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ABSTRACT

CHARACTERIZATION OF A NATURAL CLAYEY SILT AND THE EFFECTS
OF SAMPLE DISTURBANCE ON SOIL BEHAVIOR AND ENGINEERING
PROPERTIES
MAY 2020
@YVIND BLAKER
M.S., NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Don J. DeGroot

Silts are considered a challenging material to deal with in geotechnical
engineering design practice and there has been limited research on determining the
engineering parameters of silts either by in situ or laboratory testing. This thesis presents
results of an extensive research program that investigated the in situ and laboratory
behavior of a low plasticity silt deposit at the Norwegian National Geotechnical Test Site
at Halden, Norway. Results from multiple in situ tests including: piezocone, pore
pressure dissipation, in situ pore pressure measurements, field vane, self-boring
pressuremeter and screw plate load tests were synthesized to characterize the Halden silt.
Soil sampling using a suite of different samplers of varying sampler geometry and
sampling methods were conducted. Laboratory tests performed on the collected samples
included: index and soil classification, oedometer, consolidated undrained and drained
triaxial, bender element and constant volume direct simple shear. The laboratory tests
provided data for interpretation of geological setting, depositional history, deformation,
strength, stiffness and hydraulic flow properties of the different soil units at the site.

Moreover, simulated tube sampling performed on block sample and reconstituted

Vi



specimens of silt using the ideal sampling approach complemented data provided by the
different soil samplers. These results advanced the understanding of the effects of tube
sample disturbance on engineering parameters in this soil type. Results revealed two soil
units of low plasticity clayey silt (ML) over silty clay (CL). Geology and the normally
consolidated stress state of the underlying clay unit indicates that the silt is near normally
consolidated as well. Interpretation of the undrained shear strength of the silt specimens
was complex as the in situ tests were potentially influenced by partial drainage while
conventional undrained triaxial tests displayed dilative type behavior with no unique
(peak) undrained shear strength. Significant alteration of the intact or reconstituted soil
state occurred during field sampling using a poor geometry sampler and likewise during
laboratory simulation of poor geometry tube sampling. Yet, the clay-based sample quality
assessment methods using recompression strains did not track sample quality well for the
Halden silt nor did shear wave velocity. The effects of sample disturbance were very
pronounced in undrained triaxial shear with generally increasing undrained shear strength
with increasing disturbance but with little to no change in the effective stress friction
angle. Based on a collective evaluation of the laboratory and in situ screw plate load tests
practical recommendations on selection of undrained shear strength for design and

associated foundation performance are provided.
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CHAPTER 1

INTRODUCTION

Reliable soil parameters are paramount in detailed design of structures or
evaluation of geotechnical stability problems. While conservatism resulting from
insufficient or lack of geotechnical data can lead to over design and cost ineffectiveness,
adequate but poor-quality laboratory or in situ data may, if used in design, lead to
unsatisfactory and incompliant foundation performance as one of the limit states are
violated. The probability of foundation failure is reduced by applying an adequate global
factor of safety (FS), material and load factors, or by reliability-based design. However,
understanding soil behavior and identifying disturbed or acceptable quality, i.e. reliable
and unreliable laboratory soil data and true in situ properties are still of fundamental
importance for the integrity of any design analyses and predicting foundation
performance after installation.

Significant research efforts have been made to establish recommendations for
conducting geotechnical site investigations, soil characterization to obtain design
parameters, and the effects of sampling disturbance on these properties in clays (Lefebvre
and Poulin 1979; LaRochelle et al. 1981; Wroth 1984; Tanaka et al. 1996; Lunne et al.
1997; Hight and Leroueil 2003; Lunne et al. 2006; DeGroot and Ladd 2012) and sands
(Ladd 1978; Robertson and Campanella 1983; Vaid et al. 1999; Jamiolkowski et al. 2003;
Wood et al. 2008; Andersen and Schjetne 2013). Silts, however, represent a soil category
typically labelled challenging by geotechnical engineers and information on high quality
sampling procedures, sample quality assessment methods, and determination of accurate
engineering properties of this soil type is limited. Silts and other intermediate soils can

complicate the design and construction phases of infrastructure projects both onshore and



offshore, e.g., in the North Sea as described by Senneset et al. (1988) and Solhjell et al.
(2017) and can lead to severe building damage during earthquakes, e.g., the 1999 Kocaeli
earthquake in Turkey as described by Bray et al. (2004). Geotechnical engineering
practice needs better guidance on evaluation of the quality of obtained field and
laboratory data for silts and selection of appropriate strength and deformation parameters
for use in design.

The goals of this research were to: characterize the natural, low plasticity silt at
the Norwegian Geo-Test Site (NGTS) at Halden, Norway, using a suite of in situ tools
and soil samplers; develop a better understanding of the response of this soil to the
sampling process by comparison of laboratory data on specimens from the different
sample types, and by way of laboratory simulation of sampling disturbance of initially
high quality samples. Field loading using the screw plate load test provided direct
measurement of in situ stress—displacement data, from which in situ bearing capacity and
soil parameters could be interpreted.

Chapter 2 presents the results of an extensive geotechnical characterization study
of the research site at Halden, Norway including a suite of in situ testing techniques and
laboratory tests for strength, deformation and hydraulic flow properties. The author is the
lead author, responsible for writing and organizing the paper, conducting parts of the
testing, and supervising and interpreting the experimental results with Dr. Roselyn
Carroll and Dr. Priscilla Paniagua of the Norwegian Geotechnical Institute (NGI). This
paper has been published in AIMS Geosciences, Volume 5, Issue 2, 2019. Coauthoring

the paper are Carroll, R. Paniagua, P., DeGroot, D.J. and L'Heureux, J-S.



Chapter 3 presents the results of an investigation into the effects of simulated and
true tube sampling disturbance on the recompression strain, shear wave velocity and
undrained shear behavior and of a natural, low plasticity silt at the research site at
Halden, Norway. The author is the lead author, responsible for writing and organizing the
paper, testing, and evaluating experimental results. This paper has been accepted for
ASCE Journal of Geotechnical and Geoenvironmental Engineering. Coauthoring this
paper is DeGroot, D.J.

Chapter 4 presents a study of effects of sampler type on stress—strain behavior and
engineering properties with depth of the low plasticity silt at Halden, Norway. This paper
is submitted to ASCE Journal of Geotechnical and Geoenvironmental Engineering. The
author is the second author and was responsible for conducting parts of the testing,
supervising, interpreting the experimental results and writing the manuscript with Dr.
Roselyn Carroll (lead author) of NGI.

Chapter 5 presents the results of an experimental and numerical investigating of
the in situ stress—displacement behavior, bearing capacity and engineering parameters of
the Halden silt using the screw-plate load test. This paper will be submitted to the
Canadian Geotechnical Journal. Coauthoring this paper is DeGroot, D.J. and DeJong,
J.T.

Appendices A and B contain two papers; one published in the proceedings of the
51 International Conference on Geotechnical and Geophysical Site Characterisation

(1ISC'5), and one approved for ISC'6 - organized September 2020.



CHAPTER 2

HALDEN RESEARCH SITE: GEOTECHNICAL CHARACTERIZATION OF A
POST GLACIAL SILT

This paper describes the geology and geotechnical engineering properties of the
Halden silt; a 10-12 m thick deposit of fjord-marine, low plasticity clayey silt. Over the
last six years, the test site has been well characterized by combining the results from a
number of geophysical and in situ tools, including; electrical resistivity tomography,
multi-channel analysis of surface wave surveys, cone penetration testing, dissipation
testing, in situ pore pressure measurements, seismic flat dilatometer testing, field vane
testing, self-boring pressure meter testing, screw plate load testing and hydraulic fracture
testing. The results from these investigations assist the interpretation of layering and in
situ soil properties. Soil sampling and advanced laboratory testing have provided data for
interpretation of geological setting and depositional history, soil fabric, strength, stiffness
and hydraulic properties. However, interpretation of the stress history, based on
oedometer tests and clay-based correlations to the cone penetration test, are unreliable.
They contradict the depositional history, which suggests that the soil units at the site are
near normally consolidated, except for some surface weathering and desiccation. Further,
undrained shear strength interpretations are complex as the in situ tests are potentially
influenced by partial drainage, and conventional undrained triaxial tests do not provide a
unique (peak) undrained shear strength. Despite certain interpretation challenges the
paper presents important reference data to assist in the interpretation and assessment of
similar silts, and provide some guidance on important geotechnical properties for projects

where limited design parameters are available.



2.1 Introduction

Permanent geotechnical test sites provide valuable references for industry, public
authorities, research organizations and academia. Some established and historic
geotechnical tests sites include Onsgy (Lacasse et al. 1985; Lunne et al. 2003; Berre et al.
2007; Berre 2013), Bothkennar (Hight et al. 1992), Venice lagoon (Ricceri and
Butterfield 1974; Cola and Simonini 2002), Burswood (Low et al. 2011), Balina (Pineda
et al. 2016; Kelly et al. 2017), UMass Ambherst (Lutenegger and Miller 1994; DeGroot
and Lutenegger 2003), and Texas A&M (Briaud and Gibbens 1999). This paper presents
the results of an extensive study of a silt site in Halden, Norway. The soil at the site was
first investigated in 2011 after a local landslide nearby, following a period with
significant rainfall. It was found to consist of a homogeneous, low plasticity clayey silt
over soft marine clay. Silts, similar to the deposit found in Halden, but also other
intermediate soils like silty sands, silty clays etc. are frequently encountered in
Norwegian infrastructure projects onshore and on the Norwegian continental shelf. There
is a general perception that they represent a category of challenging soils as it is difficult
to obtain samples of high quality, to evaluate sample disturbance and quality, and little
guidance is available on the selection of appropriate engineering properties for practical
use. A widely accepted particle size classification defines silt as particles in the range of
0.002 mm and 0.063 mm (ISO 2002) and these particles are typically transported by
moving currents (e.g. rivers and creeks) and settle in still water. As such, silt deposits are
often found all over the world in conjunction with fjords, estuaries and lakes. Therefore,
the knowledge acquired at the Halden research site is of national and international

importance.



2.2 Regional setting and methods

Halden is located in Southeastern Norway, approximately 120 km south of Oslo,
see Figure 2.1a. The research site is one of five National Geo Test Sites (NGTS) and
located west of the city center, in what is currently a public park (Rgdsparken) belonging
to the Halden municipality. It covers about 6000 m? and its topography is almost flat.
Elevation above mean sea level varies from +27 m to +34 m (NN2000 datum) from the
southwest to northeast. Towards the north and west, the site borders a ridge which
ascends to +55 m. Another ridge varying between +35 m to +44 m borders the site to the
east. A residential area is found along the road Bekerveien to the south.

The site has been characterized by combining the results of a number of
geological, geophysical and geotechnical site investigation tools. A complete list of all
geophysical, in situ and laboratory tests conducted at the site, with general test procedure
references and key parameters are presented in Table 2-1. All test locations are presented

on the map in Figure 2.1b.

2.3 Engineering geology

2.3.1 Deglaciation history and depositional environment

Deglaciation of Southeastern Norway started at c¢. 16-15,000 years ago. It was
interrupted at around 12,000 and 11,300 years ago by colder periods that led to re-
advance of glaciers and formation of frontal moraines in the region (e.g. the "Ra"
moraine). As the ice melted the land was subjected to intense isostatic uplift and relative

fall of sea-level. The highest post-glacial sea level in the region (marine limit) is about



190 m above the present sea level and was formed 10,700 years ago (Serensen 1999).
The early Holocene period was characterized by rapid sedimentation of marine clays and
silts at the site as a consequence of the rapid fall in sea-level. This was followed by more
placid deposition in an estuarine/distal deltaic environment associated with the
prograding Tista River delta. The shoreline reconstruction curves from the region,
proposed by Klemsdal (Klemsdal 2002), show that the site most likely emerged from the
marine environment c. 5,000 years ago (Figure 2.2). Two radiocarbon (**C) datings of
marine shell fragments are available from the research site (Table 2-2); one from the clay
at about 16.3 m depth (elevation about 12 m.a.s.l), and a second from the clayey, silt at
6.4 m depth (22 m.a.s.l). The results indicate 11,820+25 years before present (BP) and
6,455+25 years BP, respectively. This corresponds well with earlier carbon dating results
from the area (Olsen and Sgrensen 1993) and the deglaciation history. The average rate

of sedimentation corresponds to about 1.0 - 1.4 mm/year.

2.3.2 Source of material

Figure 2.3 presents the location of the research site within the regional geological
setting. The Halden municipality lies within the Norwegian southeast basement area. The
dominating bedrock is gneiss in the northeast and granite in the northwest and southeast
(Olsen and Sgrensen 1993). Glacial striations are generally north-south and northeast-
southwest and topographical characteristics such as small valleys and hills are typically
oriented in that direction. The most prominent geological feature in the area is the "Ra",
an end moraine complex deposited about 11,300-10,700 years ago during the Early

Younger Dryas. It traverses the region from northwest to southeast and retains the water



in lakes Tvetervatn, Rokkevatnet and Korsevatnet. Earlier the moraine also retained the
larger lake Femsjgen. A second zone of marginal moraine, parallel to the Ra is located
south of Halden, namely the "Outer Ra", or the Onsgy-Borge moraine. Between and
outside these two features is a large veneer of clay deposits, interrupted in certain areas
by silt and sand deposits, e.g. south of Halden. Areas northeast of the Ra are dominated
by exposed bedrock, with clay only in local depressions. The Glomma River, Norway’s
longest and largest river, runs into the Oslo fjord in the city of Fredrikstad, about 25 km
northwest of the Halden research site. East of the site flows a system of lakes and rivers
called "Haldenvassdraget”. This system is the second largest in Norway and runs into the
Idde fjord in Halden through the Tista River (Figure 2.1a). During higher sea levels, the
test site was likely highly influenced by both of these river systems, as Halden was
inundated by the sea (Sgrensen 1979). Thus the source of material supplied has an
important contribution from the whole of southeastern Norway and has primarily been

produced by glacial erosion, with secondary fluvial transport.

2.3.3 Stress history

From the geological history of the site no known loading events have occurred.
Relative to the sea level the Oslo area has been rising steadily, and soil units were
deposited during a single period of submergence (Kenney 1964). The depositional history
hence suggests that the soil at the site is likely to be geologically normally consolidated,
except perhaps for some surface weathering, desiccation and aging. Substantial erosion is
unlikely to have occurred, but seasonal ground water and temperature fluctuations may

cause some apparent preconsolidation. Data from one standpipe and four electrical



piezometers installed at 5 m, 10 m, 15 m and 20 m depth reveal that the ground water
table is located at about 2 m depth and that the in situ pore pressure, uo (two year average
- October 2016 to October 2018), is close to hydrostatic in the silt units and sub-
hydrostatic in the clay layer below (Figure 2.4a). Sub-hydrostatic pore pressures can
occur at sites located on a hill where vertical recharge into a low permeability clay layer
is less than discharge occurring away (radially) from the site in an underlying higher
permeability soil unit (Ostendorf et al. 2004). At Halden no such permeable material has
been identified below the clay. However, fractured bedrock or a thin layer of gravel could
facilitate radial drainage away from the site. The piezometer logs, presented in Figure
2.4b, demonstrate how the fluctuating ground water table causes peak pore pressures
during winter and after the spring snow melt (February to May), and pore pressure lows
at the end of the summer (August). These fluctuations cause seasonal changes in the
mean effective stresses in the order of 5 - 10 kPa. Temperature fluctuations in the order
of 20° Celsius are observed in the top soil throughout the year. However, below about 6
m depth the fluctuations are negligible, and the temperature is fairly constant with depth
at about 8 degrees Celsius (Figure 2.5).

From the total unit weights (y; Section 2.5.2) and the in situ pore pressure
depicted in Figure 2.4a the total and effective vertical stress conditions (cvo, 'vo) are
derived and plotted in Figure 2.6. The total stress profile is approximated by using y = 19
KN/m? in Units | and 1I, and y = 20 kN/m? in Units Il and IV. Interpretation of the
apparent preconsolidation stress, or yield stress o'p (p'c), from oedometer tests on silt is

challenging. This is discussed in Section 2.6.2.



2.3.4 Stratigraphy

Soil layering across the site has been assessed by combining the results of a
number of site investigation tools. Table 2-2 presents the Halden site stratigraphy, unit
description with images of selected samples from the X-ray inspection (XRI) and split
core imaging performed by the Geological Survey of Norway (NGU). The XRI system
consists of an X-ray tube, an image intensifier and a high quality digital camera. The
resulting images can be used to assess e.g. (i) soil type; (ii) soil macro fabric; (iii) the
presence of inclusions such as stones, shells, sandy zones and root holes etc.; (iv) the
presence of fissures, shear planes, discontinuities etc.; (v) degree of bioturbation; and (vi)
indications of sample disturbance. The soil sample is placed between the X-ray tube and
the image intensifier and different sections can be inspected by rotating the tube and
sliding the assembled XRI configuration horizontally along the sample. Repeated runs
produced three 16-bit greyscale images with 0, 45, and 90 degree axial orientation. X-ray
transparency of a sediment is strongly influenced by the grain-size and the images are
generally light grey for the fine-grained soils and dark grey for coarse-grained soils. The
two split core images per sample were captured directly after opening using 20 ms and 40
ms exposure time.

Based on an overall interpretation of the geophysical, in situ testing and
laboratory testing results the site stratigraphy is divided into four main soil units
numbered Units | to IV, as depicted in Figure 2.7a to Figure 2.7g. The stratigraphy
presented in the following describes the soil units as they have been identified in the
southernmost part of the test site, i.e. beneath the main cluster of investigated locations

shown in Figure 2.1b: A silty, clayey sand constitutes the top soil and extends down to
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about 4.5 to 5 m depth (Unit I). It is generally loose to medium dense with some organic
material (0.25% - 0.5% total organic carbon). Unit | rests above a clayey silt which
extend down to about 15 - 16 m depth. This clayey silt is separated into two soil units
(Unit 11 and 111) based on the results of in situ and index tests but is regarded as the same
material with the same geologic origin. Index and in situ tests reveal that the silt becomes
sandier closer to the lowermost soil unit, Unit 1V, which consists of a low to medium
strength clay. This soil unit has a slightly laminated structure, with occasional shell
fragments and drop stones. Depth to bedrock dips sharply from the northeast to southwest

but is typically identified at 21 m depth in the southern part of the site (see Figure 2.8).

2.4 Soil composition

2.4.1 Grain size distribution

Figure 2.9a presents two grain size distribution curves from Unit | and a typical
range of grain size distributions in the silt from Units 1l and II1. All results below 5 m
depth were determined using the hydrometer method (ISO 2016) or the falling drop
method (Moum 1965). A summary of the clay size particle content (d < 0.002 mm) and
fines content (d < 0.063 mm) with depth are presented with other classification
parameters in Figure 2.7. The upper soil Unit I mainly consists of a silty, clayey sand.
The fines content in the two silt units (Units Il and 111) is generally higher than 80%,
slightly decreasing towards the interface with the clay in Unit IV. The clay content (d <
0.002 mm) is fairly constant at around 8% in Units Il and 11, classifying this as a clayey

silt according to ISO 14688-1 (ISO 2002) and the Norwegian Geotechnical Society
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(NGF) soil classification triangle (Norwegian Geotechnical Society 2011) in Figure 2.9b.
However, based on the plasticity properties of the soil (see Section 2.5.1) the Unified Soil
Classification System (USCS) classifies these soils as silty clay with sand to lean clay

with sand. No grain size data has yet been acquired in the clay layer Unit IV.

2.4.2 Grain shape and mineralogy

Scanning electron microscope (SEM) images in Figure 2.10 and Figure 2.11, from
6.4 m and 8.6 m depth respectively, demonstrate that the silt particles are largely angular
(Pettijohn 1949). Table 2-3 presents the results of three X-ray diffraction (XRD) analyses
performed by the Geological Survey of Norway (NGU) on particles from Unit Il and 1lI.
The results reveal very similar mineralogical content with depth. Both Units 11 and 11l
contain similar amounts of quartz, plagioclase, clay minerals and mafic minerals
(amphibole). These results are consistent with mineralogical analyses of the sand and silt
fractions of the glacial tills examined in the region west of the Oslo fjord (Rosenqvist
1975). The clay minerals are illite and chlorite, and the presence of expanding clay

minerals are low or absent.

2.4.3 Carbon content

Total carbon (TC) and Total Organic Carbon (TOC) were determined by dry
combustion at NGUs laboratory using a LECO SC-632 analyzer with an infrared (IR)
detector (Leco Corp., St. Joseph, MI). The carbon content in the silt units is generally
low. Figure 2.12 shows that in Unit Il the average TC was 0.49% with a range from

0.43% - 0.54%. In Unit Ill the average TC is 0.24%, ranging from 0.19% - 0.28%.
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Meanwhile the TOC in Unit Il average is 0.46% while the average is lower in Unit 11 at

a value of 0.22%.

2.4.4 Salinity

Nine salinity tests were performed in the laboratory by means of electrical
conductivity (k) to determine the NaCl equivalents of the pore water according to 1SO
11265 (ISO 1994). Electrical resistivity tomography (ERT) profiles were conducted at the
site by injecting a current into the subsurface through steel electrodes, installed 10 - 20
cm into the ground, and the apparent resistivity distribution along a profile or area was
measured. Direct measurements of resistivity were also made during cone penetration
testing at locations HALCO06 and HALC10, using a resistivity add-on module with the
original cone (RCPTU). The adapter consisted of an array of four ring electrodes in a
Wenner configuration with equal (0.25 m) spacing between the electrodes. The RCPTU
depth was corrected for the distance between the electrodes and the cone tip.

The laboratory salinity tests indicate electric conductivity (inverse of resistivity)
in the range of 119 uS/cm to 485 uS/cm, which corresponds to NaCl equivalents of 1.1 to
4.6 g NaCl/L. These results are converted to resistivity and plotted with results of
measurements conducted on selected triaxial test specimens in Figure 2.12d. Indications
from the RCPTUs at locations HALC6 and HALC10, as also presented in Figure 2.12d,
are that the laboratory measurements are on the low side of the in situ measurements. The
in situ resistivity decreases from about 300-1000 Qm in the top soil to a fairly constant
value of 100-150 Qm in the silt. There is fair agreement between the RCPTU and ERT

profiles, indicating that the in situ resistivity measurements can be considered more
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reliable than the laboratory measurements. The change in resistivity is linked to the
reduction in salt content, and considering the fact that the soil at the site was deposited in
a post glacial fjord-marine environment, leaching of the silt is likely to have occurred due
to rainfall and snow melting in the Halden region. It has been suggested for Norwegian
clays, that unleached marine clays have resistivities in the range of 1 - 10 Qm while fully
leached, potentially quick clay deposits, clayey moraine and silty sediments typically

have resistivities in the range of 10-100 Qm (Solberg et al. 2008; Solberg et al. 2012).

2.45 Soil fabric

Soil Units Il and 11 are generally homogeneous, structureless to mottled, with
primary bedding and laminations almost absent due to bioturbation. Such structureless
soils are common in fjord-marine environments subjected to hemipelagic sedimentation
and seafloor biological activity (Hansen et al. 2011). The XRI images (see Table 2-2)
appear to confirm that that mottling is associated with internal reworking of the
sediments and consequently with the partial or complete loss of any primary sedimentary
bedding structures. In contrast, Unit IV shows some weak laminations and the occasional
presence of drop stones (sand/gravel particles) interpreted as ice rafted debris (IRD).
There is some evidence of shell fragments and iron sulphide spots, resulting from
decomposition of organic matter. No evidence of cementation or fissures has been found

in either of the soil units.
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2.5 State and index properties

2.5.1 Water content and Atterberg limits

The measured natural water contents (w) are somewhat scattered, but generally
decrease with depth from about 31% at 4 m depth to about 26% at 16 m (Figure 2.7b).
The scatter is thought to be due to different sampling techniques, and the fact that
different measurements have been made over several years, i.e. certain samples may have
experienced some loss of moisture during storage. Results from measurements made the
same day on samples from HALBO2 all show a consistent trend decreasing with depth.
While in Unit Il the results generally fall between 26% and 32%, the water content in
Unit 111 decreases with depth from about 26% at 12 m depth to about 21% at 15 m. The
decreasing water content with depth in Units Il and IIl coincides with a decreasing
organic content (TOC) and increasing total unit weight of the soil (See Sections 2.4.3 and
2.5.2, respectively).

The liquid limit (wL), as measured using the fall cone, and plastic limit (wp) were
conducted in accordance with ISO 17892-12 (ISO 2018). In Unit Il w. and wp varies
between 28% and 37%, and 22% and 25%, respectively. Average plasticity index (Ip) in
this soil unit is 9.3%. In Unit Il wy varies between 25% and 29%, wp ranges from 20% to
23% and average plasticity index is 6.6%. Figure 2.13 shows that the results generally
plot on and above the A-line in a Casagrande plasticity chart, just on the division between
the inorganic low plasticity clay (CL) and inorganic silts (ML). The known differences in
liquid limit, as determined by means of the fall cone and Casagrande cup for low Ip soils

would likely have shifted the Halden silt data points down and left in the plasticity chart,
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if the Casagrande cup was used (Norwegian Geotechnical Institute 2002). As such, a data
point from the fall cone that plots on or just above the A-line could shift to below the A-

line if the liquid limit was measured using a Casagrande cup.

2.5.2 Total unit weight and void ratio

Total unit weights (yt) are estimated from the Multi Sensor Core Logger (MSCL),
from direct measurement of advanced laboratory test specimens and from measured
specimen water contents. The MSCL measures soil density based on emitted gamma ray
attenuation using a ¥’Cs radioactive source and a sodium iodide, Nal (T1) radiation
detector. Figure 2.7c shows that the total unit weight in Unit Il generally falls between
18.9 kN/m?® and 19.2 kN/m3. In Unit 111 the total unit weight increases with depth from
about 19.5 kN/m? at 12 m to about 20.5 kN/m?® at 15 m, with an average value of 19.9
kKN/m?3. Results from the MSCL show an increase in total unit weight in Unit I1. The trend
is similar to that obtained from laboratory results based on direct measurements and
water contents. However, the MSCL results are slightly higher. This may be due to whole
core measurements where total density measurements integrate the entire sample
thickness.

From a constant specific gravity of 2.69 (see section 2.5.3) the calculated in situ

void ratio (eo) decreases from about 0.82 at 5 m depth, to 0.6 at 15 m.

2.5.3 Unit weight of solid particles

Measured unit weight of solid particles (ys) ranges between 26.1 kN/m? and 26.5

kKN/m?3, with an average value of 26.3 kN/m? (specific gravity, Gs=2.69), see Figure 2.12.

16



2.6 Engineering properties

A number of in situ and advanced laboratory tests were performed to determine
the engineering properties of the silt units at Halden (see Table 2-1 for the general test
procedures). In this section the measured in situ data are first presented, followed by a
comparison of engineering properties from laboratory test results and the derived

parameters from in situ test results. The results focus on the silt units (i.e. Units Il and

).

2.6.1 In situ testing - measurements

2.6.1.1 Field vane testing

Field vane testing (FVT) was performed using a Geotech AB 13065 mm vane
with a tapered lower end in general accordance with the Norwegian guidelines
(Norwegian Geotechnical Society 1989). After pre-drilling down to about 4.5 m the vane
was advanced to the target depth from the ground level encased in a protective housing.
The vane was then pushed out of the housing and rotated using electric heads and the
torque was measured on the drill rig. Both intact and remolded tests were conducted at a
rate of shearing of about 0.1 °/s. Remolded tests were performed after 10 full revolutions
of the vane. The intact and remolded FVT results are presented in subsequent Sections

2.6.8 and 2.6.13, respectively.
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2.6.1.2 Cone penetration testing

A number of different manufacturers' piezocones were tested at Halden, including
Geomil, A.P.van den Berg, Pagani, Environmental Mechanics (Envi) and Geotech AB
cones. They were all 10 cm? compression cones with 150 cm? friction sleeves and the
pore pressure transducer located in the u position. The CPTU tests were performed in
general accordance with Norwegian guidelines (Norwegian Geotechnical Society 2010)
and 1SO 22476-1 (ISO 2012). Figure 2.14a to Figure 2.14f present selected measured
(corrected cone resistance, g:, pore pressure, uz, and sleeve friction, fs) and derived
(normalized cone resistance, Qt, pore pressure ratio, By, and soil behavior type index, Ic)
CPTU parameters from a number of tests conducted across the test site. In the silt units,
Units 11 and 111, gt typically plots around 1 MPa, similar to that of the clay unit below. In
the deeper parts of the silt deposit g: increases from 1 MPa at 12 m depth to about 2 MPa
at around 16 m depth. Normalized cone resistance (Qt = [qt - ovo]/c'vo) IS generally high
in the top soil, but decreases to about 7.5 in the depth range 5 - 16 m. Excess pore
pressures are generated behind the cones in the silt and clay units, and the pore pressure
ratio, Bq = (U2 - Uo)/(qt - owo), is generally around 0.1 - 0.3 in the silt units and 0.8 - 1.0 in
the deeper clay. Previous experience on different soils (Lunne et al. 2018) has shown
there is some variability in the measured sleeve friction, fs between the different cones
tested at the site. The soil behavior type index, Ic = [(3.47 - log Qi) + (log Fr + 1.22)?]°5,
generally plots between 2.6 and 2.95 (Silt mixtures - clayey silt to silty clay). Normalized
friction ratio, Fr = 100% x fJ/(qt - owo), ranges from 1% to 3% depending on cone
manufacturer. As shown in Figure 2.15, normalized soil behavior type (SBTn) charts

(Robertson 1990) based on Q, Fr and By from CPTU location HALC11 typically indicate
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SBT zones 4 (Silt mixtures - clayey silt to silty clay) and 5 (Sand mixtures - silty sand to

sandy silt).

2.6.1.3 Shear wave velocity

Direct measurements of shear wave velocity were made during a number of
seismic cone penetration and seismic dilatometer tests at the site using a seismic add-on
module with the original cone/dilatometer. Two multi-channel analyses of surface waves
(MASW) profiles were also acquired. The SCPTU/SDMT configurations had a source at
ground level and two geophones mounted behind the cone or dilatometer with a 0.5 or
1.0 m spacing thus giving a measure of shear wave velocity for a vertically propagating
horizontally polarized shear wave, Vvn. In order to increase the signal-to-noise ratio and
reduce the uncoherent noise the seismic traces were typically stacked and filtered through
a Butterworth bandpass filter. The velocity was computed from the time lag
corresponding to the maximum of the cross-correlation between the two geophone
signals. The MASW data acquisition was conducted using a linear array of 24 vertical
geophones with a natural frequency of 4.5 Hz, and the inversion of the dispersion curves
provided a 1D shear wave velocity, Vs, profile averaging the subsurface properties below
the geophone array. Figure 2.16 demonstrates a clear trend of increasing shear wave
velocity from about 110 m/s at 2 m depth to about 200 m/s at 16 m. The higher shear
wave velocities at location HALC13 compared to the general trend from the other
locations are likely associated with a higher uncertainty in the velocity estimates at this
location (greater error estimates). There is generally a very good agreement between the

SDMT and the SCPTU results. However, the MASW results (HALMO1 and HALMO2)
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are somewhat higher than the general trend from the other test methods. The inversion
data fit was of limited quality, and as a result of the decreasing depth to bedrock along the
geophone array the velocities below 8 m to 12 m depth likely integrate bedrock velocities
and are removed. A MASW survey conducted by the University of Iceland demonstrated
increased resolution compared to the tests at HALMO1 and HALMO02, and the results

coincide better with the SCPT data below 8 m depth (see Figure 2.16).

2.6.1.4 Flat dilatometer testing

Measured flat dilatometer data from location HALDO1 is presented in Figure
2.17a to Figure 2.17e. Testing was conducted in general accordance with 1SO 22476-11
(ISO 2017). The corrected pressure readings, Poand Py, are presented along with the three
intermediate DMT parameters Ip (material index), Kp (horizontal stress index), and Ep
(dilatometer modulus), e.g. (Marchetti 1980; Marchetti et al. 2006). There is some scatter
above 5 m. The data is more consistent in the silt and clay units below. Soil classification
charts based on Ip and Ep (Marchetti et al. 2006) typically classify the silts in Units Il and
I11 as mud, mud and/or peat or clay. Based primarily on Ip (Marchetti et al. 2006) the silts
are identified as clays, but it is noted that; "Ip sometimes misdescribes silt as clay and
vice versa, and of course a mixture of clay-sand would generally be described by Ip as
silt”. Assessment of OCR and Ko using the Marchetti equations (Marchetti 1980) are

presented in Sections 2.6.2 and 2.6.3.
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2.6.1.5 Self- boring pressuremeter testing

Four self-boring pressuremeter tests were conducted in location HALPO1 in
general accordance with 1ISO 22476-5 (ISO 2012) using the Cambridge InSitu Ltd. six-
arm pressuremeter probe. The borehole HALPO1 was drilled using an auger bit with a
nominal size of 120 mm using water flush. The SBPT was self-bored to the required
depth with the cutter positions optimized and at a rate such that a minimum of
disturbance was introduced in the soil. After the first three tests a steel casing was
advanced to 11.5 m to stabilize the borehole. The probe was calibrated prior to and after
testing and corrections for membrane stiffness were made upon data reduction. The four
test results from 6.1 m, 8.0 m, 10.0 m and 12.0 m depth, plotted in Figure 2.18, are
average data for each tier of strain arms. Three to four unload-reload loops were

conducted at each depth.

2.6.2 Overconsolidation ratio, OCR

An evaluation of the overconsolidation ratio (OCR) profile is dependent on
reliable interpretation of the preconsolidation stress or yield stress, 'y, from laboratory
oedometer tests or an appropriate correlation of yield stress to cone resistance, none of
which yet exist for silts. As will be discussed in Section 2.6 the Halden silt 1D
compression curves of log effective vertical stress with void ratio are generally very flat,
and interpretation of o'p from these oedometer tests have proved very challenging. Both
the conventional Casagrande interpretation (Casagrande 1936), Janbu (Janbu 1963) and
Pacheco Silva (Pacheco Silva 1970) methods resulted in unreliable values of o'p.

However, the geological history of the area (see Section 2.3) is well understood and no
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loading or large erosion events are likely to have caused overconsolidation of the soil
units at the research site. The well-established correlations of yield stress to CPTU cone
resistance valid for natural clays (Lunne et al. 1997), o', = k x (gt - ow) Suggests a
normally consolidated stress history for the clay (Unit 1V) below the silt Units 1l and 111
(see Figure 2.19a and Figure 2.19b). In this equation, k is a constant and in this case
taken as 0.3, which is a typical value used for clays (Mayne 2007). Normally
consolidated or lightly overconsolidated clay (OCR= 1.0 - 1.3) at this depth is confirmed
by the FVTs conducted at the site using the Chandler methodology (Chandler 1988),
where 6"y = 6'vo x[(SurvT/c\v0)/SrvT]t® and Sevr is estimated as a function of plasticity
index (in this case taken as 0.15 and 0.2 in the silt and clay units, respectively, based on
an assumed plasticity index, lp = 10% and 20%). From the geological history and
evidence of the near normally consolidated stress state of the lower clay one can thus
infer that the uniform silt Units Il and Il above this clay unit, are also normally
consolidated. This implies that the CPTU and FVT correlations discussed above, which
suggest OCR in the range of 2 to 5 in the silt Units Il and Ill, are unreliable and
inappropriate for this soil type. Any light overconsolidation is likely an effect of aging
and fluctuating ground water table. Yield stress and OCR interpreted from DMTs (Figure
2.19a and Figure 2.19b) using the horizontal stress index, Kp (Marchetti 1980) (valid for
clays with Ip < 1.2) suggest OCR < 1 and OCR = 1.5 in the silt and clay units,
respectively. Dilatometer tests were used to confirm a low to medium overconsolidation
ratio (OCR = 1.2 - 3.7) in the silt layers of the Malamocco test site, near Venice, Italy

(Cola and Simonini 2002). Based on the above discussion an OCR in the range of 1.0 to

22



1.3 at Halden is considered reasonable. Following from this OCR assessment a k-factor

of 0.15 - 0.2 would be more appropriate in the Halden silt, i.e. 6’ = 0.2 x (qt - cvo).

