the algorithms using representations, which are criteria 
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for Strong SCK (Ball et al, 2008; Lin et al., 2011). While teachers did not have the same 

preservice backgrounds, had not participated in the same professional development, and 

were not necessarily using the same curriculum, most had developed at least Moderate 

SCK and many had Strong SCK in both topics. Somewhere along their teaching journey, 

they had acquired that conceptual knowledge. The same does not seem true of division 

with fractions and area, perimeter, and proof, but there were some ways in which my 

participants showed improvement over Ma’s findings for those two areas. 

For the topic of division with fractions, a higher percentage of my participants (n 

=15, 83%) were able to solve the problem than Ma (1999) found in her study (39%), but 

there was still a lack of conceptual understanding of the algorithm, and most of my 

participants (n =11, 61%) had no other way to solve or represent the problem. My 

participants struggled to provide a context for the division problem, with eight (44%) 

confusing dividing by half with dividing in half, similar to the participants in Ma’s study. 

Only one-third of my participants (n =6) developed correct contexts for the division 

problem, which is an improvement over Ma’s single participant, but the low number is 

concerning as it is a sixth-grade standard (CCSSI, 2010). 

When I asked participants how they would respond to the student’s claim about 

area and perimeter, twelve (67%) focused on the fact that one example does not make a 

proof, and they said they would have the student explore the topic further. Four (22%) 

were able to provide strategies for that exploration, and the rest were not. Ma’s teachers, 

on the other hand, tended to suggest they would look for an answer in a textbook and did 

not try to explore the question. 
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Representation and visualization were mentioned frequently by my participants. 

Number lines and base 10 representations were featured in explanations on subtraction 

with regrouping. Area models were created for multi-digit multiplication. Pizzas and 

cookies were drawn to explore division with fractions. And many rectangles were 

sketched in exploring area and perimeter. Ma did not feature non-numerical 

representations in her work, nor did she seem to indicate that they were part of the 

profound understanding of fundamental mathematics (PUFM) knowledge packages. The 

ability to choose, create, and compare representations is one of the key elements of 

Specialized Content Knowledge, and is embedded in the current standards (Ball et al., 

2008; CCSSI, 2010). 

6.3.3 Similarities to Ma’s Findings 

My findings showed some improvements in division with fractions, when 

compared with Ma’s (1999) study, but some of the issues she found persisted. While only 

39% of Ma’s US participants were able to solve the division problem correctly, 83% of 

my participants could. And while all of her participants used the algorithm, 39% of my 

participants had a more conceptual way of solving the problem. Two (11%) of my 

teachers also justified the algorithm, one using algebraic properties and one using the 

definition of division, but most of the Chinese teachers in Ma’s study were able to 

provide justification using the definition of division.  

When it came to developing a context for the division problem, only one (4%) of 

Ma’s US participants arrived at a context, and it was problematic in terms of the units. In 

contrast, one-third of my participants (33%) created a correct context. This still falls far 

short of the 90% of Chinese teachers who developed correct contexts in Ma’s study, and 
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is a result seen in many prior studies (Unlu & Ertekin, 2012; Alenazi, 2016; Nillas, 2003; 

Jansen & Hohensee, 2016; Işik & Kar, 2012; Lo & Luo, 2012). One of the common 

confusions seen in both studies was participants creating contexts that confused dividing 

by half and dividing in half, as Ms. Blake did. Dividing in half is to divide by two or to 

multiply by one-half, which is the inverse of the operation I was asking the teachers to 

perform. This seems to be an enduring misconception that cuts across countries (Nillas, 

2003; Işik & Kar, 2012). It makes me wonder if there are linguistic underpinnings to the 

error, and if the same confusion would come if we were dividing by a number like 2/3, as 

we never say, “I am going to divide it into 2/3.” 

There was little evidence that the participants defined fractions in ways beyond 

the part/whole relationship. Only two teachers (11%) mentioned that fractions are 

numbers in and of themselves, and no one mentioned that 1¾ was 7 * ¼ or seven groups 

of ¼. Seeing fractions as their own quantities or as iterations of unit fractions can make it 

easier to understand the action of division with fractions (Van Steenbrugge, et al., 2014). 

