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ABSTRACT

INFORMATION-THEORETIC LIMITS ON
STATISTICAL MATCHING WITH APPLICATIONS TO

PRIVACY

MAY 2020

NAZANIN TAKBIRI

B.Sc., UNIVERSITY OF TEHRAN

M.Sc., BOĞAZIÇI UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hossein Pishro-Nik

Modern applications significantly enhance user experience by adapting to each user’s

individual condition and/or preferences. While this adaptation can greatly improve a user’s

experience or be essential for the application to work, the exposure of user data to the

application presents a significant privacy threat to the users—even when the traces are

anonymized (since the statistical matching of an anonymized trace to prior user behavior

can identify a user and their habits). Because of the current and growing algorithmic and

computational capabilities of adversaries, provable privacy guarantees as a function of the

degree of anonymization and obfuscation of the traces are necessary. This dissertation fo-

cuses on deriving the theoretical bounds on the privacy of users in such a scenario. Here we

derive the fundamental limits of user privacy when both anonymization and obfuscation-

based protection mechanisms are applied to users’ time series of data. We investigate the

impact of such mechanisms on the trade-off between privacy protection and user utility. In

vii



the first part, the requirements on anonymization and obfuscation in the case that data traces

are independent between users are obtained. However, the data traces of different users will

be dependent in many applications, and an adversary can potentially exploit such. So in the

next part, we consider the impact of dependency between user traces on their privacy. In or-

der to do that, we demonstrate that the adversary can readily identify the association graph

of the obfuscated and anonymized version of the data, revealing which user data traces are

dependent, and then, we demonstrate that the adversary can use this association graph to

break user privacy with significantly shorter traces than in the case of independent users.

As a result, we show inter-user dependency degrades user privacy. We show that obfus-

cating data traces independently across users is often insufficient to remedy such leakage.

Therefore, we discuss how users can improve privacy by employing joint obfuscation that

removes the data dependency. Finally, we discuss how the remapping technique came to

our help to improve user utility and how much remapping is leaking to the adversary when

the adversary does not have the full prior information.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A number of emerging systems and applications work by analyzing the data submitted

by their users in order to serve them; we call such systems User-Data Driven (UDD) ser-

vices. Examples of UDD services include smart cities, connected vehicles, smart homes,

and connected healthcare devices, which have the promise of greatly improving users’

lives. Unfortunately, the sheer volume of user data collected by these systems can compro-

mise users’ privacy [85]. Even the use of standard Privacy-Protection Mechanisms (PPMs),

specifically anonymization of user identities and obfuscation of submitted data, does not

guarantee users’ privacy, as adversaries are able to use powerful statistical inference tech-

niques to learn sensitive private information of the users [74]. Such privacy threats are a

major obstacle to the wide adoption of IoT applications, as demonstrated by prior stud-

ies [3, 5, 27, 44, 47, 66, 84, 85, 87, 101, 115, 116, 118, 120, 122].

To illustrate the threat of privacy leakage, consider three popular UDD services: (1)

Health care: Wearable monitors that constantly track user health variables can be invalu-

able in assessing individual health trends and responding to emergencies. However, such

monitors produce long time-series of user data uniquely matched to the health character-

istics of each user; (2) Smart homes: Emerging smart-home technologies such as fine-

grained power measurement systems can help users and utility providers to address one of

the key challenges of the twenty-first century: energy conservation. But the measurements

of power by such devices can be mapped to users and reveal their lifestyle habits; and, (3)

Connected vehicles: The location data provided by connected vehicles promises to greatly
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improve everyday life by reducing congestion and traffic accidents. However, the matching

of such location traces to prior behavior not only allows for user tracking, but also reveals

a user’s habits. In summary, despite their potential impact on society and their emerging

popularity, these UDD services have one thing in common: their utility critically depends

on their collection of user data, which puts users’ privacy at significant risk.

1.2 Related Works

There are two main approaches to augment privacy in UDD services: identity pertur-

bation (anonymization) [18, 33, 45, 71, 74, 96, 102, 103], and data perturbation (obfusca-

tion) [10,39,99]. In anonymization techniques, privacy is obtained by concealing the map-

ping between users and data, and the mapping is changed periodically to thwart statistical

inference attacks that try to de-anonymize the anonymized data traces by matching user

data to known user profiles. Some approaches employ k-anonymity to keep each user’s

identity indistinguishable within a group of k − 1 other users [28,36,50,69,105,133,134].

Other approaches employ users’ pseudonyms within areas called mix-zones [8, 34, 81].

Obfuscation mechanisms aim at protecting privacy by perturbing user data, e.g., by adding

noise to users’ samples of data. For instance, cloaking replaces each user’s sample of

data with a larger region [15, 46, 98, 117, 124, 136], while an alternative approach is to use

dummy data in the set of possible data of the users [16,54,55,70,91]. In [123], a mechanism

of obfuscation was introduced where the answer was changed randomly with some small

probability. Here we consider the fundamental limits of a similar obfuscation technique for

providing privacy in the long time series of emerging applications.

The anonymization and obfuscation mechanisms improve user privacy at the cost of

user utility. The anonymization mechanism works by frequently changing the pseudonym

mappings of users to reduce the length of time series that can be exploited by statistical

analysis. However, this frequent change may also decrease the usability by concealing the

temporal relation between a user’s sample of data, which may be critical in the utility of
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some systems, e.g., a dining recommendation system that makes suggestions based on the

dining history of its users. On the other hand, obfuscation mechanisms work by adding

noise to users’ collected data, e.g., location information. The added noise may degrade

the utility of UDD applications. Thus, choosing the right level of the privacy-protection

mechanism is an important question, and understanding what levels of anonymization and

obfuscation can provide theoretical guarantees of privacy is of interest.

Numerous researchers have put forward ideas for quantifying privacy-protection. Shokri

et al. [96, 97] define the expected estimation error of the adversary as a metric to evaluate

PPMs. Ma et al. [71] use uncertainty about users’ information to quantify user privacy in

vehicular networks. To defeat localization attacks and achieve privacy at the same time,

Shokri et al. [99] proposed a method which finds optimal PPM for a Location Based Ser-

vice (LBS) given service quality constraints. In [60] and [76], privacy leakage of data

sharing and interdependent privacy risks are quantified, respectively. A similar idea is

proposed in [132] where the quantification model is based on the Bayes conditional risk.

Previously, mutual information has been used as a privacy metric in a number of set-

tings, [11, 19, 64, 65, 88, 89, 127]. However, the framework and problem formulation for

our setting (Internet of Things (IoT) privacy) are quite different from those encountered in

previous works. More specifically, the IoT privacy problem we consider here is based on

a large set of time-series data that belongs to different users with different statistical pat-

terns that has gone through a privacy-preserving mechanism, and the adversary is aiming

at de-anonymizing and de-obfuscating the data.

The discussed studies demonstrate the growing importance of privacy. What is miss-

ing from the current literature is a solid theoretical framework for privacy that is general

enough to encompass various privacy-preserving methods in the literature. Such a frame-

work will allow us to achieve provable privacy guarantees, obtain fundamental trade-offs

between privacy and performance, and provide analytical tools to optimally achieve prov-

able privacy.
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1.3 Contributions

• Privacy of Independent Users Against Statistical Matching (Chapter 2):

In this chapter, we derive the fundamental limits of user privacy when both anonymiza-

tion and obfuscation-based protection mechanisms are applied to users’ time series

of data. We investigate the impact of such mechanisms on the trade-off between pri-

vacy protection and user utility in the case that data traces are independent between

users. We first study achievability results for the case where the time-series of users

are governed by an i.i.d. process. The converse results are proved both for the i.i.d.

case as well as the more general Markov chain model. We demonstrate that as the

number of users in the network grows, the obfuscation-anonymization plane can be

divided into two regions: in the first region, all users have perfect privacy; and, in the

second region, no user has privacy.

• Privacy of Independent Users Against Statistical Matching: Non-Asymptotic

Results (Chapter 3)

In this chapter, we turn attention to exact performance analysis for a finite number

of users and observations. We consider the case where a user is distributed over a

discrete set of states according to a probability distribution drawn at random, which

we assume is known to the adversary based on his/her analysis of past user behavior.

The finite-length traces are then anonymized and obfuscated at a cost in user utility.

We analyze the ability of the adversary to correctly identify user data samples as a

function of the rate of anonymization and degree of obfuscation, and we arrive at

complicated yet readily numerically evaluated expressions. These results allow us to

investigate interesting questions left open by the asymptotic nature of previous work.

• Privacy of Dependent Users Against Statistical Matching(Chapter 4):

Chapter 2 has considered the requirements on anonymization and obfuscation for

“perfect” user privacy when traces are independent between users. However, in prac-
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tice users have correlated data traces, as relationships between users establish de-

pendence in their behavior. In this chapter, we demonstrate that such dependency

degrades the privacy of PPMs, as the anonymization employed must be significantly

increased to preserve perfect privacy, and often no degree of independent obfusca-

tion of the traces can be effective. We also present preliminary results on dependent

obfuscation to improve users’ privacy.

• Leveraging Prior Knowledge asymmetries in the Design of IoT Privacy-Preserving

Mechanisms (Chapter 5):

The Internet of Things (IoT) promises to improve user utility by tuning applications

to user behavior, but the revealing of the characteristics of a user’s behavior presents

a significant privacy risk. Recently, the technique of remapping has been introduced

in the privacy literature. Remapping exploits asymmetries in knowledge and/or so-

phistication between the intended application and the adversary; in particular, the

user publishes a more accurate version of their data than they might have otherwise

because a sophisticated adversary could obtain that accurate version anyway. We

present an information-theoretic analysis of the remapping technique. After intro-

ducing a system model, we first demonstrate the mechanism behind the remapping

technique. Next, we characterize the loss in privacy when the user lacks knowledge

of the accuracy of the adversary’s statistical model; this loss in privacy occurs both

because the adversary obtains a more accurate view of the user data than expected and

because the adversary can exploit the remapping to improve their statistical model

more than would have been possible when remapping is not employed. Finally, we

introduce a random remapping approach as a countermeasure; in particular, for a

given utility, the random remapping approach makes it difficult for the adversary to

improve their statistical model.

Finally, in Chapter 6, we present our conclusions and future work.
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CHAPTER 2

PRIVACY OF INDEPENDENT USERS AGAINST STATISTICAL
MATCHING

2.1 Introduction

Many popular applications use traces of user data to offer various services to their

users. However, even if user data is anonymized and obfuscated, a user’s privacy can be

compromised through the use of statistical matching techniques that match a user trace to

prior user behavior. In this chapter, we derive the theoretical bounds on the privacy of users

in such a scenario.

Here, we will consider the ability of an adversary to perform statistical analyses on

time series and match the series to descriptions of user behavior. In related work, Unnikr-

ishnan [118] provides a comprehensive analysis of the asymptotic (in the length of the time

series) optimal matching of time series to source distributions. However, there are several

key differences between that analysis and the work here. First, Unnikrishnan [118] looks

at the optimal matching tests, but does not consider any privacy metrics as considered in

this dissertation, and a significant component of our study is demonstrating that mutual

information converges to zero so that we can conclude there is no privacy leakage (hence,

“perfect privacy”). Second, the setting of [118] is different, as it does not consider: (a)

obfuscation, which is one of the two major protection mechanisms; and (b) sources that

are not independent and identically distributed (i.i.d.). Third, the setting of Unnikrish-

nan [118] assumes a fixed distribution on sources (i.e., classical inference), whereas we

assume the existence of general (but possibly unknown) prior distributions for the sources

The work presented in this chapter was published in [106, 107, 109, 111].
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(i.e., a Bayesian setting). Finally, we study the fundamental limits in terms of both the

number of users and the number of observations, while Unnikrishnan [118] focuses on the

case where the number of users is a fixed, finite value.

We derive the fundamental limits of user privacy when both anonymization and obfuscation-

based protection mechanisms are applied to users’ time series of data. We investigate the

impact of such mechanisms on the trade-off between privacy protection and user utility in

the case that data traces are independent between users.

In this chapter, we consider two models for users’ data: i.i.d. and Markov chains. After

introducing the general framework in Section 2.2, we consider an i.i.d. model extensively

in Section 2.3 and the first half of Section 2.4. We obtain achievability and converse results

for the i.i.d. model. The i.i.d. model would apply directly to data that is sampled at a

low rate. In addition, understanding the i.i.d. case can also be considered the first step

toward understanding the more complicated case where there is dependency, as was done

for anonymization-only Location Privacy-Preserving Mechanisms (LPPMs) in [73], and

will be done in Section 2.4.3. In particular, in Section 2.4.3, a general Markov chain model

is used to model users’ data pattern to capture the dependency of the user’ data pattern

over time. There, we obtain converse results for privacy for this model. In Section 2.5, we

provide some discussion about the achievability for the Markov chain case.

2.2 System Model, Definitions, and Metrics

In this chapter, we adopt a similar framework to that employed in [73,106]. The general

set up is provided here, and the refinement to the precise models for this chapter will be

presented in the following sections. We assume a system with n users with Xu(k) denoting

a sample of the data of user u at time k, which we would like to protect from an interested

adversary. We consider a strong adversary that has complete statistical knowledge of the

users’ data patterns based on the previous observations or other resources. In order to

secure data privacy of users, both obfuscation and anonymization techniques are used as
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shown in Figure 2.1. In Figure 2.1, Zu(k) shows the (reported) sample of the data of user

u at time k after applying obfuscation, and Yu(k) shows the (reported) sample of the data

of user u at time k after applying anonymization. The adversary observes only Yu(k), k =

1,2, · · · ,m(n), where m(n) is the number of observations of each user before the identities

are permuted. The adversary then tries to estimate Xu(k) by using those observations.

Figure 2.1: Applying obfuscation and anonymization techniques to users’ data samples.

Let Xu be the m(n) × 1 vector containing the samples of the data of user u, and X be the

m(n) × n matrix with uth column equal to Xu;

Xu =



Xu(1)

Xu(2)

...

Xu(m)



, X = [X1,X2, · · · ,Xn] .

Data Samples Model: We assume there are r ≥ 2 possible values (0,1, · · · ,r − 1) for

each sample of the users’ data. In the first part of this chapter (perfect privacy analysis),

we assume an i.i.d. model as motivated in Section 2.1. In the second part of this chapter

(converse results: no privacy region), the users’ datasets are governed by irreducible and

aperiodic Markov chains. At any time, Xu(k) is equal to a value in {0,1, · · · ,r − 1} accord-

ing to a user-specific probability distribution. The collection of user distributions, which

satisfy some mild regularity conditions discussed below, is known to the adversary, and
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they employ such to distinguish different users based on statistical matching of those user

distributions to traces of user activity of length m(n).

Obfuscation Model: The first step in obtaining privacy is to apply the obfuscation opera-

tion in order to perturb the users’ data samples. In this chapter, we assume that each user

has only limited knowledge of the characteristics of the overall population and thus we em-

ploy a simple distributed method in which the samples of the data of each user are reported

with error with a certain probability, where that probability itself is generated randomly

for each user. In other words, the obfuscated data is obtained by passing the users’ data

through an r-ary symmetric channel with a random error probability. More precisely, let

Zu be the vector which contains the obfuscated versions of user u’s data samples, and Z is

the collection of Zu for all users,

Zu =



Zu(1)

Zu(2)

...

Zu(m)



, Z = [Z1,Z2, · · · ,Zn] .

To create a noisy version of data samples, for each user u, we independently generate a

random variable Ru that is uniformly distributed between 0 and an, where an ∈ (0,1]. The

value of Ru gives the probability that a user’s data sample is changed to a different data

sample by obfuscation, and an is termed the “noise level” of the system. For the case of

r = 2 where there are two states for users’ data (state 0 and state 1), the obfuscated data is

obtained by passing users’ data through a Binary Symmetric Channel (BSC) with a small

error probability [123]. Thus, we can write
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Zu(k) =


Xu(k), with probability 1 − Ru.

1 − Xu(k), with probability Ru.

When r > 2, for l ∈ {0,1, · · · ,r − 1}:

P(Zu(k) = l |Xu(k) = i) =


1 − Ru, for l = i.

Ru

r−1, for l , i.

Note that the effect of the obfuscation is to alter the probability distribution function of

each user across the r possibilities in a way that is unknown to the adversary, since it is

independent of all past activity of the user, and hence the obfuscation inhibits user iden-

tification. For each user, Ru is generated once and is kept constant for the collection of

samples of length m(n), thus, providing a very low-weight obfuscation algorithm. We will

discuss the extension to the case where Ru is regenerated independently over time in Sec-

tion 2.5. There, we will also provide a discussion about obfuscation using continuous noise

distributions (e.g., Gaussian noise).

Anonymization Model: Anonymization is modeled by a random permutation Π on the

set of n users. The user u is assigned the pseudonym Π(u). Y is the anonymized version of

Z; thus,

Y = Perm (Z1,Z2, · · · ,Zn;Π)

=
[
ZΠ−1(1),ZΠ−1(2), · · · ,ZΠ−1(n)

]
= [Y1,Y2, · · · ,Yn] ,

where Perm( . ,Π) is permutation operation with permutation function Π. As a result,

Yu = ZΠ−1(u) and YΠ(u) = Zu.

Here we provide a simple example to further elaborate the problem setting. Let us

assume there are three users in the setting, n = 3, and there exists five possible values for
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each data point of user u, r = 5. Also, let us assume the number of adversary’s observations

per user is equal to 6, m = 6. Now, each user has a data sequence as below:

Users Data sequences

User 1 0→ 1→ 2→ 3→ 4→ 0

User 2 1→ 2→ 3→ 4→ 0→ 1

User 3 2→ 3→ 4→ 0→ 2→ 4

X =



0 1 2

1 2 3

2 3 4

3 4 0

4 0 2

0 1 4



.

In order to anonymized data, we change the pseudonyms of users. These pseudonyms

are determined by the function defined by a random permutation on the user set:

Π : {1,2,3} 7→ {1,2,3}.