2.6.3 Coefficient of earth pressure at rest, Ko

Coefficient of earth pressure at rest, Ko = c'ho/c'vo (Figure 2.19c.), was derived
from DMT results using the clay correlation to Kp (Marchetti 1980), and from nine
anisotropically consolidated drained and undrained triaxial tests in compression loading
(CADC, CAUC) using the expression (Mesri and Hayat 1993):

Ko = (1 — sin @l,)OCRS™ Pev (2.1)
where, ¢'cv is the constant-volume effective stress friction angle for triaxial compression
(Mesri and Hayat 1993), in this case assumed to be equal to ¢'mo oObtained in the CADC
and CAUC tests at maximum obliquity, (c'//c'3)max. In this expression an OCR of 1.3 has
been assumed (see Section 2.6.2).

Moreover, in situ horizontal total stresses were assessed from the four SBPTs
plotted in Figure 2.18 based on a methodology proposed for London clay by Marsland
and Randolph (1977). In this approach, the total horizontal stress and undrained shear
strength of the soil adjacent to the probe are estimated by iteration. Once a first qualified
value of ono is assumed, the apparent mobilized cavity shear stress at the pressuremeter
boundary can be derived from the measured expansion curve following the Palmer
analyses (Palmer 1972). The peak shear strength of the soil is estimated from the
maximum slope of the P-In (AV/V) curve, where P is the measured pressure, AV is the
increase in volume from the reference state, and V is the current volume of the measuring

cell at the measured pressure. The point at which the pressure-deformation curve
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becomes significantly non-linear should correspond the in situ horizontal total stress plus
the undrained shear strength in clays (cho + Susep). The methodology assumes fully
undrained conditions. However, as noted by Wroth (1984), the stress and strain fields
surrounding the pressuremeter do not remain homogeneous during membrane expansion,
and partial drainage will occur even in clays. As such, interpretation of SBPTSs in silts is
challenging and somewhat uncertain. Ko interpreted from the four tests at Halden (Figure
2.19c) are consistently higher than the values interpreted from laboratory triaxial tests.
This could indicate an over prediction of the effective horizontal stress resulting from
partial drainage effects.

Despite uncertainties associated with the clay-based interpretation of the SBPT
and DMT data there is fair agreement between the in situ and laboratory test results, and

Ko generally ranges between 0.6 and 0.45.

2.6.4 Small strain shear modulus

Small strain shear modulus, Gmax, is interpreted from a number of SCPTSs, one
SDMT and two MASW profiles. Figure 2.20 presents Gmax computed from in situ shear
wave velocity measurements depicted in the previous Figure 2.16. Generally, the SCPT
and SDMT Gmax results increase linearly from about 30 MPa at 5 m depth to about 75
MPa at 16 m depth. Two SCPT results from location HALC13 plot outside the scale and
are indicated in the figure (Gmax = 287 mPa and 354 MPa). However, the results from this
location are generally high, and likely a result of greater uncertainty in the shear wave
velocity estimates (see Section 2.6.1.3). The linear increase in Vyn in the silt units is very

consistent with the Rix and Stokoe correlation of Gmax to cone resistance for sands (Rix
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and Stoke 1991), presented in the figure. Gmax computed from the Mayne and Rix
correlation of shear wave velocity to corrected cone resistance (Mayne and Rix 1995),
valid for natural clays, plot below the in situ and MASW results. Bender element (BE)
tests (Dyvik and Madshus 1985), performed on triaxial specimens (at ¢'vc = 6'vo , G'hc =
c'ho) and DSS specimens (at o'vc = c'wo), indicate that the small strain shear modulus

measured in the laboratory is generally lower than the in situ test results.

2.6.5 Constrained modulus

For soft clays, primary consolidation properties are normally interpreted from
oedometer curves of log effective stress (c'v) with strain (gv) or void ratio (e). Creep
properties from plots of &< or void ratio with log time. This approach may be
inappropriate for silts and other intermediate soils leading to unreliable interpretations,
while, Janbu's theory for primary and secondary settlements (Janbu 1985) may be more
suitable. In Janbu's framework the stress induced primary consolidation is calculated with
an effective stress dependent constrained modulus (M = Ac'W/Aey). As observed in
oedometer tests on other silts, e.g. Cola and Simonini (2002); Carroll and Long (2017),
the three typical Halden CRS oedometer curves (rate of strain 5%/hr) of log effective
stress with void ratio are generally quite flat (see Figure 2.21a). The compression curves
are presented in linear scale in Figure 2.21b, which show no distinct yield as typically
displayed by structured clays. As such interpretation of o', from these curves is
considered misleading. This 1D compression behavior seems to be characteristic of some
intermediate soils (Martins et al. 2001; Long 2007; Long et al. 2010; Carroll and Long

2017). Janbu's modulus framework for silts (M = 1/my = mxpax[c'v/pa]*?, where my is the
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volume compressibility Aev/Acy, m is the modulus number, pa is the reference stress =
100 kPa, and a is a stress exponent) gives a reasonable fit, as demonstrated in Figure
2.21d when the modulus number m = 75 and stress exponent a = 0.25 are taken. The
Janbu modulus framework for clays (M = mxc') is presented in the same figure using m
= 30, but does not provide a good fit. Janbu's silt model has also been applied on
Icelandic silts (Skulasson 1996), on Irish silts (Long 2007) and on another Norwegian silt
from Os (Long et al. 2010).

Values of the constrained modulus at the in situ effective vertical stress, Mo, from
CRS and IL tests on specimens from block samples (HALBO4) are plotted with depth in
Figure 2.22a. With one exception at about 15 m depth, Mo ranges from 5 to 10 MPa. This
is consistent with the CPTU results from locations HALC11 and HALC12 using the
correlation Mo = aiXQnet With oii = 10 (Lunne et al. 1997) and Janbu's modulus framework

for silts using m = 70-80, also presented in the figure.

2.6.6 Coefficients of consolidation

Coefficient of vertical consolidation (cy) with log effective stress from three
typical Halden CRS oedometer tests are presented in Figure 2.21c. cy at the in situ
vertical effective stress is determined from the base pore pressure (up) in CRS oedometer
tests (Sandbaekken et al. 1986), and from IL oedometer tests using the root time fitting
method (Taylor 1948). The results are consistent with the values of ¢y computed from the
direct measurement of vertical hydraulic conductivity (ky, see Section 2.6.7 and

Sandbakken et al. (1986)) using the relationship cv = kv/(my X yw). In this equation my is

the volume compressibility and yw is the unit weight of water at 20°C. The results plotted
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in Figure 2.22b suggests an average coefficient of vertical consolidation of 1.3 x 107
m?/s, or about 400 m?/year. Results from other silts are typically in the order of 10 to 350
m?/year (Ladd et al. 1985; Sandven 2003; Long 2007).

Coefficient of horizontal consolidation (cn) is interpreted from a number of CPTU
dissipation tests (Carroll and Paniagua Lopez 2018), where tso is determined from the
square root method (Sully et al. 1999), and determined in the laboratory on a block
sample test specimen mounted horizontally in the CRS oedometer cell. All dissipation
tests were conducted after penetrating the piezocones to target depth using standard
CPTU penetration rate of 20 mm/s. Figure 2.22c shows that the in situ results indicate
slightly lower cn compared to the cy determined in CRS and IL oedometers. However, the
differences are not significant and the cn result determined in the laboratory confirms this.
Further, during dissipation testing, Halden silt exhibited a non-standard (dilatory type)
behavior which introduces uncertainties in the interpretation of tso and cn, since the

applied methods were generally developed for clays, and do not consider partial drainage.

2.6.7 Hydraulic conductivity

Constant-head hydraulic conductivity tests were conducted at different stress
levels during a selected number of oedometer tests and during the consolidation stage of a
number of triaxial tests. Hydraulic conductivity was determined by flowing de-aired
water through the specimens, from bottom to top, by a 100 mm mercury column in a U-
shaped saran tubing. The amount of water flowing in and out of the specimen was
measured separately, and the tests were continued until the water inflow and outflow

were approximately equal (Sandbakken et al. 1986). Both vertical and horizontal
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hydraulic conductivity (kv, kn) are presented in Figure 2.23. Values from oedometer test
specimens represent the hydraulic conductivity at zero axial strain (back-extrapolated
along the linear e - log k line (Sandbaekken et al. 1986), i.e. at a void ratio near in situ
conditions. Values from triaxial test specimens represent the hydraulic conductivity near
the in situ effective stress state (c'vc, o'he), 1.€. after consolidation and some subsequent
change in void ratio (Ae) has occurred. Due to the larger volume of soil and the greater
height of the triaxial test specimen the hydraulic conductivity measurements made on
these specimens are generally considered more reliable. The average ky of the triaxial test

specimens is 9.8x10°° m/s.

2.6.8 Insitu undrained shear strength — field vane testing

Drainage conditions in silts during shear depend on a number of factors, including
but not limited to loading regime, drainage path, clay content etc. An effective stress
approach may in some cases be a more valid approach for silts and silty soils, but the
total stress approach is often used in engineering practice and when an evaluation of the
undrained shear strength is required. The field vane test results plotted in Figure 2.24a
show that the interpreted peak intact undrained shear strength in the silt units is fairly
constant with depth at around 40 - 45 kPa, except for some higher values close to the silt-
clay interface around 14 - 16 m depth. No empirical correction factors have been applied.
As will be discussed in subsequent sections, the results are very consistent with the
derived undrained shear strength from location HALC12 using an undrained CPTU
interpretation with Nk = 18, and generally plot between the sy = 0.3c'v0 and 0.5c"o lines,

indicated in the figure. As observed in the Norwegian Os silt (Long et al. 2010) and the
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Swedish Borlénge silt (Larsson 1997) field vane test results in silt are typically
significantly lower than the results from undrained triaxial tests on the same material,
when syc is interpreted at simple peak or 10% axial strain like for clays. The reason for
the high triaxial strength is the strong tendency for dilatant behavior during undrained
shear (see Section 2.6.12). It should be noted, however, that field vane testing in silt may
be subject to drained or partially drained conditions. As noted by Chandler (1988), if the
coefficient of consolidation is not sufficiently low with respect to the rate of vane
rotation, consolidation may occur. Moreover, Blight (1968) developed an approximate
theory, supported by experimental tests in a silt (tailings, 5 - 15% clay content, ¢y = 370
m?/year), by which one may determine the rate of vane rotation required to ensure
undrained conditions. Based on these theoretical drainage curves for the vane test
(Chandler 1988), indications are that the conventional rate of rotation (6 - 12°/min) does
not provide shearing under fully undrained conditions in the silt units at Halden. Thus,
the vane results between 5 m and 16 m depth in Figure 2.24a may not be an accurate

measure of the undrained shear strength.

2.6.9 Insitu undrained shear strength — pressuremeter testing

Figure 2.24a presents undrained shear strengths from the four self-boring
pressuremeter tests interpreted using the Marsland and Randolph (1977) approach, see
also Section 2.6.3. In this approach, undrained conditions are assumed, and the total
horizontal stress (ono) and peak cavity shear stress (Su,sep) at the pressuremeter boundary
are estimated by iteration. The point at which the pressure-deformation curve becomes

significantly non-linear should correspond to the in situ horizontal total stress plus the
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undrained shear strength in clays. The undrained shear strengths estimated from this
approach are consistent with field vane results, and sy,ssp ranges from 38 kPa to 51 kPa.
Assessment of undrained shear strength using the limit pressure (p.) (Marsland and
Randolph 1977) yields values in the range of 31 kPa to 68 kPa but are associated with
very large strains. A third interpretation approach, the Gibson and Anderson (1961)
approach, is based on the assumption of an elastic-perfectly plastic material and yields
significantly larger sysgp values. In clays, over predictions of undrained shear strength
from SBPTs compared to laboratory tests on undisturbed soil have been observed (Wroth
1984; Aubeny et al. 2000). This is typically explained by partial consolidation during
expansion (high gradients of pore pressure in the radial direction) and strain rate effects
(increased 'viscosity' — shearing at strain rates much faster than conventional laboratory
tests yields larger undrained shear strength). Noting that the SBPT is a rather slow test
compared to other in situ techniques, e.g. the CPTU, partial drainage may have prevailed
during membrane expansion at Halden. As a result, there is some uncertainty associated
with the sysep results in Figure 2.24a. The fact that the interpreted undrained shear
strength values show fair agreement with the field vane test results and the CPTU
correlation to q: could be a result of compensating effects in the measurements and

interpretation, and as such, somewhat fortuitous.

2.6.10 In situ undrained shear strength — flat dilatometer testing

DMT results in Figure 2.24b show that the Marchetti correlation for undrained
shear strength from DMT (Marchetti 1980), su,omt = 0.22x5"v0%(0.5Kp)*?® has been

found to fall somewhere close to the average undrained shear strength profile in some

30



clays. It appears that at Halden the correlation provides estimates on the low side of both
field vane, pressuremeter and CPTU results evaluated with Nkt = 15 - 18. This is
explained by the fact that the horizontal stress index, Kp is about 2 in the silt layers, and
this corresponds to an interpreted OCR of 1. As a result, between 5 m and 13 m the
undrained shear strength interpreted from DMT fall close to the normally consolidated
line (0.22c'v0), also indicated on the plot. For Halden silt, su,omT = 0.45%c"v0x(0.5Kp)2

would provide a better fit with the FVT data.

2.6.11 In situ strength — cone penetration testing

Undrained shear strength from the Halden CPTU data was estimated using su = (qt
- ovo)/Nkt, with cone factors Nkt of 15 - 18 (see Figure 2.24a and Figure 2.24b). While the
Ny for assessment of shear strength from undrained triaxial tests in compression (Suc
interpreted at the maximum excess pore pressure, Umax) iS about 15, the N factor for field
vane strength is closer to 18. These differences are attributed to the different mode of
shear between the two test methods, strain rate differences, choice of failure criteria and
possible partial drainage in the field vane tests. As will be discussed in more detail in
Section 2.6.12, the triaxial test specimens exhibit dilative behavior during undrained
shear and, unlike the field vane results, do not exhibit a unique (peak) undrained shear
strength. The derived N = 15 for triaxial tests is fairly consistent with the Bq - Nkt
relationship suggested by Lunne et al. (1997) for several Norwegian clays, although the
Halden N values are somewhat on the low side of what could be expected from a soil
with such low Bq values (typically, Bq = 0.1 - 0.25) (Carroll and Paniagua Lopez 2018).

But again, this is based on the reference CAUC syc taken at Umax Which is the lowest
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derived value of s, as discussed further in Section 2.6.12. Norwegian silts from the Brage
offshore oil field (6% — 15% clay size particles, Ip = 8% — 9%) and an onshore site in
Stjerdal (0% — 24% clay size particles) show N: values ranging from 15 to 30, according
to Senneset et al. (1988). However, the they point out that for soils with Bq < 0.4 a
correlation between s, and CPTU testing may be inappropriate due to partial drainage
during penetration. Further, Nk factors of 18 and 11 have been suggested for two Irish
silts (5% — 6% clay size particles, I, = 3% - 17%) (Long 2007), and the Norwegian Os silt
(3% - 12% clay size particles, I, = 12%) (Long et al. 2010), respectively. In sum, when
calibrated in reference to CAUC test results that exhibit dilative behavior, the resulting

Nkt values depend significantly on what criterion is used to select syc as discussed below.

2.6.12 Undrained strength from laboratory testing

Index undrained shear strength by means of the fall cone tests (FC) were
conducted in general accordance with the Norwegian standard (NS 1988), using a 100 g
fall cone and in some cases a 400 g cone with both having a 30° cone angle. Results from
a selected number of tests on block samples are presented in Figure 2.24c. Results from
other boreholes are not presented to reduce factors related to; (i) variation in sampling
technique, e.g. (Long et al. 2010; Carroll and Long 2017) while factors relating to (ii) fall
cone operator dependency, (iii) scale effects, and (iv) local pockets of silt, sand or clay
are other possible effects on the results. Three of the four shallow fall cone results in
Figure 2.24c were obtained using a 400g cone and all four tests yield strengths
significantly higher than the triaxial (CAUC) test results determined at the umax Criterion,

discussed below.
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Anisotropically consolidated undrained triaxial tests (CAUC) and direct simple
shear (DSS) tests were performed to investigate the behavior of the Halden silt under
static undrained loading. Triaxial test specimens were trimmed from block samples,
consolidated to the best estimate in situ stress conditions (c'vc = 6'vo, 6'hc = 6'ho, With an
assumed Ko = 0.5; Section 2.6.3). Specimens were sheared at a nominal axial strain rate
of 1.4 %/hour (Berre 1982). The DSS tests were conducted as constant volume tests in a
Geonor DSS device using 35 cm? specimen area and wire reinforced membranes.
Specimens were loaded directly to the best estimate in situ vertical effective stress (c'vc =
c'vo) and sheared at a nominal shear strain rate of 5 %/hour (Bjerrum and Landva 1966).
The three selected triaxial test results in Figure 2.25a to Figure 2.25¢ show that, except
for an initial contraction, the specimens show a strong tendency towards dilative behavior
(i.e. strain hardening) upon shearing. Due to this behavior the interpretation of the
undrained shear strength is complex and test results provide no unique (peak) undrained
shear strength. The undrained shear strength from CAUC and DSS tests, depicted with an
interpretation of CPTU HALC12 using Nk = 15 and 18 in Figure 2.26a to Figure 2.26c,
are determined using three different strength criteria (Brandon et al. 2006);

€)) Su = gr at the maximum pore pressure, Umax,

(b) Su = gr at the point of which the pore pressure parameter A = (Au — Ac3)/(Ac1
— Acz) = 0, i.e., equal to the drained shear strength for a CADC loading
stress path,

(©) Su = Qr at a limiting strain, yiim (an axial strain & = 5%, or ys = 7.5% in triaxial

tests and at a shear strain yn ¢ = 5% in DSS.
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Criterion (a) provides the lowest estimate undrained shear strength as the shear
stress at this point is below the failure envelope and has not been fully mobilized, but
together with criterion (b) is the most consistent interpretation procedure. While criterion
(a) plots between the s,c = 0.3 to 0.56'vo lines, criteria (b) and (c) provide undrained shear
strengths that plot much higher, and more scattered in the case of criterion (c). Two
CAUC results from criterion (c) plot outside the scale in Figure 2.26¢ and are indicated in
the figure (suc = 131 kPa and 177 kPa).

Typical DSS strength anisotropy ratios, (Sun/c'vo)/ (Suc/c'vo) assessed at Umax, range

from 0.70 — 0.78, with an average value of 0.74.

2.6.13 Remolded undrained shear strength and sensitivity

Remolded undrained shear strengths were determined from laboratory fall cone
tests on block samples and field vane tests (Figure 2.27a). The remolded FVTs were
conducted after 10 full revolutions of the vane and show that the remolded undrained
shear strength is generally around 8 kPa. Fall cone results are somewhat more scattered,
particularly in Unit Il. Compared to the sleeve friction from two typical CPTU locations
(HALC11 and HALC19) the field vane results agree very well. However, as discussed in
Section 2.6.1.2 there is some variability in the measured sleeve friction between the
different cones tested at the site. It should be noted that in Unit Il and 111 the cone sleeve
in location HALC12 recorded friction values twice the values recorded in HALC11 and
HALCI19.

Generally, soil sensitivity measurements from fall cone and field vane tests range

between 2 and 7 (Figure 2.27b). The FVT results are somewhat more consistent with
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depth than the fall cone, and typically decrease from about St= 7 at 5 m depth to about St
=5 at 15 m. The sensitivity of the clay unit below 16 m depth plots around St = 3. Some
studies have suggested that the field vane data should be used with caution as measured
strength, particularly remolded values, may be high (Long et al. 2010). Furthermore,
remolding can change the coefficient of consolidation of the soil and thus potential partial

drainage effects may differ between the intact and remolded tests.

2.6.14 Effective stress strength parameters

All soils are characterized by an effective stress friction envelope. This envelope
is fundamental and referred to as the effective stress friction angle (¢', ¢'mo), ideally
obtained from drained triaxial tests in compression (CADC) but may also be assessed
from undrained tests. The effective cohesion intercept (c') is not fundamental, but
depends upon the yield surface, stress conditions, strain rate etc. Effective stress strength
parameters are required for long term stability analyses. Figure 2.25¢c demonstrates that
Halden silt has a consistent effective stress friction angle, ¢'mo, at maximum obliquity of
about 36° in CAUC tests on block sample specimens with ¢' = 0. This friction angle is
similar to results from drained tests. Friction angle values may also be assessed from
CPTU data using e.g.:

Q) The relationship between normalized cone resistance, Q: and friction angle
for uncemented, unaged, moderately compressible, predominately quartz
sands (Robertson and Campanella 1983). The database was later corrected
for calibration chamber boundary effects (Kulhawy and Mayne 1990), and

an alternative relationship presented as:
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CIt/a_
@' =17.7°+11.0° x log || /—%= (2.2)

GUO/ Oatm

(i)  The NTH (now NTNU — Norwegian University of Science and Technology)
limit plasticity approach (Janbu and Senneset 1974; Senneset et al. 1989),
providing a relationship between normalized cone resistance number, Nm, the
pore pressure ratio, Bq, and effective stress friction angle. For the simplified
case, where the angle of plastification, B, and c' is taken as zero, an
approximate expression for Bq > 0.1 becomes (Mayne 2007):

@' =29.5°x B, "' x (0.256 + 0.336 - B, + logQ,) (2.3)
The two CPTU approaches are plotted with the laboratory data and DMT results in
Figure 2.28. The DMT and CPTU correlations provide values that are significantly lower
than the undrained triaxial test results. The DMT correlation of horizontal stress index,
Kb to a friction angle, ¢'safe,omt provides a lower bound estimate according to Marchetti
et al. (2006); in this case the value is typically in the range of 22° and 25°. The CPTU and
DMT interpretations seem inappropriate, and the laboratory data is considered more
reliable as they are broadly consistent with data reported by other researchers. ¢' = 37° -
40° are reported for Swedish silts (Borgesson 1981; Hgeg et al. 2000), 32°-35° for
Norwegian silts (Sandven 2003; Long et al. 2010), 28° - 39° for the American
Mississippi Valley silt (Brandon et al. 2006), and ¢’ = 40° and greater for Irish silts (Long

2007; Carroll and Long 2017).
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2.6.15 Sample quality

An evaluation of sample quality should always be made while interpreting data
from advanced geotechnical laboratory tests. Poor quality testing and sampling can
adversely affect the interpreted engineering soil parameters, leading to poor geotechnical
project performance and over or unsafe design. Methods developed to assess the quality
of clay samples have existed for more than two decades, but there is still no established
framework to quantify the degree of sampling disturbance in silts. The two conventional
sample quality assessment frameworks using vertical strain, evo (Terzaghi et al. 1996) and
the normalized change in void ratio, Ae/eo (Lunne et al. 1997) (where Ae is the change in
void ratio upon reloading back to the in situ vertical effective stress, and e is the initial
void ratio.), with both evaluated during laboratory recompression to the estimated in situ
effective stresses, must be treated with caution in silts for two reasons:

Q) they were developed for clays, and in particular, the Ae/ep method for
normally consolidated to medium overconsolidated marine clays. These
frameworks may therefore not be valid for silts. In particular the Ae/eo
criteria were developed based on results from laboratory tests performed on
marine clays collected from depths below the seafloor of 0 m to 25 m and
range in properties of 6% to 43% for plasticity index, 20% to 67% for water
content, and 1 to 4 for OCR (Lunne et al. 1997).

(i) loose silts may, if sheared drained or partially drained during tube sampling,
densify and exhibit an artificially low change in void ratio upon

recompression to in situ stresses (Hight and Leroueil 2003; Sandven 2003;
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Carroll and Long 2017). As such, certain samples may appear of high quality
when they have in fact been significantly altered.

Ae/eg values for the CRS/IL oedometer, DSS and CAUC triaxial test on specimens
from block samples collected at the Halden are presented in Figure 2.29a to Figure 2.29c.
Essentially all values fall within the "very good to excellent” (1), or "good to fair" (2)
categories. As described in Table 2-1 soil sampling using several other techniques
(Geonor 54 mm fixed piston composite sampler, 72 mm fixed piston sampler and Gel-
Push sampler) have been conducted at the site and interpretation of the results from these

are in progress and will be reported in a subsequent paper.

2.7 Engineering problems

A discrepancy between in situ and laboratory results, and the lack of established
correlations to important engineering parameters, are a few examples of the challenges
faced during investigations of silts. While silts and other intermediate soils can
complicate the design and construction phases of infrastructure projects both onshore and
offshore, like in the North Sea (Senneset et al. 1988; Solhjell et al. 2017), they lead to
severe building damage during the 1999 Kocaeli earthquake in Turkey (Bray et al. 2004).
Knowledge of soil behavior and engineering properties in these materials is paramount,
and research sites like Halden will assist the geotechnical profession to advance the state
of the art. Some practical engineering problems related to soil sampling, in situ and
laboratory testing at the Halden silt site are discussed below, including a slope failure

case history from the neighboring wastewater treatment facility.
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2.7.1 Soil sampling

Six sampling boreholes were drilled at the Halden site and sixty five samples
collected. While the two Geonor fixed piston samplers collected 54 mm and 72 mm
samples down to 16.5 m depth without any reported issues, the gel-push sampler
equipment needed certain modifications to ensure compatibility with the NGI drill rig.
When the appropriate modifications were made gel-push samples were successfully
collected down to 13.4 m depth. After sampling the tube was left in the ground for
several minutes to improve equalization of pore water pressure and reduce possible
effects such as loss of part of the sample on retrieval from the base of the borehole. Full
recovery was achieved in most cases during tube sampling. Some authors (Hight and
Leroueil 2003; Sandven 2003; Long 2007; Long et al. 2010) report that conventional tube
sampling in intermediate silty soils tend to compress or dilate the soil depending on the
initial void ratio and prevailing drainage conditions upon shear. Dense silts may dilate
upon tube sampling with a resulting increase in void ratio while looser silts may
compress during sampling (decrease in the sample void ratio). At Halden, a study of the
effects of sampler type on engineering parameters and laboratory behavior of silt is
ongoing, but visual inspection of a number of samples revealed no obvious bending of
soil strata or laminations in the peripheral zone near the tube sampler wall. This may also
be due to the fact that the Halden silt shows little to no primary bedding and laminations
due to bioturbation. Although limited research has been published on experience with
block samples of silt some studies report hand carved blocks (Bradshaw and Baxter 2007;
Sau et al. 2014; Arroyo et al. 2015; Carroll and Long 2017). Sherbrooke block sampling

has been conducted at Refneveien in Halden earlier (Carroll and Long 2017), this site is
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approximately 500 m distance and 15 m lower in elevation from the Halden research site
at Redsparken described in this paper. Block sampling was successfully conducted at the
Halden research site down to 15.2 m depth (see Figure 2.30a). On occasion, however, one
or more of the spring-mounted blades were prevented from releasing by silt particles
jamming the knives. As a result, the base of the block could not be properly separated
from the bottom of the borehole and multiple attempts lead to disturbance of a few of the
blocks. A second issue occurred as the blades retracted; in a few cases the friction
between the knives and the silt at the base of the block would cause a wedge of soil to
detach from the sample (Figure 2.30b). Similar issues were encountered at Skibbereen in
Ireland during tube sampling as a result of fines collection behind the piston head during
sampling (Carroll and Long 2017).

The lack of a reliable sample quality assessment framework for silts hinders
determining which sampler could consistently provide a superior quality sample and
hence better quality advanced laboratory test specimens. In the last few decades large
diameter samples, e.g. Sherbrooke blocks (Lefebvre and Poulin 1979) and Laval samples
(LaRochelle et al. 1981), have generally been considered superior to tube samples in clay.

For silts further research on the efficacy of sampler type and sample sizes is needed.

2.7.2 Stress history

As demonstrated by the data presented herein, conducting oedometer tests on
Halden silt specimens to assess stress history (o', and OCR) serve limited purpose as the
soil in this study was strain hardening immediately upon 1D loading in the CRS or IL

cell. Thus determining if any preloading event occurred at the site was solely based on
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the geological background of the site, which in this case is well understood and
documented. While a classical Casagrande interpretation of yield stress from Halden
oedometer test specimens results in an apparent overconsolidation ratio in the range of 2
to 5, it has been concluded herein that the true OCR is closer to 1, and except for some
potential desiccation in the uppermost part of the soil profile, only aging and fluctuating
ground water levels will have caused a yield stress slightly higher than the in situ vertical
effective stress. Furthermore, classical CPTU correlations using factors established and
validated for clays are inappropriate, misleading and in conflict with the depositional
history of the site. For other silt sites, with limited knowledge of the geological
background and no clay layers to assess, normally consolidated silts could be
misinterpreted as overconsolidated if clay-based interpretation strategies are applied.
Until more data on other silts worldwide are published, experiences from test sites such

as Halden or Malamocco (Cola and Simonini 2002) may provide valuable information.

2.7.3 Partial drainage

Assessment of the prevailing drainage conditions in silts and other intermediate
soils are particularly challenging. While for a certain foundation geometry and loading
regime the soil response may be undrained, other combinations may act under partially-
drained or fully drained conditions. This is also the case for in situ tests; depending on the
rate of penetration, pore pressure dissipation may occur during testing. The influence of
penetration rate and soil drainage properties (specifically the coefficient of consolidation)
on the consolidation conditions in these soils are typically of great importance in design

and can be captured by the normalized penetration velocity, V = v x d/cn, where v is the
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cone penetration rate, d is the penetrometer diameter and cn is the horizontal coefficient
of consolidation. Fully undrained penetration typically occurs when V is larger than
about 30 to 100 and if less is typically associated with partially drained penetration. Fully
drained penetration occurs when V is less than about 0.03 (DeJong and Randolph 2012).
A CPTU penetration rate study conducted at Halden (Carroll and Paniagua Lopez 2018)
demonstrated a clear increase in V with increased penetration rate as expected. While a
reduced CPTU penetration rate (2 mm/s) resulted in V values in the region of 14-27, the
conventional penetration rate of 20 mm/s yielded V values typically in the range of 95-
273 in silt Units Il and 11I. As such, undrained conditions are likely to prevail during
standard cone penetration rate. It should be noted, however, that the suggested transition
from undrained to partially drained conditions based on V or Bq at Halden are not in
agreement. Excess pore pressures generated behind the cones in Halden are low (Bq= 0.1
- 0.24; Figure 2.14) and other researchers (Senneset et al. 1989) have suggested that
partially drained conditions prevail when By < 0.4. Further investigation of this topic is
required for validation. As noted in Sections 2.6.3 and 2.6.9 the self-boring
pressurementer test, but also the dilatometer test, are rather slow in situ techniques
compared to the CPTU. Thus, drainage or partial drainage could become a major factor
and introduces uncertainty in the engineering parameters (e.g. Ko and sy) interpreted from

these tests.

2.7.4 Case history: Remmen wastewater treatment facility

Slopes on silts are typically susceptible to landslides and local liquefaction under

certain unfavorable conditions. Saturation may be high even above the free ground water
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table and the soils are quickly fully saturated if the water table increases (Sandven 2003).
This typically occurs during or after periods with significant rainfall or during spring
when snow is melting. The ground water table rises and quickly saturates the overlying
soils and breaks the matrix suction. This consequently reduces the effective stresses and
strength of the soils. However, on slopes where negative pore pressures (suction)
dominate, failures may not necessarily occur very often. Evaluations of the stability of
these slopes, typically using overly conservative values of soil strength and in situ pore
pressure, may underestimate the factor of safety against failure. Between 2009 and 2012
the Swedish Geotechnical Institute, SGI, performed monitoring of negative pore
pressures on two silt slopes in Sweden (Westerberg et al. 2014; Vesterberg et al. 2017).
The stability analyses of one of these slopes showed that by including suction in the
calculations, the factor of safety increased by 5% - 13%.

In the evening December 14th, 2011 a local landslide was triggered up-slope from
the Remmen wastewater treatment facility (RWTF), immediately west of the Halden
research site (see Figure 31). For safety of the neighboring residents, the nearby
properties (No. 8 and 10) were immediately evacuated. A broken water supply pipeline
combined with a period of significant rainfall may have caused instabilities in the slope.

The topography slopes from an elevation of about 28 m above sea level at the
crown of the slope to about 6 m at the toe (Figure 32). The width and depth of the slide
was about 30 m and 3-4 m, respectively. The debris, estimated to a volume somewhere in
the range of 1000-2000 m? stopped just short of the treatment facility, about 80 m from
the main scarp. NGI subsequently carried out the following soil investigation; 8

Norwegian total soundings, 3 CPTUs, installation of two piezometers and one sampling
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borehole on the slide crown using the Geonor 54 mm piston sampler. The field and
laboratory testing revealed a clayey silt down to about 8 m depth, and 2 meters of silty
clay over bedrock. Light detection and ranging (LIiDAR) data from the site is also
available from both pre- and post-failure. The elevation contours in Figure 2.33 shows
that the debris have reached the access road and if only marginally greater, the landslide
might have hit the exterior of the wastewater treatment facility and caused harm to
infrastructure and people.

Effective stress slope stability calculations to assess the site conditions prior to
failure were performed using the computer program BEAST (Clausen 2003) with 30
slices. In these analyses the silt was considered a granular material using an effective
stress friction angle. For a circular failure surface similar to the one observed in the field,
and by applying ¢' = 34° (c' = 0 kPa) and ¢' = 26° (c' = 5 kPa) in the top sand and
underlying silt, respectively, a factor of safety (FS) equal to 1.0 was obtained. At failure
(FS=1.0) the shear stresses () along the slip surface were generally in the range of 20 to
25 kPa.

Post-failure slope stability was still considered unacceptable and the probability of
new slides considered high. To mitigate the risk of future hazards a dense grid of
individual soilcrete columns were installed by means of deep soil mixing in the lower
section of the slope. Deep soil mixing improves the strength characteristics by
mechanically mixing the soil with a cementitious binder slurry, and as such the ground
improvement stabilized the slope. Further, the soilcrete columns provided a foundation

for the 1500-2000 m? rock backfill now supporting the main scarp. The backfill is
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resistant to erosion and acts as counterweight. The FS after these measures was calculated

to about 2.0.

2.8 Summary and conclusions

Silts and similar intermediate soils represent a category of soils that are typically
labelled challenging by geotechnical engineers. These soils can be difficult to sample,
especially for very low plasticity to non-plastic silts, and there is no well-established
framework to assess sample quality. Furthermore, little guidance is available on the
selection of appropriate engineering properties for practical use. The Halden research
site, located in Southeastern Norway, has been studied over a period of six years by
combining the results of a number of geological, geophysical and geotechnical site
investigation tools. The site emerged from the marine environment c. 5,000 years ago as
a result of intense isostatic uplift and relative fall of sea-level. A silty, clayey sand
constitutes the top soil and extends down to about 4.5 to 5 m depth. The clayey silt below
is separated into two soil units based on the results of in situ and index tests, but is
regarded as the same material with the same geologic origin and history. These extend
down to about 15 - 16 m depth. Piezocone data reveals that the corrected cone resistance
plots around 1 MPa, similar to that of the clay unit below, and excess pore pressures are
generated behind the cones in the silt units. The pore pressure ratio is generally low,
ranging between 0.1 - 0.3, and the soil behavior type index typically ranges between 2.6
and 2.95. The seismic cone results indicate a clear trend of increasing shear wave velocity
with depth ranging from about 110 m/s at 2 m depth to 200 m/s at 16 m. Advanced CRS,

CAUC and DSS laboratory testing revealed a number of challenges and limitations; (i)
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Methods developed to assess the quality of clay samples may not necessarily apply to
these soils and there is no established framework to quantify the degree of sample
disturbance in silts. (ii) Interpretation of the stress history based on both oedometer test
results and clay-based correlations to CPTU cone resistance are problematic and
unreliable as they are in conflict the geological history in the area. Geology, and evidence
of a normally consolidated stress state of the lower clay, suggests that also the silt is near
normally consolidated. (iii) Undrained shear strengths, as interpreted from e.g. field vane
tests, are consistent with the CPTU interpretations using Nk: = 18, but plot significantly
lower than the results from undrained triaxial tests on block samples interpreted at large
strain. The undrained triaxial tests exhibit a strong tendency for dilative behavior and
provide no unique (peak) undrained shear strength. As a result, different strength criteria
provide different results. Despite certain interpretation challenges the paper presents
important reference data to assist in the interpretation and assessment of similar silts, and
provide some guidance on important geotechnical properties for projects where limited

design parameters are available.
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Table 2-1 Summary of geophysical, in situ and laboratory tests conducted at Halden
research site, with general test procedure references and key parameters.

