
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

July 2020 

Improving Reinforcement Learning Techniques by Leveraging Improving Reinforcement Learning Techniques by Leveraging 

Prior Experience Prior Experience 

Francisco M. Garcia 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Garcia, Francisco M., "Improving Reinforcement Learning Techniques by Leveraging Prior Experience" 
(2020). Doctoral Dissertations. 1887. 
https://scholarworks.umass.edu/dissertations_2/1887 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1887&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1887&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1887?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1887&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


IMPROVING REINFORCEMENT LEARNING
TECHNIQUES BY LEVERAGING PRIOR EXPERIENCE

A Dissertation Presented

by

FRANCISCO M. GARCIA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2020

College of Information and Computer Sciences



c© Copyright by Francisco M. Garcia 2020

All Rights Reserved



IMPROVING REINFORCEMENT LEARNING
TECHNIQUES BY LEVERAGING PRIOR EXPERIENCE

A Dissertation Presented

by

FRANCISCO M. GARCIA

Approved as to style and content by:

Philip S. Thomas, Chair

Erik Learned-Miller, Member

Shlomo Zilberstein, Member

Melinda D. Dyar, Outside Member

James Allan, Department Chair
College of Information and Computer Sciences



ABSTRACT

IMPROVING REINFORCEMENT LEARNING
TECHNIQUES BY LEVERAGING PRIOR EXPERIENCE

MAY 2020

FRANCISCO M. GARCIA

B.Sc., UNIVERSITY OF THE SCIENCES IN PHILADELPHIA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Philip S. Thomas

In this dissertation we develop techniques to leverage prior knowledge for im-

proving the learning speed of existing reinforcement learning (RL) algorithms. RL

systems can be expensive to train, which limits its applicability when a large number

of agents need to be trained to solve a large number of tasks; a situation that often

occurs in industry and is often ignored in the RL literature. In this thesis, we develop

three methods to leverage the experience obtained from solving a small number of

tasks to improve an agent’s ability to learn on new tasks the agent might face in the

future.

First, we propose using compression algorithms to identify macros that are likely

to be generated by an optimal policy. Because compression techniques identify se-

quences that occur frequently, they can be used to identify action patterns that are

often required to solve a task.
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Second, we address some of the limitations present in the first method by formal-

izing an optimization problem that allows an agent to learn a set of options that are

appropriate for the tasks. Specifically, we propose an analogous objective to com-

pression by minimizing the number of decisions an agent has to make to generate

the observed optimal behavior. This technique also addresses a question that is often

ignored in the option literature: how many options are needed?

Finally, we show that prior experience can also be leveraged to address the exploration-

exploitation dilemma; a central problem in RL. We propose a framework in which a

small number of tasks are used to train a meta-agent on how to explore. After being

trained, any agent facing a new task can query the meta-agent on what action it

should take for exploration.

We show empirically that, when facing a large number of tasks, leveraging prior

experience can be an effective way of improving existing reinforcement learning tech-

niques. At present, the application of RL in the industry setting remains rather

limited. One of the reasons being how costly and time consuming training large scale

systems can be. We hope this work provides some guidance for future work, and

that it inspires new research in exploiting existing knowledge to make RL a practical

alternative to tackle large scale real-world problems.
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CHAPTER 1

INTRODUCTION

The concept of reinforcement learning (RL) as a method for training control sys-

tems can be traced back to the origins of artificial intelligence (AI) as a field. Although

perhaps a matter of contention, many researchers agree that the Summer Research

Project on Artificial Intelligence, held at Dartmouth College in 1956, was the start-

ing point of AI. To make this event possible, several researchers submitted a proposal

stating their intended line of study; in it Marvin Minsky writes:

The machine is provided with input and output channels and an inter-

nal means of providing varied output responses to inputs in such a way

that the machine may be “trained” by a “trial and error” process...when

placed in an appropriate environment and given a criterion for “success”

or “failure” can be trained to exhibit “goal-seeking” behavior...

This is the same principle underlying RL as a field (Sutton and Barto, 1998).

For many years, RL was mostly considered a matter of academic curiosity; however,

recent technological advances have led to a surge of interest in RL as a potential

solution to many practical applications. Some examples of these include ad placement

(Theocharous et al., 2015), autonomous navigation (Kuderer et al., 2015) and insulin

pump control (Thomas et al., 2017), among others.

RL focuses on the problem of learning (by trial an error) how a decision maker,

called an agent, should behave in order to achieve a desired result. Traditionally, the

goal of RL techniques is to learn a policy (a mechanism by which an agent makes

1



decisions) to solve a specific problem assuming that no prior experience is available.

The majority of RL research focuses on this setting, where the agent learns from

scratch (Watkins and Dayan, 1992; Silver et al., 2014; Mnih et al., 2015; Schulman

et al., 2017). In some circumstances this might be a reasonable assumption, but

there are occasions where an agent may need to solve a large number of tasks or

where expert demonstrations might be available. In these situations, ignoring the

information contained in demonstrations or the information obtained from solving

earlier tasks would be wasteful.

The use of prior experience has been studied in the RL literature to some extent

under the settings of transfer learning (Taylor and Stone, 2009), curriculum learning

(Bengio et al., 2009) or learning from demonstration (Argall et al., 2009). In the

context of RL, transfer learning is generally concerned with how the behavior of an

agent trained on a previous task can be adapted to a new problem. For example,

Bou-Ammar et al. (2015) showed how control policies for UAVs learned in simulation

can be adapted using transfer learning techniques to work well for real world altitude

control of quadrotors. Curriculum learning, on the other hand, refers to a learning

framework in which an agent learns how to solve a series of tasks of incremental diffi-

culty. This strategy is based on insights stemming from the developmental psychology

literature (Elman, 1993); it has been noted that initially solving simple tasks allows

humans to eventually solve problems that they were unable to solve before. This

same principle applies to RL agents. Lastly, learning from demonstration has been

shown to be a viable approach for applying RL to humanoid robots. A robot can be

shown a few examples demonstrating the behavior needed to complete a task, learn

how to imitate those behaviors by using PD controllers, and apply RL techniques to

adapt the learned behaviors to new tasks (Mülling et al., 2010).

Even though leveraging prior experience to speed up learning for novel tasks has

been considered by others researchers to some extent, there is no consensus on how
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to best use prior experience. As we will discuss in the next chapter, a number of

different approaches have been tried with some success: directly adapting policies to

new tasks, learning a general initial policy that could be fine-tuned quickly, learning a

general value function (defined in the next chapter) that would allow for fast learning,

etc.

1.1 Contributions

In this thesis, we develop techniques to improve an agent’s learning abilities in

a set of related tasks by leveraging existing experience in two ways: discovering

temporal abstractions and learning how to explore. Throughout this thesis we make

the following contributions:

1. We develop a compression-based approach for identifying recurring action pat-

terns that form the basis of optimal behavior. These action patterns are given

by fixed length sequences of actions known as macros (McGovern and Sutton,

1998). Research in animal behavior suggests that, in nature, the complex be-

havior needed to achieve a difficult goal is obtained through simple building

blocks that are often reused (i Cancho and Lusseau, 2009), and it has been

argued that this is a consequence of compression in the information-theoretical

sense (i Cancho et al., 2013).

2. We extend the ideas that we developed in the first contribution to the more

general formulation of options (Precup, 2000). Options are a generalization of

macros in that, instead of executing a fixed sequence of actions, they maintain

an option policy, that governs the behavior of the agent while the option is

executing, and a termination function, that determines when the option termi-

nates. Because options are able to terminate when they deem necessary and are

able to select the action that seems appropriate given the current context, they
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are a more flexible alternative to macros. Based on insights obtained from com-

pression, we propose an objective, the optimization of which results in options

that are capable of generating optimal behavior.

3. Finally, we present a meta-learning framework for learning how an agent should

explore when solving a novel task. When an agent first faces a new task, it does

not know what behavior would lead to the desired result; thus the agent must

choose between acting for the sake of learning more about the task (exploration)

and acting according to what it believes to be best (exploitation). This trade-off

is a central problem in RL and is known as the exploration-exploitation dilemma.

The techniques introduced in Chapters 3 and 4 indirectly address this problem

by biasing the behavior of the agent towards those action patterns that were

found in previous optimal policies. Our last contribution directly addresses this

trade-off by exploiting the experience obtained from solving a small number

of tasks and learning a policy tailored for exploration that the agent can use

whenever it faces a new task.

1.2 Layout

The remainder of this dissertation is structured as follows:

• Chapter 2 (Background and Related Work): This chapter introduces concepts

and notations that are relevant to all chapters, and discusses research that is

relevant to the overarching topic of leveraging prior knowledge in RL.

• Chapter 3 (A Heuristic Approach to Macro Discovery through Compression

Techniques): This chapter argues that compression provides a means for identi-

fying reusable behavioral patterns and presents a framework for learning macro

actions based on compression techniques.
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• Chapter 4 (A Probabilistic Approach to Option Discovery): This chapter builds

on the insights obtained in the previous chapter and extends these ideas to derive

an optimization problem whose solution results in a set of reusable options.

• Chapter 5 (A Meta-MDP Formulation to Improve Exploration): This chapter

introduces a meta-learning framework to learn an exploration strategy that

allows an agent to explore efficiently in a distribution of related tasks.

• Chapter 6 (Conclusion and Future Research Directions): This chapter concludes

our work by summarizing the contributions of this thesis and proposes avenues

for future research.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents background and an overview of existing research relevant to

the overarching topic of leveraging prior knowledge in RL. We present standard nota-

tion used throughout this thesis and, in addition, each chapter contains background

and discusses related work tailored to its content.

2.1 Notation

We standardize notation in this dissertation as follows. Sets are denoted by cal-

ligraphic capital letters, e.g., X , and elements of the set by lowercase letters, e.g.,

x ∈ X . We use brackets when defining a set and parentheses to denote a sequence.

For example, X = {x, x′} refers to a set composed of elements x and x′, whereas

X = (x, x′) refers to a sequence beginning with the element x followed by the element

x′. We also denote as (xi)
n
i=1 the sequence (x1, . . . , xn), where xi refers to the ith

element in the sequence.

Random variables are denoted by capital letters, e.g., X, and scalar values by

lowercase letters, e.g., x. Lastly, in some cases equations might be too long, and must

therefore be split into multiple lines; in those circumstances we use × to denote scalar

multiplication being split across multiple lines.
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2.2 Markov Decision Processes

This dissertation focuses on sequential decision making processes; that is, pro-

cesses where an agent needs to optimize the sequence of decisions it makes with

respect to the environment with which it interacts. In this thesis, we formulate these

problems as Markov decision processes (MDPs): a mathematical framework for mod-

eling decision making where outcomes are, in part, the result of an external source of

stochasticity and, in part, the results of the actions taken by a decision maker.

The diagram in Figure 2.1 depicts how an agent interacts with its environment in

the MDP framework. The agent chooses an action a (based on the current state of

the environment) and interacts with the environment by executing a. After the action

is executed, the environment transitions to a new state, s, and the agent receives a

reward, r.

Figure 2.1: Diagram of agent-environment interaction in the MDP framework.

We use t to denote the time-step since the beginning of the process, such that

t = 0 refers to the initial time-step. The behavior of an MDP can be described

as follows: at time-step t the environment is in some state St, the agent takes an

action At, receives a reward Rt, and the environment transitions to a new state St+1.

This process repeats a number of times and terminates when the agent reaches an

absorbing state (a state which, once entered, cannot be left) or t = tmax, where tmax
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denotes the maximum number of time-steps allowed. We call the entire sequence of

decisions, from the beginning of the process until termination, an episode. After each

episode terminates, the environment is reset to an initial state S0 and the process is

repeated.

A policy, π, describes the mechanism by which the agent decides what action to

take given the current state of the environment. It determines the probability of the

agent selecting an action a at any given state s; that is, π(s, a) = Pr(At = a|St = s).

The performance of a policy is defined as: Jπ = E
[∑tmax

t=0 γ
tRt

∣∣π], where tmax can

be finite or tmax = ∞, and γ ∈ [0, 1] is a discount factor. Notice that if tmax = ∞

and γ = 1, Jπ could be unbounded, so we assume that both conditions are not true

simultaneously.

In intuitive terms, the performance Jπ of a policy π is the expected discounted

sum of rewards obtained by the agent in a particular MDP given that the agent acts

according to a policy π. The sum of rewards obtained during an episode is also called

the return. Throughout this thesis we will refer to the discounted sum of rewards

as the discounted return whenever it helps in simplifying discussion of the concepts

being presented.

A transition function, P , describes how the environment transitions between

states. A trajectory of length l, defined as Hl = (S0, A0, R0, . . . , Sl−1, Al−1, Rl−1, Sl),

denotes the sequence of states, actions, and rewards the agent experiences by inter-

acting with the environment for l time-steps. The objective of the agent is to learn

a policy that achieves the maximum discounted return possible. Such a policy is

referred to as an optimal policy, denoted as π∗, and is defined as:

π∗ ∈ arg max
π

E

[
tmax∑
t=0

γtRt

∣∣∣∣∣π
]

.

Formally, an MDP is defined as a tuple (S,A, P, d0, R, γ), where:
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• S is the state set of the environment. It defines the set of all possible states the

system could be in. An element of S is denoted by s, and we use St to refer to

a random variable representing the state of the environment at time-step t.

• A is the set of actions that the agent can take. An element of A is denoted by

a, and At refers to the random variable denoting the action taken at time-step

t.

• R is the reward function which characterizes the distribution over rewards at

time t given St, At, and St+1. We also use Rt to denote a random variable

representing the reward the agent receives at time-step t.

• P denotes the transition function that determines how states transition in the

MDP. The distribution over states at time t + 1 is fully determined by the

state of the environment and the action taken at time t. This property is

referred to as the Markov property. Formally P (s, a, s′) is the probability that

the environment transitions to state s′ after the agent takes action a at state s:

P (s, a, s′) = Pr(St+1 = s′|St = s, At = a).

Some algorithms, such as value or policy iteration (Sutton and Barto, 1998),

assume that P is known by the agent. When this is not the case, there are two

options: 1) to use algorithms that do not explicitly model P (e.g., Q-learning,

SARSA, Actor Critic methods) or 2) to estimate the transition dynamics by

making assumptions about the family of probability distributions to which P

belongs, and learning the parameters of that distribution through interactions

with the environment.

• d0 is the initial state distribution. That is, at time-step t = 0 the environment

will be in some state S0, sampled according to the distribution d0.
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• γ ∈ [0, 1] is a discount factor used to balance preference between long-term

and short-term rewards. A smaller value of γ means that the agent will try to

maximize shorter term reward.

A central concept to RL is the Q-function, defined as

Qπ(s, a) = E

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a, π

]
.

Intuitively, this function returns the value of taking action a in state s at time-step

t and then behaving according to the policy π thereafter; this value is referred to as

the Q-value. A useful property of the Q-function is given by the Bellman equation:

Qπ(s, a) = E
[
Rt + γ Qπ(St+1, At+1)

∣∣St = s, At = a, π
]
.

This property forms the basis of several popular algorithms; it implies that the Q

value associated with St and At can be determined from knowing the expected Q

value at St+1, At+1 and the expected value of Rt, given At and St. Similarly, the value

function is used to calculate the value of a state s under a policy π. It is defined as

V π(s) = E
[∑∞

k=0 γ
kRt+k+1

∣∣St = s, π
]
, and its Bellman equation is given by:

V π(s) = E
[
Rt + γ V π(St+1)

∣∣St = s, π
]
.

These two equations are of particular importance because many algorithms such as

Q-learning, value iteration or policy iteration, aim to approximate these two functions

in order to learn an optimal policy. There are two techniques that are commonly

used to approximate the value function or Q-function: tabular form and function

approximation. For an in-depth treatment of the topic we refer the reader to the

work by Sutton and Barto (2018).
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The tabular form refers to the practice of keeping in memory an estimate of V (s)

or Q(s, a) for all states s or state-action pairs (s, a) the agent has encountered thus far.

Because this technique maintains one value per state or state-action pair, algorithms

that use this approach are able to obtain accurate estimates of these values; in fact,

some algorithms like value iteration or Q-learning have been shown to converge to

the true value-function or Q-functions for an optimal policy when using a tabular

representation (Szepesvári, 1997).

A limitation of this approach is that it scales poorly as the number of states to

be considered increases. This drawback is often addressed by using function approx-

imation. The value function or Q-function are estimated from models Vθ or Qθ, with

parameters θ (e.g., neural networks), and the parameters can be learned from sam-

ples as the agent interacts with the environment. When taking this approach, the

convergence guarantees provided by the tabular form are lost, however it works well

in practice and allows an agent to learn complex policies that would be too compu-

tationally expensive to learn in tabular form (Mnih et al., 2015; Lillicrap et al., 2015;

Mnih et al., 2016).

Finally, in this thesis we consider the scenario where an agent needs to learn a

policy for several related tasks. We define a problem class to be a set, C, of tasks

c (MDPs), where c = (S,A, Pc, dc0, Rc, γ). That is, each element of a problem class

is an MDP defining its own transition function Pc, initial state distribution dc0 , and

reward function Rc. However, all tasks in C share the same state set, action set, and

discount parameter γ.

2.3 Experimental Environments

To study the behavior of the methods developed in this work and to illustrate

some of their properties, we selected a number of standard benchmarks problems used
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across the RL literature. Below we introduce each class of problems used throughout

this thesis, and describe how tasks vary within C. Each chapter will also present

specific problems used to test the methods developed therein.

2.3.1 Gridworld

In a Gridworld task, the environment can be represented by a grid of size n×m.

The agent is randomly placed in an initial state and the objective is to reach a specific

goal state. The state is represented by the (x, y) position in the environment and the

agent has four primitive actions at its disposal: move right, move left, move up or

move down. When testing for robustness to stochastic environments we consider the

case where, after executing an action, with probability 1 − α the agent moves in

the intended direction and, with probability α the agent moves in any of the other

directions at random. This is in contrast to deterministic environments, where the

agent moves in the intended direction with probability 1.0. If the agent executes an

action that would move it to a state that is blocked (an obstacle), the agent remains

in the same state.

Figure 2.2 shows two variations of a Gridworld problem. The agent is depicted in

red, the goal in green and obstacles are shown in black.

Figure 2.2: Example of two task variations in Gridworld.
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2.3.2 Animat

This type of problem was first introduced by Thomas and Barto (2011). The agent

is a circular creature that moves in a continuous state space with eight independent

actuators, angled around it in increments of 45 degrees. Each actuator can be either

on or off at each time step, so the action set is {0, 1}8, for a total of 256 actions. When

an actuator is on, it produces a small force in the direction that it is pointing. The

agent moves according to the following mechanics. Let d be the total displacement

given by an actuator β with angle θβ, the displacement of the agent for a set of active

actuators, B, is given by: ∆x =
∑

β∈B d cos(θβ) and ∆y =
∑

β∈B d sin(θβ). After

taking an action, the new state is perturbed by standard normal noise to simulate

stochasticity.

The agent is tasked with moving to a goal location; it receives a small negative

reward at each time-step and a large positive reward upon reaching the goal state.

The different variations of the tasks correspond to randomized start and goal positions

in different environments.

Two task variations for Animat are shown in Figure 2.3, showing the creature

with active actuators highlighted and the goal shown as a red circle.