It especially makes the common denominator method of division more conceptually clear 

(Van de Walle et al., 2013). If we took the initial problem, 1
ଷ 

ସ
  ÷  

ଵ

ଶ
 , and transformed the

divisor and dividend to have common denominators, 
଻ 

ସ
  ÷  

ଶ

ସ
, we could then see the

problem as 7 groups of ¼ divided by 2 groups of ¼, which should be accessible to 

students who have experience with whole number division.  This was the strategy I tried 

to engage in with Mr. Fields, but he was resistant to considering the topic of division at 

all. While this does not offer insight into the more traditional “keep, change, flip” 

algorithm, it does present an algorithm that can be taught with conceptual underpinnings. 
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One of my participants related the problem to multiplication with fractions, which 

is another avenue to approaching this topic more conceptually. An explanation of this 

type would show understanding beyond the algorithm and indicate strong SCK. If 

teachers and students could relate the division problem  1
ଷ 

ସ
  ÷  

ଵ

ଶ
 to the multiplication

question, ½ of what is equal to 1
ଷ 

ସ
, they could potentially generate contexts for the

situation and create models that would help them understand the traditional algorithm, as 

highlighted in Ma’s (1999) findings on this topic. In writing the equation 
ଵ

ଶ
𝑥 =  1

ଷ 

ସ
  , it

can be shown that we could solve the equation by multiplying both sides by 2, which is 

the reciprocal of ½. This is, in fact the calculation required by the traditional algorithm. If 

a teacher could think of the problem as “half the length of a rope is 1
ଷ 

ସ
 feet, how long is

the rope?”, mathematical connections between multiplication and division would indicate 

that doubling would give the whole length.  

For the topic of area, perimeter, and proof, most participants would encourage 

students to explore further, but many did not have the core knowledge of the lack of a 

linear relationship between area and perimeter. While twelve of my eighteen participants 

(67%) suggested that the student should continue to test their theory, as finding a 

counterexample would prove it incorrect, only six (33%) actually investigated the claim 

themselves. While this is an improvement of the 13% found in Ma’s (1999) study, it falls 

far short of the 92% of Chinese teachers who investigated the claim. Only three of my 

participants said the claim was correct (17%), which is more than the 9% Ma found, but 

much better than the 72% found by Livy et al. (2012). In that study the misconception 

persisted in spite of activities designed to prove it false.  
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The exploration that would lead to finding counterexamples for the claim that as 

perimeter increased area also increases is a third-grade standard in the CCSSM content 

standards (CCSSI, 2010). In that standard, students are expected to be able to solve 

problems involving “exhibiting rectangles with the same perimeter and different areas or 

with the same area and different perimeters” (CCSSI, 2010, p. 25). If our teachers have 

not encountered activities to explore the claim and engaged in discussions that explicitly 

call out the mathematical relationships found through those explorations, they will be 

unable to help students dispel the misconceptions around the relationship of area and 

perimeter (Fuller, 1996; Kow & Yeo, 2008). A case in point is Ms. Sutton, who could 

create counterexamples but did not recognize them as such, indicating a lack of deep 

understanding of the relationships she was seeing. 

Fewer than 30% of my participants showed Strong SCK for division with 

fractions or area, perimeter, and proof, indicating that they do not have knowledge of the 

topic sufficient to teach to the current standards. While they might be able to teach the 

algorithm for division that allows a student to answer a calculation problem on a 

standardized test, they will not be able to give students an opportunity to learn the topic 

in a way that would allow them to understand, represent, and justify the algorithm. 

Similarly, few participants showed that they could address the standard involving the 

comparison of perimeters of rectangles with a constant area, or the comparison of areas 

of rectangles with a common perimeter.  