Now, assume Π(1) = 2, Π(2) = 3, and Π(3) = 1. Thus, the adversary observes the

anonymized version of data Y, so they observe
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Pseudonyms Observed data by the adversary

user 1 2→ 3→ 4→ 0→ 2→ 4

user 2 0→ 1→ 2→ 3→ 4→ 0

user 3 1→ 2→ 3→ 4→ 0→ 1

Y =



2 0 1

3 1 2

4 2 3

3 1 2

0 3 4

4 0 1



.

The adversary tries to de-anonymized data based on their observations and the statistical

knowledge of the user’s behaviour.

Adversary Model: We protect against the strongest reasonable adversary. Through past

observations or some other sources, the adversary is assumed to have complete statistical

knowledge of the users’ patterns; in other words, they know the probability distribution

for each user on the set of data samples {0,1, . . . ,r − 1}. As discussed in the model for the

data samples, the parameters pu, u = 1,2, · · · ,n are drawn independently from a continuous

density function, fP(pu), which has support on a subset of a defined hypercube. The density

fP(pu) might be unknown to the adversary, as all that is assumed here is that such a density

exists, and it will be evident from our results that knowing or not knowing fP(pu) does not

change the results asymptotically. Specifically, from the results we will show in Section 2.3,

we conclude that user u has perfect privacy even if the adversary knows fP(pu). In addition,

in Section 2.4, it is shown that the adversary can recover the true data of user u at time k
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without using the specific density function of fP(pu), and as result, users have no privacy

even if the adversary does not know fP(pu).

The adversary also knows the value of noise level an as it is a design parameter. How-

ever, the adversary does not know the realization of the random permutation Π or the

realizations of the random variables Ru, as these are independent of the past behavior of

the users. It is critical to note that we assume the adversary does not have any auxiliary

information or side information about users’ data.

In [73], perfect privacy is defined as follows:

Definition 1. User u has perfect privacy at time k, if and only if

lim
n→∞
I (Xu(k); Y) = 0,

where I(X;Y ) denotes the mutual information between random variables (vectors) X and

Y .

In this chapter, we also consider the situation in which there is no privacy.

Definition 2. For an algorithm for the adversary that tries to estimate the actual data point

of user u at time k, define the error probability as

Pe(u, k) = P
( �Xu(k) , Xu(k)

)
,

where Xu(k) is the actual data point of user u at time k, �Xu(k) is the adversary’s estimated

data point of user u at time k. Now, define E as the set of all possible adversary’s estimators.

Then, user u has no privacy at time k, if and only if,

P∗e(u, k) = lim
n→∞

inf
E
P

( �Xu(k) , Xu(k)
)
→ 0.

Hence, a user no privacy at time k if there exists an algorithm for the adversary to estimate

Xu(k) with diminishing error probability as n goes to infinity.
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Discussion 1: Both of the privacy definitions given above (perfect privacy and no privacy)

are asymptotic in the number of users (n → ∞), which allows us to find clean analytical

results for the fundamental limits. Moreover, in many IoT applications, such as ride sharing

and dining recommendation applications, the number of users is large.

Notation: Note that the sample of data of user u at time k after applying obfuscation (Zu(k))

and the sample of data of user u at time k after applying anonymization (Yu(k)) depend on

the number of users in the network (n), while the actual sample of data of user u at time

k is independent of the number of users (n). Despite the dependency in the former cases,

we omit this subscript (n) on
(
Z (n)u (k),Y

(n)
u (k)

)
to avoid confusion and make the notation

consistent.

Notation: Throughout the chapter, Xn
d
−→ X denotes convergence in distribution. Also, We

use P
(
X = x

���Y = y
)

for the conditional probability of X = x given Y = y. When we write

P
(
X = x

���Y )
, we are referring to a random variable that is defined as a function of Y .

2.3 Perfect Privacy Analysis: I.I.D. Case

2.3.1 Two-State i.i.d. Model

We first consider the two-state case (r = 2) which captures the salient aspects of the

problem. For the two-state case, the sample of the data of user u at any time is a Bernoulli

random variable with parameter pu, which is the probability of user u having data sample

1. Thus,

Xu(k) ∼ Bernoulli (pu) .

Per Section 2.2, the parameters pu, u = 1,2, · · · ,n are drawn independently from a contin-

uous density function, fP(pu), on the (0,1) interval. We assume there are δ1, δ2 > 0 such

that:1

1The condition δ1 < fP(pu) < δ2 is not actually necessary for the results and can be relaxed; however,
we keep it here to avoid unnecessary technicalities.
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
δ1 < fP(pu) < δ2, pu ∈ (0,1).

fP(pu) = 0, pu < (0,1).

The adversary knows the values of pu, u = 1,2, · · · ,n and uses this knowledge to iden-

tify users. We will use capital letters (i.e., Pu) when we are referring to the random variable,

and use lower case (i.e., pu) to refer to the realization of Pu.

In addition, since the user data (Xu(k)) are i.i.d. and have a Bernoulli distribution, the

obfuscated data (Zu(k)) are also i.i.d. with a Bernoulli distribution. Specifically,

Zu(k) ∼ Bernoulli (Qu) ,

where

Qu = Pu(1 − Ru) + (1 − Pu)Ru

= Pu + (1 − 2Pu) Ru,

and recall that Ru is the probability that user u’s data sample is altered at any time. For

convenience, define a vector where element Qu is the probability that an obfuscated data

sample of user u is equal to one, and

Q = [Q1,Q2, · · · ,Qn] .

Thus, a vector containing the permutation of those probabilities after anonymization is

given by:

W = Perm (Q1,Q2, · · · ,Qn;Π)

=
[
QΠ−1(1),QΠ−1(2), · · · ,QΠ−1(n)

]
= [W1,W2, · · · ,Wn] ,
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where Wu = QΠ−1(u) and WΠ(u) = Qu. As a result, for u = 1,2, ...,n, the distribution of the

data symbols for the user with pseudonym u is given by:

Yu(k) ∼ Bernoulli (Wu) ∼ Bernoulli
(
QΠ−1(u)

)
.

The following theorem states that if the amount of noise level (an) is significantly larger

than 1
n in this two-state model, then all users have perfect privacy independent of the value

of m(n).

Theorem 1. For the above two-state model, if Z is the obfuscated version of X, and Y is

the anonymized version of Z as defined above, and

• m = m(n) is arbitrary;

• Ru ∼ Uniform[0,an], where an , Ω
(
c′n−(1−β)

)
for any c′ > 0 and 0 < β < 1;

then, user 1 has perfect privacy.

The proof of Theorem 1 will be provided for the case 0 ≤ p1 <
1
2 , as the proof for the

case 1
2 ≤ p1 ≤ 1 is analogous and is thus omitted.

Intuition behind the Proof of Theorem 1:

Since m(n) is arbitrary, the adversary is able to estimate very accurately (in the limit,

perfectly) the distribution from which each data sequence Yu, u = 1,2, · · · ,n is drawn; that

is, the adversary is able to accurately estimate the probability Wu, u = 1,2, · · · ,n. Clearly,

if there were no obfuscation for each user u, the adversary would then simply look for the

l such that pl is very close to Wu and set �Xl(k) = Yu(k), resulting in no privacy for any user.

We want to make certain that the adversary obtains no information about X1(k), the

sample of data of user 1 at time k. To do such, we will establish that there are a large

number of users whom have a probability pu that when obfuscated could have resulted

in a probability consistent with p1. Consider asking whether another probability p2 is
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sufficiently close enough to be confused with p1 after obfuscation; in particular, we will

look for p2 such that, even if the adversary is given the obfuscated probabilities WΠ(1)

and WΠ(2), they cannot associate these probabilities with p1 and p2. This requires that the

distributions Q1 and Q2 of the obfuscated data of user 1 and user 2 have significant overlap;

we explore this next.

Recall that Qu = Pu+(1−2Pu)Ru, and Ru ∼ Uniform[0,an]. Thus, we know Qu |Pu = pu

has a uniform distribution with length (1 − 2pu)an. Specifically,

Qu

���Pu = pu ∼ Uniform [pu, pu + (1 − 2pu)an] .

Figure 2.2 shows the distribution of Qu given Pu = pu.

Figure 2.2: Distribution of Qu given Pu = pu.

Consider two cases: In the first case, the support of the distributions Q1

��P1 = p1 and

Q2

��P2 = p2 are small relative to the difference between p1 and p2 (Figure 2.3); in this case,

given the probabilities WΠ(1) and WΠ(2) of the anonymized data sequences, the adversary

can associate those with p1 and p2 without error. In the second case, the support of the

distributions Q1

��P1 = p1 and Q2

��P2 = p2 is large relative to the difference between p1

and p2 (Figure 2.4), so it is difficult for the adversary to associate the probabilities WΠ(1)

and WΠ(2) of the anonymized data sequences with p1 and p2. In particular, if WΠ(1) and

WΠ(2) fall into the overlap of the support of Q1 and Q2, we will show the adversary can

only guess randomly how to de-anonymize the data. Thus, if the ratio of the support of

the distributions to
��p1 − p2

�� goes to infinity, the adversary’s posterior probability for each

user converges to 1
2 , thus, implying no information leakage on the user identities. More

generally, if we can guarantee that there will be a large set of users with pu’s very close
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to p1 compared to the support of Q1

��P1 = p1, we will be able to obtain perfect privacy as

demonstrated rigorously below.

Figure 2.3: Case 1: The support of the distributions is small relative to the difference
between p1 and p2.

Figure 2.4: Case 2: The support of the distributions is large relative to the difference be-
tween p1 and p2.

Given this intuition, the formal proof proceeds as follows. Given p1, we define a set J(n)

of users whose parameter pu of their data distributions is sufficiently close to p1 (Figure 2.4;

case 2), so that it is likely that Q1 and Qu cannot be readily associated with p1 and pu.

The purpose of Lemmas 1, 2, and 3 is to show that, from the adversary’s perspective,

the users in set J(n) are indistinguishable. More specifically, the goal is to show that the

obfuscated data corresponding to each of these users could have been generated by any

other users in J(n) in an equally likely manner. To show this, Lemma 1 employs the fact

that, if the observed values of N uniformly distributed random variables (N is size of set

J(n)) are within the intersection of their ranges, it is impossible to infer any information

about the matching between the observed values and the distributions. That is, all possible

N! matchings are equally likely. Lemmas 2 and 3 leverage Lemma 1 to show that even

if the adversary is given a set that includes all of the pseudonyms of the users in set J(n)

(i.e., Π(J(n)) ∆=
{
Π−1(u) ∈ J(n)

}
) they still will not be able to infer any information about
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the matching of each specific user in set J(n) and his pseudonym. Then Lemma 5 uses the

above fact to show that the mutual information between the data set of user 1 at time k and

the observed data sets of the adversary converges to zero as n→∞.

Proof of Theorem 1:

Proof. Note, per Lemma 6 of Appendix 2.8.1, it is sufficient to establish the results on

a sequence of sets with high probability. That is, we can condition on high-probability

events.

Now, as shown in Figure 2.5, define the critical set J(n) with size N (n) =
��J(n)�� for

0 ≤ p1 <
1
2 as follows:

J(n) =
{
u ∈ {1,2, . . . ,n} : p1 ≤ Pu ≤ p1 + εn; p1 + εn ≤ Qu ≤ p1 + (1 − 2p1)an

}
,

where εn ,
1

n1−
β
2

, an = c′n−(1−β), and β is defined in the statement of Theorem 1.

Note for large enough n, if 0 ≤ p1 <
1
2 , we have 0 ≤ pu <

1
2 . As a result,

Qu
��Pu = pu ∼ Uniform (pu, pu + (1 − 2pu)an) .

We can prove that with high probability, 1 ∈ J(n) for large enough n, as follows. First, Note

that

Q1

��P1 = p1 ∼ Uniform (p1, p1 + (1 − 2p1)an) .

Now, according to Figure 2.6,

P
(
1 ∈ J(n)

)
= 1 −

εn

(1 − 2p1) an

= 1 −
1

(1 − 2p1) c′n
β
2

,

thus, for any c′ > 0 and large enough n,

P
(
1 ∈ J(n)

)
→ 1.
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Figure 2.5: Range of Pu and Qu for elements of set J(n) and probability density function of
Qu

��Pu = pu.

Figure 2.6: Range of Pu and Qu for elements of set J(n) and probability density function of
Q1

��P1 = p1.

Now in the second step, we define the probability J (n)l for any l ∈ Π(J(n)) = {Π(u) :

u ∈ J(n)} as

J
(n)

l = P
(
Π(1) = l

���W,Π(J(n))
)
.

J
(n)

l is the conditional probability that Π(1) = l after perfectly observing the values of the

permuted version of obfuscated probabilities (W) and set including all of the pseudonyms

of the users in set J(n)
(
Π(J(n))

)
. Since W and Π(J(n)) are random, J (n)l is a random

variable. However, we will prove shortly that in fact J (n)l = 1
N (n) , for all l ∈ Π(J(n)).

Note: Since we are looking from the adversary’s point of view, the assumption is that

all the values of pu, u ∈ {1,2, · · · ,n} are known, so all of the probabilities are conditioned

on the values of P1 = p1,P2 = p2, · · · ,Pn = pn. Thus, to be accurate, we should write

J
(n)

l = P
(
Π(1) = l

���W,Π(J(n)),P1,P2, · · · ,Pn

)
.

Nevertheless, for simplicity of notation, we often omit the conditioning on P1,P2, · · · ,Pn.
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First, we need a lemma from elementary probability.

Lemma 1. Let N be a positive integer, and let a1,a2, · · · ,aN and b1, b2, · · · , bN be real

numbers such that au ≤ bu for all u. Assume that X1,X2, · · · ,XN are independent random

variables such that

Xu ∼ Uniform[au, bu].

Let also γ1, γ2, · · · , γN be distinct real numbers such that

γl ∈

N⋂
u=1

[au, bu] for all l ∈ {1,2, ..,N}.

Suppose that we know the event E has occurred, meaning that the observed values of Xu’s

are equal to the set of γl’s (but with unknown ordering), i.e.,

E ≡ {X1,X2, · · · ,XN } = {γ1, γ2, · · · , γN },

then

P (X1 = γl |E) =
1

N
.

Proof. Lemma 1 is proved in Appendix 2.8.2. �

Using the above lemma, we can state our desired result for J (n)l .

Lemma 2. For all l ∈ Π(J(n)), J (n)l = 1
N (n) .

Proof. We argue that the setting of this lemma is essentially equivalent to the assumptions

in Lemma 1. First, remember that

J
(n)

l = P
(
Π(1) = l

���W,Π(J(n))
)
.

Note that Qu = Pu + (1− 2Pu)Ru, and since Ru is uniformly distributed, Qu conditioned

on Pu is also uniformly distributed in the appropriate intervals. Moreover, since Wu =
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QΠ−1(u), we conclude Wu is also uniformly distributed. So, looking at the definition of J (n)l ,

we can say the following: given the values of the uniformly distributed random variables

Qu, we would like to know which one of the values in W is the actual value of Ql = WΠ(1),

i.e., is Π(1) = l? This is equivalent to the setting of Lemma 1 as described further below.

Note that since 1 ∈ J(n), Π(1) ∈ Π(J(n)). Therefore, when searching for the value of

Π(1), it is sufficient to look inside set Π(J(n)). Therefore, instead of looking among all the

values of Wl , it is sufficient to look at Wl for l ∈ Π(J(n)). Let us show these values by

WΠ = {w1,w2, · · · ,wN (n)}, so,

J
(n)

l = P
(
Π(1) = l

���WΠ,Π(J(n))
)
.

Thus, we have the following scenario: Qu,u ∈ J(n) are independent random variables,

and

Qu
��Pu = pu ∼ Uniform[pu, pu + (1 − 2pu)an].

Also, w1,w2, · · · ,wN (n) are the observed values of Qu with unknown ordering (unknown

mapping Π). We also know from the definition of set J(n) that

Pu ≤ p1 + εn ≤ Qu,

Qu ≤ p1(1 − 2an) + an ≤ Pu(1 − 2an) + an,

so, we can conclude

wl ∈

N (n)⋂
u=1

[pu, pu + (1 − 2pu)an] for all l ∈ {1,2, ..,N (n)}.

We know the event E has occurred, meaning that the observed values of Qu’s are equal to

set of wl’s (but with unknown ordering), i.e.,

E ≡ {Qu,u ∈ J(n)} = {w1,w2, · · · ,wN (n)}.
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Then, according to Lemma 1,

P (Q1 = wl |E,P1,P2, · · · ,Pn) =
1

N (n)
.

Note that there is a subtle difference between this lemma and Lemma 1. Here N (n) is a

random variable while N is a fixed number in Lemma 1. Nevertheless, since the assertion

holds for every fixed N , it also holds for the case where N is a random variable. Now, note

that

P (Q1 = wl |E,P1,P2, · · · ,Pn) = P
(
Π(1) = l

���E,P1,P2, · · · ,Pn

)
= P

(
Π(1) = l

���WΠ,Π(J(n)),P1,P2, · · · ,Pn

)
= J

(n)
l .

Thus, we can conclude

J
(n)

l =
1

N (n)
.

�

In the third step, we define J̃ (n)l for any l ∈ Π(J(n)) as

J̃
(n)

l = P
(
Π(1) = l

���Y,Π(J(n))) .
J̃
(n)

l is the conditional probability that Π(1) = l after observing the values of the

anonymized version of the obfuscated samples of the users’ data (Y) and the aggregate

set including all the pseudonyms of the users in set J(n) (i.e., Π(J(n)) ∆=
{
Π−1(l) ∈ J(n)

}
).

Since Y and Π(J(n)) are random, J̃ (n)l is a random variable. Now, in the following lemma,

we will prove J̃ (n)l = 1
N (n) , for all l ∈ Π(J(n)) by using Lemma 3.

Note in the following lemma, we want to show that even if the adversary is given a set

including all of the pseudonyms of the users in set J(n), they cannot match each specific

user in set J(n) and his pseudonym.
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Lemma 3. For all l ∈ Π(J(n)), J̃ (n)l = 1
N (n) .

Proof. First, note that

J̃
(n)

l =
∑

for all w

P
(
Π(1) = l

���Y,Π (
J(n)

)
,W = w

)
P

(
W = w

���Y,Π (
J(n)

))
.

