
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

July 2020

Formal Verification of Divider and Square-root Arithmetic Circuits Formal Verification of Divider and Square-root Arithmetic Circuits

Using Computer Algebra Methods Using Computer Algebra Methods

Atif Yasin

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Digital Circuits Commons, Hardware Systems Commons, and the VLSI and Circuits,

Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Yasin, Atif, "Formal Verification of Divider and Square-root Arithmetic Circuits Using Computer Algebra
Methods" (2020). Doctoral Dissertations. 1910.
https://scholarworks.umass.edu/dissertations_2/1910

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/334980504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1910?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FORMAL VERIFICATION OF DIVIDER AND
SQUARE-ROOT ARITHMETIC CIRCUITS USING

COMPUTER ALGEBRA METHODS

A Dissertation Presented

by

ATIF YASIN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2020

Electrical and Computer Engineering

c© Copyright by Atif Yasin 2020

All Rights Reserved

FORMAL VERIFICATION OF DIVIDER AND
SQUARE-ROOT ARITHMETIC CIRCUITS USING

COMPUTER ALGEBRA METHODS

A Dissertation Presented

by

ATIF YASIN

Approved as to style and content by:

Maciej Ciesielski, Chair

Wayne Burleson, Member

Daniel Holcomb, Member

Namrata Shekhar, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

ABSTRACT

FORMAL VERIFICATION OF DIVIDER AND
SQUARE-ROOT ARITHMETIC CIRCUITS USING

COMPUTER ALGEBRA METHODS

MAY 2020

ATIF YASIN

B.S., LAHORE UNIVERSITY OF MANAGEMENT SCIENCES

M.S., UTAH STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Maciej Ciesielski

A considerable progress has been made in recent years in verification of arith-

metic circuits such as multipliers, fused multiply-adders, multiply-accumulate, and

other components of arithmetic datapaths, both in integer and finite field domain.

However, the verification of hardware dividers and square-root functions have received

only a limited attention from the verification community, with a notable exception

for theorem provers and other inductive, non-automated systems. Division, square

root, and transcendental functions are all tied to the basic Intel architecture and

proving correctness of such algorithms is of grave importance. Although belonging to

the same iterative-subtract class of architectures, they widely differ from each other.

IEEE floating point standard specifies square-rooting and division as basic arithmetic

operation alongside the usual three basic operations. The difficulty of formally veri-

fying hardware implementation of a divider/square-root can be attributed mostly to

iv

the modeling of its characteristic function and the high memory complexity required

by standard algebraic approach.

The work proposed in this thesis discusses formal verification of combinational

divider and square-root circuits. Specifically, it addresses the problem of formally

verifying gate-level circuits using an algebraic model. In contrast to standard veri-

fication approaches using satisfiability (SAT) or equivalence checking, the proposed

method verifies whether the gate-level circuit actually performs the intended func-

tion or not, without a need for a reference design. Firstly, we present a verification

methodology for a constant divider, where the divisor value is fixed to a constant in-

teger. Albeit simpler case of verification, it provides us with the basic understanding

of verification techniques and the underlying issues applicable to divider verification.

Secondly, a layered verification approach is proposed for the verification of generic ar-

ray dividers. Finally, the work proposed in this thesis will further analyze the divider

and square-root circuits and aim to curb the memory explosion issue experienced by

computer algebra based verification methods in order to successfully verify large bit-

width divider-type arithmetic circuits. More specifically, a novel idea of ”hardware

rewriting” is introduced, which avoids the high memory complexity. The mentioned

technique verifies a 256-bit gate-level square-root circuit with around 260,000 gates

in just under 18 minutes and 127-bit gate-level divider circuit in under one minute.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 VLSI Design Flow . 1
1.2 Hardware Verification . 2

1.2.1 Canonical Diagrams . 3
1.2.2 SAT: Satisfiability Problem . 4
1.2.3 Theorem Proving . 5

2. TECHNICAL BACKGROUND . 6

2.1 Fields, Polynomials, Ideals and Varieties . 6

2.1.1 Fields . 6
2.1.2 Polynomials . 7
2.1.3 Ideals and Varieties . 8

2.2 Ideal Membership Test . 9
2.3 Gröbner basis . 11
2.4 Related Work . 12

3. ALGEBRAIC REWRITING AND DIVIDER MODEL 16

3.1 Algebraic Model of Electronic Circuits . 16
3.2 Gröbner Basis Polynomial Reduction . 19
3.3 Algebraic Rewriting . 23
3.4 AIG Rewriting . 26
3.5 Comparison between GB Reduction and Rewriting 28

vi

4. FORMAL VERIFICATION OF INTEGER DIVIDERS:
DIVISION BY A CONSTANT . 30

4.1 Introduction . 30
4.2 Background . 32

4.2.1 Divider Circuit Implementation . 33

4.3 Verification . 34

4.3.1 Verification of the Constant Divider . 34
4.3.2 Single Block Verification . 35
4.3.3 Vanishing Monomials . 38
4.3.4 Verification of a Multiple-Block Architecture 40
4.3.5 Faulty Circuit Verification . 42

4.4 Results and Analysis . 43

4.4.1 Modular Architecture . 44
4.4.2 Flat Unroll Architecture . 45
4.4.3 The Restoring Constant Divider . 45
4.4.4 Simulation Based Verification . 47
4.4.5 The Restoring Generic Divider . 48

5. FORMAL VERIFICATION OF HARDWARE DIVIDERS
USING LAYERED VERIFICATION STRATEGY 50

5.1 Introduction . 50
5.2 Fixed Point and Integer Dividers . 50

5.2.1 Functional Verification Model . 51
5.2.2 Fractional vs. Integer Divider . 52
5.2.3 Layered Rewriting . 55

5.3 Results . 58
5.4 Conclusion . 59

6. SQUARE-ROOT AND DIVIDER CIRCUIT VERIFICATION
USING HARDWARE REWRITING . 61

6.1 Characteristic Function of Square-Root . 61
6.2 Integer vs. Fractional SQRT . 62

6.2.1 Restoring vs Nonrestoring SQRT Verification 63

6.3 SQRT Verification Technique . 65
6.4 Hardware Rewriting for SQRT Verification . 68

vii

6.4.1 Remainder Generation . 68
6.4.2 Hardware Rewriting . 70

6.5 Divider Verification . 72

6.5.1 Verification Model: SAT-based vs Algebraic Rewriting 74
6.5.2 Layered Algebraic Rewriting . 75
6.5.3 Layered Hardware Rewriting . 77
6.5.4 Verifying Output Constraint, R < D . 78
6.5.5 Verifying constraint R < D by Case Splitting 80
6.5.6 Constraint Verification for Layered Divider 81

6.6 Results . 82

6.6.1 SQRT Circuits . 82
6.6.2 Divider Circuits . 84

7. SUMMARY, CONTRIBUTION, AND PUBLICATIONS 87

7.1 Contribution . 87

7.1.1 Future Directions . 88

7.2 Publications . 89

BIBLIOGRAPHY . 91

viii

LIST OF TABLES

Table Page

4.1 Verification results for the divide-by-constant divider circuit using our
technique for: (1) Modular 1-bit block, 2-bit block; and 2) 4-bit
block architecture with a 32-bit dividend X (Figure 4.2).
Time-out TO = 1200 s, Memory-out MO = 16 GB 44

4.2 Verification results for the divide-by-constant divider circuit using our
technique for Flat-Unroll architecture with a 9-bit dividend X
(Figure 4.2). Time-out TO = 1200 s, Memory-out MO = 16
GB; . 46

4.3 Verification results for the divide-by-constant divider circuit using our
technique for Restoring Constant Divider with a 22-bit dividend
X. TO = 1200s, MO = 24GB. SF = Segmentation Fault. 46

4.4 Verification run time for the Restoring generic Divider. #Bits show
the bit-width of dividend. SF = segmentation fault. 49

5.1 Verification results for a bug-free restoring divider. #Bits = Dividend
bit-width. MO = Memory-out 20 GB, TO = Time-out 3600 s 59

6.1 Square Root verification results using standard-Style rewriting 67

6.2 Verification run times for SQRT circuits. #Bits = Radicand
bit-width; MO = Memory-out 20GB; TO = Time-out 3600s 82

6.3 Verification of a bug-free restoring divider. MO = Memory-out 20
GB, TO = Time-out 3600 s. 84

6.4 Detailed analysis of verification of a bug-free restoring divider using
Hardware-based rewriting for Full vs. Layered strategies. MO =
Memory-out 20 GB, TO = Time-out 3600 s. 85

ix

LIST OF FIGURES

Figure Page

1.1 VLSI design flow . 1

3.1 Gate-level arithmetic circuit (Full Adder) . 18

3.2 Half-Adder gate-level arithmetic circuit . 20

3.3 AIG rewriting of a full adder circuit from Figure 3.1. 27

4.1 Pencil and Paper division operation and the basic divider block. 33

4.2 Generic divider block for X divided by const. d = 3 . 34

4.3 Divide-by-3 block specification tables . 35

4.4 Gate level implementation of a single-block, one-bit architecture of a X/3

divider. Output signature Sigout = 3Q0 + 2R1 + R0; the expected

input signature is Sigin = 4C1 + 2C0 + X0. 37

4.5 Division of a 4-bit divide-by-3 in a two-bit block divider circuit. Rewriting

is applied in the opposite direction to the flow of the data. 41

4.6 Exhaustive simulation run time for divisors D=257 and D=283 for

different implementations, as a function of the dividend bit-width.

Dotted Lines show equivalent for our rewriting technique. 48

4.7 Restoring Generic 3-bit Divider [40]. 48

5.1 Functional verification model of the divider. 51

5.2 Nonrestoring 7-4 divider (n = 3): a) Fractional divider; b) Controlled
Add/Subtract (CAS) block; c) Integer divider . 53

5.3 Single layer of the restoring divider used in rewriting. 56

5.4 Restoring integer divider [40]. 57

x

6.1 A restoring SQRT circuit with a 7-bit radicand, 4-bit quotient, and a 5-bit

remainder. 65

6.2 A restoring SQRT circuit with a 4-bit radicand, 2-bit quotient, and a 3-bit

remainder. 66

6.3 Residue generation using a Reference Design. 68

6.4 Conceptual standard rewriting. 69

6.5 Hardware rewriting . 70

6.6 Final verification using SAT: check if ∀i,Xi = Zi. 72

6.7 Divider verification model. 73

6.8 Restoring integer: divider [40]; a) Layered architecture b) Single layer
used in rewriting [48]. 74

6.9 Layered hardware rewriting for dividers. 78

6.10 Verifying condition R < D of a complete divider. 80

6.11 Verifying condition R < D of a complete divider using case-splitting
strategy for a given range of D. 81

6.12 Verifying condition R < D for the layered verification strategy, layer
0, using case-splitting . 82

xi

CHAPTER 1

INTRODUCTION

1.1 VLSI Design Flow

What is hardware verification and more specifically, why is it important? Before

we answer these questions, we need to understand the basic design flow of Very Large

Scale Integrated circuits. Figure 1.1 shows the VLSI design flow, with the functional

verification stage shown.

Figure 1.1: VLSI design flow

The design flow begins with an initial system-level specification written using a

programming language, which can either be software (C, C++) or hardware language

(Verilog, VHDL, etc.). This specification entails the functional behavior of the design,

which is then converted into a register-transfer-level (RTL) description and translated

1

into Boolean expression for individual logic blocks and the interconnections logic by

a process called synthesis. Synthesis is a process that maps the logic expressions

of the design/circuit onto a gate-level netlist. Different optimization goals can be

considered at this point to optimize the design for parameters, such as area, delay or

power minimization, depending upon the target application and technology (ASIC

or FPGA). Finally, the layout design tools, such as Cadence Encounter are used

to perform physical synthesis, also known as place and route. Final sign-off of the

design includes an extensively thorough verification before the circuit is sent out

for fabrication. Many Electronic Design Automaton (EDA) tools provide seamless

integration between all these steps and verify the functional correctness of the design

between consecutive steps.

1.2 Hardware Verification

The main idea of these verification checks is to make sure that the specifica-

tion of the design gets properly and accurately translated from previous state to the

next and, ultimately, into a physical design without any errors. With contemporary

processors containing over two billion transistors, it is imminent to employ design ver-

ification strategies to catch and correct the errors before the circuit gets fabricated on

a physical chip. These multi-billion transistor chips can be generally sub-divided into

datapath operators, memory unit, control unit, and other special purpose modules.

Datapath operators are the main workhorses of computer systems, doing all the com-

putations; they include arithmetic operations such as adders, subtractors, multipliers,

dividers, square-rooters, etc. With an ongoing quest for minimum-area, high-speed

and power-efficient design of these operators, these circuits/designs undergo several

periodic improvements and optimizations. This consistent evolution demands a need

for an efficient and consistent verification. Given the large input bit-width of these

operators, enumerating the solution space by performing exhaustive simulation is sim-

2

ply infeasible. Hence, modern symbolic verification techniques (formal verification)

are used to reason about the solution-sets without actually enumerating them. In

this work, we use computer algebra techniques, which can reason about the solution

space at both, the bit- and word-level, and naturally possess the required power of

abstraction. Specifically, we target the functional verification of gate-level arithmetic

designs (net-lists), and more specifically, dividers and square-rooters. Other kinds of

hardware verification, such as model/property checking, physical verification, timing

verification, clock domain crossing (CDC) verification, etc., are not subject of this

work.

1.2.1 Canonical Diagrams

Binary decision diagrams (BDDs) [4] and all other variants BMDs [3], TEDs [8]

etc. are data structures for representing Boolean functions, i.e., functions that take

Boolean variables as input and produce Boolean outputs. Truth tables have been used

to enumerate the logic described by a boolean function. However, truth tables require

exhaustive enumeration, and are not memory efficient. Whereas, canonical diagrams,

evolving from the Shannon expression, are compact graphs, where logic functions

are encoded in graph paths efficiently, and some variants of BDDs are actually very

efficient in crawling through the solution space of a Boolean function, addressing

functional verification and equivalence checking of different arithmetic designs. These

canonical diagrams are efficient to some degree in solving also arithmetic circuits,

such as adders, subtractors, and multipliers. However, this representation has its

limitations. Since the size of these diagrams increases exponentially with the size of

bit-width, BDDs become prohibitive for larger designs and specifically for arithmetic

circuits. Even though BDDs have been used to verify adders/subtractors [52] and

to some extent multipliers [7], [23], the literature is rather scarce on verification

of divider circuits. A notable exception in this domain is the work of Bryant [5].

3

Although, effective and being able to catch the infamous Pentium 4 floating point

division bug, it requires generating a checker circuit, which itself needs to be proved.

However, no reliable means were offered for the verification of the checker circuit

itself.

1.2.2 SAT: Satisfiability Problem

In order to overcome the shortcomings of canonical diagram based verification,

SAT (short for satisfiability) has emerged as a leading technique in Formal Verifica-

tion. The main goal of SAT based verification is to find satisfying assignments to a

formula, hence the name SAT. Typically, the formula is in the form of Cunjunctive

Normal Form (CNF), a conjunction of one or more clauses, where a clause is a dis-

junction of literals. For example, the Boolean formula ϕ = (a + ¬b)(¬a + ¬b + c)

can be satisfied by choosing a = 1; b = 1; c = 1 , which makes ϕ = 1, and hence

provides a satisfiable solution. If the assignment of variables that makes the Boolean

formula ϕ = 1 does not exist, the problem is called unsatisfiable or unSAT.

Since the seminal 1962 paper of Davis, Putnam, Logemann and Loveland [12],

their DPLL algorithm has become a predominant algorithm to solve SAT instances.

It is based on an intelligent space searching with a basic backtracking capability.

Variables are selected according to some heuristic and assigned value 0 or 1. The

newly assigned constants are propagated to the unsatisfied clauses by the process

called Boolean Constraint Propagation (BCP) to identify implications, conflicts, and

the satisfied clauses. An important enhancement to the basic DPLL algorithm is a

Conflict-Driven Clause Learning (CDCL), which provides ability to learn new clauses

that prevents the space search process from ending in an unsatisfying assignment. It

also adds non-chronological backtracking from which a new search continues. Modern

software SAT solvers are equipped with an efficient BCP, conflict resolution strategies,

4

and an improved decision heuristic that can rapidly and efficiently prune the search

space.

However, regardless of all these innovations and developments, the SAT-based

methods have a low scalability in verifying arithmetic circuits. For example, a state-

of-art SAT solver, miniSAT [44], takes up to an hour to verify a 16-bit multiplier.

Furthermore, it takes several hours to verify a 17-bit divider circuit. This is not an

effective verification methodology since the current multiplication and divider units

in core datapath are usually 32-bit or 64-bit wide. Hence, we need an effective and

efficient methodology to verify these essential datapath operators.

1.2.3 Theorem Proving

The technique that received most attention in industry in arithmetic circuit ver-

ification is Theorem Proving. In this technique, the circuit is characterized by

a set of rules, which are used to make complex formulas to represent the circuit

[39][27][24][25][26]. However, the process of converting a circuit into a predefined set

of rules to be applied sequentially requires a significant human effort and an intimate

knowledge of the domain. The success of the proof relies on the choice of, and on

the order in which the rules are applied, with no guarantee of a successful conclusion.

Rager et al. [36] report that proving that the divider implemented by ORACLE is

formally proven as equivalent of the SPARC ISA and IEEE 754 specifications, re-

quired ”a sizable effort”. Furthermore, these approaches cannot be fully automated

or generalized. Regardless of these techniques, there is still a need to formally verify

the actual hardware (typically, gate-level) implementation, which is addressed in this

work.

5

CHAPTER 2

TECHNICAL BACKGROUND

This chapter provides a mathematical background of computer algebra method

presented in this work and reviews the related work in the literature. This and the

next chapter is written in collaboration with my colleague Tiankai Su [45] and is

presented as a joint work to serve as a brief summary of computer algebraic back-

ground. Specifically, in order to build an algebraic model for an arithmetic circuit in

the context of computer algebra, the following concepts are need to be revised: fields,

polynomials, ideals, varieties and ideal membership, and Gröbner basis.

2.1 Fields, Polynomials, Ideals and Varieties

2.1.1 Fields

In mathematics, a field is a set F , containing at least two elements, on which two

operations + and · (called addition and multiplication, respectively) are defined, so

that for each pair of elements x, y ∈ F there are unique elements x + y and x · y in

F . A field is thus a fundamental algebraic structure, which is widely used in algebra,

number theory, and many other areas of mathematics. To learn about fields, we start

with the commutative ring, since field is a special class of ring. A commutative ring

consists of a set R and two binary operations ”·” and ”+” defined on R, for which

the following conditions are satisfied:

(i) Associativity: (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) for all a, b, c,∈ R.

(ii) Commutativity: a+ b = b+ a and a · b = b · a for all a, b ∈ R.

(iii) Distributivity: a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

6

(iv) Identities: There are elements 0, 1 ∈ R such that a + 0 = a and a · 1 = a for all

a ∈ R.