6.4 Major implications 

In this study, I found that only 33% of participants could be considered to have 

overall Strong SCK, and only one participant (6%) had Strong SCK on all four topics. 
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These findings suggest that, while strong in some topic areas, many current elementary 

teachers are not equipped to teach all math topics to the expectations of current standards 

and best practices. It is perhaps telling that 17 of my participants (94%) reported no 

professional development on CCSSM, and few reported taking part in much math-

oriented professional development (PD). Many of the participants did mention individual 

content standards they were expected to address, or knew in which grade mastery of a 

topic was expected, but they did not indicate that they had received any PD related to 

their own understanding of the mathematics involved or related to teaching to those 

standards. 

While this study is not focused on the ways professional development on the 

CCSSM might support SCK growth, my findings do indicate that teachers need 

opportunities to develop their conceptual understanding of mathematical topics and PD is 

one avenue for those experiences. In their interviews, most of the teachers reported being 

taught in a very procedural way, so it is not surprising that, for topics they have not had 

more conceptual experiences with, they teach procedurally. These PD opportunities need 

to go beyond common content knowledge and explore the concepts and connections 

embedded in each topic. 

While seven of the teachers (39%) told me about the AVMR training the district 

was providing, only two of the classroom teachers (11%), Ms. Blake and Ms. Sutton, 

noted that they were taking part in those modules. (One participant was leading those 

trainings.) Two of the modules focused on number and whole number operations, and the 

other on fractions. Ms. Sutton mentioned in her interview that those workshops had 

greatly improved her understanding of how to best teach number and operations, and also 
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her understanding of fractions and operations with fractions, and she demonstrated Strong 

SCK in the three related topic areas. Ms. Blake was enthusiastic about the number and 

operation courses, but did not find the fractions workshop to be as helpful to her. This 

sense that she had not embraced the material in that course was reflected in the Low SCK 

she showed for the topic of division with fractions. 

The finding that only 28% of participants had Strong SCK in division with 

fractions indicates a need to focus more attention on that topic. To increase understanding 

of division with fractions, and fractions in general, we need to reconsider how we 

introduce the topic and the focus of the activities we choose. Chinese texts focus on 

division as the inverse of multiplication, and they include activities that allow students to 

get to the algorithm through that lens (Li, 2008). US texts, on the other hand, have been 

criticized as being focused on the algorithm and on providing exercises that draw 

primarily on use of the algorithm (Son & Senk, 2010). This leads to PSTs and teachers 

who remember procedures but don’t understand how or why to apply them, nor how and 

why they work (Jones Newton, 2008; Van Steenbrugge et al., 2014). In preservice 

education, we should consider designing courses that encourage conceptual work on 

fractions and that tie representations and contexts to the algorithms explicitly (Whitehead 

& Walkowiak, 2017; Alenazi, 2016). If we do not work on developing these concepts, we 

will continue to create generations of teachers who believe that their fraction skills and 

knowledge are stronger than they actually are, and generations of students who never 

develop strong fraction knowledge (Li & Kulm, 2008). 

The multiple case study methodology for this study (Yin, 2018) allowed me to 

look at the SCK of a teacher across several topics. The findings, in which only two 



193

teachers had consistent SCK levels for all four topics, strongly suggest that there is 

variation in a teacher’s SCK depending on the topic that is studied. This variation is not 

captured in a test like the LMT, which does have some reporting by strand, but is not 

intended to report on the MKT of a single participant or for any specific topic (Selling et 

al., 2016). While case studies offer rich indications of individual participants’ knowledge, 

they are not efficient for large-scale studies of teacher SCK. This implies that there is a 

need for topical tests of SCK that are intended for specific content areas. If teachers or 

PSTs are showing Strong SCK in subtraction with regrouping, on a group level, we could 

focus professional development efforts or teacher education on other topics where 

participants have shown lower levels of SCK. For individual PSTs, we could use pre-tests 

of SCK in topic areas to craft individualized course requirements that would address the 

needs and prior knowledge of each student. 