Also, we note that given V, Π(J(n)), and Y are independent. Intuitively, this is because

when observing Y, any information regarding Π(J(n)) is leaked through estimating V. This

can be rigorously proved similar to the proof of [73, Lemma 1]. We can state this fact as

P

(
Yu(k)

���� Wu = wu,Π(J(n))
)
= P

(
Yu(k)

���� Wu = wu

)
= wu.

The right and left hand sides of the above equation are given by Bernoulli(wu) distributions.

As a result,

J̃
(n)

l =
∑

for all w

P
(
Π(1) = l

���Π(J(n)),W = w
)
P

(
W = w

���Y,Π (
J(n)

))
.

Note J (n)l = P
(
Π(1) = l

���Π(J(n)),W)
, so

J̃
(n)

l =
∑

for all w
J
(n)

l P
(
W = w

���Y,Π (
J(n)

))
=

1

N (n)
∑

for all w
P

(
W = w

���Y,Π (
J(n)

))
=

1

N (n)
.

�

To show that no information is leaked, we need to show that the size of set J(n) goes to

infinity.
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Lemma 4. If N (n) , |J(n) |, then N (n) → ∞ with high probability as n → ∞. More

specifically, there exists λ > 0 such that

P

(
N (n) >

λ

2
n
β
2

)
→ 1.

Proof. Lemma 4 is proved in Appendix 2.8.3. �

In the final step, we define Ĵ (n)l for any l ∈ Π(J(n)) as

Ĵ
(n)

l = P
(
X1(k) = 1

���Y,Π(J(n))) .
Ĵ
(n)

l is the conditional probability that X1(k) = 1 after observing the values of the anonymized

version of the obfuscated samples of the users’ data (Y) and the aggregate set including all

of the pseudonyms of the users in set J(n) (Π(J(n))). Ĵ (n)l is a random variable because Y

and Π(J(n)) are random. Now, in the following lemma, we will prove Ĵ (n)l converges in

distribution to p1.

Note that this is the probability from the adversary’s point of view. That is, given that

the adversary has observed Y as well as the extra information Π(J(n)), what can they infer

about X1(k)?

Lemma 5. For all l ∈ Π(J(n)), Ĵ (n)l
d
−→ p1.

Proof. We know

Ĵ
(n)

l =
∑

l∈Π(J(n))

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
P

(
Π(1) = l

���Y,Π(J(n))) ,
and according to the definition J̃ (n)l = P

(
Π(1) = l

���Y,Π(J(n))) , we have

Ĵ
(n)

l =
∑

l∈Π(J(n))

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
J̃
(n)

l
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=
1

N (n)
∑

l∈Π(J(n))

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
.

We now claim that

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
= p1 + o(1).

The reasoning goes as follows. Given Π(1) = l and knowing Y, we know that

YΠ(1)(k) = Z1(k) =


X1(k), with probability 1 − R1.

1 − X1(k), with probability R1.

Thus, given Yl(k) = 1, Bayes’ rule yields:

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
= (1 − R1)

P(X1(k) = 1)

P(YΠ(1)(k) = 1)

= (1 − R1)
p1

p1(1 − R1) + (1 − p1)R1

= 1 − o(1),

and similarly, given Yl(k) = 0,

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
= R1

P(X1(k) = 1)

P(YΠ(1)(k) = 0)

= R1
p1

p1R1 + (1 − p1)(R1 − 1)

= o(1).

Note that by the independence assumption, the above probabilities do not depend on the

other values of Yu(k) (as we are conditioning on Π(1) = l ). Thus, we can write

Ĵ
(n)

l =
1

N (n)
∑

l∈Π(J(n))

P
(
X1(k) = 1

���Π(1) = l,Y,Π(J(n))
)
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=
1

N (n)
∑

l∈Π(J(n)),Yl(k)=1

(1 − o(1)) +
1

N (n)
∑

l∈Π(J(n)),Yl(k)=0

o(1).

First, note that since
��{l ∈ Π(J(n)),Yl(k) = 0

}�� ≤ N (n), the second term above converges to

zero, thus,

Ĵ
(n)

l →

��{l ∈ Π(J(n)),YΠ(1)(k) = 1
}��

N (n)
.

Since for all l ∈ Π(J(n)), Yl(k) ∼ Bernoulli (p1 + o(1)), by a simple application of Cheby-

shev’s inequality, we can conclude Ĵ (n)l → p1. Appendix 2.8.4 provides the detail. �

As a result,

X1(k)|Y,Π(J(n)) → Bernoulli(p1),

thus,

H
(
X1(k)

���Y,Π(J(n))) → H (X1(k)) .

Since conditioning reduces entropy,

H
(
X1(k)

���Y,Π(J(n))) ≤ H
(
X1(k)

���Y)
,

and as a result,

lim
n→∞

H (X1(k)) − H
(
X1(k)

���Y)
≤ 0,

and

lim
n→∞
I (X1(k); Y) ≤ 0.

By knowing that I (X1(k); Y) cannot take any negative value, we can conclude that

I (X1(k); Y) → 0.

�
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2.3.2 r-State i.i.d. Model

Now, assume users’ data samples can have r possibilities (0,1, · · · ,r − 1), and pu(i)

shows the probability of user u having data sample i. We define the vector pu and the

matrix p as

pu =



pu(1)

pu(2)

...

pu(r − 1)



, p =
[
p1,p2, · · · ,pn

]
.

We assume pu(i)’s are drawn independently from some continuous density function, fP(pu),

which has support on a subset of the (0,1)r−1 hypercube (Note that the pu(i)’s sum to one,

so one of them can be considered as the dependent value and the dimension is r − 1). In

particular, define the range of the distribution as

Rp = {(x1, x2, · · · , xr−1) ∈ (0,1)
r−1 : xi > 0, x1 + x2 + · · · + xr−1 < 1, i = 1,2, · · · ,r − 1}.

Figure 2.7 shows the range Rp for the case where r = 3.

Then, we assume there are δ1, δ2 > 0 such that:


δ1 < fP(pu) < δ2, pu ∈ Rp.

fP(pu) = 0, pu < Rp.

The obfuscation is similar to the two-state case. Specifically, for l ∈ {0,1, · · · ,r − 1},

we can write

P(Zu(k) = l |Xu(k) = i) =


1 − Ru, for l = i.

Ru

r−1, for l , i.
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Figure 2.7: Rp for case r = 3.

Theorem 2. For the above r-state model, if Z is the obfuscated version of X, and Y is the

anonymized version of Z as defined previously, and

• m = m(n) is arbitrary;

• Ru ∼ Uniform[0,an], where an , Ω
(
c′n−(

1
r−1−β)

)
for any c′ > 0 and 0 < β < 1

r−1 ;

then, user 1 has perfect privacy.

The proof of Theorem 2 is similar to the proof of Theorem 1. The major difference

is that instead of the random variables Pu,Qu,Wu, we need to consider the random vectors

Pu,Qu,Wu. Similarly, for user u, we define the vector Qu as
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Qu =



Qu(1)

Qu(2)

...

Qu(r − 1)



.

In the r-state case,

Qu(i) = Pu(i)
(
1 − Ru

)
+

(
1 − Pu(i)

)
Ru

r − 1

= Pu(i) +
(
1 − rPu(i)

)
Ru

r − 1
.

We also need to define the critical set J(n). First, for i = 0,1, · · · ,r − 1, define set J(n)i as

follows. If 0 ≤ p1(i) < 1
r , then,

J(n)i =

{
u ∈ {1,2, . . . ,n} :

p1(i) ≤ Pu(i) ≤ p1(i) + εn; p1(i) + εn ≤ Qu(i) ≤ p1(i) + (1 − rp1(i))
an

r − 1

}
,

where εn ,
1

n
1

r−1−
β
2

, an = c′n−(
1

r−1−β), and β is defined in the statement of Theorem 2.

We then define the critical set J(n) as:

J(n) =
r−1⋂
l=0

J(n)i .

We can then repeat the same arguments in the proof of Theorem 1 to complete the proof.
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2.4 Converse Results: No Privacy Region

In this section, we prove that if the number of observations by the adversary is larger

than its critical value and the noise level is less than its critical value, then the adversary can

find an algorithm to successfully estimate users’ data samples with arbitrarily small error

probability. Combined with the results of the previous section, this implies that asymptoti-

cally (as n→ ∞), privacy can be achieved if and only if at least one of the two techniques

(obfuscation or anonymization) are used above their thresholds. This statement needs a

clarification as follows: Looking at the results of [73], we notice that anonymization alone

can provide perfect privacy if m(n) is below its threshold. On the other hand, the threshold

for obfuscation requires some anonymization: In particular, the identities of the users must

be permuted once to prevent the adversary from readily identifying the users.

2.4.1 Two-State i.i.d. Model

Again, we start with the i.i.d. two-state model. The data sample of user u at any time is

a Bernoulli random variable with parameter pu.

As before, we assume that pu’s are drawn independently from some continuous density

function, fP(pu), on the (0,1) interval. Specifically, there are δ1, δ2 > 0 such that:


δ1 < fP(pu) < δ2, pu ∈ (0,1).

fP(pu) = 0, pu < (0,1).

Theorem 3. For the above two-state mode, if Z is the obfuscated version of X, and Y is

the anonymized version of Z as defined, and

• m , Ω
(
cn2+α

)
for any c > 0 and α > 0;

• Ru ∼ Uniform[0,an], where an , O
(
c′n−(1+β)

)
for any c′ > 0 and β > α

4 ;

then, user 1 no privacy at time k.
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Figure 2.8: p1, sets B(n) and C(n) for case r = 2.

Since this is a converse result, we give an explicit detector at the adversary and show

that it can be used by the adversary to recover the true data of user 1.

Proof. The adversary first inverts the anonymization mapping Π to obtain Z1(k), and then

estimates the value of X1(k) from that. To invert the anonymization, the adversary calcu-

lates the empirical probability that each string is in state 1 and then assigns the string with

the empirical probability closest to p1 to user 1.

Formally, for u = 1,2, · · · ,n, the adversary computes Yu, the empirical probability of

user u being in state 1, as follows:

Yu =
Yu(1) + Yu(2) + · · · + Yu(m)

m
,

thus,

YΠ(u) =
Zu(1) + Zu(2) + · · · + Zu(m)

m
.

As shown in Figure 2.8, define

B(n) , {x ∈ (0,1); p1 − ∆n ≤ x ≤ p1 + ∆n} ,

where ∆n =
1

n1+
α
4

and α is defined in the statement of Theorem 3. We claim that for

m , cn2+α, an , c′n−(1+β), and as n→ in f ty,

1. P
(
YΠ(1) ∈ B(n)

)
→ 1.

2. P
(

n⋃
u=2

(
YΠ(u) ∈ B(n)

))
→ 0.

32



As a result, the adversary can identify Π(1) by examining Yu’s and assigning the one in B(n)

to user 1. Note that YΠ(u) ∈ B(n) is a set (event) in the underlying probability space and can

be written as
{
ω ∈ Ω : YΠ(u)(ω) ∈ B(n)

}
.

First, we show that as n goes to infinity,

P
(
YΠ(1) ∈ B(n)

)
→ 1.

We can write

P
(
YΠ(1) ∈ B(n)

)
= P

©­­­«
m∑

k=1
Z1(k)

m
∈ B(n)

ª®®®¬
= P

©­­­«p1 − ∆n ≤

m∑
k=1

Z1(k)

m
≤ p1 + ∆n

ª®®®¬
= P

(
mp1 − m∆n − mQ1 ≤

m∑
k=1

Z1(k) − mQ1 ≤ mp1 + m∆n − mQ1

)
.

Note that for any u ∈ {1,2, · · · ,n}, we have

Qu
��Pu = pu ∼ Uniform (pu, pu + (1 − 2pu)an) ,

and as a result,

|pu −Qu | ≤ |1 − 2pu |Ru

≤ Ru ≤ an,

so, we can conclude

P
(
YΠ(1) ∈ B(n)

)
= P

(
mp1 − m∆n − mQ1 ≤

m∑
k=1

Z1(k) − mQ1 ≤ mp1 + m∆n − mQ1

)
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≥ P

(
−m∆n + man ≤

m∑
k=1

Z1(k) − mQ1 ≤ −man + m∆n

)
= P

(����� m∑
k=1

Z1(k) − mQ1

����� ≤ m(∆n − an)

)
.

From the Chernoff bound, for any c, c′, α > 0 and β > α
4 ,

P

(����� m∑
k=1

Z1(k) − mQ1

����� ≤ m(∆n − an)

)
≥ 1 − 2e−

m(∆n−an)
2

3Q1

≥ 1 − 2e
−

(
1

3Q1

)
(cn2+α)

(
1

n
1+α4
− c′

n1+β

)2

≥ 1 − 2e
− 1
3 (cn2+α)

(
1

n
1+α4
− c′

n1+β

)2
→ 1.

As a result, as n becomes large,

P
(
YΠ(1) ∈ B(n)

)
→ 1.

Now, we need to show that as n goes to infinity,

P

(
n⋃

u=2

(
YΠ(u) ∈ B(n)

))
→ 0.

First, we define

C(n) = {x ∈ (0,1); p1 − 2∆n ≤ x ≤ p1 + 2∆n} ,

and claim as n goes to infinity,

P

(
n⋃

u=2

(
Pu ∈ C

(n)
))
→ 0.

Note

4∆nδ1 < P
(
Pu ∈ C

(n)
)
< 4∆nδ2,
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and according to the union bound, as n→∞,

P

(
n⋃

u=2

(
Pu ∈ C

(n)
))
≤

n∑
u=2

P
(
Pu ∈ C

(n)
)

≤ 4n∆nδ2

= 4n
1

n1+α4
δ2

= 4n−
α
4 δ2 → 0.

As a result, we can conclude that all pu’s are outside of C(n) for u ∈ {2,3, · · · ,n} with high

probability.

Now, we claim that given all pu’s are outside of C(n), P
(
YΠ(u) ∈ B(n)

)
is small. Remem-

ber that for any u ∈ {1,2, · · · ,n}, we have

|pu −Qu | ≤ an.

Now, noting the definitions of sets B(n) and C(n), we can write for u ∈ {2,3, · · · ,n},

P
(
YΠ(u) ∈ B(n)

)
≤ P

(���YΠ(u) −Qu

��� ≥ (∆n − an)

)
= P

(����� m∑
k=1

Zu(k) − mQu

����� > m(∆n − an)

)
.

According to the Chernoff bound, for any c, c′, α > 0 and β > α
4 ,

P

(����� m∑
k=1

Zu(k) − mQu

����� > m(∆n − an)

)
≤ 2e−

m(∆n−an)
2

3Q1

≤ 2e
−

(
1

3Q1

)
(cn2+α)

(
1

n
1+α4
− c′

n1+β

)2

≤ 2e
− 1
3 (cn2+α)

(
1

n
1+α4
− c′

n1+β

)2
.
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Now, by using a union bound, for any β > α
4 , we have

P

(
n⋃

u=2

(
YΠ(u) ∈ B(n)

))
≤

n∑
u=2

P
(
YΠ(u) ∈ B(n)

)
≤ n ©­«2e

− 1
3 (cn2+α)

(
1

n
1+α4
− c′

n1+β

)2ª®¬ ,
and thus, as n goes to infinity,

P

(
n⋃

u=2

(
YΠ(u) ∈ B(n)

))
→ 0.

So, the adversary can successfully recover Z1(k). Since Z1(k) = X1(k) with probability

1 − R1 = 1 − o(1), the adversary can recover X1(k) with vanishing error probability as

n→∞. �

2.4.2 r-State i.i.d. Model

Now, assume users’ data samples can have r possibilities (0,1, · · · ,r − 1), and pu(i)

shows the probability of user u having data sample i. We define the vector pu and the

matrix p as

pu =



pu(1)

pu(2)

...

pu(r − 1)



, p =
[
p1,p2, · · · ,pn

]
.

We also assume pu’s are drawn independently from some continuous density function,

fP(pu), which has support on a subset of the (0,1)r−1 hypercube. In particular, define the

range of distribution as
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Rp =
{
(x1, x2, · · · , xr−1) ∈ (0,1)

r−1 : xi > 0, x1 + x2 + · · · + xr−1 < 1, i = 1,2, · · · ,r − 1
}

Then, we assume there are δ1, δ2 > 0 such that:


δ1 < fP(pu) < δ2, pu ∈ Rp.

fP(pu) = 0, pu < Rp.

Theorem 4. For the above r-state mode, if Z is the obfuscated version of X, and Y is the

anonymized version of Z as defined, and

• m , Ω
(
cn

2
r−1+α

)
for any c > 0 and 0 < α < 1;

• Ru ∼ Uniform[0,an], where an , O
(
c′n−(

1
r−1+β)

)
for any c′ > 0 and β > α

4 ;

then, user 1 no privacy at time k.

The proof of Theorem 4 is similar to the proof of Theorem 3, so we just provide the

general idea. We similarly define the empirical probability that the user with pseudonym u

has data sample i
(
Yu(i)

)
as follows:

Yu(i) =
|{k ∈ {1,2, · · · ,m} : Yu(k) = i}|

m
,

thus,

YΠ(u)(i) =
|{k ∈ {1,2, · · · ,m} : Yu(k) = i}|

m
.

The difference is that now for each u ∈ {1,2, · · · ,n}, Yu is a vector of size r − 1. In

other words,
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Figure 2.9: p1, sets B′(n) and C′(n) in Rp for case r = 3.

Yu =



Yu(1)

Yu(2)

...

Yu(r − 1)



.

Define sets B′(n) and C′(n) as

B′(n) ,
{
(x1, x2, · · · , xr−1) ∈ Rp : p1(i) − ∆′n ≤ xi ≤ p1(i) + ∆′n, i = 1,2, · · · ,r − 1

}
,

C′(n) ,
{
(x1, x2, · · · , xr−1) ∈ Rp : p1(i) − 2∆′n ≤ xi ≤ p1(i) + 2∆′n, i = 1,2, · · · ,r − 1

}
,

where ∆′n =
1

n
1

r−1+
α
4
. Figure 2.9 shows p1 and sets B′(n) and C′(n) for the case r = 3.