(v) Additive inverse: Given a ∈ R, there is b ∈ R such that a+ b = 0.

Two examples of commutative rings are the integers Z and the polynomial ring

k[x1,...,xn], with coefficients in an arbitrary field k. A field F is a commutative ring

with unity, where every element in F, except 0, has a multiplicative inverse: ∀ a

∈ (F − {0}),∃ â ∈ F such that a · â = 1. The most commonly used fields are Q, R

and C. The set Z, which is of particular interest to us, is a ring but not a field, since

it does not have the attribution of a multiplicative inverse.

2.1.2 Polynomials

A polynomial is an expression consisting of variables and coefficients that involves

the operations of addition, multiplication, and non-negative integer exponents of vari-

ables. In general, a polynomial f in variables x1,...,xn is a finite linear combination

of monomials, with coefficients in some field k. A polynomial can always be written

in a sum-of-product form f =
∑
aix

αi
i , where each product xαi

i is called monomial

and ai is the coefficient. A monomial in variables x1,...,xn is a product of the form

xα1
1 · xα2

2 · · · xαn
n , where all of the exponents α1,...,αn are nonnegative integers. The

degree of this monomial is the sum α1 + · · · + αn. The total degree of polynomial

f , denoted deg(f), is the maximum degree among all the monomials. A term of f is

the product of a nonzero coefficient and its monomial. As an example, polynomial

f = 2x3y2z + 2
3
y3z3 − 3xyz + y2 has four terms and total degree six. Note that there

are two terms of maximal total degree, which is something that cannot happen for

polynomials in one variable.

There are several ways to order monomials (referred to as term order), such as

lexicographic order (LEX), Degree reverse lexicographic order (DEGREVLEX), and

others. For instance, in LEX order, 2x3y2z > 2
3
y3z3. The first, or greatest term of f

7

(in terms of the adapted term order), is called the leading term lt(f) of the polynomial

f . In the above example, the leading term is 2x3y2z.

Leading terms play an important role in the proposed verification method, where

logic gates of a circuit are described as polynomials. Specifically, the polynomial

terms are ordered such that the leading term is a variable representing an output

of a gate. This ordering makes a profound impact on the efficiency of the proposed

verification technique. This issue will be discussed in detail in Chapter 3.

In this work, since all variables representing in the circuits are Boolean, we are

particularly interested in polynomials with variables of degree 1. Such a polynomial is

called Pseudo-Boolean polynomial. Formally, a Pseudo-Boolean function is a function

f : Bn → R, where B = {0, 1} is a Boolean domain and n is a nonnegative integer

called the arity of the function. It can be written as a multi-linear polynomial

f = a+
∑

aixi +
∑
i<j

aijxixj +
∑
i<j<k

aijkxixjxk + . . .

with constant coefficients a, ai, ... in the given field.

2.1.3 Ideals and Varieties

Given a polynomial ring R = k[x1,...,xn] with coefficients in some field k, a subset

I ⊂ R is an ideal if it satisfies:

(i) 0 ∈ I. (ii) If f, g ∈ I , then f + g ∈ I. (iii) If f ∈ I and h ∈ R, then hf ∈ I.

In general, if I ∈ k[x1,...,xn] consists of all the linear combinations of a set of

polynomials {f1, ..., fs} ∈ k[x1,...,xn], then I is an ideal of the set {f1, ..., fs}, and the

set of {fi} is called generator or basis.

J = 〈f1, ..., fs〉 = h1f1 + ...+ hsfs : hi ∈ R (2.1)

We call 〈f1, ..., fs〉 the ideal generated by the basis {f1, ..., fs}.

8

Given an ideal J = 〈f1, ..., fs〉 generated by f1, ..., fs,∈ k[x1, ..., xd], the set of all

solutions to: f1 = f2 = · · · = fs = 0 is called variety V (f1, ..., fs) of J . While

an ideal may have different bases, the variety depends only on the ideal and not on

the basis (generator). That is, different bases that produce the same ideal will have

exactly the same variety. In Section 2.3, we will introduce an especially useful basis

for our verification, called Gröbner basis.

Let {f1, ..., fs} and {g1, ..., gt} be the bases of the same ideal in k[x1,...,xn], i.e.

〈f1, ..., fs〉 = 〈g1, ..., gt〉; then V (f1, ..., fs) = V (g1, ..., gt). In the next section, we will

show how the concept of ideal and variety is applied to circuit verification.

2.2 Ideal Membership Test

The symbolic algebra theories about polynomial rings, ideals and varieties we use

in this work are all defined over a field, typically Q. However, as described next and

fully developed in the next section, the polynomials introduced in our work represent

logic gates and are defined over ring Z. However, these polynomials have a special

structure, namely their leading term lt(fi) that represents a variable associated with

a logic gate gi has coefficient 1. Subsequently, the process of polynomial division,

which is an essential element of the verification process (to be described in detail

later), will never introduce any coefficient outside of Z. Consequently, this allows us

to treat the polynomials as if they were in Q.

Let B = {f1, ...fs}, with fi ∈ Z[X], be a set of polynomials representing the

circuit elements and let the ideal J = 〈f1, ..., fs〉 be generated by basis {f1, ..., fs}. In

our case, each generator is a polynomial model of a circuit module (logic gate), and

the set of generators can be viewed as the implementation of the circuit. Then, from

the circuit perspective, the variety V (J) of J , which is the set of all simultaneous

solutions to a system of equations f1(x1, ..., xn) = 0; ..., fs(x1, ..., xn) = 0, contains all

signal values of the circuit for all possible input valuations {xi}.

9

Similarly, functional specification of the circuit is also defined as a polynomial in

Z[X], where X is a set of input and output variables. For example, the specification

of a multiplier circuit, Z = A ·B, can then be written as a polynomial F : Z −A ·B.

Here, A,B, and Z are symbolic, word-level variables, each represented as a polynomial

in their respective bit-level variables, e.g., A =
∑n−1

i=0 2iai, and similarly for B and

Z. In terms of computer algebra, the arithmetic circuit verification problem is then

formulated as follows [34][30][41][38]:

Given a circuit represented by a set of generators (implementation), B = {f1, ..., fs},

and the specification F , the goal of functional verification is to prove that the im-

plementation (B) satisfies the specification (F). Here, B have the same notation as

in the previous example, but it represents a set of gate polynomials. This means

that for a functionally correct circuit, the solution to F = 0 agrees with V (J), or,

equivalently, that F vanishes on V (J)1. Consequently, this problem has been termed

as an ideal membership test, which decides whether the specification polynomial F is

a member of the ideal J generated by B, i.e., if F ∈ J [18][34][30].

Given an ideal J = 〈f1, ..., fs〉, in order to test if F ∈ J , polynomial F is divided

consecutively by f1, ..., fs. The goal of each division is to cancel the leading term of F

(with respect to a chosen term order) using one of the leading terms of f1, ..., fs. Such

a reduction results in a polynomial remainder r = F − lt(F)
lt(fi)
· fi, in which the leading

term lt(F) has been canceled. If the remainder r reduces to zero, the implementation

satisfies the specification. However, if r 6= 0, such a conclusion cannot be drawn: r

can still be in J but it is not divisible by any of the polynomials in B = {f1, ..., fs}.

That is, the basis B = {f1, ..., fs} may not be sufficient to reduce F −→ 0, and yet

the circuit may be correct. To check if F is reducible to zero for the given ideal J , one

must compute a canonical set of generators, G = {p1, ..., pt}, called the Gröbner basis,

1Polynomial f is said to vanish on a set V if ∀a ∈ V f(a) = 0. Or, V (f) ⊆ V (J).

10

with the same ideal 〈p1, ..., pt〉 = 〈f1, ..., fs〉, the set G = {p1, ..., pt} be the Gröbner

basis for ideal J , then F belongs to J if and only if the remainder of the division of

F by the elements of G is zero, denoted as ∀F ∈ J , F
G−→+ 0 [1]. The sign + means

that the division/reduction is done consecutively by using the elements of G one by

one. In short, the Gröbner basis is necessary to unequivocally answer the question

whether F ∈ J .

2.3 Gröbner basis

A basis {p1, ..., pt} of an ideal J〈p1, ..., pt〉 is called a Gröbner basis (w.r.t. the

monomial order >) if the leading term of every nonzero element of J is a multiple of

(at least) one of the leading term lt(p1), ..., lt(pt). A known algorithmic procedure for

computing a Gröbner basis is called Buchberger’s algorithm [6]. Given some basis B =

{f1, ..., fs}, it produces another basisG = {p1, ..., pt}, such that the ideals 〈p1, ..., pt〉 =

〈f1, ..., ft〉 and hence have the same variety V (〈G〉) = V (〈B〉). Buchberger’s algorithm

is computationally expensive, since it computes the so-called S-polynomials (SPoly) by

performing reduction operations on all pairs of polynomials in B. The S-polynomial

of polynomials p and g in a polynomial set P , is the combination Spoly(p, g) =

L
lt(p)

p − L
lt(g)

g, where L is the least common multiple LCM(lm(p), lm(g)). Note that

Spoly(p, g) cancels the leading terms of p and g, and the remainder r obtained in

Spoly(p, g) F
P−→+ r gives a new leading term.

The basic purpose of computing SPoly pairs is to compute polynomials with new

leading terms, which can be used in the reduction step of the ideal-membership test-

ing. These newly generated polynomials belong to the ideal G which completely

defines the system. To compute Gröbner basis G = {g1, ..., gl} for an ideal 〈p1, ..., pt〉,

Buchberger’s algorithm computes G in some finite number of steps by performing the

Spoly(p, g)
P−→+ r iteratively. The algorithm determines if Spoly(p, g)

P−→+ 0. In

11

this case, we also conclude that all polynomials are relatively prime to each other,

with a distinct leading term.

This establishes that the generating set (generator) whose polynomials are rela-

tively prime to each other is in fact a Grobner basis. This important fact will be

used in developing the verification method in the upcoming sections. A number of

other algorithms have been developed for computing a Gröbner basis, such as F4 [17],

which in contrast to the basic Buchberger’s algorithm, compute multiple SPoly pairs

in each iteration. However, in general, the process of generating a Gröbner remains

computationally expensive.

2.4 Related Work

The work in arithmetic circuit verification was pioneered by Shekhar et al. [43]

and Wienand et al. [47], where some important concepts from computer algebra

and algebraic geometry were applied to model the core verification problem. In [47]

an arithmetic circuit is modeled as a network of arithmetic operators, such as half-

and full-adders, comparators, and product generators, extracted from the gate-level

implementation. These operators are modeled using arithmetic bit-level (ABL) ex-

pressions, B = {Bj}. The authors of [47] (and also of [30]) show that for an arbitrary

combinational circuit, if the terms of the gate equations B are ordered in reverse topo-

logical order, {outputs} > {inputs}, then all leading monomials of the polynomials

in B are relatively prime. As a result, the corresponding set B already constitutes a

Gröbner basis (GB), obviating the computation of the complete canonical Gröbner

basis. The verification problem is solved by reducing the specification F modulo B

to the normal form and testing if it vanishes over Z2n . The restriction to binary

variables is achieved by imposing Boolean constraints, 〈x2 − x〉 for all the variable

x [34], and the problem is solved over quotient ring Q = Z2n [X]/〈x2 − x〉 (for all

variable x) using a popular computer algebra system, Singular [15]. This approach,

12

however, is limited to circuits composed entirely of half adders and full adders, which

must first be extracted from the gate-level implementation. In practice, this is the

most expensive part of the process, and it is not always possible to perform such

extraction, especially in highly bit-optimized implementations.

In [30] the verification problem was similarly formulated as an ideal membership

test but applied to Galois Field (GF or F2q) arithmetic circuits. It has been shown

that in GF, when the specification F and the ideal J of the circuit implementation

are in F2q , the problem can be reduced to testing if F ∈ (J + J0), over a larger ideal

(J + J0) where J0 = 〈x2− x〉 is an ideal of the field polynomials. Adding J0 basically

restricts the variety V to solutions in F2, i.e. to V (J) ∩ V (J0) [11]. The polynomials

of J0 are referred to as field polynomials. Similarly to [47], the authors of [30] derive

the term order from the topological structure of the circuit, which renders the set

of polynomials B (circuit implementation) a Gröbner basis (GB), thus obviating the

need to perform the expensive GB computation. The method uses a customized,

F4-style polynomial reduction using a modified Gaussian elimination algorithm [17]

under this term order.

A different approach to that of defined earlier has been proposed in [51], whereby

the expensive polynomial reduction process has been replaced by a computationally

simpler algebraic rewriting technique. The method introduces the concept of an input

signature, a polynomial in the primary inputs, and an output signature, a polynomial

derived from the encoding of the primary outputs. The verification is accomplished

by rewriting the output signature, using algebraic expressions of the internal gates,

into an input signature. This process de facto performs function extraction. Several

ordering techniques have been described to make this method applicable to large

arithmetic circuits, but the method still cannot handle the heavily optimized circuits.

A similar approach to arithmetic circuit verification, called backward construction,

was proposed in 1995 in [23]. It uses BMDs to reconstruct functional, high level

13

representation from the gate-level structure of arithmetic circuits such as adders and

multipliers. Experimental results show that time complexity of the tested circuits is

in the order of n4 for multipliers with n bit operands. There is no clear indication if

the BMD is an efficient data structure for this problem, and our experiments could

not confirm its efficiency.

The basic approach of the ideal membership testing and Gröbner basis (GB)

reduction has also been used in the works of [41][38], where it was applied to integer

circuits. In [41] the following features have been added to make the reduction more

efficient:

• Logic reduction with an AND-XOR vanishing rule, which analyzes the structure

of the circuit to identify and remove vanishing monomials that correspond to

the product of XOR, AND signals with shared input variables;

• An XOR rewriting scheme, which reduces the model of the circuit to consider

only primary inputs, outputs, and fan-out points/XOR gates; and

• Common rewriting, which eliminates the nodes with a single parent. These

techniques simplify the task of GB reduction by eliminating all the nodes which

have exactly one parent, thus increasing the chance for early term cancellation

during the rewriting process.

Another work [38] revisits the techniques from [51] and [41] and provides the proof of

correctness for these approaches. It uses a column-wise technique to model and verify

basic multiplier structures by computing the Gröbner basis incrementally for each

column of the output bit, rather than for the entire circuit. The work is concluded by

showing the efficacy of the technique by applying it to clean and ”dirty”, i.e., heavily

optimized, multipliers. The paper justifies the use of the theory of ideal membership

(in principle applicable to Q[X]) to prove properties of integer arithmetic circuits in

Z. It points out that, since the leading coefficients of the gate polynomials forming

14

the Gröbner basis are +1 or -1, polynomial reduction never introduces fractional

coefficients and their computation remains in Z. This also explains why the dedicated

implementations in [51] and [41] can rely on computation in Z only, while remaining

sound and complete [38]. A follow-up paper [37] describes an enhancement to this

column-wise technique by extracting half- and full-adder constraints to further reduce

the size of Gröbner basis to speed up the reduction process.

In general, the problem of formally verifying complex integer arithmetic circuits

(not just multipliers) remains open, and new solutions are being proposed. In the next

chapter, an efficient and scalable approach, called algebraic rewriting, is introduced

to address this issue. This approach has already been proposed by our group earlier,

but it is further refined and formalized in this dissertation to be adequately applied to

Divider and Square-root circuits. In addition, a bit-flow model is proposed to support

the proof of the correctness of algebraic rewriting, and to offer a new insight into the

problem of arithmetic circuit verification [9].

15

CHAPTER 3

ALGEBRAIC REWRITING AND DIVIDER MODEL

This chapter introduces the algebraic model used in circuit verification, which is

the key to solve the verification problem in algebraic domain. Two flavors of computer

algebra techniques that use this model will be discussed in detail: 1) Gröbner basis

reduction techniques [34][41][38] and 2) algebraic rewriting [51]. Detailed algorithms

for the reduction and the rewriting are given. We analyze the relation between these

two computer algebra techniques and provide a comparison from the efficiency point

of view.

3.1 Algebraic Model of Electronic Circuits

The arithmetic circuits considered in this dissertation are the ones which can be

expressed as a polynomial in the input variables. These include adders, subtractors,

multipliers, fused add-multiply circuits, dividers, and square-root. In this Section, we

provide examples of existing solutions for multiplier verification. Later, we provide

a detailed analysis of a divider verification methodology. Such arithmetic circuits

are modeled as a network of interconnected bit-level components, each with a finite

set of binary inputs with one or more binary outputs. In this work, we will focus

on gate-level integer arithmetic circuits with single-output logic gates. However, the

model can be extended to other, more complex, multiple-output circuit components

such as dividers and square-rooters.

Each gate is modeled by a pseudo-Boolean polynomial fi ∈ Z[X], with Boolean

variables X representing circuit signals associated with a logic gate. A pseudo-

16

Boolean polynomial is an integer-valued function f : {0, 1}n → Z. It is an algebraic

expression with usual multiplication and addition operators over Boolean variables.

The following expressions summarize the algebraic representation of basic Boolean

operators NOT, AND, OR and XOR.

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(3.1)

By construction, each expression evaluates to a binary value {0,1} and hence correctly

models the Boolean function of a logic gate. Models for more complex AOI (And-Or-

Invert) gates, used in standard cell technology, are readily obtained from these basic

logic expressions. For example, the algebraic model for the logic gate

• g = a ∨ (b ∧ c) => g = a+ bc− abc

• OR3 (a ∨ b) => z = a+ b+ c− ab− ac− bc+ abc

• XOR3 (a⊕ b⊕ c) => z = a+ b+ c− 2ab− 2ac− 2bc+ 4abc

• MAJ3 (a ∧ b ∨ a ∧ c ∨ b ∧ c) => ab+ bc+ ac− 2abc

Multiple output modules, such as single-bit adders, with binary inputs can be

expressed similarly. For example, a half-adder (HA) and a full-adder (FA), can be

expressed by the following expressions:

ha : 2C + S = a+ b

fa : 2C + S = a+ b+ cin

(3.2)

where a, b, cin are binary inputs and C, S are binary outputs.

17

The function computed by an arithmetic circuit is represented as a specification

polynomial in the primary input variables, denoted Fspec. For example, the specifica-

tion of an n-bit unsigned integer multiplier, Z = A ·B with inputs A = [a0, · · · , an−1]

and B = [b0, · · · , bn−1], is described by Fspec =
∑n−1

i=0

∑n−1
j=0 2i+jaibj. The result of

the computation, stored in the primary output bits, is also expressed as a polyno-

mial, called output signature, Sout. Typically, such a polynomial is linear, uniquely

determined by the m-bit encoding of the output, provided by the designer. For ex-

ample, for a signed 2’s complement arithmetic circuit with m output bits, Sout =

−2m−1zm−1 +
∑m−2

i=0 2izi. The circuit is implemented as a network of logic gates G,

each modeled as a polynomial gi derived from Eqn.(3.1). The polynomial representing

a given gate evaluates to zero for all the input and output combinations satisfied by

this gate. As an example, a non-standard gate-level implementation of a full adder,

is shown in Fig. 3.1.