We need to make certain that teacher education programs are not solely focused 

on number and operations, but address the other content strands our graduates are 

expected to teach. While number and operation are foundational to mathematics, they are 

not sufficient given the expectations of the CCSSM and associated high-stakes exams our 

students must take. We also need to make certain that professional development is 

available, and perhaps required, for teachers in topics that go beyond number and 

operation. Most of the participants in this study showed Strong SCK for subtraction with 

regrouping and multi-digit multiplication even without participating in the district-offered 

AVMR training on number and operation, leading me to question if that is the most 

needed PD for those teachers. Perhaps a cycle of professional development could be 

developed that focuses on the standards by strand, with all teachers learning the concepts 
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and best practices along the K-6 continuum for each strand, or perhaps there could be 

grade-level focused PD to help teachers master their grade-level expectations.   

We should acknowledge the strides that have been made in teacher education and 

teacher knowledge, as this study indicates that there have been improvements to teacher 

SCK since Ma’s (1999) study was done. Policy makers who base recommendations on 

Ma’s findings should seek more current data to help craft future requirements and policy 

recommendations.  

Hill et. al recommended in 2008 that we consider having math taught strictly by 

math specialists in elementary schools, in the ways that subjects like physical education, 

art, and music are often taught by specialists. I have struggled to embrace that 

recommendation, as I have been concerned it will make children think that only some 

people can do math. In light of these findings, however, I am reconsidering my stance. 

While most teachers showed Strong SCK in subtraction with regrouping and multi-digit 

multiplication, there were still teachers who had Moderate or Low SCK, indicating that 

there is no guarantee of Strong SCK for the topics taught in the early grades. We continue 

to offer many children a suboptimal math education when they are placed with teachers 

who have low SCK. Until we have the teacher education and professional development in 

place that allow all teachers to develop the necessary SCK to teach math deeply and 

conceptually, it would be fairer to children to have math specialists who have 

demonstrated strong SCK for all of the topics and standards they are expected to teach. 

Again, this would require us to develop topic-specific measures of SCK by grade level.  

That SCK varies so greatly by participant and by topic should also be considered 

by principals in their process of hiring teachers. Interview protocols might be changed to 



195

include questions, like those from this study, that assess topic-specific SCK for grade-

level standards a prospective teacher would be expected to address in their classroom. If 

teachers are better matched to grade levels by their SCK, students would have a greater 

chance of learning the mathematics in a way that prioritizes justification and 

representation.   

6.5 Limitations 

This study is not generalizable as it is small-scale, focuses on only one school 

district, and in only one state. I was conducting the interviews near the end of the school 

year, when many teachers are feeling great stress to get everything done, and several 

teachers cited that as a reason to not participate. Even so, I was able to engage 18 

participants, and those teachers represented a mix of teacher preparation, grade levels 

taught, years of experience, and professional development accessed. Replication of this 

study will be necessary to determine if these findings are generalizable to different 

settings and populations.  

While I was asking the participants about their classroom practices, I did not 

observe them in their teaching to see if they used the strategies that they mentioned in the 

interviews, or if they had more strategies that they did not mention. Teacher responses 

may also have been constrained by the questions that were, or were not, asked directly. 

Further studies should include confirmation of practices, but those studies will need to be 

part of longer-term longitudinal research projects. 

As is true in all research that uses qualitative methods, the quality of the results is 

dependent on the skills and resources held by the researcher. In this study, time was a 

resource that was often lacking. Many teachers were gracious enough to meet me for an 
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interview before the start of the school day or at the end of a long school day, but that 

often led to a time crunch, which meant that some interviews felt rushed and that I 

sometimes didn’t have time for the follow-up questions I wished I could ask. There were 

also times when I should have asked a follow-up question that I didn’t, even when time 

was not a consideration. 

6.6 Further Research 

To support and build on this study, I propose several avenues of further research. 