We claim for m , cn
2

r−1+α, an , c′n−(
1

r−1+β), as n→∞,
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1. P
(
YΠ(1) ∈ B

′(n)
)
→ 1.

2. P
(

n⋃
u=2

(
YΠ(u) ∈ B

′(n)
))
→ 0.

The proof follows that for the two-state case. Thus, the adversary can de-anonymize the

data and then recover X1(k) with vanishing error probability in the r-state model.

2.4.3 r-State Markov Chain Model

So far, we have assumed users’ data samples can have r possibilities (0,1, · · · ,r − 1)

and users’ pattern are i.i.d. . Here we model users’ pattern using Markov chains to capture

the dependency of the users’ pattern over time. Again, we assume there are r possibilities

(the number of states in the Markov chains). Let E be the set of edges. More specifically,

(i, j) ∈ E if there exists an edge from i to j with probability p(i, j) > 0. What distinguishes

different users is their transition probabilities pu(i, j) (the probability that user u jumps from

state i to state j). The adversary knows the transition probabilities of all users. The model

for obfuscation and anonymization is exactly the same as before.

We show that the adversary will be able to estimate the data samples of the users with

low error probability if m(n) and an are in the appropriate range. The key idea is that the ad-

versary can focus on a subset of the transition probabilities that are sufficient for recovering

the entire transition probability matrix. By estimating those transition probabilities from

the observed data and matching with the known transition probabilities of the users, the

adversary will be able to first de-anonymize the data, and then estimate the actual samples

of users’ data. In particular, note that for each state i, we must have

r∑
j=1

pu(i, j) = 1, for each u ∈ {1,2, · · · ,n},

so, the Markov chain of user u is completely determined by a subset of size d = |E | − r of

transition probabilities. We define the vector pu and the matrix p as
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pu =



pu(1)

pu(2)

...

pu(|E | − r)



, p =
[
p1,p2, · · · ,pn

]
.

We also consider pu’s are drawn independently from some continuous density function,

fP(pu), which has support on a subset of the (0,1)|E |−r hypercube. Let Rp ⊂ R
d be the

range of acceptable values for pu, so we have

RP =
{
(x1, x2 · · · , xd) ∈ (0,1)

d : xi > 0, x1 + x2 + · · · + xd < 1, i = 1,2, · · · , d
}
.

As before, we assume there are δ1, δ2 > 0, such that:


δ1 < fP(pu) < δ2, pu ∈ Rp.

fP(pu) = 0, pu < Rp.

Using the above observations, we can establish the following theorem.

Theorem 5. For an irreducible, aperiodic Markov chain with r states and |E | edges as

defined above, if Z is the obfuscated version of X, and Y is the anonymized version of Z,

and

• m , Ω
(
cn

2
|E |−r +α

)
for any c > 0 and α > 0;

• Ru ∼ Uniform[0,an], where an , O
(
c′n−

(
1
|E |−r +β

) )
for any c′ > 0 and β > α

4 ;

then, user 1 no privacy at time k.
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The proof has a lot of similarity to the i.i.d. case, so we provide a sketch, mainly fo-

cusing on the differences. We argue as follows. If the total number of observations per

user is m = m(n), then define Mi(u) to be the total number of visits by user u to state i, for

i = 0,1, · · · ,r − 1. Since the Markov chain is irreducible and aperiodic, and m(n) → ∞,

all Mi(u)
m(n) converge to their stationary values. Now conditioned on Mi(u) = mi(u), the tran-

sitions from state i to state l for user u follow a multinomial distribution with probabilities

pu(i, l).

Given the above, the setting is now very similar to the i.i.d. case. Each user is uniquely

characterized by a vector pu of size |E | − r . We define sets B
′′(n) and C

′′(n) as

B
′′(n) , {(x1, x2, · · · , xd) ∈ Rp : p1(i) − ∆′′n ≤ xi ≤ p1(i) + ∆′′n, i = 1,2, · · · , d},

C
′′(n) , {(x1, x2, · · · , xd) ∈ Rp : p1(i) − 2∆′′n < xi < p1(i) + 2∆′′n, i = 1,2, · · · , d},

where ∆′′n =
1

n
1
|E |−r

+α4
, and d = |E | − r . Then, we can show that for the stated values of m(n)

and an, as n becomes large:

1. P
(
YΠ(1) ∈ B

′′(n)
)
→ 1,

2. P
(

n⋃
u=2

(
YΠ(u) ∈ B′′(n)

))
→ 0,

which means that the adversary can estimate the data of user 1 with vanishing error prob-

ability. The proof is very similar to the proof of the i.i.d. case; however, there are two

differences that need to be addressed:

First, the probability of observing an erroneous observation is not exactly given by Ru.

In fact, a transition is distorted if at least one of its nodes is distorted. So, if the actual

transition is from state i to state l, then the probability of an erroneous observation is equal

to

R′u = Ru + Ru − RuRu = Ru(2 − Ru).
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Nevertheless, here the order only matters, and the above expression is still in the order

of an = O
(
n−

(
1
|E |−r +β

) )
.

The second difference is more subtle. As opposed to the i.i.d. case, the error probabil-

ities are not completely independent. In particular, if Xu(k) is reported in error, then both

the transition to that state and from that state are reported in error. This means that there is a

dependency between errors of adjacent transitions. We can address this issue in the follow-

ing way: The adversary makes their decision only based on a subset of the observations.

More specifically, the adversary looks at only odd-numbered transitions: First, third, fifth,

etc., and ignores the even-numbered transitions. In this way, the number of observations is

effectively reduced from m to m
2 which again does not impact the order of the result (recall

that the Markov chain is aperiodic). However, the adversary now has access to observations

with independent errors.

2.5 Perfect Privacy Analysis: r− State Markov Chain Model

So far, we have provided both achievability and converse results for the i.i.d. case.

However, we have only provided the converse results for the Markov chain case. Here,

we investigate achievability for Markov chain models. It turns out that for this case, the

assumed obfuscation technique is not sufficient to achieve a reasonable level of privacy.

Loosely speaking, we can state that if the adversary can make enough observations, then he

can break the anonymity. The culprit is the fact that the sequence observed by the adversary

is no longer modeled by a Markov chain; rather, it can be modeled by a hidden Markov

chain. This allows the adversary to successfully estimate the obfuscation random variable

Ru as well as the pu(i, l) values for each sequence, and hence successfully de-anonymize

the sequences.

More specifically, as we will see below, there is a fundamental difference between

the i.i.d. case and the Markov chain case. In the i.i.d. case, if the noise level is beyond

a relatively small threshold, the adversary will be unable to de-anonymize the data and
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unable to recover the actual values of the data sets for users, regardless of the (large) size of

m = m(n). On the other hand, in the Markov chain case, if m = m(n) is large enough, then

the adversary can easily de-anonymize the data. To better illustrate this, let us consider a

simple example.

Example 1. Consider the scenario where there are only two states and the users’ data sam-

ples change between the two states according to the Markov chain shown in Figure 2.10.

What distinguishes the users is their different values of pu. Now, suppose we use the same

obfuscation method as before. That is, to create a noisy version of the sequences of data

samples, for each user u, we generate the random variable Ru that is the probability that the

data sample of the user is changed to a different data sample by obfuscation. Specifically,

Zu(k) =


Xu(k), with probability 1 − Ru.

1 − Xu(k), with probability Ru.

0

1
((
1 1−pu
uu

pu

hh

Figure 2.10: A state transition diagram.

To analyze this problem, we can construct the underlying Markov chain as follows.

Each state in this Markov chain is identified by two values: the real state of the user, and

the observed value by the adversary. In particular, we can write

(Real value,Observed value) ∈ {( 0,0), (0,1), (1,0), (1,1)}.

Figure 2.11 shows the state transition diagram of this new Markov chain.
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pu(1−Ru)cc

Figure 2.11: The state transition diagram of the new Markov chain.

We know

π00 = π0(1 − Ru) =
pu

1 + pu
(1 − Ru).

π01 = π0Ru =
pu

1 + pu
Ru.

π10 = π1Ru =
1

1 + pu
Ru.

π11 = π1(1 − Ru) =
1

1 + pu
(1 − Ru).

The observed process by the adversary is not a Markov chain; nevertheless, we can

define limiting probabilities. In particular, let θ0 be the limiting probability of observing a

zero. That is, we have
M0

m
d
−→ θ0, as n→∞,

where m is the total number of observations by the adversary, and M0 is the number of 0’s

observed. Then,

θ0 = π00 + π10 =
(1 − Ru)pu + Ru

1 + pu
.
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Also, let θ1 be the limiting probability of observing a one, so

θ1 = π01 + π11 =
puRu + (1 − Ru)

1 + pu
= 1 − θ0.

Now the adversary’s estimate of θ0 is given by:

θ̃0 =
(1 − Ru)pu + Ru

1 + pu
. (2.1)

Note that if the number of observations by the adversary can be arbitrarily large, the ad-

versary can obtain an arbitrarily accurate estimate of θ0. The adversary can obtain another

equation easily, as follows. Let θ01 be the limiting value of the portion of transitions from

state 0 to 1 in the chain observed by the adversary. We can write

θ01 = P {(00→ 01), (00→ 11), (10→ 01), (10→ 11)}

= π00(1 − Ru) + π10puRu + π10(1 − pu)(1 − Ru).

As a result,

θ̃01 =
pu(1 − Ru)

2 + Ru (puRu(1 − Ru)(1 − pu))

1 + pu
. (2.2)

Again, if the number of observations can be arbitrarily large, the adversary can obtain an ar-

bitrarily accurate estimate of θ01. By solving (2.1) and (2.2), the adversary can successfully

recover R and p; thus, they can successfully determine the users’ data values.

2.6 Discussion

2.6.1 Markov Chain Model

As opposed to the i.i.d. case, we see from Section 2.5 that if we do not limit m = m(n),

the assumed obfuscation method will not be sufficient to achieve perfect privacy. There are
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a few natural questions here. First, for a given noise level, what would be the maximum

m(n) that could guarantee perfect privacy in this model? The more interesting question

is, how can we possibly modify the obfuscation technique to make it more suitable for

the Markov chain model? A natural solution seems to be re-generating the obfuscation

random variables Ru periodically. This will keep the adversary from easily estimating them

by observing a long sequence of data at a small increase in complexity. In fact, this will

make the obfuscation much more robust to modeling uncertainties and errors. It is worth

noting, however, that this change would not affect the other results in this chapter. That

is, even if the obfuscation random variables are re-generated frequently, it is relatively

easy to check that all the previous theorems in this chapter remain valid. However, the

increase in robustness to modeling errors will definitely be a significant advantage. Thus,

the question is how often should the random variable Ru be re-generated to strike a good

balance between complexity and privacy? These are all interesting questions for future

research.

2.6.2 Obfuscating the Samples of Users’ Data Using Continuous Noise

Here we argue that for the setting of this chapter, continuous noise such as that drawn

from a Gaussian distribution is not a good option to obfuscate the sample of users’ data

drawn from a finite alphabet when we want to achieve perfect privacy. For a better under-

standing, let us consider a simple example.

Example 2. Consider the scenario where the users’ datasets are governed by an i.i.d. model

and the number of possible values for each sample of the users’ data (r) is equal to 2 (two-

state model). Note that the data sequence for user u is a Bernoulli random variable with

parameter pu.

Assume that the actual sample of the data of user u at time k (Xu(k)) is obfuscated using

noise drawn from a Gaussian distribution (Su(k)), and Zu(k) is the obfuscated version of

Xu(k). That is, we can write
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Zu(k) = Xu(k) + Su(k);

where Su(k) ∼ N
(
µ(Ru), σ

2(Ru)
)
, is independent of Xu(k), and Ru is the noise parameter

which is chosen from some distribution. Here, µ(Ru) and σ2(Ru) are some known functions

of Ru. We also apply anonymization to Zu(k), and, as before, Yu(k) is the reported sample of

the data of user u at time k after applying anonymization. Per Section 2.2, anonymization

is modeled by a random permutation Π(u) on the set of n users.

Now, the question is as follows: Is it possible to achieve perfect privacy independent

of the number of adversary’s observation (m) while using this continuous noise (Su(k)) to

obfuscate the sample of users’ data?

Note that

E[Zu(k)] = pu + µ(Ru), (2.3)

and

Var (Zu(k)) = pu(1 − pu) + σ
2(Ru). (2.4)

In this case, when the adversary’s number of observations is arbitrarily large, the adversary

can obtain good estimates of E[Zu(k)] and Var (Zu(k)) for each user with an arbitrarily

small error probability. Then, by using (2.3) and (2.4), the adversary can recover pu and

Ru. As a result, the adversary can de-anonymize the data and then recover Xu(k). The con-

clusion here is that a continuous noise distribution can potentially give information to the

adversary when used for obfuscation of finite alphabet data. A method to mitigate this issue

is to regenerate the random variables Ru frequently (similar to our previous discussion for

Markov chains). Understanding the optimal frequency of such a regeneration and detailed

analysis in this case is an interesting future research direction.
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2.7 Summary of the Results

Given n, the total number of the users in a network, their degree of privacy depends on

two parameters: (1) The number of observations m = m(n) by the adversary per user for a

fixed anonymization mapping (i.e., the number of observations before the pseudonyms are

changed); and (2) the value of the noise added by the obfuscation technique. Intuitively,

smaller m(n) and larger an result in stronger privacy, at the expense of lower utility for

the users. When the users’ datasets are governed by an i.i.d. process, we showed that the

m(n)−an plane can be divided into two areas. In the first area, all users have perfect privacy

(as defined in Section 2.2), and, in the second area, users have no privacy. Figure 2.12

shows the limits of privacy in the entire m(n) − an plane. As the figure shows, number

of adversary’s observations per user (m) is significantly smaller than n
2

r−1 or the amount of

noise level (an) is significantly larger than n−
1

r−1 , users have perfect privacy and if the levels

of both anonymization adn obfuscation them are significantly low, users have no privacy.

Figure 2.12: Limits of privacy in the entire m(n) − an plane. Note that m(n) is the number
of the adversary’s observations per user (degree of anonymization), and an is the amount
of noise level (degree of obfuscation).
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For the case where the users’ datasets are governed by irreducible and aperiodic Markov

chains with r states and |E | edges, we show that users will have no privacy if m = cn
2
|E |−r +α

and an = c′n−
(

1
|E |−r +β

)
, for any constants c > 0, c′ > 0, α > 0, and β > α

4 . We also provide

some insights for the opposite direction (under which conditions users have perfect privacy)

for the case of Markov chains.

2.8 Appendix

2.8.1 Lemma 6 and its Proof

Here we state that we can condition on high-probability events.

Lemma 6. Let p ∈ (0,1), and X ∼ Bernoulli(p) be defined on a probability space

(Ω,F ,P). Consider B1,B2, · · · be a sequence of events defined on the same probability

space such that P(Bn) → 1 as n goes to infinity. Also, let Y be a random vector (matrix) in

the same probability space, then:

I(X; Y) → 0 iff I(X; Y|Bn) → 0.

Proof. First, we prove that as n becomes large,

H(X |Bn) − H(X) → 0. (2.5)

Note that as n goes to infinity,

P (X = 1) = P
(
X = 1

���Bn

)
P (Bn) + P

(
X = 1

���Bn

)
P

(
Bn

)
= P

(
X = 1

���Bn

)
,

thus,
(
X
���Bn

)
d
−→ X , and as n goes to infinity,

H (X |Bn) − H(X) → 0.
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Similarly, as n becomes large,

P
(
X = 1

���Y = y
)
→ P

(
X = 1

���Y = y,Bn

)
,

and

H (X |Y = y,Bn) − H (X |Y = y) → 0. (2.6)

Remembering that

I (X; Y) = H(X) − H(X |Y), (2.7)

and using (2.5), (2.6), and (2.7), we can conclude that as n goes to infinity,

I (X; Y|Bn) − I (X,Y) → 0.

As a result, as n→∞,

I (X; Y) → 0⇐⇒ I (X; Y|Bn) → 0.

�

2.8.2 Proof of Lemma 1

Here we provide a formal proof for Lemma 1 which we restate as follows. Let N be a

positive integer, and let a1,a2, · · · ,aN and b1, b2, · · · , bN be real numbers such that au ≤ bu

for all u. Assume that X1,X2, · · · ,XN are N independent random variables such that

Xu ∼ Uni f orm[au, bu].
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Let also γ1, γ2, · · · , γN be real numbers such that

γ j ∈

N⋂
u=1

[au, bu] for all j ∈ {1,2, · · · ,N}.

Suppose that we know the event E has occurred, meaning that the observed values of Xu’s

is equal to the set of γ j’s (but with unknown ordering), i.e.,

E ≡ {X1,X2, · · · ,XN } = {γ1, γ2, · · · , γN },

then

P
(
X1 = γ j |E

)
=

1

N
.

Proof. Define sets P and Pj as follows:

P = The set of all permutations Π on {1,2, · · · ,N}.

Pj = The set of all permutations Π on {1,2, · · · ,N} such that Π(1) = j .

We have |P| = N! and |P| = (N − 1)!. Then

P(X1 = α j |E) =

∑
π∈Pj

fX1,X2,··· ,XN (γπ(1), γπ(2), · · · , γπ(N))∑
π∈P fX1,X2,··· ,XN (γπ(1), γπ(2), · · · , γπ(N))

=

(N − 1)!
N∏

u=1

1
bu−au

N!
N∏

u=1

1
bu−au

=
1

N
.

�
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2.8.3 Proof of Lemma 4

Here, we provide a formal proof for Lemma 4 which we restate as follows. The fol-

lowing lemma confirms that the number of elements in J(n) goes to infinity as n becomes

large.

If N (n) , |J(n) |, then N (n) → ∞ with high probability as n → ∞. More specifically,

there exists λ > 0 such that

P

(
N (n) >

λ

2
n
β
2

)
→ 1.

Proof. Define the events A, B as

A ≡ p1 ≤ Pu ≤ p1 + εn

B ≡ p1 + εn ≤ Qu ≤ p1 + (1 − 2p1)an.

Then, for u ∈ {1,2, . . . ,n} and 0 ≤ p1 <
1
2 :

P
(
u ∈ J(n)

)
= P (A ∩ B)

= P (A)P
(
B
��A)

.