Test Measured Interpreted Reference/Comment
Geophysical / non-intrusive

Electrical resistivity tomography S .

(ERT) Resistivity Zbedrock, SO11 type

Multi-channel analysis of surface v v G

waves (MASW) P oo
In situ

Norwegian
Rotary pressure sounding (RPS) Fpr Zbedrock Geotechnical Society

Cone penetration test (CPTU, SCPT,
RCPT)

Seismic flat dilatometer (SDMT)

Self-boring pressuremeter test (SBPT)

Pore pressure

Field vane test (FVT)

Ground temperature monitoring
Hydraulic fracture test (HFT)

Screw plate load test (SPLT)
Sampling

Geonor (¢ 72 mm) fixed piston

Geonor (¢ 54 mm) fixed piston
(composite)

Sherbrooke block (¢ 250 mm)

Mini-block (¢ 150 mm)

Gel Push (¢ 72 mm)

qe, fs, U2, Vvn, K

Po, Py, Ip, Kp,

ED; Vvh
Py, P Pr, €

va» M Gmwo Su, (I)':
Ch

Su,omt, Ko, 'p, ¢'

Gh, Kﬂ, Su,SBP, Gmax

Uo

Sus Su,rem

(1989)
ISO (2012)

ISO (2017)
ISO (2012)

Norwegian
Geotechnical Society
(2017), Piezometers
Norwegian
Geotechnical Society
(1989)

Thermistor string
Bjerrum and Andersen
(1972)

Norwegian
Geotechnical Society

(2013)

Norwegian
Geotechnical Society
(2013)

Lefebvre and Poulin
(1979); Norwegian
Geotechnical Society
(2013)

Emdal et al. (2016)
Tani and Kaneko
(2006); Huang et al.
(2008)
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Laboratory
Water content
Unit weight (density)
Unit weight of solid particles

Atterberg limits

Grain size distribution

Fall cone test

Carbon content

Salinity

X-ray diffraction (XRD)

X-ray inspection (XRI)

Scanning Electron Microscopy
(SEM)

Multi sensor core logging (MSCL)
Split core imaging

Incremental loading oedometer (IL)

Constant rate of strain oedometer
(CRS)

Hydraulic conductivity
Electrical resistivity

Triaxial test: CAUC, CAUE,
CKoUC, CADC

Direct simple shear (DSS)

Bender element test (BE)

w
Yd, Ye (P, Pr)
Vs (Ps)

wr (LL), wp
(PL)

Penetration
% TC, TOC
K

pi, MS

t, o'y, €

t,o'y, €

kh, kv
Resistivity

&q pu

Th, O'y

Vvh

Yt (py)

1, (P1), I (LI)

% sand, silt, clay

Sus Su,rem

gNaCl

% minerals

G'p, Ce, €, Ca, kv

va» Ce, Cy, kv

Tk

K

c ¢a Suc, Sut, E

sup, G

Gmax

ISO (2014)
ISO (2014)
ISO (2015)
ISO (2018)

Moum (1965); ISO
(2016)

NS (1988)

NGU in-house
1SO (1994)

NGU in-house
NGU in-house

NGU in-house
NGU in-house
1SO (2017)

Sandbakken et al.
(1986); NS (1993)

Sandbakken et al.
(1986); ISO (2004)

Wang et al. (2009)
Berre (1982); ISO
(2018)

Bjerrum and Landva
(1966); ASTM (2015)
Dyvik and Madshus
(1985)
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Table 2-2 Summary of Halden stratigraphy, with X-ray images at 0°, 45° and 90° degree axial orientation, and split core images at 20
ms and 40 ms exposure time.

Depth range Soil description and imaging [-] Comment [-]
[m]
0.0-4.5 SAND, clayey, silty, fine, loose to medium dense, with organic material, brownish grey

Soil Unit I)

X-ray and split core imaging
depth: 3.0 -3.9m

45-12.1 SILT, sandy, clayey, low to medium strength, homogeneous, mottled, occ. shell fragments, brownish grey 14C age @ 6.4m:
Soil Unit IT) 6455 £ 25 years BP

X-ray and split core imaging
depth: 4.8 - 5.6 m




12.1-16.0 SILT, sandy, medium to high strength, homogeneous, highly bioturbated, mottled, occ. shell fragments, occ.
black organic material, brownish grey
Soil Unit I11)

X-ray and split core imaging
depth: 12.0 — 12.8 m

16.0 -21.3 CLAY, silty, low to medium strength, slightly laminated, occ. shell fragments, occ. drop stones 14C age @ 16.3m:
Unit 1V) 11820 + 25 years BP

X-ray and split core imaging
depth: 15.6 —16.4

21.3 BEDROCK

51



Table 2-3 Results of X-ray diffraction analyses on 3 specimens from Halden research site.

Unit  Depth  Quartz Potassium Feldspar ~ Plagioclase  Muscovite/Illite ~ Chlorite ~ Amphibole  Pyrite

- m % % % % % % %
II 6.2 41 12 30 8 3 6 trace
II 9.5 40 13 29 8 4 6 trace
111 13.5 44 12 30 7 2 5 trace
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Figure 2.1 (a) Site location, and (b) site layout. Investigated locations include resistivity
and geophysical investigation tools (ERT, MASW), ground water and temperature
monitoring, soil sampling using various samplers and in situ testing (CPTU, SCPT,

RCPTU, SDMT, FVT, SBP and SPLT).
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Figure 2.2 Shoreline reconstruction curves from Halden region (Northern and Southern
@stfold), after Klemsdal (2002). The research site most likely emerged from the marine
environment c. 5,000 years ago.

Figure 2.3 Quaternary map of the Halden area, Southeast Norway, with the research site
circled in red. The colors reflect the geological processes and general properties of the
deposits. Shades of blue indicate that the soils have been transported by and deposited in
a marine environment. These deposits dominate the Halden area. Shades of green indicate
soils that were deposited by the ice. Shades of yellow indicate fluvial deposits, and pink
shows exposed bedrock. After Olsen and Sgrensen (1993).
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Figure 2.4 (a) Pore pressure from in-situ piezometers (locations HALP01-HALPO04) and
uz from CPTU (locations HALC11, HALC12 and HALC19). The dotted line indicates
the theoretical hydrostatic pore pressure acting from 2 m depth. (b) In-situ pore pressure
measured by four electric piezometers installed at 5 m, 10 m, 15 m and 20 m depth, and
rainfall in the area, October 2016 to October 2018.
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Figure 2.5 Thermistor string temperature log in location HALBO5; (a) with depth at
selected dates, and (b) with time since October 2017.
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Figure 2.6 In-situ stress conditions (uo, Gvo and G'vo).
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Figure 2.7 Classification and CPTU data; (a) Soil units, (b) natural water content and Atterberg limits, (c) total unit weight, (d) clay
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Figure 2.8 Approximate depth to bedrock across the research site.
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Figure 2.11 SEM from 8.6 m depth.
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Figure 2.14 CPTU data from six locations; (a) cone resistance, qc, (b) shoulder pore
pressure, Uy, (c) sleeve friction, fs, and derived parameters (d) normalized cone resistance,
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Figure 2.16 In-situ shear wave velocity (Vvn, Vs) from SCPT and SDMT, and
Multichannel Analyses of Surface Waves (MASW).
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Figure 2.18 Typical self-boring pressure meter results. Interpretation of oo and su,sep

based on Marsland and Randolph (1977) methodology.
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Figure 2.19 Stress history data from field and laboratory testing. (a) yield stress, c'p, (D)
overconsolidation ratio, OCR, and (c) coefficient of earth pressure at rest, Ko.
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Figure 2.21 Three typical results from CRS testing on specimens from Halden block
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Figure 2.22 (a) Constrained modulus at the in situ effective vertical stress, Mo and (b)
vertical and (c) horizontal coefficient of consolidation with depth, with DeJong et al.
(2013) clay-silt transition indicated.
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Figure 2.23 Hydraulic conductivity (kv, kn) from laboratory testing.
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Figure 2.25 Typical CAUC test results from Halden block samples (HALBO04) by means
of (a) shear stress versus vertical strain, (b) shear-induced pore pressure versus vertical
strain, and (c) stress-path plots. A strong tendency for dilative behavior develops negative
shear induced pore pressure in the specimens and results in strain hardening upon
shearing. As observed in other silts and intermediate soils no unique (peak) undrained
shear strength is identified.
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Figure 2.30 Sherbrooke block sampling of Halden silt (borehole HALBO04); (a)
Apparently good quality block from 11.5 m depth, (b) Damaged lower part of block from
12.4 m depth. Damage was caused by the retracting knives at the base of the block.
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Figure 2.31 Location plan showing the Remmen wastewater treatment facility (RWTF)
relative to the Halden research site, the slope in question and the neighboring houses (No.
8 and 10). Borehole locations 1, 2, 4 and 5 include cone penetration tests. 54 mm Geonor

fixed piston sampling was conducted at location 5.
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Figure 2.33 LIDAR results shows elevation contours of (a) Pre-failure conditions, and (b)
post-failure conditions.
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CHAPTER 3

INTACT, DISTURBED AND RECONSTITUTED UNDRAINED SHEAR
BEHAVIOR OF LOW PLASTICITY NATURAL CLAYEY SILT

This paper presents a laboratory investigation of undrained triaxial shear behavior
of a natural low plasticity silt from Halden, Norway in the intact, disturbed and
reconstituted states. Sherbrooke block sample and reconstituted specimens were
subjected to simulated tube sampling in a triaxial stress path cell system prior to
reconsolidation and undrained shear to assess the effects of disturbance on undrained
shear behavior, undrained shear strength and effective stress friction angle. Shear stress
and pore pressure development were evaluated relative to that measured for the
undisturbed reference state taken as that measured on specimens from the intact block
sample. Furthermore, specimens trimmed from fixed piston tube samples collected from
the field site were also tested for comparative purposes. Collectively, the results
demonstrate that neither the volumetric method of evaluating sample quality for clays nor
shear wave velocity track sample disturbance well for this low plasticity silt. Relative to
the reference intact block sample tests simulated tube sampling results in an increasingly
pronounced dilative type behavior during post-disturbance undrained shear and a general
increase in undrained shear strength. Specimens from the block sample that were
subjected to simulated tube sample disturbance showed similar stress-strain behavior to
that from conventional anisotropically consolidated triaxial compression tests conducted
on specimens from the tube samples, suggesting that significant alteration of the intact

soil state occurred during tube sampling. Practical suggestions for selection of undrained
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shear strength for intact low plasticity silts that exhibit dilative behavior such as the

Halden silt are proposed.

3.1 Introduction

While effects of sampling and sample disturbance on undrained shear behavior of
clays have been subject to extensive research for decades (La Rochelle and Lefebvre
1971; Lacasse et al. 1985; Hight et al. 1992; Tanaka et al. 1996; Lunne et al. 1997;
Santagata and Germaine 2002; Lunne et al. 2006), few studies have investigated how
tube sampling of low plasticity silts affects selection of engineering properties compared
to those interpreted from companion high quality block samples. Indications are that tube
sampling can densify loose silts and sands (e.g. Hight and Leroueil 2003) due to drained
or partially drained conditions during sampling. As a result advanced laboratory testing
(e.g. direct simple shear or triaxial compression) of these samples can lead to opposite
effects of those often observed in naturally occurring structured clays, i.e., higher strength
and stiffness properties than in situ values (Carroll and Long 2017; Lukas et al. 2019).
The dilative nature of many silts and other intermediate soils (silty sand, sandy silt,
clayey silt, silty clay, etc.) also results in strain hardening during undrained shear, and
oftentimes, no unique undrained shear strength (peak) is observed (e.g. Fleming and
Duncan 1990; Hgeg et al. 2000; Sandven 2003; Brandon et al. 2006; Long 2007; Carroll
and Long 2017). Consequently, significant uncertainties are associated with predicting
the in situ undrained shear strength of silts using laboratory tests on apparently intact, so-
called undisturbed samples. Furthermore, only one quantitative framework for

assessment of sample quality has been proposed for low plasticity soils (DeJong et al.
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2018). This method was developed for 1-D consolidation tests and is based on synthetic
soil mixtures that do not exhibit the same sensitivity and structure as many naturally
occurring soils. The lack of such practical recommendations has led to use of the clay-
based volumetric sample quality assessment indices, e.g., normalized void ratio change,
Aeleo, (Lunne et al. 1997) the recompression volumetric strain, ewo or Sample Quality
Designation (SQD, Terzaghi et al. (1996)). While all soils are subject to strains during
tube sampling, in clays the shearing can be considered undrained and thus under constant
volume conditions (although there can be local redistribution of water content after tube
sampling). Silts, however, may be undrained, partially drained, or drained during tube
sampling depending on sampling rate, soil composition, type of sampler etc., and any
potential volume changes occurring during and after sampling are unknown. The use of
clay-based frameworks for silts has recently been shown to be misleading (Long et al.
2010; Carroll and Long 2017; DeJong et al. 2018; Lukas et al. 2019) even though its use
has been presented in the literature.

This paper presents an assessment of the undrained triaxial shear behavior of a
natural silt in the intact, reconstituted and disturbed states, where the Sherbrooke block
sample is considered the best representation of intact soil. It investigates differences
observed between tests on material from the block sample and specimens reconstituted
using moist tamping and slurry deposition and compares the behavior of block sample
material and specimens subjected to experimental sample disturbance simulation (Baligh
et al. 1987). Furthermore, the undrained triaxial stress-strain behavior and interpreted
undrained shear strength of the block sample and experimentally disturbed specimens are

compared with results on specimens from the NGI 54 mm composite fixed piston

79



sampler (Andresen and Kolstad 1979) and Japanese Gel-Push Static fixed piston sampler

(Tani and Kaneko 2006; Mori and Sakai 2016).

3.2 Current practice in sampling of silts and assessment of undrained shear

strength

3.2.1 Tube and block sampling

Sample disturbance results from stress relief during drilling and straining during
tube sampling. Other sources of post sampling disturbance include sample extrusion,
transportation, sample storage and specimen trimming (Ladd and DeGroot 2003). The
magnitude and effect of these factors are functions of soil type, drilling and sampling
equipment, operator experience, transportation method, and storage time. For example,
Baligh et al. (1987) and Clayton et al. (1998) investigated the effect of tube dimensions
and cutting shoe geometry on sample quality and found that increasing area ratio (AR =
ratio of the cross-sectional area of the sampler that is solid to that of the inside of the
cutting shoe) resulted in a significant increase in the compressive centerline strains ahead
of the sampler. Best practice recommendations from such research and that of others (e.g.
Hight and Leroueil 2003; Ladd and DeGroot 2003) are that: 1) the area ratio should not
exceed 10%, 2) the inside diameter should be greater than around 72 mm, 3) the cutting
shoe should be sharp (e.g., around 5° to 10°), 4) the sample tube should have zero inside
clearance, and 5) a fixed piston should be used.

Silts and intermediate low plasticity soils have traditionally been sampled using:

(1) open drive U100 or split spoon samplers (Bray et al. 2004; Long 2007), both of which
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have a poor geometry with a large area ratio and cutting angle; (ii) thin-walled samplers
with a better geometry including Shelby tubes of various diameters (Brandon et al. 2006;
Nocilla et al. 2006) and; (iii) different fixed piston samplers with thin-walled tubes (Hgeg
et al. 2000; Bray and Sancio 2006; Long et al. 2010; Solhjell et al. 2017). Although large
diameter block type samplers, e.g. Sherbrooke (Lefebvre and Poulin 1979) and Laval
samplers (LaRochelle et al. 1981) typically provide high quality samples of clays, there is
limited experience with these sampling techniques for low plasticity silts. Examples of
collection of hand-carved and downhole Sherbrooke block samples in this material
include Bradshaw and Baxter (2007), Carroll and Long (2017) and Blaker et al. (2019).
Because of the challenge in collecting good quality samples of silts, some
laboratories prepare advanced test specimens (e.g., triaxial) using reconstitution methods,
including: moist and dry tamping (Ladd 1978), and slurry deposition (Wang et al. 2011;
Lukas et al. 2019). Under controlled laboratory environments the effects of different
variables can be studied, but due to particle reorientation, particle segregation, impact
energy, and loss of structure and/or cementation effects, reconstituted soil may not
necessarily be an attractive alternative for silts, nor be representative of the in-situ soil

state and structure.

3.2.2 Laboratory simulation of tube sampling - Ideal Sampling Approach (ISA)

Tube sample disturbance can be simulated in the laboratory to study the effects on
undrained shear behavior and engineering parameters. Baligh et al. (1987) and Clayton et
al. (1998) used the Baligh (1985) strain path method to investigate the effects of

undrained tube sampling in saturated clays. The result of this work demonstrated that a
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tube sampler takes a centerline element of soil initially beneath the sampler into a strain
cycle including both compression and extension strains during sampler penetration. This
can be simulated in the laboratory using the ldeal Sampling Approach (ISA; illustrated
for a silt in Figure 3.1) in which a specimen is consolidated to the estimated in situ stress
condition, c'vo and c'no (Step 1) of interest. In Step 2 tube sampling is simulated by
shearing the specimen first in undrained compression to a predefined strain level, +&;; max
(shown for +1% vertical strain in Figure 3.1; which is considered a representative value
for a standard 76 mm outside diameter US Shelby tube), reversing the direction of
loading and bringing the specimen into extension, i.e. to a strain level equal t0 —&z max,
before returning to 0% vertical strain and removing the shear stress q = 0.5(cv — on),
under undrained conditions. In Step 3 the "tube-sampled™" specimen is reconsolidated
back to ¢'vo and c'no followed by the final Step 4 of undrained compression shearing the
soil to failure. In the results section of this paper the final undrained shear results are
compared to behavior of a companion test specimen that has not been subjected to the
ISA strain cycle.

Clayton et al. (1992), Santagata and Germaine (2002) and Clayton et al. (1992);
Santagata and Germaine (2002); Santagata et al. (2006) found that simulated tube
sampling of clays results in a reduction in the mean effective stress p' = 0.5(c'v + c'n),
during ISA cycling, an increase in &wo Or Ae/eo during post-ISA reconsolidation, and
decreases in the small strain stiffness, undrained shear strength sy = gr (where gs is the
shear stress at failure), and post-peak strain softening. ISA testing on silts have seen
limited research efforts until recently but these soils have shown contrasting behavioral

effects of disturbance relative to that of clays. For the Irish intermediate plasticity
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Letterkenny silt Carroll and Long (2017) demonstrated that increasing the level of ISA
strain damage resulted in an increase sy and stiffness by almost 20%. Greater damage also
resulted in an increase in the rate of negative shear induced pore pressure generation of
the specimens. Lukas et al. (2019) tested various synthetic intermediate soils and found a
decrease in the initial pre-peak stiffness, a decrease in strain-softening response and
increases in sy and vertical strain at failure evs with increasing ISA strain. Also, the
magnitude of these changes increased with decreasing plasticity index. These results are
opposite of that found for the effect of tube sample disturbance on the behavior of low to

moderately overconsolidated clays.

3.2.3 Selection of undrained shear strength for design

Due to sample disturbance effects, limitations in reconstitution methods, and the
strain hardening nature of many silts, there are significant uncertainties associated with
estimating the in situ sy of silts for design purposes from laboratory tests (Wang et al.
1982; Fleming and Duncan 1990; Hgeg et al. 2000; Carroll and Long 2017). Brandon et
al. (2006) reviewed six criteria for interpretation of sy of two natural silts from the
Mississippi River Valley. For specimens sheared in triaxial compression, the criteria
include: 1) maximum deviator stress, (o1 — o3)max; 2) an assigned limiting vertical strain,
evf, 3) state of zero excess shear induced pore pressure at failure Auf = 0, which is
equivalent to Skempton's A parameter at failure equal to zero, As= 0 for B = 1; 4) point at
which the effective stress path first reaches the failure envelope, defined by the Kt line; 5)
maximum obliquity, (c'1/c"3)max; and 6) maximum shear induced pore pressure, Umax.

Note that with zero cohesion intercept, ¢' = 0, criteria 4 and 5 provide the same undrained
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shear strength. Long et al. (2010) and Long (2007) found that the use of criterion (1) for
anisotropically consolidated undrained triaxial compression (CAUC) tests on the
Norwegian Os, and the Irish Sligo and Dunkettle silts gave unusually high s, values and
that other criteria (e.g., criteria 3 and 6) could more effectively reduce the scatter. Long et
al. (2010) and Long (2007) concluded that due to the dilative nature of silty soils
interpretation of s, from CAUC tests using criterion (1), which is the traditional approach
for clays, gives unrealistically high sy values and advocated use of criterion (2) with &y¢=
2%. Whereas Borgesson (1981), Wang et al. (1982) and Fleming and Duncan (1990)
used ey, ranging from 5% to 15%. Criterion (6) typically provides the lowest value of sy
as Umax Often occurs at small strain and thus before full mobilization of the in situ sy has
taken place. While Stark et al. (1994) used both criteria (1) and (6), Brandon et al. (2006)
recommended criterion (3). Solhjell et al. (2017) evaluated sy for a North Sea offshore
silty, sandy, clayey soil unit for which the project design basis required both lower and
upper bound estimates of sy. The Authors selected sy at the onset of dilative behavior (i.e.,
AU — Acoct = 0, where Acoct = 2A0/3 and g = (ov — on)/2) in CAUC and direct simple
shear (DSS) tests as the lower bound while the upper bound was estimated as the lesser
value of the conventional peak shear stress (criterion 1) and sy at &vs = 10% for CAUC
tests or 15% shear strain in DSS tests (criterion 2). Depending on the design conditions, it
is evident that sy for silts exhibiting dilative behavior can be significantly underestimated
or overestimated. In summary, limited research is available on how sample disturbance
influences the various sy selection criterion and furthermore how laboratory s, values for
silts defined by the above-mentioned criteria relates to the in-situ sy for specific design

applications.
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3.3 Methods of investigation

3.3.1 Soil sampling

Samples were collected at the Halden, Norway research site using the Sherbrooke
block sampler (Lefebvre and Poulin 1979), the NGI 54 mm inner diameter (ID)
composite piston (NGI 54) sampler (Andresen and Kolstad 1979) and the 71 mm ID
Japanese Gel-Push Static (GP-S) sampler (Tani and Kaneko 2006). The latter injects a
water-soluble polymeric lubricant (gel) from the sampler shoe to lubricate and reduce
friction between the cut sample and sampler wall. The NGI 54 and GP-S samplers have
outside diameter to thickness ratios (Dw/t) of 12 and 8, respectively, giving AR of about
44% and 78%. The former sampler has about 0.6% inside clearance and the latter about
1.5%. The Sherbrooke block samples are considered in this paper the best representation

of intact soil and used as the reference laboratory behavior for the Halden silt.

3.3.2 Specimen preparation

Both consolidated triaxial and incremental load oedometer test specimens were
prepared in the laboratory. Three specimen preparation methods were used: trimming of
block and tube samples and two variations of soil reconstitution. Reconstituted specimens
were prepared from a batch of air-dried untested material from the same depth as the
collected samples and had essentially identical grain size distributions as the block
sample. The individual reconstituted specimens were prepared either by moist tamping
(MT) or slurry deposition (SD). In the MT method the amount of dry silt that provided

the desired density for the specimens was mixed with about 3% (by mass) de-aired water.
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The specimens were prepared on the triaxial pedestal in six separate equal-volume lifts
using a split mold. The lower layers were under compacted (Ladd 1978) such that the
energy applied to the successive layers would produce a specimen of approximately
uniform density throughout when the preparation was finished. The top cap and
membrane were sealed using O-rings and an internal under pressure of 20 - 30 kPa
applied. The SD method was similar to the approach described by Wang et al. (2011) and
Lukas et al. (2019) for which 200 - 400 g of air dried silt was thoroughly mixed with de-
aired water at 1.5 - 2.0 times the liquid limit, and left overnight to hydrate. Then the
slurry was mixed further and poured into an oedometer ring or, in the case of triaxial
specimens, a split mold with an extension collar (ID = 54 mm) and the membrane already
in place. All slurry specimens were left 4 - 10 hours to self-weight consolidate before free
water was removed. Oedometer specimens were incrementally loaded to the estimated in
situ vertical effective stress for the block sample c'vo = 125 kPa using dead weights, left
overnight to consolidate, then unloaded and mounted in the oedometer load frame.
Triaxial specimens were incrementally loaded to 50 kPa while still in the split mold, also
using dead weights. The specimens were unloaded, the top cap and membrane sealed
using O-rings and an internal underpressure of 30 kPa was applied for about 30 minutes
prior to removal of the split mold. For both the MT and SD methods the specimen
dimensions were measured while still under vacuum which was not released until the
triaxial cell was filled with water and oil, and a cell pressure of about 30 kPa was applied.
Both MT and SD specimens produced specimens with almost identical void ratio after

consolidation as specimens prepared from the Sherbrooke block sample (Table 3-1).
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Furthermore, replicate specimens prepared using the same method demonstrated

repeatable undrained triaxial compression behavior, as presented in the results section.

3.3.3 Triaxial testing

The triaxial specimens were prepared to diameter, d = 54 mm and height, h = 108
mm and tested using the procedures described by Lacasse and Berre (1988). During the
saturation process the test specimens were first subjected to an isotropic effective stress
(cell pressure) equal to the estimated value of the initial negative pore pressure (suction)
within the specimen. The porous filter stones were initially dry except for the SD
specimens. At the initial isotropic stress, de-aired water was flushed through the porous
stones and any tendency for volume change was prevented by adjusting the cell pressure
until a stable condition was reached. Following this stage, backpressure was applied
using a pressure volume controller and all B values, which were measured at the end of
the consolidation phase, were > 97% except for one MT reconstituted specimen with a
measured B value of 91%. All specimens were anisotropically consolidated to the best
estimate c'vo and horizontal effective stress c'ho using an assumed Ko = 0.5 (Blaker et al.
2019). All specimens were allowed to creep for 12 to 24 hours prior to undrained shear.
ISA triaxial tests were performed with peak ISA vertical strains of +0.5%, +1.0%, and
+3.0% except for one test which was performed inadvertently with asymmetric vertical
strains of +1%/—0.5%. The ISA strain cycles were followed by undrained removal of the
deviator stress (reducing oy to ov ~ on), the back pressure was re-set to the end-of-ISA
pore pressure, and the specimen was reconsolidated back to c'vo and c'ho as shown for

example in Figure 3.1. All monotonic and ISA undrained shear tests were strain-
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controlled at a strain rate of 0.5 %/hr. The total radial stress was kept constant while the
total axial stress was increased in compression (CAUC) and decreased in extension
(CAUE). All stress measurements were corrected for membrane resistance and changes

in specimen area (Berre 1982).

3.3.4 Incremental loading oedometer testing

Incremental loading (IL) oedometer tests were performed as per Sandbaekken et
al. (1986) using specimens trimmed from the block sample with a cross-sectional area of
20 cm? and height 20 mm and mounted with dry porous filter stones. Slurry specimens
were prepared in a 50 cm? oedometer ring to a specimen height of 26 mm. Each load
increment was maintained for 60 min, except for one test on the block sample specimen,
on which a 24 hour increment duration was used. A load increment ratio of

approximately one was used in all tests.

3.3.5 Bender element testing

Piezo ceramic bender elements (Dyvik and Madshus 1985) were used to measure
the shear wave velocity of the triaxial specimens. The bender element at one end of the
specimen was used to transmit a vertically (v) propagating horizontally (h) polarized
sinusoidal shear wave. The receiver bender element detected the arrival of this shear
wave at the opposite end of the specimen, and the velocity of the shear wave (Vin) was
determined. The transmitting signal was generated by a Wavetek model 29 10 MHz
Direct Digital Synthesis (DDS) Function Generator, exciting the transmitting bender with

a single £10 V amplitude sine wave triggered at a 10 Hz delay. The transmitted and
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received signals were both recorded using a LDS-Nicolet Sigma 30 digital oscilloscope

with 12-bit resolution and up to 10 Ms/s sampling rate.

3.4 Results — block samples and reconstituted specimens

The block and tube samples were collected in separate boreholes but all from the
depth interval of 11.0 to 11.8 m below grade, and maximum horizontal distance of 3.3 m
apart. Typical index and classification properties were: water content w = 27 %, fall cone
liquid limit w = 29 %, plastic limit wp = 21 %, plasticity index Ip = 8%, liquidity index I.
= 0.7, silt fraction (% > 2 um and < 63 um) = 89 %, and clay fraction (% < 2um) =9 %
(Blaker et al. 2019). As noted above the liquid limit of 29 % was determined using the
fall cone method (ISO 2018) but was also determined using the Casagrande Cup (ASTM
2017) which gave, as expected (e.g. DeGroot et al. 2019), a much lower liquid limit wi cc
= 23% resulting in an Ipcc = 2 %. These Casagrande values classify the Halden silt as

ML in the Unified Soil Classification System (ASTM 2017).

3.4.1 1-D compression behavior

Figure 3.2 presents the 1-D IL results for two Sherbrook block sample specimens
and one slurry consolidated specimen. Volumetric strains of 1.3% and 1.4% were
measured for the two block specimens at c'vo corresponding to Ae/eo of 0.031 and 0.032.
The strain energy based compression ratio, Crw,i/Cew (DeJong et al. 2018) for the two
block specimens was in the range of 0.16 - 0.20. Interpretation of the initial portion of the
time-deformation curves using conventional root-time and log-time methods was not

possible but it was evident that end of primary was reached well within 4 minutes and all

89



data points in Figure 3.2 are plotted at tc = 4 minutes. Figure 3.2a shows no evidence of a
yield or preconsolidation stress (o'p) and even if plotted in semi-log space the rounded
nature of the compression curves are such that any Casagrande (1936) or Becker et al.
(1987) interpretation of c'p is considered unreliable. Based on the geologic history of the
site, as summarized by Blaker et al. (2019), the deposit is believed to be geologically
normally consolidated but likely exists in a lightly overconsolidated state due to aging.
The recompression ratio (Cr: = Ae/Alogo’y) and maximum compression ratio (Ccemax) for
the block specimens were 0.006 and 0.075, respectively, and the Janbu (1963)
constrained modulus (M) at the in situ effective stress (c'w0) was about 11 MPa. The
average unload-reload constrained modulus (Mu) was about 130 MPa. Secondary
consolidation effects were rather small, with C4./Ccs approximately equal to 0.035, and
thus, consistent with the range suggested by Terzaghi et al. (1996) for inorganic clays and
silts. The slurry consolidated specimen started at the same initial void ratio as the block
samples but exhibited much greater compressibility, as anticipated, and the e - logc'y
curve did not converge with that of the block samples within the maximum o'y values

applied (Figure 3.2c).

3.4.2 Block and reconstituted undrained stress-strain behavior

Volumetric strain at o' for the consolidation phase of all the CAUC/E tests
ranged from 0.8% to 1.3% and the corresponding Ae/eo values ranged from 0.014 to
0.031 (Table 3-1). The shear wave velocity values normalized by the in situ value, as

measured downhole using a seismic flat dilatometer, SDMT (Blaker et al. 2019),
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Vuh,o/Vunsomt, ranged from 0.83 to 0.87 (Table 3-1). Overall, the measures of &vol, Ae/eo
and Vvh,0/Vvhsomt Were uniform for the seven specimens trimmed from the block sample.

Figures 3a and 3b show that for CAUC testing the block sample specimens
exhibited initial contractive behavior up to 1 - 2% vertical strain but thereafter switched
to dilative behavior and strain hardening response. This behavior is clearly observed in
Figure 3.3c which shows the effective stress paths turn towards and eventually run along
the K line. All tests, including the CAUE test exhibited an effective stress friction angle
at maximum obliquity of ¢'mo = 36°. This friction angle, which is the same as that
measured for the SD and MT specimens, implies a normally consolidated Ko = (1 —
sing)OCR®™" (Mesri and Hayat 1993) of 0.41. With the Halden deposit considered to be
lightly overconsolidated suggests an estimated in situ Ko value somewhat greater than
0.41 and thus the value of 0.50 assumed at the start of the test program seems reasonable.

The reconstituted specimens prepared either by MT or SD had essentially the
same initial and end of consolidation void ratios as the block sample specimens (Table 3-
1) but exhibited significantly different undrained stress-strain behavior. Peak shear
stresses of about 35 kPa occurred at around &, = 0.1% and the specimens developed Umax
values of around 40 kPa as depicted in Figure 3.3d and Figure 3.3e. Both MT and SD
specimens showed post-peak strain softening behavior but from about &y = 3% the stress-
strain characteristics switch towards dilative behavior and strain hardening as the stress
path reaches the Ks line at essentially the same maximum obliquity friction angle of 36°
as the block sample specimens (Figure 3.3f).

The significant difference in the block and reconstituted undrained shear behavior

is believed to be due to differences in structure. The reconstitution procedure most likely
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does not replicate the depositional environment of the natural soil. Furthermore, the in
situ soil had undergone significant aging, i.e., multiple log cycles of secondary
compression (Blaker et al. 2019). In contrast, reconstituted laboratory specimens were
aged for only a short period after end of primary consolidation. While physical handling
and trimming of the block sample was possible without support, the SD specimens (with
essentially the same void ratio and silt and clay content) had to be supported during
preparation and even after dead-weight consolidation to 50 kPa. As no evidence of
cementation has been found for the Halden silt (Blaker et al. 2019) this implies that an
inherent structure of the block sample prevented collapse of the unconfined soil matrix
and was likely also responsible for the stiffer strain hardening observed in CAUC tests
and likewise for the 1D consolidation behavior. This intact structure could not be
replicated by reconstitution in the laboratory by either of the two reconstitution methods
without any form of aging of the soil. Figures 4a to 4c show how the stress-strain, stress-
path and secant shear modulus (Gu = A(c'v — c'h)/3Aey) of reconstituted Halden silt (SD)
changes after only 7 days (10* minutes) of drained creep in the triaxial cell. The lower
void ratio after consolidation (ec = 0.67 for 7 days creep versus 0.71 for 2 hours creep)
cannot alone explain the 15% increase in peak shear stress of the "aged" SD specimen.
The secant shear modulus at small shear strains of the unaged SD specimen was also
lower for all levels of shear strain compared to the SD specimen subjected to 7 days of
drained creep. Mesri et al. (1990) and Schmertmann (1991) hypothesized that drained
creep is the dominant mechanism of aging of granular soils on an engineering timescale
and that the increase in stiffness and strength during drained creep results from both

increased density and continued particle rearrangement creating an increase in
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macrointerlocking of particles and microinterlocking of surface roughness. Furthermore,
angular particles, like those present in the Halden silt (Blaker et al. 2019), can result in a
greater aging effect since they have a larger range of stable contacts and more particle

interlocking (Mitchell and Soga 2005).

3.4.3 ISA strain cycling behavior

Positive shear induced pore pressure continuously developed during ISA shearing
of the block sample specimens, which caused a significant reduction in p' as shown in
Figure 3.5. For the £3.0% ISA test, the effective stress path towards the end of the ISA
strain cycle eventually tracked the CAUC/E K lines. The change in mean effective stress,
Ap'c, expressed as percentage of the pre-ISA mean effective stress after consolidation p'c
(Santagata and Germaine 2002), ranged from 74% and 98% (Figure 3.5c.). ISA shearing
of the SD specimens with strain cycles of £1% and +3% also caused a significant
decrease in p' with Ap'/p'c equal to 95% and 98% (Figure 3.5f) with the effective stress
path towards the end of the ISA cycle also tracking the same Ks line as the block sample
specimens. These effective stress path excursions for both the block and SD specimens
towards very low p' values are consistent with that reported by Lukas et al. (2019) for
synthetic silt mixtures. However, this significant loss of p' during ISA simulation of tube
sampling is much greater than that measured for clays (e.g., Santagata and Germaine

2002).
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3.4.4 Post-1SA reconsolidation and disturbed undrained shear behavior

The post-ISA recompression evor and Ae/eo values required to bring the disturbed
silt specimens back to the pre-ISA effective stress state increased with increasing
magnitude of the ISA strain cycle (Table 3-1). For all post-ISA tests, eo was taken as the
pre-ISA void ratio ec. Ae/eo and evoi Were both higher for the reconstituted specimens than
the companion tests on block samples. Lunne et al. (2006) cautioned that the Ae/eg
method may not be applicable for low plasticity silts. This appears to be the case here as
the Ae/eo values in Table 3-1 show that even after being subjected to significant strain
induced disturbance, the samples still rated within the "Very good to excellent” and
"Good to fair" clay-based sample quality ratings (Lunne et al. 1997) or quality A or B
using the SQD system (Terzaghi et al. 1996). It also confirms recently published findings
of Carroll and Long (2017), DeJong et al. (2018) and Lukas et al. (2019). Furthermore,
bender element tests demonstrated a significant decrease in Vyn during ISA (from Vo to
Vih,isa) corresponding to large decrease in p'. Vin,isa, however, showed complete recovery
to Vwno upon post-ISA reconsolidation (Table 3-1). Yet, post-ISA undrained shear
behavior was very different for ISA disturbed specimens compared to the reference block
sample specimens, indicating that in this case Vyn does not track sample disturbance well.