Figure 2.3: Example of task variations in Animat.
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2.3.3 OpenAI Gym Suite

OpenAI Gym (Brockman et al., 2016) is a suite of benchmark problems specifically

devised for testing RL algorithms. The domain of available problems include robotic

simulations, video games, traditional control problems, among others. We modified

the implementation of several existing environments within Gym to allow us to define

task variations that would differ significantly in terms of their transition function,

reward function and initial state distribution. We will specify in each chapter when

and how we use problems from this suite to benchmark our methods.

2.4 Related Work

As mentioned in the introduction, we identified three main settings that result in

leveraging prior knowledge as a natural side effect of the problem formulation: transfer

learning, curriculum learning, and learning from demonstration. In this section we

review the relevant literature in more detail and present a discussion on temporal

abstraction—a prevalent technique for gaining useful insights from prior experience

that forms the basis of two of the main contributions in this work.

2.4.1 Transfer Learning in Reinforcement Learning

Pan and Yang (2010) defined the general transfer learning problem as follows:1

Given a source problem class CS and source tasks cS ∈ C ′S, where

C ′S ⊂ CS, a target problem class CT and target tasks cT ∈ C ′T , where

C ′T ⊂ CT , transfer learning aims to help improve the learning of optimal

policies π∗cT , for cT ∈ C ′T using knowledge obtained from learning optimal

policies π∗cS for cS ∈ C ′S.

1For clarity we adapt their definition to the notation used in this dissertation.
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For example, one might first learn optimal policies, π∗cS , for a set of source tasks,

cS ∈ C ′S, in a source problem class and use information gathered from learning each

π∗cS to quickly learn optimal policies for a set of target tasks cT ∈ C ′T . There are

two main type of problems that transfer learning is concerned with: inter-domain

transfer, where CS 6= CT , and intra-domain transfer, where CS = CT . From this point

of view, this thesis focuses on the setting where CS = CT ; that is, the tasks the agent

uses to gather experience are assumed to belong to the same problem class as the

tasks the agent faces later on.

In the context of RL, we can consider the work by Driessens and Džeroski (2004)

as a concrete example of transfer learning. The authors propose guiding the agent

during early stages of learning by using demonstrations or solutions to a number of

related tasks to fit a regression model to estimate the Q-function. When facing a new

problem, instead of randomly initializing the Q-function estimates, it is initialized

using the regression model; thus, transferring knowledge of the Q-functions of related

problems, and guiding the agent at the beginning stages of learning.

In a thorough survey of transfer learning for RL, Taylor and Stone (2009) identified

five metrics of interest to evaluate the benefits of transfer:

1. Jumpstart: The initial performance of an agent on a target task.

2. Asymptotic Performance: The performance of the final policy learned by an

agent in a target task.

3. Total Reward: The total reward accumulated by an agent over a fixed period

of time. In episodic tasks, this is the cumulative return of a learning agent and

can be visualized by the area under the learning curve—the curve depicting the

return obtained by an agent as a function of episodes.

4. Transfer Ratio: The ratio of the total reward accumulated by an agent using

transfer learning to that of an agent without transfer.
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5. Time to Threshold: The time needed by an agent to learn a policy that achieves

some pre-defined performance threshold.

For the problems we study, we evaluate the ability to generalize prior knowledge

by considering total reward or time to threshold (whichever is appropriate) as our

evaluation metrics.

2.4.2 Learning from Demonstration

Another approach for using prior knowledge to help an agent learn policies quickly

is learning from demonstration (LfD) (Argall et al., 2009). In this formulation, it is

assumed that an agent is shown examples of optimal behavior and the goal is to

derive policies that are capable of mimicking the demonstrated behavior. Naturally,

the derived policies are only able to adapt to regions of the state space that were

encountered during the demonstrations in a specific task. However, when an agent

encounters an unknown state or unknown task, the policy derived from demonstration

may provide a suitable initial guess which can be quickly fine-tuned.

The applications of LfD in RL are vast. It has been successfully used in real-

time systems to teach a robot how to play table tennis (Mülling et al., 2010) and

to play with a soccer ball (Grollman and Jenkins, 2007). It has also been used in

more abstract RL problems as a way of teaching an agent to better explore the state

space (Subramanian et al., 2016) or as a means to transfer human demonstrations

into baseline policies to improve an agent’s performance on a specific task (Taylor

et al., 2011).

2.4.3 Curriculum Learning

In the context of machine learning, curriculum learning was popularized by Bengio

et al. (2009). The authors proposed a framework for training neural networks inspired

by developmental psychology principles: start by training on simple problems and
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gradually increase the difficulty as the network reaches satisfactory performance. This

strategy is what makes it possible for humans to learn things that would otherwise

seem impossible to learn. The same principles apply to RL.

If the agent has a way of assessing the difficulty of a task, given a set of tasks it

is required to solve, it could choose to solve the simpler ones first and leverage the

policy learned to help in solving more difficult problems. In this regard, curriculum

learning is a general technique for reusing prior knowledge.

Although simple techniques for curriculum learning have been shown to be effec-

tive in practice, in the context of RL this area has not been studied as in depth as

transfer learning or LfD.

2.4.4 Temporal Abstraction

Temporal abstraction in RL (Precup, 2000) is a technique that oftentimes facil-

itates learning an optimal policy for difficult problems. In the original MDP for-

mulation, at each time-step the agent’s policy selects an action for execution, which

last for a single time-step. These are called primitive actions. Temporal abstraction

refers to the ability of an agent to execute temporally extended actions—actions that

can last for several time-steps. This framework is formalized in the formulation of

semi-Markov decision process (SMDP) (Sutton et al., 1999).

There are several formulations and algorithms that have been proposed for tem-

poral abstractions, like hierarchies of abstract machines (HAMs) or the MAXQ al-

gorithm (Parr and Russell, 1998; Dietterich, 1998). However, in this thesis we will

focus on two specific formulations: macros and options.

Macros are open-loop temporally extended actions: that is, sequences of actions

that are executed to termination regardless of the states encountered during execu-

tion. Formally, a macro of length k is a sequence of actions, m = (a1, a2, . . . , ak),

where ai represents the ith action in the sequence. If carefully constructed, macros
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can dramatically improve the speed with which an agent learns to solve a task. This

is because they bias the behavior of an agent towards certain action patterns; if these

action patterns are appropriate for the task at hand, they would allow the agent to

reach high-value states early on (McGovern and Sutton, 1998).

Options are a generalization of macros to closed-loop policies. An option, o =

(Io, µo, βo), is a tuple in which Io ⊆ S is the set of states in which option o can be

executed (the initiation set), µo is a policy that governs the behavior of the agent

while executing o, and βo : S → [0, 1] is a termination function that determines the

probability that o terminates in a given state. Options allow an agent to execute

high-level behaviors without having to consider each primitive action at each state

encountered during execution. For example, a mobile robot trying to exit a room

in an indoor environment could choose to execute a go-to-door option instead of

having to consider each individual action that is needed to exit the room. Because

they simplify the decision making process of the agent, options that are well suited for

an MDP usually lead to significant improvements in learning speed (Precup, 2000). In

this thesis, we assume that Io = S for all options o; that is, the options are available

at every state.

When an agent is able to plan by selecting options in an MDP, the process is

considered a SMDP. This formulation enables the agent to not only estimate the

Q-function of an option upon executing it, but also the Q-value of the primitives

executed by the option policy through intra-option learning (Sutton et al., 1999).

Whenever working with macros or options, we make use of intra-option learning to

speed up learning.

The definitions presented for macros and options, however, only provide a for-

malism for how to implement temporal abstraction in RL, but do not give us any

guidance about how those abstractions (macros or options) should be obtained, how

many are needed, or how an agent should use them. As we will show in this work,
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one viable approach is to use prior experience to find abstractions that are useful for

novel problems an agent might face.

In this work, we will use two state-of-the-art methods in temporal abstraction for

comparison: eigen-options, (Marlos C. Machado, 2017), and the option-critic archi-

tecture, (Bacon et al., 2017).

Eigen-options build on the ideas of proto-value functions (Mahadevan, 2005); by

using the graph Laplacian for the transition graph of a MDP, this method finds the

k eigen-vectors with largest eigen-values and learns options that allow an agent to

reach extreme states in the MDP by treating the eigen-vectors as pseudo-rewards.

The intuition behind this idea is that the identified options would allow an agent to

move quickly to the extremes of the transition graph, allowing it to better explore

the state space and quickly learn an effective policy. However, there are two major

drawbacks: it is not clear how to find the right number of options to learn, and each

option is obtained by solving a new MDP corresponding to each eigen-vector.

The option-critic architecture, on the other hand, directly learns options and a

policy over options while solving a new MDP. The options and policy over options are

defined by a set of parameters which are updated in order to optimize the expected

return the agent receives. As we will see in subsequent chapters, the ability of the

options learned by the option-critic to generalize to new problems is limited.

2.4.5 Generalization in the Context of Planning

Related to the problem of RL is that of classical planning. In this framework,

the goal is to identify a policy that optimizes some utility; unlike the case of RL,

the problems are generally specified by a description of pre-conditions, actions, post-

conditions, and goal states. Pre-conditions are characteristic of the current state

that must be true for certain actions to be available, and post-conditions are the

possible effects that a given action might have on the current state. In other words,
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this framework usually requires one to be able to specify goal states, and to have

a complete model of the world (assumptions not met in this thesis). When these

assumptions hold, and the search space is not prohibitively large, planning techniques

tend to yield better solutions than RL.

In the context of planning, the use of prior knowledge has been studied more

extensively than in RL. One early technique tackling generalization in robot planning

was presented by Fikes et al. (1993); the authors extend the original STRIPS planning

specification language to be able to generalize some of the solutions produced within

this framework. They propose replacing problem-specific constants found in STRIPS

plans with problem-independent parameters. This extension allows for the creation

of macro actions by reusing plans (or partial plans) found when solving similar tasks.

Another related approach is to extend the problem definition with partial plans,

or macros, found from a number of related problems (Newton et al., 2007). The

authors propose using genetic algorithms to generate a large pool of candidate macros,

evaluate each one of them in a set of simple problems, and incorporate the top k

performing macros to the problem definition.

There has been considerable amount of work that focuses on generalization, and

leveraging prior knowledge in the planning community (Botea et al., 2005; Srivastava

et al., 2010, 2011); however, most of these techniques take advantage of the structure

present in the planning formulation, and are therefore not directly applicable to the

RL setting treated in this thesis.
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CHAPTER 3

A HEURISTIC APPROACH TO MACRO DISCOVERY

THROUGH COMPRESSION TECHNIQUES

In many potential RL applications, an agent might have access to a set of tra-

jectories obtained from expert demonstrations for related tasks. These trajectories

might be provided by the user (perhaps handcrafted behaviors showing how to solve

some tasks) or, if the agent is required to solve a large number of tasks, solving a

small number of tasks could provide demonstrations of optimal behavior for a specific

class of problems.

In such a scenario, when facing a new task, it would be wasteful for an agent to

ignore this prior knowledge and learn how to solve a subsequent problem completely

from scratch. As mentioned in the introduction, research in animal behavior indicates

that complex behavior is derived from simple building blocks. For example, i Cancho

and Lusseau (2009) analyzed the behavior of bottlenose dolphins in the wild and

identified a set of simple behavioral patterns which, as a whole, describe the entire

behavioral repertoire displayed at the surface. They also found that the simpler

a building block is, the more often it tends to be used. This observation draws

a connection to compression; shorter encodings are used to represent the symbols

that are used more often. Although some researchers consider the fact that simpler

behaviors are used more often as a natural result of energy efficiency, it has also been

argued that this is a consequence of compression in the information-theoretical sense

(i Cancho et al., 2013)
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One way to improve an agent’s ability to learn a new task is through temporally-

extended actions, provided they are adequate for the task. In this chapter, we show

that ideas taken from the compression literature can be used to identify macros (akin

to behavioral building blocks) from recurring action patterns in trajectories obtained

from (near)-optimal demonstrations.

We consider the scenario where an agent is required to solve a large number of

different but related tasks, belonging to the same problem class. After an agent learns

optimal (or near-optimal) policies for a set of training tasks, trajectories from these

policies are sampled to generate demonstrations. From these trajectories we generate,

evaluate, and select macros that will be effective in solving subsequent tasks.

In this chapter, we present a general framework for identifying macro

actions appropriate to the problem class. We posit that useful macros are

building blocks of recurring behaviors and can be identified through com-

pression techniques. We introduce the notion of the utility of a macro,

which we call the U-value, and introduce a novel approach for evaluating

distances between macros. Of particular importance is the fact that this frame-

work naturally addresses a common problem that arises in popular option and macro

discovery techniques: including too many macros in the action set hinders the abil-

ity of an agent to learn an optimal policy (as the agents has too many decisions to

consider), while including too few forgoes the opportunity to leverage useful macros.

While many approaches in the temporal abstraction literature require to pre-define

the number of macros or options to be considered, the framework presented in this

chapter naturally results in a heuristic for finding an appropriate number of macros.

Our framework allow the agent to incorporate a small and diverse subset of effective

macros from a large number of candidates. The agent is then able to leverage the

identified macros to quickly learn a policy in new problems.
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This chapter is organized as follows. In Section 3.1 we provide a formal problem

description for this chapter. We present related work relevant to the content in

Section 3.2 and present an introduction to compression in Section 3.3. In Section 3.4

we describe the proposed framework and describe how compression can be used to

identify macros using one compression technique, LZW (Welch, 1984). We show the

benefits of our approach in Section 3.5 and conclude with closing remarks in Section

3.6.

3.1 Problem Description

We consider the setting where an agent is required to solve a set of tasks c ∈ C

sampled from a distribution over the problem class C. To evaluate our method, we

will use n sampled tasks to construct a set of training tasks, Ctrain, that will allow us

to identify a set of macros. We will then evaluate the performance of these macros

in a set of m tasks, Ctest, sampled from the same distribution; we assume that when

solving a particular task, the agent can interact with it for I episodes. Our goal is to

identify patterns in trajectories obtained from optimal policies for problems already

solved to improve learning in novel problems. We assume that macros identified

in trajectories of optimal policies in a set of representative training tasks will be

useful to solve other related tasks obtained from the same problem class, as they

represent recurrent behavioral building blocks. This assumption is supported by our

experimental results.

As a concrete example of this type of problem, consider the case of an agent tasked

with allocating cloud resources as described by Liu et al. (2017). In early stages of

training, while the agent has not yet found a good performing policy, resources are

allocated sub-optimally, which results in large latency and power consumption relative

to an optimal policy. If the agent were able to improve its effectiveness in learning,
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it would be able to quickly reach an efficient resource allocation policy in any new

problem it might face. In such a scenario, the agent could learn optimal policies

for a small sub-set of resource allocation problems, Ctrain, analyze trajectories from

these policies, and identify macros to quickly obtain efficient policies for a set of novel

problems, Ctest.

We define the performance of a set of macros,M, in a particular task c to be the

expected average return an agent receives over I episodes on a task c using an extended

action set AM = A ∪M (an action set composed of both primitives and macros).

Formally, we define the performance as ρ(M, c) = E
[
1
I

∑I
i=0

∑T
t=0R

i
t

∣∣∣AM, c], where

Ri
t is the reward at time step t during the ith episode, the implication being that the

agent uses some learning algorithm to update its policy and the performance of a

set of macros is defined by how quickly those macros allow an agent to increase its

expected return during training.

Formally speaking, let C be a random variable denoting a task drawn

from C; our objective is to find one (of the many possible) optimal set of

macros M∗ for C according to the following criterion:

M∗ ∈ arg max
M

E [ρ(M, C)] . (3.1)

Unfortunately, the domain of the objective (3.1) is discrete, making it non-differentiable,

and ρ cannot be easily evaluated, so directly solving for M∗ is a difficult problem.

As previously argued, compression techniques could be used to identify recurring be-

haviors; if applied to demonstrations obtained from optimal policies, these techniques

would allow an agent to identify macros that are efficient for learning how to solve

new related tasks. In this chapter we will show one heuristic method in which com-

pression can be used to generate a set of candidate macros, and how to approximate

the set M∗ by incorporating the set of top performing and diverse macros, M′, to

the agent action-set.
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For the framework developed in this chapter, we assume that we are able to

estimate the Q-values for all actions a ∈ A and states s ∈ S, and also the transition

function Pc by assuming a family of distributions to which it belongs. We also consider

the case where π∗ is greedy with respect to Q; that is, at any state the optimal policy

always chooses the action with highest value. As we will see in the rest of this chapter,

these assumptions allow us to efficiently estimate the utility of a macro.

Although the method proposed in this chapter is motivated by principled methods

related to compression, it is worth noting that in practice we do not optimize the

objective in (3.1) directly. Instead, in this chapter we focus on developing a practical

method motivated by the compression literature.

3.2 Related Work

In this section, we review work related to the discovery of macro actions and

provide a brief introduction to the concepts of compression relevant to this chapter.

3.2.1 A Motivating Example for the Use of Macro Actions

We justified the benefits of macros by discussing an example occurring in nature;

however, we would now like to motivate macros by looking at a concrete example of a

study performed by McGovern and Sutton (1998). In their work, the authors analyzed

the effect macros have on learning performance and how they can either improve or

hinder learning efforts depending on how macros are constructed and what specific

task an agent is trying to solve. One experiment in particular demonstrates these

effects clearly.

Figure 3.1 shows the effect that certain macros might have in a problem class when

using the learning algorithm Q-learning (Watkins and Dayan, 1992). The objective

in this problem is for the agent to navigate to the goal state, marked with the letter
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G, starting from the state marked with the letter S. The agent has four primitive

actions: move left, right, up and down, and the macros are defined by executing one

of the actions repeatedly enough times to reach the edge of the grid.

Figure 3.1: Effect of macros on learning. The plot on the left shows that Q-learning

with macros is able to learn a policy to reach the goal much quicker than without

using macros for this goal location. The plot indicates that the opposite effect is

possible if the goal is located in a different position. Figure adapted with permission

by McGovern and Sutton (1998).

The figure compares the learning performance of two different agents in two dif-

ferent tasks: the curve marked macro-Q shows the learning performance of an agent

using macro actions and the curve marked Q refers to the learning performance of an

agent using only primitive actions. In the figure on the left, the goal was placed at

the top of the grid. The learning curves indicate that using macros clearly speed up

learning for this particular task. On the other hand, the plots corresponding to the

figure on the right indicate that, when the goal is being placed at the center of the
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grid, the use of these macros actually hinders the ability of the agent to quickly learn

a good policy.

The reason for this difference in learning efficiency becomes evident when looking

at Figure 3.2. The plots show the distribution of state visitations from 500,000 steps

of the agent when there is no goal. The graph on the left refers to an agent using

only primitive actions and shows that the distribution of state visitation is roughly

uniform throughout the state space. On the other hand, the graph on the right shows

the same plot when the agent is allowed to use the macros defined previously. These

macros bias the behavior of the agent to visit states at the edge of the grid, making

these areas easier to reach, but states in the center harder, which is consistent with

the results shown in the previous figure.

Figure 3.2: State visitation distribution for the environment when randomly selecting

primitive actions (left) and both primitive and macros (right). Figure adapted with

permission from work done by McGovern and Sutton (McGovern and Sutton, 1998).