So, given p1 ∈ (0,1) and the assumption 0 < δ1 < fp < δ2, for n large enough, we have

P(A) =
∫ p1+εn

p1
fP(p)dp,

so, we can conclude that

εnδ1 < P(A) < εnδ2.

We can find a δ such that δ1 < δ < δ2 and

P(A) = εnδ. (2.8)
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We know

Qu

���Pu = pu ∼ Uni f orm [pu, pu + (1 − 2pu)an] ,

so, according to Figure 2.5, for p1 ≤ pu ≤ p1 + εn,

P (B |Pu = pu) =
p1 + (1 − 2p1)an − p1 − εn

pu + (1 − 2pu)an − pu

=
(1 − 2p1)an − εn

(1 − 2pu)an

≥
(1 − 2p1)an − εn

(1 − 2p1)an

= 1 −
εn

(1 − 2p1)an
,

which implies

P (B |A) ≥ 1 −
εn

(1 − 2p1)an
. (2.9)

Using (2.8) and (2.9), we can conclude

P
(
u ∈ J(n)

)
≥ εnδ

(
1 −

εn

(1 − 2p1)an

)
.

Then, we can say that N (n) has a binomial distribution with expected value of N (n) greater

than nεnδ
(
1 − εn

(1−2p1)an

)
, and by substituting εn and an, for any c′ > 0, we get

E
[
N (n)

]
≥ δ

(
n
β
2 −

1

c′(1 − 2p1)

)
≥ λn

β
2 .

Now by using Chernoff bound, we have

P
(
N (n) ≤ (1 − θ)E

[
N (n)

] )
≤ e−

θ2

2 E[N
(n)],
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so, if we assume θ = 1
2 , we can conclude as n→∞,

P

(
N (n) ≤

λ

2
n
β
2

)
≤ P

(
N (n) ≤

E
[
N (n)

]
2

)
≤ e−

E[N (n)]
8

≤ e−
λn

β
2

8 → 0.

As a result, N (n) →∞ with high probability as n→∞. �

2.8.4 Completion of Proof of Lemma 5

Let p1 ∈ (0,1), and let N (n) be a random variable as above, i.e., N (n) → ∞ as n →

∞. Consider the sequence of independent random variables Yu ∼ Bernoulli(pu) for u =

1,2, · · · ,N (n) such that

1. For all n and all u ∈
{
1,2, · · · ,N (n)

}
, |pu − p1 | ≤ ζn.

2. lim
n→∞

ζn = 0.

Define

Y ,
1

N (n)

N (n)∑
u=1

Yu,

then Y
d
−→ p1.

Proof. Note

E[Y ] =
1

N (n)

N (n)∑
u=1

pu

≤
1

N (n)

N (n)∑
u=1

(p1 + ζn)

=
1

N (n)
· N (n)(p1 + ζn)

= p1 + ζn.
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Similarly we can prove E
[
Y
]
≥ p1 − ζn. Since as n becomes large, ζn → 0 and p1 ∈ (0,1),

we can conclude

lim
n→∞
E

[
Y
]
= p1. (2.10)

Also,

Var
(
Y
)
=

1(
N (n)

)2

N (n)∑
u=1

pu (1 − pu)

≤
1

(N (n))2

N (n)∑
u=1

(p1 + ζn) (1 − p1 + ζn)

=
1

(N (n))2
· N (n) (p1 + ζn) (1 − p1 + ζn)

=
1

N (n)
(p1 + ζn) (1 − p1 + ζn) .

Thus,

lim
n→∞

Var
(
Y
)
= 0. (2.11)

By using (2.10), (2.11), and Chebyshev’s inequality, we can conclude

Y
d
−→ p1.

�
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CHAPTER 3

PRIVACY OF INDEPENDENT USERS AGAINST STATISTICAL
MATCHING: NON-ASYMPTOTIC RESULTS

3.1 Introduction

In Chapter 2, the concept of perfect privacy is defined and the limits of privacy are

characterized. However, Chapter 2 limits their consideration to the asymptotic case. Here,

we obtain the exact expressions for the discrete and finite case where user data samples are

independent and identically distributed (i.i.d.) and independent of other users’ data sets,

while employing both anonymization and obfuscation techniques. Our results, while ex-

act, are unwieldy. Similar to [62], the expression for the error probability could be used

in asymptotic analyses to approach the problem from a different perspective from the in-

formation theoretic approach used in Chapter 2. In addition to its potential in asymptotic

analyses, we demonstrate here how the results can be used to answer meaningful questions

in the application. In particular, Chapter 2 indicates that, given enough obfuscation, the

length m of the observed traces does not matter. Likewise, given a large enough m, ob-

fuscation is not needed. And, conversely, if both are beneath their thresholds, a user does

not have privacy. This gives the idea that the two methods work independently, and never

need be employed in unison. Here, our expression for the finite case allow us to investigate

whether this is true for smaller (practical) values of the number of users n and sequence

length m.

The work presented in this chapter was published in [112].
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Notation: In this chapter, P
(
X = x

����Y = y

)
is used for the conditional probability of X = x

given Y = y. When we write P
(
X
����Y )

, we are referring to a random variable that is defined

as a function of Y .

3.2 System Model, Definitions, and Metrics

Consider a system with n users and denote Xu(k) as a sample of the data of user u

at time k, which we desire to protect from the adversary. In the discrete case, there is a

countable number of possible states for each sample of each user’s data. However, here

we consider the binary case, where the data is restricted to {0,1}. User u is distinguished

by Pu the probability that Xu(k) = 1 for any k. Per Section 3.1, we assume the adversary

knows Pu, u = 1,2, · · · ,n, based on prior observations of the users, and it is this statistical

knowledge that they will employ to identity users by the characteristics of their data traces.

Finally, Pu, u = 1,2, · · · ,n, are drawn independently from a distribution fP.

As shown in Figure 3.1, we employ both anonymization and obfuscation techniques

to protect the users’ identities. In Figure 3.1, Zu(k) is the reported sample of the data of

user u at time k, where Zu(k) has a Bernoulli distribution with the obfuscated probability

of being in state 1 denoted as Qu. Yu(k) is the data of user u at time k after applying

both obfuscation and anonymization; Yu(k) has a Bernoulli distribution with the estimated

probability of being in state 1 denoted as Wu.

Figure 3.1: Applying obfuscation and anonymization techniques to users’ data samples.

Obfuscation Model: The obfuscation is characterized by random variables, Ru, u =

1,2, . . . ,n, which are drawn independently from a distribution fR. The value of Ru is the

probability that a sample of the data of user u is intentionally reported with error. Hence,

the effect of the obfuscation is to alter the probability Pu, u = 1,2, . . . ,n of each user in

57



a way that is unknown to the adversary, since the obfuscation is independent of all past

activity of the user. For the binary case, where there are two states (state 0 and state 1) for

a user’s data pattern, we can write

Zu(k) =


Xu(k), with probability of 1 − Ru.

1 − Xu(k), with probability of Ru.

Anonymization Model: Anonymization is modeled by a random permutation Π such that

for user u, the pseudonym of Π(u) is assigned. The users’ identities are permuted after each

m samples, i.e., the observation sequences which the adversary uses to perform statistically

matching are of length m. We can write

Yu(k) = ZΠ−1(u) and Zu(k) = YΠ(u).

The adversary attempts to identify the users based on the observations. Per above, we

assume a powerful adversary who has complete statistical knowledge of the users’ behavior,

which means that they know Pu and their distribution fP, for u = 1,2, . . . ,n. The adversary

does not know the instantiation of Ru, u = 1,2, . . . ,n, or the permutation Π for each time

period of length m.

The goal of the adversary is to correctly identify the users (i.e., figure out the in-

stantiation of the permutation Π) based on their observation of YΠ(u)(k), k = 1,2, . . . ,m,

u = 1,2, . . . ,n. We illustrate this in Figure 3.2, where the adversary tries to statisti-

cally match each Pu, u = 1,2, . . . ,n, to their corresponding observation sequences YΠ(u),

u = 1,2, . . . ,n in order to identify them.

Our metric is the adversary’s probability of being correct, which is the probability that

the adversary identifies the data of user u successfully.
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Figure 3.2: The goal of the adversary: match each Pu of user u for u = 1,2, . . . ,n to each
observed sequences YΠ(u)(1),YΠ(u)(2), . . . ,YΠ(u)(m) for u = 1,2, . . . ,n.

Here we assume the distribution fP and the distribution fR to be uniform. Note that

the problem is still Bayesian because the adversary knows Pu and their distribution fP, for

u = 1,2, · · · ,n.

3.3 Analytical and Numerical Results

3.3.1 Privacy with Anonymization

In this section, we consider the case where only anonymization is employed to provide

user privacy. The identification problem can be formulated as a hypothesis testing problem,

with the optimal test a straightforward adaptation of the work in [61]. This chapter provides

an optimal hypothesis test in the case where the adversary has training sequences from the

same group of users. Here, the optimal test can be obtained by replacing the empirical

number of ones in [61] with the true (ensemble) values of Pu,u = 1,2, · · · ,n. Thus, the

optimal test is given by:

Theorem 6. The optimal hypothesis test in the case with binary observations and n users

is given by: 1) Order (either descending or ascending) the data sequences by the number

of ones they contain, and order {Pu,u = 1,2, · · · ,n}; 2) match each data sequence to the Pu

(and hence, the user) at the same position in these orders.

Let As, s = 0,1, . . . , dn2e − 1 be the event that: 1) exactly s of the users have Pu ≤ P1

but sum of observation sequence
∑m

k=1 YΠ(u)(k) ≥
∑m

k=1 YΠ(1)(k) (we term this as "user
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moves from left to right"), and 2) exactly s users have Pu ≥ P1 but sum of observation

sequence
∑m

k=1 YΠ(u)(k) ≤
∑m

k=1 YΠ(1)(k), (we term this as "user moves from right to left")

for u = 1,2, . . . ,n. Given that A0, A1, · · · , Ad n2 e−1 are disjoint, the probability Ps that the

adversary detects user 1 correctly is given by

Ps = P
©­«
d n2 e−1⋃

s=0

As
ª®¬ =

d n2 e−1∑
s=0

P(As).

We denote Wu =

m∑
k=1

YΠ(u)(k)

m , u = 1,2, · · · ,n, as the estimation of Pu based on the ob-

served sequence. Thus, in order to obtain P(As |P1,W1), we first consider the probability that

a user moves from left to right, which we denote as PL→R(P1 = p1,W1 = w1), and the prob-

ability that a user moves from right to left, which we denote as PR→L(P1 = p1,W1 = w1).

So we have,

PL→R (P1 = p1,W1 = w1) = EPu

[
P

({
User u moves to right

}����{User u starts on left
})

· P

({
User u starts on left

}����Pu,P1 = p1,W1 = w1

) ]
= EPu

[ m∑
l=dw1·me

(
m
l

)
Pl

u (1 − Pu)
m−1 I{Pu≤p1}

]
=

∫ p1

0

m∑
l=dw1·me

(
m
l

)
pl

u (1 − pu)
m−1 dpu.

Likewise,

PR→L (P1 = p1,W1 = w1) = EPu

[
P

({
User u moves to left

}����{User u starts on right
})

· P

({
User u starts on right

}����Pu,P1 = p1,W1 = w1

) ]
= EPu

[ bw1·mc∑
l=0

(
m
l

)
Pl

u (1 − Pu)
m−1 I{Pu≥p1}

]
=

∫ 1

p1

bw1·mc∑
l=0

(
m
l

)
pl

u (1 − pu)
m−1 dpu.

60



Because a user’s movement left-to-right or right-to-left is independent of other users

when conditioned on P1 and W1, we obtain P (As |P1,W1) by employing a multinomial

distribution with three categories. We denote N1 as the number of users that move from left

to right, N2 as the number of users that move from right to left, and N3 as the number of

remaining users. Then,

P (As |P1,W1) = P (N1 = s,N2 = s,N3 = n − 2s − 1)

=
(n − 1)!

s!s!(n − 2s − 1)!
Ps

I Ps
I I Pn−2s−1

I I I ,

where PI = PL→R(P1 = p1,W1 = w1), PI I = PR→L(P1 = p1,W1 = w1), and PI I I =

1 − PL→R(P1 = p1,W1 = w1) − PR→L(P1 = p1,W1 = w1).

Thus, the probability that the adversary successfully identifies user 1 is given by:

Ps =EP1,W1

[ d n2 e−1∑
s=0

P (As |P1,W1)

]
=

∫ 1

0

m∑
h=0

d n2 e−1∑
s=0

P (As |P1,W1) fP1W1(p1, h)dp1. (3.1)

where, noting p1 is uniformly distributed on [0,1],

fP1W1 (p1, h) = fW1 |P1 (h|p1) · fP1 (p1)

=

(
m
h

)
ph

1 (1 − p1)
m−h .

To get some insight into the effect of anonymization on privacy, we show the probability

of correct (Ps) in Figure 3.3, and compare the theoretical results in (3.1) with simulation

results. As expected, the theoretical results match the simulation results. We can also

notice that if we decrease the number m of observations per user, or increase the number n

of users, the probability of correct decreases. This shows more users and a higher level of

anonymization achieve more privacy, as expected.
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Figure 3.3: Comparison of simulation and theoretical results for correct probability (Ps) in
identifying a given user when there are 2 users, 5 users, and 8 users in the case that only
the anonymization technique is employed.

3.3.2 Privacy with Anonymization and Obfuscation

In this section, we employ both obfuscation and anonymization techniques to achieve

privacy, and consider how these two techniques combine with each other to affect user

privacy.

Recall that the obfuscation is characterized by a random variable Ru, u = 1,2, · · · ,n,

which given the probability that any data sample of user u is changed to a different data

sample by obfuscation. We assume Ru is distributed uniformly over [0,a], where a is noise

level.

Let us define Qu as the probability of Xu(k) = 1 after obfuscation; then we have

Qu = Pu + Ru(1 − 2Pu)

Similar to the previous part, the probability that the adversary correctly identifies the

data trace of user 1 is given by:
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Ps = P
©­«
d n2 e−1⋃

s=0

As
ª®¬ =

d n2 e−1∑
s=0

P(As).

Figure 3.4: Comparison of simulation and theoretical results of the correct probability (Ps)

in identifying a given user when there are 2 users, 5 users, and 8 users in the case that
both obfuscation and anonymization techniques are employed. The noise level is fixed as
a = 0.5.

To obtain P(As |P1,R1,W1), consider the probability a user moves from left to right,

which we denote as PL→R (P1 = p1,R1 = r1,W1 = w1) and the probability a user moves

from right to left, which we denote as PR→L (P1 = p1,R1 = r1,W1 = w1). Now,

PL→R (P1 = p1,R1 = r1,W1 = w1) =

EPu,Ru

[
P

({
User u moves to right

}����{User u starts on left
})

· P

({
User u starts on left

}����Pu,Ru,P1,R1,W1

) ]
= EPu,Ru

[ m∑
l=dw1·me

(
m
l

)
Ql

u (1 −Qu)
m−1 I{Pu≤p1}

]
=

∫ p1

0

∫ a

0

m∑
l=dw1·me

(
m
l

)
ql

u (1 − qu)
m−1 ·

(
1

a

)
drudpu.
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Likewise,

PR→L (P1 = p1,R1 = r1,W1 = w1) =

EPu,Ru

[
P

({
User u moves to left

}����{User u starts on right
})

· P

({
User u starts on right

}����Pu,Ru,P1,R1,W1

) ]
= EPu,Ru

[ bw1·mc∑
l=0

(
m
l

)
Ql

u (1 −Qu)
m−1 I{Pu≥p1}

]
=

∫ 1

p1

∫ a

0

bw1·mc∑
l=0

(
m
l

)
ql

u (1 − qu)
m−1 ·

(
1

a

)
drudpu,

As a result, for obtaining P (As |P1,R1,W1), we write the multinomial distribution as

P (As |P1,R1,W1) = P (N1 = s,N2 = s,N3 = n − 2s − 1)

=
(n − 1)!

s!s!(n − 2s − 1)!
Ps

I Ps
I I · P

n−2s−1
I I I ,

where PI = PL→R, PI I = PR→L , and PI I I = 1 − PL→R − PR→L .

Thus, the probability that the adversary successfully detects user 1 is given by

Ps =EP1,R1,W1

[ d n2 e−1∑
s=0

P(As |P1,R1,W1)

]
.

Now we can conclude

Ps =

∫ 1

0

∫ a

0

m∑
h=0

d n2 e−1∑
s=0

P (As |P1,W1) fP1R1W1(p1,r1, h)dr1dp1, (3.2)

where fP1R1W1(p1,r1, h) is given by

fP1R1W1(p1,r1, h) = fW1 |R1P1(h|r1, p1) fR1 |P1(r1 |p1) fP1(p1)

=

(
m
h

)
ph

1(1 − p1)
m−h ·

(
1

a

)
.
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Again, to get some insight of how anonymization and obfuscation combine to affect

privacy, we provide numerical and simulation results in Figures 3.4 and 3.5. We compare

the theoretical results in (3.2) with the simulation results, and, as expected, we see that the

theoretical results match the simulation results.

In Figure 3.4, we show the correct probability (Ps) for different numbers of users (n)

and length (m) of observation sequences, with a fixed noise level of a = 0.5. The figure

implies that, similar to the case with only anonymization, if m decreases or n increases, the

correct probability (Ps) decreases. In general, if we compare Figure 3.3 and Figure 3.4, we

see that anonymization among with obfuscation leads to better results in preserving privacy,

as expected from our intuition but in contrast to what is suggested by the asymptotic results

of Chapter 2. We investigate this further in Figure 3.6 below.

In Figure 3.5, we fix m = 5 and show Ps for different n and a. We see that a higher level

of noise results in a lower correct probability. It shows the degree to which a high level of

obfuscation preserves privacy.