Increasing ISA-imposed strain damage from +0.5% to +3.0% increased the rate of
shear stress development with strain in the block sample specimens as shown in Figure
3.6a, especially for the +3.0% test. This corresponds to an increasing rate of negative
shear induced pore pressure with an increase in ISA strain (Figure 3.6b). However, as
strain continues both the undisturbed specimen and the ISA disturbed specimens, all

converged to the same failure envelope (Figure 3.6¢). Figures 6d to 6f present results of
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the post-ISA undrained shear behavior of the SD specimen and show similar trends to
that of the block sample specimens though with more dramatic effect. At an ISA strain of
+3.0%, the strain softening observed in the reference undisturbed SD specimen is
completely removed, a much lower Au is developed, and the effective stress path
significantly shifts to the right (Figure 3.6f). Indeed, an interesting outcome of these tests
is that with an increase in ISA disturbance strain level the behavior of the reconstituted

soil progressively migrates towards that of the block sample.

3.4.5 Influence of tube sampling

Figure 3.7 presents results from two CAUC tests conducted on samples collected
using the NGI 54 and GP-S fixed piston samplers. The values of & and Ae/eq during
reconsolidation were 1.1 % and 0.024 for the NGI 54 and 1.1 % and 0.026 for the GP-S
samples, which is essentially the same as that of the two CAUC block sample specimens
(Table 3-1). These values suggest similar sample quality for the tube samples as that of
the block samples and yet the undrained shear behavior is markedly different. The
specimens from the tube samples have a much a greater rate of shear stress and negative
pore pressure development with increasing vertical strain. Although at large strains all the
tests converge to the same failure envelope at about ¢'mo = 36°. Results from the + 1%
and 3% ISA tests performed on the block sample specimens are also plotted for reference
in Figure 3.7. These results indicate a similarity in the effect on undrained shear behavior
of actual tube sampling disturbance (NGI 54 and GP-S) and simulated tube sampling
disturbance (ISA tests on the block sample). Both tube samplers have a poor area ratio

with the GP-S sampler being the worse of the two and yet the results in Figure 3.7
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indicate greater disturbance for the NGI 54 sampler. It is hypothesized that some
compensation occurred due to the reduction in friction between the sampler wall and soil

by the polymer gel.

3.5 Discussion of results

The field work described by Blaker et al. (2019) and the results presented above
demonstrate that, although challenging, an intact Sherbrooke block sample in this case
was successfully collected in a I, = 2 % soil with 89% silt and 9% clay. Recompression
metrics, evor and Ae/eo, for the block and tube samples were low and similar, yet the
undrained stress-strain behavior of the tube samples was markedly different, reaching
much higher shear stress at lower strains. The post-ISA reconsolidation phase suggested
that for Halden silt neither e, Ae/eo, nor Vi track sample disturbance for the ISA
specimens; even after significant ISA induced disturbance post-ISA Ae/eg values were
very low and Vun,isa completely recovered to Vin,o.

The low compressibility and dilative type behavior during undrained shear of the
block sample specimens, and high compressibility and contractive type undrained shear
behavior of the reconstituted specimens, are consistent with the differences observed by
Hgeg et al. (2000) for the Swedish Borlange silt. It appears that the natural soil structure
and undrained response to triaxial compression loading of Halden silt cannot be
replicated using reconstitution methods even when prepared to the same void ratio as the
block sample specimens (Figure 3.3). One test did show that aging during 7 days of
laboratory drained creep stiffened a slurry reconstituted specimen, but it still did not

behave close to that of the block sample (Figure 3.4). At a minimum, a significantly
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greater duration of drained creep would be required. Furthermore, natural seismic ground
motion over the years could have also resulted in stiffening and strengthening of the
natural silt deposit.

The significant effects of simulated tube sampling (ISA) were confirmed by the
observed stress-strain behavior of collected NGI 54 and GP-S tube samples. Increasing
degree of disturbance generally resulted in increasingly pronounced dilative type
behavior and consequently higher mobilized shear stresses at almost all strength criteria
(Table 3-2 and Table 3-3). The effective stress friction angle, however, was essentially
the same for all tests, independent of sampling or preparation method (block, tube or
reconstitution) and degree of disturbance. If undrained shear strength is required for
design, selection of a representative value is highly dependent on the state of the
laboratory test specimens, strength criterion and the design application, i.e. whether lower
bound or higher bound values are required. Figure 3.8 illustrates how the combination of
the Brandon et al. (2006) 1 to 6 undrained shear strength criteria and sampler type can
have a significant effect on the selected undrained shear strength. The block sample is
considered to be a more accurate representation of the intact soil than the tube samples,
given difference in the stress-strain behavior. For a silt that exhibits dilative type behavior
criterion 6 (Umax) gives close to the same s, value for all three samplers. At this point, the
soil is not dilating yet and the differences in measured behavior are small. Furthermore,
selection of a representative design value of Ar (e.g. 0.0 or 0.25) will give near the same
sy for all tests as the Halden silt converges onto the same Ks line, independent of sample
type, and at the same time typically limit e < 10%. It is noted, however, that in Figure

3.8c the starting point (end of consolidation stress, i.e. p'c and qc) of the three tests show
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small differences and values of sy at As = 0 and 0.25 are thus somewhat different. For the
other criteria, sy of the tube sample specimens were generally well above that of the block
sample, by up to 159% (Table 3-2). In the extreme case, a selected representative value of
sy from 11.5 m depth at Halden can range from about 50 kPa (block sample at criterion 6
- Umax) t0 120 kPa (NGI 54 at criterion 2 - &y = 10%), a factor of 2.4. Figure 3.9 shows
that, except for the umax and As = O criteria, the undrained shear strength estimates
increase with increasing magnitude of ISA induced strain for all other criteria. Relative to
the reference monotonic block sample results (plotted at &;; = 0%), the increase in sy, is
the largest for gmax and e = 10% criteria. These findings imply that undrained triaxial
testing of tube sampled silt specimens can lead to selection of an unrealistically high
undrained shear strength for design. These effects are opposite of that observed for low to
moderate overconsolidation clays, where disturbance typically results in a softer stress-
strain response and lower peak undrained shear strength.

The selection of undrained shear strength is an important issue for design of
structures in silt where loading regime, structure geometry or drainage properties of the
soil are such that undrained, or partially drained conditions prevail. From CAUC results
for the Halden silt it appears that the shear stress at umax represents the lower bound and at
evt = 10% the upper bound undrained shear strengths, respectively. Selection of the
relevant sy for design will need to consider if the field application will be undrained, fully
drained, or partially drained. Applying As in the range of 0.0 to 0.25 as upper bound
strength criterion; (i) reduces the range between the upper and lower bound undrained
shear strength; (ii) allows the design to rely on dilative type behavior, but not on the shear

induced pore pressure actually going negative or excessive values of strain; and (iii)

98



minimizes the adverse effect of sample disturbance on design parameter selection. At a
minimum As = 0 provides a valuable reference undrained shear strength equal to the
drained shear strength. For strongly dilative soils like the Halden silt any strength
criterion yielding Ar < 0 needs careful consideration unless higher values of undrained
shear strength are conservative, e.g. for extraction assessments, skirt penetration, pile
driving etc. For stability problems, lower values of s, are more conservative and
consideration should be given to estimated strain levels and pore pressure dissipation in

the field.

3.6 Summary and conclusions

This paper presents a laboratory investigation of the undrained shear behavior of a
natural low plasticity silt from Halden, Norway in the intact, disturbed and reconstituted
states. Specimens trimmed from a Sherbrooke block and reconstituted specimens were
tested using the ideal sampling approach (ISA) framework in a triaxial stress path cell
system. Three levels of ISA vertical strain cycles, £0.5%, +1% and +3%, were applied to
simulate different degrees of tube sampling disturbance. The sample quality
recompression metrics, demonstrated that neither Ae/eo, evol, NOr shear wave velocity, Vi,
track sample disturbance well for this low plasticity silt unlike that for moderate to low
OCR clays. Relative to the reference block sample specimens ISA strain cycles, and
subsequent reconsolidation to the best estimate in situ effectives stress conditions,
resulted in an increasingly pronounced dilative type behavior during post-ISA undrained
triaxial shear, and a general increase in sy. The ISA disturbed block sample specimens

also showed similar stress-strain behavior as that measured in conventional CAUC tests
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conducted on specimens from the NGI 54 mm composite and GP-S fixed piston tube
samplers. These results indicate that tube sampling can cause significant alteration of the
intact soil state. However, in all cases the intact, disturbed and reconstituted specimens
reached the same effective stress failure envelope. For design applications an assessment
of whether the field application will involve drainage is an important consideration.
Applying undrained shear strength criteria for soils that exhibit dilative behavior the Umax
and 0.25 > Ar > 0 as lower and upper bound strength criteria reduces the range in
characteristic undrained shear strength; ensures that s, does not rely on net negative pore
pressures or excessive strains; and mitigates the adverse effect of sample disturbance on

design parameter selection.
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Table 3-1 Key initial, after consolidation and post-ISA data from IL oedometer and CAUC tests on block, disturbed and reconstituted

Halden silt.
Sample _ 2 2 2 2 Vun ol Vinisal  Vinpasal  Aeleg ¥
Test Depth  Test type 1 Wi Tt & €c Eve Evol Aeleg Vinsomr®  Virgd Vingd p-ISA
() (m) () () (%) (kNmM3) () () (%) (%) (-) () ()
HALBO04-10-2-Al 11.5 IL SB 27.8 19.25 0.76 0.74 138 1.38 0.032
HALBO04-10-2-A2 11.5 IL SB 25.3 19.22 0.73 0.71 129 1.29 0.031
HALBO4-Batch3-1 - IL SD 30.1 19.53 0.77 068 5.18 5.18 0.119
HALBO04-10-1-A2 11.5 CAUC SB 28.0 19.37 0.74 0.72 0.72 099 0.024 0.83
HALBO04-10-1-B1 11.5 CAUC SB 27.3 19.39 0.73 0.71 0.78 1.10 0.026 0.83
HALBO04-10-1-D2 11.5 CAUE SB 26.8 19.47 0.72 0.71 054 056 0.014 0.85
HALBO04-10-1-C2 11.5 ISA+0.5% SB 25.9 19.32 0.72 0.70 0.65 1.12 0.026 0.86 0.70 1.01 0.010
HALBO04-10-1-B2 11.5 ISA+1% SB 27.7 19.39 0.73 0.71 0.70 1.15 0.027 0.84 1.03 0.017
HALBO04-10-1-C1 115 ISA+1% SB 26.5 19.44 071 069 086 129 0.031 0.87 0.56 1.01 0.017
HALBO04-10-1-D1 11.5 ISA+3% SB 27.4 19.47 0.72 0.71 055 0.79 0.018 0.85 0.41 0.99 0.039
HALBO03-9-Al 11.6 CAUC NGI54 279 19.55 0.72 0.71 090 1.08 0.026 0.83
HALBO06-4-D1 11.4 CAUC GP-S 28.2 20.34 065 065 1.11 1.06 0.024 0.84
HALBO4-Batchl-1 - CAUC MT 28.0 19.32 0.75 0.70 2.08 2.40 0.056
HALBO4-Batch1-2 - CAUC MT 28.1 19.30 0.75 0.73 2.00 1.33 0.031
HALBO04-Batch1-3 - CAUC SD 28.1 19.30 075 0.71 255 214 0.049
HALBO4-Batch1-4 - CAUC SD 27.2 19.43 073 0.70 1.77 133 0.032
HALBO04-Batch1-5 - ISA+1% SD 275 19.40 0.73 0.70 2.65 2.02 0.048 0.026
HALBO4-Batch1-6 - ISA+3% SD 28.0 19.31 075 0.70 3.28 252 0.059 0.066
HALBO4-Batch2-1 - CAUC SD 266 1951 071 067 302 236 0.056
(wicreep)

Note: Y SB = Sherbrooke Block, NGI54 = NGl 54mm composite piston sampler, GP-S = Gel Push sampler, MT= Reconstituted, Moist Tamping, SD =
Reconstituted, Slurry Deposition; 2 Void ratio after preparation (e;) and after consolidation to best estimate in situ stress conditions (e.), vertical (e.) and
volumetric (svol) strains after consolidation; ® Shear wave velocity from bender elements after consolidation (Vun o), after ISA imposed strain (Vn,sa), post-
ISA reconsolidation (Vnp-1sa) and in situ shear wave velocity from seismic flat dilatometer, SDMT (Vvnsomt = 178 m/s), (Blaker et al. 2019). Vyno averaged
151.3 m/s for all bender element tests on block sample specimens (n = 8, SD = 2.56 m/s); ¥ e, was taken as the pre-ISA void ratio, e.
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Table 3-2 Undrained shear strength of Halden silt Block 10 (11.5m) tests using Brandon et al. (2006) failure criteria for dilating soils.

svf=

&vf =

Af =0 Af =0.25 (G‘]_/G‘?,)max Umax Kf line 5.0% 10% (G’l—G’S)max
Sample or Test Type
gr &f 0] &f 0] &f gr &f 0] &f gr O gs
(kPa) (%) (kPa) (%) (kPa) (%) (kPa) (%) (kPa) (%) (kPa) (kPa) (kPa)
Sherbrooke block and tube samples
Sherbrooke Block 83.7 104 61.6 2.9 69.6 438 50.3 0.9 69.8 4.8 69.7 83.8 93.6
Sherbrooke Block 83.1 11.0 62.3 3.3 769 7.2 49.1 1.0 764 7.1 715 82.3 90.0
Tube (NGI 54) 89.6 5.2 628 2.0 85.9 4.7 521 1.0 84.7 47 88.0 120.8 148.7
Tube (GP-S) 941 81 67.9 35 670 34 535 16 66.7 3.4 77.4 102.1 1185
Ideal Sampling Approach (ISA)
+ 0.5% ISA 87.2 6.8 578 1.0 878 7.0 56.1 0.8 85.6 6.9 79.8 93.0 98.6*
+~1.0% ISA 85.9 55 52.1 05 89.6 6.0 59.7 1.0 88.7 6.0 83.5 98.9 111.8
+1.0% ISA 86.8 5.1 544 04 945 6.9 572 0.6 90.9 5.9 85.2 101.4 110.9*
+3.0% ISA 88.6 3.3 595 1.2 105.8 5.2 484 0.6 106.2 5.2 105.0 131.3 153.0

Note: (c'1 — 6'3)max at end of test, i.e. at about 20% vertical strain. * Specimen did not reach 20% vertical strain but stopped at about 15%.
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Table 3-3 Undrained shear strength of Halden silt MT and SD (11.5m) tests using Brandon et al. (2006) failure criteria for dilating

soils.
Ai=0 (0'1/0'3)max Umax Kz line EV(SO_A) (0'1 - G'S)max
Sample or Test Type
gt &f of; &f of; &f gt &f gt gt &f
(kPa) (%) (kPa) (%) (kPa) (%) (kPa) (%) (kPa) (kPa) (%)

Reconstituted specimens

MT, Undisturbed - - 330 75 314 57 330 75 30.8 40.5(36.1)* 154 (0.1)*

MT, Undisturbed - - 232 6.5 23.2 6.8 23.3 6.7 23.5 36.0* 0.1*

SD, Undisturbed - - 304 93 264 5.0 31.2 99 26.4 415 (34.2)* 19.9 (0.1)*

SD, Undisturbed - - 277 88 254 55 278 8.9 25.3 36.5(34.6)* 19.5(0.04)*
Ideal Sampling Approach (ISA)

SD, + 0.5% ISA - - 395 84 371 5.1 396 84 37.0 495 (38.7)*  19.9 (0.4)*

SD, + 3.0% ISA 78.1 13.8 590 6.9 441 2.1 59.2 6.9 53.3 88.5 19.9

Note: * Low strain peak shear stresses, i.e. peak shear stress prior to strain hardening behavior.

103



|| Ideal sampling approach (ISA)
(@) (@ Consolidation to o',,, &'y (b)
'@ simulated tube sampling, ISA + ¢,,,
and unloading to q = 0.

- — ,@Post—ISA Reconsolidation to o',y, '
© Post-ISA undrained triaxial compression

a L @ P
5 Vertical strain (&) reset after é
N stage @ and @ o~
= A B =

© & o o

1 7 1

> ' ] \;A >

\9 (0'y0s S'vo) \9

1] 1}

(o (o

0

g, %) p'= (o, +0,)2 (kPa)

Figure 3.1 Ideal sampling approach (ISA, Baligh et al. 1987) concept illustrated by (a)
shear stress versus vertical strain, and (b) stress path plots. — data for block sample
specimen of Halden silt.
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Figure 3.2 1D consolidation of Sherbrooke block and reconstituted (slurry) Halden silt. Vertical effective stress versus vertical strain
on (a) linear and (b) semi - log axis, and (c) void ratio versus log stress.
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Figure 3.5 ISA strain cycling behavior from triaxial tests on (a to ¢) block, and (d to f)
reconstituted (slurry) Halden silt.
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Figure 3.6 Post-ISA undrained shear behavior from triaxial tests on (a to ¢) block, and (d
to f) reconstituted (slurry) Halden silt.
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Figure 3.8 Undrained shear strength criteria (Brandon et al.2006) illustrated for CAUC tests on three types of Halden silt samples
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CHAPTER 4

EFFECTS OF SAMPLING TECHNIQUES ON MATERIAL BEHAVIOUR AND
ENGINEERING PROPERTIES OF LOW-PLASTICITY NATURAL SILT

The National GeoTest Site (NGTS) for silts in Norway was used to assess the
effects of sampling techniques on stress-strain behaviour and engineering properties of
low-plasticity natural silt. Advanced tests results on specimens collected using the
Sherbrooke block and three different tubes samplers are presented creating an important
silt behaviour database. Tests include oedometer, triaxial and bender element tests at
parallel depth intervals in adjacent boreholes. There are currently no universal
quantitative sample quality criteria valid for low-plasticity silts, and as a result,
comparison of material behavior using stress-strain characteristics and changes in index
properties were used in this study to qualitatively assess sample quality. Advanced test
results showed that acceptable and repeatable sample quality or stress-strain behaviour
could be obtained using the 72mm piston and GP-S samplers. Sherbrooke block samples,
however, showed high variability whereas the 54mm composite samples exhibited
obvious signs of disturbed behaviour. Clay-based sample quality criteria, using
recompression strain and shear wave velocity, and the oedometer strain energy-based
framework for low plasticity soils showed contrasting results and overall these methods

yielded misleading quality analysis of the samples in this study.

4.1 Introduction

There is an increasing awareness in the geotechnical community that little
guidance exists for quantitative classification of sample quality for silts. The state of the

art framework for sample quality assessment of low to medium overconsolidation clays,
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using Ae/eo criteria (Lunne et al. 1997), were not developed for silts and an increasing
number of studies have confirmed that this approach is inappropriate and presents a
misleading assessment of quality for silts (Carroll 2013; Pineda et al. 2013; Carroll and
Long 2017; DeJong et al. 2018; Lukas et al. 2019; Blaker and DeGroot In press). A
detailed review of previous experience in sampling and the current status of evaluation of
sample disturbance for silts was presented by Carroll and Long (2017). They presented
laboratory tests from parallel block and piston samples from the Letterkenny, Ireland and
Refneveien at Halden, Norway silt sites. Results showed identical specimen responses for
Refneveien and similar for Letterkenny indicating that good quality silt samples were
attainable with these techniques, where sampling was likely to be undrained. At
Skibbereen, Ireland (a site containing a non-plastic silt with less fines and greater
potential for drainage during sampling) significant densification of the piston samples
occurred which led to stiffer and higher strengths than would be expected in situ for
undrained conditions. The Authors concluded that evaluation of sample quality based on
engineering behaviour alone was not sufficient and in situ tests, e.g. the Cone Penetration
Test (CPTU), should be included for comparison to in situ conditions.

Studies on tube sampler geometry and its association with centreline strains
experienced by the soil sample (e.g. Baligh et al. 1987; Clayton and Siddique 1999) have
highlighted the importance of a high diameter to wall thickness ratio (Dw/t), small area
ratio (AR) and low taper angle to collect high quality samples in clays. Using the Ideal
Sampling Approach, ISA (Baligh et al. 1987), centreline tube sample disturbance can be
simulated in the laboratory by applying a strain cycle of axial strains (ea) using a triaxial

stress path cell system. Carroll and Long (2017) presented the first results of ISA tests on
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block samples of silt from the Letterkenny, Ireland site. Axial strains in the order of
+0.6%, representative of the centreline strain caused by thin walled piston tubes, and
subsequent reconsolidation to the estimated in situ vertical and horizontal effective stress
(c'vo, o'ho) resulted in little change to the material behaviour. However, axial strains
between 1% and 3%, the latter reflective of the centreline strain induced by a poor
geometry composite sampler (Clayton and Siddique 1999), resulted in an increase in
undrained shear strength (sy) and increased secant shear stiffness (G) at a given strain.
The stress path plot was flatter and there was a greater tendency for dilative type
behaviour with increased strain damage. Conclusions from similar experimental sample
disturbance simulations on synthetic specimens of low-plasticity silt-mixtures by Lukas
et al. (2019) were decreasing initial pre-peak stiffness, decreasing strain softening
response and increasing sy and strain to failure with increased strain damage. Most
recently, Blaker and DeGroot (In press) presented results of strain damage testing on a
block sample of silt from the Halden NGTS site at 11.5 m depth. Results showed that
increasing the degree of simulated sampling disturbance altered the specimens' undrained
shear behaviour, resulting in a significant increase in the tendency for dilative behaviour.
Companion triaxial results from Sherbrooke block and NGI 54mm composite piston
sampler showed that the stress-strain behaviour and net negative pore pressure
development during undrained shear increased at a significantly larger rate for the poor
geometry sampler compared to the block sample.

Hgeg et al. (2000) and Blaker and DeGroot (In press) found dramatic differences
between undisturbed and reconstituted silt specimens; dilative and ductile versus

contractive respectively, despite specimens having the same void ratio. Wang and Luna
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(2012) tested reconstituted silt specimens and reported initial contraction followed by
dilation for normally consolidated (NC) tests. They found a greater initial contractive
response for NC specimens compared to overconsolidated specimens. Researchers also
found that su/c'vc increased with increased overconsolidation ratio, OCR (Fleming and
Duncan 1990; Yasuhara et al. 2003; Page 2004; Izadi 2006; Wang and Luna 2012). Wang
and Luna (2012) concluded that clay content and particle shape were important
controlling factors for this response, su/c'vc was less affected by OCR for low plasticity
index (lp) silts compared to clays, and OCR did not affect the effective stress friction
angle (¢") as no memory of stress history was retained. Reconstituted specimens were not
used in this study as the in situ soil fabric and stress history at Halden could not be
recreated through reconstitution.

In recent years a focus on vertically (v) propagating horizontally polarized (h),
shear wave velocity (Vvn) measurements on unconfined specimens (Vvho) to quickly and
non-destructively evaluate sample quality has occurred. Studies by Hight and Leroueil
(2003), Nash (2003) and Landon et al. (2007) demonstrate the effectiveness of these on-
site tests to evaluate sample quality for clays. Donohue and Long (2010) concluded that
Vivho measurements correlated best with traditional assessment of disturbance and
presented quantitative sample quality criteria for clay. Viana da Fonseca et al. (2019)

presented a quantitative analysis of sample quality based on the normalized shear wave
velocity, Vs = V,,/+/F(e) (Ferreira et al. 2011), where F(e) = e >3 (Presti et al. 1997)

and accounts for changes in void ratio from in situ state to the consolidated state of the
specimen in a triaxial cell. Samples of loose sands to silty sands from Benavente,

Portugal were collected using two different fixed piston tube samplers, and shear wave
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velocity results suggested largely excellent to very good sample quality for these soils
and the samplers used. Most recently, DeJong et al. (2018) proposed a framework for
evaluating sample quality of intermediate soils using the strain energy-based compression
ratio, Crw,/Cew from constant rate of strain (CRS) consolidation tests on synthetic
mixtures of non-plastic silts and clays as well as results from previously published
studies. However, all these quantitative sample quality criteria require application to a
robust study on silt samples for evaluation of usefulness.

Developments in soil sampling equipment has produced the commercially
available Gel Push Static (GP-S) sampler (Tani and Kaneko 2006). Taylor et al. (2012)
reported use of the GP-S as promising with initial recovery of very good silty sand
samples based on qualitative evaluation of samples at Christchurch, New Zealand. The
Authors noted potential for densification of loose sandy silts with Vs < 150m/s, and
improvements to design and sampling procedures to avoid this. Kiso-Jiban Consultants
(2013) trailed the GP-S and Gel Push Triple (GP-Tr) samplers at Zelazny Most Tailings
in Poland. Recovery was reported as good to moderate using the GP-S and the sampler
was suggested more effective for sampling very loose, saturated or unsaturated, sand and
soft clay. The GP-Tr was found to be more suitable for loose to dense conditions.
Stringer et al. (2015) reported very similar cyclic resistance relationships from samples
collected using both the Dames & Moore and GP-S samplers for high soil behaviour type
index (Ic) material (clayey silts) at Christchurch New Zealand. Comparison of in situ
shear wave velocity (Vvh,insitu) With measurements of Vun on specimens consolidated to
o'vo (Vvh-ovo) Showed good agreement for the low Ip silty sand. Huang (2016) recovered

silty sand samples using the GP-S at sites in Western and Southern Taiwan and reported
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good quality. Similarly, Bray et al. (2017) reported good quality GP-S from Christchurch
silty sand. However, all these studies report qualitative sample quality evaluations.

This paper investigates the effects of sampling techniques by way of comparison
of 1-D consolidation, undrained and drained triaxial shear behaviour of a natural silt. Soil
samples were collected at the national test site for silt at Halden, Norway using four
different samplers selected to provide advanced laboratory test specimens in both
disturbed and acceptable states. The usefulness of quantitative sample quality criteria,
using Vv and the strain engery-based framework, are evaluated for the first time together

on this soil type.

4.2 Insitu and laboratory test techniques

Soil sampling was conducted below the ground water table using the Sherbrooke
block sampler (Lefebvre and Poulin 1979), Geonor K-200 72mm inner diameter (ID)
piston sampler, NGI 54mm inner diameter (ID) composite (with plastic liner) piston
sampler (referred to hereafter as 54mm(L)) (Andresen and Kolstad 1979) and 71.5 mm
ID Japanese GP-S sampler (Tani and Kaneko 2006). Each borehole was dedicated to a
single sampler type in order to collect samples at parallel depths with different samplers
and all samples were collected using traditional techniques associated with their use in
Norway (Andresen and Kolstad 1979; Lefebvre and Poulin 1979; Lacasse et al. 1985;
Lunne et al. 1997; Lunne et al. 2006). Further details, definitions and geometries of the
different samplers are presented in the supplemental section (Section 4.8). The GP-S
technique (Tani and Kaneko 2006; Taylor et al. 2012) required some modifications to set

up following initial trials by the Norwegian Geotechnical Institute (NGI) drillers after
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which sampling was successful. Drainage conditions during tube sampling were likely to
be associated with some degree of partial drainage (Carroll and Paniagua Lépez 2018). In
this study it was initially assumed that the Sherbrooke block samples, if carefully
collected, transported, cut, trimmed and subjected only to stress relief upon retrieval,
could be considered the best representation of in situ soil state and behaviour. Whereas
the NGI 54mm composite sampler, with its poor geometry and well documented
disturbance effects in clays (Tanaka et al. 1996; Lunne et al. 1997; Long 2006; Lunne et
al. 2006; Long and Donohue 2010), was chosen to represent a high degree of sample
disturbance. As the 72 mm sampler has been found to obtain silt samples of similar
quality as block samples (Carroll and Long 2017), and to induce limited strain damage on
clay samples (with centreline axial strains approximately equal to € = 0.6%, as suggested
by Clayton and Siddique (1999)), this thin walled piston sampler was chosen to assess its
performance in comparison to the assumed high quality (acceptable) block and poor
quality 54mm(L) (disturbed) samples.

All tube samples were extruded vertically in the NGI laboratory. Triaxial
specimens were mounted on the triaxial pedestal directly after extrusion using the
diameter (d) equal to the inside diameter of the sampler, i.e. d = 54 mm — 72 mm, and a
height diameter ratio of about 2. Exceptions were two 72 mm sample specimens from 7.6
m and 12.6 m depth tested at University of Massachusetts (UMass) Amherst which had d
= 35 mm. Block sample specimens were generally trimmed to d = 70 mm using a height
diameter ratio of 2, with the exception of one specimen from 11.5 m depth which had d =
54 mm (Blaker and DeGroot In press). Triaxial test specimens were mounted,

consolidated and sheared in accordance with NGI standard practice (Berre 1982; Lacasse
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et al. 1985) and as detailed by Blaker et al. (2019). Except for one Ko consolidated
undrained triaxial test in compression (CKoUC), specimens were anisotropically
consolidated to the best estimate in situ vertical effective stress (c'vc = 6'v0) and horizontal
effective stress (c'nc = c'ho) using an assumed Ko = 0.5 (Blaker et al. 2019). The Ko
consolidated specimen was loaded directly to the best estimate o'vo and yielded Ko = 0.55
at end of consolidation. It is noted, however, that 1-D consolidation directly to ¢'vo have
been shown to produce too low values of Ko for clays (Mesri and Hayat 1993). B values,
which were measured at the end of the consolidation phase, were generally > 97% except
for three specimens with measured B values of 93%, 96% and 95%. Shearing was strain-
controlled at 0.5 — 1.4 %/hr for all Ko and anisotropically consolidated undrained
(CAUC) and drained (CADC) triaxial compression tests. All stress measurements were
corrected for membrane resistance and changes in specimen area (Berre 1982).

CRS oedometer tests were conducted as per Sandbakken et al. (1986) using
initially dry porous filter stones and a strain rate of about 5.4 %/hr. Specimen areas were
primarily 20 cm? to reduce variability and allow better comparison with the 54mm(L)
specimens. Exceptions were specimens from the 72mm sampler (borehole HALBO1)
which were all 35 cm?,

Measurements of in situ shear wave velocity (Vvh in-sit) With depth were conducted
using seismic CPTUs and one seismic flat dilatometer, SDMT, (Blaker et al. 2019).
Interpretation methodologies of Vi insitw at the site are described in the supplemental
section (Section 4.8). Bender element tests were carried out on the laboratory triaxial test
specimens (Dyvik and Madshus 1985; Dyvik and Olsen 1989) using a vertically

propagating (v) horizontally polarized (h) shear wave to estimate velocity (Vwn) at the
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estimated in situ vertical effective stress using peak to peak to select travel time.
Unconfined shear wave velocity (Vn-o) tests were carried out on most sample types
except for the 72 mm samples (borehole HALBO1). Unconfined specimen height ranged
from 30 mm to 70 mm and a combination of peak-to-peak and first-cross-over values of
travel time were used to evaluate Vino. Signal transmission in remolded silt specimens,
with initial water content maintained, was challenging and few values of remolded shear
wave velocity (Vv rem) On unconfined specimens were obtained. Suction measurements
were attempted in the laboratory directly on extruded sample sections. However, results

were poor to none, hence no suction data is presented in this study.

4.3 Results

Samples were collected from five separate boreholes from 4.5 m to 14.6 m
(Blaker et al. (2019): HALBO1 — 72 mm, HALBO3 — 54 mm(L), HALBO4 — Sherbrooke
block, HALBO5 and HALB06 — GP-S. The driller's log from borehole HALBO04
(supplemental section, Section 4.8) provided an important contribution in the evaluation
of block quality. Typical average classification properties include 22 - 30% for water
content (wi), 5 — 10% for Ip, 70 — 80% for silt content and 7 — 12% for clay content
(Table 4-1, Figure 4.1). Relative to the other samplers the GP-S shows a trend of higher
w; with depth. It believed that higher wi is representative of in situ conditions. However, it
is not possible to quantify potential absorption of liquid from the gel into the GP-S
samples. The liquid limit values of wi = 26 - 37% were determined using the fall cone
method (ISO 2018) and equivalent values of the Casagrande cup liquid limit were

estimated to be in the range of wicc = 21% - 34% based on DeGroot et al. (2019)
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resulting in lIpcc = 9% - 1%. This classifies the Halden silt as ML according to the
Unified Soil Classification System (ASTM 2018), see Figure 4.1(d). For reference,
values of the sample quality indicator for clays, Ae/eo, from CRS oedometer and triaxial
tests on Halden silt specimens are presented with the Lunne et al. (1997) sample quality
boundaries in Figures 4.1(e-f). These results will be referenced with respect to sample

quality and its application to silts in subsequent sections.

4.3.1 CRS behavior

Figures 2(a-c) present CRS results of tests from three depth intervals; (i) 4.4 - 5.5
m, (ii) 7.0 - 10.4 m, and (iii) 12.7 - 14.6 m. A summary of CRS specimen properties, test
results and qualitative sample quality evaluation is presented in the supplemental section,
Section 4.8. Relative to the representative water content profile w; of the CRS specimens
(Figure 4.1b) were generally on the lower bound with depth for all sampler types. This
may be due to poor quality block samples which will be discussed further with respect to
triaxial results in Section 4.3.2. Figure 4.1e shows that Ae/eo plot below 0.07 for all tests,
with the poor geometry 54mm(L) sampler generally producing the lowest values and the
GP-S sampler giving the highest. The oedometer data generally revealed no distinctive
yield or preconsolidation stress (c'p) due to the flat nature of the compression curves
(Figure 4.2) which confirms the behavior observed during 1-D compression in previous
studies on silt (Long 2007; Long et al. 2010; Carroll and Long 2017; Blaker et al. 2019).
The 72 mm and Sherbrooke block sample specimens at 4.4 - 5.5 m depth (Figure 4.2a)
show similar responses while the 54mm(L) specimens show lower strains for given

stresses. The 54 mm(L) tube at this depth suffered additional disturbance due to handling
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as the tube was dropped prior to extrusion. In the 7.0 — 10.4 m depth interval (Figure
4.2b) three 54mm(L) specimens were tested and the results showed high repeatability and
a similar material response plotting above block and GP-S sample specimens, confirming
that poor handling can result in significant additional destructing, straining and or
densification of a silt sample irrespective of initial quality. For the 12.5 - 14.6 m depth
interval (Figure 4.2c), the CRS results from the block and 54mm(L) sample specimens
plot together, with significantly lower vertical strains for any given stress relative to the
results from the GP-S sample specimens. This suggests that the block from 14.6 m depth
may be disturbed. The behaviour of the triaxial specimen from this block sample during
shear (Section 4.3.2) agrees with the CRS response being similar to the disturbed
54mm(L) in this case.

The Janbu (1985) constrained modulus (M = Ac's/Aea) versus effective stress
(Figures 2d - 2f) show similar findings to that from the semi-log plots of stress versus
strain in that the stiffness of the Halden silt tend to increase with increasing disturbance.
This is particularly pronounced for the mishandled and additionally disturbed 54mm(L)
CRS specimen at 5.4 m depth, and the disturbed 54mm(L) and block sample specimens
from about 14.5 m depth. In these tests, M at any given value of vertical stress, but also
the slope of the constrained modulus curves in the normally consolidated stress range
(modulus number, m) are higher than the results from the companion tests. In the 7.5 -
10.5 m depth interval the differences in response with sampler type is subtler, suggesting
that the dramatic changes in values of M and m, observed for the other depth intervals,

may not always occur.
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CRS strain energy (Becker et al. 1987) results for the Halden silt are presented in
the supplemental section (Section 4.8). The strain energy-based compression ratios,
Crw,i/Cew (DeJong et al. 2018) were in the range of 0.16 — 0.6, with the lowest value
calculated from the mishandled and additionally disturbed 54mm(L) CRS specimen
(Section 4.8). Disturbed specimens of Halden silt generally showed increased stress

required to reach similar strains of acceptable quality silt samples.