These experiments intend to show that the bias induced by a set of macros can be

highly beneficial if crafted correctly. If the macros encode behavioral building blocks

that occur frequently in optimal behaviors for many related tasks, they should allow

the agent to learn quicker in novel tasks that related to the ones from which macros

were obtained.
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3.2.2 Option and Macro Discovery

As mentioned earlier, macros and options have the potential of simplifying learn-

ing (near)-optimal policies for difficult tasks. These techniques allow the agent to

“commit” to some behavior for an extended period of time, simplifying the decision

making process of the agent’s policy, which can result in improved learning speed.

This potential learning improvement has led to the development of methods for iden-

tifying useful options or macros to become an active area of research under the name

of skill discovery.

One approach for discovering options is to identify important states in the tran-

sition graph of an MDP and learn policies that would lead the agent from any region

of the state-set to those specific states. McGovern and Barto (2001) propose splitting

trajectories into successful and unsuccessful trajectories based on whether they were

able to reach a pre-determined goal state. These trajectories are then analyzed to

identify bottleneck states, and options can be obtained by learning policies that cause

the agent to reach those bottlenecks. A more recent approach based on a similar

principle is the eigen-options method presented by Machado et al. (2017). The au-

thors show that by analyzing the transition graph of an MDP—the graph obtained by

representing states as vertices and possible state transitions as edges—it is possible

to obtain options, called eigen purposes, that allow an agent to efficiently move to

distant regions of the state space. The intuition is that by learning options that can

reach the extreme states of the transition graph, the agent is able to better explore

the state space. These methods, however, exhibit a major drawback: they require

the full transition graph to be known in advance in order to be efficient. For complex

problems, this is an unattainable requirement.

Many other techniques for discovering macros or options do not suffer from this

drawback of relying on identifying specific states (Randl, 1998; Krishnamurthy et al.,

2016; Menache et al., 2002; Bacon et al., 2017); however, many are still limited in
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their application because they assume that the transition graph will be the same in

future tasks.

Lastly, another interesting approach is that of Hansen et al. (1996), where macros

emerge naturally from optimizing the proposed objective. The authors consider the

case where there is a cost associated with sensing; for example, the power drawn from

a battery in a mobile robot when observing its environment. In this setting, it is

possible for an agent to learn when to act in an open-loop fashion, and when to act

close-loop (i.e., when to sense), thus, minimizing the power drawn from the battery

and prolonging the life of the agent. The authors show that by including an action

of “sensing” that incurs in a cost every time it is called, it is possible to use RL

techniques to learn when and how long to act open-loop, and what actions to take

while doing so; essentially, learning open-loop macros.

In contrast to the techniques mentioned, the framework we propose in this chapter

makes minimal assumptions about the structure of the problem, and potential macros

are evaluated offline based on the Q-values estimated for primitive actions.

3.3 A Brief Introduction to Compression

The goal of compression is to represent messages or data in a compact manner by

reducing the number of symbols needed to express that information. Many compres-

sion algorithms share the same building blocks and their differences lie in how those

elements are constructed and used. For the reader interested in a detailed treatment

of the topic we refer them to the work by Salomon and Motta (2009). In this section

we introduce the concepts relevant to the framework presented in this chapter.

Many compression algorithms pre-define or incrementally build a set of symbols

called an alphabet; we refer to this alphabet as Σ. Accompanying the alphabet

there is also a codebook defining a unique binary representation for each symbol in Σ;
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this representation is referred to as a codeword. The alphabet contains all symbols

that might be present in a message and the goal of compression is to represent the

original message using the smallest number of bits possible. Compression techniques

can be classified in two types: lossy compression, where compression is achieved

through approximate techniques, thus losing part of the original information, and

lossless compression, where the original message can be recovered exactly from the

compressed representation. We only consider the case of lossless compression.

Once the codebook is obtained, new messages can be expressed in binary form

by mapping each symbol (or sequence of symbols) in the message to a codeword

in the codebook. For example, consider two alphabets Σ1 = {a, i, h} and Σ2 =

{a, i, h, hi}, with corresponding codebooks A = {00, 01, 10} and B = {00, 01, 10, 11}.

Furthermore, consider encoding a message α = “hi” under each different codebook.

The shortest binary representation of α under codebook A would be 1001 (h = 01,

i = 10); however, under codebook B, it would be represented as 11 (hi = 11).

This is a simple example of how compression techniques are able to find a compact

representation to express messages. If we had to consider compressing many messages,

the compression techniques we use would have to create a short binary representation

for those sequences of symbols that occur more frequently.

3.4 A Heuristic Approach for Approximating M∗

The proposed framework can be summarized by the diagram shown in Figure

3.3. We assume the agent has trained in a set of tasks Ctrain ⊂ C ′ and has obtained

an optimal policy π∗c for each task. The agent then samples n trajectories from

each policy π∗c for task c. Once these samples have been obtained, our framework

generates a set of macros M′ as an approximation to M∗ by a 3-step process: 1)

macro generation, 2) macro evaluation, and 3) macro selection.
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Figure 3.3: Diagram depicting proposed framework.

3.4.1 Macro Generation - A Compression Approach for Identifying Re-

current Action Sequences

There are many possible ways to generate macros from sampled trajectories. One

approach would be to simply analyze all possible sequences of actions that can be

obtained from these samples. However, this would be an expensive procedure and

would generate an extremely large number of macros; combinatorial in the length of

the sampled trajectories, to be precise. As a practical strategy to deal with this issue,

we propose using compression techniques to generate candidate macros.

Consider a trajectory h obtained by following the sequence of primitive actions

(a, b, c, d) obtained from some trajectory h. We will refer to the sequence of actions

that originated a trajectory h as an action-trajectory ha. From the perspective of

compression, we view ha as a message to be compressed and the primitive actions

a, b, c, d as the symbols initially available in the alphabet. Some compression algo-

rithms, like Huffman Coding (Huffman, 1952), require one to specify the codebook

with all available symbols before compressing a message. In our context, this corre-

sponds to specifying beforehand all possible macros to be considered, which would

defeat the purpose of using compression to identify macros. For that reason, we

consider algorithms which incrementally build the codebook from an initial set of

symbols, such as LZW (Welch, 1984). Using this type of algorithm to compress an
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action-trajectory, ha, would result in building repeating sequences of symbols that are

incorporated into the alphabet; allowing us to identify new macros during compres-

sion. In other words, initially the symbols in the alphabet represent only primitive

actions and, after compression, the alphabet will also contain symbols representing

macros.1 A similar application has been proposed by Elliott and Huber (2005), where

the authors proposed using compression for discovering sequences of actions that are

often performed by a user in desktop applications, so that the system can assist a

user in completing a task.

Following this intuition, we compress the sampled action-trajectories and, from

the symbols defined in the final codebook, we obtain a set of candidate macros,M, to

be evaluated. Because these symbols are the ones that allow optimal trajectories to

be compressed, they are (by construction) frequently recurring in those trajectories.

In other words, they constitute behavioral building blocks that are often present in

optimal trajectories in tasks belonging to a specific class of problems. For this reason,

they represent good candidates for reusable macros.

In our implementation, we selected LZW (Welch, 1984) as a compression algorithm

because of its simplicity and efficiency in populating the codebook. Algorithm 1 shows

our adaptation to encode action-trajectories as macros.

3.4.2 Macro Evaluation - The Utility of a Macro

Algorithm 1 would possibly generate a very large set of candidate macros, M,

that were identified from action patterns in the sampled trajectories. However, we

do not have a sense of how useful they are in relation to each other. One way of

evaluating the macros would be to re-train the agent on the training tasks, adding

1It is worth noting that not all compression algorithms build their alphabet incrementally, but

many popular ones (such as LZW) do.
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Algorithm 1 LZW - macro codebook generation

1: Σ = A

2: macro m = ()

3: for each action-trajectory ha do

4: for i = 1 . . . |ha| do

5: ai = ith element in ha

6: m = m+ ai

7: if m 6∈ Σ then

8: Σ = Σ ∪ {m}

9: m = ()

each macro in turn to the action-set and assessing the resulting improvement with

respect to only using primitive actions. However, for large primitive action sets there

could be thousands of macros identified, making this a computationally expensive

strategy. To address this problem, we define a score for evaluating a macro in a

problem class that can be efficiently computed offline, in closed-form, based on the

Q-values of primitive actions.

Recall that in a task c, the Q-value for a state s and action a under a policy π

can be calculated by the Bellman equation, defined as:

Qπ
c (s, a) = E

[
Rt + γ Qπ

c (St+1, At+1)
∣∣St = s, At = a, π

]
.

This implies that the Q value at St and At can be determined from knowing the

expected Q value at St+1, At+1 and the expected value of Rt, given At and St.

We can generalize the definition of the Q-value for a primitive action to an arbi-

trary macro m of length l. We denote by m(i) the ith action in macro m, and define

the Q-value for a macro m in a state s as:

Qπ
c (s,m) = E

[ l∑
i=t

γi−tRt + γt+lQπ
c (St+l, At+l)|St = s, At = m(1), · · · , At+l−1 = m(l)

]
.

33



With this definition in hand, we propose determining the utility of a macro m

over a problem class C by the U-function defined as:

UC(m) = E
[
Qπ
∗
C (S,m)

]
, (3.2)

where the expectation is defined over both tasks C and states S sampled from the

on-policy distribution (Sutton and Barto, 2018) of the optimal policy for each corre-

sponding task. In other words, we defined the utility of a macro m to be the expected

Q-value of m over all states in a problem class C assuming the agent behaves according

to the optimal policy for all tasks c ∈ C.

Assuming that compressing action-trajectories generates a large number of can-

didate macros, learning the true utility of macros as defined in Eq. (3.2) for each

candidate becomes computationally expensive, particularly if the size of S is large.

However, given our stated assumption that π∗ is greedy with respect to Q and we

have an estimate for the Q-functions and transition functions, this formulation allows

us to compute the U-values offline for all macros in closed-form. This property is

shown in Theorem 1. For clarity we write Pc(s
(t), a, s(k)) ,where k > t, in place of

Pr(Sk = s(k)|At = a, St = s(t)). We also denote by s(k) the state visited after execut-

ing k actions from state s, and denote by Rc(s
(t),m, s(k)) the reward accumulated by

executing macro m at state s(t) in task c.

Theorem 1. Let π be a policy, c ∈ C a task in problem class C, and Qπ
C(s, a) be the

Q-value of executing action a ∈ A in state s ∈ S. The Q-value, Qπ
C(s,m), of a macro

m of length l (and consequently Uπ
C (m)) can be computed in closed-form by:

Qπc (s,m) =

l∑
k=1

[ ∑
s(1)∈S

· · ·
∑
s(l)∈S

(
Q(s(k−1),m(k))− γk

∑
a′∈A

π(a′, s(k))Qπc (s(k), a′)

)

×
∏l
i=1 Pc(s

(i−1),m(i), s
(i))

Pc(s(k−1),m(k), s(k))

]

+
l∏

i=1

Pc(s
(i−1),m(i), s

(i))γ(l)
∑
a′∈A

π(a′, s(l))Qπc (s(l), a′).

(3.3)
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Proof. Assume we know the true Q function for a policy π in task c. Let s(i) denote

the ith state encountered by executing macro m at state s. We can calculate the

Q-value of a macro m of length l at state s as follows:

Qπ
c (s,m) =

∑
s(l)∈S

Pc(s
(0),m, s(l))

(
Rc(s

(0),m, s(l)) + γl
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

)

=
∑

s(1),...,s(l)∈S

(
Pc(s

(0),m(1), s
(1))× · · · × Pc(s(l−1),m(l), s

(l))
)

×

(
Rc(s

(0),m, s(l)) + γl
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

)
=

∑
s(1),...,s(l)∈S

(
Pc(s

(0),m(1), s
(1))× · · · × Pc(s(l−1),m(l), s

(l))
)

×
(
Rc(s

(0),m(1), s
(1)) + · · ·+ γ(l−1)Rc(s

(l−1),m(l), s
(l))

+ γl
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

)

=
∑

s(1),...,s(l)∈S

l∏
i=1

Pc(s
(i−1),m(i), s

(i))

×
(
Rc(s

(0),m(1), s
(1)) + · · ·+ γ(l−1)Rc(s

(l−1),m(l), s
(l))

+ γl
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

)

=
∑

s(1),...,s(l)∈S

l∏
i=1

Pc(s
(i−1),m(i), s

(i))Rc(s
(0),m(1), s

(1))

+ · · ·+
l∏

i=1

Pc(s
(i−1),m(i), s

(i))γ(l−1)Rc(s
(l−1),m(l), s

(l))

+
l∏

i=1

Pc(s
(i−1),m(i), s

(i))γ(l)
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

=
∑

s(1),...,s(l)∈S

Pc(s
(0),m(1), s

(1))Rc(s
(0),m(1), s

(1))

∏l
i=1 Pc(s

(i−1),m(i), s
(i))

Pc(s(0),m(1), s(1))

+ · · ·+ Pc(s
(l−1),m(l), s

(l))γ(l−1)Rc(s
(l−1),m(l), s

(l))

∏l
i=1 Pc(s

(i−1),m(i), s
(i))

Pc(s(l−1),m(l), s(l))
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+
l∏

i=1

Pc(s
(i−1),m(i), s

(i))γ(l)
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

=
∑

s(1),...,s(l)∈S

(
Pc(s

(0),m(1), s
(1))Rc(s

(0),m(1), s
(1)) + γ

∑
a′∈A

π(a′, s(1))Qπ
c (s(1), a′)

− γ
∑
a′∈A

π(a′, s(1))Qπ
c (s(1), a′)

)∏l
i=1 Pc(s

(i−1),m(i), s
(i))

Pc(s(0),m(1), s(1))

+ · · ·+
(
γ(l−1)Pc(s

(l−1),m(l), s
(l))Rc(s

(l−1),m(l), s
(l))

+ γl
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)− γl

∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

)

×
∏l

i=1 Pc(s
(i−1),m(i), s

(i))

Pc(s(l−1),m(l), s(l))

+
l∏

i=1

Pc(s
(i−1),m(i), s

(i))γ(l)
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

=
∑

s(1),...,s(l)∈S

(
Q(s(0),m(1))− γ

∑
a′∈A

π(a′, s(1))Qπ
c (s(1), a′)

)

×
∏l

i=1 Pc(s
(i−1),m(i), s

(i))

Pc(s(0),m(1), s(1))

+ · · ·+
(
γ(l−1)Q(s(l−1),m(l))− γl

∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

)

×
∏l

i=1 Pc(s
(i−1),m(i), s

(i))

Pc(s(l−1),m(l), s(l))

+
l∏

i=1

Pc(s
(i−1),m(i), s

(i))γ(l)
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

=
l∑

k=1

[ ∑
s(1)∈S

· · ·
∑
s(l)∈S

(
Q(s(k−1),m(k))− γk

∑
a′∈A

π(a′, s(k))Qπ
c (s(k), a′)

)

×
∏l

i=1 Pc(s
(i−1),m(i), s

(i))

Pc(s(k−1),m(k), s(k))

]
+

l∏
i=1

Pc(s
(i−1),m(i), s

(i))γ(l)
∑
a′∈A

π(a′, s(l))Qπ
c (s(l), a′)

(3.4)
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Notice that this expression is given in terms of the Q-values of primitives and does

not depend on the reward function (other than through the Q-values of primitives),

and consequently, the U-values can be calculated in closed form offline. Having access

to the Q-values of primitives for a set of tasks is a reasonable assumption; considering

that the agent is required to solve a number of MDPs anyway and that algorithms like

Q-learning, (Watkins and Dayan, 1992) and DQN (Mnih et al., 2015) approximate the

optimal Q-function. If the agent uses these techniques to learn an optimal policy for

the tasks in Ctrain it will have a reasonable approximation to Q(s,a) readily available

for all s ∈ S and a ∈ A.

We also need to consider how introducing a new element to the action set affects

the terms
∑

a∈A π(a, s)Qπ
c (s, a), for an action a and state s in Eq 3.3. Specifically,

introducing a new element to the action set changes the distribution given by π. There

are two cases we need to consider that will affect how we can compute the Q-value

of a macro from the Q-values of primitives: when the policy is greedy (at any state,

π always takes the action with largest Q-value) and when the policy is stochastic (at

any state, there is a non-zero probability that π will pick any action).

In the case of a greedy policy notice that:
∑

a′∈A π(a′, s)Qπ
c (s, a′) = max

a′∈A
Qπ
c (s, a′).

Furthermore, by definition, there is always a state-primitive pair whose Q-value is

no smaller than the largest state-macro pair Q-value2. Consequently, we have that

max
a′∈A

Qπ
c (s, a′) = max

a′∈AM
Qπ
c (s, a′) for any set of macros M. This implies that the

addition of new macros to the action-set does not affect the value of the existing

elements in the set.

In the case of stochastic policies, introducing a new element in the original action-

set of the agent does affect the summation over all actions. When introducing a new

element to the action set, the probability distribution defined by π will necessarily

change as well and the value of a macro can no longer be calculated in closed form.

2A macro, m, is composed of a sequence of primitives, so at every state there is always a primitive,

p, that would allow to reach the same state as m. Therefore, the Q-value of p under a greedy policy

cannot be less than the Q-value of m.
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However, we can use the Q-values calculated for primitives as a starting point and

apply the Bellman equation to quickly obtain the correct Q-values.

3.4.3 Macro Selection - Encouraging Macro Diversity

We can use the U-value to estimate which macros we generally believe will lead

to higher rewards. However, there is a trade-off we must account for when extending

the agent’s action set. If too few macros are included in the action set, the agent

might miss out on the ability to better explore the state space; on the other hand,

including too many will result in the agent having too large of an action-set, which

will hinder learning. This trade-off has also been observed in the context of options

by Machado et al. (2017). We tackle this problem by defining a distance function

between macros and only including those that are dissimilar enough to the rest of

the action-set. Note that in what follows, we make the assumption that a distance

measure for the state space is available.

Let St be a random variable denoting the state where m is executed and St+lm the

state where m finishes execution. Furthermore, let X = d(St+lm , St) denote a random

variable, with support X , describing the change in state caused by the execution of

m, where d is a distance measure for the state space, and let pm be the distribution of

X for macro m. We refer to pm as the end-state distribution. We define the distance

between two macros m1 and m2 to be the KL divergence between pm1 and pm2 , that

is:

DKL(pm1||pm2) = −
∑
x∈X

pm1(X = x) log

(
pm2(X = x)

pm1(X = x)

)
.

In the case of continuous state spaces, we discretize the distribution into appropriately

sized bins or buckets.

Figure 3.4 shows the empirical end-state distribution calculated for four macros

in the maze navigation problem class (introduced in the next section), where the

macros m1,m2,m3,m4 are defined by repeating the same primitive action five times.

The possible primitive actions are given by r, l, u, d and they allow the agent to move

in the environment right, left, up or down, respectively. The figure intends to show
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that macros reflect their similarity (or differences) in the effect that they have in

the distribution of state transitions, and we can use the distance between end-state

distributions that results from executing two macros as a measure of the similarity

between those macros.