Figure 3.5: Comparison of simulation and theoretical results of the correct probability (Ps)

in identifying a given user when there are 2 users, 5 users, and 8 users in the case that both
obfuscation and anonymization techniques are employed. The length of the observation
sequences is fixed as m = 5.
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Finally, Figure 3.6 shows for small n and m, anonymization and obfuscation work to-

gether for preserving users’ privacy. We see that when the anonymization level is not high

enough (i.e. m is large) obfuscation helps in protecting user privacy (i.e. Ps decreases when

a is large), and when the obfuscation level is not high enough (i.e. a is small), anonymiza-

tion helps in protecting user privacy (i.e. Ps decreases when m is small). In fact, the

sharp corner observed in the asymptotic case, which would suggest the center of the plot

in Figure 3.6, would contain the corner of a box, is not evident. Instead, we see a smooth

transition where the techniques can be used in conjunction when neither is sufficient by

itself.

Figure 3.6: Simulation results for the correct probability (Ps) in identifying a given user
vs. the number of observations per user (m) and noise level (a) for 10 users in the case that
both obfuscation and anonymization techniques are employed.
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CHAPTER 4

PRIVACY OF DEPENDENT USERS AGAINST STATISTICAL
MATCHING

4.1 Introduction

Many modern applications provide an enhanced user experience by exploiting users’

characteristics, including their past choices and present states. In particular, emerging In-

ternet of Things (IoT) applications include smart homes, healthcare, and connected ve-

hicles that intelligently tailor their performances to their users. For such applications

to be able to provide their enhanced, user-tailored performances, they need to request

their clients for potentially sensitive user information such as mobility behaviors and so-

cial preferences. Therefore, such applications trade off user privacy for enhanced utility.

hence, questions arise about the degree to which user privacy is compromised in seek-

ing an enhanced experience. Previous work [74] shows that even if users’ data traces are

anonymized before being provided to such applications, standard statistical matching tech-

niques can be used to leak users’ private information. Thus, privacy and security threats

are a major obstacle to the wide adoption of IoT applications, as demonstrated by prior

studies [3, 5, 27, 44, 47, 66, 84, 85, 87, 101, 115, 116, 118, 120, 122].

The bulk of previous work assumes independence between the traces of different users. [4,

22, 25, 68, 95, 126, 131] have mostly considered temporal and spatial dependency within

data traces, but not cross-user dependency. In [4], an obfuscation technique is employed to

achieve privacy; however, for continuous Location-Based Services (LBS) queries, there is

often strong temporal dependency in the locations. Hence, [4] considers how dependency

The work presented in this chapter was published in [110, 114] and submitted to [108].
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of the users’ obfuscated data can impact privacy, and then employs an adaptive noise level

to achieve more privacy while still maintaining an acceptable level of utility. Liu et al. [68]

show that the spatiotemporal dependency between neighboring location sets can ruin the

privacy achieved using a dummy-based location-privacy preserving mechanism (LPPM);

to solve this problem, they propose a spatiotemporal dependency-aware privacy protec-

tion that perturbs the spatiotemporal dependency between neighboring locations. Zhang

et al. [131] employ Protecting Location Privacy (PLP) against dependency-analysis attack

in crowd sensing: the potential dependency between users’ data is modeled, and the data

is filtered to remove the samples that disclose the user’s private data. In [126], locations

of a single user are temporally dependent, and δ-location set based differential privacy is

proposed to achieve location privacy at every timestamp. Finally, Song et al. [104] provide

privacy when there is dependency within the data of a single user. In summary, previ-

ous studies do not consider dependency between users, which is the focus of this work.

We argue that for many applications, there is dependency between the traces of different

users. For example, friends tend to travel together or might meet at given places, hence

introducing dependency between the traces of their location information. Several previ-

ous works [56, 57, 67, 78, 128, 130, 135] have considered cross-user dependency; however,

this only has been for protecting queries on aggregated data, which is different than our

application scenario.

We use the notion of “perfect privacy” and “no privacy”, as introduced in Chapter 2, to

evaluate the privacy of user traces. The “perfect privacy” notion provides an information-

theoretic guarantee on privacy in the presence of a strong adversary who has complete

knowledge on users’ prior data traces. On the opposite extreme is the notion of ‘no pri-

vacy”. It means there exists an algorithm for the adversary to estimate the actual data points

of users with diminishing error probability. In Chapter 2, we have derived the degree of

user anonymization and data obfuscation required to obtain perfect privacy—assuming that

the data traces of different users are independent across users. Particularly, we evaluated
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the case of independent and identically distributed (i.i.d.) samples from a given user and

the case when there is temporal dependency within the trace of a given user (but indepen-

dent across users). In this work, we expand our study to the case where there is dependency

between the data traces of users. That is, we investigate how privacy is affected by the pres-

ence of dependency between the data traces of users when anonymization and obfuscation

techniques are used. We show that dependency significantly reduces the privacy of users.

Specifically, we show that the same anonymization and obfuscation levels that could pro-

duce perfect privacy for independent users result in no privacy for dependent users. Thus,

in the presence of inter-user dependency, we need to employ much stronger anonymization

and obfuscation compare to the case data traces of different users are independent.

We model dependency between user traces with an association graph, where the pres-

ence of an edge between the vertices corresponding to a pair of users indicates a non-zero

dependency between their data traces. We employ standard concentration inequalities to

demonstrate that the adversary can readily determine this association graph. Using this

association graph and statistical data about the users, the adversary can attempt to identify

users, and we demonstrate that this provides the adversary with a significant advantage ver-

sus the case when the data traces of different users are independent of one another. This

suggests that, unless additional countermeasures are employed, the results of Chapter 2 for

independent traces are optimistic when user traces are dependent. We next consider the

effectiveness of countermeasures. First, we argue that adding independent obfuscation to

user data points is often ineffective in improving the privacy of (dependent) users. Next,

we demonstrate that, if users with dependent traces can jointly design their obfuscation,

user privacy can be significantly improved.

A related but parallel approach to our study is graph alignment in which the edge set

is sampled at random. Graph alignment is the problem of finding a matching between

the vertices of the two graphs that matches, or aligns, many edges of the first graph with

edges of the second graph. Shirani et. al. [92, 94] and Cullina et. al. [20] have done
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significant work on graph alignment. Although the graph alignment problem looks similar

to our problem on the surface, there exist notable differences between the two. First, in

Shirani et. al.’s work [92–94], graphs are generated using a model which is sampled at

random from a probability distribution, while here the association graph is deterministic,

as it is based on the dependency between data traces of users. Consequently, Shirani et.

al. [92–94] used a completely different approach and solution to de-anonymize users. In

other words, they have not used the probability distribution of the data traces of each user to

break anonymization, while here the probability distribution of the data trace of each user

is a key characteristic which helps the adversary to break users’ privacy. Finally, Shirani et.

al. [92, 94] considered discrete values for the correlation between users and used them to

de-anonymize the graph, while here the correlation between users have continuous values

and the adversary does not have access to the exact value of them.

[20,21,26] considered the graph alignment for two correlated graphs, while here we as-

sume the adversary has the association graph and tries to reconstruct it from the anonymized

and obfuscated data traces. Thus, in our work, the adversary has two identical graphs and

their goal is to identify all of the users based on the observed data and their statistical

knowledge of users. Also, Cullina et. al. [20] considered fractional matching, while here

the adversary can identify not only all of the users but also the data points of each user at

all time with small error probability. [48, 52, 83, 129] studied matching of non-identical

pairs of correlated Erdös-Rényi graphs.

Also, graph isomorphism studied in [7,9,17,24] is an instance of the matching problem

where the two graphs are identical copies of one another. [9] studied different algorithms

such as maximum degree algorithms to match two identical graphs for the case where

each edge of the graph has a fixed probability of being present or absent which is in the

range of
[
ω

(
log n/n

1
5

)
,1 − ω

(
log n/n

1
5

)]
, where n is the number of vertices in the graph.

Here, the approach of our work is completely different, as the adversary uses probability

distributions of users’ data traces to reconstruct the association graph. After reconstruction
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of the association graph, the adversary uses the size of each disjoint group to identify all of

the members.

In summary, although matching (alignment) between graphs can be considered as a part

of our analysis, the analysis based on the users’ data traces and the statistical knowledge

of the adversary is a key part of this chapter which distinguishes it from previous works on

graph alignment.

The rest of this chapter is organized as follows. In Section 4.2 we present the model

and metrics considered in this work. In Sections 4.3 and 4.4, we show dependency between

users’ traces degrades privacy. In Section 4.5, we discuss how our methodology can be

applied to a more general setting for the association graph. In Section 4.6, we propose a

method to improve privacy in the case when there exists inter-user dependency.

4.2 System Model, Definitions, and Metrics

Here, we employ a similar framework to Chapter 2. The system has n users, and Xu(k)

is the data point of user u at time k. Our main goal is protecting Xu(k) from a strong

adversary who has full knowledge of the (unique) marginal probability distribution function

of the data points of each user based on previous observations or other sources. In order

to achieve data privacy for users, both anonymization and obfuscation techniques can be

used as shown in Figure 4.1. In Figure 4.1, Zu(k) shows the (reported) data point of user

u at time k after applying obfuscation, and Yu(k) shows the (reported) data point of user

u at time k after applying anonymization to Zu(k). Let m = m(n) be the number of data

points after which the pseudonyms of users are changed using anonymization. To break

obfuscation and anonymization, the adversary tries to estimate Xu(k), k = 1,2, · · · ,m, from

m observations per user by matching the sequence of observations to the known statistical

characteristics of the users. Let Xu be the m × 1 vector containing the data points of user u,

and X be the m × n matrix with the uth column equal to Xu:
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Figure 4.1: Applying obfuscation and anonymization techniques to the users’ data points.

Xu =



Xu(1)

Xu(2)

...

Xu(m)



, X = [X1 X2 · · · Xn] .

Data Points Model: Here, we assume two different models for users’ data points: in the

first case, we assume the sequence of data for any individual user is modeled by i.i.d. which

could apply directly to data that is sampled at a low rate. In addition, understanding the

i.i.d. case can also be considered the first step toward understanding the more complicated

case where there is temporal dependency. In the second case, we assume the data trace of

any individual users is governed by Markov chain in which each sample of users’ data is

dependent over time.

We also assume users’ data points can have one of r possible values (0,1, · · · ,r − 1).

Thus, according to a user-specific probability distribution (pu), Xu(k) is equal to a value in

{0,1, · · · ,r − 1} at any time. Note pu(i) is the probability of user u having the data value i,

so
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pu =



pu(1)

pu(2)

...

pu(r − 1)



, for each u ∈ {1,2, · · · ,n}.

We also assume pu’s are drawn independently from some continuous density function,

fP(pu), which has support on a subset of the (0,1)r−1 hypercube. Note these user-specific

probability distributions, i.e., pu’s, are known to the adversary and form the basis upon

which they perform (statistical) matching.

Association Graph: An association graph or dependency graph is an undirected graph

representing dependency of the data of users with each other. Let G(V,F) denote the

association graph with set of nodesV, (|V| = n), and set of edges F. Two vertices (users)

are connected if their data sets are dependent. More specifically,

• (u,u′) < F iff I(Xu(k); Xu′(k)) = 0,

• (u,u′) ∈ F iff I(Xu(k); Xu′(k)) > 0,

where I (Xu(k); Xu′(k)) is the mutual information between the k th data point of user u and

user u′1.

Obfuscation Model: Obfuscation perturbs the users’ data points [10, 39, 99]; in other

words, the obfuscation can be viewed as passing data through a noisy channel. Normally,

in such settings, each user has only limited knowledge of the characteristics of the overall

population. Thus, usually, a simple distributed method in which the data points of each

1It is worth noting that the mechanism that determines the joint distribution of Xu(k) and Xu′(k) does not
affect the results of this chapter as long as the marginal densities of Xu(k)’s (i.e., pu’s) are drawn indepen-
dently from fP(pu).
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user are reported with error with a certain probability is employed [123]. Note that this

probability itself is generated randomly for each user. Let Zu be the vector that contains

the obfuscated version of user u’s data points, and Z be the collection of Zu for all users,

Zu =



Zu(1)

Zu(2)

...

Zu(m)



, Z = [Z1 Z2 · · · Zn] .

Here, we define the asymptotic noise level for an obfuscation technique. Loosely speak-

ing, the asymptotic noise level of obfuscation is the highest probable percentage of data

points that are corrupted. More precisely, for a subset of users U, let Xu(k) be the actual

data point of user u at time k, u ∈ U, k ∈ {1,2, · · · ,m}, and let Zu(k) be the obfuscated

(noisy) version of Xu(k). Define

Am(u) =
|{k : Zu(k) , Xu(k)}|

m
.

Then, the asymptotic noise level for user u is defined as follows:

a(u) = inf

{
τ ≥ 0 : P (Am(u) > τ) → 0 as m→∞

}
.

Also, define

Am =

∑
u∈U
|{k : Zu(k) , Xu(k)}|

m|U |
,

then, the asymptotic noise level for the entire dataset is

a = inf

{
τ ≥ 0 : P (Am > τ) → 0 as m→∞

}
.
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Note that while the above definition is given for a general case required in Section 4.6,

in practice we often use simple obfuscation techniques that employ i.i.d. noise sequences.

Then, by the Strong Law of Large Number (SLLN),

|{k : Zu(k) , Xu(k)}|
m

a.s.
−−→ P (Zu(k) , Xu(k)) ,

and for any k,

a(u) = P (Zu(k) , Xu(k)) .

Anonymization Model: In the anonymization technique, the identity of the users is per-

turbed [18, 33, 45, 71, 74, 96, 102]. Anonymization is modeled by a random permutation Π

on the set of n users. Let Yu be the vector which contains the anonymized version of Zu,

and Y is the collection of Yu for all users, thus

Y = Perm (Z1,Z2, · · · ,Zn;Π)

=
[
ZΠ−1(1) ZΠ−1(2) · · · ZΠ−1(n)

]
= [Y1 Y2 · · · Yn] ,

where Perm( . ,Π) is the permutation operation with permutation function Π. As a result,

Yu = ZΠ−1(u) and YΠ(u) = Zu.

Adversary Model: We assume the adversary has full knowledge of the marginal proba-

bility distribution function of each of the users on {0,1, . . . ,r − 1}. As discussed in the

data points models in succeeding sections, the parameters pu, u = 1,2, · · · ,n are drawn

independently from a continuous density function, fP(pu), which has support on a subset

of a given hypercube. The density fP(pu) might be unknown to the adversary, so all that is

assumed here is that such a density exists. From the results, it will be evident that knowing

or not knowing fP(pu) does not change the results asymptotically.

The adversary knows the anonymization mechanism but does not know the realization

of the random permutation. The adversary also knows the obfuscation mechanism but does
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not know the realization of the noise parameters. And finally, the adversary knows the as-

sociation graph G(V,F), but does not necessarily know the exact nature of the dependency.

That is, while the adversary knows the marginal distributions Xu(k) as well as which pairs

of users have strictly positive mutual information, they might not know the joint distribu-

tions or even the values of the mutual information I(Xu(k); Xu′(k)).

It is critical to note that the adversary does not have any other auxiliary information or

side information about users’ data.

We adopt the definitions of perfect privacy and no privacy from Chapter 2:

Definition 3. User u has perfect privacy at time k if and only if

lim
n→∞
I (Xu(k); Y) = 0,

where I (Xu(k); Y) denotes the mutual information between the data point of user u at time

k and the collection of the adversary’s observations for all the users.

Definition 4. For an algorithm for the adversary that tries to estimate the actual data point

of user u at time k, define the error probability as

Pe(u, k) = P
( �Xu(k) , Xu(k)

)
,

where Xu(k) is the actual data point of user u at time k, �Xu(k) is the adversary’s estimated

data point of user u at time k. Now, define E as the set of all possible adversary’s estimators.

Then, user u has no privacy at time k, if and only if,

P∗e(u, k) = lim
n→∞

inf
E
P

( �Xu(k) , Xu(k)
)
→ 0.

Hence, a user has no privacy if there exists an algorithm for the adversary to estimate Xu(k)

with diminishing error probability as n goes to infinity.
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Discussion 1: The studied anonymization and obfuscation mechanisms improve user pri-

vacy at the cost of user utility. An anonymization mechanism works by frequently changing

the pseudonym mappings of users to reduce the length of time series that can be exploited

by statistical analysis. However, such frequent changes may also degrade the usability of

the underlying application by concealing the temporal relation between a user’s data points,

e.g., for a dining recommendation system that makes suggestions based on the dining his-

tory of its users. On the other hand, obfuscation mechanisms work by adding noise to users’

collected data, e.g., location information. The added noise may also degrade the utility of

the system. In this work, our goal is studying the level of anonymization and obfuscation

one should employ to ensure privacy with the minimum loss in utility. In other words, we

derive the optimal frequency of changing user pseudonyms during anonymization, and the

optimal extent of noise added by an obfuscation mechanism while guaranteeing privacy.

However, like similar works in privacy [18,33,45,71,74,118], we consider the quantifi-

cation of utility orthogonal to our privacy evaluations for two reasons: (1) the implications

of our PPMs on utility do not impact our privacy analysis, and (2) unlike privacy, the de-

sired level of utility is application specific.

Discussion 2: Note that there are two kinds of dependency:

• Intra-user dependency: In this case, there is temporal and spatial dependency within

data traces of one user. For example, when the data trace of a user is governed by

a Markov chain model, the Markov chain characterizes temporal intra-user depen-

dency. Thus, the adversary can benefit from this dependency and break the users’

privacy. According to the results obtained in [111], when there are a large number

of users in the setting (n → ∞), and data traces of the users are governed by i.i.d.

statistics with r possible values for each data point, users have no privacy if and

only if the number of adversary’s observations per user (m) is significantly larger

than n
2

r−1 and the amount of noise level (an) is significantly smaller than n−
1

r−1 ; how-

ever, if the data trace of users is governed by an irreducible and aperiodic Markov
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chains with r states and |E | edges, users have no privacy if and only if the number

of adversary’s observations per user (m) is significantly larger than n
2
|E |−r and the

amount of noise level (an) is significantly smaller than n−
1
|E |−r . Most of the previous

work [4, 22, 25, 68, 95, 126, 131] that considers intra-user dependency assumes inde-

pendence between the traces of different users, which is different from our work as

described below.