4.3.2 Triaxial shear behaviour

Figure 4.3 shows normalised shear stress, (ca — or)/2c'ac, and pore pressure,
Auloyc', with axial strain and stress-path during undrained triaxial shear in compression
for three depth intervals; (i) 5.3m, (ii) 7.5 - 9.5 m, and (iii) 11.4 - 14.5 m. A summary of
specimen properties, test results and qualitative sample quality evaluation of the nineteen
CAUC tests and one CKoUC test is presented in the supplemental section, Section 4.8.
The majority of Ae/eo values plot below 0.04, with no systematic trend with sampling
technique (Figure 4.1f). For all depth intervals the initial material response of the silt
specimens upon undrained shear showed a tendency for contractive behaviour up to 0.5%
- 2% axial strain for all specimens, independent of sampler type used (Figure 4.3).
Thereafter, the behaviour changed to a dilative tendency and the stress paths tracked the
failure envelope (Kt line). All tests exhibited effective stress friction angles, assessed at
maximum obliquity (c'//6'3)max, Of ¢'mo = 35.8° £ 1.2°. In the 5.3m depth interval the
54mm(L) sample specimen shows a more pronounced tendency for dilative behavior and
a flat stress path compared to the block and 72mm sample specimens, which had a S-

shaped stress-path. This has been suggested as indicative of sample disturbance in silts
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(Carroll and Long 2017). However, from subsequent depth intervals the stress-paths for
acceptable and disturbed samples both show this S-shape (or acceptable samples showing
flat stress paths). This suggests that reliance on the initial shape of the stress path alone
may be misleading as a generic qualitative sample quality indicator for silts.

At 5.3m depth the water content of the 72mm, Sherbrooke block and 54mm(L)
sample specimens were similar (wi = 30 - 32%) and after consolidation void ratios (ec) in
the range of 0.78 — 0.83 (supplemental section, Section 4.8). Yet, during shear there was
an increasing disparity between the different specimens with increasing axial strain.
Figures 4.3(a-b) shows that the 72 mm and block sample specimens showed differences
in stress — strain, but similar pore pressure development with axial strain, whereas the
54mm(L) sample specimen developed negative pore pressures at a significantly higher
rate.

In the 7.5 - 9.5 m depth interval specimens pre-shear properties were 28% to 31%
for wi and 0.74 and 0.81 for ec (supplemental section, Section 4.8). One 72mm specimen,
however, suffered drying during transport from NGI to UMass Amherst and wi = 23%
was measured prior to testing. The result of this test is noted as "dried" in Figures 4.3(e-
h) and the undrained shear behaviour appears to be significantly altered. The three GP-S
sample specimens showed excellent repeatability and shear stresses and pore pressures
plotted on and close to the 72 mm sample specimen result even though ec for the former
three specimens were higher. These results plotted above the results of the block sample
specimen at 8.36 m depth, which was considered acceptable. The block sample specimen
from 8.02 m (CKoUC test), however, showed unexpected shear stress and pore pressure

similarities with the companion 54mm(L) sample specimen during undrained shear.
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Similarly, the CADC test specimen, also from 8.02 m depth, showed a significantly
higher rate of shear stress development, more dilation (negative volumetric strains) and
higher ¢'mo compared to the companion GP-S specimen at the same depth (Figure 4.4).
These inconsistencies in block sample response are likely associated with issues during
sampling. The driller's log (see supplemental section, Section 4.8) reported three attempts
to release the cutting knives at block interval 7.6 - 7.9m depth (i.e. immediately above the
8.02 m block sample). No sample was recovered and, as a result of the repeated and
likely extensive strain damage from the sampling attempts above, the laboratory
undrained triaxial shear behaviour of the underlying block was altered.

All triaxial specimens in depth interval 11.4 - 14.5 m showed 23% to 31% for w;
and 0.58 and 0.77 for ec (supplemental section, Section 4.8). The low water contents
measured on some of the test specimens may be reflective of sample disturbance effects
rather than to soil variability, as the increased sand fraction below 14 m depth (Table 4-1)
is likely to have facilitated drainage of water from the soil during sampling. The three
block sample specimens show conflicting responses with two of three results (from
12.58m and 14.60 m depth) exhibiting stress-strain and pore pressure similarities with the
disturbed 54mm(L) sample specimens (Figures 4.3i to 4.3l). Further examination of
sample photos, e.g. Blaker et al. (2019) and the driller's logs (supplemental section,
Section 4.8) revealed that the block sample collected from 12.45 m — 12.80 m depth had
obvious wedge-like failures at the base (from the retracting cutting knives of the
Sherbrooke sampler) thus confirming the hypothesized damaged state suggested by the
undrained triaxial test result, regardless of the upper portion of the block appearing

visually intact. Similarly, the deepest block (from 14.45m - 14.8 m) is believed to have
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experienced disturbance due to sampling difficulties immediately above. Figures 4.3i and
4.3j also show that relative to the block sample specimens from 11.5 m depth (Blaker and
DeGroot In press) the two GP-S specimens generally developed similar normalised shear
stresses and net negative pore pressures. There was no indication of disturbance induced
to this block, based on field observations or sample photos, and the material response in
undrained triaxial compression suggests this block to be of acceptable quality. Results
reported by Blaker and DeGroot (In press) show that the 54mm(L) sample specimen from
the same depth was overly disturbed.

In summary, using the 54mm(L) specimen behaviour to frame expected material
response for disturbed specimens, the driller's log and block sample photos the results
indicate that the Sherbrooke block sample specimens from 8.02 m, 12.58 m and 14.6 m
depth and the two dried 72mm specimens are significantly altered by disturbance. These
disturbed specimens all show considerably greater tendency for dilative type behaviour
relative to the GP-S, 72 mm and acceptable block sample specimens. The 54mm(L)
sample from 14.4m and block sample from 14.6m had very low w; at about 23.3% and
behave similarly to one another. Based on these two factors the samples are suspected to

be disturbed.

4.3.3 Shear wave velocity

Figure 4.5a to 4.5e, and supplemental section (Section 4.8), present measured and
normalised values of in-situ and laboratory shear wave velocity tests. The representative
profile of in situ shear wave velocity, Vihinsitu avg, comprising of only reliable

measurements is shown in Figure 4.5a. It is used in the normalisation of laboratory Vs
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results for analysis of sample quality. From the evaluation of undrained triaxial shear
behaviour and observations from CRS results (Sections 4.3.1 to 4.3.2) qualitative
specimen quality designations ‘disturbed’ (grey) or 'acceptable’ (black) are assigned to
results shown in Figures 4.5b to 4.5e. For the triaxial specimens in Figure 4.5b there is a
trend of 10-20% under prediction of Vyh-cvo relative to Vun,insitu avg irrespective of quality
designation. Donohue (2005) noted that reconsolidation of laboratory test specimens back
to in situ stress state provides some repair of sample disturbance in clays, and thus,
masking effects of disturbance on Vin.ovo Values - which in turn yields an evaluation of
sample quality based on Vih-ovo/Vihinsitu t0 be misleading. This observation was
confirmed by simulated disturbance testing conducted on Halden silt by Blaker and
DeGroot (In press) where post-disturbance shear wave velocities were completely
recovered upon reconsolidation to pre-disturbance stress conditions. The ratio of V'yh-ovo
to V'ininssitu IS presented in Figure 4.5¢ with sample quality criteria propsed by Ferreira et
al. (2011), where the in situ void ratios are calculated based on the representative w; line
(Figure 4.1a) and a unit weight of solid particles (ys) of 2.7. The results plot in a different
sequence than Vinh-ovo/Vininsitu (Figure 4.5b) indicating the effect of change in e after
reconsolidation. Certain results from specimens considered acceptable plot on the upper
end of the scale however some plot together with those from disturbed specimens. This
indicates that evaluation of sample quality with this criterion may be misleading based on
the number of tests available in this study. Assessment of V*yh-ovo from bender element
tests conducted after strain damage tests at Halden (Blaker and DeGroot In press) showed
negligible change in V*u.ovo following significant strain damage relative to the intact

reference specimen. This suggests that the shear wave may recover from this level of
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strain damage or the soil and its' fabric are relatively insensitive to such disturbance
effects using this parameter. Assessments of sample quality using the frameworks
proposed by Landon et al. (2007) and Donohue and Long (2010) for testing unconfined
clay specimens are presented in Figure 4.5d to Figure 4.5e, respectively, with qualitative
specimen quality designations 'disturbed' (grey) or 'acceptable’ (black) are assigned to the
Halden Vih data. Vwho results from two block sample specimens have no companion
triaxial tests for guiding the quality of the blocks but based on an overall evaluation of the
direct simple shear (DSS) test behaviour of the same two blocks (DSS tests not included
in this paper), indications are that the samples were disturbed. Irrespective of assigned
quality, based on consistent trends for material behaviour from triaxial tests and drillers
logs, for any individual sample the shear wave sample quality criteria present a
misleading and unreliable representation of quality as samples considered acceptable and
disturbed plot on top of each other or with assigned quality plotting at the opposite end of

the quality scale.

4.4 Discussion

The field work demonstrated that both tube and Sherbrooke block samples could
be collected in a low plasticity natural silt. Visual inspection of laboratory specimens or
use of different quantitative quality assessment methods for clays or low Ip soils such as
Aeleo, strain energy-based recompression ratio or shear wave velocity criteria, did not
identify disturbed and acceptable samples in accordance with the qualitative sample
quality approach used herein. Low values of recompression volumetric strains and Ae/eg

for all sample types, even from one CRS test conducted after dropping the sample tube to
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the floor, confirm recent studies that suggest that these consolidation metrics are
ineffective indicators of sample quality in silts.

Sherbrooke block sampling, which was initially assumed to provide consistently
high quality, proved challenging as the cutting knives did not always release. As noted by
Blaker et al. (2019) this may be due to silt size particle accumulation within the
equipment, thereby stopping operation of moving equipment parts. Repeated attempts at
the same depths typically resulted in subsequent disturbance or loss of sample, and in
some cases disturbance to the soil immediately below the sampling interval. Similar
observations were also reported during piston sampling by Carroll and Long (2017) at
Skibbereen, Ireland, and highlights the importance of a detailed drillers log when tracing
the history of a recovered sample. Interestingly, of the nine Sherbrooke block samples
collected at Halden (that were opened and tested in the laboratory) six were classified as
disturbed to some degree (Section 4.8, Figure 4.8b). This implies that, in contrast to
sampling in clays, the Sherbrook block sampler may not always provide high and
consistent sample quality in silts. The composition of fines (clay and silt particles) and I,
of the soil may be a contributing factor influencing the level of success of block sampling
and its' repeatability. In contrast, Carroll and Long (2017) reported no significant
challenges during block and tube sampling of the clayey silt at the Refeneveien site, also
located at Halden. Advanced testing of these block and 72 mm sample specimens showed
excellent repeatability, demonstrating that from sampling to build in of clayey silt block
specimens were successful. Furthermore, sealing, transportation, storage, and handling
during opening and subsampling of block samples are potentially associated with greater

variability as the soil is unconfined and maintains low values of soil suction, may have
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increased potential for drainage and strain damage relative to clays, throughout the
process.

Tube sampling at Halden was successful with good recovery. The effects of tube
sampling strains on silt are a function of their lower suction, lower plasticity, coarser
grain size and increased hydraulic conductivity relative to clays, all leading to increased
potential for drainage and densification despite the fact that destructing of soil fabric can
occur in both soil types. As a result, sampler geometry and techniques to reduce soil-tube
friction are central in reducing tube sampling disturbance effects. With tube sampling the
geometry is fixed and sampling is a single attempt over the sample length. Low Dw/t and
high AR has been shown to alter the silt behaviour during 1D and triaxial compression.
The GP-S sampler used in this study had similar poor geometry to that of the 54mm(L)
which contrasts from the thin walled 72mm piston sampler (Section 4.8). However, from
the consistency of the advanced test results with the block sample and 72 mm specimen
test results at Halden it is considered likely that the polymer gel, inside clearance, and
tapered cutting edge of the GP-S sampler reduces the friction, and thus, compensates for
its poor overall cutting shoe geometry. Similarly, the 54mm(L) sample specimens
showed consistent trends of disturbed behaviour.

By way of soil sampling using different techniques and advanced laboratory tests
at parallel depth intervals the effects of disturbance on engineering properties was
studied. CRS oedometer test results at Halden showed that both 54mm(L) sample
specimens and specimens which suffered from mishandling and additional disturbance
were generally stiffer, i.e. they had smaller vertical strains at all stress levels relative to

the acceptable block, 72mm and GP-S sample specimens (Figure 4.2). According to
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Janbu (1985) silts typically display a gradually increasing constrained modulus with
increasing vertical stress, o/, according to M = 1/my = mpa(c'v/p?)*2, where my = volume
compressibility, Ae/Ac\'; pa = reference stress, 100 kPa; and a = stress exponent, taken as
0.25 — 0.5 for silts, and 0 for clays. The modulus numbers interpreted at Halden plot in
the range of 28 to 46 where wi has a narrow band of 26 - 30% (Figure 4.6a). The 72 mm
sample specimen from 4.5 m depth has the highest water content by sample type and fits
in the range of m noted above. There is a trend of increasing m with decreasing w which
fall under the lower bound of Janbu (1985) and Skulason (1996) trends for sandy silt, and
some results plot below the upper bound for clays presented suggested by Janbu (1985).
There is no systematic trend between disturbed and acceptable specimens, suggesting that
m is not very sensitive to sampler induced disturbance. However, significant disturbance
beyond that induced by a poor-quality sampler, for example disturbance from a sample
tube hitting the floor, results in an increase in m. This is also evident in the trend of m
with depth (Figure 4.6b) where outliers are easily identified in this uniform deposit. The
strain energy-based framework for sample quality (Figure 4.6¢) and Ae/eo criteria are
applied to CRS results (Figure 4.10) however neither reflect the expected quality as
opposing trends in criteria and response are evident. These criteria show that GP-S
sample results plot separately from the block and 54mm(L) sample results which tend to
plot close to one another irrespective of evaluated quality.

Drained and undrained triaxial shear behaviour (Figures 4.3 and 4.4)
demonstrated more clearly than the CRS tests the sensitivity of the Halden silt to
disturbance. CAUC test specimens displayed large differences in normalised stress-strain

and pore pressure behaviour between different samplers, with the 54mm(L) and disturbed
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block sample specimens consistently exhibiting a stronger tendency for dilative
behaviour relative to the acceptable quality block, 72 mm and GP-S sample specimens.
The disparity had limited effect on the ¢'mo and mobilized shear stresses at small axial
strains but increased with increasing axial strain during testing leading to higher values of
interpreted sy at larger axial strains. Brandon et al. (2006) described six criteria for
interpretation of sy of two natural silts from the Mississippi River Valley, USA. The
normalized shear stresses at Halden for three of these criteria: 1) maximum shear induced
pore pressure, Umax; 2) State of zero excess shear induced pore pressure at failure Aus= 0,
which is equivalent to Skempton's A parameter at failure equal to zero, As=0; and 3) an
assigned limiting axial strain, eaf; are presented in Figure 4.7. There is a trend of near
constant normalised undrained shear strength, su/c'vc, with depth for both criterion 1 and
2, resulting in roughly 70% increase in s, defined at umax to that defined at As= 0. Due to
the tendency for dilative behaviour of the Halden silt, any value of s, evaluated at vertical
strains greater than that associated with As = O will be associated with negative pore
pressures. As shown in Figure 4.7a and Figure 4.7b the effects of sample disturbance on
the Halden silt, observed in the stress-strain and stress-path development described in the
results, are not particularly pronounced for the normalised undrained shear strengths
defined at umax and As = 0. At umax the shear stresses are well below the failure envelope,
and thus, not fully mobilized. For As = 0 all tests essentially have the same normalised
undrained shear strength as they were consolidated using Ko = 0.5 and specimens from all
depths generally converge onto the same failure envelope defined by the Ks-line at ¢'mo =
36°. The conflicting results from different samplers and resulting increase in strength due

to sampling disturbance is far more pronounced when the s, is defined by vertical strains
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in the range of 5% to 10% and associated negative pore pressures changes (Figure 4.7c).
Using 10% axial strain as strength criteria results in large scatter at each depth interval
due to sampler induced disturbance effects. The acceptable specimens form the lower
bound of results, with su/c'vc = 0.75 - 0.95, while the disturbed specimens are scattered
with considerably greater strengths, i.e. su/c'vc = 1.1 - 1.8. The differences should not be
underestimated as they can be significant; in the extreme case providing a ratio of upper
bound strength, defined by e.g. a disturbed sample at 10% vertical strain, to lower bound

strength, defined by e.g. an acceptable quality sample at umax, criterion, of more than 2.5.

45 Conclusions

This paper presents an experimental study on laboratory testing of a natural
clayey silt from Halden, Norway. Advanced tests results on specimens collected using the
Sherbrooke block, NGI 54 mm composite piston, 72 mm piston and Gel-Push samplers
are presented creating an important silt behaviour database. A qualitative assessment of
sample quality was implemented based on; 1) material response in advanced tests,
namely triaxial; 2) comparison of intentionally disturbed specimens from the 54 mm
composite piston sampler, and specimens from samplers known to yield high quality in
clays, such as Sherbrooke block and 72 mm piston samplers; 3) field observations from
drillers logs; and 4) classification data, namely w, as relatively lower w is a likely
indication of expelled water during sampling. The definitions of ‘acceptable’ and
'disturbed' quality were based on evidence from simulated tube sample disturbance (ISA)
testing, where strain damaging resulted in increased rate of shear stress development with

increased disturbance. Main findings were:
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Lower bound shear strength specimens guided the definition of acceptable
samples, which were typically provided by the GP-S and 72mm samplers and a
limited number of samples collected using the Sherbrooke block sampler. Upper
bound strength specimens guided the definition of disturbed samples, which were
consistently provided by the 54mm(L) sampler, and some samples which

experienced issues during Sherbrooke block sampling.

Clay-based frameworks for evaluation of quantitative sample quality were found
inappropriate and misleading for the Halden silt, confirming earlier findings on
other intermediate soils. Sample quality assessment using the framework based on
soil suction was not attempted as suction measurements were not possible on this
silt.

Advanced laboratory tests demonstrated that triaxial results provided good
guidance on sample quality, in contrast to CRS results where sampler induced
disturbance effects were subtler.

The qualitative assessment revealed that, as expected, the 54mm (L) sampler
produced overly disturbed samples. More interestingly, 6 of the 9 block samples
tested in this study had experienced some degree of disturbance, likely a result of
sampling issues due to repeated sampling attempts at the same depths or
immediately above. This suggests that, although historically known as the gold
standard for sampling in soft clays, the Sherbrooke block sampler in this study did
not consistently collect high-quality samples with respect to the three other

samplers.

135



Despite recent experimental strain damage testing on silts demonstrating
potentially adverse effects for tube sampling, the 72 mm thin walled piston and
GP-S samplers used in this study provided the most consistent and repeatable
quality samples. Without these tube samples it was difficult to identify a
borderline disturbed block samples from acceptable block samples. These
samplers may provide the most reliable and consistent results in silts at present
despite possible induced centreline strains in order of 0.6%.

Overall effects from increased sample disturbance evident from this study
included: i) reduction in wi, ii) lower values of Ae/eo* in some cases (*opposite
bound of quality index, hence misleading); iii) decreasing values of Crw,i/Ccw™;
and iv) increasing m with increasing degree of disturbance. The modulus number,
however, showed relatively low sensitivity.

Moreover, undrained triaxial tests revealed: i) increasing tendency for dilative
behaviour for a disturbed relative to an acceptable specimen; ii) differences in
stress-strain and shear induced pore pressure behavior between the different
samplers were mostly pronounced after the point of umax; iii) normalized
undrained shear strengths at the umax and As = O criteria provided consistent and
near constant values with depth with su/c'vc (at Umax) < Su/c'vc (at As = 0); and iv) at
high axial strain, e.g., eas = 5% - 10%, sample disturbance caused an increased
range in normalized sy.

While one CADC test displayed an increased drained peak friction angle due to
disturbance (¢' = 39°), there was generally limited to no effect of disturbance on

¢'mo interpreted from CAUC tests (¢'mo = 36°).
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e With more experience in block sampling silts more consistent acceptable quality
blocks may be achievable as was found at Refneveien, Halden. As silt deposits
vary from site to site in composition, namely grain size distribution and Ip,
obtaining some disturbed 54mm(L) samples would i) provide a boundary
representative of disturbed material behavior, and ii) enhance the understanding
of sample disturbance effects for more silt deposits.

e As of now, reliance on a qualitative sample quality approach, as used in this study
including consideration of repeatable acceptable quality from 72mm and GP-S
samples in silts, provides the best information on evaluation of quality and is
recommended for future studies. This is provided sample handling is carried out
according to best practice.

e Nonetheless, design criteria plays a role in: i) selection of strengths, ii)
consideration of drainage conditions in the design approach, and iii) allowance for
dilation as strengths increase considerably with negative pore pressures and

disturbance effects enhance this response.

4.6 Data Availability Statement
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(2018) at http://www.datamap.geocalcs.com/. Information on access to NGTS sties is

available at http://geotestsite.no/.
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4.8 Supplemental section

4.8.1 Sampler geometry

The inside clearance ratio (ICR) quantifies the difference in internal diameter of
the sampling tube and the cutting shoe, and ICR > 0 reduces the wall friction between
soil. However, this difference in internal diameter also causes an elastic expansion of the
soil sample due to the stress relief and may cause further sample disturbance. For general
practice Hvorslev (1949) suggested an inside clearance ratio of 0.75 to 1.5% for long
samplers and 0 to 0.5% for very short samplers, while ASTM (2018) specifies the inside
clearance ratio should be 1%, unless otherwise specified; the inside clearance ratio should
increase with an increase in soil sample plasticity. ISO (2014) recommends the inside

clearance ratio to be preferably below 0.5%. Several authors (Hight and Leroueil 2003;
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Ladd and DeGroot 2003; DeGroot and Ladd 2012) have recommend an inside clearance
ratio close to zero for soft clay sampling. An outside clearance ratio (OCR) greater than
unity facilitates the withdrawal of the sampling tube as an external diameter of the cutting
shoe larger than that of the sampling tube reduces friction between the soil and the tube.
Nonetheless, inside clearance may in some cases be more desirable than the negative
effects of adhesion between soil and inside of sampler (Clayton and Siddique 1999). This
is potentially a positive factor for the GP-S together with the lubricating polymer gel to
aid friction reduction between soil and tube. Outside clearance increases area ratio (AR)
which have been shown to increase strain on a sample. However, 2-3% OCR can be
beneficial in clays (Hvorslev 1949). AR is the ratio of annular cross-sectional area of the
tube to the area of the sample. Increasing area ratio increases the penetration resistance of
the sampler, entrance of excess soil, and the potential of increased sample disturbance.
Hvorslev (1949) recommends an AR of less than 10% and ISO (2014) requires AR less
than 15% (but allows for AR = 25% if it is demonstrated that the quality class is not
affected). ASTM (2018) states that AR should generally be less than 10 to 15% and that
larger AR of up to 25 to 30% have been used for stiffer soils to prevent tube buckling.
The GP-S sampler has a higher AR than the 54mm(L) and however its effects may be
beneficial during sampling as we see consistently acceptable quality GP-S samples at
Halden. It also has the lowest Diargest/t ratio of all samplers used in this study which would
indicate, based on studies of effect of Diargest/t ratio, that it would yield disturbed samples.
However, the contrary is the case which must be attributed to its' overall geometry and
use of gel.

Definition of terms provided in Table 4-2 using Figure 4.8a:
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Inside clearance ratio, ICR (Hvorslev 1949) controls internal friction, principal

cause of disturbance.

D, — D,
ICR=( = >><100 (4.1)

i

Outside clearance ratio, OCR, reduces outside wall friction.

Dw - De
OCR = (—) x 100 (4.2)
D,
Outside cutting angle, OCA, and inside cutting angle, ICA, where r is the radius at

the associated subscript diameter location:

T —71;
OCA = Tan™! (%) (4.3)

2

T, —71;
ICA =Tan™! ( ¢ o ‘) (4.4)
1

Area ratio, AR, quantifies the relationship between volume of displaced soil and

sampled soil.

D,% - D;?
AR = —57 x 100 (4.5)

i

Diargest/t ratio is traditionally referred to as B/t (external diameter to thickness ratio
or aspect ratio of a sampler). However, for clarity on evaluation of B and
evaluation of t this annotation has been selected, where t = Diargest — Dsmaltest. This
ratio controls overall distortion patterns of the soil around the sampler (Siddique

1990).
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Dlargest _ ( Dlargest > (4 6)
t Dlargest - Dsmallest '

4.8.2 Driller's log from borehole HALB04

Table 4-3 provides details from the Sherbrooke block sampling in borehole

HALBOA4.

4.8.3 CRS specimen data

Table 4-4 provides a tabulated summary of initial and after consolidation test data

from CRS oedometer tests at Halden.

4.8.4 CAUC specimen data

Table 4-5 provides a tabulated summary of initial and after consolidation test data

from CAUC triaxial test at Halden.

4.8.5 CADC specimen data

Table 4-6 provides a tabulated summary of initial and after consolidation test data

from CADC triaxial test at Halden.

4.8.6 Vsanalysis of in situ results

NGI developed a set of Python routines to process SCPT data and estimate S-

wave velocity profile together with its associated uncertainty as there is no standard
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SCPT or SDMT format for service providers to follow for presentation of data or
geometry of seismic components of the cone used. Table 4-7 summarizes the seismic
come geometry and the components (vertical Z, horizontal X and Y) available in the
recorded data.

Data is imported, processed according to geometry of the set up and plotted for
visual quality control from each provider. In order to increase the signal-to-noise ratio,
several shots are typically acquired for a given sensor and source position. The resulting
traces are subsequently vertically stacked together. This process enhances the coherent
signal and tends to reduce the uncoherent noise. If coherent noise exists within the data, it
would also be enhanced, and stacking would then not be recommended. Some of the
acquisition systems such as the Pagani only provide already stacked data. In order to
remove some of the undesired noise from the seismic records, one can apply a bandpass
filter. As the source and receivers are band-limited, and the soil also acts as a low-pass
filter, only a portion of the frequency spectrum contains meaningful information. The two
horizontal accelerometers usually have orthogonal orientations. The orientation of the
horizontal source at the surface does not necessarily align with one of this two
components. Therefore, it might be beneficial to perform a vector summation of the two
horizontal components.

To estimate the S-wave velocity at depth, one needs to estimate the difference in
travel time (dt) between the upper and the lower level of accelerometers. Knowing the
distance between the two levels, the S-wave velocity can then be estimated according to:

Ve =d,/(t2; — t1) (4.7)

In order to estimate dt, one could, e.g. 1) try to pick the first arrival (manually or

using first breaking algorithms) for both levels and take the difference, 2) compute the
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time lag corresponding to the maximum of the cross - correlation between both levels, 3)
compute the phase shift between both levels and convert to dt. NGI have implemented
the cross-correlation methods which is the most robust and its uncertainty is derived from

the corresponding cross-correlation value.
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Table 4-1 Summary of average classification properties at Halden.

Depth Soil unit  wj; we wep  Ip Sand Silt  Clay
m - % % % - % % %
45-7 I 305 35 21 105 20 73 7.6
8.0-10 I 295 316 23 86 10 80 9.7
11.0-12.0 I 29 28 20 1.7 10 80 9.3
14 — 14.85* i 22 26 20 55 20-25 70-75 7-12

*Unit I is 14 -16 m, classification data acquired up to 14.9 m.
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Table 4-2 Summary of dimensions and derived properties of samplers used in this study.

Sampler type De Dw Ds Di t ICR AR OCA DLargest/t
- mm mm mm mm mm % - 0 -
GP — S sampler 90 93 72.1 71.5 10.75 0.8 69 Tapering 8.7
NGI 54 mm composite sampler 65 65 54.3 54 5.5 0.6 45 5 12
Sherbrooke block sampler 250 250 250 250 0.00 0.0 0 - -
Geonor K200 sampler 76 76 72.1 72.1 1.95 0 11 5 39
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Table 4-3 Driller's log from borehole HALBO04 (Sherbrooke block sampling) at Halden.

Top Bottom Ref QY Driller's comment
m m - - -

0.0 3.10 Pre-drilling

3.10 3.45 X Discarded. Poor quality.

3.45 3.70 1 Ok minus. Part of sample missing.

3.70 4.05 X Discarded. Poor quality.

4.05 4.40 X Unsuccessful. One knife did not release.

4.40 4.75 X Unsuccessful. One knife did not release.

4.75 5.15 2 Ok minus. Silt, some clay.

5.15 5.50 3 A Ok. Silt clay

5.50 5.85 X Discarded. Silt, clay

5.85 6.10 4 Ok. Silt, clay

6.10 6.55 X Discarded. Silt, clay

6.55 6.90 X Discarded. Silt, clay

6.90 7.25 5 A*No Tx Silt/clay

7.25 7.60 X Discarded. Silt, clay

7.60 7.90 X 3 attempts until cutting knives released

7.90 8.25 6 D Silt/clay

8.25 8.60 5.5 A Block

8.60 8.95 * Poor quality. Sample bagged.

8.95 9.30 - Knives did not release.2 attempts. Sample
bagged.

9.30 9.65 7 Clay, silt

9.65 10.00 * Sample bagged

10.00 10.35 8 A*No Tx Block

10.35 10.70 * Pose

10.70 10.70 X Sample lost. 2 knives released but no sample
collected

11.05 11.40 9 Sample disturbed due to attempts above.

11.40 11.75 10 A Block

11.75 12.10 * Bagged

12.10 12.45 11 Block
Block (not noted in log but photo in Blaker

12.45 12.80 12 D et al. (2019) showing injury from cutting
knife removal)

13.00 13.10 im Mini—block_. Kni_ve_s did not release. 2
attempts with mini-block sampler

13.10 13.40 * Mini-block. Poor quality/disturbed. Bagged

13.40 13.75 om D Mini block sampler. Only one knife
released.

13.75 14.10 3m Mini-block. OK. Knife not fully released.

14.10 Continue with Sherbrooke Block Sampler
Flushed through the interval that the mini
block was sampled from

14.10 14.45 * Poor quality. Bagged

14.45 14.80 13 D Block

14.80 15.15 14 Block

15.15 15.20 15 Block

Note: » Q = qualitative quality, with A= acceptable, D = disturbed.
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Table 4-4 Summary initial and after consolidation data from Halden CRS oedometer test
specimens and associated qualitative sample quality assessments.

Test Sample z Wi Tt e gcd Aeleg Q¥
- - m % kN/m? - % - -

HALBO01-8-B-2 72mm 4.47 34.1 18.96 0.93 1.66 0.035 A
HALBO03-3-A-1 54mm(L) 5.42 29.0 19.6 0.78 0.34 0.008 D
HALBO03-5-A-1 54mm(L) 7.50 29.3 19.3 0.79 1.10 0.025 D
HALBO03-6-B-1 54mm(L) 8.28 27.5 19.7 0.74 1.08 0.025 D
HALBO03-8-F-1 54mm(L) 10.33 27.7 19.7 0.75 1.17 0.027 D
HALBO03-12-B-1 54mm(L) 14.31 24.5 20.0 0.66 1.63 0.041 D
HALBO04-3-1B-1 Block 5.27 30.5 195 0.82 1.24 0.027 A
HALBO04-5-1 Block 7.03 28.5 19.3 0.77 1.20 0.028 D
HALBO04-5.5-C-1 Block 8.40 28.8 195 0.77 1.49 0.034 A
HALBO04-8-A-1 Block 10.07 26.1 20.0 0.70 1.83 0.044 D
HALBO04-13-A-2 Block 14.60 22.2 20.7 0.60 1.55 0.041 D
HALBO05-1-B-1 GP-S 9.35 28.5 20.1 0.77 2.99 0.069 A
HALBO05-2-D-1 GP-S 12.71 29.4 19.9 0.79 3.01 0.068 A
HALBO06-6-C-1 GP-S 13.07 26.6 19.9 0.72 2.88 0.069 A

Note: Y e; = initial void ratio. ? &, = vertical strain at c'v0. ¥ Q = qualitative quality, with A= acceptable, D
= disturbed.
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Table 4-5 Summary initial and after consolidation data from Halden CAUC test specimens and associated qualitative sample quality

assessments.

. . 1) 1) 2) 2) sth- a'vc/ 4)

Test y4 Sample Wi Yi € €c Eve Evol Aeleg VN Q
Svi —|n5|tu—avg

- m - % kN/m3 - - % % - - -
HALBO01-9-A-1 5.30 72mm 29.6 19.0 0.80 0.78 0.71 0.86 0.019 0.91 A
HALBO01-11-C-1 7.60 72mm 23.2 19.0 0.62 0.62 0.50 0.19 0.005 n/a D
HALBO01-12-B-4 8.60 72mm 28.6 19.1 0.77 0.75 0.81 0.84 0.019 0.84 D
HALBO01-14-B-1 12.60 72mm 22.6 19.6 0.61 0.60 0.75 0.40 0.011 n/a D
HALBO03-3-A-1 5.32 54mm(L) 30.0 19.4 0.81 0.80 0.77 0.56 0.012 0.90 D
HALBO03-6-A-1 8.46 54mm(L) 28.3 18.8 0.76 0.74 1.02 1.33 0.031 0.81 D
HALBO03-9-A-1 11.60 54mm(L) 27.9 19.55 0.75 0.73 0.90 1.08 0.025 n/a D
HALBO03-12-A-1 14.42 54mm(L) 23.4 20.0 0.63 0.59 0.85 2.25 0.058 0.82 D
HALBO04-3-A-1 5.28 Block 31.9 18.9 0.86 0.83 0.90 1.63 0.035 0.95 A
HALBO04-6-A-2 8.02* Block 28.0 19.33 0.76 0.75 0.71 0.70 0.016 n/a D
HALBO04-5.5-A-1 8.36 Block 30.1 19.2 0.81 0.79 0.81 1.30 0.029 0.84 A
HALBO04-10-1A-2 11.45 Block 28.0 19.42 0.75 0.74 0.72 0.99 0.023 0.86 A
HALBO04-12-A-1 12.58 Block 26.6 19.1 0.72 0.70 0.78 1.07 0.026 0.82 D
HALBO04-2-A-1 13.55 Block 25.2 19.8 0.68 0.67 0.93 0.64 0.016 0.84 D
HALBO04-13-A-1 14.60 Block 23.2 20.1 0.62 0.58 0.81 2.56 0.067 0.83 D
HALBO05-1-A-1 9.45 GP-S 304 18.7 0.82 0.81 0.63 0.23 0.005 0.82 A
HALBO05-2-A-1 12.50 GP-S 30.3 19.6 0.82 0.77 1.21 2.60 0.058 0.82 A
HALBO06-3-A-1 8.32 GP-S 30.7 19.7 0.83 0.80 0.89 151 0.033 n/a A
HALBO06-4-A-1 9.93 GP-S 29.4 19.7 0.79 0.77 0.97 1.42 0.032 n/a A
HALBO06-4-D-1 11.40 GP-S 28.2 20.34 0.76 0.74 1.11 1.06 0.025 n/a A

Note: D e; = initial void ratio, e. = void ratio after consolidation. 2 &, = vertical strain, and ., = volumetric strain after consolidation. ® Shear wave velocity after
consolidation, Vsn-ovc , relative to the average in situ shear wave velocity, Vsn-insi-avg. ¥ Q = qualitative quality, with A= acceptable, D = disturbed. *Ko
consolidated specimen (CKoUC).
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Table 4-6 Summary initial and after consolidation data from Halden CADC test specimens and associated qualitative sample quality

assessments.
Test z Sample Wi Vi ei) ect Eve? Evol? Aeleg v E/.Vh'_dvc/ 3 QY
vh-insitu-avg
- m - % kN/m?3 - - % % - - -
HALBO04-6-A-1 8.02 Block 27.1 19.2 0.73 0.68 0.57 2.64 0.063 0.91 D
HALBO05-1-B-1 9.60 GP-S 30.2 19.3 0.81 0.72 0.93 5.21 0.116 n/a A
HALBO06-3-B-1 8.47 GP-S 29.5 19.7 0.79 0.76 0.91 1.75 0.040 n/a A
HALB06-6-B-1 12.95 GP-S 27.9 20.0 0.75 0.73 0.96 1.24 0.029 n/a A

Ye; = initial void ratio, e. = void ratio after consolidation. ? e, = vertical strain, and ey, = volumetric strain after consolidation. ® Shear wave velocity after
consolidation, V.o , relative to the average in situ shear wave velocity, Vsn-insiw-avg. ¥ Q = qualitative quality, with A= acceptable, D = disturbed.
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Table 4-7 Seismic cone geometry for the different equipment.