Figure 3.1: Gate-level arithmetic circuit (Full Adder)

The set of polynomials G = {fi} in Eqn. 3.3 represents the gate-level implementa-

tion of the full adder circuit. We refer to this set as G to indicate that it is a Gröbner

basis (or GB for short). It has been shown that if the polynomials in G are ordered

such that the leading term is the output of the gate, and the leading term of all the

polynomials are relatively prime, the set G forms Gröbner basis [35].

The set G consists of two parts: gate polynomials (f1, ..., f8) and field polynomials

(f9, ..., f17). Each polynomial satisfies the relation fi = 0. The gate polynomials

have the form fi = vi − tail(fi), where the leading term lt(fi) = vi is the output of

18

gate fi, and tail(fi) is the logic specification of the gate in terms of its inputs. The

leading terms under such ordering are relatively prime, which renders G a Gröbner

basis [34][30][38]. This feature is essential for both the GB reduction and algebraic

rewriting, which will be discussed in the next sections.

f1 = p1 − (−ab+ a+ b)

f2 = g1 − (−ab+ 1)

f3 = S1 − p1g1

f4 = C1 − (−g1 + 1)

f5 = p2 − (S1c0 − S1 − c0 + 1)

f6 = g2 − S1c0

f7 = S − (p2g2 − p2 − g2 + +1)

f8 = C − (−C1g2 + C1 + g2)

f9 = (a2 − a)

f10 = (b2 − b)

· · · · · ·

f17 = (g2
2 − g2)

(3.3)

Each field polynomials, f9, ..., f17, has the form J0 =< x2− x >, where x is one of

the signals {a, b, c0, p1, g1, S1, C1, p2, g2}. These field polynomials play an important

role in polynomial reduction to maintain the Boolean property of each variable. How-

ever, they are handled differently in the GB reduction than in the algebraic rewriting

approach, as discussed in the next sections.

3.2 Gröbner Basis Polynomial Reduction

In this method the reduction of F modulo G is accomplished by successively

eliminating terms of F , one by one, by a leading term of some polynomial fi ∈ G, using

19

Gaussian elimination. The reduction is performed over a Gröbner basis derived from

G and the field polynomials J0. From the mathematical point of view, this means that

the computation will be performed in the quotient ring, Z[X]/〈x2−x〉 : x ∈ X, the set

of all variables (signals) of the circuit. The Gröbner basis (GB) reduction algorithm

is given in Algorithm 1. First, the polynomial base G={f1, ..., fm} is derived from

N using Equations (3.1), where m is the number of logic components in N . Each

polynomial in G has the form fi = v + tail(fi), where v is the the leading monomial

lm(fi). All the variables in the circuit are ordered in reverse-topological order, from

primary outputs to primary inputs, and for each gate polynomial from the gate output

to its inputs.

Figure 3.2: Half-Adder gate-level arithmetic circuit

Furthermore, the output signals of the gates that depend on common variables

(fanins) should be ordered next to each other, as this will maximize the chance for a

potential term cancellation and minimize the size of intermediate polynomials. For

example, consider the reduction of a polynomial F = 2C + S + in a circuit

containing a half adder composed of an AND gate C = ab and an XOR gate S =

a+b−2ab, shown in Figure 3.2. Since both C and S depend on common variables, a, b,

reducing them one immediately after the other will eliminate the product term ab from

the polynomial, resulting in F = a + b + This is beneficial from the complexity

point of view, and should be performed before the reduction of the remaining terms

of the polynomial.

Considering these two basic ordering rules, one possible term order for the polyno-

mial ring of the circuit in Figure 3.1 is shown below, where variables in curly brackets

20

can assume any relative order.

{S,C} > {p2, g2} > {S1, C1} > {p1, g1} > {a, b, c0} (3.4)

The expression F to be reduced is initialized with the difference between the output

signature Sout and Fspec. In this case F = 2C+S− (a+ b+ c0). The goal is to reduce

F to 0 by G.

Algorithm 1 Gröebner Basis Polynomial Reduction

Input: Specification polynomial Fspec;and Gate-level netlist N
Output: Remainder Rem

1: Create base G={f1,...,fm} of N using Eq.(3.1)
2: Generate Sout from N
3: Define ring and specify term order
4: Initialize F ← Sout − Fspec
5: while F 6= 0 do
6: if ∃fi ∈ G : lt(F)

lt(fi)
6= 0 then

7: /* there exists fi such that its leading term is divisible by lt(F) */

8: F ← F − lt(F)
lt(fi)
· fi // polynomial division

9: else
10: /* no leading term of fi divides F , move lt(F) to Rem */
11: F ← F − lt(F)
12: Rem← Rem+ lt(F)
13: end if
14: Maintain the term order imposed on the ring
15: end while
16: return Rem

The main part of the GB reduction is given in lines 5-15. The algorithm searches

for a polynomial fi in G such that the leading term of fi divides the current leading

term lt(F) of F . If such a polynomial exists, it will be used to reduce F , as shown

in line 8. Otherwise, the lt(F) will be moved to the remainder Rem (lines 11− 12).

At any point, when new terms (containing new intermediate variables introduced by

division) are added to polynomial F (line 8), the procedure must maintain the term

order imposed on the ring. The reduction process terminates when F becomes empty,

21

either by being reduced or moved to Rem. The zero remainder is the evidence of a

correct implementation, as discussed in Chapter 2.2.

We illustrate the GB reduction process with the example in Fig. 3.1. The initial

polynomial for this circuit is:

F = 2C + S − (a+ b+ c0) (3.5)

Equation (3.6) gives the sequence of steps that reduces F with the gate polyno-

mials fi ∈ G for the circuit in Figure 3.1. At each step, F represents the polynomial

reduced by the previous reduction step. For brevity, the substitution is shown for a

pair of variables at once. For example, F/(C, S) means reducing variables C and S

with polynomial f8 followed by f7. The term order given in Eqn. (3.4), imposed on

the ring, is maintained throughout the entire reduction process.

F = 2C + S − (a + b + c0)

1) F/(S , C) = 2(−C1g2 + g2 + C1) + (p2g2 − p2 − g2 + 1)− (a + b + c0)

= p2g2 − p2 − 2g2C1 + g2 + 2C1 − (a + b + c0) + 1

2) F/(p2, g2) = (S1c0 − S1 − c0 + 1)S1c0 − (S1c0 − S1 − c0 + 1)− 2S1C1c0

+ S1c0 + 2C1 − (a + b + c0) + 1

= S2
1c

2
0 − S2

1c0 − S1c
2
0 + S1c0 − 2S1C1c0 + S1 + 2C1 − (a + b)

3) F/(S2
1 − S1) = −2S1C1c0 + S1 + 2C1 − (a + b)

4) F/(S1, C1) = −2(p1g1)(−g1 + 1)c0 + p1g1 + 2(−g1 + 1)− (a + b)

= −2(−p1g
2
1 + p1g1)c0 + p1g1 − 2g1 − (a + b) + 2

5) F/(g2
1 − g1) = p1g1 − 2g1 − (a + b) + 2

6) F/(p1, g1) = (−ab + a + b)(−ab + 1)− 2(−ab + 1)− (a + b) + 2

= a2b2 − a2b− ab2 + ab

7) F/(a2 − a) = 0

(3.6)

The effect of field polynomials J0 =< x2 − x >, responsible for keeping each

variable Boolean, can be observed during steps 2, 4, 6 and 7, shown in bold. The

reduction terminates in Rem = 0, indicating that the circuit implements the function

indicated by the specification, a full adder.

22

3.3 Algebraic Rewriting

Algebraic rewriting is the process of transforming the output signature Sout into

an input signature Sin using algebraic models of the internal components (logic gates)

of the circuit. The rewriting is done in reverse topological order: from the primary

outputs (PO) to the primary inputs (PI); for this reason it is also referred to as a

backward rewriting [51]. Intermediate expressions obtained during rewriting are also

represented as polynomials, referred to as signatures, over the variables representing

the internal signals of the circuit. By construction, each variable in a given signature

(starting with Sout) represents an output of some logic gate.

The rewriting transformation simply replaces each variable with the corresponding

algebraic expression of the logic gate. If the variable is part of a monomial involving

other variables, the expression is multiplied by the remaining terms and expanded to

a disjunctive normal form. This is followed by a standard polynomial simplification

by combining terms with same monomials.

Algorithm 2 Algebraic Rewriting

Input: Specification polynomial Fspec; and Gate-level netlist N
Output: (Sin == Fspec), or the computed signature Sin

1: Derive G={f1,...,fm} from N using Eqn.(3.1)
2: Sort G to maximize the cancellations // pre-processing
3: Generate Sout from N
4: Initialize Sig ← Sout
5: for fi in G do
6: v ← lm(fi) // leading monomial of fi is output of a gate
7: if v ∈ Sig then
8: /* replace v with tail(fi) in Sig */
9: Sig ← Sig(v ← tail(fi))

10: x← x2 // for all x in Sig
11: end if
12: end for
13: /* upon termination, Sig is composed of PIs only */
14: if Sig == Fspec return True
15: else return Sin = Sig

23

Algebraic Rewriting procedure is summarized in Algorithm 2. First, the polyno-

mial base G={f1,...,fm} is derived from N using Eq.(3.1), as in the GB reduction.

Then, the polynomials in G are sorted in reverse-topological order (lines 1-2). Among

several possible topological orders the one that maximizes the number of early can-

cellations during rewriting is sought. This has an effect of minimizing the size of

the intermediate polynomials during rewriting (the ”fat belly” effect) [51]. It is ac-

complished by keeping together the polynomials whose leading terms (gate outputs)

depend on common variables, as in the GB reduction. The expression to be rewritten,

Sig, is initialized with the given output signature Sout of N (lines 3-4).

The main part of the rewriting, lines 5-12, iterates over the polynomials fi ∈ G

and performs the required substitutions. Specifically, all occurrences of v = lt(fi)

in Sig are replaced by tail(fi), followed by possible expansion of the resulting term.

To maintain Boolean values of the variables during rewriting, the degree of each

variable in Sig is reduced to 1 (line 10). This step is equivalent to dividing Sig by

a field polynomial < x2 − x >, but it is achieved in a more efficient way. At the

end, the algorithm returns Sin as the derived signature of the circuit. If the terms of

polynomials in G are sorted in a reversed topological order, the returned polynomial

Sin contains only the primary input (PI) variables, so it can be compared with Fspec.

While the main goal of algebraic rewriting, as described by Algorithm 2, is to

determine the arithmetic function implemented by the circuit, it can also be used

to verify it against the known specification. This can be simply done by rewriting

F = Sout − Fspec and checking if it produces a zero. We will use this rewriting mode

in order to compare it against the GB reduction method in Chapter 3.2.

We illustrate the rewriting process using the example of the gate-level full-adder

circuit in Figure 3.1. The output signature of the circuit is Sout = 2C+S, determined

by the binary encoding of the output. The specification for this circuit Fspec =

a+b+c0. Following the ordering rules described in [51], the best rewriting order which

24

F = 2C + S − (a + b + c0)

1) F/(S, C) = 2(C1 + g2 − C1g2) + (1− (p2 + g2 − p2g2))− (a + b + c0)

= 2C1 + g2 − 2C1g2 − p2 + p2g2 + 1− (a + b + c0)

2) F/(p2, g2) = 2C1 + S1c0 − 2S1C1c0 − (1− (S1 + c0 − S1c0))

+ (1− (S1 + c0 − S1c0))S1c0 + 1− (a + b + c0)

= 2C1 − 2S1C1c0 + S1 + S1c0 − S2
1c0 − S1c

2
0 + S2

1c
2
0 − (a + b)

= 2C1 − 2S1C1 + S1 − (a + b)

3) F/(S1, C1) = 2(1− g1)− 2(1− g1)(p1g1)c0 + p1g1 − (a + b)

= 2− 2g1 − 2(p1g1 − p1g
2
1) + p1g1 − (a + b)

= 2− 2g1 + p1g1 − (a + b)

4) F/(p1, g1) = 2− 2(1− ab) + (a + b− ab)(1− ab)− (a + b)

= ab− a2b− ab2 + a2b2 = 0

(3.7)

minimizes the size of intermediate polynomials is {(S,C), (p2, g2), (S1, C1), (p1, g1)},

as in the GB reduction. The signals shown in brackets can be rewritten in any order

as they depend on common inputs. Equation (3.7) shows the rewriting steps for

the circuit. The terms shown in bold face indicate those that are reduced to zero

during polynomial simplification. For brevity, the substitution is shown for each pair

of variables applied at once. For example: F/(C, S) means rewriting of F using C

and S variables of polynomials f8, f7.

During the rewriting, two types of simplifications can be observed:

• Simplification of the terms with same monomials; for example, 2g2 − g2 = g2,

in Step 1. In the process, some polynomial terms are reduced to 0. This is a

common simplification applied in GB reduction as well.

• Lowering the term x2 to x, since the signal variables are binary. This can be

seen in Steps 2, 3, and 4, shown in bold face. For example, in step 2 we have:

S1c0 − S2
1c0 − S1c

2
0 + S2

1c
2
0 = S1c0 − S1c0 − S1c0 + S1c0 = 0. Similarly, in step

3: (p1g1 − p1g
2
1) = p1g1 − p1g1 = 0, etc. This simplification is simpler and

can be executed faster than dividing the polynomials by the respective field

25

polynomials (x2 − x), as it is done in computer algebra approach. This is one

of the main reasons for greater efficiency of the algebraic rewriting compared to

GB reduction.

Subsequently, the final result reduces F = Sout − Fspec to zero, indicating that the

circuit correctly implements a full adder.

It should be noted that in addition to the two basic simplification rules mentioned

above (rewriting the gates with common inputs, and the x2 → x reduction), more

sophisticated simplifications can be applied to the running polynomial Sig during

rewriting by analyzing the structure of the gate-level network. For example, recog-

nizing that some signal g is a product of XOR and AND signals with the same fanin

inputs will reduce signal g to zero. This simplification, called an XOR-AND vanishing

rule has been used by [41], but for clarity of the illustration, it has not been taken

into account here.

3.4 AIG Rewriting

The algebraic rewriting technique described in the previous section can be further

improved by performing rewriting using the functional AIG (Add-Inverter Graph)

representation of the circuit instead of its gate level structure. This section provides

a brief overview how this is accomplished, with details provided in [50].

AIG (And-Inverter Graph) is a combinational Boolean network composed of two-

input AND gates and inverters [2]. Each internal node of the AIG represents a

two-input AND function; the graph edges are labeled to indicate a possible inversion

of the signal. We use the cut-enumeration approach of ABC [2] to detect XOR

and Majority (MAJ) functions with a common set of variables; they are essential

components of adder trees that are present in most arithmetic circuits in some form

[50]. After detecting the XOR and MAJ components of the adder’s AIG, rewriting

skips over the detected adders, significantly speeding up the rewriting process. Figure

26

3.3 illustrates the process for the full adder (FA) circuit from Figure 3.1. In Figure

3.3 the groups of nodes (6,7,8) and (9,11,12) correspond to half adders (HA). The

functions rooted at nodes 6 and 9 are majority (AND) functions, and those at nodes

12 and 8 are XORs. Subsequently, the functions at node 12 (S) and node 10 (C) are

identified as XOR3 and MAJ3, respectively, on the shared inputs, a, b, c0. The AIG

rewriting of Sout = 2C +S over the extracted XOR3 and MAJ3 nodes is trivial, with

the nonlinear monomials automatically cancelled, as shown in Eqn. 3.8.

2C + S = 2(ab+ ac0 + bc0 − 2abc0)

+ (a+ b+ co − 2ab− 2ac0 − 2bc0 + 4abc0)

= a+ b+ co

(3.8)

The resulting signature matches the specification, which clearly indicates that the

circuit is a full adder. As illustrated with this example, the AIG rewriting requires

considerably fewer terms than the standard algebraic rewriting.

Figure 3.3: AIG rewriting of a full adder circuit from Figure 3.1.

Data structure: AIG rewriting is implemented in ABC with the polynomial

data structure, type Pln Man t. Its main components include: 1) the AIG manager

27

(Gia Man) that represents the input design; and 2) two vector hash tables using type

Hsh VecMan t are used for storing the constants and monomials. The hash tables

of monomials include coefficient vectors and monomial vectors. When substitution

is applied to the leading term, new monomials are created and the substituted one

removed. For example, when ab+ c+ bd is substituted by a = b+ d, the monomial ab

is removed first, and b and bd are added to Pln Man t. During the process of adding

the new monomials, the program will first check if these monomials already exist in

Pln Man t; in this case only the coefficient of these monomials will be changed accord-

ingly. In this example, two new monomials are generated by the substitution, namely

b2, reduced to b, and bd. Since bd already exists in the expression, the coefficient 1 of

bd is replaced by 2, resulting in b+ c+ 2bd.

3.5 Comparison between GB Reduction and Rewriting

It should be clear from the above discussion that both methods, the GB reduc-

tion and the algebraic rewriting, are equivalent in the sense that they both perform

polynomial reduction. The GB reduction scheme achieves polynomial reduction by

division, in fact, performing Gaussian elimination. In contrast, algebraic rewriting

does it by substituting the gate output variable by the polynomial expression of the

gate’s function. While the goal of GB reduction scheme is to reduce F = Sout−Fspec

modulo the set of implementation polynomials G to 0, it can also be used to extract

the arithmetic function by reducing Sout modulo G, and interpret the result as the

functional specification of the circuit Fspec. In the algebraic rewriting scheme, the goal

is to rewrite the output signature Sout to Sin, the expression in the primary inputs,

and check if it matches the expected specification Fspec. If Sin = Fspec, the circuit is

correct; otherwise it is faulty. Alternatively, as illustrated above, algebraic rewriting

can be also applied to F = Sout − Fspec, as in the GB approach.

28

Variable substitution of algebraic rewriting (line 9 of Algorithm 2) seems simpler

than the main step of polynomial division of the GB reduction (line 8 of Algorithm 1).

On the other hand, it requires additional multiplication of the terms and expansion

into a sum of products. Hence, the complexity of these steps is comparable. Both

methods avoid explicit computation of the Gröbner basis, but achieve it by different

means. In the GB reduction it is done by setting the variable order in the ring so that

all variables are in reverse topological order, which makes the implementation set G a

Gröbner basis. In the algebraic rewriting scheme on the other hand, the polynomials

fi ∈ G are sorted in reverse topological order to effect the rewriting. As a result,

both methods ensure that the polynomial base is a Gröbner basis. However, there

are some essential differences between the two methods that affect their efficiency.

• The GB reduction scheme requires the field polynomials J0 =< x2 − x > to be

added to the base G in order to keep the variables Boolean. This increases the

size of the Gröbner basis and results in a larger search space in each iteration.

Whereas in the rewriting scheme, the reduction by < x2 − x > is solved in a

simpler way, namely by lowering x2 to x via a simple data structure (line 10 in

Algorithm 2).