• Inter-user dependency: Here, there exists dependency between the traces of different

users. This is the main focus of our work. First, we demonstrate that the adversary

can readily identify the association graph of the obfuscated and anonymized version

of the data, revealing which user data traces are dependent. Next, we demonstrate that

the adversary can use this association graph along with their statistical knowledge

and the observed obfuscated and anonymized sequences to break user privacy with

significantly shorter traces than in the case of independent users, and that obfuscating

data traces independently across users is often insufficient to remedy such leakage.

Discussion 3: The general models of multi-user in classical information theory assume a

fixed number of users and the fundamental limits of communication systems are charac-

terized by studying the asymptotic limits of infinite coding blocklength [41, 43, 63, 119].

However, the emerging Internet of Things enables an ever-increasing number of users to

share and access information on a large scale, i.e., applications, such as ride sharing and

dining recommendation applications, the number of users is large. Thus, the number of

users is allowed to grow with the blocklength [13,14,42], and our goal is for the asymptotic

results to provide a good insight to the performance of the privacy-preserving mechanisms

for these applications. Moreover, both of the privacy definitions given above (perfect pri-

vacy and no privacy) are asymptotic in the number of users (n → ∞), which allows us to

find clean analytical results for the fundamental limits.
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4.3 Impact of Dependency on Privacy Using Anonymization

In this section, we consider only anonymization and thus the obfuscation block in Fig-

ure 4.1 is not present. In this case, the adversary’s observation Y is the anonymized version

of X; thus

Y = Perm (X1,X2, · · · ,Xn;Π)

=
[
XΠ−1(1) XΠ−1(2) · · · XΠ−1(n)

]
= [Y1 Y2 · · · Yn] .

4.3.1 r-State i.i.d. Model

There is potentially dependency between the data of different users, but we assume here

that the sequence of data for any individual user is i.i.d.. We also assume users’ data points

can have r possibilities (0,1, · · · ,r − 1), and pu(i) is the probability of user u having the

data value i, i.e., pu(i) = P (Xu(k) = i), for k = 1,2, · · · ,m. We define the vectors pu and p

as

pu =



pu(1)

pu(2)

...

pu(r − 1)



, p =
[
p1 p2 · · · pn

]
.

We also assume pu’s are drawn independently from some continuous density function,

fP(pu), which has support on a subset of the (0,1)r−1 hypercube. In particular, define the

range of the distribution as

RP =
{
(x1, x2, · · · , xr−1) ∈ (0,1)

r−1 : xi > 0, x1 + x2 + · · · + xr−1 < 1
}
,
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then, we assume there are δ1, δ2 > 0 such that:


δ1 ≤ fP(pu) ≤ δ2, pu ∈ RP.

fP(pu) = 0, pu < RP.

The adversary knows the values of pu, u = 1,2, · · · ,n, and uses this knowledge to match

the observed traces to the users. We will use capital letters (i.e., Pu) when we are referring

to the random variable, and use lower case (i.e., pu) to refer to the realization of Pu.

A vector containing the permutation of those probabilities after anonymization is

W = Perm (P1,P2, · · · ,Pn;Π)

=
[
PΠ−1(1) PΠ−1(2) · · · PΠ−1(n)

]
= [W1 W2 · · · Wn] ,

where Wu = PΠ−1(u) and WΠ(u) = Pu.

In this case, we can say:

• (u,u′) < F iff for all i, j ∈ {0,1, · · · ,r − 1}, puu′(i, j) = pu(i)pu′( j),

• (u,u′) ∈ F iff for at least one pair of i, j ∈ {0,1, · · · ,r − 1}, puu′(i, j) , pu(i)pu′( j),

where puu′(i, j) = P (Xu(k) = i,Xu′(k) = j), pu(i) = P (Xu(k) = i), and pu′( j) = P (Xu′(k) = j).

Note that the adversary knows the association graph G(V,F), but does not necessarily

know the joint probability distribution for each specific (u,u′) ∈ F. The adversary observes

the anonymized version of users’ data traces and combines them with their full knowledge

of the marginal probability distribution of each of the users and the structure of the whole

association graph to break users’ privacy with arbitrarily small error probability.

In the first step, we show that the adversary can reliably reconstruct the entire asso-

ciation graph for the anonymized version of the data (i.e., the observed data traces) with

relatively few observations.
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Lemma 7. Consider a general association graph G(V,F). If the adversary obtains m =

(log n)3 anonymized observations per user, they can construct G̃ = G̃(Ṽ, F̃), where Ṽ =

{Π(u) : u ∈ V} = V, such that with high probability, for all u,u′ ∈ V; (u,u′) ∈ F iff

(Π(u),Π(u′)) ∈ F̃. We write this statement as P(G̃ ' G) → 1, i.e., Graph G and Graph G̃

are isomorphic with high probability.

Proof. For u,u′ ∈ {1,2, · · · ,n}, we normally write v = Π(u) and v′ = Π(u′). We provide

an algorithm for the adversary that with high probability obtains all edges of F correctly.

First, for all v, v′ ∈ {1,2, · · · ,n}, and all i, j ∈ {0,1, · · · ,r − 1} the adversary computes�pvv′(i, j), �pv(i), and �pv′( j) as follow:

�pvv′(i, j) =
|{k : Yv(k) = i,Yv′(k) = j}|

m
=

M̂vv′(i, j)
m

, (4.1)

�pv(i) = |{k : Yv(k) = i}|
m

=
M̂v(i)

m
, (4.2)

�pv′( j) = |{k : Yv′(k) = j}|
m

=
M̂v′( j)

m
, (4.3)

where

M̂vv′(i, j) = |{k : Yv(k) = i,Yv′(k) = j}|.

M̂v(i) = |{k : Yv(k) = i}|.

M̂v′( j) = |{k : Yv′(k) = j}|.

After observing m = (log n)3 data points per user and computing the above expressions,

the adversary constructs G̃ in the following way:

• If
��� M̂vv′(i,j)

m −
M̂v(i)

m
M̂v′( j)

m

��� ≤ m−
1
5 for all i, j ∈ {0,1, · · · ,r − 1}, then (v, v′) < F̃ .
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• If
��� M̂vv′(i,j)

m −
M̂v(i)

m
M̂v′( j)

m

��� ≥ m−
1
5 for at least one pair of i, j ∈ {0,1, · · · ,r − 1}, then

(v, v′) ∈ F̃ .

We show the above method yields P(G̃ ' G) → 1 as n→∞, as follows. Note

M̂vv′(i, j) ∼ Binomial(m,wvv′(i, j)),

M̂v(i) ∼ Binomial(m,wv(i)),

M̂v′( j) ∼ Binomial(m,wv′( j)),

where wvv′(i, j) = P (Yv(k) = i,Yv′(k) = j) = pΠ−1(v)Π−1(v′)(i, j), wv(i) = P (Yv(k) = i) =

pΠ−1(v)(i), and wv′( j) = P (Yv′(k) = j) = pΠ−1(v′)( j). Now, for all v, v′ ∈ {1,2, · · · ,n} and all

i, j ∈ {0,1, · · · ,r − 1}, define

Jvv′(i, j) =
{����Mvv′(i, j)

m
− wvv′(i, j)

���� ≥ m−
1
4

}
,

then, for all v, v′ ∈ {1,2, · · · ,n} and all i, j ∈ {0,1, · · · ,r − 1}, the Chernoff bound yields

P (Jvv′(i, j)) ≤ 2e
−

√
m

3wvv′ (i, j) ≤ 2e−
√
m
3 .

Similarly, for all v, v′ ∈ {1,2, · · · ,n} and all i, j ∈ {0,1, · · · ,r − 1}, define

Jv(i) =
{����Mv(i)

m
− wv(i)

���� ≥ m−
1
4

}
,

Jv′( j) =
{����Mv′( j)

m
− wv′( j)

���� ≥ m−
1
4

}
,

then, the Chernoff bound yields,

P (Jv(i)) ≤ 2e−
√
m
3 ,
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P (Jv′( j)) ≤ 2e−
√
m
3 ,

Now, by employing a union bound, for all v, v′ ∈ {1,2, · · · ,n} and all i, j ∈ {0,1, · · · ,r−1},

we have

P (Jvv′(i, j) ∪ Jv(i) ∪ Jv′( j)) ≤ 2
(
e−
√
m
3 + e−

√
m
3 + e−

√
m
3

)
= 6e−

√
m
3 .

Then, by employing a union bound again,

P

(
n⋃

v=1

n⋃
v′=1

r−1⋃
i=0

r−1⋃
j=0

{Jvv′(i, j) ∪ Jv(i) ∪ Jv′( j)}

)
≤

n∑
v=1

n∑
v′=1

r−1∑
i=0

r−1∑
j=0

6e−
√
m
3

= 6n2r2e−
√
m
3

= 6r2 exp

{
2 log n −

(log n)
3
2

3

}
→ 0,

(4.4)

as n → ∞. Thus, (4.4) yields that with high probability, for all v, v′ ∈ {1,2, · · · ,n} and all

i, j ∈ {0,1, · · · ,r − 1}, we have

0 ≤ mwvv′(i, j) − m
3
4 ≤ M̂vv′(i, j) ≤ mwvv′(i, j) + m

3
4 . (4.5)

0 ≤ mwv(i) − m
3
4 ≤ M̂v(i) ≤ mwv(i) + m

3
4 . (4.6)

0 ≤ mwv′( j) − m
3
4 ≤ M̂v′( j) ≤ mwv( j) + m

3
4 . (4.7)

Let us define event Avv′(i, j) as the event that (4.5), (4.6), and (4.7) are all valid, thus, as

shown in (4.4), we have

P

(
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Avv′(i, j)}

)
→ 1, (4.8)
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as n → ∞. Now, if Avv′(i, j) is true for some v, v′ ∈ {1,2, · · · ,n} and some i, j ∈

{0,1, · · · ,r − 1}, we have

M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m
≤

mwvv′(i, j) + m
3
4

m
−

mwv(i) − m
3
4

m
mwv′(i) − m

3
4

m

= wvv′(i, j) − wv(i)wv′( j) + m−
1
4 + (wv(i) + wv′( j))m−

1
4 − m−

1
2

≤ wvv′(i, j) − wv(i)wv′( j) + m−
1
4 + (wv(i) + wv′( j))m−

1
4 + m−

1
2 .

(4.9)

Similarly,

M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m
≥

mwvv′(i, j) − m
3
4

m
−

mwv(i) + m
3
4

m
mwv′(i) + m

3
4

m

= wvv′(i, j) − wv(i)wv′( j) − m−
1
4 − (wv(i) + wv′( j))m−

1
4 − m−

1
2 .

(4.10)

Thus, by using (4.9) and (4.10), we have�����
(

M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m

)
− (wvv′(i, j) − wv(i)wv′( j))

����� ≤ (1 + wv(i) + wv′( j))m−
1
4 + m−

1
2 .

(4.11)

Let us define event Bvv′(i, j) as the event that (4.11) is valid for v, v′, i, and j. We have

shown, for all v, v′ ∈ {1,2, · · · ,n} and all i, j ∈ {0,1, · · · ,r − 1}, Avv′(i, j) ⊆ Bvv′(i, j), thus

{
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Avv′(i, j)}

}
⊆

{
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Bvv′(i, j)}

}
,

and as a result,

P

(
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Bvv′(i, j)}

)
≥ P

(
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Avv′(i, j)}

)
.
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Thus, by using (4.8), we have

P

(
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Bvv′(i, j)}

)
→ 1,

as n → ∞. Hence, with high probability, for all v, v′ ∈ {1,2, · · · ,n} and all i, j ∈

{0,1, · · · ,r − 1}, we have�����
(

M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m

)
− (wvv′(i, j) − wv(i)wv′( j))

����� ≤ (1 + wv(i) + wv′( j))m−
1
4 + m−

1
2 .

(4.12)

Now, if (u,u′) < F, then for all i, j ∈ {0,1, · · · ,r−1}, we have puu′(i, j)−pu(i)pu′( j) = 0,

and as a result, wvv′(i, j) − wv(i)wv′( j) = 0. Thus, by using (4.12), we have����� M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m

����� ≤ (1 + wv(i) + wv′( j))m−
1
4 + m−

1
2 ,

and as a result, as m→∞, ����� M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m

����� ≤ m−
1
5 .

Thus, we can conclude, (v, v′) < F̃, and in other words, (Π(u),Π(u′)) < F̃. This is true with

high probability, for all u,u′ ∈ {1,2, · · · ,n} where (u,u′) < F .

Similarly, if (u,u′) ∈ F, there exists at least one pair of i, j ∈ {0,1, · · · ,r − 1} with

puu′(i, j) − pu(i)pu′( j) ≥ ε − m−
1
4 for a fixed value of ε . Thus, there exists at least one pair

of i, j ∈ {0,1, · · · ,r − 1} with wvv′(i, j) − wv(i)wv′( j) ≥ ε − m−
1
4 . As a result, by using

(4.12), for large enough m, we have����� M̂vv′(i, j)
m

−
M̂v(i)

m
M̂v′( j)

m

����� ≥ m−
1
5 .

Thus, we can conclude, (v, v′) ∈ F̃, and in other words, (Π(u),Π(u′)) ∈ F̃. Again, this is

true with high probability, for all u,u′ ∈ {1,2, · · · ,n} where (u,u′) ∈ F .
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Figure 4.2: The structure of the association graph (G): Group l with sl vertices is disjoint
from the reminder of the association graph (G′).

Now, we can conclude, for large enough n, we have P
(
G̃ ' G

)
→ 1, so the adversary

can reconstruct the association graph of the anonymized version of the data with an arbi-

trarily small error probability. Note that reconstruction of the association graph does not

require the adversary’s knowledge about user statistics (i.e., the values of pu’s). �

The structure of the association graph (G) can leak a lot of information. For the rest

of this section, we consider a graph structure shown in Figure 4.2. In this structure, Gl ,

the subgraph consisting of the users the adversary wants to de-anonymize, has sl vertices

and is disjoint from the reminder of the association graph. So, we can write Gl(Vl,Fl),

where |Vl | = sl . Note that we assume sl is finite. In particular, the subgraph Gl can be

thought of as a group of “friends” or “associates” such that their data sets are dependent.

In Section 4.5, we discuss how our methodology can be applied to the settings where the

subgraph Gl is not disjoint from the reminder of the graph (G′) [23, 32, 35, 37, 38, 53, 75,

77, 100, 125].

The following theorem states that if the number of observations per user (m) is signif-

icantly larger than n
2

s(r−1)+α in the r-state model, where s is the size of a group, then the

adversary can successfully de-anonymize the users in that group.
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Theorem 7. For the above r-state model, if Y is the anonymized version of X as defined

above, the size of the group including user 1 is s, and

• m = Ω
(
n

2
s(r−1)+α

)
, for any α > 0;

then, user 1 has no privacy at time k.

Discussion 4: It is insightful to compare this result to [73, Theorem 2], where it is stated

that if the users are not dependent, then all users have perfect privacy as long as the number

of adversary’s observations per user (m) is smaller than O(n
2

r−1−α). Here, Theorem 7 states

that with much smaller m, the adversary can de-anonymize the users. Therefore, we see

that dependency can significantly reduce the privacy of users.

Proof of Theorem 7:

Proof. As shown in Figure 4.3, the proof of Theorem 7 consists of three parts:

• First Step: Showing the adversary can reconstruct the association graph of the

anonymized version of the data with an arbitrarily small error probability (as shown

in Figure 4.3a).

• Second Step: Showing the adversary can uniquely identify Group 1 with an arbitrar-

ily small error probability (as shown in Figure 4.3b).

• Third Step: Showing the adversary can individually identify all the members within

Group 1 with an arbitrarily small error probability (as shown in Figure 4.3c).

The first part of the proof exploits the fact that the adversary can readily reconstruct

the association graph of the anonymized data in m = (log n)3. It is the second and third

parts that give rise to the condition m = Ω
(
n

2
s(r−1)+α

)
, and it is in the second part where

we see the mechanism for the speed-up of the adversary’s algorithm relative to the case

where user traces are independent. In particular, due to the dependence between users

breaking them into groups, the key search for the adversary now involves finding a set of
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(a) First step: Reconstruction of the association graph from the observed data.

(b) Second step: Identifying Group 1 among all of the groups after association graph is
reconstructed.

(c) Third step: Identifying user 1 among all of the members of Group 1 after Group 1 is
uniquely identified.

Figure 4.3: The algorithm of the adversary to estimate data points of user 1 with vanishing
error probability.
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users corresponding to a length-s vector of probabilities rather than searching for a single

user associated with a given probability.

First step: Reconstruction of the association graph: In this step, we use Lemma 7.

More specifically, since n
2

s(r−1) > (log n)3 for large enough n, we can use Lemma 7 to

conclude that the adversary can reconstruct the association graph with arbitrarily small

error probability.

Second step: Identifying Group 1 among all of the groups: Now, assume the size of

Group 1 is s. Without loss of generality, suppose the members of Group 1 are users

{1,2, · · · , s}. Note that there are at most n
s isolated groups of size s in the association

graph. We call these Groups 1,2, · · · , n
s . The adversary needs to first identify Group 1

among all of these groups.

First, for all u ∈ {1,2, · · · ,n} and all i ∈ {1,2, · · · ,r − 1}, the adversary computes �pu(i)

as:

�pu(i) =
|{k : Yu(k) = i}|

m
=

M̂u(i)
m

, (4.13)

and as a result,

�pΠ(u)(i) = |{k : Xu(k) = i}|
m

=
Mu(i)

m
, (4.14)

where M̂u(i) = |{k : Yu(k) = i}| and Mu(i) = |{k : Xu(k) = i}|. Let pu be the collection of

pu(i) and �pΠ(u) be the collection of �pΠ(u)(i) for all i ∈ {1,2, · · · ,r − 1}:
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p̃u =



�pu(1)

�pu(2)

...

�pu(r − 1)



, �pΠ(u) =



�pΠ(u)(1)
�pΠ(u)(2)

...

�pΠ(u)(r − 1)



.

Now, define Σs as the set of all permutations on s elements; forσ ∈ Σs, σ : {1,2, · · · , s} →

{1,2, · · · , s} is a one-to-one mapping.