(a) End-state distribution for macro m1 (b) End-state distribution for macro m2

(c) End-state distribution for macro m3 (d) End-state distribution for macro m4

Figure 3.4: End-state distribution for macros m1, m2, m3 and m4 in the maze nav-

igation problem class (described in experiments section). The primitive action-set

is composed of actions r, l, u, d, and macros defined as follows: m1 = (r, r, r, r, r),

m2 = (l, l, l, l, l), m3 = (u, u, u, u, u), m4 = (d, d, d, d, d), where primitive actions

r, l, u, d move the agent one state right, left, up or down, respectively.
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The set M′ is then incrementally built by only including those macros that have

a minimum distance δ to all other macros that have already been included in the set.

By selecting macros in descending order according to their U-value, the U-function

defines a preference criterion by which macros can be selected.

Pseudocode describing our macro discovery framework is given in Algorithm 3.

Algorithm 2 Macro discovery framework

1: 1. Macro Generation

2: Learn optimal policy π∗c for all c ∈ Ctrain.

3: Collect action-trajectories ha from each π∗c in task c.

4: Generate macros M from all ha by Algorithm 1

5:

6: 2. Macro Evaluation

7: Sort all m ∈M by U
π∗c
C (m) in descending order.

8:

9: 3. Macro Selection

10: AM′ = A

11: for m ∈M do

12: if minDKL(pm||pm′) > δ,∀m′ ∈ AM′ then

13: AM′ = AM′ ∪ {m}

14: return AM′

3.5 Experimental Results

In this section we present experimental results demonstrating that the identified

macros lead to improved learning speed. In this section we aim to answer the fol-

lowing questions: 1) what is the effect that each stage of our framework has on the

macros that are identified? 2) how does the learning speed of an agent using the

identified macros compare to baselines and competing methods? and 3) how does
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our method scale in complex problems where the transition function and Q-values

must be estimated from data?

We also show through experiments that, because they are simple and general, the

identified macros can be beneficial when the tasks used for evaluation may have a

different transition graph than the ones used for training.

3.5.1 Does Each Stage Serve a Purpose?

In the previous section we introduced an intuitive 3-stage framework for obtaining

generally useful macros, but we have not shown what the effect of each component

is in identifying the final set of macros. To better understand the behavior of our

framework, we evaluated the results obtained at each stage of the process on several

tasks of Gridworld, introduced in Section 2.3.1. This experiment is meant to show

how at each step of the process, the identified macros improve the performance of a

learning agent and how it compares to the performance of an agent using primitive

actions only. Figure 3.5 shows average learning curves (return obtained by the agent

as a function of training episodes) and standard error over ten different Gridworlds.
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Figure 3.5: Stage evaluation in the macro discovery framework.

The curve in red is our baseline, an agent learning using only primitive actions.

The curve in blue shows the performance by including all generated macros in the

action set. In this experiment the first stage of our framework generated 500 possible

macros. As expected, including such a large number of potential actions is detrimental

and so performance suffers significantly.

The curves in black and orange provide an evaluation of the second stage. In

orange, the plot shows the mean performance over ten trials of 20 randomly sampled

macros generated at the first stage. In black, the plot shows the performance of

the top 20 generated macros ranked according to their U-value. This performance

improvement compared to randomly selecting macros gives a clear indication that,

on average, using the U-value to assess the utility of a macro is a reasonable indicator

of how useful a macro might be. However, similar macros would have similar utility,

42



and solely basing the selection on utility limits how diverse the identified macros will

be.

Finally, in green we show the performance of the macros selected, based not only

on their utility, but also on their diversity as proposed on our framework. The final

set of macros shows a substantial improvement over each individual stage, showing

that encouraging diversity of high-utility macros works well in practice.

3.5.2 Evaluation on Benchmark Problems

Through the previous experiments, we provided evidence that each step in our

framework accomplishes the desired result. We now discuss results showing that the

identified macros can lead to large performance improvement on a wide range of RL

benchmarks.

We first present tests comparing the performance between our framework and

using only primitive actions in the chain problem (introduced in the next section).

This is a simple class of problems that allows us to easily assess the behavior of our

approach and understand the type of macros that it identifies.

We then evaluate the quality of the macros identified in more complex problems.

For these cases, we contrast our approach to using eigen options (Marlos C. Machado,

2017) and the Option-Critic architecture (Bacon et al., 2017); two state-of-the-art

methods for learning temporal abstractions in RL. These techniques work in a similar

setting to ours, where the agent first interacts with a number of tasks and those

experiences can then be leveraged to facilitate learning in novel, but related problems.

As learning algorithms we used Q-learning when representing the Q-function in

tabular form (Whitehead, 1991) and, when dealing with more complex environments

that require the use of function approximation, we used deep Q-networks (DQN)

(Mnih et al., 2015). Q-learning is an algorithm that approximates the Q-function for

an optimal policy; the agent can then follow an optimal policy by taking the action

with highest Q-value at each state it encounters. When implementing Q-learning

in tabular form, the algorithm is guaranteed to converge to the optimal Q-function
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(under certain assumptions). DQN is a variation of Q-learning where the Q-function

is approximated by deep neural networks. Even though the convergence guarantees

of Q-learning are lost when using neural networks, DQN is capable dealing with with

very large state spaces and works well in practice.

Our experiments show that despite macros being a simple open-loop alternative

to options, they are sufficient to generalize to novel problems and result in improved

performance relative to the competing methods. A description of each problem used

for experimentation can be found in Chapter 2.

3.5.3 Chain Domain

In this problem class, the agent originally has at its disposal two primitive actions,

A = {a1, a2}. The states and transitions between states in each task form a chain,

meaning that each state has two possible transitions, move to the state to the right

or move to the state to the left. Given a state sk at position k in the chain, action a1

moves the agent to state sk+1 but with a small probability the agent moves to state

sk−1. Similarly, after taking action a2, the agent moves to state sk−1 but with a small

probability it moves to state sk+1. The agent receives a small reward of +10 at the

closest end of the chain and a large reward of +1,000 at the end that is farther away.

Two different different tasks within the chain problem class are shown in Figure 3.6.

The agent’s initial position is shown as a gray square within the chain, the state which

results in the largest reward is shown in red at the farther end of the chain (relative

to the initial position), and the state resulting in the smallest reward is shown in blue

at the closer end of the chain. Each cell indicates a different state in the chain.
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(a) Chain task example 1 (b) Chain task example 2

Figure 3.6: Example tasks for chain problem class. The agent starts in the location

shown as a gray square within the chain. High and low reward states shown in red

and blue, respectively.

For our implementation of the chain problem class, the agent receives a reward

of −1 at each time-step, a small reward of +10 upon reaching the closest end of the

chain and a large reward of +1,000 when reaching the farthest end of a chain. We

found that setting the value δ = 2.0, to filter macros, worked well for this problem.

As a reminder of what constitutes a task in this type of environments, two different

different tasks within the chain problem class are shown in Figure 3.6. The agent’s

initial position is shown as a gray square within the chain, the state which results

in the largest reward is shown in red at the farther end of the chain (relative to the

initial position), and the state resulting in the smallest reward is shown in blue at

the closer end of the chain.

We study this domain as an intuitive example of the type of problems where simple

open-loop macros can lead to a substantial improvement in an agent’s performance.

In this problem class, if the agent only has access to primitive actions, oftentimes the

policy will converge to a sub-optimal policy. One reason for this is that primitive

actions are often not enough for an agent to visit all ends of the chain in early stages

of learning, and so the agent settles for a sub-optimal behavior. However, when given

access to an appropriate set of macros, the agent is able to reach both ends of the

chain early in its lifetime and learn the optimal policy for a specific task.

Figure 3.7 depicts the mean reward accumulated by the agent while learning how

to solve 20 different test chains after using only four tasks for training to generate

candidate macros. For training we used chains of 10 states, which are short enough

that the optimal policies could be learned easily, and tested on chains of 50 states.
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Figure 3.7: Comparison of mean learning curve (and standard error) over 20 randomly

generated chains.

The chains were generated by randomly sampling an integer between 0 and 10 for

training and between 0 and 50 for testing corresponding to the initial state of the

agent. Upon reaching the end of the chain that is closer to the initial state the agent

received a reward of +10 and a reward of +1,000 when it reaches the farther end of

the chain.

The results show that, on average, the policy of an agent equipped only with prim-

itive actions converges to a sub-optimal behavior, since it hardly ever discovers the

farthest end of the chain containing the largest reward. As the action-set of the agent

is augmented with macros, the agent’s behavior is biased by known well-performing

action patterns; thus, facilitating finding an optimal solution to the different tasks.
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3.5.4 Gridworld

The previous experiment allowed us to see that using an appropriate set of macros

could enable an agent to reach an optimal policy when only having access to primitive

actions would fail to do so. We now consider a Gridworld problem (introduced in

Section 2.3.1), where the state space is much larger than in the previous tests. We

randomly generated a Gridworld of size 60×60 and created task variations by changing

the goal and start state of the agent. In this implementation, the agent receives a

reward of −1 after each step and a reward of +100 upon reaching the goal state. We

test robustness to stochastic environments by introducing noise into each executed

action: after selecting an action, with probability 0.8 the agent transitions to the

intended state and with probability 0.2 it transitions to a state as if an action has

been executed at random.

The agent trained on six tasks to generate candidate macros and tested on 20

different tasks, and we set the threshold for filtering macros to δ = 2.0. In each task,

the agent trained for 2, 000 episodes, each of which ends when the agent reaches the

goal state or after 5, 000 time-steps, whichever happens first.

In this experiment we compare the performance of our method to eigen options

and the option-critic architecture, assuming we know the true transition function

and the true Q-values on training tasks. This is a strong assumption that we relax

in later experiments. To accurately calculate the Q-values, we used Q-learning in

tabular form as our learning algorithm.

One key point to notice in this experiment is that the task variations were cre-

ated by changing the location of the goal and start state, but not the layout of the

Gridworld itself. This means the transition graph of the MDP is maintained across

tasks, which is the setting assumed by eigen options and the option-critic. We will

later show that when this assumption is not true, the benefits of our method become

more evident.

Figure 3.8 shows the mean performance and standard error of the agent in the 20

testing tasks. This experiment highlights the benefits for learning of each method over
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using only primitives and shows that our method results in comparable performance

to the competing methods.

Figure 3.8: Mean performance on 20 testing tasks on maze navigation problem class.

Macros evaluated using true Q function and transition function.

To understand why our method is able to outperform simply learning at the prim-

itive level, we visualized the trajectory followed by an agent when choosing actions

at random for a period of 1,000 time-steps in a simple Gridworld. This is shown in

Figure 3.9. The figure on the left shows that when the agent explores using only

primitive actions, it densely visits a small region of the state space but is unlikely to

reach states that are far away. The figure on the right, on the other hand, shows that

with the identified macros the agent is able to explore a much larger area of the state

space. Because many algorithms choose action randomly at early stages of learning,

this latter approach allows the agent to learn at a “global” scale early in its lifetime.

48



Figure 3.9: Trajectories obtained from pure exploration after 1000 steps using action-

sets A (left) and AM′ (right). The path taken is shown in gray and the agent’s final

position is shown in red

3.5.5 Scaling up Results to Large State Spaces

We now evaluate our method in the more interesting case where the agent needs

to identify action patterns that are reusable across many tasks that might differ not

only in terms of their reward functions, but also in terms of their transition graph;

in that case, our method’s advantages are made evident.

In the previous experiments, we were able to precisely calculate the U-values of

each macro since the transition probabilities and true Q-values for primitives were

known. We now show that the proposed framework is a viable alternative when we use

function approximation to estimate the Q-function and we approximate the transition

model from data. In all of these experiments, the agent collected (s, a, s′) transitions

during learning on training tasks, and they were used to fit a model to estimate the

transition probabilities P (s, a, s′). It is worth noting that in the following problems

the transition graphs are not maintained across tasks, making the competing methods

not well suited or capable of dealing with this more general learning setting.
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(1) Gridworld (approximate): We revisited the gridworld problem class, this

time approximating the true Q-values for primitives for the training tasks using DQN

and varying tasks, not only by changing the start and goal location, but also randomly

generating Gridworld layouts. Because the environments were randomly generated,

each task had a different transition graph, preventing the competing methods from

exploiting this property.

Since in this problem the state space is discrete, the transition function can be

easily modeled by collecting samples of (s, a, s′) tuples and estimating P (s, a, s′) by

looking at the frequency count.

Figure 3.10 shows the mean learning curve and standard error over 20 randomly

sampled environments. This case highlights how effective simple but general macros

can be compared to the competing methods.

Figure 3.10: Mean performance on 20 testing tasks on maze navigation. The macros

were identified by approximating the Q-function with a neural network and approxi-

mating the transition function from data.
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The eigen option approach fails to generalize to new domains and actually prevents

the agent from learning an optimal policy. This seems to validate our intuition; given

that the options learned by the eigen option method are specific to the transition

graph in which they were learned, the options fail to generalize to new environments.

The option critic architecture shows an interesting behavior, improving performance

abruptly in a step-wise fashion. This behavior is the result of how the option critic

adapts to new tasks; the algorithm learns options based on a specific task (MDP)

and, when facing a new task, it needs to unlearn the options that are not useful and

adapt them to the new MDP. Because each task has a different transition graph, the

options learned for a previous task are not immediately helpful in solving a new one.

Our method, on the other hand, identifies macros that are agnostic to the transition

graph, leading to temporal abstractions that generalize to the overall problem class.

(2) Animat: In this experiment the agent receives a reward of −1 at each time-

step and a reward of +100 at the goal state. Given that the state space is continuous,

we estimated the transition function by fitting a Gaussian linear model from 10, 000

sampled transitions (s, a, s′) that were obtained while learning training tasks. We

used four training tasks and tested 10 task variations corresponding to different en-

vironments with distinct transition graphs.

It is worth pointing out that this type of problem can be particularly difficult to

solve because there are actuator combinations that cancel each other out, preventing

the agent from moving from its current state. At early stages of learning, the agent

is likely to select such actuator combinations that would not form part of optimal

policies. Macros identified using well-performing trajectories are unlikely to include

such actions, and so, they will an agent to reach the goal more easily.

(3) Lunar Lander is a control problem taken from OpenAI Gym suite. The

agent is tasked with landing a rocket in a platform on an uneven terrain. It has four

primitive actions at its disposal: thrust left, thrust right, thrust up or do nothing.

The state is represented by the (x, y) position and the (x, y) acceleration in the 2D

environment. The task variations vary in the landing location, terrain geometry and
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the thrust force of the rocket. Because the state is given by continuous variables, but

updated at discrete time intervals, the change in thrust results in a change of the

transition graph: certain states will never be visited.

Two task variations for lunar lander are shown in Figure 3.11. Notice how the

designated landing sites vary in size and sit at different elevations in the terrain;

changing considerably the difficulty level of the tasks.

Figure 3.11: Example of task variations in Lunar Lander.

Performance results (according to Eq (3.1)) for each method, in the three domains

described above, are reported in Table 3.1. These experiments reflect the scenario

where the agent may face many tasks whose transition graphs vary between them.

Although we observed an increased variance in performance compared to competing

methods, our method results in a clear improvement of the average performance.

Problem Class Primitives Primitives+Macro Eigen-Options Option-Critic

Maze Nav. (approximate) −2355.44± 640.54 −2016.50± 643.71 −3444.06± 459.68 −2788.52± 696.03

Animat −909.77± 199.53 −752.89± 188.59 −1432.46± 64.72 −1955.47± 41.22

Lunar Lander −314.03± 44.09 −246.89± 28.99 −266.43± 5.22 −265.51± 7.42

Table 3.1: Average performance on test tasks with large state spaces. Larger values

are better; they indicate more reward accumulated by the agent during learning.
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3.6 Conclusions

In this chapter we have presented a general framework for identifying reusable

macros. Inspired by the postulate that the building blocks observed in animal behav-

ior could be the consequence of compression, we proposed using compression tech-

niques as a means to identify such building blocks in observed optimal policies for a

class of MDPs. Assuming that an agent will be required to solve a large number of

related tasks, we can identify repeating action patterns that are associated with high

rewards. However, some practical considerations need to be taken into account, as

too many macros would hinder an agent’s ability to learn. To address this issue we

propose ranking the identified macros according to their utility for a class of problems

by having the agent solve a small number of training tasks. The proposed formulation

can be efficiently computed in closed-form; making it a feasible method to be used

in practice. We further proposed using KL divergence of the end-state distribution of

macros as a filter to include only a diverse set of macros in an agent’s action set. This

ensures that is it possible to represent very diverse behaviors in a compact manner

while maintaining a balance on the size of the action set.

The results of our experiments show that, even though macros constitute a simple

approach for creating temporal abstraction, the proposed approach is able to identify

macros that are sufficiently general for the class of problems that they are able to

perform comparably to complex state-of-the-art methods for option discovery when

the transition graph is maintained across tasks. If tasks are allowed to differ not only

in their reward structure but also in terms of their transition dynamics, however, our

framework is able to significantly outperform those competing methods.

One clear limitation of this approach is that it works well under the assumption

that actions in a trajectory can be matched exactly, and the sequence of actions are

executed blindly; that is, ignoring information obtained in states encountered during

execution. In the next chapter, we deal with these limitations by extending the

ideas developed in this chapter to the options framework and present an optimization

problem analogous to the compression objective proposed for learning macros.
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CHAPTER 4

A PROBABILISTIC APPROACH TO OPTIONS

DISCOVERY

We have shown that using compression algorithms can be a viable option for

identifying macros that define building blocks observed in optimal behaviors. Macros,

however, have limitations: they are open-loop (i.e., they ignore information in the

states encountered during execution) and, by construction, they must execute the

entire sequence of actions until completion. Options, on the other hand, provide more

flexibility. While executing an option, the action At executed at time t is selected

based on the state St, according to the option policy. Similarly, the probability of the

option terminating execution depends on the state St.

This added flexibility makes options an appealing alternative to macros, but it is

not clear how one could apply the principles of compression described in the previous

chapter to options. Compression techniques assume that it is possible to obtain an

exact match between the symbols in the message and the ones in the codebook, but

since options are defined by a stochastic policy and termination function, it is not

clear how compression techniques could be used in this setting.

When considering using compression to identify macros, we notice that in repre-

senting a trajectory h, each symbol used in the compressed representation corresponds

to a decision made by the agent’s policy, π. From this point of view, compressing

a trajectory is equivalent to minimizing the number of decisions made by the agent

while still representing the original trajectory.

In this chapter we present an optimization objective for learning a set

of options that are able to compress a set of trajectories in expectation. To
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do so, we propose minimizing the expected number of decisions an agent’s policy has

to make to represent a set of optimal trajectories, while simultaneously maximizing

the probability of generating those trajectories.

The experiments in this chapter show that the derived options result in behaviors

that specialize to a specific sub-problem of the overall task. This property is highly

desirable, since it allows an agent to quickly learn that, in certain situations, some

options are not particularly useful while they are highly effective in others.

4.1 Problem Description

Recall that an option o = (Io, µo, βo), is a tuple composed by an initiation set

Io ⊆ S, option policy µo, and termination function βo. In the options framework, at

each time-step, t, the agent chooses an action, At, based on the current option, Ot,

being executed. Let Tt be a Bernoulli random variable, where Tt = 1 if the previous

option, Ot−1, terminated at time t, and Tt = 0 otherwise. If Tt = 1, Ot is chosen using

the policy π. If Tt = 0, then the previous option continues, that is, Ot = Ot−1. We

consider the case where the agent’s policy π is a policy over options; that is, when

the agent makes a decision π selects which option will be run and the action executed

is selected by the option’s policy. To ensure that we can represent any trajectory, we

consider primitive actions to be options which always select one specific action and

then terminate; that is, for an option, o, corresponding to a primitive, a, for all s ∈ S,

the termination function would be given by βo(s) = 1, and the policy by µo(s, a
′) = 1

if a′ = a and 0 otherwise.