Seismic Cone 70" dz? Components
Geotech 0.37m 1.0m XYZ

A.P. Van den Berg 0.50 m 0.5m XY

Pagani 0.60 m 0.5m Vector sum (X+Y)
Marchetti 0.25m 0.5m XYZ

Note: Y zo = the distance from the tip to the closest level of sensor. 2 dz = the distance between the 2 levels
of sensors (dz).
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Figure 4.1 Classification properties with depth based on sampler and advanced test type.
Halden research site.
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Figure 4.2 1-D consolidation behaviour of Halden silt specimens from different samplers
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Figure 4.3 Undrained shear behaviour of Halden silt specimens from different samplers
and depth intervals (a-d) 5.3m, (e-h) 7.5 - 9.5m and (i-l) 12.6 - 14.5m. Normalised shear
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CHAPTER 5

IN SITUSTRENGTH AND STIFFNESS PROPERTIES FROM SCREW PLATE
LOAD TESTING IN SILT

The in situ screw plate test was initially developed for estimation of the
compressibility of sands and was later adopted for use in clays to estimate undrained
shear strength and stiffness properties. There has been limited research on determining
the engineering parameters of silts either by in situ or laboratory testing, and recent
studies demonstrated the adverse and potentially unsafe effects of sample disturbance on
laboratory measurement of these parameters if applied in stability problems. The research
presented in this paper investigates the in situ stress-displacement behavior of a clayey
silt and an underlying clay unit at Halden, Norway using screw plate load tests.
Variations in drainage conditions during testing was investigated by conducting tests at
different loading rates and measured data were evaluated using finite element
simulations, data from piezocone tests, and data from anisotropically consolidated triaxial
compression and direct simple shear tests performed on block samples. Interpreted
engineering parameters were derived using several established theoretical frameworks
that were developed for plate load tests. All screw plate load tests conducted at Halden
demonstrated a strain hardening response that was dependent on the rate of loading.
Derived bearing capacities varied significantly depending on the method used to interpret
the stress-displacement data. Tests conducted at a rate of 1.3 mm/min were considered to
be partially drained or drained whereas tests conducted at 15 mm/min were considered
undrained. Bearing capacities estimated from the undrained tests were lower than the
companion partially drained or drained tests. Practical recommendations relating

laboratory drained and undrained shear strength to estimates of bearing capacity and
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vertical displacements of a prototype foundation in silts such as the Halden silt are

proposed.

5.1 Introduction

Sampling, in situ and advanced laboratory testing of silt are associated with
higher uncertainty and complexity than what is generally encountered during soil
investigations on clays. The typically higher hydraulic conductivity (k) of silt relative to
most clays may allow drainage or partial drainage to occur during in situ testing and
sampling at standard penetration rates, thus resulting in volumetric strains (evol) in the soil
immediately surrounding the penetrometer or sampler. An unknown volumetric
expansion or compression caused by drainage during sampling may damage the sample;
i.e. drained or partially drained sampling can cause densification of silts with a high void
ratio (loose) whereas silts with a low void ratio (dense) is likely to dilate and exhibit an
increased void ratio (Hight and Leroueil 2003; Sandven 2003). It is generally recognized
that means of increasing sample quality and reducing adverse effects of sample
disturbance on engineering properties of clays are achieved by using block samplers or
thin walled, large diameter fixed piston samplers with a sharp cutting edge (e.g. Hight
and Leroueil 2003; Ladd and DeGroot 2003). However, for silt high quality sampling
may be challenging using any type of sampler and no quantitative sample quality
frameworks have been suggested for silts, other than the strain energy and compression-
based ratios proposed for 1D consolidation tests by DeJong et al. (2018). These criteria,
however, are based on synthetic silt mixtures that do not exhibit the fabric and structure

of a naturally occurring soil (but also shown to work on clays). Clay - based sample
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quality criteria, based on volumetric metrics measured during recompression of a
specimen back to the best estimate in situ vertical effective stress, o'vo (Terzaghi et al.
1996; Lunne et al. 2006), applied to silts have been cautioned by several researchers
(Lunne et al. 2006; Long et al. 2010; Carroll and Long 2017).

The effects of sample disturbance on strength and stiffness properties of silts have
been observed to be adverse and opposite of those often observed in soft, structured clays
(Carroll and Long 2017; Lukas et al. 2019; Blaker and DeGroot In press). The
interpretation of advanced laboratory triaxial tests conducted on silt is further
complicated by the fact that often the undrained shear strength s, of a silt exhibiting
dilative type behavior is not uniquely defined, and the soil may also exhibit very different
behavior in the "intact” and reconstituted states (Hgeg et al. 2000; Blaker and DeGroot In
press). For stability problems there is limited practical guidance on how to interpret
laboratory test results for selection of design drained or undrained strength parameters
and how they compare to the values derived from in situ tests. In situ tests, such as the
cone penetration test (CPTU), plate load tests (PLT) and the pressuremeter tests (PMT)
may provide valuable data of soil resistance with time or displacement without
introducing sampling induced disturbance (albeit some disturbance occurs due to
equipment installation or stress relief during drilling). The screw plate load test (SPLT) is
a variation of the PLT where the plate, conceptually a single flight helical auger, is
installed by torsion to target depth, z, (without the need for a pre-augered borehole) and
loaded vertically (average stress acting on the plate, ga) to provoke soil failure or large

deformations ().
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This paper presents results from a series of SPLTs conducted at the Norwegian
National GeoTest Site for silt in Halden, Norway (Blaker et al. 2019). SPLT load -
displacement behavior in the clayey silt and underlying clay units are presented and used
to interpret engineering parameters. The measured SPLT bearing capacities with depth
are compared with the calculated base unit resistance for an equivalent diameter closed
end pile (CEP). Drainage conditions during loading were assessed by comparison of
normalized velocities, V, computed from the SPLTs conducted at different rates of
loading, v, and finite element (FE) simulations. Preliminary results obtained early in the
research were presented by Blaker et al. (2020) and used to plan the follow-up field

testing campaign.

5.2 Background and analysis

5.2.1 Previous work

The SPLT was originally developed in Norway for evaluation of in situ
deformation characteristics of a loose sand (Kummeneje 1956). These first tests were
conducted using a simple screw plate of diameter D = 294 mm. The experience gained
from these tests in loose sand were influential in the development of Janbu's modulus
concept for settlement prediction (Janbu 1963), and in turn, this framework was
incorporated in the Norwegian SPLT interpretation theory (Janbu and Senneset 1973).
Schmertmann (1970) and Dahlberg (1975) adopted this method to study in situ
compressibility of different sands and the influence of preconsolidation stress on the

deformability. The Norwegian Geotechnical Institute, NGI (Aas 1983) summarized
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results and an interpretation methodology from a series of SPLTs in Norwegian sands.
Marsland (1972) used the more conventional PLT in stiff, fissured London clay although
the same principles as Marsland were applied to SPLT to back-calculate the large-scale
undrained shear strength from the ultimate bearing capacity, qui, in a number of different
clays (Selvadurai et al. 1980; Kay and Avalle 1982; Kay and Parry 1982; Powell and
Quarterman 1986; Bergado and Huan 1987; Bergado et al. 1990). Few SPLTs have been
conducted in silt: Janbu and Senneset (1973) and Sandven (2003) report incremental
loading SPLTSs (i.e., fully drained conditions) conducted at a silt site in Stjgrdal, Norway

for evaluation of in situ compressibility of the deposit.

5.2.2 Bearing capacity

The ultimate bearing capacity from PLT or SPLT stress - displacement data can
be assessed using a number of methods, including:

e Relative displacement method — the ultimate bearing stress is taken at a relative
displacement, typically 10% of the footing width or pile diameter (Briaud and
Jeanjean 1994; Salgado et al. 2011), i.e., qui: = qo.1p Tor 10% of the screw plate
diameter D.

e Tangent intersect method — the ultimate bearing stress corresponds to a distinct
change in stress - displacement plot, i.e. intersection of initial and final tangent
slopes (Trautmann and Kulhawy 1988), i.e. qui: = q7;-

e Hyperbolic method — the ultimate bearing capacity is taken as an extrapolation of
the stress - displacement curve to an asymptotic value using a simple hyperbolic

model (e.g. Chin 1983; Thomas 1994), i.e. ¢yt = quyp-
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A deeply embedded screw plate may be modeled as being the same as the base of
a circular CEP with equivalent diameter and area. The ultimate unit base resistance, gpb,urt,
of a pile tip equivalent to that of the screw plate may be assessed using:

e soil property-based methods, in which Qpur is estimated from basic design
parameters determined in the soil at the pile tip and the classical bearing capacity
equation disregarding the minor contribution of the 0.5y'DN; term, i.e.:

Apue = Nesy + Njoyg (5.1)
where N/, Ny, Ny = dimensionless bearing capacity factors for deep foundations,
including necessary shape and depth factors; and y' = effective unit weight of soil
(Salgado 2008).

e in situ test-based methods, in which gburt is correlated directly with e.g. CPTU

cone resistance, (c, including:

Purdue-CPT (Salgado et al. 2011),

NGI-05 (Clausen et al. 2005; Karlsrud et al. 2005),

ICP-05/MTD-1996 (Jardine and Chow 1996; Jardine et al. 2005), and

UWA-05/UWA-13 (Lehane et al. 2005; Lehane et al. 2013).

All of these CPT based design methods are summarized by Han et al. (2017). The
NGI-05 and API (1993) procedures recommend using the unconsolidated undrained shear
strength, suuu, in clay which in this paper is assumed to equal the CAUC shear strength,

SuC.
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5.2.3 Soil parameters from SPLT

In Norway the SPLT interpretation theory for sands was adopted to Janbu's
modulus concept (Janbu 1963) where the stress dependent constrained modulus (M =
da'lde), or the inverse coefficient of volume compressibility (my), is expressed by the
modulus number (m), a reference stress, cam = 100 kPa, and a stress exponent, a

(typically taken as 0.5 for sand and silt), i.e.:

o \17¢
M=m0atm< ) (5.2)

atm

where &' in this paper is taken as the average value over the stress range chosen for
calculation of M. The theory assumes that deformations occur in a constrained cylinder
beneath the screw plate, under zero radial strain (er = 0), but uses plasticity theory to
determine the vertical stress distribution (c'vo + Ac') resulting from the load on the plate
by equilibrium with the mobilized shear stresses along the cylinder perimeter. Aas
(1983), however, suggested that the stress distribution be simply assumed to decrease
linearly with depth below the plate with Ac' = 0 at z = 2D. By integration of the vertical
strain over the depth of influence, Janbu and Senneset (1973) presented a simplified
expression for the modulus number as:

Dq,
STl O-a

m=3S§ (5.3)

where S = dimensionless settlement number, which contains the stress dependency of M
and the assumptions for the vertical effective stress profile (typically in the range 0.35 —
1.5 for sand and silt with gn in the range of 50 kPa to 350 kPa); gn = the net vertical stress

on the screw plate, which for the results presented in this paper was assessed from c'vo to
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ga = 0.5(gm + o'w0); and sn = the plate displacement at g». S may be computed and plotted
for different soil types, in situ vertical effective stresses and values of g, as shown by
Janbu and Senneset (1973) and Aas (1983).

Interpretation theories for assessment of the coefficient of horizontal
consolidation (cn) were also developed in the early stages of the screw plate test device.
Sandven (2003) describes a procedure where cn is estimated from time to 90%

consolidation (teo), determined graphically from a plot of t%4%° versus s, i.e.
RZ
¢y, = 0.335— (5.4)
too
where R = is radius of screw plate (= 0.5D)

Selvadurai et al. (1980) examined several theoretical models of the SPLT
conditions to evaluate the in situ stiffness and shear strength directly from the load versus
displacement response of the screw plate. Different approximations to the SPLT
conditions were considered by modelling a circular plate in an elastic medium and
varying the plate stiffness and contact properties at the soil - plate interface. In clays, if
the test is conducted at such a rate that undrained conditions prevail (Poisson's ratio, v =

0.5) the in situ undrained elastic modulus, Ey may be estimated from:

R R
E, = AQSL = {0.60 to 0.75}qSL (5.5)

n n

where A = a factor dependent on the Poisson's ratio and plate-soil bonding. When drained
conditions prevail, a Poisson's ratio of v = 0.2 may be more reasonable. Using the Keer

(1975) expression for displacement of a rigid, partially bonded rigid disc the drained

elastic modulus, Eq, becomes:
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R R
E, =227 _ g ga I8 (5.6)

STL Sn
It should be noted that the constrained and shear modulus (G) can be estimated

from the elastic modulus according to the theory of elasticity as:

B (1-v)E & 7
S A+v)(1-2v) (.7)
and
G——E 5.8
21 +v) 5.8)

Estimates of in situ shear strength parameters from SPLTs require an assessment
of likely drainage regime during loading and the appropriate bearing capacity factors. A
prediction of the prevailing drainage conditions can be made by evaluation of in situ tests
such as the CPTU using the pore pressure parameter (Bq = (u2 - Uo)/(Qt - ovo), Where u;
and uo are the cone shoulder and in situ pore water pressures respectively, and g is the
cone resistance, qc, corrected for pore pressure effects. In clays, Bq typically ranges from
0.4 to >1.2 and while Bq = 0 is indicative of fully drained conditions, Bq < 0.4 has been
suggested indicative of partially drained or drained response (Senneset et al. 1989). In
silts displaying dilative type behavior during in situ loading, net negative pore pressure
changes may develop behind the cone and low values of Bq (< 0.4) may likely occur even
for undrained conditions. Alternatively, the normalized penetration velocity of an in situ
test has been found useful for evaluation of prevailing drainage conditions:

_vd

1% (5.9)

Ch
where v = rate of penetration, and d = penetrometer diameter. V > 10 — 100 is typically

suggested to be indicative of fully undrained conditions, while fully drained conditions
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typically occurs for V < 0.05 — 0.01 (Randolph 2004; Kim et al. 2008; DelJong and
Randolph 2012). Penetrometer measurements conducted between V = 0.05 - 10 may
therefore be affected by partial drainage.

In clays, Selvadurai et al. (1980) suggested a range of theoretical bearing capacity
factors being:

Nz =2 _ 19,00 to0 11.35) (5.10)

Su
However, these solutions were based on idealized plasticity and more recent advances in
numerical limit analysis (e.g. Martin and Randolph 2001; Salgado et al. 2004) have
demonstrated that the value of N¢" is more likely in the range of 11.0 and 13.7 for deep
foundations in clay. The factor for estimation of bearing capacity in granular soils from
the effective stress conditions is a function of the effective stress friction angle of the soil,
¢', and shows significant variation in the literature, ranging from Ng" = 8 in silt to several

hundred for a dense sand (Fellenius 1991).

5.3 Materials and methods

5.3.1 Soil sampling and laboratory testing

Soil samples were collected at the Norwegian National GeoTest Site (NGTS) for
silts at Halden, Norway (Blaker et al. 2019) using the Sherbrooke block sampler
(Lefebvre and Poulin 1979) in location HALBO4; the NGI 54 mm inner diameter (ID)
composite piston sampler (Andresen and Kolstad 1979) in location HALBO02 and
HALBO3; the Gel-Push Static (GP-S) sampler (Tani and Kaneko 2006) in location

HALBO5 and HALBOG6; and the Gregory Undisturbed Sampler (GUS), a hydraulic fixed
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piston sampler, manufactured by Acker Drill Company, PA, USA in location HALBO?7.
The Sherbrooke block samples are considered the best representation of intact soil and
were used as the reference laboratory behavior for the Halden silt by Blaker et al. (2019)
and Blaker and DeGroot (In press). All locations are presented on the map in Figure 5.1.
Triaxial specimens were prepared by trimming of Sherbrooke block and GUS
specimens using the procedures described by Lacasse and Berre (1988) and Ladd and
DeGroot (2003). All specimens were anisotropically consolidated to the best estimate o'vo
and horizontal effective stress, c'no, using an assumed Ko = 0.5 (Blaker et al. 2019) and
stress measurements were corrected for membrane resistance and changes in specimen
area (Berre 1982). Anisotopically consolidated triaxial tests were conducted in undrained
compression loading (CAUC), extension unloading (CAUE) and drained compression

loading (CADC).

5.3.2 Screw plate load testing

Screw plate load tests, representing a circular prototype foundation, were
conducted in two rounds and in three boreholes: the first round in boreholes HALSPO1
and HALSP02, from 5.3 m to 17.8 m depth; the second round in borehole HALSPO04,
from 5.3 m to 13.3 m depth. The SPLT equipment consisted of a single helix flight auger
with D = 160 mm (area, A = 200 cm?) and a pitch, Ah = 45 mm for one auger flight
(Figure 5.2). The plate was founded in ductile cast iron (grade EN-GJS-500) by Ulefoss
Foundry, Norway based on a model by Strout (1998). The screw plate was positioned
directly in front of a custom-made down-hole hydraulic jack and concentric double-rod

configuration described by Janbu and Senneset (1973). The outer 42.5 mm outer diameter
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(OD) steel rods provided torque during installation and reaction from the jack to the drill
tower of the Georigg 607 (Geotech AB, Sweden) drill rig during static loading in
compression. A simple load frame was positioned between the outer rod and drill rig, and
allowed access to the top of the 27 mm OD center rods. The unloaded center rods
provided direct measurement of the plate displacement (i.e. no correction needed for the
elastic compression of loaded outer rods) using two Mitutoyo Digimatic ID-C 0.001/50.8
mm deformation indicators mounted on an independent reference beam. An Enerpac
P392 hand pump and a 64 MPa GDS high pressure volume controller (Global Digital
Systems Ltd, Hampshire, U.K.) provided hydraulic pressure to the closed system through
a 400 MPa capacity hydraulic hose connected to the jack. Hydraulic cylinder pressure to
plate stress conversions were calibrated in the laboratory using an Interface (Interface
Inc., Scottsdale, AZ, USA) load cell.

The screw plate was carefully installed by rotation from ground level to each
target depth by the drill rig. The rate of penetration during installation was adjusted to
equal the pitch of the screw plate (i.e. about 45 mm per 360° rotation) in order to
minimize disturbance to the surrounding soil. The Enerpac pump and GDS volume
controller were connected to the hydraulic hose, and the equipment was paused for about
15 min to allow equalization of installation pore pressures near the screw plate.
Displacement gauges were zeroed, and constant rate or incremental deformation testing
was conducted using the GDS pump. A GDS flow rate of 40 mm?s — 350 mm?®/s was
used, providing a loading rate of about v = 1.3 — 15 mm/min (0.5 D/hour — 5.6 D/hour).
Readings of cylinder pressure and plate displacement were recorded to a displacement of

about s = 0.2D — 0.3D. After completion of a test, the oil reservoir was carefully vented
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to atmospheric pressure and the hydraulic cylinder, typically fully extended after testing,
was reset to its original position using the drill rig. Finally, the pumps were disconnected,

and the screw plate advanced to the next test depth.

5.3.3 Finite element modelling

One screw plate load test was simulated using the finite element (FE) program
Plaxis 2D 2019 (Brinkgreve et al. 2019) and the two-surface critical state plasticity soil
model SANISAND (Simple ANIsotropic SAND) formulation proposed by Dafalias and
Manzari (2004). The model is based on the concept of critical state soil mechanics
(CSSM) and has been demonstrated to be able to simulate drained and undrained
behavior of sand for a wide range of soil densities and stresses (e.g. Jostad et al. In Press).
By allowing different bounding and phase transformation surfaces (with inclinations M®
and MY, respectively) in triaxial compression and extension the stress strain development
can follow different stress paths. The SANISAND soil model was calibrated to drained
and undrained triaxial compression and extension tests conducted on block samples from
the Halden site (Blaker et al. 2019).

A simplified axisymmetric 2-D analysis of a vertical cross section was performed
with the screw plate modelled as wished-in-place and ignoring any installation effects.
The 2D model of the ground was 5D wide x 6D m high and a thin elastic dummy layer
with high unit weight simulated the estimated overburden stress. Hydraulic conductivity
of the silt units was taken as 10" m/s based on tests reported by Blaker et al. (2019). The
geometry contained 309 15-noded triangular elements with refined mesh around the

plate, which was located at a depth of 2D (Figure 5.3). The bottom boundary was fixed,
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whereas along the vertical boundaries horizontal displacements were fixed and vertical

displacements were free.

5.4 Results

The general stratigraphy of the research site at Halden, Norway consisted of a top
layer of sand (Unit I) extending to about 5 m depth below grade; two silt units (Il and
I11), separated based on different CPTU, water content and Atterberg limit characteristics;
and a lower soft clay unit (IV), starting at about 16 m depth. Bedrock was located at
about 21 m depth (Blaker et al. 2019). Sherbrooke block, 54 mm fixed piston, GP-S and
GUS samples were collected and SPLTs conducted in the depth interval 5.0 - 18.5 m
below grade. Figure 5.4 depicts stratigraphy, classification data and CPTU
characteristics. The cone resistance (qc) in soil unit Il was about 1 MPa and similar to that
observed in the clay of Unit IV. Bq was generally around 0.1 - 0.3 in the silt units and 0.8
- 1.0 in the deeper clay. The soil behavior type index, Ic (Robertson 2009), generally plot
close to 2.95, or immediately above (Silt mixtures - clayey silt to silty clay, or clays —
clay to silty clay), which is consistent with the typical soil classification test results
(Table 1).

SPLTs in boreholes HALSPO1 and HALSPO2 were performed at the end of a very
dry summer, for which physical measurements and electrical piezometers at the site
confirmed the ground water level (GWL) was at its lowest during the year at about 2 m
below grade. Tests in HALSPO4 were conducted late fall of the following year when the

GWL was almost at the ground surface at about 0.25 m depth. This approximately 1.75 m
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difference in GWL levels between the two test campaigns represents a c'vo of about 20

kPa lower for the second round of SPLTSs.

5.4.1 Drained and undrained triaxial shear behavior

Volumetric sample quality assessment indices such as normalized void ratio
change, Aeleo, (Lunne et al. 1997) and the recompression volumetric strain, &yol,
(Terzaghi et al. 1996) for the CAUC and CAUE silt specimens presented in Figure 5.5
were low and range from 0.014 - 0.035 and 0.6% - 1.6%, respectively (Table 2).
However, as noted by Blaker and DeGroot (In press) neither Ae/eg nor eyl track sample
disturbance well for this low plasticity silt unlike that for moderate to low OCR clays.
The CAUC clay specimen from 18.6 m depth, collected with the GUS sampler, had &vo =
2.7%, corresponding to Ae/eo = 0.054, thus giving it a "good to fair" sample quality
rating. During shear, the block sample specimens of Halden silt exhibited an initial
contractive type behavior up to 1 - 2% vertical strain but thereafter switched to dilative
type behavior and strain hardening response as depicted in Figure 5.5a and b. This
behavior is clearly observed in Figure 5.5¢ which shows the effective stress paths, q = 0.5
X (o"1 — 6'3) versus p' = 0.5 x (o'1 + o'3), turn towards and eventually run along the failure
envelope (Kr line). All CAU tests, including the extension tests, exhibited an effective
stress friction angle at maximum obliquity of ¢'mo = 35.8° + 1.2°. The phase
transformation points (PTP), the point at which the soil transitions from contractive type
behavior to dilative type behavior, were located at an angle of approximately ¢'prp = 33°.
Due to the strain hardening behavior, interpretation of the undrained shear strength is

complex and test results provided no unique (peak) undrained shear strength, gr = Su.
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Table 3 shows how the interpreted undrained shear strengths in the silt units vary with the
Brandon et al. (2006) and Blaker and DeGroot (In press) different strength criteria for
dilating soils. The shear stress at the maximum pore pressure, Umax, typically represents a
lower bound sy value whereas for the Au = 0 (Skempton's pore pressure parameter, Ar =
0) and at the point of maximum obliquity, (c'1/c'3)max, Criteria the shear stresses are on the
failure envelope with values of syc larger than at the umax criterion. Due to the dilative
type behavior of the silt, the undrained shear strength at a limiting value of vertical strain
(ef) increases with increasing strain and typically is a maximum value at the end of the
test, i.e. at (6'1 — 6'3)max. The drained CAD tests confirmed the initial contractive behavior
(with initial positive volumetric strain changes, +Aevor) followed by a change to dilation
(—Aevol) after about 2% vertical strain and with the same effective stress friction angles

obtained from the undrained tests (Figure 5.5c).

5.4.2 SANISAND model calibration

The SANISAND numerical soil model was calibrated using a set of drained and
undrained triaxial tests in compression and extension performed on silt specimens
trimmed from the Sherbrooke block and GP-S samples. Key input parameters and a
simplified explanation with best fit model constants are presented in Table 4. Fabric
effects are not considered in this paper and the two corresponding model constants are
taken as zero (zmax = €, = 0). The numerical results of the CAUC and CAUE tests are
compared to the experimental laboratory test data in Figure 5.5. SANISAND shows an
excellent fit to the measured undrained stress - strain response of the Halden silt in both

compression and extension. The initial positive pore pressure and subsequent change to

176



negative shear induced pore pressure is captured by the model, but the simulations do not
display the exact peak pore pressures observed in the laboratory CAUE test. This is also
clear from the stress-path plot in Figure 5.5¢ where the SANISAND soil model does not
track the laboratory data all the way down to the lowest mean effective stresses. It was

not possible to fit the post-peak softening response of the drained tests.

5.4.3 Screw plate load — displacement behavior

Stress-displacement curves from screw plate tests in silt and clay are presented in
Figure 5.6 for three different depth ranges: (a) 5.3 m, (b) 7.3 mto 9.3 m, and (c) 11.3 to
17.8 m, with bearing capacity from the different interpretation methods (gri, do.1p, Jo.15D,
and gnyp) indicated on each curve. Due to the higher GWL at the time of the second
round of SPLT field work the tests from borehole HALSPO4 were performed under c'vo
about 20 kPa lower than the tests in HALSP01 and HALSPO2 (Table 5). In the following,
the normalized average plate stress (ga/c'vo) calculated for the individual HALSPO4 test
results was therefore de-normalized using the value of o'y at the time of the first round.
Further, certain tests showed evidence of stiction, i.e., friction due to soil adhering to the
shaft section immediately behind the screw plate (Powell and Quarterman 1986),
preventing plate displacement until the friction was overcome. These stress —
displacement curves were corrected accordingly.

The SPLT results from 5.3 m in boreholes HALSPO1 and HALSPO2
demonstrated repeatability and the silt exhibited strain hardening response analogues to
that observed in the triaxial tests at the same depth. However, one stress displacement

curve shows evidence of reaching a plateau of about 600 kPa (Figure 5.6a). Using ¢ch = Cy
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= 6.4x10°% m?/s (Blaker et al. 2019) and v = 1.33 mm/min the normalized velocities for
these tests is estimated as V = 0.55, which suggests partially drained behavior. For the
second round of tests (in borehole HALSPO04) the first test was performed as an
incremental load test at 5.3 m to create drained failure conditions in the silt. The close
agreement between the three tests, when the HALSPO4 result was de-normalized as noted
above, and the low value of V collectively suggests that the HALSP01 and HALSP02
load tests were partially drained or near drained.

The four tests conducted between 7.3 to 9.3 m depth were conducted at two
different displacement rates: two tests from HALSPO4 were performed at a rate of about
v = 15 mm/min (V = 5, for an estimated c, = 8.0x10® m?/s) whereas the companion tests
from HALSPO1 were performed at v = 1.33 mm/min (V = 0.44). The results show an
overall strain hardening response for both embedment depths and loading rates, but with
a greater plate stress at a given displacement for the greater embedment depth of 9.3 m
versus 7.3 m (Figure 5.6b). The two tests from HALSPO04 were stopped early due to loss
of reaction from the drill rig but show a somewhat higher initial stiffness with a trend
towards a lower rate of stress development than their companion HALSPOL1 tests, in
which ga continued to increase with increasing displacement.

In the depth range 11.3 m to 17.8 m, six SPLTs were performed, including one in
the unit 1V silty clay. As shown in Figure 5.6c, all six tests have similar initial stiffness
and all show a strain hardening response at larger displacements but at a much lower rate
for the silty clay test at 17.8 m depth. Furthermore, this test performed in the silty clay,
developed a significantly lower plate stress for s > 5 mm than the five tests performed in

the overlying silts. The HALSPO1 and HALSPO2 tests at 11.3 m depth (v = 1.33 mm/s
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and V = 0.52, for an estimated ¢, = 6.8x10° m?/s) are close to each other with some
minor differences for s > 10 mm. The test performed in HALSPO04 at this same depth
with an increased loading rate (v = 15 mm/s and V = 5.9) developed a lower plate stress.
Likewise for the companion v = 1.33 and 15 mm/s tests performed at a depth of 13.3 m,
although the difference in plate stress for this pair of tests is much greater. The undrained
numerical simulation using SANISAND for the 11.3 m test depth matches both the initial
stiffness and the general stress-displacement behavior of the experimental v = 15 mm/min
SPLTs at this depth, although indications are that refinement of the element mesh (i.e.

increasing the number of elements > 309) would further reduce the undrained capacity.

5.4.4 Measured and predicted bearing capacity

Values of estimated bearing capacity vary with soil type, interpretation method
and loading rate (Table 5). There is a significant decrease in qui for all interpretation
methods in the clay compared to the silt units as depicted in Figure 5.7. In the silt units
the bearing capacity generally increases with increasing depth below grade and with gm <
Qo1p < Quvp, as expected from the dilative and strain hardening behavior of the silts
measured at large strains in the triaxial tests. Moreover, all tests conducted at v = 15
mm/min show lower bearing capacities than the tests with v = 1.3 mm/min (HALSPO1
and HALSPO02), which is hypothesized to be the result of a greater excess positive pore
pressures developed beneath the screw plate with increasing loading rate. The FE
simulations of the SPLT at 11.3 m depth suggest that the faster loading rate generates a
significantly larger elevated positive pore pressure field below the plate with the

maximum Au at 16 mm displacement (0.1D) being about 34% higher than that of the
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slower rate of loading (Figure 5.8). Note that in the figure positive values of pore
pressure (+Au) is suction and negative values (—Au) are pressure. The dissipation of Au in
the vertical and radial direction is also noteworthy. Using the laboratory measured
hydraulic conductivity the SANISAND soil model overestimated the constrained
modulus at c'vo by a factor of about 10 and consequently overpredicted the ch in the initial
simulations. The hydraulic conductivity was therefore decreased by an order of
magnitude to reflect this overprediction of M.

Interestingly, for the loading rate of 15 mm/min values of guye in the silt units are
in close agreement with the cone resistance from CPTUs HALC11, HALC12 and
HALC19 whereas at 1.3 mm/min the bearing capacities are significantly higher than gc
(Figure 5.7¢). Some researchers have considered the unit base resistance of a pile in sand
as proportional to the CPTU cone resistance (e.g. Ghionna et al. 1994) based an
assumption that qc is approximately equal to the limit unit base resistance, gL (or in the
case of SPLT, gnyp) corresponding to the vertical load at which the foundation can no
longer mobilize additional resistance. At the standard rate of penetration (v = 20 mm/s)
CPTUs conducted in the Halden silt have V in the range 95 to 273 (Carroll and Paniagua
Lépez 2018) and is likely an undrained response. The corresponding values of gc and
gnyp in this silt implies that significant displacements are required to mobilize the limit
bearing capacity of the silt and further strengthens the hypothesis that the v = 15 mm/min
tests were conducted under undrained conditions in spite of V being estimated to be equal
t0 5.9.

Predicted bearing capacities in the two silt units using CPT-based methods (e.g.

NGI-05, Purdue CPT, UWA-05 and ICP-05 methods) for end bearing of a pile were

180



generally underestimated relative to the SPLTs conducted at v = 1.3 mm/min (Figure
5.7b). The ICP-05 method provides the closest agreement and better predicts the bearing
capacity of the v = 15 mm/min tests. The underestimation of go.1p by the CPT-based
methods is caused by the low cone resistance measured at the site, partially resulting
from an undrained response measured during penetration at the standard CPT rate, and by
the fact that these design methods were calibrated to significantly higher values of gc. The
current API standard (API 2014) recommends using CPT based methods in silt, but the
earlier API (1993) suggested using a bearing capacity factor Ng* = 8 - 12, which tends to
somewhat overestimate go.1p. In the clay unit, go1p predictions using gc (UWA-05 and
ICP-05) and Ssyuu = Suc = 82.4 kPa (API 1993, NGI-05 and Purdue CPT) all overestimate

the bearing capacity (Figure 5.7b).

5.5 Interpretation of results

5.5.1 Coefficient of horizontal consolidation

The coefficient of horizontal consolidation was computed from the drained SPLT
at 5.3 m depth and compared to the values from dissipation tests conducted and reported
by Carroll and Paniagua Lépez (2018). For the plate stress increment ga = 133 to ga = 278
kPa (with an average plate stress of 205 kPa) chspit = 1.84x10° m?/s (580 m?/year). This
is higher than the average results from the dissipation tests conducted at the site (cn =
7.44x10%), which is believed to be an effect of the larger soil volume involved in the
SPLT relative to the dissipation tests, and an order of magnitude higher than the values

interpreted from drained SPLTs at Halsen, Norway silt (wi = 20% - 25%, clay content O -
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25%, low plasticity) reported by Sandven (2003). However, cnspiT is consistent with the
value determined from a horizontally mounted CRS specimen (Chjia = 1.42x10° m?/s)

trimmed from the Sherbrooke block sample at 8 m depth (Blaker et al. 2019).

5.5.2 Stiffness

Stress-strain, and consequently stiffness, characteristics of a soil depend on stress
and strain history (including sampling disturbance and in situ tool installation effects),
initial conditions, stress path and stress range over which these characteristics are
assessed. It follows that soil stiffness (e.g. M, Eq or Ey) interpreted using different test
methods may provide a challenging comparison. However, the importance of soil
stiffness in certain design aspects (e.g. design of wind turbines, shallow foundations) and
the lack of data in silts and other intermediate soils merit an evaluation. Estimated
drained elastic secant moduli from the partially drained or drained SPLTs show that Eq
generally increases with depth in the range 7 MPa to 16 MPa (Figure 5.9), with some
variation between the three tests conducted at 5.3 m (likely a result of partial drainage in
the HALSPO1 and HALSPO?2 tests). Eq from these tests was assessed for a stress range
c'vo t0 ga = 0.5 X (gm + o'vo) using A = 0.84. The screw plate results are compared to
those derived from the first unload-reload loop of four self-boring pressuremeter (SBP)
tests and laboratory oedometer (constant rate of strain, CRS, and incremental loading, IL)
tests on the Sherbrooke block sample specimens in the same soil units (Blaker et al.
2019). The average vertical stress over which the SPLT secant moduli were interpreted,
i.e. avyg = 0.5 % (ga + c'v0) = 0.25 x (g7 + 3c'w0), typically equaled approximately 2c'v.

Thus, the oedometer tests were interpreted at c'vo and 2c'vo with the resulting M values
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converted to Eq using v = 0.2. The oedometer Eq value at c'vo are lower than all of the
SPLT values, perhaps due to stress relief during sampling and sample extrusion, while
the oedometer values determined at 2c'vo are closer to that of the SPLT values. The
secant unload-reload shear moduli (Gur) from the first loops of the SBP tests were
converted to Eq using v = 0.2 and show that the stiffness obtained from these results are
generally higher than that of the SPLT results. It is likely that if a similar unload-reload
loops had been performed for the SPLTSs the resulting modulus values from such a loop

would be higher than those plotted in Figure 5.9.