• In the algebraic rewriting scheme, the gate polynomials fi ∈ G are ordered in

reverse topological order (line 5 in Algorithm 2) so that each gate polynomial fi

is used exactly once. Furthermore, the selected polynomial is used to perform

the rewriting by a simple string substitution and is never needed again. In

contrast, in each iteration of the GB reduction one has to search for a polynomial

fi that divides the leading term of F under reduction. While in principle the

GB reduction can also work over an ordered list of gate polynomials, this does

not apply to the field polynomials < x2 − x >, needed for the reduction. Since

the appearance of intermediate signals in nonlinear terms xk is unpredictable,

it is not possible to pre-order the list of field polynomials in GB reduction.

29

CHAPTER 4

FORMAL VERIFICATION OF INTEGER DIVIDERS:
DIVISION BY A CONSTANT

Division is one of the most complex arithmetic operators to implement and requires

careful hardware implementation and verification [16][46]. The difficulty of formally

verifying hardware implementation of dividers can be attributed to the mathematical

model of a divider: its characteristic function cannot be written as a closed-form

expression, making it difficult to assign to it an output signature. In this chapter, we

present a verification methodology for a constant divider, where the divisor value is

fixed to a constant integer. Albeit a simpler case of verification, it provides us with

the basic understanding of the underlying issues applicable to divider verification.

Later, in the next chapter, we present a generalized approach for verifying generic

array dividers using approach similar to that developed in this chapter.

4.1 Introduction

An operation that comes up frequently in digital systems is a division of an integer

by a constant. For example, such an operation is required in computer simulations

that use Jacobi stencil algorithm to compute an average of three numbers; in arith-

metic for base conversions, number theoretic codes, and graphics codes; in signal pro-

cessing for computing the sample mean, the sample variance, or the automatic gain

control. Finally, divide-by-constant is useful for memory bank multiplexing which

requires division by small integers, or to support compiler optimization to generate

integer divisions to compute loop counts and subtract pointers [19]. The frequent

30

appearance of such operation in many applications justifies creating a specialized op-

erator in embedded systems design, referred to as ”divider by a constant” [32]. In this

chapter, we concentrate on the verification of a division by a constant and conclude it

by presenting a preliminary verification analysis of a restoring generic divider circuit.

While division by a constant 2k can be efficiently implemented by shifters, division

by other constants is more complex. Many algorithms for division by a constant use

table-based approach and implement it using look-up tables (LUT). A notable exam-

ple of such an implementation is a table-based SRT division implemented in an Intel

Pentium Processor. The infamous Pentium bug in its floating point division (FDIV)

instruction has galvanized the verification efforts [42][5] for divider circuits. The work

by [20],[21] address the verification of array dividers by applying reverse engineering

methods to obtain a high-level arithmetic model from the low-level circuit implemen-

tation. The resulting arithmetic operations are compared with the abstract model

of the divider using structural matching. The extracted components include logical

bit level adders with sum generation logic (SGL), carry propagation logic (CPL) and

controlling logic (CL). The technique applies column-based XOR extraction, which

relies on a regular structure of the adder trees and on the presence of sum generation

and carry propagation components. Lack of those components at the right places

indicates a potential bug. The limitation of the method is that it assumes a known,

well structured architecture and that adders are represented with XOR gates, which

may not be the case in a synthesized circuit.

This chapter describes the verification technique for a divide-by-constant circuit,

later generalized for the verification of a restoring generic divider. Our work is based

on an algebraic rewriting model, which performs arithmetic function extraction, origi-

nally proposed and successfully applied to the verification of integer and Galois Field

multipliers [10] [53]. The method has been suitably modified for dividers by iden-

31

tifying and taking advantage of the ”vanishing monomials”, which are an intrinsic

property of table-based divide-by-constant architecture.

The rest of the chapter is organized as follows. Section 4.2 provides the necessary

background and the survey of the implementation and verification of the divide-by-

constant architectures. Section 4.3 shows the detailed verification methodology, while

Section 4.4 presents the verification results and their analysis. We also compare our

approach to an exhaustive simulation of the respective circuits. Preliminary results

for a restoring generic divider are also presented, showing the applicability of our

technique to a more generic case.

4.2 Background

The algebraic based verification methods described in earlier chapter 3 have been

successfully applied to complex adders and multipliers, including Booth, [51][41] but

have not been applied to divider circuits, because of the difficulty of modeling the

divider’s specification. It seems at first that such a rewriting model cannot be directly

applied to the divider. The characteristic function of the divider can be described by

the following expression:

X = D ·Q+R, with R < D (4.1)

where X (the dividend) and D (the divisor) are the inputs, and Q (the quotient) and

R (the remainder) are the outputs where R < D. The problem is that the outputs,

Q,R, cannot be directly expressed in terms of the inputs X,D. Hence it is not clear

what the input signature and the output signature are. However, in the case of a

constant divider, input divisor D is a known constant making the analytical I/O

relationship straightforward. In this context, Sigin = X and Sigout = D ·Q+R. The

remainder of the thesis presents how algebraic rewriting is utilized for verification of

divider and square-root circuits.

32

4.2.1 Divider Circuit Implementation

There are two main approaches to implementing arithmetic division: 1) division

by addition/subtraction, such as SRT, restoring, non-restoring; and 2) division by

reciprocation, or multiplication by the inverse via Newton-Raphson or Goldsmith

algorithm [29]. A wide majority of practical division algorithms, such as SRT, resort

to a look-up table (LUT) based implementation, a table-based combinational logic

technique studied in [32][13][46]. These algorithms use a reference table, precomputed

for a particular value of the divisor, implemented as a LUT. Such an implementation

is particularly well-suited for the division by a constant. The dividend X is divided

by the divisor D to produce quotient Q and the remainder R, which provides an input

carry for the next block.

Figure 4.1: Pencil and Paper division operation and the basic divider block.

The author of [46] prove that this computation is still valid for any arbitrary radix

of X. Thus the division can be implemented as a single block handling n bits, or n

blocks handling one bit each, or any intermediate values. Another divider architecture

analyzed in this work is based on the restoring algorithm, discussed in Section 4.4.3

and shown in Figure 4.7 in the later part of the chapter.

33

4.3 Verification

Our verification scheme is based on the functional extraction method of [51] [50],

reviewed in detail in Chapter 2. We first illustrate our method for table-based divider

with a single block of the divider, and then show how to verify the whole circuit

unrolled by the required number of blocks. We will also discuss the case when the

divider is faulty, with bugs injected in the implementation.

4.3.1 Verification of the Constant Divider

In the iterative, divide-by-constant circuit, the divider is partitioned into a number

of blocks, each having the structure shown in Figure 4.1(b). Figure 4.2 shows a generic

configuration, where multiple blocks can be cascaded together.

Figure 4.2: Generic divider block for X divided by const. d = 3

Let N be the number of blocks, and k the number bits of the dividend X. If k/N

is not an integer, the most significant block will have some inputs appended with

the required numbers of zeros. The bit size m of Ri and Ci is the same, and it is

determined by the size of the divisor D.

34

Consider block Bi, shown in Figure 4.1. In the following, index i refers both to

the block position and to the chunk of the respective word, Ci, Xi, Qi, Ri, associated

with the given block. The following summarizes the terms and parameters of the

divider block:

• D - divisor (a hardwired constant), D 6= 0

• Xi, Ci - dividend and carry-in for block Bi

• Qi, Ri - quotient and remainder for block Bi

• n = dk/Ne - number of bits of Xi and Qi

• m = (blog2 (D − 1)c+ 1) - bit-width of Ci and Ri

4.3.2 Single Block Verification

To explain the basic idea, consider a single-bit block architecture, n = 1, for the

division by constant D = 3, with m = 2.

In the LUT-based division algorithm, each basic block is implemented as a lookup

table with entries for all possible inputs, Ci, Xi, and the values of the corresponding

outputs Qi, Ri.

a) Function Table b) Truth table of LUT

Figure 4.3: Divide-by-3 block specification tables

35

Figure 4.3 shows the specification tables (i.e., the function table and the LUT

truth table) for the basic block of divide-by-3 divider. From the function table, one

can derive the word-level input/output relation, shown in Equation 4.2, where Ri is

fed to the next block as Ci−1. To verify the functionality of the basic block, we need

to prove that Equation 4.2 is correct for every input assignment.

2Ci +Xi = 3Qi +Ri (4.2)

The coefficient 2 of Ci comes from the fact that Ci and Xi form one word. In radix

2, the term Ci =
∑n−1

k=0 2kCik, where Cik refers to bit k of block i. The coefficient 3

of Qi is determined by the value of the divisor, D = 3 in our example.

Equation 4.3 shows the generic bit-level equation for an arbitrary block i. It

is derived from Eq. 4.2 by substituting for a given block i, Ci = 2Ci1 + Ci0 and

Ri = 2Ri1 +Ri0, since m = 2.

4Ci1 + 2Ci0 +Xi0 = 3Qi0 + 2Ri1 +Ri0 (4.3)

The left-hand-side of Equation (4.3) is the Input Signature, Sigin while the right-

hand-side is the Output Signature, Sigout, as defined above in Section 4.3.1. In order

to prove the functional correctness of the divider, we need to rewrite Sigout using

algebraic expressions of the logic-gate implementation and compare the resulting ex-

pression with Sigin. If the two expressions are equal, the circuit is proved to be

correct. The comparison of the polynomial expressions can be done using TEDs [8],

BMDs [3], or similar canonical representations capable to compare two polynomials.

To illustrate the rewriting process, consider the one-block gate-level implementa-

tion of the division of X by constant 3, shown in Figure 4.4. The output signature for

this circuit, using the index notation in the figure, is Sigout = 3Q0 +2R1 +R0. Each of

the output variables, Q0, R1, R0 are successively replaced by the algebraic expression

36

a) Correct circuit b) Faulty circuit

Figure 4.4: Gate level implementation of a single-block, one-bit architecture of a X/3
divider. Output signature Sigout = 3Q0 + 2R1 + R0; the expected input signature is
Sigin = 4C1 + 2C0 + X0.

of their respective gates, as defined by Eq. 3.1. Each of the internal signals are in

turn replaced by the expression of the logic gate they represent, etc., until the final

expression contains only the primary input variables. In a functionally correct divider

circuit, as in Figure 4.4(a), the resulting input signature should be

Sigin = 4C1 + 2C0 +X0 (4.4)

However, the expression Sig obtained by rewriting Sigout through the logic gates of

the correct 1-bit divisor is actually equal to:

Sig = (4C1 + 2C0 +X0)− 2C0C1X0 (4.5)

which does not match the expected specification Sigin in Eq.(4.4).

The reason for this mismatch can be understood by analyzing the truth table in

Figure 4.3. Note that the table contains some entries, namely {C1C0X} = 110, 111,

for which the quotient Q0 cannot be encoded in one bit, with the remainder being

37

strictly less than the divisor; hence those entries are considered invalid. In this case

the combination {C1C0} = 11 is invalid. This can be translated into a logic constraint,

expressed by expression C1C0 = 0 and used to simplify the resulting signature. In-

deed, substituting C1C0 = 0 into Equation 4.5 reduces it to the expected Sigin,

proving that the circuit in Figure 4.4(a) correctly implements a divby3 computation.

4.3.3 Vanishing Monomials

For the purpose of this work, the monomials that correspond to invalid entries,

such as C1C0 above, are defined as vanishing monomials, since in the functionally

correct implementation they always evaluate to zero. The vanishing monomials help

remove the redundant terms during the verification process. The vanishing mono-

mials and the corresponding simplifying constraints can readily be derived from the

architecture for a given value of the divisor, where invalid input assignments corre-

spond to don′t-care conditions; refer to Figure 4.3. The following theorem relates

vanishing monomials to the input signature computed for the circuit.

Theorem: The input signature Sigin of the circuit contains vanishing monomials

associated with the don′tcare set of the truth table, regardless whether these don’t-care

products are used during synthesis or not.

Proof. Let F be a single-bit output of the arithmetic function, corresponding to one

of the output columns of the truth table. It can be implemented as a disjunction (OR)

of product terms. Since product term is a conjunction (AND) of literals of individual

variables, it is represented in an algebraic form as a product of the corresponding

variables. This is also true for products that include complemented variables; for

example a ∧ ¬b = a · (1 − b) = a − a · b, and similarly for arbitrary variable po-

larities. Hence, any product from the valid entries of the truth table may contain

vanishing monomials. The same argument applies to the case when the input vari-

38

ables (in this case C) appear in different product terms; a disjunction of those terms

will also create a product of the respective literals, according to the Equation (3.1):

a∨ b = a+ b−a · b, where a, b can be any product term. As a result, the signature ex-

pression generated during rewriting may contain product of variables that correspond

to vanishing monomials.

We illustrate this theorem for the circuit with the truth table in Figure 4.3. As-

sume that output Q is implemented without don’t-cares as Q = C1 ∧ ¬C0 ∨ ¬C1 ∧

C0 ∧X. This can be represented algebraically using Equation 3.1 as

Q = C1 + C0X − C1C0 − C1C0X (4.6)

The invalid product C1C0 (to be removed from the final expression) will therefore

appear as a vanishing monomial, even if the circuit is synthesized without don′t-cares.

The result of the theorem can be readily extended to an arbitrary form, including

product of sums and factored forms, which also include AND and OR operations.

The generation of vanishing monomials is illustrated here with an example of a

single-bit block of the divide-by-5 circuit. For the divisor D = 5, the remainder R

and carry-in C are strictly less than 5, and hence are encoded with m = 3 bits. This

means that the don’t care entries 101, 110, 111 for variables C2C1C0 are invalid and

can be treated as don′t-care. Even if they are not provided explicitly, they can be

readily extracted knowing the bit size of the divisor.

We can compute the algebraic expression for the invalid entries using algebraic

rewriting discussed in Section 3.3. The logical sum of the three terms can be computed

in the algebraic domain as

C2(1− C1)C0 + C2C1(1− C0) + C2C1C0

= C2C0 + C2C1 − C2C1C0

(4.7)

39

This is in fact an algebraic equivalent of the Boolean cover of the three terms, with

prime implicants, C2C0, C2C1, C2C1C0, or, equivalently {1-1, 11-, 111}. Of the three,

only the first two suffice to represent the logic, since each of them dominates C2C1C0,

which can be removed. Hence only the first two monomials, C2C0 and C2C1 are

needed and are identified as vanishing monomials.

In summary, the automatic generation of vanishing monomials (for single and

multiple blocks) includes the following steps:

1. Extract the unused (don′t care) entries from the truth table.

2. Compute algebraic expression of the product terms associated with the don′t care

entries.

3. Remove the negative and redundant monomials.

4.3.4 Verification of a Multiple-Block Architecture

Figure 4.5 shows a block level diagram of an X/3 divider using a two-block archi-

tecture, each with n = 2 and m = 2.

In the following, to simplify the notation, a single-letter index i represents the bit

position of the entire circuit, rather than the block number. The internal signals are

indexed by a pair, ij, referring to block i and bit j. The rewriting starts with the

primary outputs Q3, Q2, Q1, Q0, R1, R0, with the output signature

Sigout = 3(8Q3 + 4Q2 + 2Q1 +Q0) + 2R1 +R0 (4.8)

The expression propagates through both blocks, B1, B0 until all the primary inputs,

C1, C0, X3, X2, X1, X0 have been reached. The expected input signature at the pri-

mary inputs of the divider circuit is

Sigin = 32C1 + 16C0 + 8X3 + 4X2 + 2X1 +X0 (4.9)

40

Figure 4.5: Division of a 4-bit divide-by-3 in a two-bit block divider circuit. Rewriting is
applied in the opposite direction to the flow of the data.

In this particular stand-alone two-block configuration, C1 and C0 are set to zero, but

in general they are coming from a 2-bit remainder of the higher level block. However,

as explained earlier, the rewriting process will generate additional terms related to the

product of the carry-in signals, the vanishing monomials, defined in Section 4.3.3. The

actual input signature obtained by the rewriting contains additional terms, denoted

below as F (V,C,X), in addition to the expected input signature of Equation 4.9.

Sig = F (V,C,X) + 32C1 + 16C0 + 8X3 + 4X2 + 2X1 +X0 (4.10)

The term F (V,C,X) is a polynomial containing the terms associated with the van-

ishing monomials V , in this case C11, C10, and with the redundant terms containing

C and X. In a correct circuit, F (V,C,X) will reduce to zero, proving that the circuit

meets the specification.

41

Vanishing monomials expressed in terms of C01, C00 for block 0 gets transformed

in terms of C11, C10 and X for block 1. Hence the size of these terms may grow

during the successive rewriting steps over multiple blocks, which in a correct circuit

will evaluate to zero. This build-up of a vanishing expression can be large and it may

significantly decelerate the performance of function extraction; it is often referred to

as a fat-belly effect. In a large circuit, this effect is even more pronounced since the

vanishing monomials may be rewritten into more complex (yet redundant) monomials,

causing a potential blow-up in the size of the computed signature.

One way to address this problem is to remove redundancy (vanishing monomials

and boundary conditions) at the boundary of a given block before propagating the

signature to the next block. However, in an unrolled circuit, synthesized across the

block boundaries, it may be impossible to determine the boundary between the ad-

jacent blocks. Fortunately, in the case of the division by a constant this information

is readily available from the invalid (don’t-care) entries in the lookup table, as ex-

plained in Section 4.3.3, unless those signals are renamed by the synthesis process.

The extraction, detection, and removal of vanishing monomials is fully automated for

this methodology.

4.3.5 Faulty Circuit Verification

Let us consider the divide-by-3 circuit discussed in the previous sections. The

output signature is Sigout = 3Q0 + 2R1 + R0 and the expected input signature of

the correct circuit is Sigin = 4C1 + 2C0 + X0. Assume that the fault is caused

by swapping the second and third entries in the truth-table of Figure 4.3. Then

the gate-level implementation will be different, as shown in Figure 4.4(b), causing

the algebraic transformations also to be different. As a result, the input signature

obtained by backward rewriting, after removing the vanishing monomials, is Sigin =

−C1X0 + C0 + 2X0 + 4C1. The mismatch between such obtained expression and the

expected specification indicates that the circuit is faulty.

42

It should be noted that, if there is a fault in the circuit that causes R11R10 = 1, the

removal of this product as a vanishing monomial will not result in a wrong conclusion

about the correctness of the circuit. Assume that block B1 in Figure 4.5 is faulty and

block B0 is correct. The rewriting process starts from signals Q01, Q00, R01, R00 and

transforms them into signals C01, C00, X01, X00. Since block B0 is correct, the output

signature across this block is also correct and linear after removing the vanishing

monomials. In the next step, even when the vanishing monomial C01C00 (which

in block B1 becomes R11R10) is set to zero, the individual signals R11, R10 are not

removed from the expression and they are rewritten up to primary inputs, regardless

of what their actual value is. This is also apparent by examining Equation 4.5, where

the product C0C1 is removed as vanishing monomial, but the individual variables C0

and C1 are not! If block B1 is faulty, the final computed signature will not match

the correct signature/specification, because the expressions for R11, R10, propagated

to the PIs, are faulty. Therefore, removing the vanishing monomials in any of the

earlier stages will not affect the correctness of the signature in the subsequent blocks;

and they never appear as a product in the output signature for a given block since

the output signature is linear.