The first is to replicate this study in some form on a larger scale, to see if my findings of 

improvement over the results of Ma’s (1999) study hold true for an expanded population 

and other settings. The second is to develop and study a teacher education curriculum that 

would address the SCK needs PSTs have if they are to teach to current standards. The 

third is to develop and test measures of SCK that are topic-specific and perhaps include 

grade-level expectations. If we could pinpoint a teacher’s SCK level for the different 

strands, we could better match teachers to grade levels they are well-prepared to teach, 

giving our students the strongest chance to be taught conceptually for deep 

understanding.  

Outside of teacher education, we should be studying the professional development 

programs to see how they affect SCK for in-service teachers, and perhaps developing 

targeted PD for topics and strands that seem to be generally under-addressed. We should 

also study how teachers with strong SCK have developed their knowledge of explanation, 

representation, and justification, looking at family, school, teacher education, and 

professional development influences. If we know how Strong SCK teachers gain their 
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strength of understanding, we could perhaps develop programs to help other teachers 

become more knowledgeable about mathematics. 

6.7 Conclusion 

This study provides evidence that there have been improvements in teacher 

conceptual understanding and SCK related to the expectations brought forth by the  

NCTM Standards and Practices (NCTM, 2000) and the Common Core State Standards 

(CCSSI, 2010). Teachers in my study showed strong progress in conceptual 

understanding of subtraction with regrouping and multi-digit multiplication compared 

with the findings of Ma (1999). They also showed increased knowledge of the procedure 

of division with fractions and the concept of proof for the area, perimeter, and proof 

problem. Findings also indicate that there is still significant work to be done in order to 

provide every student with a teacher who has strong Specialized Content Knowledge in 

the topics they teach. With focused educational experiences, at all levels of schooling, I 

am confident that teachers can learn math conceptually and learn to teach it conceptually. 

It is up to us as teacher educators to develop and deliver those opportunities, and our 

elementary students should not have to wait any longer for more progress. 
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APPENDIX A 

INTERVIEW QUESTIONS 

The first four questions are taken from Ma (1999). 

1. Let’s spend some time thinking about one particular topic that you may work

with when you teach, subtraction with regrouping. Look at these questions: 52 − 25, 

91 − 79, etc.). How would you approach these problems if you were teaching second 

grade? What would you say pupils would need to understand or be able to do before they 

could start learning subtraction with regrouping? 

2. Some sixth-grade teachers noticed that several of their students were making the

same mistake in multiplying large numbers. In trying to calculate: 

the students seemed to be forgetting to “move the numbers” (i.e., the partial products) 
over on each line. They were doing this: 

Instead of this:
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While these teachers agreed that this was a problem, they did not agree on what to do 

about it. What would you do if you were teaching sixth grade and you noticed that 

several of your students were doing this? 

3. People seem to have different approaches to solving problems involving division

with fractions. How do you solve a problem like this one? 

Imagine that you are teaching division with fractions. To make this meaningful for kids, 

something that many teachers try to do is relate mathematics to other things. Sometimes 

they try to come up with real-world situations or story-problems to show the application 

of some particular piece of content. What would you say would be a good story or model 

for 1
ଷ 

ସ
  ÷ 

ଵ

ଶ
  ?
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4. Imagine that one of your students comes to class very excited. She tells you that

she has figured out a theory that you never told the class. She explains that she has 

discovered that as the perimeter of a closed figure increases, the area also increases. She 

shows you this picture to prove what she is doing: 

What would you respond to this student? How would you engage with her around 

this idea? 

5. What has been the greatest influence on how you currently think about and teach

math? 
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APPENDIX B  

QUESTIONNAIRE ITEMS 

1. What teaching licenses do you hold?

2. How long have you been teaching?

3. What grade level(s) do you teach/have you taught? How long at each?

4. Where and when did you complete your undergraduate education?

5. What was your major?

6. If you have an advanced degree, where and when did you complete that?

7. What professional development have you participated in for math?

8. Were these school-based, district-based, or from another organization, such as NCTM?

9. Are you a member of NCTM or similar math-education organization?

10. How familiar are you with the current standards for math teaching and learning?

11. Have you gotten specific PD or training on these standards?
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