5.5.3 Shear strength

The back - calculated undrained shear strength in the clay from g, go.1p, Qo.15D
and gnyp gave values of syspit = 37 kPa, 44 kPa, 49 kPa and 62 kPa, respectively (Figure
5.10) when applying a lower bound bearing capacity factor for deep foundations in clay
of N¢* = 11 (Salgado et al. 2004). The latter three values of s,spLt are associated with
relatively large displacements, i.e. s > 0.1D, and will have mobilized a large volume of
soil beneath the screw plate. The FE simulations in the silt revealed that at 16 mm
vertical displacements the failure mechanism below the screw plate mobilized large shear
strains along a wedge extending down to more than one diameter below the embedment
depth. sy spLT from Qo.1p, go.1sp and gxye are therefore considered "average” or "mobilized"
undrained shear strengths for the soil at the screw plate embedment depth, thus
approximately equivalent to the direct simple shear (DSS) undrained shear strength (Sup)
of the same soil. The undrained shear strength of the Halden clay for DSS and CAUE

modes of shear can be estimated as sup = 57 kPa and sue = 34 kPa, respectively, based on
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the available CAUC test in this soil unit and strength anisotropy factors sup/suc = 0.69 and
Sue/Suc = 0.42 reported by Lunne et al. (2006) for similar clays from the Oslo, Norway
area. Thus, the undrained shear strengths back-calculated from qo.1p, go.15p and gnye, With
an average value of syspLT = 52 kPa, provide good agreement with the laboratory tests
and strength anisotropy of the region, and validates both the SPLT stress-displacement
results and the equipment as an effective tool for evaluation of undrained shear strength
in clay.

Drainage conditions during the SPLTs in the silt units are complex and without
pore pressure transducers on the screw plate, quantification of the mobilized excess pore
pressures during loading is uncertain. However, as noted above the second round of tests
(HALSPO4, at 7.3 m depth and below) is considered near undrained and the interpreted
undrained shear strengths from these results at gri (Nc” = 11) show close agreement with
laboratory values of suc and sup interpreted from block sample specimens at the maximum
pore pressure, Umax (Figure 5.10a). As with the shear stress at umax in CAUC (Figure 5.5)
or constant volume DSS tests on Halden silt the bearing capacity at gr is associated with
a point on the stress-displacement curve where the displacement is relatively small (st in
the range of 0.02D to 0.05D), and globally, the vertical bearing stresses are not fully
mobilized. These results suggest that gr provides a low estimate bearing capacity for
short term loading and can be estimated using the shear stress from undrained triaxial
tests interpreted at Umax.

However, for the assumption of zero excess pore pressure at failure (i.e. As=0) in
the same undrained laboratory tests the shear stresses are fully mobilized and on the

failure envelope (Figure 5.5). At this point with Ar = 0 the undrained strength is
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equivalent to the peak drained (CADC) shear strength, gr. As depicted in Figure 5.10Db,
these values of syc generally coincide with: (i) suspLt determined from the undrained
SPLTs at goisp using N¢© = 11; and (ii) drained shear strengths computed from the
partially drained and drained SPLTSs at go.1sp (i.€. gf = c'vo X tan ¢'ev = (Qo.1s/Ng”) X tan
d'er, Where Ng~ = 8 for silt (APl 1993) and ¢'cv = constant volume friction angle
approximately equal to ¢'ptp = 33°). Note that the average back-calculated bearing
capacity factor from drained and partially drained tests at go.1sp gives Ng~ = 7.7, and
caution should be taken not to apply conventional bearing capacity factors proposed for
sands as this will: (i) provide significantly higher values for the values of ¢' measured at
Halden (Fellenius 1991) and, (ii) strictly apply only when quit is taken as the limit bearing
capacity, qoL (Salgado 2008). These results suggest that at Halden the Ar = 0 provides a
meaningful criterion for interpretation of s, from laboratory undrained shear data where
the umax Ccriterion is deemed too conservative for stability evaluations but design is
governed by foundation displacements. As noted by Brandon et al. (2006) and Blaker and
DeGroot (In press), values of As > 0 could also be used as a criterion for soils that do not
exhibit the same dilative behavior as the Mississippi Valley and Halden silts. Using A =
0 could also provide a low estimate strength in design where short term, high soil
resistance is considered conservative and displacements exceeding 0.15D are of limited
importance. For these situations the high estimate bearing capacity, or the upper the limit
values are of greater importance. The SPLT tests reported in this study show that the
hyperbolic interpretation method provides the upper limit undrained capacity (very
similar to the CPTU cone resistance), as they are values extrapolated to the asymptotic

value of quit and, as such, gnyp are also generally associated with large displacements s¢ >
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0.15D. At guye the back-calculated undrained shear strengths generally seem to
correspond to laboratory values of syc and sup at large shear strains, e.g. yiim = vf = 15%
(Figure 5.10c). Due to the dilative nature of the Halden silt, CAUC and constant volume
DSS tests give negative shear induced pore pressures at larger shear strains, and
subsequently, Ar < 0 at this level of shear strain (and beyond) and the interpreted
undrained shear strengths are typically higher than at the umax or As > 0 criteria.

In summary, these SPLT results confirm: (i) that reliable values of undrained
shear strength can be obtained both in the Halden clay and silt units; (ii) that the Umax
criterion for interpretation of sy from undrained triaxial or DSS tests in the silt provide a
lower bound strength for short term loading design problems; (iii) the Ar > 0
interpretation as an effective strength criterion at the Halden site for allowing some
dilative type behavior in design but at the same time limiting foundation settlement to s <
0.15D, and; (iv) if large deformations, i.e. s > 0.1D - 0.15D, can be allowed, strength

criteria yielding As < 0 may be used.

5.6 Summary and conclusions

This paper presents an investigation of the stress-displacement behavior and
bearing capacity from screw plate load tests in a natural low plasticity silt from Halden,
Norway, and engineering parameters interpreted from these results. Drainage conditions
during loading were assessed by comparison of normalized velocities computed from the
SPLTs conducted at different rates of loading and finite element simulations. An overall
strain hardening response was demonstrated for all screw plate test depths. The results

suggest that tests conducted at v = 1.3 mm/min were partially drained to fully drained
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whereas tests conducted at v = 15 mm/min were near undrained, although it seems likely
that some degree of partial drainage is inevitable unless a very high rate of loading is
used. In situ behavior and bearing capacities at Halden were strongly dependent on the
rate of loading and the applied interpretation method. Bearing capacities estimated from
the undrained tests were lower than the companion partially drained or drained tests.
Estimates of gm and go.1sp from test conducted at v = 15 mm/min provided values of
SuspLT consistent with laboratory sy interpreted from tests on block sample specimens at
the umax and Ar = O criteria, respectively. At go.1sp, the undrained tests also showed values
of suspLt generally consistent with the drained strength back-calculated from the drained
or partially drained tests and peak shear strengths from laboratory drained triaxial test.
For practical applications it is important to evaluate rate of loading in the field and an
appropriate limit state to be used in design. From this research using a prototype
foundation it appears that the shear strength from laboratory undrained shear tests at the
Umax Criterion may be applied for estimation of a lower bound ultimate bearing capacity
for short term loading in stability analyses, with limited associated displacements.
Undrained shear strengths from laboratory tests interpreted at some criterion As > 0
provide higher ultimate bearing capacities in design but are also associated with larger
foundation displacements - up to perhaps s ~ 0.15D. For long term assessments of
stability in silts such as that present at Halden, caution should be taken when using CPT-
based methods as they in this study tend to underestimate go.1.p. Moreover, soil property-
based methods using conventional bearing capacity factors proposed for sands with the
same friction angle as the Halden silt may significantly overestimate the drained bearing

capacity.

187



5.7 Acknowledgements

This study has primarily been financed by the Norwegian Geotechnical Institute
(NGI), the Research Council of Norway (RCN) through project Norwegian GeoTest Sites
(NGTS) Grant No. 245650, and Norway-America Association's (NORAM) Graduate
Study and Research Scholarship Program. The GUS sampling was conducted with
support from the US National Science Foundation (NSF) under Grant Nos. CMMI-
1436793 and CMMI-1436617. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NGI, RCN, NORAM or NSF. The support is

gratefully acknowledged.

188



Table 5-1 Average classification properties of Halden silt and clay (Blaker et al. 2019).

Depth range Soil unit  Soil type Wi I,Y  Clay content?  Fines content?
(m) ) ) (%) (%) (%) (%)
50-6.0 I Clayeysilt (ML) 30 10 8 73
7.0-80 I Clayeysilt (ML) 29 9 8 84
9.0-10.0 I Clayeysilt (ML) 27 9 10 91
11-120 I Clayeysilt (ML) 27 6 9 89
13.0-14.0 I Clayey silt (ML) 24 7 9 81
17.0 -19.0 IV Silty clay (CL) 33 18 28 87

Note: P I, = plasticity index (= PI); 2 Clay content = particles < 0.002 mm, fines content =
particles < 0.063 mm.
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Table 5-2 Summary of classification and consolidation metrics for triaxial tests at Halden research site.

Test Type Depth Sample? Wi Tt e e? eved) vol®) Aeleg
@) @) (m) ©) (%) (kN/m?) ©) ©) (%) (%) (@)
Undrained

HALBO04-3-A-1 CAUC 5.3 SB 31.9 18.9 0.86 0.83 0.90 1.63 0.035
HALBO04-5.5-A-1 CAUC 8.4 SB 30.1 19.2 0.81 0.79 0.81 1.30 0.029
HALBO06-3-C-1 CAUE 8.7 GP-S 28.7 19.1 0.80 0.78 0.71 1.15 0.026
HALBO04-10-1-A2 CAUC 11.5 SB 28.0 194 0.74 0.72 0.72 0.99 0.024
HALBO04-10-1-D2 CAUE 11.5 SB 26.8 19.5 0.72 0.71 0.54 0.56 0.014
HALBO7-GUS-6-1 CAUC 18.6 GUS 34.5 18.5 0.91 0.96 0.91 2.71 0.054
Drained

HALBO04-6-A-1 CADC 8.0 SB 27.1 19.2 0.73 0.68 0.57 2.64 0.063
HALBO05-1-B-1 CADC 9.6 GP-S 30.2 19.3 0.81 0.72 0.93 5.21 0.116
HALBO06-3-B-1 CADC 8.5 GP-S 29.5 19.7 0.79 0.76 0.91 1.75 0.040
HALBO06-6-B-1 CADC 13.0 GP-S 27.9 20.0 0.75 0.73 0.96 1.24 0.029

Note: Y SB = Sherbrooke Block, GP-S = Gel Push sampler, GUS = Gregory Undisturbed Sampler; 2 Void ratio after preparation (e;) and after consolidation
to best estimate in situ stress conditions (ec); ¥ vertical (evc) and volumetric (evor) Strains after consolidation.
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Table 5-3 Summary of suc and Sue at different failure criteria for dilating soils. Undrained triaxial tests at Halden research site.

Test Type Depth Ar=0 A;=0.25 (6'1/6"3) max Umax evi = 5.0% evi= 10% (6'1— 6'3)max

Qs &f [of; &f [of; &f [of; &f Qs (o} (o} Ef

@) @) (m)  (kPa) (%) (kPa) (%) (kPa) (%) (kPa) (%) (kPa) (kPa) (kPa) (%)
HALBO04-3-A-1 CAUC 53 582 6.4 43.0 26 51.0 4.4 33.9 1.0 53.2 67.5 75.5 155
HALBO04-5.5-A-1 CAUC 84 705 8.0 543 2.7 62.6 4.9 45.2 1.1 62.9 74.3 79.1 14.7
HALBO06-3-C-1 CAUE 8.7 164 -35 - - 293 -84 11.7 -13 20.0 33.8 383 -117
HALBO04-10-1-A2 CAUC 115 831 11.0 62.3 3.3 76.9 7.2 49.1 1.0 715 82.3 915 15.0
HALBO04-10-1-D2 CAUE 115 - - - - 26.1 -7.8 146 -1.9 20.2 28.3 28.3 -10.0

HALBO7-GUS-6-1 CAUC 18.6 - - - - - - - - - 82.4 0.8
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Table 5-4 Best fit SANISAND input parameters for Halden silt at 11.5 m depth.

Constant Variable?  Value Comment
Elasticity Go 250 Dimensionless constant for calculation of elastic shear and
bulk modulus, G and K, respectively.

v 0.24 Poisson's ratio.

Critical state Mc 1.33 Critical state surface inclination (triaxial compression).

Me 0.92 Critical state surface inclination (triaxial extension).

c - Ratio of Mg and Mc (not used herein).

Ae 0.159 Material constant for definition of the critical state line

€o.c 0.93 Critical void ratio at p'c = (61 - 26'3)/3 = 0 for triaxial
compression.

€0,e 0.93 Critical void ratio at p'c = 0 for triaxial extension.

3 0.7 Material constant for definition of the critical state line.

Yield surface m 0.05 Constant for definition of the small elastic regime.
Plastic modulus ho 4 Dimensionless constant for calculation of plastic hardening
modulus, H.

Ch 1.34 Dimensionless constant for calculation of plastic hardening
modulus, H.

nbe 1.6 Dimensionless constant for calculation of the bounding
surface with inclination MP (triaxial compression).

nPe 16 Dimensionless constant for calculation of the bounding
surface with inclination MP (triaxial extension).

Dilatancy Ao 0.026 Dimensionless constant for calculation of dilatancy.

nc 0.4 Dimensionless constant for calculation of the phase
transformation surface with inclination MY (triaxial
compression).

n% 0.4 Dimensionless constant for calculation of the phase
transformation  surface with inclination MY (triaxial
extension).

Fabric - dilatancy tensor Zmax 0 Maximum value of fabric — dilatancy internal variable z.

[ 0 Constant controlling the pace of evolution of z.

Note: D See Dafalias and Manzari (2004) for details on the formulation of the SANISAND model.
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Table 5-5 Measured and predicted bearing capacities from SPLTs at Halden research site.

Test Depth c'vo Uo Rate of Average QJoip  Joasp gm QHyp NGI-05 Y ICP-05 UWA-05 Purdue API
displacement ~ CPTU q. CPTY  (1993)
(-) (m) (kPa)  (kPa) (mm/min.) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)  (kPa)
HALSPO1-1 5.3 717 29.0 1.33 758 5162 600 364 580 370 511 455 406 574
HALSP02-1 5.3 717 29.0 1.33 758 503 556 349 715 370 511 455 406 574
HALSPO04-1 5.3 504  50.3 Staged 758 459 539 376 799 370 511 455 406 574
HALSPO01-2 7.3 91.1 476 1.33 909 646 750 451 1258 444 613 546 487 729
HALSP04-2 7.3 91.1 476 15.0 909 559 6402 390 817 444 613 546 487 729
HALSPO01-3 9.3 1105 66.2 1.33 892 768 875 584 1395 435 601 535 478 884
HALSP04-3 9.3 1105 66.2 15.0 892 6382 741 437 831 435 601 535 478 884
HALSPO01-4 11.3 1304 843 1.33 978 810 923 634 1461 477 660 587 524 1043
HALSP02-2 11.3 1304 843 1.33 978 842 962 660 1535 477 660 587 524 1043
HALSP04-4 11.3 108.7 106.0 15.0 978 769 862 572 1088 477 660 587 524 1043
HALSPO01-5 13.3 1518 1021 1.33 1092 937 1071 711 1759 532 736 655 585 1214
HALSP04-5 13.3 1304 1235 15.0 1092 721 783 573 1186 532 736 655 585 1214
HALSP02-3 178 2118 132.1 1.33 809 487 539 410 682 7429 647 647 9063 7429

Note: Y Using Dy = 80% in the silt, based on emin = 0,60 and emax =1.55. 2 Estimated from linear extrapolation. ® Using suuu, in this case assumed equal to s,c = 82.4
kPa.
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Figure 5.1 Halden research site layout. Investigated locations include electrical
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testing, soil sampling and screw plate load testing.
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D =160 mm

Figure 5.2 The screw plate load test (SPLT) equipment.
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Figure 5.3 Simplified 2D axisymmetric Plaxis model of SPLTs using 309 15-noded
triangular elements with refined mesh around the screw plate.
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Figure 5.4 Classification and CPTU parameters with depth at the Halden research site: (a) soil units; (b) water content and Atterberg
limits; (c) total unit weight; (d) percentage clay (< 0.002 mm) and fines (< 0.063 mm) particles; (e) CPTU corrected cone resistance;
(F) pore pressure ratio, and; (g) soil behavior type index.
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Figure 5.5 Undrained and drained triaxial test (CAUC, CAUE and CADC) results at Halden research site. (a) Shear stress and (b)

excess pore pressure versus vertical strain, and (c) stress — path. Results from the SANISAND numerical model calibration for 11.5 m
depth are plotted with experimental data.
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Figure 5.8 Numerical simulation of SPLTs from 11.3 m depth using the SANISAND soil
model. Development of excess pore pressures, Au, at 16 mm vertical displacement in (a) t
=1 min (v=16 mm/min), and (c) t = 12 min (v = 1.3 mm/min), with (c-d) showing
zoomed view of the refined mesh around the plate.
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Figure 5.9 Drained elastic modulus, Ed, interpreted from SPLTs, laboratory oedometer
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Figure 5.10 I Interpreted soil strength parameters from SPLTs compared to laboratory triaxial and DSS tests, with: (a) Undrained shear
strength from g relative to syc and sup interpreted at the umax criterion; (b) Undrained and drained shear strength from go.15p relative to
suc and syp interpreted at the As = O criterion, and g from drained triaxial compression tests; and (c) Undrained shear strength from
gnye relative to suc and sup interpreted at the yiim = yr =15 % criterion.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The main objectives of this dissertation were to provide a new and extensive data
set of engineering properties of a natural silt, complementing the limited number of
studies on this soil type relative to that of clays and sands; improve the understanding of
the importance of high quality sampling and potentially adverse effects of poor quality
samples on soil behavior and engineering parameters; and provide some practical
recommendations on the selection of shear strength for use in design based on high
quality laboratory tests and field loading experiments. The objectives were met through
the research discussed in chapters 2 through 5 which presented the results and
interpretation of an extensive field, laboratory and numerical testing program. A brief
overview of the main conclusions from this work are summarized below.

Chapter 2 provided an overview of the Halden, Norway research site with a
geological background; stratigraphy; in situ characteristics from cone penetrometer,
dilatometer, self-boring pressuremeter testing; and laboratory tests. Advanced oedometer,
undrained triaxial and direct simple shear tests revealed several challenges and
limitations, including: (i) Clay-based sample quality assessment methods may not
necessarily apply to the low plasticity Halden silt and there is no established universal
framework to quantify the degree of sample disturbance in silt. (ii) Interpretation of the
stress history based on both oedometer test results and clay-based correlations to CPTU
cone resistance were considered problematic and unreliable as they were in conflict the
geological history in the area. Geology, and evidence of normally consolidated stress
conditions in the lower clay, were suggested indicative of a near normally consolidated

stress state of the silt as well. (iii) Undrained shear strengths, as interpreted from e.g. field
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vane tests, were consistent with the CPTU interpretations using Nk: = 18 but plotted
significantly lower than the results from undrained triaxial tests on block samples
interpreted at large strain. CAUC tests exhibited dilative type behavior and provided no
unique (peak) undrained shear strength. As a result, different strength criteria provided
different results. Despite certain interpretation challenges the paper presented an
important data set to assist in the interpretation and assessment of similar silts, and
provided some guidance on important geotechnical properties for projects where limited
site specific design parameters are available.

Chapter 3 presented a laboratory investigation of the undrained shear behavior of
a natural low plasticity silt from Halden, Norway in the intact, disturbed and reconstituted
states. The sample quality recompression metrics, demonstrated that neither the
normalized change in recompression void ratio or volumetric strain, nor shear wave
velocity track sample disturbance well for the investigated low plasticity silt unlike that
for moderate to low OCR clays. Relative to the intact reference Sherbrooke block sample
specimens varying degree of simulated sample disturbance, and subsequent
reconsolidation to the best estimate in situ effectives stress conditions, resulted in an
increasingly pronounced dilative type behavior during conventional undrained triaxial
shear, and a general increase in undrained shear strength. Moreover, block sample
specimens subjected to simulated tube sampling disturbance also exhibited similar stress-
strain behavior as that measured in conventional CAUC tests conducted on specimens
from two types of fixed piston tube samplers. Practical suggestions for selection of
undrained shear strength for intact low plasticity silts that exhibit dilative behavior such

as the Halden silt were proposed.
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Chapter 4 investigated the effects of sampling techniques on soil behavior and
engineering properties of the Halden silt. The paper defined ‘acceptable’ and 'disturbed’
quality based on experiences made from simulated sample disturbance tests at Halden
and other silts reported in literature, and comparisons made between suites of companion
tests conducted on specimens from four different sampler types. Results of advanced tests
demonstrated that acceptable and repeatable sample quality or stress-strain behavior
could be obtained using the 72 mm and Gel-push fixed piston samplers whereas
specimens from the 54 mm composite fixed piston sampler showed obvious signs of
significant disturbance. Although considered the gold standard for sampling in soft clays,
the Sherbrooke block sampler provided specimens that displayed both acceptable and
disturbed type behavior. Overall effects from increased sample disturbance included: (i)
reduction in initial water content; (ii) decreasing values of normalized change in
recompression void ratio and strain energy-based compression ratio with increasing
disturbance; (iii) somewhat increased modulus number with increasing disturbance,
although m showed relatively low sensitivity; (iv) increasing tendency for dilative
behavior with increasing sample disturbance.

Chapter 5 presented an investigation of the stress-displacement behavior and
bearing capacity from screw plate load tests in the natural low plasticity silt at Halden
and engineering parameters interpreted from these results. All screw plate load tests
demonstrated a strain hardening response that was dependent on the rate of loading.
Derived bearing capacities varied significantly depending on the method used to interpret
the stress-displacement data. Bearing capacities estimated from the undrained tests were

lower than the companion partially drained or drained tests. Practical recommendations
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relating laboratory drained and undrained shear strength to estimates of bearing capacity
and vertical displacements of a prototype foundation in silts such as the Halden silt were

proposed.
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ABSTRACT: NGI recently established a research site on a natural silt deposit to accommodate some of the
challenges related to intermediate soils. This study briefly summarises the geological history and the prelimi-
nary geotechnical characteristics of the Halden silt deposit. The stratigraphy at the site consists of four main
units. Two structureless silt units sit between a 4.5 m thick layer of sand and a 6 m thick deposit of clay. Soil
behaviour type charts classify the silt deposit as transitional soils/silts to low I clays. Classification tests indi-
cate that these soils are low plasticity silts with very similar mineralogical content. The results presented will
form a useful reference to engineers working on similar intermediate soils worldwide.

1 INTRODUCTION

Intermediate silty soils are still considered challeng-
ing materials in geotechnical engineering, and lim-
ited information in on the engineering properties and
how these relate to the geological background is
available. This is primarily due to uncertainty in ma-
terial behaviour, difficulties associated with sam-
pling undisturbed material and the interpretation of
in situ and laboratory test data. There is a need to
provide guidance to practicing geotechnical engi-
neers regarding characterization of silty material. To
this aim, the Norwegian Geotechnical Institute
(NGI) recently established a research site on a natu-
ral silt deposit.

The Halden Research Site is located in south-
eastern Norway, approximately 120 km south of Os-
lo (Fig. 1). Here the marine silt deposit 1s up to 10 m
thick and uniform in nature. Over the last two years
a series of geophysical, geological and geotechnical
investigations have been carried out in the field and
in the laboratory to characterize the natural silt de-
posit. This information will provide a basis for un-
derstanding the main factors controlling the engi-
neering properties.

The purpose of this study is to present preliminary
results summarizing the geological history and the
geotechnical characteristics of the silt deposit at the
Halden Research Site. The results presented will
form a useful reference to engineers working on
similar intermediate soils worldwide. Due to re-
strictions on the length of this study, we focus on the
most significant properties.

975

2 GEOLOGICAL SETTING

The Halden Research Site is a recreational park area
surrounded by hills, minor ravines and landslide
scars. The site elevation 1s about 29 m above sea
level and it slopes gently to the SW/W. Deposits at
the site consists of marine and fjord marine sedi-
ments that emerged from the sea following a fall in
relative sea level in the Oslofjord region during the
last ¢. 11 000 years. During the post-glacial period,
the depositional environment mainly led to hemi-
pelagic deposition in a fjord marine environment.
Due to the steady isostatic uplift in the Holocene
and the fact that the sediments deposited continuous-
ly during a single peried of submergence (Kenney,
1964), the soils in the study area are expected to be
essentially normally consolidated except for some
surface weathering, desiccation or in the vicinity of
slide scars.

3 FIELD AND LABORATORY METHODS
3.1 Field tests

Several investigation methods are combined to pro-
vide information on the natural silt deposit and facil-
itate the understanding of the geotechnical behaviour
and its link to the geological history. At present, ge-
otechnical site investigation methods include Elec-
trical Resistivity Tomography (ERT), several Total
Pressure Soundings (TPS), Cone Penetration Tests
with pore pressure measurements (CPTU), Seismic
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Cone Penetration Testing (SCPT), Resistivity Cone
Penetration Testing (RCPT), dissipation tests
(Paniagua et al. 2016) and soil sampling. The latter
was performed using two different Geonor thin
walled stationary piston samplers; the K-100 54 mm
composite sampler with zero inside clearance ratio
(ICR) and a 10° cutting edge and the K-200 sampler
modified to 72 mm inside diameter, ICR = 0 and a
5° cutting edge.

3.2 Laboratory tests

The samples were sent to the NGI and Geological
Survey of Norway (NGU) laboratories in Oslo and
Trondheim, respectively, for soil identification, clas-
sification, and assessment of index properties and
advanced testing. Laboratory tests include; (i) Grain
size distribution analyses by wet sieving (NSF,
1990), falling drop method (Moum, 1965) and hy-
drometer method (BSI, 1990); (ii) water content and
Atterberg limits; (iii) unit weight of solid particles;
(iv) mineralogical analyses using X-ray diffraction
(XRD) and Scanning Electron Microscopy (SEM),
(v) CAUC triaxial tests and (vi) constant rate of
strain oedometer tests (CRS); (vii) geological and
sedimentological analysis of the sediment using X-
ray imaging and Multi-Sensor Core Logging tech-
niques (magnetic susceptibility and gamma density)
on 54 mm whole core samples. Whole core Gamma
density (i.e. wet bulk density) and magnetic suscep-
tibility (MS) were measured using the GEOTEK
Standard Multi-Sensor Core Logger (MSCL-S) at
0.5 e¢m resolution with 5 s exposure/measurement
time, see Figure 2. Total carbon (TC) and total or-
ganic carbon (TOC) measurements were performed
on 7 samples.

4 SOIL CHARACTERISATION
4.1 Stratigraphy

The stratigraphy at the site is divided into four main
units based on laboratory and in situ testing results,
see Figure 2. It consist of ¢. 4.5 m of silty sand (Unit
I) above ¢. 11 m of silt (Units IIA, TIB and III) and
the final clay unit (Unit IV). Groundwater level was
measured from an in situ stand pipe to be 2.5 m be-
low ground level.

X-ray analyses show that both the Units II and IIT
are structureless to mottled. Bioturbation has likely
destroyed most of the primary sedimentary features.
Such structureless sediments are common in fjord-
marine environments subjected to hemipelagic sed-
imentation and seafloor biological activity (Hansen
et al. 2010). In contrast, the Unit IV shows some
weak laminations and the occasional presence of
drop stones (sand/gravel particles) interpreted as ice
rafted debris (IRD).

4.2 Water content and Atterberg limits

Natural water content (w) in Unit II generally falls
between 28% and 31%. In Unit IIT the water content
decreases with depth from about 27% at 12 m depth
to about 21% at 15 m with an average value of 24%.
The liquid limit (wr) in Unit II varies between 31%
and 37%, while in Unit III wy, is about 28%. Plastic
limit (wp) values are between 22% and 25% in the
upper 11 m while below wp = 20% - 22%. This gives
plasticity indices (Ip) between 8% - 13% for Unit IL
The average Ip is 10 % between 4.5 m and 10.5 m.
The plasticity data for Units T and Ila fall on and be-
low the A-line while Unit IIb and III data points are
on and above the A-line, respectively (see Fig. 3).
The average I, of Unit I and 111 (12 — 13 m depth) is
7.5% and 8%, respectively. Based on the data in
Figure 3 the Unified Soil Classification System
(USCS) classifies the soils as silty clay with sand to
lean clay with sand.

4.3 Total unit weight and magnetic susceptibility

The total unit weight (y), both estimated from whole
core gamma density measurements and that based
on water content, are presented in Figure 2. Total
unit weight in Unit II generally falls between 18.9
kN/m* and 19.2 kN/m®, In Unit Il the total unit
weight increase with depth from about 19.5 kN/m® at
12 m to about 20.5 kN/m*® at 15 m, with an average
value of 19.9 kN/m3.
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Figure 2. Basic parameters for Halden Research Site, corrected cone resistance, qt. normalised pore pressure, Bq. normalised
friction, Fr, versus depth from CPTU. magnetic susceptibility from MSCL, and TC/TOC. Whole core Gamma density (i.c. wet

bulk density) is shown in yellow on the total unit weight log.

Results from MSCL-S show an increase in wet bulk
density (or total unit weight) in Unit IL. The trend is
similar to that obtained from laboratory results based
on direct measurements and from water content.
However, the wet bulk density values from the
MSCL-S are slightly higher than those from direct
measurement or values based on water content anal-
ysis (Fig. 2). This may be due to whole core meas-
urements where wet bulk density measurements in-
tegrate the entire sample thickness. The MS results
show constant values in the first c. 2 m of Unit II
and thereafter a linear increase with depth until cul-
minating at the upper boundary of Unit IV.

4.4 Grain size distribution

Figure 4 presents typical grain size distributions for
the silt in Units II and III. All results are from the
falling drop method (Moum, 1963). However, there
is a trend of lower clay content based on the hy-
drometer method and the clay content determined by
this method varies between 4% and 8% in Units II
and I1I.

4.5 Carbon content and mineralogy

In Unit II the average Total Carbon (TC) was meas-
ured to 0.486% with a range from 0.432% - 0.539%.
In Unit I the average TC is 0.238%, ranging from
0.193% - 0.282%. Meanwhile the Total Organic
Carbon (TOC) in Unit II average is 0.464% while
the average is lower in Unit IIT at a value of 0.215%.

Table 1 presents the result of XRD analyses per-
formed on soil from Unit I and I11. They reveal very
similar mineralogical content for the silt Units IT and

1. Both units contain similar amounts of quartz,
plagioclase, mica (muscovite and possibly illite),
chlorite and amphibole. A Scanning Electron Micro-
scope (SEM) image of a specimen from 6.4 m depth
is presented in Figure 5.
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Figure 3. Plasticity chart. Unit I to ITI.
Table 1. Results from XRD analyses on silt Units [1a and IIb.
Depth (Unit)y Q¥ K-F* P*¥ M/I* C* A* P*
m % % % % % % %
6.2 (Unitlla) 41 12 30 8 3 6 trace
9.5 (UnitIlb) 40 13 29 8 4 6 trace
134 (Unit 111y 44 12 30 7 2 5 trace

* Q — Quartz, K-F — Potassium Feldspar, P — Plagioclase. M/I —
Muscovite/Illite, A — Amphibole, P — Pyrite
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5 CONE PENETRATION TESTING
5.1 Corrected cone resistance and pore pressure

The corrected cone resistance (qi) from CPTU tests,
SP8-CPT-6 and SP8-CPT-9, are presented in Figure
2. The higher cone resistance in Unit I compared to
the other units reflects the silty sand extending to
about 4.5 m depth. Unit I has a uniform cone re-
sistance throughout with g in the order of 1.0 MPa.
In Unit UI q increases from 1 MPa to 2.0 MPa be-
tween 12 m to 14.5 m before reducing to 1.0 MPa in
the clay Unit IV, Pore pressure, uz, is not presented
but increases steadily with depth to approximately
380 kPa at 14 m depth. There is a clear change in
rate of increase in uz from 15 m to 17 m which coin-
cides with the upper boundary of Unit IV. Below 17
m uz increases steadily with depth.

5.2 Soil behaviour type and soil classification
charts

Figure ¢ presents the traditional SBT chart from
Robertson (1990) combined with the more recent
classification chart from Schneider et al. (2008).

This system is based on Q and By and using Schnei-
der et al. (2008) lines. Depth bias is known to occur
when using soil classification charts if quet and Auz
are not normalised, especially for sites with changes
in OCR with depth. In this case only normalised
charts are used for analysis. Unit L is classed as tran-
sitional. Unit ITa and IIb are classified as Transition-
al soil changing to Silts and low I (rigidity index)
clays with depth. Unit III falls on the border between
Transitional soils and Silts and low I: clays before
the deeper Clay Unit IV is identified. The Robertson
(1990) classification chart, see Figure 6, indicates
that Unit L is a Silt mixture with some transition into
Sand mixture and Sands. Using this chart, Unit Ila,
ITb and TIII are all Clays (clay to silty clay) with
some transition into the Silt mixtures. Unit IV also a
Clay (clay to silty clay) plots on the far right of the
figure.

The Schneider et al. (2008) classification chart in
Figure 7 presents a slightly different classification
for the soil units as Units Ila and IIb both fall in Silts
and low I, clays classification and do not cross into
the Transitional soils area. The classification for
Unit 1l is Silts and low I: clays before the deeper
Clays / Sensitive Clays. Overall this Qi-Au/ovw'
chart from Schneider et al. (2008) shows a clear
classification of Silts and low I clays. It is also no-
table that Unit Ila and IIb are grouped separately
within this classification. Unit 1 is a distinctively dif-
ferent material and clearly falls in the transitional
soils classification in contrast to Unit II.

6 ENGINEERING PROPERTIES

Two CAUC tests were performed on 72 mm speci-
mens from Units 1la and 11b, from 5.3 m and 8.6 m
depth, respectively. Both specimens were consoli-
dated to a best estimate vertical effective stress o'
using Ko of 0.5. The change in Ae/e, during sample
consolidation was less than 0.02 for both specimens.
Sample quality is therefore qualified as very good to
excellent for and OCR of 1 - 2 according to Lunne et
al. (1997). However it is noted that this criteria was
developed for marine clays and might not be appli-
cable to intermediate soils. The normalised shear
stress with strain behaviour showed a steady in-
crease in shear stress for both samples. At 10% axial
strain the samples had normalised shear stress in the
region of t/cw'. = 0.7 - 0.9. The normalised pore
pressure reached a peak in the region of Au/cw' =
0.14 before 1% strain and the test specimens dilated
strongly. The stress paths showed a clear 'S' shaped
response before dilation. The samples had clay con-
tents of 11% and 17% determined by the falling
drop method. The silt content was approximately
65% and 1, was less than 10% for both samples. At
peak pore pressure the normalised shear stress is in
the range of 0.4 - 0.45. The measured response from
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the tube samples is thought to be representative of
good quality silt samples considering the corre-
sponding index data.

7 DISCUSSION

Initially the silt deposit at the Halden Resesarch Site
showed to be very homogenous. No layering was
observed and the sediment proved to be structureless
even with X-ray imaging. However, combining the
data obtained from in situ testing, classification test-
ing and the Multi Sensor Core Logger one can ob-
serve two distinct silt units. Units 11 and IIT differ
slightly in terms of water content, total unit weight
and magnetic susceptibility. This correlates also
with an increase in corrected cone penetration re-
sistance from 12 m. Reasons for this gradual change
are not fully understood, but one possibility is that
such subtle changes are linked to variation in organ-
ic matter as observed in both units. This interpreta-
tion is corroborated by other studies of geotechnical
properties of marine sediments which showed to be
altered to varying degrees by subtle changes in or-
ganic content (e.g. Keller 1982, Booth & Dahl
1986). Organic matter absorbs water and causes
clay-sized particles to aggregate forming an open
fabric. This causes an increase in water content and
plasticity, and a decrease in the total unit weight.
Since the mineralogical contents of both Units IT and
11T are almost identical, the changes in magnetic sus-
ceptibility and gamma density obtained from
MSCL-S could be linked to the observed patterns of
organic matter and water contents (c.f. St-Onge et al.
2007).