4.4 Results and Analysis

The program implementing the described verification method for the constant

divider was coded in Python and C++ and the experiments were conducted on a 64-

bit Intel Core i7-7600 CPU, 2.80GHz × 2, with 31.0 GB of memory. The circuits were

generated using an open-source hardware generator, FloPoCo [14], and synthesized

using ABC tool [31] onto standard cell, gate-level circuits.

Four sets of results are presented, including: two types of unrolling schemes (mod-

ular and unrolled), verification of a restoring constant divider architecture, and a

43

numerical simulation. We also show the results for a generic, restoring divider archi-

tecture.

4.4.1 Modular Architecture

In the Modular architecture, each block is instantiated the required number of

times (depending upon the dividend bit-width). In this scheme, the boundary be-

tween adjacent blocks is known and the vanishing monomials are extracted and re-

moved from the signature at each block, before rewriting the next block in series.

The experiments include both correct (bug-free) and faulty circuits. The faults were

emulated by randomly injecting multiple faults in the truth table into the valid por-

tion of the look-up table. The invalid part of the table is not affected since it is used

as a don’t-care in synthesis.

Table 4.1 shows the verification run time for the divide-by-constant iterative ar-

chitecture for several block sizes with a 32-bit dividend x. The results are shown for

divisors value of up to 283 and a 9-bit remainder.

Table 4.1: Verification results for the divide-by-constant divider circuit using our
technique for: (1) Modular 1-bit block, 2-bit block; and 2) 4-bit block architecture
with a 32-bit dividend X (Figure 4.2). Time-out TO = 1200 s, Memory-out MO =
16 GB

Modular Unroll
1-bit Block 2-bit Block 4-bit Block

Divisor
Rem.

Bits
#Gates

Time (s)
No Bugs

#Bugs
Time (s)

Bugs
#Gates

Time (s)
No Bugs

#Gates
Time (s)
No Bugs

3 2 712 0.06 1 0.06 665 2.26 895 0.90
11 4 1919 1.15 2 1.11 1917 2.23 4045 MO
17 5 1763 0.81 3 .75 2236 5.83 2492 MO
31 5 1825 0.31 5 0.27 1676 0.85 10163 MO
61 6 3715 3.50 8 3.56

Memory Out

89 7 4520 13.5 5 16.71
113 7 3652 6.68 7 7.21
139 8 5542 27.9 7 94.75
191 8 4736 9.67 5 11.36
251 8 6410 110.4 5 113.5
257 9 6549 22.56 7 23.0
283 9 8951 643.8 9 638.4

44

The table shows that the verification time does not change monotonically with

the size of the divisor and can be explained by the content of the look-up table.

This non-monotonic behavior can be explained by examining the content of the truth

tables for the corresponding divisions and its dependence on the value of the divisor.

Consider, for example, a Divide-by-17 in Table 4.1. The size of the LUT is 6 bits

(one bit for the dividend X and 5 bits for the carry-in C, same as the size of the

remainder). Of the 64 entries in the LUT only 35 are used, while the remaining 29

entries are invalid and treated as don’t-cares. Whereas in the Divide-by-31 circuit,

with the same size of the remainder and the LUT table, 62 out of 64 entries are used

and only two entries are redundant.

Table 4.1 also shows the results for the Modular, two-bit and four-bit block archi-

tectures for different divisors. The lower verification performance for these circuits

compared to a one-bit architecture is caused by a drastically larger number of gates

per block, preventing efficient removal of vanishing monomials during rewriting.

4.4.2 Flat Unroll Architecture

In the Flat Unroll architecture the circuit is unrolled and synthesized (optimized)

across the block boundaries. This causes any hierarchical information about the block

boundaries to be lost, making the verification process harder. Since under this scheme

the vanishing monomials are not removed at the block boundaries, the verification

problem is significantly more memory intensive. As a result, the largest value of the

dividend verified under this methodology is 29 shown in Table 4.2.

4.4.3 The Restoring Constant Divider

We also tested an alternative architecture based on a standard restoring divider

[29], in which the divisor D has been hardwired to a particular constant, Figure 5.4.

The restoring divider has been implemented and synthesized using ABC [31] as a

tool. Constants from the bits of D are propagated through and used to optimize the

45

Table 4.2: Verification results for the divide-by-constant divider circuit using our
technique for Flat-Unroll architecture with a 9-bit dividend X (Figure 4.2). Time-
out TO = 1200 s, Memory-out MO = 16 GB;

Flat Unroll

Divisor
Rem.

Bits
#Gates

Time (s)
No Bugs

3 2 105 2.96
11 4 300 42.6
17 5 192 6.68
31 5 282 169
61 6

Memory Out
89 7

overall circuit. Our rewriting-based verification technique has been integrated with

the ABC data structure as a customized polynomial rewriting command &polyn.

Unfortunately, ABC was unable to verify the circuits beyond 22 bits, resulting in

segmentation fault over 24 GB. Table 4.3 shows the results for such a restoring divide-

by-constant circuit for the 22-bit dividend.

Table 4.3: Verification results for the divide-by-constant divider circuit using our
technique for Restoring Constant Divider with a 22-bit dividend X. TO = 1200s,
MO = 24GB. SF = Segmentation Fault.

Restoring

Divisor
Rem.

Bits
#Gates

Time (s)
No Bugs

3 2 183 0.01
11 4 488 2.42
17 5 538 4.13
31 5 638 10.4
61 6 726 9.12
89 7 726 10.9
113 7 765 3.82
139 8 766 71.1
191 8 892 SF
251 8 880 14.53
257 9 786 57.2
283 9 871 89.9

46

4.4.4 Simulation Based Verification

We simulated the divide-by-constant dividers(different architectures) for different

size of divisors D and dividend X, ranging from 28 to 232. We used Modelsim SE

10.0 on a Xeon 5650 processor with 6 cores (2.67GHz), 24 GB of RAM, and 350 GB

free hard disk space.

Figure 4.6 shows the simulation results for D = 257 and 283 (bold lines) and

compares their results with the rewriting approach (dotted line) described in this

section. The following cases are considered:

• LUT-based implementation generated by FloPoCo [14];

• Gate-level implementation of a LUT, synthesized with ABC; and

• Restoring constant divider implemented with ABC.

As shown in Figure 4.6, the simulations are faster for gate-level than the LUT-

based implementation. In contrast to our rewriting approach, the value of divisor D

does not have significant impact on the simulation time.

The results show that the simulation approach is competitive for dividend bit-

widths up to 22 bits (simulation time slightly longer than of our approach, for constant

dividers). With higher bit-widths however, simulation time becomes prohibitive. For

example, the simulation for (Gate-level) dividends larger than 28 bits required 15,264

seconds (4h24m), with memory out of 24GB for larger bit-widths. Furthermore, the

simulation based experiments shown here are run on a Xeon 5650 with six cores,

which is a much more powerful machine compared to all of the other results (Core

i7-7600 CPU with two cores). Regardless, our technique still outperforms simulation

based verification schemes for LUT-based and gate-level but lacks in performance,

compared to the simulation results for the restoring constant divider.

47

a) Divisor = 257 b) Divisor = 283

Figure 4.6: Exhaustive simulation run time for divisors D=257 and D=283 for different
implementations, as a function of the dividend bit-width. Dotted Lines show equivalent for
our rewriting technique.

Figure 4.7: Restoring Generic 3-bit Divider [40].

4.4.5 The Restoring Generic Divider

This section demonstrates the applicability of our approach to the implementation

of constant divider by a generic restoring divider, shown in Figure 4.7. Table 4.4 shows

the preliminary data for the verification run-time of a restoring divider over an AIG.

As the complexity of the design increases beyond 1000 gates, the ABC tool crashes

with a segmentation fault, with a memory consumption of 20GB. The reason being

48

that the underlying vector data-structure is not able to contain the prohibitively

large polynomial. Under this methodology, the divider circuit is heavily optimized

and hence any boundary information between different modular blocks is lost, as

shown in Table 4.4.

Our constant divider methodology is not scalable to generic dividers as of yet

and currently the simulation based verification outperforms our technique. However,

it still demonstrates the significance of its applicability to generic divider circuits.

Chapter 5 presents a layered rewriting strategy to avoid this memory explosion issue

to some extent.

Table 4.4: Verification run time for the Restoring generic Divider. #Bits show the
bit-width of dividend. SF = segmentation fault.

Bits
Divisor

Max.Value
Gates

Time (s)
This work

Time (s)
Simulation

3 8 119 0.00 0.05
4 16 216 0.01 0.15
5 32 341 0.08 0.19
6 64 494 0.59 0.45
7 128 675 4.78 0.60
8 256 884 36.96 0.97
9 512 1121 SF:264 3.4
10 1024 1386 SF:232 13.55
19 1048576 4325 SF:240 TO

49

CHAPTER 5

FORMAL VERIFICATION OF HARDWARE DIVIDERS
USING LAYERED VERIFICATION STRATEGY

5.1 Introduction

In this work, we concentrate on combinational dividers: integer divider, and the

fractional fixed point divider, essential components of floating point division unit.

This chapter is organized as follows. Section 5.2 develops an algebraic verification

technique for the fractional and integer dividers. Section 5.3 presents some prelimi-

nary results and conclusions.

5.2 Fixed Point and Integer Dividers

This section describes our approach to verify two types of dividers: 1) the frac-

tional divider, operating on fractional numbers, an essential component of the floating

point divider; and 2) the integer divider, with the same structure as the divide-by-

constant divider, to be used in algebraic rewriting.

Current divider verification methods model the divider with a series of controlled

add/sub operations. The most advanced divider verification method to-date is proba-

bly that of [22], as briefly reviewed previously. It is based on reverse engineering of the

gate-level implementation by creating a logic bit-level model of the circuit (LBLA),

and matching it against a well-structured functional reference model (FBLA). The

method relies on extracting essential components, such as carry propagation logic and

sum generation logic that are expected to be present in some form in the divider. It

also searches for XORs and specific logic patterns present in the reference divider.

50

An error is declared if such functions cannot be identified in the circuit. While the

CPU runtimes are impressive, such a reverse engineering method, based on a strictly

structural pattern matching, does not accomplish the functional verification per se. It

may happen that some components do not match the expected logic, but the circuit

may work correctly as an ensemble. Or, that some logic is represented without XORs.

As an example, Figure 3.1 shows a non-standard full adder implementation without

XORs.

In contrast, in our work the divider is modeled in a single functional specification,

X = D · Q + R, to be compared to the signature computed by algebraic rewriting.

This approach works for any combinational divider circuit, regardless of its internal

structure.

5.2.1 Functional Verification Model

Fractional divider is an essential part of hardware for floating point division. The

dividend X and the divisor D are normalized by pre-shifting to comply with the

IEEE 754 standard. Figure 6.7 shows the functional model of the divider verification

considered in this work. The blue box below the divider is a ”reverse division unit”,

RDU, which computes D ·Q + R. The verification goal is to check if the expression

is equivalent to (or reduces by algebraic rewrting to) the dividend X.

Figure 5.1: Functional verification model of the divider.

51

One way to solve this problem is to apply a SAT or SMT technique; however

instead of comparing the divider against a reference design we compare the RDU

circuit (D·Q+R) against the dividendX. As a proof of concept, we tested this method

on both restoring and nonrestoring array dividers. A miter was added between the

input X of the divider and the output of RDU and the ABC system [31] was used to

generate a CNF file for the SAT problem and solved it using miniSAT . While the

solution required only 4.4 seconds to prove a 16-bit X/8-bit D divider, a 32-bit/16-bit

divider timed out at 3600 seconds.

A more promising method to verify the divider is based on the algebraic rewriting

using the structure shown in Figure 6.7. In this approach the output signature poly-

nomial, Sigout = D ·Q + R, based on the outputs Q,R and the divisor D is created

and algebraically rewritten through the divider network to the primary inputs, where

in the correct circuit it should be equal to the dividend X.

For the illustration purposes we consider here an unsigned nonrestoring divider,

a preferred hardware implementation that can be easily extended to signed division.

In fact, both the restoring and nonrestoring dividers satisfy X = D · Q + R, with

R < |D|, but the nonrestoring divisor requires a minor correction when the remainder

R and the dividend X have opposite signs, to make sure that R < D [29].

5.2.2 Fractional vs. Integer Divider

We now demonstrate that the fractional divider can be used for integer division

[29]. In fact, it is only a matter of interpretation of the result, whether a fractional

or an integer division is performed by the hardware, as demonstrated by the example

below (see Figure 5.2). This will allow us to perform algebraic rewriting on the

divider’s circuit, while working only with integers.

In the following example we consider unsigned fractional numbers, with 0 in the

leading bit position before the fractional dot, i.e., X = 0.x−1x−2... x−n, in accordance

52

(a) (b)

(c)

Figure 5.2: Nonrestoring 7-4 divider (n = 3): a) Fractional divider; b) Controlled
Add/Subtract (CAS) block; c) Integer divider

with the IEEE standard. We assume that the bit-widths are sized as required to avoid

an overflow or an underflow, i.e., X has size 2n + 1 and D,Q,R are of size n + 1,

including 0 before the fractional dot [29].

• Fractional Divider (Figure 5.2(a)): The dividend and the divisor are preshifted,

such that X < D, so that the result Q is also a fraction. The following repre-

sentation is used:

53

X = 0.x1....x6, D = 0.d1d2d3, Q = 0.q1q2q3, R = 0.r1r2r3.

To illustrate this issue, consider the following example:

X = (0.100000)2 = 1/2 and D = (0.110)2 = 3/4

which satisfies a non-overflow condition, X < D. The result is:

Q = (0.101)2 = 5/8, R = (0.010)2 = 1/4,

as shown in Figure 5.2(a). The computed remainder R needs to be multiplied

by 2−3 (determined by its number of bits) to obtain the final remainder R′ =

2−3 · 1/4 = 1/32. Hence,

X = D ·Q+R′ = 5/8 · 3/4 + 1/32 = 1/2,

which is a correct result.

• Integer Divider (Figure 5.2c): The result in the integer domain can be ob-

tained with exactly the same hardware, but with the bits of the operand and

the results ordered in the opposite direction. In this case,

X = 0x6...x2x1 = (0100000)2 = 32,

D = 0d3d2d1 = (0110)2 = 6,

Q = 0q3q2q1 = (0101)2 = 5,

R = 0r3r2r1 = (0010)2 = 2.

The result is correct: X = D · Q + R = 6 · 5 + 2 = 32 and no adjustment of

R is necessary in the integer case. Note that, as long as the operands and the

54

result registers are of correct size, the integer divider will always compute the

correct value, with the difference between X and Q·D being compensated by the

remainder R. The equivalence between the fractional divider and the integer

divider, as illustrated above, gives us a right to use our algebraic rewriting

technique on the integer divider to prove the fractional divider circuit.

5.2.3 Layered Rewriting

When rewriting output Q or R of the divider, the final polynomial at the primary

inputs, Sigin, will be expressed in terms of the primary inputs, X,D. In a correct

circuit the composition of the resulting polynomials, Q(X,D) ·D + R(X,D) should

result in the dividend X, with variables of D eliminated. This is an ultimate test if

the circuit correctly implements the divider.

One possible way to accomplish this is to generate the polynomial Sigout = D ·Q+

R expressed in terms of the respective bits of Q,R,D, and rewrite it all the way to

the primary inputs (PI). The resulting Sigin should produce a polynomial in bits of X

only, representing the dividend. An alternative approach would be to express Q and

R separately, each in their own bits, rewrite them to the PI, and then compose the

resulting signatures as Sigin = Sigin(Q)·D+Sigin(R). The result for a correct circuit

should also be X, with D eliminated. Our initial experiments, however, suggest that

these methods, when applied directly to the entire circuit, are inefficient, since the

size of the intermediate polynomials becomes prohibitively large.

To address this problem, we developed a layered technique, which rewrites each

row corresponding to one bit qi of the quotient, one row at a time. In this case, the

output signature is qiD + Pi, where Pi is the intermediate (partial) remainder, with

the boundary condition P0 = R. The expected input signature of row i is Pi+1, and

Pn = X, where n is the number of (fractional) bits of R,Q and D.

55

Figure 5.3: Single layer of the restoring divider used in rewriting.

This approach can be justified by observing that the logic between two adjacent

rows will not be optimized by a synthesis tool and the partial remainder signals are

preserved during synthesis (refer to Theorem 2 of [22]). Synthesis tools, such as

Synopsys DC, typically apply the maintain hierarchy directive, which is beneficial

for physical synthesis. The circuit is synthesized across the add/sub modules of each

layer, but not vertically across the rows.

Let Pi denote a partial remainder associated with the row corresponding to the

quotient bit qi (starting with i = 0). At the bottom of the array, P0 = R, the final

remainder; and at the top of the array, Pn = X, the dividend. Rewriting starts

at the remainder output R and rewrites one row of the add/subtract circuitry at a

time, using one bit of the quotient qi and the entire divisor D to compute the partial

remainder Pi. That is,

Sigout(i) = qi ·D + Pi and Sigin(i) = 2Pi+1 +Xi

where D =
∑n

k=0 2kdk, Pi =
∑n

k=0 2iPi,(i+k), where Pi,j denotes a bit of partial re-

mainder in row i, column j = i+ k, with the following boundary conditions:

P0,k = Rk (k = 0,. . . ,n-1); Pi,n+i = 0 (i = 0,. . . ,n); Pn,k = Xk (k = n,. . . ,2n). Hence,

at each level (row) i, we have

2i(qiD + Pi) = 2i+1Pi+1 + 2iXi

56

After n steps, the expected signature of the divider is X.

Figure 5.4: Restoring integer divider [40].

To illustrate the idea, the following rewriting is applied to the restoring divider

shown in Figure 4.7.

q0D + 4R2 + 2R1 +R0 = 8P13 + 4P12 + 2P11 +X0

2q1D + 8P13 + 4P12 + 2P11 = 16P24 + 8P23 + 4P22 + 2X1

4q2D + 16P24 + 8P23 + 4P22 = 16X4 + 8X3 + 4X2

By adding the above equations, we obtain:

(4q2 + 2q1 + q0) ·D + (4R2 + 2R1 +R0) =

16X4 + 8X3 + 4X2 + 2X1 +X0 = X

or, equivalently Q · D + R = X, which is the ultimate proof that the circuit is a

divider.