Notice that in this formulation, the number of decisions made by the policy over

options corresponds to the number of times options terminate, as each termination

requires the policy to subsequently choose a new option. Using this perspective, com-

pressing trajectories over options is analogous to minimizing the number of decisions

needed to represent those trajectories.

Let O = OA ∪ OO denote a set of options, {o1, . . . , on}, where OA refers to

the set of options corresponding to primitive actions and OO to the set of options
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corresponding to temporal abstractions. Furthermore, let H be random variable

denoting a trajectory of length |H| generated by a near-optimal policy, and let Ht be

a random variable denoting the sub-trajectory of H up to the state encountered at

time-step t. We seek to find a set, O∗ = {o∗1, . . . , o∗n}, that maximizes the following

objective:

J(π,O) = E

 |H|∑
t=1

Pr(Tt = 0, Ht|π,O) + λ1g(H,OO)

 , (4.1)

where g(h,OO) is a regularizer that encourages a diverse set of options, and λ1 is

a scalar hyper-parameter. If we are also free to learn the parameters of π, then

O∗ ∈ arg max
O

max
π

J(π,O). One choice for g is the average KL divergence on a given

trajectory over the set of options being learned:

g(h,OO) =
1

|OO|(|OO| − 1)

∑
o,o′∈OO

|h|−1∑
t=0

DKL ( µo(st)||µo′(st)) .

Note that this term is only defined when we consider two or more options; when that

is not the case we set this term to 0.

Intuitively, with this objective we seek to find a set of options that terminate

as infrequently as possible while still generating near-optimal trajectories with high

probability. Given a set of options, a policy over options, and a set sampled trajecto-

ries, we can calculate these probabilities exactly, allowing us to optimize this objective

using gradient-based methods.

4.2 Related Work

In the previous chapter we introduced the option-critic architecture (Bacon et al.,

2017) as a strategy for learning options. In this formulation, the options and policy

over options are trained to maximize the expected return, but nothing encourages

the options to be used for extended periods of time. An issue that often arises with

this formulation is that the termination functions of the options collapse to “always

terminate”, essentially becoming primitive actions. To address this issue, subsequent
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work proposed associating a cost with switching options (Harb et al., 2018). This

proposition allowed the agent to not only learn a set of options, but also encourage

their use. However, the performance of this framework relied heavily on finding the

right cost to associate with switching options.

Another attempt to address this issue was proposed by Harutyunyan et al. (2019).

In this line of work, the authors considered the problem of learning the termination

function of options; instead of associating a cost with switching options, they opti-

mized the termination function so that options would only terminate in a localized

region of the state space. The authors achieve this objective by minimizing the en-

tropy of the termination function of an option over the state space.

These techniques are inline with the overall idea discussed in this chapter: we

want to minimize the number of decisions an agent has to make to solve a task.

Nevertheless, these methods do not consider the case where prior experience may

exist, and focus on learning options from scratch. Furthermore, the user needs to

pre-define the number of options that will be used. In contrast, we assume that

we have access to existing knowledge and present a technique for learning options

that are applicable to a class of problems and not specialized to a specific task. In

addition, we propose a procedure that allows an agent to learn the necessary number

of options; avoiding the need to have a user pre-define how many options should be

learned.

4.3 Offline Option Learning

The method we propose can be summarized as follows: first, we obtain a set of

sample trajectories H assumed to have been generated by optimal policies (this can

be obtained from demonstration or by learning an optimal policy to a number of

tasks. Then, we introduce a set of options and a policy over options, and optimize

our objective with respect to their parameters. Finally, the resulting options are

incorporated to the agent’s action set and leveraged to solve new tasks. Given that
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the options are learned to generate the demonstrated optimal trajectories, we assume

that they encode behaviors that are likely to be found in novel but related tasks.

To achieve this goal, one questions remains to be answered: how can we optimize

the objective in (4.1)? One approach is to rewrite the objective in terms of the

probability of generating a trajectory given a set of options and a policy over options,

and in terms of the expected number of terminations given that the agent follows a

given trajectory.

To see this, recall that J(π,O) = E
[∑|h|

t=1 Pr(Tt = 0, Ht|π,O)
]

(we ignore the

regularization term for ease of notation). Assuming access to a set H of sample

trajectories, we can estimate J from sample averages and expand an approximation,

Japprox as follows:

Japprox(π,O,H) =
1

|H|
∑
h∈H

|h|∑
t=1

Pr(Tt = 0, Ht = ht|π,O)

=
1

|H|
∑
h∈H

|h|∑
t=1

(
1− Pr(Tt = 1|Ht = ht, π,O)

)
Pr(Ht = ht|π,O)

=
1

|H|
∑
h∈H

|h|∑
t=1

(
1− E

[
Tt = 1|Ht = ht, π,O

])
Pr(Ht = ht|π,O)

It can be seen that to maximize the above expression E
[
Tt|Ht = ht, π,O

]
should

be minimized while Pr(H = h|π,O) should be maximized. Given that for long

trajectories the expected number of terminations increases while the probability of

generating the trajectories goes to 0, we normalize the number of terminations by

the length of the trajectory, |h|, and adjust a hyperparameter, λ2, to prevent one

term from dominating the other during optimization. Based on this observation we

propose optimizing the following objective:

Ĵ(π,O,H) =
1

H
∑

h|h|∈H
λ2 Pr(H = h|π,O)−

∑|h|
t=1E [Tt|Ht = ht, π,O]

|h|
+ λ1g(H,OO).

(4.2)

Without the scaling λ2 and |h| (the length of the trajectory), gradient-based

method techniques might ignore one of the terms while optimizing Ĵ .
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Equation (4.2) can be expressed entirely in terms of π, options O = {o1, . . . , on}

and the transition function, P , allowing us to compute the value of this objective

exactly. The two theorems that follow, show that the proposed objective can be

expressed in terms of known quantities or estimated quantities (i.e., π, O, and P ),

allowing us to efficiently calculate and differentiate Ĵ in order to optimize O.

Theorem 2. Given a set of options O and a policy π over options, the expected

number of terminations for a trajectory h of length |h| is given by:

|h|∑
t=1

E [Tt = 1|Ht = ht, π,O] =

|h|∑
t=1

(∑
o∈O

βo(st)
(
µo(st−1, at−1) Pr(Ot−1 = o|Ht−1 = ht−1, π,O)

)
×
(∑
o′∈O

µo′(st−1, at−1) Pr(Ot−1 = o′|Ht−1 = ht−1, π,O)
)−1)

,

where,

Pr(Ot−1 = o|Ht−1 = ht−1, π,O) =

[(
π(st−1, o)βo(st−1)

)(
P (st−2, at−2, st−1)µo(st−2, at−2)

×Pr(Ot−2 = o|Ht−2 = ht−2, π,O)(1− βo(st−1))
)]
,

and Pr(O0 = o|H0 = h0, π,O) = π(s0, o).

Proof. Notice that
∑|h|

t=1 E [Tt = 1|Ht = ht, π,O] =
∑|h|

t=1 Pr(Tt = 1|Ht = ht, π,O) 1,

so if we find an expression for Pr(Tt = 1|Ht = ht, π,O), we can calculate the ex-

pectation exactly. We define Pr(T0 = 1|H1 = h1, π,O) = 1 for ease of derivation

even though there is no option to terminate at T0. For convenience, as a shorthand

notation to denote dependency on Ht = ht, π and O, we will write Ωt = ωt

Pr(Tt = 1|Ωt = ωt) =
∑
o∈O

Pr(Tt = 1|Ot−1 = o,Ωt = ωt) Pr(Ot−1 = o|Ωt = ωt)

=
∑
o∈O

βo(st) Pr(Ot−1 = o|Ωt = ωt)

=
∑
o∈O

βo(st) Pr(Ot−1 = o|Ωt−1 = ωt−1, At−1 = at−1, St = st)
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=
∑
o∈O

βo(st)
Pr(St = st|Ωt−1 = ωt−1, At−1 = at−1, Ot−1 = o)

Pr(St = st|Ωt−1 = ωt−1, At−1 = at−1)

× Pr(Ot−1 = o|Ωt−1 = ωt−1, At−1 = at−1)

=
∑
o∈O

βo(st)
Pr(St = st|Ωt−1 = ωt−1, At−1 = at−1)

Pr(St = st|Ωt−1 = ωt−1, At−1 = at−1)

× Pr(Ot−1 = o|Ωt−1 = ωt−1, At−1 = at−1)

=
∑
o∈O

βo(st) Pr(Ot−1 = o|Ωt−1 = ωt−1, At−1 = at−1)

=
∑
o∈O

βo(st)
(

Pr(At−1 = at−1|Ωt−1 = ωt−1, Ot−1 = o)

× Pr(Ot−1 = o|Ωt−1 = ωt−1)
)(

Pr(At−1 = at−1|Ωt−1 = ωt−1)
)−1

=
∑
o∈O

βo(st)
µo(st−1, at−1) Pr(Ot−1 = o|Ωt−1 = ωt−1)

Pr(At−1 = at−1|Ωt−1 = ωt−1)

=
∑
o∈O

βo(st)
µo(st−1, at−1) Pr(Ot−1 = o|Ωt−1 = ωt−1)∑
o′∈O Pr(At−1 = at−1, Ot−1 = o′|Ωt−1 = ωt−1)

=
∑
o∈O

βo(st)µo(st−1, at−1) Pr(Ot−1 = o|Ωt−1 = ωt−1)

×
(∑
o′∈O

Pr(At−1 = at−1|Ot−1 = o′,Ωt−1 = ωt−1)

× Pr(Ot−1 = o′|Ωt−1 = ωt−1)
)−1

=
∑
o∈O

βo(st)
µo(st−1, at−1) Pr(Ot−1 = o|Ωt−1 = ωt−1)∑

o′∈O µo′(st−1, at−1) Pr(Ot−1 = o′|Ωt−1 = ωt−1)
.

We now need to find an expression for Pr(Ot−1 = o|Ωt−1 = ωt−1) in terms of

known probabilities.

Pr(Ot−1 = o|Ωt−1 = ωt−1) =
[

Pr(Ot−1 = o, Tt−1 = 1|Ωt−1 = ωt−1)

+ Pr(Ot−1 = o, Tt−1 = 0|Ωt−1 = ωt−1)
]

=

[(
Pr(Ot−1 = o|Ωt−1 = ωt−1, Tt−1 = 1)

× Pr(Tt−1 = 1|Ωt−1 = ωt−1)
)

+
(

Pr(Ot−1 = o|Ωt−1 = ωt−1, Tt−1 = 0)

× (1− Pr(Tt−1 = 1|Ωt−1 = ωt−1))
)]
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=

[(
π(st−1, o) Pr(Tt−1 = 1|Ωt−1 = ωt−1)

)
+
(

Pr(Ot−1 = o|Ωt−1 = ωt−1, Tt−1 = 0)

× (1− Pr(Tt−1 = 1|Ωt−1 = ωt−1))
)]

=

[(
π(st−1, o)βo(st−1)

)
+
(

Pr(Ot−1 = o|Ωt−1 = ωt−1, Tt−1 = 0)(1− βo(st−1))
)]
.

We are now left with figuring out how to calculate Pr(Ot−1 = o|Ωt−1 = ωt−1, Tt−1 =

0).

Pr(Ot−1 = o|Tt−1 = 0,Ωt−1 = ωt−1) = Pr(Ot−2 = o, At−2 = at−2, St−1 = st−1|Ωt−1 = ωt−1)

= Pr(At−2 = at−2, St−1 = st−1|Ot−2 = o,Ωt−1 = ωt−1)

× Pr(Ot−2 = o|Ωt−1 = ωt−1)

= Pr(St−1 = st−1|At−2 = at−2, Ot−2 = o,Ωt−1 = ωt−1)

× Pr(At−2 = at−2|Ot−2 = o,Ωt−1 = ωt−1)

× Pr(Ot−2 = o|Ωt−1 = ωt−1)

=P (st−2, at−2, st−1)µo(st−2, at−2)

× Pr(Ot−2 = o|Ωt−1 = ωt−1)

=P (st−2, at−2, st−1)µo(st−2, at−2)

× Pr(Ot−2 = o|Ωt−2 = ωt−2),

where Pr(O0 = o|Ω0 = ω0) = π(s0, o).

Using the recursive function Pr(Ot−1 = o|Ωt−1 = ωt−1), the expected number of

terminations for a given trajectory is given by:

|h|∑
t=1

E [Tt = 1|Ωt = ωt] =

|h|∑
t=1

(∑
o∈O

βo(st)
µo(st−1, at−1) Pr(Ot−1 = o|Ωt−1 = ωt−1)∑
o′∈O µo′(st−1, at−1) Pr(Ot−1 = o′|Ωt−1 = ωt−1

)
,
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Theorem 3. Given a set of options O and a policy π over options, the probability

of generating a trajectory h of length |h| is given by:

Pr(H|h| = h|h||π,O) =d0(s0)
[∑
o∈O

π(s0, o)µo(s0, a0)f(h|h|, o, 1)
] |h|−1∏
k=0

P (sk, ak, sk+1),

where f is a recursive function defined as:

f(ht, o, i) =



1, if i = t[(
βo(si)

∑
o′∈O π(si+1, o

′)µo′(si+1, ai+1)f(ht, o
′, i+ 1)

)
+

(
(1− βo(si))µo(si+1, ai+1)f(ht, o, i+ 1)

)]
otherwise.

Proof. We define Hi,t to be the history from time i to time t, that is,

Hi,t = (Si, Ai, Si+1, Ai+1, . . . , St), where i < t. If i = t, the history would contain

a single state.

Pr(Ht = ht|π,O) = Pr(S0 = s0|π,O) Pr(H1,t = h1,t, A0 = a0|S0 = s0, π,O)

=d0(s0) Pr(H1,t = h1,t, A0 = a0|S0 = s0, π,O)

=d0(s0)
∑
o∈O

Pr(H1,t = h1,t, A0 = a0, Oo = o|S0 = s0, π,O)

=d0(s0)
∑
o∈O

Pr(O0 = o|S0 = s0, π,O)

× Pr(H1,t = h1,t, A0 = a0|S0 = s0, O0 = o, π,O)

=d0(s0)
∑
o∈O

π(s0, o) Pr(H1,t = h1,t, A0 = a0|S0 = s0, O0 = o, π,O)

=d0(s0)
∑
o∈O

π(s0, o) Pr(A0 = ao|S0 = s0, O0 = o, π,O)

× Pr(H1,t = h1,t|S0 = s0, O0 = o, A0 = a0, π,O)

=d0(s0)
∑
o∈O

π(s0, o)µo(s0, ao)

× Pr(H1,t = h1,t|S0 = s0, O0 = o, A0 = a0, π,O).
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We now need to find an expression to calculate Pr(H1,t = h1,t|S0 = s0, O0 =

o, A0 = a0, π,O). Consider the probability of seeing history hi,t given the previous

state, s, the previous option, o, and the previous action, a:

Pr(Hi,t = hi,t|Si−1 = s,Oi−1 = o, Ai−1 = a)

= Pr(Si = si|Si−1 = s,Oi−1 = o, Ai−1 = a)

× Pr(Hi+1,t = hi+1,t, Ai = ai|Si−1 = s,Oi−1 = o, Ai−1 = a, Si = si)

=P (s, a, si) Pr(Hi+1,t = hi+1,t, Ai = ai|Si−1 = s,Oi−1 = o, Ai−1 = a, Si = si)

=P (s, a, si) Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si)

=P (s, a, si)
[

Pr(Ti = 1|Oi−1 = o, Ai−1 = a, Si = si)

× Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 1)

+ Pr(Ti = 0|Oi−1 = o, Ai−1 = a, Si = si)

× Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 0)
]

=P (s, a, si)
[
βo(si)

× Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 1)

+ (1− βo(si))

× Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 0)
]
.

Even though the equation above might seem complicated, there are only two cases

we need to consider: either the current option terminates and a new one must be

selected (the first term), or the current option does not terminate (the second term).

Let’s consider each of them separately.

Case 1 - option terminates: If we terminate, we sum over new options:

Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 1)

=
∑
o′∈O

Pr(Oi = o′|Oi−1 = o, Ai−1 = a, Si = si, Ti = 1)

× Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 1, Oi = o′)
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=
∑
o′∈O

π(si, o
′) Pr(Hi+1,t = hi+1,t, Ai = ai|Oi−1 = o, Ai−1 = a, Si = si, Ti = 1, Oi = o′)

=
∑
o′∈O

π(si, o
′) Pr(Hi+1,t = hi+1,t, Ai = ai|Si = si, Oi = o′)

=
∑
o′∈O

π(si, o
′) Pr(Ai = ai|Si = si, Oi = o′) Pr(Hi+1,t = hi+1,t|Si = si, Oi = o′, Ai = ai)

=
∑
o′∈O

π(si, o
′)µo′(si, ai) Pr(Hi+1,t = hi+1,t|Si = si, Oi = o′, Ai = ai).

Note that Pr(Hi,t = hi,t|Si−1 = s,Oi−1 = o, Ai−1 = a) has the same form as the

expanded probability.

Case 2 - option does not terminate: This tells us that Oi = o, so we may

drop the dependency on the i− 1 terms:

Pr(Hi+1,t = hi+1,t, Ai = ai|Si−1 = s,Oi−1 = o, Ai−1 = a, Si = si, Ti = 0)

= Pr(Hi+1,t = hi+1,t, Ai = ai|Si = si, Oi = o)

= Pr(Ai = ai|Si = si, Oi = 0) Pr(Hi+1,t = hi+1,t|Si = si, Oi = o, Ai = ai)

=µo(si, ai) Pr(Hi+1,t = hi+1,t|Si = si, Oi = o, Ai = ai).

Plugging these two cases back into our earlier equation yields:

Pr(Hi,t = hi,t|Si−1 = s,Oi−1 = o, Ai−1 = a)

=P (s, a, si)
[
βo(si)

∑
o′∈O

π(si, o
′)µo′(si, ai) Pr(Hi+1,t = hi+1,t|Si = si, Oi = o′, Ai = ai)

+ (1− βo(si))µo(si, ai) Pr(Hi+1,t = hi+1,t|Si = si, Oi = o, Ai = ai)
]
.

Note that each term contains an expression of the same form,

Pr(Hi,t = hi,t|Si−1 = s,Oi−1 = o, Ai−1 = a). We can therefore compute the probabil-

ity recursively. Our recursion will terminate when we consider i = t, as Ht,t contains

a single state, and we adopt the convention of its probability to be 1. Notice that for

every recursive step, both inner terms will produce a P (s, a, si) term. Consider the
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result when we factor every recursive P (s, a, si) term to the front of the equation. We

define the following recursive function:

f(ht, o, i) =



1, if i = t[
βo(si)

∑
o′∈O π(si+1, o

′)µo′(si+1, ai+1)f(ht, o
′, i+ 1)

+(1− βo(si))µo(si+1, ai+1)f(ht, o, i+ 1)

]
, otherwise.