The variations between the different SBT charts
highlight the importance of cross checking CPTU
interpretation of soil classification or behaviour type
with index data. Falling drop grain size data for Unit
Ila and IIb show average clay content of 13.4% and
Unit III lower at 9% clay content. There is evidence
that clay contents may be lower based on hydrome-
ter results. For example, in Units Ila and IIb the clay
content is in the range of 7.8% and 3% to 7% in Unit
I11. Clay contents at the lower bounds are questiona-
ble as Atterberg limits were measured on the materi-
al in Unit III. The plasticity index data for Unit Ila
and 1Ib agrees well with the clustered results in the
soil classification charts as Unit Ila is just on and be-
low the A-line and has a higher T, while Unit IIb
plots on the A-line and has a lower Ip. Unit I, a tran-
sitional soil plots just below the A-line and has a low
I, which agrees well with the classification charts for
both Robertson (1990) and Schneider et al. (2008).
The soil classification based on CPTU results in
Units Ila and IIb plot in a similar region of the Q-By
chart (Schneider et al. 2008) as CPTU data from a
silt site, Halsen, in Northern Norway tested by
Sandven (2003).
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A very limited program of advanced tests are car-
ried out on the Halden silt. However, the normalised
shear stress tf/ovo' interpreted at peak pore pressure
in the CAUC tests are in the range of 0.4 to 0.45.
This is slightly below the ratios presented by Bran-
don et al. (2006) for Yazoo and LMVD silt, but
within the range reported by Long (2007) for the es-
tuarine Sligo silt.
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8 CONCLUSIONS

This study has detailed some characteristics and en-
gineering properties of the Halden silt, a 11 m thick
deposit of fjord marine silt in south-eastern Norway.
NGI recently established a research site on this de-
posit to accommodate some of the challenges related
to intermediate soils. A variety of in situ and labora-
tory tests have been performed to investigate its
properties. Some preliminary conclusions are:

(i) The silt is considered normally consolidated and
is of low plasticity, with a clay content between 8%
- 18%.

(i1) Similar mineralogical content of the silt layers,
Units 1T and 111, is found. The soil consists mainly of
quartz, K-feldspar and plagioclase, with 7% - 8%
muscovite/illite.

(iii) Corrected cone resistance from CPTU in Unit II
and TIT shows a 1 MPa to 2 MPa response, while
pore pressures are positive and steadily increasing
with depth down to the clay layer.

(iv) Patterns of water content, unit weight, magnetic
susceptibility and cone penetration resistance could
be attributed to subtle changes in organic content.
Reasons for these gradual change are not fully un-
derstood and will need further studies.

(iv) Various SBT charts classify the soils as transi-
tional soils or silts to low I clays. The Schneider et
al. (2008) Q-Auz/oyw' chart shows a clear classifica-
tion of Unit II-IV as Silts and low I: clays, and sepa-
rates Unit Ila and 1Ib from each other.

(v) The variation between the different SBT charts
highlights the importance of cross checking CPTU
interpretation of soil classification or behaviour type
with laboratory index data.

(vi) CAUC tests on 72 mm silt specimens from Unit
Il indicate a normalised shear stress at failure the re-
gion of 17'/cw’ = 0.4 - 0.9, depending on the failure
criteria selected.

The results contribute to the developing global
knowledge of properties and behaviour characteris-
tics of intermediate soils. Further studies are planned
at this site to better understand factors controlling
the mechanical response of intermediate soils.

9 ACKNOWLEDGEMENT

This work is funded by the Norwegian Research
Council (NRC) through the strategic research project
SP8 — GEODIP at NGI. The contributions from oth-
er colleagues at NGI and Geological Survey of
Norway are also highly appreciated.

REFERENCES

Booth, JS. and Dahl A.G. 1986. A note on the relationships be-
tween organic matter and some geotechnical properties of a
marine sediment. Marine Geotechnology 6(3): 281-297.

Brandon, T. L., Rose, A. T. & Duncan, M. J. 2006. Drained
and undrained strength interpretation for low-plasticity
silts. Journal of Geotechnical and Geoenvironmental Engi-
neering 132(2): 250-257.

BSI (1990). British Standard methods of test for soils for civil
engineering purposes: Part 2 Classification tests. BSI377,
British Standards Institution, London.

Keller, G. H. 1982, Organic matter and the geotechnical prop-
erties of submarine sediments. Geo-Marine Lelters 2(3):
191-198.

Kenney. T.C. 1964. Sea-level movements and the geological
histories of the post-glacial marine soils at Boston, Nicolet,
Ottawa and Oslo. Géotechnique 14(3): 203-230.

Long, M. 2007. Engincering characterization of estuarine silts.
Quarterly Journal of Engineering Geology and Hydrogeol-
ogy 40(2): 147-161.

Lunne, T., Berre, T. and Strandvik, S. 1997. Sample disturb-
ance in soft low plastic Norwegian clay. M. Almeida (Ed.),
Recent Developments in Soil and Pavement Mechanics,
Balkema, Rotterdam, pp. 81-102.

NSF  1990. Geotechnical testing. Laboratory methods.
Grainsize analysis of soil samples. NS 8005:1990. NSF,
Oslo.

Moum, J. 1965. Falling drop used for grain-size analysis of fi-
ne grained materials. Sedimentology 5(4): 343-347.

Paniagua-Lopez. P.. Carroll, R.. Blaker, @., L'Heureux, J.-S..
Nordal. S. 2016. Monotonic and dilatory excess pore water
dissipations in silt following CPTU at variable penetration
rate. Int. conf. on Geotech. and Geophys. Site Char., Gold
Coast, Australia, 53-9. September, 2016.

Robertson, P. K. 1990. Soil classification using the cone pene-
tration test. Canadian Geotechnical Journal 27(1): 151-
158.

Sandven, R. 2003. Geotechnical properties of a natural silt de-
posit obtained from field and laboratory tests. In Tan, T.S.,
Phoon, K K., Hight. D.W. & Leroueil, S. (ed.) Characteri-
zation and engineering properties of natural soils: Proc.
Int. Workshop, NUS Singapore, 2-4 December, 2002,
Balkema, Rotterdam, 2. 1121-1148.

Schneider, J. A.. Randolph. M. F., Mayne, P. W. & Ramsey. N.
R. 2008. Analysis of factors influencing soil classification
using normalized pieczocone tip resistance and pore pressure
parameters. Journal of Geotechnical and Geoenvironmental
Engineering 134(11): 1569-1586.

St-Onge G.. Mulder T., Francus P.. & Long B. 2007. Chapter
Two; Continuous Physical Properties of Cored Marine Sed-
iments. Developments in Marine Geology, Elsevier: 63-98.

Sorensen, R. (1979). Late Weichselian deglaciation in the Oslo
fjord area, South Norway. Boreas 8: 241-246.

214



APPENDIX B

CONFERENCE PUBLICATION

215



Evaluation of bearing capacity and in situ shear strength
using the screw plate load test in clay and silt
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ABSTRACT: Recent studies show that silts are sensitive to sampling disturbance, and that the effects of sampling can
be adverse and opposite of those typically observed for clays. Silts often exhibit a tendency for dilative behavior upon
undrained triaxial shear. As a result, the interpreted shear strength is highly dependent on which failure criterion is selected
but there is limited guidance or consensus on what criterion represents the relevant in situ shear strength for design appli-
cations. To this end, in situ Screw Plate Load Tests (SPLT) have been conducted at Halden, Norway, to investigate the
bearing capacity and behavior of the silt and clay deposits under field loading, and uncertainties associated with un-
drained/drained/partially-drained conditions. Normalized penetration velocity indicates that the SPLTs were likely par-
tially-drained in the silt unit and undrained in the clay unit. This information was used to back-calculate estimates of the
in situ strengths for comparison with laboratory tests conducted on undisturbed specimens from both soil units.

Keywords: silt; clay; triaxial test; screw plate load test; bearing capacity.

1. Introduction

An increasing number of geotechnical projects involv-
ing silt has sparked a series of research efforts to better
understand the fundamentals of this intermediate soil, the
effects of sampling disturbance and uncertainties associ-
ated with undrained/drained/partially-drained conditions.
For sands and clays, deformation and strength parameters
can be evaluated in situ through well-established correla-
tions with measured or derived parameters from cone
penetration tests with pore pressure measurements
(CPTU), dilatometer tests (DMT), self-boring pressure-
meter tests (SBP), or back-calculated and interpreted
from plate load tests (PLT). The CPTU, for example, can
be used to estimate undrained shear strength (s,), effec-
tive stress friction angle (¢, constrained modulus (M)
and small strain shear modulus (Gua) of a soil with
depth, and to estimate axial pile capacity (Qu:) from the
cone resistance (g.).

Methods for interpretation of laboratory and in situ
tests in silt have not seen the same developments or con-
clusive research as for clays and sands, and there are still
large uncertainties associated with in situ behavior and
appropriate geotechnical parameters for practical engi-
neering design in this soil type. Partial drainage effects
may have a significant effect on sample quality, the in-
terpreted soil behavior type and soil properties from in
situ and laboratory testing. For example, results from
"twitch" testing at variable penetration rates have demon-
strated how CPTU measurements change with normal-
ized penetration velocity (), expressed as:

V=uvD/c, (1)

where v = rate of penetration; D = penetrometer diameter;
and ¢, = coefficient of horizontal consolidation. V> 10
— 100 have been suggested to be indicative of fully un-
drained conditions, while fully drained conditions typi-
cally occurs for V' < 0.05 — 0.01 [1-3]. Penetrometer
measurements conducted under V= 0.05 - 10 may there-
fore be affected by partial drainage.

Furthermore, recent studies demonstrated that silts are
particularly sensitive to sampling disturbance, and that
the effects of tube sampling on engineering properties
can be adverse and opposite of those typically observed
for clays [4]. Tube samples of silt often exhibit a ten-
dency for dilative behavior and strain hardening upon un-
drained triaxial shear in compression and, as a result, the
undrained shear strength of this material cannot be read-
ily interpreted at the conventional peak shear stress as for
soft structured clays [4-8]. The shear strength of the ma-
terial depends on the criterion selected for interpretation
and there is limited guidance or consensus on what crite-
rion most accurately represents the relevant in situ shear
strength for design.

As sampling of silt has traditionally been considered
challenging, and quantitative assessment of sample qual-
ity using clay-based criteria is highly questionable in this
soil type, in situ loading tests were considered attractive
for evaluation of bearing capacity and shear strength.
Marsland [9] used PLT data to back-calculate undrained
shear strength of stiff, fissured London clay, showing that
the large-scale undrained shear strength was significantly
lower than that measured in small undrained triaxial com-
pression test (CAUC) specimens. A variation of the PLT,
the SPLT uses a single flight helical screw to advance
from ground level without the need for a pre-augered
borehole, thus retaining the overburden stress [10]. This
configuration was adopted and used to evaluate com-
pressibility of different sands and the influence of

216



preconsolidation stress on sand deformability by
Schmertmann [11] and Dahlberg [12], respectively. The
device has also been successfully used in a number of
different clays [13-17], but only a few results have been
conducted in silt. Janbu and Senneset [18] and Sandven
[19] report incremental loading SPLTs (i.e., fully drained
conditions) conducted at a silt site in Stjordal, Norway
for evaluation of in situ compressibility of the deposit.

This paper presents results of three SPLTs conducted
at the National GeoTest Site for silt in Halden, Norway.
It investigates load-deformation behavior in the clayey
silt and underlying clay units, interpretation of engineer-
ing parameters and compares the measured bearing ca-
pacities with calculated base unit resistance for an equiv-
alent diameter closed end pile.

2. Methods

2.1. Sampling

Soil samples were collected at the Halden, Norway re-
search site [8] using the Sherbrooke block sampler [20]
in location HALBO04, the NGI 54 mm inner diameter (ID)
composite piston sampler [21] in location HALBO03 and
the Gregory Undisturbed Sampler (GUS), a hydraulic
fixed piston sampler, manufactured by Acker Drill Com-
pany, PA, USA in location HALBO7. All locations are
presented on the map in Figure 1.

2.2. Field equipment

The screw plate equipment consisted of a single helix
flight auger (Figure 2) with D = 160 mm (Area, 4 = 200
cm?) and a 45 mm pitch. The plate was founded in ductile
cast iron (EN-GJS-500) by Ulefoss Foundry, Norway
based on a model by Strout [22]. The screw plate was
positioned directly in front of a custom-made down-hole
hydraulic jack and double-rod configuration described by
Janbu and Senneset [18]. The outer 42.5 mm outer diam-
eter (OD) steel rods provided torque during installation
and reaction from the jack to the drill tower of the
Georigg 607 (Geotech AB, Sweden) drill rig during static
loading. A simple load frame was positioned between the
outer rod and drill rig and allowed access to the top of the
27 mm OD center rods. The unloaded center rods pro-
vided direct measurement of the plate displacement using
two Mitutoyo Digimatic ID-C 0.001/50.8 mm defor-
mation indicators mounted on an independent reference
beam. An Enerpac P392 hand pump and a 64 MPa GDS
high pressure volume controller provided hydraulic pres-
sure to the closed system through a 400 MPa capacity hy-
draulic hose connected to the jack positioned directly be-
hind the screw plate. Hydraulic cylinder pressure to plate
stress (gp) conversions were calibrated in the laboratory
using an Interface (Interface Inc., Scottsdale, AZ, USA)
250 kN load cell.

The screw plate was carefully installed by rotation
from ground level to target depth (z) by the drill rig. The
rate of penetration during installation was adjusted to
equal the pitch of the screw plate (i.e. about 45 mm per
360° rotation) in order to minimize disturbance to the sur-
rounding soil. The Enerpac pump and GDS volume con-
troller were connected to the hydraulic hose, the plate

pressure was set equal to the in situ vertical effective
stress and the equipment was allowed to rest for about 15
min to allow equalization of installation pore pressures
near the screw plate. Displacement gauges were zeroed,
and continuous rate of deformation testing was con-
ducted using the GDS pump. A GDS flow rate of about
40 mm’/s was typically used, providing a displacement
rate of about 1.33 mm/min (0.5D/hr). Readings of cylin-
der pressure and plate displacement (s) at fixed time in-
tervals (7) were recorded to a displacement of about s =
0.2D. After completion of a test, the reference beam and
deformation indicators were dismounted, and the system
carefully vented to atmospheric pressure. The oil reser-
voir was vented and the hydraulic cylinder, typically
fully extended after testing, was reset to its original posi-
tion using the drill rig. Finally, the pumps were discon-
nected, and the screw plate advanced to the next test
depth.
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2.3. Triaxial testing

Triaxial specimens were prepared by trimming of
Sherbrooke block and GUS specimens using the proce-
dures described by Lacasse and Berre [23] and Ladd and
DeGroot [24]. During back pressure saturation the test
specimens were first subjected to an isotropic stress (cell
pressure) equal to the estimated value of the initial nega-
tive pore pressure (suction) within the specimen. The po-
rous filter stones were initially dry. At the initial isotropic
stress, de-aired water was flushed through the porous
stones and any tendency for volume change was pre-
vented by adjusting the cell pressure until a stable condi-
tion was reached. Following this stage, backpressure was
applied and all B values, which were measured at the end
of the consolidation phase, were > 97%. All specimens
were anisotropically consolidated to the best estimate in
situ vertical effective stress, o’ and horizontal effective
stress o o using an assumed Ky = 0.5 [8]. All specimens
were allowed to creep for 12 to 24 hours prior to un-
drained shear testing performed at a strain rate of 0.5 —
1.4 %/hr. The total radial stress was kept constant while
the total axial stress was increased in compression
(CAUC). All stress measurements were corrected for
membrane resistance and changes in specimen area [25].

2.4, Analysis

2.4.1. Ultimate bearing capacity from SPLT

Three methods were used to assess the ultimate bear-
ing capacity, q. from the SPLT stress-displacement
curves:

¢ (.18 method — ultimate bearing stress limited
by a relative displacement, typically 10% of
the footing width or pile diameter, B [26, 27].
In this case, 10% of the screw plate diameter,
D.ie. Gue = doan-

¢ Tangent intersect — bearing stress correspond-
ing to a distinct change in plate displacement,
i.e. intersection of initial and final tangent
slope of stress - settlement plot [28], i.e. gy =
-

e Curve fitting — ultimate bearing capacity ex-
trapolated using an exponential curve inter-
secting the bearing stress, qx and qy at 0.015D
and 0.02D, respectively [15], i.e. @uir = Gip-

Other methods are available, e.g. the Log-Log method
[29], but were considered inappropriate for the interpre-
tation of the load tests described in this paper. For all
methods listed above the displacement at failure (s;)
were taken as the displacement corresponding to q;.

2.4.2. Pile ultimate unit base resistance

A deeply embedded screw plate (z/D > 33) may be
compared to the base of a circular closed end pile (CEP)
with equivalent diameter and area. The ultimate base re-
sistance of a pile is expressed as [30]:

Qpute = Goutedp (2)

where g, ;¢ = the ultimate unit base resistance and 4, =
area of the pile base. The ultimate unit base resistance of
a pile tip equivalent to that of the screw plate (D = 160
mm) was assessed using a number of methods, including:

o the classical bearing capacity equation (disre-
garding the 0.5y'DN; term due to its small
relative contribution), i.e.:

Goute = Nesy + Nyagy (3)

where N2, Ng, Ny = dimensionless bearing ca-
pacity factors for deep foundations, including
necessary shape and depth factors; s, = un-
drained shear strength; and ¥’ = effective unit
weight of soil [31-33].
e CPTU-based methods, including:

- Purdue-CPT [27].

- NGI-05 [34, 35],

- ICP-05/MTD-1996 [36, 37], and

- UWA-05/UWA-13 [38, 39].

All CPTU-based design methods are summarized by
Han, et al. [40].

2.4.3. Shear strength

Undrained shear strength from CAUC tests on clay
specimens were assessed at peak shear stress, i.e. s, =
0.5(0y — 03)mayx- For silt specimens displaying dilative
type behavior during undrained shear, and thus, no peak
shear stress, 5, was evaluated using the following
strength criteria [41]:

*  maximum deviator stress, (0; — 03 )max:

= an assigned limiting vertical strain, &,;

= state of zero excess shear induced pore pres-
sure at failure Auy = 0, which is equivalent
to Skempton's A parameter at failure equal to
zero, Ay = 0;

= point at which the effective stress path first
reaches the failure envelope, defined by the
Ky line;

*  maximum obliquity, (¢ /735) max:

*  maximum shear induced pore pressure,

Umax-

Undrained shear strength assessed from the screw
plate load tests were back-calculated using:

Su = Guie/ NE “4)

3. Test program and site description

Three SPLTs were performed, one at a depth of 11.3
m in borehole HALSPO1, and one each at 11.3 and 17.8
m depths in borehole HALSPO02 (Figure 2) at the Norwe-
gian GeoTest Site (NGTS) for silt. The site is located in
Halden, Norway, approximately 120 km south of Oslo
and has been well characterized [see 8] by combining the
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unit weight, and (d) clay particle and fines content. (¢) corrected cone resistance, .. (f) pore pressure, u-, and (g) sleeve friction, /.. Modified
from Blaker, et al. [8].

results of a number of geological, geophysical and ge-
otechnical site investigation tools; including sampling,
CPTU, CPTU pore pressure dissipation tests and field
vane tests (FVT).

A silty, clayey sand constitutes the top soil (Unit I} and
extends down to about 4.5 to 5 m depth. The geologically
normally consolidated clayey silt below (Units I and T1T)
extend down to about 15 to 16 m depth, with soil behav-
ior type index (/:) generally plotting between 2.6 and
2.95. Normalized cone resistance ((,) and pore pressure
ratio (B,) in these soil units are generally in the order of
7.5 and 0.1 — 0.3, respectively. The silt is uniform and
structureless to mottled, with primary bedding and lami-
nations almost absent due to bioturbation. Both Units 11
and II1 contain similar amounts of quartz (40%), plagio-
clase (30%), feldspar (12%), clay minerals and mafic
minerals (amphibole). Clay minerals are illite and chlo-
rite, and the presence of expanding clay minerals are low
or absent. Unit IV, a low to medium strength clay has a
slightly laminated structure, with occasional shell frag-
ments and drop stones. (J; and By are generally in the or-
der of 4 and 0.8 — 1.0, respectively. Depth to bedrock dips
sharply from the northeast to southwest but is typically
identified at 21 m depth in the southern part of the site.
Table 1 and Figure 3 summarizes typical soil properties
and CPTU characteristics of the silt at 11.3 m and clay at
17.8 m depth.

Table 1, Typical soil properties at Halden Research site, 11.3 m and

17.8 m depth.
z w e | ow? I Fines | Clay Cw
3 3 4

Im| | [m] I-1 1%] 1%] %] [%] | |myr]
1.5 | 27 0.73 23 ! 89 9 221
186 | 34 0.96 27 9 87 28 10
" ¢, = initial void ratio. Note also e,..= 1.51 and e,,;, = 0.60, giving
an estimated relative density, D, = 86% for z=11.3 m;
2 Liquid limit determined by the Casagrande cup;
¥ Fines < 0,063 mm, clay < 0.002 mm;
# Coefficient of vertical consolidation at &

4. Results

4.1. Triaxial testing

The CAUC clay specimen from 18.6 m depth had a vol-
umetric recompression strain of &.; = 2.7%, correspond-
ing to Ae/ey=0.054, thus giving it a "good to fair" sample
quality rating [42]. During shear the specimen showed a
peak shear stress and exhibited strain softening thereaf-
ter. The undrained shear strength indicated from this test
was s,c = 82 kPa at a vertical strain of &= 0.8%. The
pore pressure at peak shear stress was 35 kPa correspond-
ing to a Skempton's pore pressure parameter 4,= 0.59 at
failure (Figure 4). Interestingly, the effective stress path
tags the failure envelope defined by the Ky line of the
CAUC tests conducted in the silt units, indicated by the
maximum obliquity friction angle @', = 35.8° [8].

The CAUC silt specimen from 8.4 m, 1.5 mand 12.6
m depth [8] had recompression metrics of & = 1.3%,
1.0% and 1.1% for volumetric strain and Ae/es = 0,029,
0.023 and 0.026, respectively. By the clay-based sample
quality framework these low values of Ae/es would rate
the specimens as "good to excellent" sample quality [42,
43]. However, the clay-based sample quality criteria have
been shown to be misleading for low plasticity silts [4,
44]. Figure 4 shows that, except for the initial contractive
type behavior, the specimens develop net negative pore
pressure changes, and thus, show a strong tendency to-
wards dilative behavior. The test results show a distinct
initial S-shape behavior in stress-path space, particularly
for the specimens sampled at 8.4 m and 11.5 m depth.
Phase transformation points (PTP), i.e., the point at
which the soil transitions from contractive type behavior
to dilative type behavior, are located at an angle of ap-
proximately ¢'»;p»=33°. The stress-path results generally
track the Ky line at a maximum obliquity friction angle
@'mo = 35.8° [8] to the end of the test. Due to this strain
hardening behavior interpretation of the undrained shear
strength from these CAUC tests is complex and the
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Figure 4. Undrained triaxial test results (CAUC) from the Halden clay
and silt units.

results provide no unique (peak) undrained shear
strength. Undrained shear strength evaluated at different
criteria [41] are presented in Table 2.

4.2. Screw plate load testing

4.2.1. Load-displacement behavior

Typical stress - displacement curves from the silt (11.3
m) and clay (17.8 m) tests are presented in Figure 5. The
SPLT results from the clay shows a distinct change in
displacement around g, = 400 kPa and relatively large

displacements for small changes in load thereafter. The
results of the two silt tests show more gradual increase in
deformation with load. The tests exhibit a significantly
more pronounced strain-hardening relative to the clay
test - similar to the triaxial test results described above.
There is reasonable agreement between the two tests con-
ducted at 11.3 m depth in boreholes HALSPOI and
HALSP02, although some variability is evident. All tests
were stopped at a displacement corresponding to about
0.2D.

Although traditionally calculated for CPTU twitch tests
[1]. an assessment of normalized penetration velocity
gives V= 10 for the SPLT in the clay unit (assuming ¢, =
cw, Table 1) indicating that undrained conditions pre-
vailed, as expected. From the load tests in the silt unit,
the normalized penetration velocity is about V"= 0.5, and
thus, suggests partially drained conditions during load-
ing. These conditions cause complex pore pressure fields
surrounding the screw plate, with large gradients in the
vertical direction. Locally near the plate the soil shear re-
sistance is fully mobilized and likely developed negative
pore pressure changes combined with some dilation due
to partial drainage. Whereas at some distance below the
plate (and radially), soil elements may have experienced
positive pore pressure changes combined with some con-
traction due to the increase in compression stresses being
greater than the mobilized shear stresses (resulting in the
soil remaining well below the failure envelope). Glob-
ally, however, the load-displacement behavior of the silt
tests suggests a dilative type of behavior, with stresses
acting on the screw plate increasing at a significantly
larger rate relative to the test in clay.

4.2.2. Bearing capacity

Ultimate bearing capacities from the SPLTs were as-
sessed using three different criteria as detailed above and
illustrated for each individual SPLT on Figure 5. The
bearing capacity interpreted at a displacement equal to
10% of the plate diameter, gave consistently higher val-
ues, i.e. goip > g, gkr, relative to the other two criteria.
The tangent intersect and Kay and Parry [15] interpreta-
tion methods gave similar values of g in both the silt
and clay units (Table 3).

4.2.3. Undrained shear strength

The back-calculated undrained shear strength in the
clay from gop, grrand ger (Eq. (4)) gave values of s, =
54 kPa, 46 kPa and 47 kPa, respectively (Table 2) when
applying a bearing capacity factor of N.* = 9. These val-
ues are considered "average" or "mobilized" undrained
shear strengths for the soil at the screw plate embedment
depth, thus approximately equivalent to the direct simple
shear (DSS) undrained shear strength (s.») of the same
soil. The DSS and CAUE undrained shear strengths of
the Halden clay can be estimated as s.» = 57 kPa and su»
= 34 kPa, respectively, based on the strength anisotropy
factors s.p/s,c = 0.69 and su/sc = 0.42 reported by
Lunne, et al. [42] for similar clays from the Oslo, Norway
area. Thus, the undrained shear strength back-calculated
from qoip provides excellent agreement (within 5%) with
the laboratory test and strength anisotropy of the region,
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Table 2. Apparent and measured undrained shear strength from screw
plate load tests, field vane and triaxial tests at Halden.

z[m] 11.3-11.5 17.8-185
Type (silt) (clay)
I-l IkPa]
Laboratory CAUC
Suc [(a1 = T2masl 94 82
S (M) 50 -
Sucl&y = 2%) 57 -
Suc (Ar=10) 84 -
S [(01/ T3] 70 -
S.o(Ky) 70 -
Suc (&= 10%) 84 -
Int situ tests
Suil " 46
Suain 92" 54
Su kP 64 H 47
Sty 45 41
Sy SBP 51 -
Note: " Average of two tests

1400
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800 -

600 17.8 m (CLAY)

Plate stress, q, (kPa)

400

200

0 | | | | | |
0 5 10 15 20 25 30 35
Plate displacement, s (mm)
Figure 5. Typical stress-displacement curves from screw plate load
tests in the silt (11.3 m) and clay (17.8 m) units at Halden. Ulti-
mate bearing stress assessed using the 0.1D. (ga ). tangent inter-
sect (gyr) and Kay and Parry (gg») methoads,

Table 3. Bearing capacity interpreted from screw plate load tests at
11.3 mand 17.8 m depth.

Borehole Depth TI 0.1D KP
I-l [m] IkPa] [kPa |kPa
HALSPO1 11.3 634 810 560
HALSP02 11.3 660 842 581
HALSPO2 17.8 410 487 422

and validates both the SPLT stress-displacement results
and the equipment as an effective tool for evaluation of
undrained shear strength in soft clay. FVT results at the
same depth [8] resulted in s, 7 = 41 kPa (i.e. sum9/suc=
0.5), and thus show better agreement with the back-cal-
culated undrained shear strength using g7

Drainage conditions during the SPLTs in the silt unit
are complex and uncertain, but as noted above the tests

were likely partially drained (V" = 0.5). However. back-
calculation of in situ strength parameters using conven-
tional methods requires an assumption of the prevailing
conditions as either drained or undrained during loading.
By assuming undrained conditions s, of the silt was back-
calculated using Eq. (4). Table 2 presents the results from
these back-calculations, in terms of average suri, Su0.0
and s, xp representing the undrained shear strength calcu-
lated from g7y, gopand ggp, respectively. Interestingly,
the T1 and KP results (72 kPa and 64 kPa) show agree-
ment with the CAUC test at the same depth level for s.c
interpreted using the shear stress at the Kyline and at max-
imum obliquity criteria (70 kPa). It is hypothesized that
the SPLT tests in the silt do generate negative pore pres-
sures changes, and that the TI (= KP) failure criteria rep-
resent the point at which the soil elements involved in the
global failure mechanism below the plate start becoming
fully mobilized. Furthermore, the undrained shear
strengths back-calculated from gpin (suon = 92 kPa)
show similarities with the undrained strength interpreted
at (6 — O3)max Of the companion CAUC test (su = 94
kPa). This implies that the shear stress obtained from
CAUC tests on silt block sample specimens at large
strains can be used to reliably estimate the bearing capac-
ity at 0.1D for short term loading and that the strain hard-
ening effect can be relied upon. This, however, requires
high quality samples with minimum of sample disturb-
ance from sampling, transportation and handling. Recent
studies have shown that effects of disturbance on silt
samples can have opposite effects of that often seen for
structured clays, i.e., larger interpreted strength and stiff-
ness properties with increasing disturbance [4, 44].

4.2.4. Effective stress friction angle

For back-calculation of the effective stress friction an-
¢le of the silt using conventional methods drained condi-
tions are required. By assuming fully drained conditions
during SPLT loading ¢’ were estimated using the stress-
displacement curve and Eq. (3). The largest uncertainty
in this back-calculation is the bearing capacity factor,
N,", which varies significantly in the literature [45, 46]
(Figure 6). The bearing capacity factor computed from
the SPLTs at 11.3 m depth are failure criteria dependent,
but range between N, = 4.3 and 6.5, resulting in corre-
sponding values of ¢’ = 12° — 24° using the curves in Fig-
ure 6. Effective stress friction angles in this range are
considered unrealistically low compared to results from
triaxial tests conducted specimens of Halden silt and
other international silts reported in literature [7, 19, 41,
47-49]. This implies that the SPLTs were not fully
drained during loading, i.e. partial drainage prevailed as
suggested by = 0.5, and that the measured bearing ca-
pacities cannot be used to reliably back-calculate the fric-
tion angle. The bearing capacity factor appear highly un-
certain in silts. Helical Anchors Inc. [50] suggests N," =
28 for compression loading of a helical pile in a cohe-
sionless soil and hence with an effective stress friction
angle of @'y, = 35.8°, overestimates the ultimate bearing
capacity (unfactored) of the screw plate load tests at 11.3
m depth by factors of 3.5 to 5.5. Using the constant vol-
ume friction angle (approximately equal to ¢'prp) of ¢'s

— 7270

= 33° reduces the corresponding value of N, to about 19.

221



The Canadian foundation engineering manual [33] pre-
sents typical bearing capacity factors for deep founda-
tions in silt as 10 — 30 (cast-in-place piles) and 20 — 40
(driven piles), and as a result, also overpredicts qu. For
offshore piles in cohesionless soils API RP2A [31] sug-
gests N,” in the range of 8 — 12 for medium dense to dense
silts, giving better agreement with the SPLT bearing ca-
pacity results. However, predictions of axial capacity of
piles driven into cohesionless soil using API RP2A have
been noted to be inaccurate [36, 51] and more recent
guidelines [e.g. 52] recommend CPTU-based methods to
assess bearing capacity in these soils.

5. Measured and calculated capacity

Figure 7 presents the measured SPLT bearing capacity
ats = 0.1D displacement (go.;p) plotted with ultimate unit
base resistance (gsw) of an equivalent diameter closed
end pile using clay methods at 17.8 m depth and cohe-
sionless soil (sand) methods for the silt at 11.3 m depth.
In the clay the measured SPLT result shows excellent
agreement with the calculated bearing capacity using N’
=9 and a DSS undrained shear strength, s.p, as noted in
Section 4.2.3 above. The API RP2A and NGI-05 meth-
ods use the unconsolidated undrained shear strength
(swr7), in this case assumed equal to s.c, and appear to
overestimate the capacity by about 50%. The ICP/MTD-
1996 and UWA-13 methods (using corrected cone re-
sistance, g;) also overestimate the capacity in the clay, by
a factor of 1.33. Helical Anchors Inc. [50] do not state
what undrained shear strength to use for design but for
illustration purposes s,» was used in Figure 7 for calcu-
lation of g4, ui. CGS [33] suggests the minimum undrained
shear strength (i.e., s.z) for capacity assessment, and as a
result g, is underestimated relative to gop. In sum-
mary, the best agreement with the measured bearing ca-
pacity of the SPLT at 0.1D in the Halden clay was ob-
tained by using s.p and a bearing capacity factor equal to

Relative to the measured values of gqp, the classic
drained bearing capacity equation for deep foundations
in cohesionless soil typically over estimates the unit base
resistance at Halden by a factor of up to 4.5, but the val-
ues of gy are highly dependent on the selected bearing
capacity factor, N,". For example, APl RP2A using N," =
8 shows fair agreement with the measured values from
the SPLTs. The CPTU-based methods all underestimate
the unit base resistance at 10% vertical displacement. It
should be noted, however, that these methods were de-
veloped for sands with significantly higher cone re-
sistances and that CPTU ¢g. at 11.3 m depth at Halden
were measured using the conventional penetration rate of
20 mm/s, giving normalized velocities of about V' = 180
[53], i.e., fully undrained conditions. Furthermore, rela-
tive density (D,) derived from q. and estimated effective
horizontal stresses, o'y [54], were developed for clean
sands. D, estimates at Halden (80% - 86%) were based
on measured initial void ratios (e;) of seven triaxial spec-
imens trimmed from a block sample collected at 11.5m
depth and maximum and minimum void ratios measured
on air dried silt from the same block sample (Table 1).
Values of g. and D, used in the CPTU-based methods for
calculation of gy, .« are therefore somewhat uncertain.
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Figure 7. Measured SPLT bearing capacity (qqn) versus calculated
base unit resistance of an equivalent closed end pile (qy.u).

6. Summary and conclusions

The screw plate load test (SPLT) was considered an
attractive tool for investigation of the in situ soil behavior
of the silt deposit at Halden, Norway described by
Blaker, et al. [8], which displays dilative type behavior
during undrained shear in the laboratory CAUC tests and
a maximum obliquity friction angle of ¢y, = 35.8°. One
test was conducted in the clay unit below 16 m depth and
two companion tests were performed in the siltat 11.3 m
depth. The main findings were:

®  The SPLT in the clay were conducted with a nor-

malized velocity of about ¥ = 10, indicating un-
drained conditions during loading. The soil dis-
played a distinct break in the stress - displacement
curve during loading.

= Interpretation of the clay test confirmed (within

5%) the theoretical bearing capacity estimated us-
ing the direct simple shear (DSS) undrained shear
strength of the same soil, thus validating the
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stress-displacement curve and the equipment as
an effective tool for evaluation of undrained shear
strength in soft clay.

*  The two SPLTs performed in silt showed good re-
peatability and a normalized velocity of about 0.5.
Normalized velocities in the range 10 > J' > 0.05
have been suggested to be indicative of partially
drained conditions. Thus, the rate of loading used
at Halden likely caused complex pore pressure
fields surrounding the screw plate.

*  Both silt tests displayed a significantly more pro-
nounced strain-hardening behavior relative to the
clay SPLT. This behavior confirmed the observa-
tions from the stress-strain and stress-path devel-
opment during undrained triaxial shearing
(CAUC) of the bock sample from the same depth.

*  Due to the strain hardening effect the bearing ca-
pacities at a displacement equal to 0.1D gave con-
sistently higher values relative to the tangent in-
tersect and Kay and Parry [15] methods.

* It is suggested that the SPLT generated negative
pore pressure changes in the silt immediately be-
low the plate, and that g, for the tangent intersect
criteria represents the start of a fully mobilized
shear stress state below the screw plate, equiva-
lent to the Kyand maximum obliquity failure cri-
teria used for assessment of s, from CAUC tests.

= The negative shear induced pore pressures and
undrained shear strength at large strains observed
from CAUC testing on the silt block sample can
likely be relied upon for short term loading in the
field. For extrapolation to other silt sites one must
ensure high quality samples for laboratory testing
and that the effects of disturbance on the engi-
neering design parameter are properly evaluated.

*  Fully drained bearing capacities were likely not
measured during the SPLTs at Halden. The bear-
ing capacity factor is a function of effective stress
friction angle and, as a result Eq. (3) typically
over predict g, at Halden. Similarly, as an effect
of the undrained response and relatively low val-
ues of cone resistance the CPTU-based methods
for estimation of g, under predict the bearing ca-

pacity.
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