In this approach, the input signature computed for a given layer becomes an

output signature for the next layer. Such a layered rewriting approach significantly

speeds up the verification process and avoids the problem of a potential memory

57

explosion, especially when there is a bug in the circuit. Furthermore, the method

enables debugging by observing the signature at each rewriting step. If the result of

local rewriting does not match the polynomial representing the partial remainder,

Pi, we conclude that the bug exists in the current layer. This process can be easily

done in a speculative parallel manner, since the form of each polynomial at the row

boundary is known, and can be stopped when one of the layers does not produce the

expected result. The source of error is then constrained to the particular layer and

the propagation of rewriting will stop there to examine the bug. The same procedure

can be used to prove the nonrestoring dividers.

5.3 Results

The verification technique described here was implemented in the ABC environ-

ment as a rewriting command &polyn. The experiments were conducted on a 64-bit

Intel Core i7-7600 CPU, 2.80 GHz × 2, with 31 GB of memory. The circuits were gen-

erated by an in-house restoring divider generator tool and synthesized onto standard

cells by the Synopsys Design Compiler (DC).

Table 6.3 shows the results for two verification methodologies: one, for fully rewrit-

ing the entire circuit, which (as explained earlier) does not offer promising results;

and the other based on the layered verification described in this paper. The results

are also compared against: 1) An exhaustive simulation using Modelsim 10.5b on

an Intel Core i7, 2.2 GHz with 16 GB memory; and 2) Equivalence checking using

miniSAT. For the SAT experiment, the synthesized divider circuits are compared

against the dividers instantiated by the Synopsys DesignWare (DW) library. As one

can see from the table, neither the simulation nor the SAT results can compete with

the layered verification. While the time of 780 sec for a 21-bit restoring divider seems

excessive compared to those presented in [22], it gives the time to verify the function

of the divider circuit against its functional specification. This is a significantly harder

58

task than checking its equivalence w.r.t. a reference design, especially when both the

circuit under verification and the reference design exhibit similar structure.

Table 5.1: Verification results for a bug-free restoring divider. #Bits = Dividend
bit-width. MO = Memory-out 20 GB, TO = Time-out 3600 s

Bits # Gates
Time (s)

Full-rewrite
Time (s)

This work
Time (s)

Simulation
Time (s)

SAT
5 201 0.08 0.01 0.45 0.14
7 352 4.78 0.01 0.97 0.24
11 415 MO 0.01 1.23 10.68
13 570 MO 0.01 8.3 19.16
17 970 MO 4.72 552.5 1584.32
19 1207 MO 51.7 TO TO
21 1470 MO 780 TO TO
23 1750 MO MO TO TO

5.4 Conclusion

This chapter presented a verification method for gate-level integer divider circuits

based on algebraic rewriting. The verification relies on creating a ”reverse divider

unit” that defines the output signature needed for algebraic rewriting. This approach

can, in principle, be used for the entire circuit, or be applied to individual layers of the

divider circuit in the array architecture. It has been shown that the same approach

can be used for fractional arithmetic, since the integer and fractional dividers share

the same architecture.

A notable advantage of this method is that it verifies the divider against its func-

tional specification and does not require a reference circuit. As such, it can be used

to prove newly developed architectures and certify them as reference (golden model);

alternatively, it can be used for designs that do not have a well defined or trusted

reference. The layered technique can be easily parallelized and applied to other arith-

metic circuits with similar architectures. It also enables debugging of the circuit at

the single-layer granularity.

59

The algebraic rewriting advocated in this work provides an efficient method for

verifying multipliers, adders, subtractors, and multiply-accumulate circuits. However,

the method is not scalable for the verification of divider circuits, because of their

”non-standard” characteristic function, X = Q · D + R, which is not a closed-form

expression. Specifically, input X is expressed in terms of outputs and another input

D, which, combined with its non-linearity, limits the efficacy of the rewriting. As a

result, dividers do not benefit from rewriting as a means of verification.

In order to learn how to overcome this limitation and devise a method for efficient

verification, we digress for a moment and look at a class of arithmetic circuits similar

to that of divider, but with a different and an easier to handle characteristic function.

In the next chapter, we consider a square-root array circuits (SQRT) that belongs to

the same iterative/subtract architecture family as divider, with a characteristic func-

tion X = Q2 +R. It has a single input X and outputs (Q,R), which provides a clean

output signature, Sigout = Q2 + R, containing only the output terms. We analyze

the architecture of such circuits and present another original method to verify large

bit-width SQRT circuits, avoiding the limitation of the standard algebraic rewriting

technique. We will then return to dividers and apply similar technique for the divider

circuits.

60

CHAPTER 6

SQUARE-ROOT AND DIVIDER CIRCUIT
VERIFICATION USING HARDWARE REWRITING

Square-root algorithm plays a major role in many domains, including computer

arithmetic, computational geometry, embedded systems, and other special purpose

applications. It belongs to the class of dividers and it is one of the most complex arith-

metic operation to implement and verify [25]. Square-root computation of a positive

number has numerous applications, including Euclidean Norm as well as in the gener-

alizations of the Hilbert Spaces. It defines an important concept of standard-deviation

(root of a variance), and has a major application in quadratic formula to compute

roots for quadratic equations and fields [29][33]. In this chapter, we first present a

verification methodology for square-root circuits using standard rewriting, and then

introduce a new concept of HardwareRewriting , and then extend it to divider.

6.1 Characteristic Function of Square-Root

In order to apply algebraic rewriting to the SQRT circuit, we need to define the

input and output signatures for the circuit and the characteristic function of the

square rooter. The obvious inputs and outputs of such a circuit are X (the radicand)

and Q (the root). The characteristic function of the SQRT operation, Q =
√
X, can

then be described by:

X = Q2 +R, with R ≤ 2Q (6.1)

61

where R is the remainder (or residue).1 The remainder R is needed in the expression

so that the arithmetic function of the circuit can be represented as a strict equality

(characteristic function) rather than an approximation. Its role in Equation (6.1) is

similar to that in the division, X = QD+R, where Q is the quotient, D the divisor,

and R the remainder. Depending on the square-root extraction algorithm imple-

mented by the circuit, the remainder R can be positive (in the restoring algorithm)

or of any sign (in the non-restoring algorithm). Using a simple integer example with

X = 13, the solution to Q =
√

(13) ≈ 3.6055 can be either Q = 3 and R = 4; or

Q = 4 and R = −3. Typically, R > 0 is preferred as a standard solution, but nega-

tive remainders can also be used, depending on the required precision (as explained

in more detail in Section 6.2.1.) However, it is important to note that in both cases,

equation (6.1) is satisfied: X = Q2 +R = 32 + 4 = 42 − 3 = 13.

Unfortunately, most hardware SQRT implementations do not provide the remain-

der, so it needs to be generated for the purpose of our verification approach. Section

6.4.1 describes how such a remainder is generated and used in the verification.

6.2 Integer vs. Fractional SQRT

Consider an integer SQRT circuit, with radicand X and root Q being integers. To

verify the SQRT circuit, we need to prove that the equation X = Q2 +R is satisfied

for every input assignment and that R ≤ 2Q. It can be shown that R is also integer

and result Q is unique. Furthermore, for the restoring algorithm, R is positive.

In principle, verification of X = Q2 + R can be achieved by performing algebraic

rewriting discussed in Section 3.1, by rewriting Sigout = Q2 +R at the outputs Q,R,

into Sigin = X at the input X. The word-level symbols X,Q,R are represented as

polynomials in binary variables (bits) with integer coefficients 2i. Specifically, for n+1

1The reason for the requirement R ≤ 2Q is that for R ≥ 2Q+1, we have X = Q2 +R ≥ (Q+1)2,
hence the result would be incorrect [33].

62

bit vectors: X =
∑n

i=0 2ixi, Q =
∑n

i=0 2iqi, and R =
∑n

i=0 2iri. We will return to the

verification of the requirement R ≤ 2Q later in Section 6.4.2.

It has been shown in the literature on computer arithmetic [29] and [33] that the

integer SQRT circuit will also perform the SQRT function with the fractional radicand

X and root Q. In fact both circuits use exactly the same algorithm and the same

architecture. Such fractional circuits are routinely used for floating point calculations

and hence it is important to develop a method for their verification. The two designs

will only differ in the representation of the operand X and the result Q, with the

fractional circuit having binary representation X = [x0.x−1....x−n] =
∑−n

i=0 2ixi, and

similarly for Q. In the fractional case, the number of bits of R is 2n+1. The radicand

of the integer circuit isX = [x0x−1....x−n] = 20X0+2−1X−1+...+2−nX−n =
∑−n

i=0 2ixi,

where x0 is the most significant bit and x−n the least significant bit; and similarly for

Q and R.

To avoid fractional coefficients, the fractional representation of X and Q can be

simply multiplied by 2n, where n is an even number of bits (n = 2k) of X and Q.

That is, √
(x0 . x−1....x−n) =

√
(x0x−1....x−n · 2−n)

= 2−k
√

(x0x−1....x−n)·

This simple normalization gives us the right to apply the algebraic rewriting concept

(as well as the hardware rewriting developed later) to fractional SQRT circuits using

polynomials with positive coefficients.

6.2.1 Restoring vs Nonrestoring SQRT Verification

We close this section by making remarks about the application of our approach

to all versions of SQRT designs, including integer and fractional, both restoring and

nonrestoring.

We illustrate this point with the following example:

63

X = 118/64 = 1.110110, where
√

(118/64) ≈ 1.3578....

• Fractional Restoring:

Q = 86/64 = 1.010110;R = 156/642 = 0.000010011100.

Equation (6.1) is satisfied: X = (86/64)2 + 156/642 = 118/64

• Fractional Nonrestoring:

Without correction,

Q = 87/64 = 1.010111, R = −17/642 = 1.111111101111

and Equation (6.1) is satisfied:

X = (87/64)2 − 17/642 = 118/64

With correction:

Q = 86/64 = 1.010110, R = 156/642 = 0.000010011100

In this case Equation (6.1) is also satisfied: X = (86/64)2 + 156/642 = 118/64.

This result is obtained by rounding down (truncating) the initial result, while

the original one without correction (with R = −17/642) is actually closer to

the real solution and may be more desirable. In any case, regardless of the

correction or rounding, the characteristic equation X = Q2 + R is satisfied

and will be used as an invariant in our verification method. Recall that the

integer solution for
√

(118) =
√

(01110110)2, with Q = 1010 = (1010)2 and

R = 18 = (10010)2, also satisfies Equation (6.1).

64

6.3 SQRT Verification Technique

Figure 6.1 shows a 7-bit modular square-root circuit architecture with the two

outputs, Q and R. The basic components of the circuit are the Controlled-Subtract

CS and CR blocks. Here, CS is basically a half-subtractor and CR a full-subtractor

(similar to a half adder and a full adder). The circuit has an iterative-subtract

architecture composed of a number of blocks organized in an iterative fashion: each

row computes a single bit of Q on the left, and the partial remainder R that is fed

to the lower row. To verify the SQRT design, we need to prove that the equation

X = Q2 +R is satisfied for every input assignment. The word-level symbols X,Q,R

are represented in terms of their bits as: X =
∑2k−1

i=0 2iXi, Q =
∑k−1

i=0 2iQi, and

R =
∑k−1

i=0 2iRi.

Figure 6.1: A restoring SQRT circuit with a 7-bit radicand, 4-bit quotient, and a 5-bit
remainder.

In this chapter, we consider an integer SQRT circuit. However, it has been shown

in [29] that exactly the same architecture will also perform the SQRT function on a

fractional SQRT circuit. This is similar to the case of the divider as already shown

in Section 5.2. The two designs will only differ in the representation of the input and

65

the results, with the fractional circuit having representation X = [0.x1....xn−1] and in

the integer case as X = [xn−1....x0]; and similarly for Q and R.

The internal working of the SQRT circuit is similar to the divider: it uses iterative

subtraction, except that the divisor is changing at each step. We can therefore apply

the verification approach used in the divider verification, by rewriting the output

signature Q2 +R to the input X.

To test this idea, we generated a square root circuit with outputs Q,R using the

ABC tool [31], so that the equation X = Q2 +R should hold for a correct circuit.

Figure 6.2: A restoring SQRT circuit with a 4-bit radicand, 2-bit quotient, and a 3-bit
remainder.

For example, the circuit with a 4-bit radicand X and a 2-bit quotient, Q, as shown

in Figure 6.2, has the following output signature:

Sigout = (2q1 + q0)(2q1 + q0) + (8r3 + 4r2 + 2r1 + r0), (6.2)

which in a reduced form is

Sigout = (4q1 + 4q0q1 + q0) + (8r3 + 4r2 + 2r1 + r0). (6.3)

This signature is then rewritten to the outputs, with expected expression being:

Sigin = (8X3 + 4X2 + 2X1 +X0) = X (6.4)

66

While conceptually the verification can be accomplished by algebraic rewriting

described by Equations 6.2, 6.3, and 6.4, the resulting Sigin can still be too complex

or the computation may not terminate. To address this problem, we reconstruct the

circuit by explicitly creating the circuit that computes the residual R. The recon-

structed part is obtained by generating the residue circuit R = X−Q2, whose inputs

are X,Q and output is R, further explained in Section 6.4.1. The reconstructed cir-

cuit is shown in red in the upper-right part of Figure 6.5. At this point the rewriting

could potentially be done on the circuit with the original output Q and the newly

generated R. However, such a ”standard” rewriting is not efficient, mostly because

the output signature Sigout = Q2 +R is nonlinear and the intermediate polynomials

can become prohibitively large causing memory overload.

Table 6.1 shows the verification runtime for the square-root restoring architec-

ture, using the rewriting tool originally developed for multipliers and also applied to

dividers [54]. As expected, the designs with a radicand greater than 8 bits cannot

be verified with this näıve approach due to memory issue. The non-linear signature

(Q2 + R) causes the intermediate polynomial to become so large that the rewriting

does not converge even with 22 GB of memory. The next section describes an original

method to fix this problem.

Table 6.1: Square Root verification results using standard-Style rewriting

Radicand Bits Time (s)
3 0.00
4 0.01
5 0.08
6 1.93
8 712
10 T/O

Currently, as can be seen from the preliminary results, the memory explosion

during the rewriting process prevents the verification to succeed for large bit-width

67

circuits. In order to overcome this issue, a novel concept of hardware-based rewriting

is introduced next.

6.4 Hardware Rewriting for SQRT Verification

6.4.1 Remainder Generation

We now come to the critical issue: in order to prove the circuit using equation

X = Q2 + R, we need the remainder R. However, a typical SQRT circuit provides

only a single output Q. To solve this problem, we restore the ”missing” residual

output by constructing a circuit Rref = X −Q2
ref , with inputs X and Qref , and the

needed output Rref , as shown in Figure 6.3. Input Qref is provided by the reference

SQRT design, labeled Ref
√
X in the figure, a golden model known to be correct.

Figure 6.3: Residue generation using a Reference Design.

The reconstructed circuit is shown in Figure 6.4. At this point the rewriting can

be done on the modified circuit with the original output Q and the newly generated

Rref . However, such a simple-minded, standard rewriting is not efficient, mostly

because the output signature Sigout = Q2 + Rref is nonlinear and the intermediate

polynomials can become prohibitively large. Our experiments show that the designs

with a radicand greater than 8 bits cannot be verified with this approach due to a

68

memory overload. The main culprit seems to be the non-linearity of the signature

(Q2 + R), which causes the intermediate polynomial to grow fast, so the rewriting

does not converge even with 22 GB of memory.

Figure 6.4: Conceptual standard rewriting.

The failure of applying algebraic rewriting is actually not surprising; algebraic

rewriting has been successfully applied to complex adders and multipliers, which are

characterized by a linear output signature in its output bits zi, determined by the

encoding of the output bits. For example, a multiplier Z = A ·B has a clearly defined

linear signature Sigout = Z =
∑n−1

i=0 2izi. However, the square-root circuit has a

non-linear signature, X = Q2 + R. Rewriting a non-linear signature is much more

memory intensive, as demonstrated above, and a standard algebraic rewriting proves

largely ineffective for these circuits.

The reader may ask at this point, and rightly so: ”why not compare Qref directly

to output Q of the design under verification”? In fact we tried it using SAT technique,

but the results were very disappointing, as shown in Table 6.2 Section 6.6. The next

section describes an original method to solve this problem by extending algebraic

rewriting to synthesis to be performed directly on the hardware.

69

6.4.2 Hardware Rewriting

We now introduce the concept of a Signature Linearizer, a circuit that transforms

a nonlinear signature Q2+Rref into a linear one, in an attempt to enable the rewriting.

Figure 6.5: Hardware rewriting

Figure 6.5 shows the basic concept of our approach. The upper part of the figure

is the circuit that computes Q2 + Rref described earlier and shown in Figure 6.4.

Since algebraic rewriting of such a polynomial is inefficient, we introduce another

circuit that computes function Z = Q2 + Rref , derived from the output Q of the

original circuit, and the reference remainder Rref , generated from the reference Qref .

Such constructed output Z of the circuit is a linear polynomial in its bit variables,

Z =
∑n

i=0 2izi.

As shown in Figure 6.5, the combined circuit has input X and output Z, which

for the correct SQRT circuit should satisfy Z = X. In principle, this equivalence

could be checked by algebraic rewriting of the linear polynomial Z all the way to

the primary inputs, in an attempt to obtain X. However, it turns out that such

an algebraic rewriting is still inefficient, since the internal polynomials can become

prohibitively large.

70

Instead, we perform an implicit hardware rewriting by resynthesizing the entire

circuit that computes Z as a function ofX. This resynthesis process uses a state-of-the

art synthesis tool, ABC [31], that includes structural and functional hashing (strash),

functional simplifications (fraig), and a final resynthesis step (dch), all using an AIG

data structure. In a functionally correct SQRT circuit, the newly constructed circuit

should become redundant and reduced to a set of wire connections between X and

Z, provided that the added parts (residue generator R = X −Q2 and the linearizer,

Z = Q2 +R) are correct.

We cannot, however, rely on resynthesis as a formal proof; if the synthesis does

not simplify the design to a redundant state (wires/buffers), we cannot conclude

that the circuit is incorrect. In this case, those portions of the circuit that are not

reduced to wires can be verified using SAT. Specifically, for each bit Zi that does not

trivially reduce to Xi, we create an XOR/miter and check if the result is unSAT (or,

equivalently if the output of an XOR for each pair of bits Xi, Zi is 0).

If the result is unSAT, the circuit is correct; otherwise, the SAT solution provides

a counter example that can be used to identify the bug. This ”hardware rewriting”

idea is illustrated in Figure 6.6.

It should be emphasized that this verification method is sound only if all parts

of the circuit, including the added residual and linearizer circuits, are functionally

correct. If the result is unSAT, one may safely conclude that the added circuits are

correct as well. The chance of the add-ons being faulty in such a way that they

mask the error in the original SQRT circuit is highly unlikely. On the other hand,

the presence of an error in any part of the circuit will result in a satisfiable solution

to the SAT problem, and it wouldn’t be clear if the error comes from the tested

circuit or from the added components. However, correctness of these ”add-ons” is

guaranteed by construction: first the reference remainder, Rref , is constructed from

a reference result Qref of a golden reference SQRT circuit. Then the linearizer circuit

71

Z = Q2+Rref is obtained using some golden (certified) squarer Q2 or a multiplier Q·Q

of input Q, and a golden adder that adds Q2 to Rref . In this case, a satisfiable solution

will correctly indicate that the SQRT circuit is faulty, avoiding false negatives.