Notice that this is the recursive probability described above, but with the P (s, a, s′)

terms factored out. We now see that:

Pr(Hi,t = hi,t|Si−1 = si−1, Oi−1 = o, Ai−1 = ai−1) = f(ht, o, i)
t−1∏
k=i−1

P (sk, ak, sk+1).

Plugging this all the back into our original equation for Pr(Ht = ht|π,O) gives us

the desired result:

Pr(H|h| = h|h||π,O) = d0(s0)

[∑
o∈O

π(s0, o)µo(s0, ao)f(h|h|, o, 1)

] t−1∏
k=0

P (sk, ak, sk+1).

The theorems above tell us that we are able to express the objective in (4.2)

entirely in terms of the option policies, µ, termination functions, β, and policy over

options, π. Given a parametric representation of these functions we can differentiate

(4.2) with respect to their parameters and optimize with any standard optimization

technique.

4.3.1 Learning Options Incrementally

One common issue that often arises in option discovery is identifying how many

options are needed for a given problem. Oftentimes this number is pre-defined by the

user based on intuition. In such a scenario, one could simply initialize a pre-defined

number of options and adapt the parameters of those options by optimizing the

65



proposed objective in (4.2). Instead, we propose not only learning options, but also

an appropriate number of options, by following the procedure shown in Algorithm 3.

In the pseudocode, we assume a parametric model for the policy, πθ, over options with

parameters θ, for the option policy, µφ, with parameters φ and for the termination

function βψ. We update the models with gradient ascent using a learning rate α for

N epochs, before attempting to include a new option.

Algorithm 3 Option Learning Framework - Pseudocode

1: Collect set of trajectories H

2: Initialize option set O with primitive options

3: done = false

4: Ĵprev = −∞

5: while done == false do

6: Initialize new option o′ = (µ′φ, β
′
ψ), initializing parameters for φ and ψ.

7: O′ = O ∪ o′

8: Initialize parameters θ of policy πθ

9: for k=1,. . . ,n do

10: Ĵk = Ĵ(πθ,O′,H)

11: θ = θ + α∂Ĵk
∂θ

12: φ = φ+ α∂Ĵk
∂φ

13: ψ = ψ + α∂Ĵk
∂ψ

14: if ĴN − Ĵprev < ∆ then

15: done = true

16: else

17: O = O′

18: Ĵprev = ĴN

19: Return new option set O

The algorithm introduces one option at a time and updates the policy π, and

the termination function and option policy of the newly introduced option, o′, for n.

Any previously introduced option is kept fixed. After the new option is trained, we
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measure how much Ĵ has improved. If it fails to improve above some threshold, ∆,

the procedure terminates. This results in a natural way of obtaining an appropriate

number of options to represent the observed trajectories.

4.4 Experimental Results

In this section we describe experiments used to evaluate the proposed offline option

learning approach. To be able to visualize and understand the options produced

by our algorithm, we will show results in the “four rooms” domain—a gridworld

composed of four large open areas connected by a small doorway—and we compare

the options discovered by our method against options generated by the option-critic

architecture (Bacon et al., 2017) and eigen options (Marlos C. Machado, 2017). We

then extend our experiments to assess the performance of the technique in a few

select problems from the Atari 2600 emulator provided by OpenAI Gym. These

experiments demonstrate that the options learned by our method focus on specific

sub-tasks within the larger problem, and are capable of improving performance over

primitive actions and options produced by competing approaches.

4.4.1 Empirical Validation of Derived Equations

Before delving into the experiments, we corroborate that the derivation of the pro-

posed objective and its implementation is correct. We conducted a simple empirical

test to compare the calculated expected number of decisions in a trajectory and the

probability of generating each trajectory for a set of 10 trajectories on 10 MDPs. The

MDPs are chains of seven states with different transition functions. We randomly

initialized four options and a policy over options, and estimated the probability of

generating each trajectory and the expected number of terminations, for each sam-

pled trajectory, by Montecarlo sampling 10, 000 trials. Table 4.1 presents results for

the 10 trajectories verifying empirically that the equations were correctly derived and

implemented. The table compares the empirical and true probability of generating

a given trajectory, P̂r(H|·) and Pr(H|·) (first term in (4.2)), and the empirical and
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true sum of expected number of decisions an agent has to make to generate those

trajectories,
∑|H|

t=1 Ê [Tt|·] and
∑|H|

t=1 E [Tt|·] (second term in (4.2)), where the “hat”

operator indicates an empirical estimate of the indicated quantity.

H P̂r(H|π,O) Pr(H|π,O)
∑|H|

t=1 Ê [Tt|Ht, π,O]
∑|H|

t=1 E [Tt|Ht, π,O]

h1 0.0932 0.0957 3.060 3.178

h2 0.0158 0.0173 4.139 4.154

h3 0.2149 0.2122 1.965 2.178

h4 0.0995 0.0957 2.979 3.178

h5 0.0962 0.0957 3.024 3.178

h6 0.1354 0.1384 2.9579 3.1596

h7 0.00040 0.00038 9.750 8.794

h8 0.1854 0.1881 2.820 3.072

h9 0.0379 0.0368 4.2612 4.4790

h10 0.1864 0.1881 2.8404 3.0723

Table 4.1: Validation of equations and implementation.

Note that the cases with largest discrepancy between the estimated and calculated

number of terminations occur when the probability of generating a trajectory is low.

This happens because we are estimating this number via Monte Carlo sampling;

since this quantity is conditioned on the trajectory being generated, a low probability

trajectory makes accurate estimation difficult given the small number of samples

being produced.

4.4.2 Experiments on Four Rooms Environment

We tested our approach in the four rooms domain: a gridworld of size 40 × 40,

in which the agent is placed in a randomly selected start state and needs to reach

a randomly selected goal state. At each time-step, the agent executes one of four
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available actions: moving left, right, up or down, and receives a reward of −1. Upon

reaching the goal state, the agent receives a reward of +10. We generated 30 different

task variations (by changing the goal and start location) and collected six sample

trajectories from optimal policies, learned using Q-learning, from six different start

and goal configurations. We evaluated our method on the remaining 24 tasks.

Each option was represented as a two-layer neural network, with 32 neurons in

each layer, and two output layers: a softmax output layer over the four possible

actions representing µ, and a separate sigmoid layer representing β. We implemented

our objective using PyTorch which simplifies gradient calculation through automatic

differentiation, and we used the tabular form of Q-learning with ε-greedy exploration.

Figure 4.1 shows the change in the average expected number of terminations and

average probability of generating the observed trajectories while learning options, as

new options are introduced and adapted to the sampled trajectories. Options were

learned over the six sampled optimal trajectories and every 50 epochs a new option

was introduced to the option set, for a total of 4 options. For every new option, the

change in probability of generating the observed trajectories as well as the change in

expected number of decisions reaches a plateau after 30 or 40 training epochs. When

a new option is introduced, there is a large jump in the loss because a new policy, π,

is initialized arbitrarily to account for the new option set being evaluated. However,

after training the new candidate option, the overall loss improves beyond what it was

possible before introducing the new option.

69



Figure 4.1: Visualization of loss for sampled trajectories in four rooms domain over

200 training epochs. Every 50 training epochs a new option is introduced. For a given

set of sampled trajectories, the decreasing average number of decisions made by π is

shown in blue and the increasing probability of generating the observed trajectories

is shown in red.

In Figure 4.2, we compare the performance of Q-learning on 24 novel test tasks

(randomly selected start and goal states) using options discovered from offline option

learning (with and without regularization using KL divergence), eigenoptions, and

option critic. We allowed each competing method to learn options from the same six

training tasks and, to ensure a fair comparison, we used the original code provided by

the authors. As baselines, we also compare against primitive actions and randomly

initialized options.
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Figure 4.2: Performance Comparison on four rooms domain. Six tasks were used

for training and 24 different tasks for testing. The plot shows the average return

(and standard error) on the y-axis as a function of the episode number on the test

tasks. For our proposed method we set λ2 = 100.0 and λ1 = 0.001 when using KL

regularization.

It might seem surprising that both eigen-options and the option-critic failed to

reach an optimal policy when they were shown to work well in this type of problem; for

that we offer the following explanation. Our implementation of four rooms is defined

in a much larger state space than the ones where these methods were originally

tested, making each individual room much larger. Since the options identified by

these methods tend to lead the agent from room to room, it is possible that, once

in the correct room, the agent executes an option leading to a different room before

it had the opportunity to find the goal. When testing our approach in the smaller

version of the four room problem, we found no clear difference to the performance

of the competing methods. In this setting, the options learned by our method found

an optimal policy in all testing tasks. We set the threshold ∆ for introducing a new
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option to 10% of Ĵ at the previous iteration and the hyperparameter λ2 = 100.0.

When adding KL regularization, we set λ1 = 0.001.

To understand the reason behind the improvement in performance resulting from

offline option learning, we turn the reader’s attention to Figure 4.3.

Figure 4.3: Visualization of our framework for learning options in four rooms domain.

The figure shows a visualization of how our method learns options from sampled

trajectories and is able to reuse them in new problems. A novel task is seen in the

top left, where the agent (red) has to navigate to a goal (green). On the top right, we
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show the solution found by the agent. The three rows below show how the options

were learned and exploited in the new task. The highlighted area in the top two

rows show a sample trajectory and the color corresponds to the probability that the

option would take the demonstrated action. Notice that this trajectory does not

start from the start state of the new task, since the trajectory was generated on a

previous task. The arrows show the action that is most likely at each state. Before

training (first row), each option is randomly initialized, but after training (second

row) each option specializes in a specific skill (a navigation pattern). In this example,

the demonstrated trajectory can be generated with high probability by using option

3 and 2. The last row shows a heat-map indicating where each options is likely to

be called by the policy learned in the new task. As can be seen, the agent learns to

use each option in very specific situations; that is, they are specialized. For example,

option 1 is likely to be called to make the agent move up, if it is located in one of the

bottom rooms.

4.4.3 Experiments on Atari Domain

We evaluated the quality of the options learned by our framework in two different

Atari 2600 games: Breakout and Amidar. Because the games did not easily provide

a way of modifying the environments, we created task variations by performing a

random walk before the agent was allowed to start learning, thus changing the initial

state distribution, and varying the number of frames a time-step in the MDP lasted.

These variations result in different tasks varying in their transition function and initial

state distributions.

We trained the policy over options using the algorithm Asynchronous Advantage

Actor Critic (A3C) (Mnih et al., 2016). This is a parallel algorithm that uses function

approximation and has been shown to work well for large scale problems. The state

of the agent was represented as grayscale images and 12 trajectories were sampled

for training. Each trajectory lasted until a life was lost, not for the entire duration

of the episode. The options policy and termination functions were implemented as
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two-layer neural networks, where the input was give as a stack of grayscale images of

the last two frames. We ran 32 training agents in parallel on CPUs, the learning rate

was set to 0.0001 and the discount factor γ was set to 0.99.

Because the options can only learn from the states observed in the trajectories, it

is possible that when using them, they will be executed in previously unseen states.

When this happens, the termination function may decide to never terminate, as it

has not been trained in that region of the state space before. To address this issue,

we add a value of 0.05 to the predicted probability of termination for each time-step

that the option has been running. Therefore, in our experiments an option cannot

run for more than 20 time-steps in total.

4.4.3.1 Breakout

In this type of problem, the agent’s goal is to control a paddle to prevent the ball

from falling while knocking down every block. After the ball makes contact with one

of the blocks the agent receives a positive reward of +1.0 and a large penalty of −10.0

if it fails to catch the ball. If the agent drops the ball it loses a life and, after three

lives are lost, the episode terminates and the paddle is placed in a random initial

position. There are three possible actions: move right, move left and fire the ball off

the paddle (this action is only useful at the beginning of a life).

Figure 4.4 shows an example of this class of problems.

Figure 4.4: Example observation in a task of Breakout. A state is represented by the

last four observations in grayscale.

74



Figure 4.5 shows the performance of an agent as a function of training time in

Breakout. Given appropriate hyperparameters, the options learned by our method

allow the agent to solve tasks much more quickly than if it only had access to prim-

itive actions. Furthermore, notice that using the options as initialized (before being

trained) decreases performance; showing that our objective is capable learning ap-

propriate options. In this scenario setting the hyperparameters to λ2 = 5, 000 and

λ1 = 0.01 led to the best improvement in performance.

Figure 4.5: Average returns on Breakout comparing primitives (blue), options before

training (orange) and learned options for different values of λ1 and λ2. The shaded

region indicates the standard error.

Figure 4.6 depicts the behavior for one of the learned options on Breakout. The

option is efficient at catching the ball after it bounces on the left wall, and then

terminates with high probability before the ball has to be caught again. Bear in

mind that the option remains active for many time-steps, significantly reducing the

number of decisions made by the policy over options. However, it does not maintain

control for so long that the agent is unable to respond to changing circumstances.
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This option is only useful in this specific case; for example, it was not helpful in

returning a ball bounced off the right wall. That is to say, the option specialized in

a specific sub-task within the larger problem: a highly desirable property for options

to be able to generalize well to new environments.

Figure 4.6: Visualization of a learned option executed until termination on Breakout.

The option learned to catch the ball bouncing off the left wall and terminates with high

probability before the ball bounces a wall again (ball size increased for visualization).

4.4.3.2 Amidar

In this problem, the agent’s goal is to traverse every segment of a maze populated

with enemies and avoid coming into contact with the enemies, which makes the agent

lose a life. The agent receives a positive reward for each segment the it covers and

a penalty if it makes contact with an enemy. After losing a life the agent resets to

an initial position and after losing three lives the episode terminates. The state is

represented as a stack of grayscale images of the last four time-steps. Figure 4.7 shows

an example of a task in Amidar.

Results for Amidar are shown in Figure 4.8. Just as was the case with Breakout,

an appropriate setting of hyperparameters allowed the agent to learn options that

resulted in a clear improvement in learning performance. In this scenario, setting the

hyperparameters to λ2 = 5, 000 and λ1 = 0.1 resulted in a substantial improvement

over simply using primitive actions. Notice, again, how using the options as they

were initialized does not lead to any improvement in performance.
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Figure 4.7: Example observation in a task of Amidar. A state is represented by the

last four observations in grayscale.

Figure 4.8: Average returns on Amidar comparing primitives (blue), options before

training (orange) and learned options for different values of λ1 and λ2. The shaded

region indicates the standard error.

Figure 4.9 shows the selection of two of the options learned for Amidar when

starting a new game. At the beginning of the game, option 1 is selected, which takes
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the agent to a specific intersection before terminating. The agent then selects option

2, which chooses a direction at the intersection, follows the resulting path, and termi-

nates at the next intersection. Note that the agent does not need to repeatedly select

primitive actions in order to simply follow a previously chosen path. Having access

to these types of options enable an agent to easily replicate known good behaviors,

allowing for faster and more meaningful exploration of the state space.

Figure 4.9: Visualization of two learned options on Amidar. The agent is shown in

yellow and enemies in pink. Option 1 learned to move up, at the beginning of the

game, and turn left until getting close to an intersection. Option 2 learned to turn in

that intersection and move up until reaching the next one.

Note that these results do not necessarily show that the options allow the agent

to learn a better final policy, but rather that the learned options are able to guide

early in its lifetime resulting in much more effective learning.

4.5 Conclusions

In this chapter we have used the insights obtained in the previous chapter and

addressed the limitations discussed for macros. By using options, we are able to learn

temporal abstractions that are capable of selecting actions and when to terminate

based on the state of the agent. We showed that specialized behaviors can be learned
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by adapting the notion of compression, developed in the previous chapter, to options

and presented an optimization objective for learning options offline from demonstra-

tions. Optimizing the objective results in a set of options that allows an agent to

reproduce the observed behavior while minimizing the number of decisions made by

the policy over options. The experiments show that the learned options not only are

able to improve the learning ability of the agent on new tasks, but are also able to

outperform competing methods.

There are some clear directions for future development. While we have shown

that our method is capable of discovering powerful options, properly tuning the hy-

perparameters, λ1 and λ2, is necessary for learning appropriate options. In complex

environments, this is not an easy task. Future work could study methods for auto-

matically finding the right balance between hyperparameters or, if possible, eliminate

the need for such hyperparameters altogether. Another possible dimension of im-

provement is to study how to extend the proposed ideas to the online setting; an

agent may be able to sample trajectories as it is learning a task and progressively use

them to continuously improve its option set.

In the last two chapters we showed how prior experience can be used to obtain

meaningful temporal abstractions for a class of problems. One of the reasons why

these techniques are able to provide such an improvement is that they bias the be-

havior of the agent towards known well-performing actions in early stages of learning.

During this period the agent mainly learns about the environment, since it has not

yet gathered enough information to learn a good policy; in other words, the agent is

exploring the environment. Therefore, guiding exploration can provide a substantial

improvement in performance.

In the next chapter we provide a different approach to leveraging existing knowl-

edge. We present a formulation that allows an agent to exploit existing knowledge to

learn a policy that can be used specifically for exploration for a set of related tasks.
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CHAPTER 5

A META-MDP FORMULATION TO IMPROVE

EXPLORATION

So far we have shown that we can use prior knowledge to learn temporally extended

actions and that extending the original action set with these temporal abstractions

generally leads to improved learning performance. This improvement is a consequence

of the agent biasing its behavior towards executing known well-performing actions in

early stages of learning; when the agent is mostly exploring the environment.

In this chapter we present an alternative approach to using temporal abstraction

for leveraging existing experience. We present a framework for learning a policy

specifically learned for exploration by introducing a second agent whose objective

is to guide exploration in a specific problem class. We introduce the concept of an

optimal exploration policy, µ∗, and present a MDP formulation to learn such a policy.

We consider the scenario where, if an agent solving a task c ∈ C decides to explore,

it takes an action according to the policy of an advisor—a different agent whose policy

is tailored for exploration. We formulate the problem of learning µ∗ as a new MDP

and allow the agent to use any RL algorithm to learn a policy for solving a given task

c. We show that, in our formulation, an optimal policy for the MDP the advisor faces

is an optimal exploration policy according to our definition, and that our framework

allows us to leverage the existing RL literature to learn an optimal exploration policy.

5.1 Problem Description

We assume that an RL agent has to solve a series of tasks c ∈ C belonging to

a problem class C and consider a process that proceeds as follows. First, a task,
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c ∈ C is sampled from some distribution, dC, over C. Next, the agent uses some pre-

specified RL algorithm (e.g., Q-learning or Sarsa) to approximate an optimal policy

on the sampled task, c. At each time-step, the agent makes a decision whether it

should explore or exploit. If the agent decides to explore, it behaves according to an

exploration policy µ, otherwise according to an exploitation policy π. The exploration

policy is learned by another RL agent, called an advisor, whose task is to tell the

agent what action to take (if it decided to explore) in the specific task it is trying to

solve.

We assume that the agent interacts with for I episodes lasting T time-steps each.

We define the performance of an exploration policy, µ, for a specific task c ∈ C to be

ρ(µ, c) = E

[
I∑
i=0

T∑
t=0

Ri
t

∣∣∣∣∣µ, c
]
, (5.1)

where Ri
t is the reward at time step t during the ith episode.