Figure 6.6: Final verification using SAT: check if ∀i,Xi = Zi.

Similar argument applies to verifying the constraint R ≤ 2Q in equation (6.1),

since the circuit for Rref in Figure 6.3 is derived from a correct reference design Qref .

If this constraint is not satisfied by the SQRT under verification, the output Q of the

circuit in conjunction with the correct reference remainder Rref would not match X.

The results shown in Section 6.6 demonstrate that our methodology works well

on both bug-free and buggy designs. Finding a source of a bug and performing the

debugging is a separate and challenging problem, which will be considered in future

work.

6.5 Divider Verification

In this section, we analyze a typical architecture of an arithmetic divider. Its

internal structure is similar to that of a SQRT circuit (both are based on a standard

shift and subtract algorithm), except that here the divisor D remains fixed during

72

each shift/subtract iteration. The division can also be based on a restoring or a

non-restoring algorithm, as in SQRT. The essential difference between the two, how-

ever, comes from their mathematical model, the characteristic function used in the

verification. Specifically, SQRT function Q =
√
X has a simple closed-form formula

X = Q2 + R, with the input operand X on the left-hand side of the equation and

the outputs Q,R on the right, as developed in Section 6.3. In this case, the output

signature is clearly defined as (Q2 + R), and can be directly used in the algebraic

or hardware rewriting. In contrast, the characteristic function of a divider is more

complex, as it is governed by the following equation:

X = D ·Q+R, with R < D (6.5)

where X is the dividend, D the divisor, and Q,R the quotient and remainder, re-

spectively. Note that the right-hand side of the equation, in addition to the outputs

Q,R also contains the input D; that is, the inputs X,D appear on both sides of the

equation. This makes it difficult to determine what the output signature is, hence

questioning the very algebraic rewriting approach advocated here. To address this

issue, we propose the method in [49], which considers the entire right-hand side of

Equation (6.5), including the input D, as the output signature and attempts to ver-

ifies if it reduces to X. The remainder of this section describes how to effect this

verification.

Figure 6.7: Divider verification model.

73

Figure 6.8: Restoring integer: divider [40]; a) Layered architecture b) Single layer
used in rewriting [48].

6.5.1 Verification Model: SAT-based vs Algebraic Rewriting

Figure 6.7 shows an abstract model of the divider verification employed in this

work. The upper part of the diagram is the divider under verification. The lower box

”reverses” the division X/D by computing Q·D + R from the quotient Q and the

remainder R, produced by the divider. The goal is to prove that the computed result

matches the original dividend X, i.e. X = Q·D + R, and the condition that R < D

is satisfied.

One can solve this problem by creating a circuit Y = Q·D + R and checking the

equivalence between its output Y and the dividend X. In principle, this can be done

using a standard SAT technique: create a miter between the dividend input X and

output Y = QD + R of the circuit and check if the CNF formula of the resulting

miter circuit is unsatisfiable (unSAT). As a proof of concept, we tested this method

on both restoring and non-restoring array dividers using the ABC system [31], with

MiniSAT [44] as the underlying SAT engine. The solution required only 4.4 seconds

to prove a 16-bit X with a 8-bit D divisor, but the computation timed out after 3600

sec for larger instances. Dividers with dividend bit-widths greater than 16 bits could

not be verified using this method.

Another approach is to use algebraic rewriting, described in Section 3.1. It uses

polynomial (QD + R) as the output signature and transforms by rewriting all the

74

way to the primary inputs X of the divider. However, as shown in Section 4.4.5, this

technique is still inefficient and suffers from high memory complexity. To address this

problem, a layered rewriting technique, described earlier in Section 5.2.3 has been

briefly described in the next section for convenience.

6.5.2 Layered Algebraic Rewriting

Layered rewriting is a technique of algebraic rewriting applied to each row (layer)

associated with a singe output bit qi of the divider; refer to Figure 6.8a). The layered

approach can be justified by noting that the logic between two adjacent rows is typi-

cally not optimized during synthesis and the partial remainder signals are preserved

during synthesis (Theorem 2 of [22]). Synthesis tools, such as Synopsys DC, allow IC

designers to impose a maintain hierarchy directive to make physical synthesis more

efficient. Even if the design is optimized during synthesis, one can revert the changes

by using data contained in the setup verification file (e.g., SVF, maintaned by Syn-

opsys DC). The circuits can be synthesized across the add/sub modules of each layer,

but not vertically across the rows.

We explain the layered approach for an architecture of the divider circuit with 2n+ 1

bits of X and n+ 1 bits of D,Q and R, as shown in Figure 6.8a). Algebraic rewriting

is applied to each layer corresponding to one bit qi at a time. Let Pi denote a partial

remainder associated with the row corresponding to the quotient bit qi (starting with

i = 0). At the bottom of the array, P0 = R, the final remainder; and at the top of the

array, Pn = X, the dividend. The output signature for a given layer is qiD + Pi, and

the expected input signature of row i is Pi+1, with the boundary condition Pn = X,

where n is the number of (fractional) bits of R,Q and D.

Rewriting starts at the remainder output R and rewrites one row of the add/subtract

circuitry at a time. The input signature computed for a given layer becomes an output

signature for the next layer. Specifically,

75

Sigout(i) = qiD + Pi and Sigin(i) = 2Pi+1 +Xi

where D =
∑n

k=0 2kdk, and Pi =
∑n

k=0 2kPi,(i+k). Here Pi,j denotes a bit of the

partial remainder Pi in row i and column j = i + k, with the following boundary

conditions:

P0,k = Rk(k = 0,. . . ,n-1)

Pi,n+i = 0(i = 0,. . . ,n)

Pn,k = Xk(k = n,. . . ,2n).

Hence, at each layer i, we have

2i(qiD + Pi) = 2i+1Pi+1 + 2iXi.

After n steps, the expected signature of the divider is X. To illustrate the idea, the

following rewriting is applied to the restoring divider shown in Figure 6.8.

q0D + 4R2 + 2R1 +R0 = 8P13 + 4P12 + 2P11 +X0

2q1D + 8P13 + 4P12 + 2P11 = 16P24 + 8P23 + 4P22 + 2X1

4q2D + 16P24 + 8P23 + 4P22 = 16X4 + 8X3 + 4X2

By adding the above equations, we obtain:

(4q2 + 2q1 + q0) ·D + (4R2 + 2R1 +R0) = 16X4 + 8X3 + 4X2 + 2X1 +X0

or, equivalently QD +R = X, which proves that the circuit is a divider.

Such a layered rewriting approach significantly speeds up the verification process and

partially avoids the problem of a potential memory explosion, which can be especially

severe in the presence of a bug. Furthermore, it enables debugging by observing the

signature at each rewriting step. If the result of local rewriting does not match the

76

polynomial representing the partial remainder, Pi, we conclude that the current layer

contains a bug. This process can also be done in a speculative, parallel manner, since

the form of each polynomial at the row boundary is known, and can be stopped when

one of the layers does not produce the expected result. This way the source of an

error is constrained to a particular layer and the propagation of rewriting will stop

there to examine the bug. The same procedure can be used to prove non-restoring

dividers.

However, such a layered algebraic rewriting is still non-scalable and fails for circuits

with dividends beyond 21 bits. The next section proposes a method to remedy the

problem by applying the idea of hardware-based rewriting described in Section 6.4 to

array dividers.

6.5.3 Layered Hardware Rewriting

The concept of hardware rewriting, initially introduced in the context of the SQRT

circuits in Section 6.4, can be extended to array dividers by applying it to individual

layers of the array divider. The main idea is to add a circuit that reverses the com-

putation of a partial remainder implemented in a given layer i from its output Pi and

the given bit of the quotient, qi. The circuit is termed a signature linearizer, since its

output signature can be represented as a multi-linear polynomial. Figure 6.9 shows

a single layer appended with such a linearizer circuit which computes Dqi + Pik. For

simplicity it is shown here for the bottom layer, i = 0. The linearizer simply cre-

ates a single polynomial Z0 = Dq0 +P0k expressed in terms of its individual bits, i.e.,

Z0 =
∑n

k=0 2kz0k. This technique of layered hardware rewriting is much more efficient

and scalable compared to all other techniques mentioned so far, verifying dividers of

up-to 127-bit in just 19 seconds, shown in Section 6.6.2.

77

Figure 6.9: Layered hardware rewriting for dividers.

6.5.4 Verifying Output Constraint, R < D

For the verification of a divider to be complete, one must also verify that the

remainder and the divisor satisfy the constraint R < D (integer case) and D 6= 0.

It should be emphasized that this constraint applies to the integer divider circuits in

which the bit-widths of all the operands, X,D, and the outputs, Q,R, are the same,

as in Figure 6.8(a). However, for the divider with size of D,Q,R being roughly half

(n+1 bits) of that of the dividend X (2n+1 bits) an additional user constraint must

be imposed on the dividend vs divisor, namely X < 2nD, or equivalently D > 2−nX,

in order to avoid overflow of the quotient Q [29] . Similarly, for the case of frac-

tional divider the constraint on the inputs is X < D, for otherwise the result would

not be fractional. These constraints must be taken into account during verification,

otherwise the result cannot be correctly verified. Here, we describe the solution to

the integer case, where X,D,Q,R all have the same bit-width, in which case the

constraint on the inputs is simply X > D > 0. Later, we present the solution for the

constraint verification for the layered architecture as well.

78

The basic idea of the proposed verification of this constraint is shown in Figure

6.10. The goal is to check if the constraint R < D is always satisfied by the circuit.

This is done by appending the circuit with a comparator, z = (R ≥ D) and syn-

thesizing the resulting circuit. Its output evaluates to 1 if the condition R ≥ D is

satisfied, or, equivalently when R < D is not satisfied. In addition we also consider

the case of divider value D = 0, which should be disallowed. The condition D 6= 0

needs to be checked, otherwise X = DQ + R makes R = X, which for an unsigned

integer divider clearly violates the condition R < D. This condition is coded using

signal Divby0, which indicates if D = 0; such a signal is provided by the circuit (as in

the case of Synopsys DesignWare) or can be derived directly from the input D. The

combined goal is now to prove that

(R < D) ∧ (D 6= 0)

is satisfied or, equivalently, if

(R ≥ D) ∨ (D = 0) (6.6)

is unsatisfiable (unSAT). The resulting hardware (gate-level netlist) of such con-

structed circuit is converted to the CNF format and subjected to SAT. If the solution

is unsatisfiable, unSAT, this proves that the constraint R < D and D 6= 0 holds. We

tested this idea on dividers with dividends up to 21 bits using ABC tool [31] and con-

firmed the validity of this approach. Unfortunately, the constraint verification for a

complete divider design could not be completed for dividends with bit-widths beyond

21 bits. In particular, we could not verify R < D on a 32-bit Synopsys DW divider

design via this SAT method; the experiment timed out in 3600 seconds; specific in-

formation is given in the results Section 6.6 in Table 6.4. In the following section, we

propose a method to solve the problem for large dividers using case-splitting.

79

Figure 6.10: Verifying condition R < D of a complete divider.

6.5.5 Verifying constraint R < D by Case Splitting

To make the problem manageable, we divide it into sub-problems and verify the

constraint (6.6) using SAT approach for individual ranges of D, each of them being

sufficiently small for the SAT to handle. It suffices to only impose a case on D. This is

accomplished by appending the divider circuit with a comparator R ≥ D and applying

it to individual ranges of D. For instance, when verifying the constraint for a 32-bit

divider, we split the process into four cases. The first case verifies the range of D ≤ 28

by adding a constraint (another comparator) which imposes this restriction. This

restriction is appended with the restrictions on R,D discussed above, the resulting

circuit is synthesized and subjected to a satisfiability test (SAT), as shown in Figure

6.11. Similar test needs to be performed for each range of D.

The range splitting of D makes the constraint verification tractable. Without

this casing strategy, the SAT problem is complex and for the case of 32-bit Synopsys

DW divider the SAT verification times out after 3600s, as shown in Section 6.5.4.

By splitting the verification into multiple cases, the constraint verification is reduced

to take only a couple of seconds for dividends up-to 64-bits. The designer has to

80

Figure 6.11: Verifying condition R < D of a complete divider using case-splitting
strategy for a given range of D.

decide what granularity to choose for case-splitting, depending on the number of core

processors and the number of jobs that can run simultaneously. For the 32-bit divider

constraint verification, we split the verification into four cases.

6.5.6 Constraint Verification for Layered Divider

While, in principle, the case splitting strategy for constraint verification simplifies

the problem, the complete verification of the divider functionality and R < D con-

straint still does not scale, as shown later in Table 6.4. To address this issue, we adopt

the layered approach, described in Section 6.5.3, and apply the constraint analysis to

the individual layers of the divider. In this case we also need to take care of the

bounds on X and D, such as X < 2nD, to address the overflow issue. To do this,

we add another comparator to the design to implement the constraint of X < 2nD.

This approach is illustrated in Figure 6.12.

81

Figure 6.12: Verifying condition R < D for the layered verification strategy, layer 0,
using case-splitting

Table 6.2: Verification run times for SQRT circuits. #Bits = Radicand bit-width;
MO = Memory-out 20GB; TO = Time-out 3600s

Bits # Gates
Full-Rewrite
(Software)

(s)

SAT
(s)

Sim.
(s)

This Work (Hardware-Rewrite)
(s)

Residue
Generation

Re-syn.
HR-SAT
Bug-free

Total Time
(Bug-free)

Total Time
(Buggy)

6 78 1.93 0.01 0.25 0.01 0.03 0.01 0.05 0.06
12 381 MO 0.01 0.25 0.01 0.03 0.01 0.05 0.06
18 897 MO 0.13 1.9 0.04 0.11 0.01 0.15 0.16
24 1584 MO 2.37 115 0.10 0.24 0.02 0.36 0.38
32 2794 MO 146.9 TO 0.77 1.06 0.02 1.85 1.91
64 10994 MO TO TO 1.70 6.07 0.02 7.79 7.85
96 24570 MO TO TO 3.78 6.88 0.95 11.61 8.26
128 43522 MO TO TO 6.43 10.26 2.92 19.52 21.10
256 263377 MO TO TO 9.81 73.53 983.33 1067.3 91.42

6.6 Results

6.6.1 SQRT Circuits

The verification technique described in this paper was implemented in Python and

C++ as a stand-alone program, which uses ABC [2] at the back-end for synthesis. The

program was tested on a number of SQRT circuits with radicand bit-widths varying

82

from 6 to 256. The square-root circuits used in the experiments were generated from

Synopsys DWare library with the add-ons (the residual circuit and the linearizer)

generated using the ABC tool [2]. Each design was appended with a residual circuit

and a linearizer, and synthesized using ABC (strash, dfraig , dch). It should be pointed

out that the architecture of the tested SQRT circuits and the add-ons generated by

ABC are different and do not exhibit structural similarities, which proves the efficiency

of our technique.

In the experiments, circuits with radicands smaller than 24 bits were synthesized

down to bare wires, proving that the circuit indeed performs a SQRT function. The

larger circuit, beyond 24 bits, required formal verification using SAT.

Table 6.2 compares the verification time of our technique with those obtained with

the following techniques: 1) standard rewriting; 2) SAT (used for equivalence checking

between Synopsys DW circuits and the reference design generated by ABC); and 3)

simulation. The SAT experiments (column 4) were performed by creating a miter

between the SQRT circuit and a reference design obtained from Synopsys DesignWare

library and ABC tool respectively. The test for satisfiability was performed using

miniSAT [44]. Despite its renown efficiency, miniSAT was unable to handle circuits

with radicand bit-widths greater than 32. Similarly, standard algebraic rewriting of [9]

(col 3) could not verify designs beyond 8-bit radicands because of memory overload;

it used over 22 GB of memory in a matter of minutes.

The table also shows CPU time required for all phases of our experiment, includ-

ing: the residue generation (col. 6); resynthesis (col. 7); and hardware-rewrite SAT

to prove hardware rewriting (col. 8). Total verification time is given in column 9. As

we can see from the table, SPEAR outperforms all of the tested techniques.

We also performed experiments on buggy circuits by inserting a number of bugs

(5) in random places in the design. The verification results are shown in the last

column (col. 10) of the table. Experiments show that for buggy circuits, solving

83

the satisfiability problem (and hence proving the bug) was easier than proving that

the functionally correct, bug-free circuit is unSAT. This is not surprising, since in

general the unSAT problems are harder to solve (in the worst case the entire solution

space may need to be examined). In addition, the solution provided by SAT provides a

counter-example that can be used to identify the bug. The debugging is a challenging

problem, and it is part of future work.

We also performed exhaustive simulation experiments. The simulation was unable

to handle circuits with more than 24-bit radicand and was aborted after running for

over 10 hours of CPU time and consuming over 10 GB of memory for storing the

intermediate simulation results. In contrast to all these schemes, hardware rewriting

was able to verify square-root designs with up to 256-bit radicands, containing over

260,000 gates in less than 18 minutes, while using less than 4 GB of memory.

Table 6.3: Verification of a bug-free restoring divider. MO = Memory-out 20 GB,
TO = Time-out 3600 s.

Dividend
bits

Gates
Full-Rewrite SW [9]

Time (s)
Layered-Rewrite SW [48]

Time (s)
Simulation
Time (s)

SAT [44]
Time (s)

[22]
This Work
Time (s)

5 201 0.08 0.01 0.45 0.14 - 0.09
7 352 4.78 0.01 0.97 0.24 - 0.12

11 415 MO 0.01 1.23 10.68 - 0.18
13 570 MO 0.01 8.30 19.16 5.30 0.21
17 970 MO 4.72 552.50 1584.32 12.20 0.27
19 1207 MO 51.70 TO TO - 0.40
21 1470 MO 780.00 TO TO - 0.44
23 1750 MO MO TO TO - 0.48
33 3700 MO MO TO TO 24.50 0.68
63 13446 MO MO TO TO 40.50 4.48
95 28200 MO MO TO TO - 12.96

127 51200 MO MO TO TO - 18.56

6.6.2 Divider Circuits

The experiments were conducted on a 64-bit Intel Core i7-7600 CPU, 2.80 GHz

× 2, with 30 GB of memory. The circuits were generated by a restoring divider

generator tool and synthesized onto standard cells by the Synopsys Design Compiler

(DC). The results of our work are stated in column ”This Work”. The consolidated

84

results are shown in Table 6.3 and include multiple verification methodologies: 1)

Algebraically rewriting the entire circuit using full-rewrite software [9]; as mentioned

earlier, this method is not effective in divider verification; 2) Based on the proposed

layered verification [48] using layered-rewrite software. Our results are also compared

with: 3) exhaustive simulation using Modelsim 10.5b on an Intel Core i7, 2.2 GHz with

16 GB memory; and 4) equivalence checking using miniSAT. In the SAT experiment,

the synthesized divider circuits were compared against the dividers instantiated by

the Synopsys DesignWare (DW) library. We also compare our results with those in

[22] and show that our tool performs orders of magnitude faster; the results include

the time for constraint verification as well.

As one can see from the table, neither the simulation nor the SAT results can

compete with the layered HR-SAT verification. The seventh column presents the

most scalable to-date divider verification results. The method of [22] relies on a

heavy structural matching and it is only scalable up to 64-bit dividers. The sign ”−”

in some entries shows that the data for that entry was not available from the reference

paper. Our methodology can verify dividers of up to twice the bit-width.

Table 6.4: Detailed analysis of verification of a bug-free restoring divider using
Hardware-based rewriting for Full vs. Layered strategies. MO = Memory-out 20
GB, TO = Time-out 3600 s.

Dividend
bits

Gates
Verification Time (s)

Hardware Rewrite - Full Divider
Verification Time (s)

Hardware Rewrite - Layered

Re-syn. HR-SAT
R < D

Case-based
Total (s) Re-syn. HR-SAT R < D Total (s)

5 201 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.09
7 352 0.19 0.01 0.01 0.21 0.01 0.01 0.01 0.12

11 415 0.80 0.55 0.01 1.36 0.01 0.01 0.01 0.18
13 570 0.89 1.59 0.01 2.49 0.01 0.01 0.01 0.21
17 970 1.10 92.72 0.05 95.09 0.01 0.01 0.01 0.27
19 1207 1.26 1044.28 0.11 1045.65 0.01 0.02 0.01 0.40
21 1470 - TO 0.14 TO 0.01 0.02 0.01 0.44
23 1750 - TO 0.17 TO 0.01 0.02 0.01 0.48
33 3700 - TO 1.01 TO 0.02 0.03 0.01 0.68
63 13446 - TO 10.06 TO 0.05 0.08 0.01 4.48
95 28200 - TO 1343.00 TO 0.10 0.15 0.02 12.96

127 51200 - TO TO TO 0.11 0.16 0.02 18.56

85

Table 6.4 presents the detailed results for this work, showing the verification times

of different stages of the verification process. We also compare the HW-based rewrit-

ing for a full divider vs. layered divider. A Full-Rewrite (hardware) column presents

data for dividers, attempting a complete (non-layered) design verification. The syn-

thesis tools are not powerful enough to remove all redundancies, even after simplify-

ing the design with an appended hardware linearizer, leaving some redundant logic

and making the resulting SAT problem not solvable. In contrast, the layered based

hardware-rewriting is efficient and scalable.

Our methodology not only verifies the functionality of the design, but it also

verifies whether the design satisfies the intrinsic constraint R < D. Column labeled

”R < D” in Table 6.4 (Full Divider) is for the architecture with same bit-widths for

all operands (X,D,Q,R). For the architecture with smaller bit-widths of D,Q,R

than the bit-width of X, such as shown in Figure 6.8, the situation is more complex:

the (seemingly obvious) condition R < D is satisfied only if Q does not overflow,

that is for D > 2−nX [29]. We implemented these constraints as well in the context

of layered rewriting. Since each layer is small compared to the complete design,

functional verification of each layer, as well as verifying the constraints on X,R,D,

is very effective in terms of memory and time complexity. This is done by appending

gate-level comparators for D > 2−nX to each layer to prove that R < D. Our results

for layered-based HR-SAT are shown in the right column of Table 6.4 (Layered).

86

CHAPTER 7

SUMMARY, CONTRIBUTION, AND PUBLICATIONS

It may seem surprising that adding more hardware (Rref , Q2 + Rref , and lin-

earizers) to the design actually simplifies the verification problem at hand. While

this obviously increases the circuit complexity in terms of the hardware involved, the

resulting circuit, as long as it is bug-free, should become redundant. The described

technique relies on the synthesis and SAT tools to prove this redundancy. As clearly

demonstrated by the experiments, even if the synthesis is unable to reduce the result-

ing, inherently redundant circuit to wires/buffer, the standard SAT-based verification

has a much easier task to prove the equivalence. In particular, SAT can be applied

independently to a single-input logic cone, in parallel, as shown in Figure 6.6.

In principle, since the proposed technique does not depend on the internal struc-

ture of the circuit (or the algorithm it implements), it should also handle other types

of square-root and divider circuits, such as those based on the convergence algorithm

[28]. In general, the described hardware verification technique can be applied to

arithmetic circuits with non-linear polynomial characteristic function. To the best of

our knowledge, this is the first work that was able to successfully verify large integer

square-root and divider circuits using formal methods.

7.1 Contribution

• Presented an algebraic model for the verification of constant and generic ar-

ray dividers. Introduced an engineering way of verifying layered-based divider

circuits to enhance scalability.

87

• Proposed and implemented a novel technique of hardware rewriting for SQRT

circuits. This entails a complete automated verification methodology, including

automatic generation of the residue circuit (for SQRT) and the linearizer circuit,

and their integration with the original circuit, followed by re-synthesis with a

synthesis tool, such as ABC.

• Integrated a reverse-division unit to help perform a ”cleaner” layered rewriting

strategy, as shown in Section 5.1. The layered rewriting makes the rewriting

more efficient, specially for a hardware-based rewriting approach. With this,

one can now verify the dividers with up to 127-bit dividend operand using the

hardware rewriting combined with layered approach.

• Discussed the applicability of the underlying methodology to floating point di-

vider circuits implemented in fractional arithmetic.

• Created an extensive set of benchmarks representative of real industrial designs,

including the instantiated elements of the Design Ware library of Synopsys

Design Compiler (DC). While the Verilog code for these circuits is encrypted,

the optimized gate-level netlists are available and were used for this purpose.

• Implemented python scripts for automating the verification process, including

the netlist conversion between Synopsys DC and ABC tool.

7.1.1 Future Directions

There is a number of interesting research directions, not discussed in this work that

can be further explored to enhance the efficiency and applicability of the proposed

technique to other architectures.

• Apply the verification to arithmetic circuits in fractional arithmetic.

• We demonstrated that hardware rewriting works well for the complete square-

root design, whereas on dividers, we have to rely the layered architecture. We

88

analyzed the reason for it, namely the difference in the characteristic function.

However, one can analyze in more detail the gate level logic to try to infer what

makes the rewriting hard. Understanding the architectural difference between

SQRT and DIV presented in this work might help answer this question.

• Explore architectures of SQRT and DIV using hardware rewriting and/or al-

gebraic rewriting. Other arithmetic circuits like modulo arithmetic operation,

iterative subtractors/adders, and other structures might be worth looking into

as well.

• Lastly, for checking algorithmic correctness, loop-invariant equations can be

used to determine the characteristic equations. Once these well-defined equa-

tions are derived, hardware rewriting can be applied for verification.

7.2 Publications

The following research articles have been published over the course of this research.

• Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski. Verifying

Square-root and Divider Circuits by Hardware Rewriting (Submitted

TCAD2020)

• Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski. SPEAR: Hardware-

based Implicit Rewriting for Square-root Verification (DATE 2020)

• Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski. Functional

Verification of Hardware Dividers using Algebraic Model. IFIP/IEEE

International Conference on Very Large Scale Integration VLSI-SOC, Oct 2019,

Cusco, Peru.

89

• Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski. Formal Veri-

fication of Integer Dividers: Division by a Constant. IEEE Symposium

on VLSI (ISVLSI), IEEE, Jul 2019, Miami, USA.

• Cunxi Yu, Atif Yasin, Tiankai Su, Alan Mishchenko, Maciej Ciesielski, Rewrit-

ing Environment for Arithmetic Circuit Verification, 22nd International

Conference on Logic Programming, Artificial Intelligence and Reasoning (LPAR-

22), EPIC Series in Computing, 2018.

• T. Su, A. Yasin, C. Yu and M. Ciesielski, ”Computer Algebraic Approach

to Verification and Debugging of Galois Field Multipliers,” 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), Florence, Italy,

2018.

• M. Ciesielski, T. Su, A. Yasin and C. Yu, ”Understanding Algebraic Rewrit-

ing for Arithmetic Circuit Verification: a Bit-Flow Model,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

April 2019 (Early Access)

• T. Su, C. Yu, A. Yasin and M. Ciesielski, ”Formal Verification of Truncated

Multipliers Using Algebraic Approach and Re-Synthesis,” 2017 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany,

2017.

• Cunxi Yu, Tiankai Su, Atif Yasin, and Maciej Ciesielski. 2019. Spectral

Approach to Verifying Non-linear Arithmetic Circuits. In Proceedings

of the 24th Asia and South Pacific Design Automation Conference (ASPDAC

’19). ACM, New York, NY, USA.

90

BIBLIOGRAPHY

[1] Adams, W.W., and Loustanau, P. An Introduction to Gröbner Bases. American
Mathematical Society, 1994.

[2] Brayton, R., and Mishchenko, A. ABC: An Academic Industrial-Strength Verifi-
cation Tool. In Proc. Intl. Conf. on Computer-Aided Verification (2010), pp. 24–
40.

[3] Bryant, R. E., and Chen, Y-A. Verification of Arithmetic Functions with Binary
Moment Diagrams. In DAC’95.

[4] Bryant, Randal E. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on 100, 8 (1986), 677–691.

[5] Bryant, Randal E. Bit-level analysis of an srt divider circuit. In 33rd (DAC)
(1996), ACM, pp. 661–665.

[6] Buchberger, B. Ein algorithmus zum auffinden der basiselemente des restklassen-
ringes nach einem nulldimensionalen polynomideal. PhD thesis, Univ. Innsbruck,
1965.

[7] Burch, J. R. Using bdds to verify multipliers. In 28th ACM/IEEE Design
Automation Conference (June 1991), pp. 408–412.

[8] Ciesielski, M., Kalla, P., Zeng, Z., and Rouzeyre, B. Taylor Expansion Dia-
grams: A Compact Canonical Representation with Applications to Symbolic
Verification. In (DATE-02) (2002), pp. 285–289.

[9] Ciesielski, M., Su, T., Yasin, A., and Yu, C. Understanding algebraic rewrit-
ing for arithmetic circuit verification: a bit-flow model. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2019), 1–1.

[10] Ciesielski, M, Yu, C, Brown, W, Liu, D, and Rossi, André. Verification of Gate-
level Arithmetic Circuits by Function Extraction. In 52nd DAC (2015), ACM,
pp. 52–57.

[11] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties, and Algorithms. Springer,
1997.

[12] Davis, Martin, Logemann, George, and Loveland, Donald. A machine program
for theorem-proving. Commun. ACM 5, 7 (July 1962), 394–397.

91

[13] De Dinechin, Florent, and Didier, Laurent-Stéphane. Table-based division by
small integer constants. In (ISARC (2012), Springer, pp. 53–63.

[14] De Dinechin, Florent, and Pasca, Bogdan. Designing custom arithmetic data
paths with flopoco. IEEE Design & Test of Computers 28, 4 (2011), 18–27.

[15] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 3-1-6
A Computer Algebra System for Polynomial Computations. Tech. rep., 2012.
http://www.singular.uni-kl.de.

[16] Doran, Robert W. Special cases of division. In J. UCS The Journal of Universal
Computer Science. Springer, 1996, pp. 176–194.

[17] Faugere, Jean-Charles. A New Efficient Algorithm for Computing Gröbner Bases
(F4). Journal of Pure and Applied Algebra 139, 1–3 (1999), 61 – 88.

[18] Gao, Sicun. Counting zeros over finite fields with gröbner bases. Master’s thesis,
Carnegie Mellon University (2009).

[19] Granlund, Torbjörn, and Montgomery, Peter L. Division by invariant integers
using multiplication. SIGPLAN Not. (June 1994), 61–72.

[20] Haghbayan, M., Alizadeh, B., Rahmani, A., Liljeberg, P., and Tenhunen, H.
Automated formal approach for debugging dividers using dynamic specification.
In 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT) (Oct 2014), pp. 264–269.

[21] Haghbayan, M. H., Alizadeh, B., Behnam, P., and Safari, S. Formal verification
and debugging of array dividers with auto-correction mechanism. In 2014 27th
International Conference on VLSI Design and 2014 13th International Confer-
ence on Embedded Systems (Jan 2014), pp. 80–85.

[22] Haghbayan, Mohammad Hashem, and Alizadeh, Bijan. A dynamic specification
to automatically debug and correct various divider circuits. INTEGRATION,
the VLSI journal 53 (2016), 100–114.

[23] Hamaguchi, K., Morita, A., and Yajima, S. Efficient construction of Binary Mo-
ment Diagrams for verifying arithmetic circuits. In Proceedings of IEEE Interna-
tional Conference on Computer Aided Design (ICCAD) (Nov 1995), pp. 78–82.

[24] Harrison, John. Formal verification of ia-64 division algorithms. Theorem Proving
in Higher Order Logics (2000), 233–251.

[25] Harrison, John. Formal verification of square root algorithms. In Formal Methods
in Systems Design (2003), p. 2003.

92

[26] Kaivola, Roope, Ghughal, Rajnish, Narasimhan, Naren, Telfer, Amber, Whitte-
more, Jesse, Pandav, Sudhindra, Slobodova, Anna, Taylor, Christopher, Frolov,
Vladimir, Reeber, Erik, and Naik, Armaghan. Replacing testing with formal
verification in intel coretm i7 processor execution engine validation. In CAV (06
2009), pp. 414–429.

[27] Kaivola, Roope, and Kohatsu, Katherine. Proof engineering in the large: for-
mal verification of pentium R© 4 floating-point divider. International Journal on
STTT 4, 3 (2003), 323–334.

[28] Kong, I., and Swartzlander, E. E. A goldschmidt division method with faster
than quadratic convergence. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 19, 4 (April 2011), 696–700.

[29] Koren, Israel. Computer Arithmetic Algorithms. Universities Press, 2002.

[30] Lv, J., Kalla, P., and Enescu, F. Efficient Grobner Basis Reductions for Formal
Verification of Galois Field Arithmatic Circuits. IEEE Trans. on CAD 32, 9
(September 2013), 1409–1420.

[31] Mishchenko, A, et al. ABC: A System for Sequential Synthesis and Verification.
URL http://www. eecs. berkeley. edu/˜ alanmi/abc (2007).

[32] Paplinski, A. Cse2306/1308 digital logic lexture notes, lecture 8. Lecture Notes
(2006).

[33] Parhami, Behrooz. Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, Inc., New York, NY, USA, 2000.

[34] Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., et al. Stable: A new qf-bv smt
solver for hard verification problems combining boolean reasoning with computer
algebra. In DATE (2011), pp. 155–160.

[35] Pruss, T., Kalla, P., and Enescu, F. Equivalence Verification of Large Galois
Field Arithmetic Circuits using Word-Level Abstraction via Gröbner Bases. In
DAC’14 (2014), pp. 1–6.

[36] Rager, D. L., Ebergen, J., Nadezhin, D., Lee, A., Chau, C. K., and Selfridge,
B. Formal verification of division and square root implementations, an oracle
report. In 2016 Formal Methods in Computer-Aided Design (FMCAD) (Oct
2016), pp. 149–152.

[37] Ritirc, D., Biere, A., and Kauers, M. Improving and extending the algebraic
approach for verifying gate-level multipliers. In 2018 Design, Automation Test
in Europe Conference Exhibition (DATE) (March 2018), pp. 1556–1561.

[38] Ritirc, Daniela, Biere, Armin, and Kauers, Manuel. Column-wise verification
of multipliers using computer algebra. In Formal Methods in Computer-Aided
Design (FMCAD) (2017).

93

[39] Rueß, Harald, Shankar, Natarajan, and Srivas, Mandayam K. Modular verifica-
tion of srt division. In (ICCAD) (1996), Springer, pp. 123–134.

[40] Ruiz, Antonio Lloris, Morales, Encarnación Castillo, Roure, Luis Parrilla, and
Ŕıos, Antonio Garćıa. Algebraic Circuits. Springer, 2014.

[41] Sayed-Ahmed, Amr, Große, Daniel, Kühne, Ulrich, Soeken, Mathias, and Drech-
sler, Rolf. Formal verification of integer multipliers by combining grobner basis
with logic reduction. In DATE’16 (2016), pp. 1–6.

[42] Sharangpani, HP, and Barton, ML. Statistical analysis of floating point flaw in
the pentium processor. Intel Corporation (1994).

[43] Shekhar, N., Kalla, P., and Enescu, F. Equivalence Verification of Polynomial
Data-Paths Using Ideal Membership Testing. TCAD 26, 7 (July 2007), 1320–
1330.

[44] Sorensson, Niklas, and Een, Niklas. Minisat v1. 13-a sat solver with conflict-
clause minimization. SAT 2005 (2005), 53.

[45] Su, Tiankai. Analysis and verification of arithemtic circuits using computer al-
gebra approach. PhD thesis, University of Massachusetts Amherst, 2019.

[46] Ugurdag, H Fatih, De Dinechin, Florent, Gener, Y Serhan, Goren, Sezer, and
Didier, Laurent-Stéphane. Hardware division by small integer constants. IEEE
TC (2017).

[47] Wienand, O., Wedler, M., Stoffel, D., Kunz, W., and Greuel, G.-M. An Algebraic
Approach for Proving Data Correctness in Arithmetic Data Paths. CAV (July
2008), 473–486.

[48] Yasin, A., Su, T., Pillement, S., and Ciesielski, M. Functional verification of
hardware dividers using algebraic model. In 2019 IFIP/IEEE 27th International
Conference on Very Large Scale Integration (VLSI-SoC) (Oct 2019), pp. 257–
262.

[49] Yasin, Atif, Su, Tiankai, Pillement, Sebastien, and Ciesielski, Maciej. Formal
verification of integer dividers:division by a constant. In 2019 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI) (2019), IEEE.

[50] Yu, C., Ciesielski, M., and Mishchenko, A. Fast algebraic rewriting based on
and-inverter graphs. IEEE TCAD of ICS 37, 9 (Sep. 2018), 1907–1911.

[51] Yu, Cunxi, Brown, Walter, Liu, Duo, Rossi, André, and Ciesielski, Maciej J.
Formal verification of arithmetic circuits using function extraction. IEEE Trans.
on CAD of Integrated Circuits and Systems (2016).

[52] Yu, Cunxi, and Ciesielski, Maciej. Analyzing imprecise adders using BDDs–a case
study. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on
(2016), IEEE, pp. 152–157.

94

[53] Yu, Cunxi, and Ciesielski, Maciej. Efficient parallel verification of Galois field
multipliers. ASP-DAC 2017 (2017).

[54] Yu, Cunxi, Yasin, Atif, Su, Tiankai, Mishchenko, Alan, and Ciesielski, Maciej.
Rewriting environment for arithmetic circuit verification. EasyChair Preprint
no. 662, EasyChair, 2018.

95

	Formal Verification of Divider and Square-root Arithmetic Circuits Using Computer Algebra Methods
	Recommended Citation

	tmp.1585862957.pdf.TM8pk