Let C be a random variable that denotes a task sampled from dC. Our objective is

to find an optimal exploration policy, µ∗, which we define to be any policy satisfying:

µ∗ ∈ arg max
µ

E [ρ(µ,C)] . (5.2)

This objective seeks to maximize the cumulative return of an agent on the problem

class in expectation. Intuitively, assuming an agent always uses the same learning

algorithm to learn an optimal policy π∗c for each task c ∈ C and assuming its behavior

always begins with same initial policy, a more efficient exploration policy will lead

to higher expected cumulative return throughout the problem class. When presented

with a new task from the same problem class, an agent using this learned exploration

policy should be able to learn how to solve the task efficiently.

In this chapter, we seek to approximate the behavior of an optimal

exploration policy µ∗ from an agent’s interaction with tasks sampled from

C. In particular, we present a solution by modeling the problem as an MDP, which

allows us to leverage existing work in RL, and show that the optimal policy for this

new MDP results in an optimal exploration policy µ∗,

We contrast our framework with another meta learning approach called Model Ag-

nostic Meta Learning (MAML) (Finn et al., 2017). Unlike our approach, this method
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seeks to find a good set of initial parameters from where to beginning optimizing on

new problems; in the case of RL, MAML learns a general initial policy that can be

optimized quickly to a specific task. Our empirical results show a clear improvement

over MAML and demonstrate that our framework is a viable solution for learning an

efficient exploration strategy.

5.2 Related Work

There is a large body of work discussing the problem of how an agent should

behave during exploration when faced with a single MDP. Simple strategies, such as

ε-greedy with random action-selection, Boltzmann action-selection or softmax action-

selection, make sense when an agent has no prior knowledge of the problem that

it is facing. The performance of an agent exploring with random action-selection

reduces drastically as the size of the state-space increases (Whitehead, 1991). The

performance of Boltzmann or softmax action-selection hinges on the accuracy of the

action-value estimates. When these estimates are poor (e.g., early during the learning

process), it can have a drastic negative effect on the overall performance of the agent.

Recent research concerning exploration has taken the approach of adding an ex-

ploration “bonus” to the reward function. VIME (Houthooft et al., 2016) takes a

Bayesian approach by maintaining a model of the dynamics of the environment, ob-

taining a posterior of the model after taking an action, and using the KL divergence

between these two models as a bonus. The intuition behind this approach is that

encouraging actions that make large updates to the model allows the agent to better

explore areas where the current model is inaccurate. Another approach based on

exploration bonus was proposed by Pathak et al. (2017). The authors propose using

a neural network to predict state transitions based on the action taken and provide

an intrinsic reward proportional to the prediction error. The agent is therefore en-

couraged to take state transitions that are not modeled accurately. In general, these

methods guide the agent into selecting actions that lead to updating certain states

and not others. A more efficient approach to achieve a similar effect is to create
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symbolic representation of states, and update the value of several states after taking

an action as opposed to the value of a single state (Feng et al., 2003).

Although these techniques can be efficient when an agent is dealing with a single

MDP assuming no prior experience, they do not provide a means to guide an agent

to explore intelligently when faced with a novel, but related task.

In this chapter we consider the idea of meta-learning, or learning to learn, which

has been a recent area of focus. Although there is no standard definition of what meta-

learning is, roughly speaking it refers to the use of results from machine learning

experiments, to learn models that can generalize to different tasks. For example,

Andrychowicz et al. (2016) show how to learn a model that specifies the update rule

for a class of optimization problems. Given an objective function f and parameters

θ, the authors proposed learning a model, gφ, such that the update to parameters

θk, at iteration k are given according to θk+1 = θk + gφ(∇f(θk)). Another example

was presented by Rosenbaum et al. (2017), where the authors show how RL can be

used in meta-learning to learn efficient neural network architectures. However, even

though one can draw a connection to our work through meta-learning, these methods

are not concerned with the problem of exploration.

In the context of RL, a similar idea can be applied by defining a meta-MDP,

i.e., considering the agent as part of the environment in a larger MDP (Liu et al.,

2012; Thomas and Barto, 2011). Even though there is a considerable amount of work

that has been done with meta-learning in RL, most research has not addressed the

problem of exploration. In this chapter, we show how meta-learning can be used to

address the problem of exploration by considering an agent’s exploration strategy as

its own independent policy. To the best of our knowledge, meta-learning approaches

have not been used for this purpose and this chapter aims to explore this idea.

5.3 A Framework for Learning an Exploration Policy

We consider the case where there are two agents interacting with each other.

One agent, to which we refer as the agent, maintains a task-specific policy that is
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used for exploitation; given a specific task c, the agent’s goal is to learn an optimal

exploitation policy defined by π∗c ∈ argmax
π

E
[∑T

t=0Rt|π, c
]
. Thus, the agent’s goal

is to maximize the standard expected return objective.

The second agent, which we call the advisor, maintains a policy, µ, which is used

by the agent for exploration. The goal of the advisor is to learn an optimal exploration

policy µ∗ for the problem class C as defined in Eq. (5.2)

The agent will have K = IT time-steps of interactions with each of the sampled

tasks. Hereafter we use i to denote the index of the current episode on the current

task, t to denote the time step within that episode, and k to denote the number of

time steps that have passed on the current task, i.e., k = iT + t, and we refer to k as

the advisor time-step.1 At every advisor time-step, k, the advisor suggests an action,

Uk, to the agent, where Uk is sampled according to µ. Whenever the agent decides

to explore, it uses an action provided by the advisor according to its policy, µ. After

the agent completes I episodes on the current task, a new task is sampled from C and

the agent’s policy is reset to an initial policy. Notice that the goals of the advisor

and agent solving a specific task are different: the agent solving a specific task tries

to optimize the expected return on the task at hand, while the advisor searches for

an exploration policy that causes the agent to learn quickly across all tasks. As such,

the advisor may learn to suggest bad actions if that is what the agent needs to see to

learn quickly.

In this work, we assume an ε-greedy exploration schedule, i.e., with probability

εi the agent explores and with probability 1 − εi the agent exploits, where (εi)
I
i=1 is

a sequence of exploration rates εi ∈ [0, 1] and i refers to the episode number in the

current task.

1We assume that if the agent finishes an episode in less than T time-steps, it enters an absorbing

state and receives rewards equal to zero for the remainder of the episode.
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5.3.1 The Meta-MDP Framework

Our framework can be viewed as a meta-MDP—an MDP within an MDP. From

the point of view of the agent, the environment is the current task, c (an MDP).

However, from the point of view of the advisor, the environment contains both the

task, c, and the agent. At every time-step, the advisor selects an action U and the

agent an action A. The selected actions go through a selection mechanism which

executes action A with probability 1− εi and action U with probability εi at episode

i. Figure 5.1 depicts the proposed framework with action A (exploitation) being

selected. Even though one time step for the agent corresponds to one time step for

the advisor, one episode for the advisor constitutes a lifetime of the agent (all of

its interactions with a sampled task). From this perspective, wherein the advisor is

merely another RL algorithm, we can take advantage of the existing body of work in

RL to optimize the exploration policy, µ.

Figure 5.1: MDP view of interaction between the advisor and agent. At each time-

step, the advisor selects an action U and the agent an action A. With probability ε

the agent executes action U and with probability 1−ε it executes action A. After each

action the agent and advisor receive a reward R, the agent and advisor environment

transitions to states S and X, respectively.
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5.3.2 Theoretical Results

Below, we formally define the meta-MDP faced by the advisor and show that an

optimal policy for the meta-MDP optimizes the objective in (5.2). Recall that Rc, Pc,

and dc0 denote the reward function, transition function, and initial state distribution

of the MDP c ∈ C.

To formally describe the meta-MDP, we must capture the property that the agent

can implement an arbitrary RL algorithm. To do so, we assume the agent maintains

some memory, Mk, that is updated by some learning rule l (an RL algorithm) at each

time step, and write πMk
to denote the agent’s policy given that its memory is Mk.

In other words, Mk provides all the information needed to determine πMk
and its

update is of the form Mk+1 = l(Mk, Sk, Ak, Rk, Sk+1) (this update rule can represent

popular RL algorithms like Q-Learning and actor-critics). We make no assumptions

about which learning algorithm the agent uses (e.g., it can use Sarsa, Q-learning,

REINFORCE, and even batch methods like Fitted Q-Iteration), and consider the

learning rule to be unknown and a source of uncertainty.

Proposition 1. Consider an advisor policy, µ, and episodic tasks c ∈ C belonging

to a problem class C. The problem of learning µ can be formulated as an MDP,

Mmeta = (X ,U , T, Y, d′0), where X is the state space, U the action space, T the

transition function, Y the reward function, and d′0 the initial state distribution.

Proof. To show that Mmeta is a valid MDP we need to characterize the MDP’s state

set, X, action set, U , transition function, T , reward function, Y , and initial state

distribution d′0. We assume that when facing a new task, the agent memory, M , is

initialized to some fixed memory M0 (defining a default initial policy and/or value

function). The following definitions capture the intuition provided previously:

• X = S × I × C ×M. That is, the state set X is a set defined such that each

state, x = (s, i, c,M) contains the current task, c, the current state, s, in the

current task, the current episode number, i, and the current memory, M , of the

agent.
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• U = A. That is, the action set is the same as the action set of the problem

class, C.

• T is the transition function, and is defined such that T (x, u, x′) is the probability

of transitioning from state x ∈ X to state x′ ∈ X upon taking action u ∈ U .

Assuming the underlying RL agent decides to explore with probability εi and

to exploit with probability 1− εi at episode i, then T is defined as follows:

T (x, u, x′) =



dc0(s
′)1c′=c,i′=i+1,M ′=l(M,s,a,r,s′) if s is terminal and i 6= I − 1

dC(c
′)dc

′
0 (s′)1i′=0,M ′=M0 if s is terminal and i = I − 1(

εiPc(s, u, s
′)

+(1− εi)
∑

a∈Ac πM (s, a)Pc(s, a, s
′)

)
×1c′=c,i′=i,M ′=l(M,s,a,r,s′) otherwise.

(5.3)

• Y is the reward function, and defines the reward obtained after taking action

u ∈ U in state x ∈ X and transitioning to state x′ ∈ X . Notice that from the

point of view of the meta-MDP, the reward function if a probability distribution

and taking an action u effectively samples from this distribution. Let R be a

random variable denoting the reward received by the meta agent, then Y is

given by:

Y (x, u, x′) =

Pr(R = Rc(s, u, s
′)) = εi + (1− εi)πM(u, s)

Pr(R = Rc(s, a, s
′)) = (1− εi) πMk(a, s),∀a ∈ A/{u}

(5.4)

Also, notice that E [Y (x, u, x′)] = εiRc(s, u, s
′)+(1−εi)

∑
a∈A πM(a, s)Rc(s, a, s

′)

• d′0 is the initial state distribution and is defined by: d′0(x) = dC(c)d
c
0(s)1i=0.

Now that we have fully described Mmeta, we are able to show that the optimal

policy for this new MDP corresponds to an optimal exploration policy.
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Theorem 4. An optimal policy for Mmeta is an optimal exploration policy, µ∗, as

defined in (5.2). That is, E [ρ(µ,C)] = E
[∑K

k=0 Yk

∣∣∣µ, ].
Proof. We can show that an optimal policy of Mmeta is an optimal exploration policy

as defined in Eq. (5.2). To do so, it is sufficient to show that maximizing the return

in the meta-MDP is equivalent to maximizing the expected performance. That is,

E [ρ(µ,C)] = E
[∑K

k=0 Yk

∣∣∣µ, ].
E [ρ(µ,C)] =

∑
c∈C

Pr(C = c) E

[
I∑
i=0

T∑
t=0

Ri
t

∣∣∣∣∣µ,C = c

]

=
∑
c∈C

Pr(C = c)
I∑
i=0

T∑
t=0

E
[
Ri
t

∣∣µ,C = c
]

=
∑
c∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s∈S

Pr(SiT+t = s|C = c, µ) E
[
Ri
t

∣∣µ,C = c, SiT+t = s
]

=
∑
c∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

Pr(SiT+t = s|C = c, µ)

× Pr(AiT+t = a|SiT+t, µ) E
[
Ri
t

∣∣µ,C = c, SiT+t = s, AiT+t = a
]

=
∑
c∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(SiT+t = s|C = c, µ) Pr(AiT+t = a|SiT+t = s, µ)

× Pr(SiT+t+1 = s′|SiT+t = s, AiT+t = a, µ)

× E
[
Ri
t

∣∣µ,C = c, SiT+t = s, AiT+t = a, SiT+t+1 = s′
]

=
∑
c∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(SiT+t = s|C = c, µ) Pr(AiT+t = a|SiT+t = s, µ)

×

(
εiPc(s, a, s

′) + (1− εi)
∑
a′∈A

πMiT+t
(a′, s)Pc(s, a

′, s′)

)

×

(
εiRc(s, a, s

′) + (1− εi)
∑
a′∈A

πMiT+t
(a′, s)Rc(s, a

′, s′)

)

=
∑
c∈C

Pr(C = c)
I∑
i=0

T∑
t=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(SiT+t = s|C = c, µ) Pr(AiT+t = a|SiT+t = s, µ)

× T (x = (s, i, c,MiT+t), a, x = (s′, i, c,MiT+t))

× E [Y (x = (s, i, c,MiT+t), a, x = (s′, i, c,MiT+t))]
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=
∑
c∈C

Pr(C = c)
K∑
k=0

∑
s∈S

∑
a∈A

∑
s′∈S

Pr(Sk = s|C = c, µ) Pr(Ak = a|Sk = s, µ)

× T (x = (s, i, c,Mk), a, x
′ = (s′, i, c,Mk))

× E [Y (x = (s, i, c,Mk), a, x
′ = (s′, i, c,Mk)|µ,C = c, Sk = s, Ak = a, Sk+1 = s′)]

=
K∑
k=0

∑
x∈X

∑
a∈A

∑
x′∈X

Pr(Xk = x|µ)

× Pr(Uk = a|Xk = x)T (x, u, x′) E [Yk|Xk = s, Uk = a,Xk+1 = x′, µ]

=
K∑
k=0

∑
x∈X

∑
a∈A

∑
x′∈X

Pr(Xk = x|µ)

× Pr(Uk = a|Xk = x) Pr(Xk+1 = x′|Uk = a,Xk = x)

× E [Yk|Xk = s, Uk = a,Xk+1 = x′, µ]

=
K∑
k=0

∑
x∈X

∑
a∈A

Pr(Xk = x|µ) Pr(Uk = a|Xk = x) E [Yk|Xk = x, Uk = a, µ]

=
K∑
k=0

∑
x∈X

Pr(Xk = x|µ) E [Yk|Xk = x, µ]

=
K∑
k=0

E [Yk|µ]

=E

[
K∑
k=0

Yk|µ

]

Given that Mmeta is an MDP for which an optimal exploration policy is an optimal

policy, it follows that the convergence properties of RL algorithms apply to the search

for an optimal exploration policy. For example, in some experiments the advisor uses

the REINFORCE algorithm (Williams, 1992), the convergence properties of which

have been well-studied (Phansalkar and Thathachar, 1995).

Although the framework presented thus far is intuitive and results in nice theoret-

ical properties (e.g., methods that guarantee convergence to at least locally optimal

exploration policies), each episode corresponds to a new task c ∈ C being sampled.

This means that training the advisor may require solving a large number of tasks
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(episodes of the meta-MDP), each one potentially being an expensive procedure. To

address this issue, we sampled a small number of tasks c1, . . . , cn, where each ci ∼ dC

and train many episodes on each task in parallel. By taking this approach, every

update to the advisor is influenced by several simultaneous tasks and results in an

practical approach to obtain a general exploration policy to be used in subsequent

tasks.

5.3.3 Pseudocode

We developed two different training procedures based on two popular RL algo-

rithms: REINFORCE, (Williams, 1992), and Proximal Policy Optimization (PPO),

(Schulman et al., 2017). While REINFORCE is a more stable learning algorithm

than PPO, it relies on Monte Carlo sampling and can make learning a slow process.

PPO, on the other hand, is a temporal difference (TD) method, which addresses some

of the computational limitations of REINFORCE. Below we describe our proposed

algorithms in more detail.

REINFORCE is a Monte Carlo method that assumes the agent has a parameter-

ized policy and the parameters are updated to maximize the expected return. By

sampling trajectories from the current policy, the agent estimates the expected re-

turn of the policy and updates the parameters in the direction of the gradient of the

policy’s expected return.

Algorithm 4 presents pseudocode for an implementation of our method training

the advisor using REINFORCE. The algorithm runs for Imeta episodes for the advisor

and I episodes of the agent per advisor episode. At the end of each agent episode, the

agent’s policy π parameterized by θ is updated via REINFORCE with step size α,

lines [10-12]. At the end of each advisor episode, every trajectory recorded by every

agent episode is used to update the exploration policy µ parameterized by φ with

REINFORCE using step size β, lines [13-15].
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Algorithm 4 Agent + Advisor - REINFORCE

Initialize advisor policy µ randomly

for imeta = 0, 1, . . . , Imeta do

Sample task c from dc

for i = 0, 1, . . . , I do

Initialize π to π0

st ∼ dc0

for t = 0, 1, . . . , T do

at ∼

 µ with probability εi

π with probability (1− εi)
take action at, observe st, rt

for t = 0, 1, . . . , T − 1 do

G =
∑T

k=t+1Rk

θ = θ + α G ∇ log π(at, st)

for t = 0, 1, . . . , T I − 1 do

G =
∑TI

k=t+1Rk

φ = φ+ β G ∇ log µ(at, st)

In Algorithm 5 we show how PPO can be used to train both the agent and

advisor. PPO maintains two parameterized policies for an agent, πθ and πθ′ (with

parameters θ and θ′) and a model V̂φ (with parameters φ) used to estimate the

value function. The policy πθ′ refers to the previous policy while πθ refers to the

latest updated policy. The algorithm runs πθ′ for l time-steps and computes the

generalized advantage estimates (GAE), (Schulman et al., 2016), Â1, . . . , Âl; where

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)l−t+1δl−1 and δt = rt + γV (st+1)− V (st).

At a give time-step t, the objective of PPO seeks to maximize the following ob-

jective:

J(θ, θ′, φ) = Et

[
min(rtÂt, clip(rt, 1− α, 1 + α)Ât)

]
− (Rt + γ V̂φ(st+1)− V̂φ(st))

2

where rt = πθ(at|st)
πθ′ (at|st)

, and V̂φ(s) is an estimate of the value for state s. The updates

are done in mini-batches that are stored in a buffer of collected samples.
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To train the agent and advisor with PPO we defined two separate sets of policies:

µφ and µφ′ for the advisor, and πθ and πθ′ for the agent. The agent collects samples

of trajectories of length l to update its policy, while the advisor collects trajectories

of length n, where l < n. So, J (the objective of the agent) is computed with l

samples while Jmeta (the objective of the advisor) is computed with n samples. In

our experiments, setting n ≥ 2l seemed to give the best results.

Notice that the presence of a buffer to store samples, means that the advisor

will be storing samples obtained from many different tasks, which prevents it from

over-fitting to one particular problem.

Algorithm 5 Agent + Advisor - PPO

1: Initialize advisor policy µψ, µψ′ randomly

2: for imeta = 0, 1, . . . , Imeta do

3: Sample task c from dc

4: for i = 0, 1, . . . , I do

5: Initialize πθ and πθ′

6: st ∼ dc0

7: for t = 0, 1, . . . , T do

8: at ∼

 µψ′ with probability εi

πθ′ with probability (1− εi)
9: take action at, observe st, rt

10: if t % l = 0 then

11: compute Â1, . . . , Âl

12: optimize J w.r.t πθ

13: πθ′ = πθ

14: if t % n = 0 then

15: compute Â1, . . . , Ân

16: optimize Jmeta w.r.t µψ

17: µψ′ = µψ
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5.4 Experiments

In this section we present experiments for discrete and continuous control tasks.

We tested the training of advisor policies using the algorithms described above based

on REINFORCE, (Williams, 1992), and Proximal Policy Optimization (PPO), (Schul-

man et al., 2017).

5.4.1 Discrete Control Experiments

For discrete control tasks we present two different classes of problems: Pole-

balancing, (Sutton and Barto, 1998), and Animat (Thomas and Barto, 2011). We

chose these problems because any tasks belonging to these domain share a common

structure that is intuitive and easy to interpret; therefore, it allows us to study in

detail the behavior of our algorithm.

5.4.1.1 Pole Balancing

(Sutton and Barto, 1998), is a classical control problem commonly used to bench-

mark RL algorithms. The agent is tasked with applying force to a cart to prevent

a pole that balancing on it from falling. States are represented by 4-D vectors de-

scribing the position and velocity of the cart, and angle and angular velocity of the

pendulum, i.e., s = [x, v, θ, θ̇]. We consider two different versions of this problem;

one with a discrete action set and another one with a continuous action set. In the

discrete case the agent has 2 actions at its disposal: apply a force f in the positive

or negative x direction. In the continuous case, the agent picks a value in the range

[0, 1] which is mapped to an action in the range [−f, f ].

The distinct variations in tasks were constructed by modifying four variables: pole

mass, mp, pole length, l, cart mass, mc, and force magnitude, f . Figure 5.2 depict

two variations of this type of problem.
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Figure 5.2: Example of task variations in Pole-balancing.

Figure 5.3, contrasts the cumulative return of an agent using the advisor for ex-

ploration (in blue) with the cumulative return obtained by an agent using ε-greedy

random exploration (in red) during training over 6 training tasks. The exploitation

policy, π, was trained using REINFORCE for I = 1,000 episodes and the exploration

policy, µ, was trained using REINFORCE for 500 iterations. In the figure, the hor-

izontal axis corresponds to iterations, which are episodes for the adviser and entire

lifetimes for the agent. The horizontal red line denotes an estimate (with standard

error bar) of the expected cumulative reward that an agent will obtain during its life-

time if it samples actions uniformly when exploring. Notice that this is not a function

of the training iteration, as the random exploration is not updated. The blue curve

(with standard error bars from 15 trials) shows how the expected cumulative reward

that the agent will obtain during its lifetime changes as the advisor learns to improve

its policy. Here the horizontal axis shows the number of training iterations—the

number of episodes of the meta-MDP. By the end of the plot, the agent is obtain-

ing roughly 30% more reward during its lifetime than it was when using a random

exploration.
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Figure 5.3: Performance curves during training comparing advisor policy (blue) and

random exploration policy (red).

To better visualize this difference, Figure 5.4 shows the mean learning curves

(episodes of an agent’s lifetime on the horizontal axis and average return for each

episode on the vertical axis) during the first and last 50 iterations. The mean cu-

mulative reward were 25,283 and 30,552 respectively. Notice that, although the final

performance obtained is similar, using a trained advisor allows the agent to reach this

level of performance faster; thus achieving a larger cumulative return.
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Figure 5.4: Average learning curves on training tasks over the first 50 advisor episodes

(blue) and the last 50 advisor episodes (orange).

One might think that the learned policy for exploration might simply be a policy

that works well in general. So how do we know that the advisor is learning a policy

that is useful for exploration and not simply a policy for exploitation? To answer

this question, we generated three distinct unseen tasks for both pole-balancing and

compare the performance of an agent using only the learned exploration policy with

the performance obtained by an exploitation policy trained to solve each specific task.

The plot in Figure 5.5 compares the mean return (and standard deviation) of the

exploration policy (blue) and the exploitation policy (green) on each task variation.

From the figure we can see that the exploration policy fails to achieve a comparable

performance to a task-specific policy; providing evidence that the policy learned by

the advisor is not simply a general exploitation policy.
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Figure 5.5: Average returns obtained on test tasks when using the advisor’s explo-

ration policy (blue) and a task-specific exploitation (green)

5.4.1.2 Animat

We revisited the Animat problem introduced in Chapter 2. The different vari-

ations of the tasks correspond to randomized start and goal positions in different

environments. An interesting pattern that is shared across tasks in this problem is

that there are actuator combinations that are not useful for reaching the goal. For ex-

ample, activating actuators at θ = 0◦ and θ = 180◦ would leave the agent in the same

position it was before (ignoring the effect of the noise). Even though the environment

itself might not provide enough structure for the advisor to leverage previous experi-

ences, the presence of these poor performing actions provide some common patterns

that can be leveraged.
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Figure 5.6 shows the mean learning curves averaged over all training tasks, where

the advisor was trained for 50 iterations. The curve in blue is the average curve

obtained from the first 10 iterations of training the advisor and the curve in orange

is the average obtained from the last 10 training iterations of the advisor. Each

individual task was trained for I = 800 episodes. The figure shows a clear performance

improvement on average as the advisor improves its policy.

Figure 5.6: Average learning curves for Animat on training tasks over the first 10

iterations (blue) and last 10 iterations (orange).

To test our intuition that an exploration policy would exploit the presence of

poor-performing actions, we recorded the frequency with which they were executed

on unseen testing tasks when using the learned exploration policy after training and

when using a random exploration strategy, over 5 different learned policies. Figure

5.7 helps explain the difference in performance seen in Figure 5.6. It depicts on
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the y-axis, the percentage of times these poor-performing actions were selected at a

given episode, and on the x-axis the agent episode number in the current task. This

shows that the agent when using the advisor policy (blue) is encouraged to reduce the

selection of known poor-performing actions, compared to an agent choosing actions

from a uniform random distribution for exploration (red).

Figure 5.7: Frequency of poor-performing actions in an agent’s lifetime with learned

(blue) and random (red) exploration.

To verify that the learned exploration policy is not a general exploitation policy,

we performed a similar experiment to the one for the Pole-balancing problem. Figure

5.8 shows the average (and standard deviation) number of steps needed to reach the

goal in three different tasks. Notice that in this case smaller values are better. Just

as before, the performance of a task-specific policy performs considerably better than
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the exploration policy for any task in particular. Further giving us evidence that the

policy learned by the advisor is tailored for exploration.

Figure 5.8: Number of steps needed to complete test tasks with advisor policy (blue)

and exploitation (green).

5.4.2 Continuous Control Experiments

In this section we examine the performance of our framework on novel tasks, and

contrast our method to MAML trained using PPO. In the case of discrete action-

sets, we trained each task for 500 episodes and compare the performance of an agent

trained with REINFORCE (R) and PPO, with and without an advisor. In the case

of continuous tasks, we tested on problem obtained from the OpenAI Gym suite and

restrict our experiments to an agent trained using PPO (since it was shown to perform

well in continuous control problems), with and without an advisor after training for
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500 episodes. In our experiments we set the initial value of ε to ε0 = 0.8, and defined

the update after each agent episode to be εi+1 = max(0.1, 0.995εi).

5.4.2.1 Pole Balancing

We tested our approach in a variation of the Pole-balancing problem with contin-

uous action set. In this case the agent could apply a force f ∈ [−fmin, fmax], where

fmin < 0 and fmax > 0. The task variations where implemented in the same fashion

as in the case of discrete action set.

5.4.2.2 Hopper

The goal of the agent is to reach the end of the track by learning how to jump

and balance to move forward. The action set is given by a three dimensional vector

denoting the acceleration applied at each of the joins in the agent model, and the

state is represented by a vector of 15 dimensions. The tasks vary in the length of

the limbs in the model which result in changes in the transition function, initial state

distribution and reward function. Two variations are shown in Figure 5.9.

Figure 5.9: Example of task variations in Hopper.

5.4.2.3 Ant

In this problem class the goal of the agent is similar to the previous case. The

agent needs to reach the end of track and, at each time step, it receives a positive

or negative reward proportional to how closer or farther it got from the end of the

101



track. The action set is given by a eight dimensional vector denoting the acceleration

applied at each of the joins in the agent model, and the state is represented by a

vector of 28 dimensions. The tasks varied in the models of the agent by varying the

size of the body and the length of the limbs; two variations are shown in Figure 5.10.

Figure 5.10: Example of task variations in Ant.

Table 5.1 shows the results obtained in all the experiments described in this sec-

tion. Each novel task was trained 5 times for each method; the table shows the

average performance and standard deviation in each task.

Problem Class R R+Advisor PPO PPO+Advisor MAML

Pole-balance (d) 20.32± 3.15 28.52± 7.6 27.87± 6.17 46.29± 6.30 39.29± 5.74

Animat −779.62± 110.28 −387.27± 162.33 −751.40± 68.73 −631.97± 155.5 −669.93± 92.32

Pole-balance (c) — — 29.95± 7.90 438.13± 35.54 267.76± 163.05

Hopper — — 13.82± 10.53 164.43± 48.54 39.41± 7.95

Ant — — −42.75± 24.35 83.76± 20.41 113.33± 64.48

Table 5.1: Average performance on discrete and continuous control unseen tasks

over the last 50 episodes. In the cases where advisor performs best, the results are

statistically significant. For the Ant domain, MAML appears to be better, although

the high variance in returns makes this result not statistically significant

In the discrete case, we can see that for both pole-balancing and Animat, MAML

showed a clear improvement over starting from a random initial policy. However,

using the advisor with PPO resulted in a clear improvement in pole-balancing and,
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in the case of animat, training the advisor with REINFORCE led to an almost 50%

improvement over MAML.

In the case of continuous control, the first test corresponds to a continuous ver-

sion of pole-balancing, where the different variations were obtained by modifying

the length and mass of the pole, and the mass of the cart. The second and third

set of tasks correspond to the “Hopper” and “Ant” problem classes, where the task

variations were obtained by modifying the length and size of the limbs and body.

In all continuous control tasks, both using the advisor and MAML led to significant

improvement in performance in the alloted time. In the case of pole-balancing, using

the advisor led the agent to accumulate almost twice as much reward as MAML, and

in the case of Hopper, the advisor led to accumulating 4 times as much total reward.

On the other hand, MAML led to higher average return than the advisor in the Ant

problem class, but showing high variance.

An important takeaway from these results is that in all cases, using the advisor

resulted in a clear improvement in performance over a limited number of episodes.

This does not mean that the agent can reach a better policy over an arbitrarily long

period of time, but rather that it is able to reach a certain performance level more

quickly.

5.4.3 Self-Driving Simulation

For this experiment we used a simulator implemented by Tawn Kramer from the

“Donkey Car” community 2. The goal of the agent is to control a car moving with a

constant acceleration (up to some maximum velocity) and prevent it from leaving the

right lane of the road. The action set consist on 15 possible steering angles between

angles θmin < 0 and θmax > 0 and the state is represented as a stack of the last 4

80× 80 images sensed by a front-facing camera. The agent received a reward of 0 at

each time-step and a reward of −1 if it leaves the corresponding lane.

2The Unity simulator for the self-driving task can be found at https://github.com/

tawnkramer/sdsandbox
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Different tasks vary in the body mass, m, of the car and values of θmin and θmax.

These differences imply a change in the transition and reward functions of each dif-

ferent task. Two different variations for these tasks are shown in Figure 5.11.

Figure 5.11: Example of task variations in driving simulator.

The experiment, depicted in Figure 5.12, compares an agent who is able to use

an advisor during exploration for fine-tuning (blue) vs. an agent who does not have

access to an advisor (red). The figure the number of episodes of fine-tuning needed

to reach a pre-defined performance threshold (1, 000 time-steps without leaving the

correct lane). The first and second groups in the figure show the average number

of episodes needed to fine-tune in the first and second half of tasks, respectively.

In the first half of tasks (left), the advisor seems to make fine-tuning more difficult

since it has not been trained to deal with this specific problem. Using the advisor

took an average of 42 episodes to fine-tune, while it took on average 12 episodes to

fine-tune without it. The benefit, however, can be seen in the second half of training

tasks. Once the advisor had been trained, it took on average 5 episodes to fine-tune

while not using the advisor needed an average of 18 episodes to reach the required

performance threshold. When the number of tasks is large enough and each episode

is a time-consuming or costly process, our framework could result in important time

and cost savings.
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Figure 5.12: Number of episodes needed to achieve threshold performance on self-

driving problem (lower is better). Exploration with advisor is shown in blue and

random exploration in red. Left group shows mean number of episodes needed to

fine-tune on first half of tasks, the right group shows the same on the second half of

tasks.

5.5 Discussion and Conclusions

In this chapter, we presented a framework for using prior experience with a set

of related tasks to learn an exploration policy for a problem class. We showed that

the problem of learning an optimal exploration policy, µ∗, can be formulated as a

meta-MDP where the environment is itself defined by an MDP (a given task c ∈ C).

The advisor in this meta-MDP, is an agent whose policy guides exploration in the

problem class. We demonstrated through experiments that, after training, using the

advisor to guide exploration results in a significant improvement in the time required
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for an agent to learn how to solve a set of benchmark tasks. In addition, we showed

that the policy learned by the advisor is an exploration policy and not merely a policy

that can solve any task; in fact, our experiments show that the policy of the advisor

performs poorly if used solely to solve any given task.

This work could be extended in several different directions. In our approach, the

probability of whether the agent explores or exploits depends entirely on the current

episode; ignoring the possibility that the agent might be behaving reasonably in some

regions of the state space. A clear direction for improvement would be to incorporate

techniques that would allow an agent to learn when it should explore.

Another direction for improvement is addressing the computational cost of training

the meta-MDP, which is a problem inherent in meta-learning methods themselves.

If the agent were allowed to select which task it will face next, one possible way of

addressing this issue would be through curriculum learning techniques. From this

perspective, the agent could learn to pick the task that would result in the most

improvement for the advisor.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation we have presented two different approaches for ex-

ploiting existing experience to improve the performance of reinforcement

learning algorithms: temporal abstractions and meta-learning.

We began this thesis by motivating the use of prior experience and its relevance

to RL; discussing in Chapter 2 different ways in which past knowledge can be used

to improve RL algorithms. Inspired by research in the animal behavior literature, in

Chapter 3 we developed a framework for obtaining temporal abstractions by using

compression techniques. We showed that one can leverage existing knowledge of op-

timal behavior to obtain recurrent action patterns—macros—that are often present

in optimal trajectories. Our method was able to obtain simple open-loop temporally-

extended actions and we showed, through empirical evaluation, that they outperform

competing methods in many scenarios. However, macros are rather limited in certain

situations and are not well suited to represent continuous actions. The options frame-

work provide an alternative to macros that circumvent some of those limitations.

In Chapter 4 we improved on the ideas developed on Chapter 3 and showed how an

objective analogous to compression can be posed as an optimization problem whose

solution results in a set of options capable of generating optimal trajectories. The

options obtained from optimizing the proposed objective, are not only able to improve

the performance of a learning agent, but are also specialized for specific sub-tasks

within the larger problem: a desirable property within the options framework.

In those two chapters we addressed an issue that is often neglected in the literature:

how do we obtain an appropriate number of macros or options for a specific type of

problem? In the case of macros, we showed that we can select an appropriate number
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by filtering out macros that are too similar to each other. In the case of options, we

showed that we can iteratively learn one option at a time by optimizing the proposed

objective and terminate once the optimization procedure fails to improve beyond

some threshold.

Lastly, we took a different route to exploit existing knowledge in Chapter 5. We

showed that meta-learning can be used to learn a policy tailored for exploration; a

central problem within RL. We formulated the problem as a meta-MDP and showed

that the learned policy, not only leads to improved learning performance, but also

specializes in exploration and is not merely a general policy to solve any task.

6.1 Future Work

In this thesis we developed a suite of techniques to exploit existing knowledge.

Even though the results indicate that we are able to improve learning performance,

there are several possibilities for improving and expanding the work presented in this

thesis.

1. The methods for temporal abstraction presented here are able to obtain temporally-

extended actions in an offline approach. The agent must first obtain a set of

optimal trajectories. Our method then obtains a set of macros or options, and

finally the agent is able to leverage those macros and options in new problems.

This offline approach might be limiting; it is not clear how many trajectories

are needed to obtain appropriate abstractions and, once they are obtained,

they are not updated after solving subsequent tasks. One way of addressing

this limitation would be to derive an online approach for learning temporal ab-

stractions. Instead of learning a fixed set of macros or options after collecting

several trajectories, the agent could learn them as new tasks are being solved

in an incremental manner.

2. The method developed in Chapter 4 proved to be a particularly efficient ap-

proach for learning options. However, for pragmatic reasons, several design de-
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cisions were made that were not optimal and resulted in considerable effort in

hyperparameter tuning to obtain the reported results. Mainly, the hyperparam-

eters used to balance minimizing the number of terminations and maximizing

the probability of generating observed trajectories plays a crucial role in suc-

cessfully implementing our method. These hyperparameters were introduced to

account for the fact that longer trajectories are inherently less likely to occur,

so it should be possible to come up a function based on the length of a trajec-

tory that balances these terms. The same issue is true in how we define the

threshold used to stop introducing new options. Addressing these two issues in

a principled way would get rid of the need for hyperparameters altogether.

3. Our meta-MDP formulation, presented in Chapter 5, suffers from some of the

same limitations that plague meta-learning methods in general: the method is

computationally expensive and it takes time to see clear benefits. We circumvent

some of these limitations by parallelizing training across multiple tasks and

using TD methods to update the meta-agent’s policy. If we relaxed our problem

definition and, instead of assuming the agent is presented with tasks to solve, we

consider the case where the agent is allowed to pick which tasks it will practice

on, we should be able to use techniques from curriculum learning to train on

tasks that are simple enough that the agent can solve quickly but also allows

the meta-agent to make significant progress. To the best of our knowledge, the

use of curriculum learning as a mechanism to efficiently learn in meta-learning

problems has not been explored in depth by the community.

4. There is interesting relationship between the work presented in Chapter 5 and

Chapter 4. When learning options, an option policy and termination function

will learn how to best adapt to the trajectories demonstrated but, naturally, it

will not be able to adapt correctly to unseen states (i.e., it was never shown

the appropriate behavior for states not present in those trajectories). In those

states, not only is the option policy generally not well suited but the termi-

nation function might learn to never terminate. To deal with that situation,
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we manually increased the probability of termination the longer an option had

been running. A more robust approach would be to try to identify in which

states the options are not expected to perform well and, upon encountering

those states, let the agent behavior be guided by an exploration policy. Going

even further, we might be able to apply the Meta-MDP framework to learn an

exploration option, where both the option policy and termination function are

trained to guide the agent in those unknown states.

These are some of the possibilities we have encountered for improving and extend-

ing our work, but it is by no means an exhaustive list of ways in which our work can

be improved. The takeaway message from this study is that existing knowledge is

often available; even if an agent starts learning from scratch, the experience it collects

while solving a task can be leveraged to improve learning in subsequent problems. We

hope that this thesis helps guide future studies and that, whenever possible, machine

learning practitioners will consider leveraging experience as a key step in making RL

a practical solution to research problems.
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