First, we provide the definition of a distance measure D (Φ,Ψ) for vectors

Φ = [Φ1 Φ2 · · · Φs] ,

Ψ = [Ψ1 Ψ2 · · · Ψs] ,

where Φu ∈ R
r−1 and Ψu ∈ R

r−1. Define

D (Φ,Ψ) = min
σ∈Σs

{
max

{
| |Φ1 −Ψσ(1) | |∞, | |Φ2 −Ψσ(2) | |∞, · · · , | |Φs −Ψσ(s) | |∞

}}
,

where for all u ∈ {1,2, · · · , s},

| |Φu −Ψσ(u) | |∞ = max
{
|Φu(i) − Ψσ(u)(i)| : i = 1,2, · · · ,r − 1

}
.
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Here, let P(l) be a vector which contains probability distributions of users belonging

to Group l, and P̃(l)
Π

be a vector which contains the estimate of the adversary about the

probability distribution of users belong to Group l. For example, for Group 1, we have

P(1) =
[
p1 p2 · · · ps

]
,

and

P̃(1)
Π
=

[�pΠ(1) �pΠ(2) · · · �pΠ(s)] .
Now, we claim for m = cn

2
s(r−1)+α and large enough n,

• P
(
D

(
P(1), P̃(1)

Π

)
≤ ∆n

)
→ 1,

• P
(

n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

})
→ 0 ,

where ∆n = n−
1

s(r−1)−
α
4 .

Define the hypercubes of F (n) andH (n) as

F (n) =
{
(x1,x2, · · · ,xs) ∈

(
R(r−1)

) s
: max

u
{|xu − pu |} ≤ ∆n,u = 1,2, · · · , s

}
,

H (n) =
{
(x1,x2, · · · ,xs) ∈

(
R(r−1)

) s
: max

u
{|xu − pu |} ≤ 2∆n,u = 1,2, · · · , s

}
,

Figure 4.4 shows sets F (n) andH (n) in the case r = s = 2.

First, we prove P̃(1)
Π

is in set F (n), thus, D
(
P(1), P̃(1)

Π

)
≤ ∆n. Note that for all u ∈

{1,2, · · · ,n} and all i ∈ {1,2, · · · ,r − 1}, a Chernoff bound yields

P

(����Mu(i)
m
− pu(i)

���� ≥ ∆n

)
≤ 2e−

m∆2n
3pu

= 2e
−

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

)2 (
1

3pu

)

≤ 2e−
c
3n

α
2
. (4.15)
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Figure 4.4: P(1), sets F (n) andH (n) for the case r = s = 2.

Thus, for all u ∈ Group 1 and all i ∈ {1,2, · · · ,r − 1}, (4.15) and the union bound yield

P

(
D

(
P(1), P̃(1)

Π

)
≥ ∆n

)
≤

s∑
u=1

r−1∑
i=1

P

(����Mu(i)
m
− pu(i)

���� ≥ ∆n

)
≤ 2s(r − 1)e−

c
3n

α
2
→ 0,

as n→∞. As a result, D
(
P(1), P̃(1)

Π

)
≤ ∆n with high probability.

In the next step, we prove P

(
n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

})
→ 0. Note that for all groups

other than Group 1, we have

(4∆n)
s(r−1)δ1 ≤ P

(
P(l) ∈ H (n)

)
≤ (4∆n)

s(r−1)δ2,

and as a result,

P
(
P(l) ∈ H (n)

)
≤ δ2(4∆n)

s(r−1)

= δ24s(r−1) 1

n1+α4 s(r−1)
.

Similarly, for any σ ∈ Σs,

P
(
P(l)σ ∈ H (n)

)
≤ δ2(4∆n)

s(r−1)
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= δ24s(r−1) 1

n1+α4 s(r−1)
,

and since |Σs | = s!, by a union bound,

P
©­«

n
s⋃

l=2

{ ⋃
σ∈Σs

{
P(l)σ ∈ H (n)

}}ª®¬ ≤
n
s∑

l=2

∑
σ∈Σs

P
(
P(l)σ ∈ H (n)

)
≤

n
s

s!δ24s(r−1) 1

n1+α4 s(r−1)

= (s − 1)!4s(r−1)δ2n−
α
4 s(r−1) → 0,

as n→∞. Thus, all P(l)’s are outside ofH (n) with high probability.

Now, given the fact that all P(l)’s are outside ofH (n), we prove P

(
n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

})
→

0. We show that P̃(l)
Π

’s are close to P(l)’s, and as a result, they will be outside of F (n). For

all u ∈ Group l and all i ∈ {1,2, · · · ,r − 1}, (4.15) and the union bound yield,

P

(
D

(
P(1), P̃(l)

Π

)
≤ ∆n

)
= P

(
D

(
P(l), P̃(l)

Π

)
≥ ∆n

)
≤

s∑
u=1

r−1∑
i=1

P

(����Mu(i)
m
− pu(i)

���� ≥ ∆n

)
≤ 2s(r − 1)e−

c
3n

α
2
.

Now by using a union bound, again, we have

P
©­«

n
s⋃

l=2

{
D

(
P(l), P̃(l)

Π

)
≥ ∆n

}ª®¬ ≤
n
s∑

l=2

P

(
D

(
P(l), P̃(l)

Π

)
≥ ∆n

)
≤

n
s

2s(r − 1)e−
c
3n

α
2

= 2n(r − 1)e−
c
3n

α
2
→ 0,
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as n→∞. Thus, for all l ∈ {2,3, · · · , n
s }, P̃(l)

Π
’s are close to P(l)’s, thus, they will be outside

of F (n) with high probability. Now, we can conclude as n→∞,

P
©­«

n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

}ª®¬→ 0.

This means that with high probability all P̃(l)
Π

’s are outside of F (n), so the adversary can

successfully identify Group 1.

Third step: Identifying user 1 among all of the members of Group 1: In this step, we

prove that, after identifying Group 1, the adversary can correctly identify each member.

This step can be done using a similar approach to the one above. We define two sets B(n)

and C(n) around p1. We will show that with high probability, the true estimated value of p1

(shown as p̃1) is inside of B(n). Also, all pu’s of other members of Group 1 are outside of

C(n), and since their estimated values are close to pu’s, the estimated values will be outside

of B(n). Therefore, the adversary can successfully invert the permutation Π within Group

1 and identify all of the members. Below are the details.

From (4.13) and (4.14), for all u ∈ {1,2, · · · , s} and all i ∈ {1,2, · · · ,r − 1}, we have

�pu(i) =
|{k : Yu(k) = i}|

m
,

and as a result,

�pΠ(u)(i) = |{k : Xu(k) = i}|
m

=
Mu(i)

m
,

where Mu(i) = |{k : Xu(k) = i}|. Let us define sets B(n) and C(n) as

B(n) =

{
(x1, x2, · · · , xr−1) ∈ RP : |xi − p1(i)| ≤ ∆n, i = 1,2, · · · ,r − 1

}
,
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Figure 4.5: p1, sets B(n) and C(n) in RP for case r = 3.

C(n) =

{
(x1, x2, · · · , xr−1) ∈ RP : |xi − p1(i)| ≤ 2∆n, i = 1,2, · · · ,r − 1

}
,

where ∆n = n−
1

s(r−1)−
α
4 . Figure 4.5 shows p1, sets B(n) and C(n) in range of RP for case

r = 3. Now, we claim for m = cn
2

s(r−1)+α,

1. P
(�pΠ(1) ∈ B(n)) → 1,

2. P
(

s⋃
u=2

{�pΠ(u) ∈ B(n)}) → 0,

as n→∞. Thus, the adversary can identify Π(1) by examining p̃u’s and choosing the only

one that belongs to B(n).

First, we want to show that as n goes to infinity,

P
(�pΠ(1) ∈ B(n)) → 1.

For all i ∈ {1,2, · · · ,r − 1}, By using (4.15) and the union bound, we have

P
(�pΠ(1) < B(n)) ≤ r−1∑

i=1

P

(����M1(i)
m
− p1(i)

���� ≥ ∆n

)
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≤ (r − 1)
(
2e−

c
3n

α
2
)
,

thus,

P
(�pΠ(1) ∈ B(n)) ≥ 1 − 2(r − 1)e−

c
3n

α
2
→ 1,

as n→∞.

Now, we need to show that as n goes to infinity,

P

(
s⋃

u=2

{�pΠ(u) ∈ B(n)}) → 0.

First, we show as n goes to infinity,

P

(
s⋃

u=2

{
pu ∈ C

(n)
})
→ 0.

Note

4 (∆n)
r−1 δ1 < P

(
pu ∈ C

(n)
)
< 4 (∆n)

r−1 δ2,

and according to the union bound, for large enough n, we have

P

(
s⋃

u=2

{
pu ∈ C

(n)
})
≤

s∑
u=2

P
(
pu ∈ C

(n)
)

≤ 4s (∆n)
r−1 δ2

≤ 4s
1

n
1
s +

α(r−1)
4

δ2 → 0;

thus, all pu’s are outside of C(n) with high probability.
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Now, we claim that given all pu’s are outside of C(n), P
(�pΠ(u) ∈ B(n)) is small. Note,

for all i ∈ {1,2, · · · ,r − 1}, by using (4.15) and the union bounds, we have

P
(�pΠ(u) ∈ B(n)) ≤ P (���pΠ(u) − pu

�� ≥ ∆n

)
≤

r−1∑
i=1

P

(����Mu(i)
m
− pu(i)

���� ≥ ∆n

)
≤ 2(r − 1)e−

c
3n

α
2
.

As a result, by using another union bound, as n becomes large,

P

(
s⋃

u=2

{���pΠ(u) − pu

�� ≥ ∆n
})
≤ s

(
2(r − 1)e−

c
3n

α
2
)
→ 0.

Thus, for all u ∈ {2,3, · · · , s}, �pΠ(u)’s are close to pu’s, thus they will be outside of B(n).

Now, we can conclude as n→∞ that:

P

(
s⋃

u=2

{�pΠ(u) ∈ B(n)}) → 0.

Thus, we have proved that if m = cn
2

s(r−1)+α, there exists an algorithm for the adversary

to successfully recover user 1. Remember, the adversary identifies the members of Group

1 independent of the structure of the subgraph. �

4.3.2 r-State Markov Chain Model

In Sections 4.3.1, we assumed each user’s data patterns was i.i.d.; however, in this

section, users’ data patterns are modeled using Markov chains in which each user’s data

points are dependent over time. In this model, we again assume there are r possibilities for

each users’ data point, i.e., Xu(k) ∈ {0,1, · · · ,r − 1}. More specifically, each user’s data

set is modeled by a Markov chain with r states. It is assumed that the Markov chains of all
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users have the same structure but have different transition probabilities. Let E be the set of

edges in the assumed transition graph, so, (i, j) ∈ E if there exists an edge from state i to

state j, meaning that pu(i, j) = P (Xu(k + 1) = j |Xu(k) = i) > 0. The transition matrix is a

square matrix used to describe the transitions of a Markov chain; thus, different users can

have different transition probability matrices. Note for each state i, we have
r−1∑
j=1

pu(i, j) = 1,

so, the adversary can focus on a subset of size d = |E | − r of the transition probabilities for

recovering the entire transition matrix. Let pu be the vector that contains these transition

probabilities for user u. We write

pu =



pu(1)

pu(2)

...

pu(|E | − r)



, p =
[
p1 p2 · · · pn

]
.

We also consider all pu(i)’s are drawn independently from some continuous density

function, fP(pu), on the (0,1)|E |−r hypercube. Define the range of distribution as

RP =
{
(x1, x2, · · · , x|E |−r) ∈ (0,1)

|E |−r : xi > 0, x1 + x2 + · · · + x|E |−r < 1
}
,

and as before, we assume there are δ1, δ2 > 0, such that


δ1 ≤ fP(pu) ≤ δ2, pu ∈ Rp.

fP(pu) = 0, pu < Rp.

Now, we can repeat the similar steps as the previous sections to prove the following theo-

rem.
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Theorem 8. For an irreducible, aperiodic Markov chain model, if Y is the anonymized

version of X as defined above, the size of the group including user 1 is s, and

• m = Ω
(
n

2
s( |E |−r)+α

)
, for any α > 0;

then, user 1 has no privacy at time k.

Proof. The basic ideas behind the proof of Theorem 8 are similar to the ones for Theo-

rems 7; thus, in this part we just focus on the differences and key ideas.

Define the random variable Mu(i) as the total number of visits by user u to state i, for

all u ∈ {1,2, · · · ,n} and i ∈ {0,1, · · · ,r − 1}. Since the Markov chain is irreducible and

aperiodic, and m → ∞, all Mi(u)
m converge to their stationary values [59]. Given Mu(i) =

mu(i), the transitions from state i to state j for user u has a multinomial distribution with

probabilities pu(i, j). Now, considering the fact that the vector pu uniquely determines the

user u, the adversary can invert the anonymization permutation function in a similar way to

the i.i.d. case by focusing on pu’s. Let

Φ = [Φ1 Φ2 · · · Φs] ,

Ψ = [Ψ1 Ψ2 · · · Ψs] ,

where Φu ∈ R
|E |−r and Ψu ∈ R

|E |−r . Define

D (Φ,Ψ) = min
σ∈Σs

{
max

{
| |Φ1 −Ψσ(1) | |∞, | |Φ2 −Ψσ(2) | |∞, · · · , | |Φs −Ψσ(s) | |∞

}}
,

where for u ∈ {1,2, · · · , s},

| |Φu −Ψσ(u) | |∞ = max
{
|Φu(i) − Ψσ(u)(i)| : i = 1,2, · · · , |E | − r

}
.

and we claim for m = cn
2

s( |E |−r)+α and large enough n,
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• P
(
D

(
P(1), P̃(1)

Π

)
≤ ∆′n

)
→ 1,

• P
(

n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆′n

})
→ 0 ,

where ∆′n = n−
1

s( |E |−r)−
α
4 . This can be shown similar to the proof of Theorem 7. First, define

F ′(n) andH ′(n) as

F ′(n) =
{
(x1,x2, · · · ,xs) ∈

(
R(|E |−r)

) s
: max

u
{|xu − pu |} ≤ ∆

′
n,u = 1,2, · · · , s

}
;

H ′(n) =
{
(x1,x2, · · · ,xs) ∈

(
R(|E |−r)

) s
: max

u
{|xu − pu |} ≤ 2∆′n,u = 1,2, · · · , s

}
;

then, prove that the adversary can identify Group 1 successfully.

In the next step, the adversary has to identify each member of Group 1 correctly. Define

sets B′(n) and C′(n) as

B′(n) =

{
(x1, x2, · · · , xd) ∈ RP : |xi − p1(i)| ≤ ∆′n, i = 1,2, · · · , d

}
,

C′(n) =

{
(x1, x2, · · · , xd) ∈ RP : |xi − p1(i)| ≤ 2∆′n, i = 1,2, · · · , d

}
,

where ∆′n = n−
1

s( |E |−r)−
α
4 . Now, we claim for m = cn

2
s( |E |−r)+α,

1. P
(�pΠ(1) ∈ B′(n)) → 1,

2. P
(

s⋃
u=2

{�pΠ(u) ∈ B′(n)}) → 0,

as n → ∞. This can be shown similar to the proof of Theorem 7, so the adversary can

successfully recover data traces of user 1. �
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Discussion 5: Note that the i.i.d. case can also be written as a Markov chain with a transi-

tion matrix with identical rows; then, |E | = r2. However, for the i.i.d. case, if the adversary

knows r − 1 elements of a row, they know that row and all of the others. In other words,

if we restrict the users’ data models to i.i.d., then we are using a different model where

pu(i)’s are restricted in a way to create an i.i.d. sequence. This is a different model and is

not compatible to our model for the Markov chain where pu(i)’s are drawn independently

from some continuous density function, fP(pu), on the (0,1)|E |−r hypercube. Thus, the

results of Theorem 2 cannot be applied to the i.i.d. case.

4.4 Impact of Dependency on Privacy using Anonymization and Ob-

fuscation

Here, we consider the case when both anonymization and obfuscation techniques are

employed, as shown in Figure 4.1. We assume similar obfuscation to Chapter 2. To obfus-

cate the users’ data points, for each user u, we independently generate a random variable Ru

that is uniformly distributed between 0 and an, where an ∈ (0,1]. The value of Ru shows the

probability that the user’s data point is changed to a different value by obfuscation, and an

is termed the “noise level’ of the system. Let Zu be the vector that contains the obfuscated

version of user u’s data points, and Z be the collection of Zu for all users,

Zu =



Zu(1)

Zu(2)

...

Zu(m)



, Z = [Z1 Z2 · · · Zn] .

Thus, the adversary’s observation Y is the anonymized version of Z;
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Y = Perm (Z1,Z2, · · · ,Zn;Π)

=
[
ZΠ−1(1) XΠ−1(2) · · · ZΠ−1(n)

]
= [Y1 Y2 · · · Yn] .

4.4.1 r-State i.i.d. Model

Now, assume users’ data points can have r possibilities (0,1, · · · ,r − 1). Similar to

Section 4.3.1, we assume pu’s are drawn independently from some continuous density

function, fP(pu), which has support on a subset of the (0,1)r−1 hypercube, and pu, fP(pu),

and RP are defined as in Section 4.3.1.

To create a noisy version of data samples, for each user u, we independently generate

a random variable Ru that is uniformly distributed between 0 and an, where an ∈ (0,1]
2.

Then, the obfuscated data is obtained by passing the users’ data through an r-ary symmetric

channel with a random error probability Ru, so for j ∈ {0,1, · · · ,r − 1}:

P(Zu(k) = j |Xu(k) = i) =


1 − Ru, for j = i.

Ru

r−1, for j , i.

The effect of the obfuscation is to alter the probability distribution function of each

user’s data points in a way that is unknown to the adversary, since it is independent of all

past activity of the user, and hence, the obfuscation inhibits user identification. For each

user, Ru is generated once and is kept constant for the collection of data points of length m,

thus providing a very low-weight obfuscation algorithm.

2It is desirable that our results are true over the largest set of strategies that users can employ. In fact,
our results would apply to a general set of distributions and are true for any random noise with support that
extends out to the maximum amount of an. The reason that we have used a uniformly random noise is that
we want to have a similar mechanism as Chapter 2 to have a good comparison between the results of this
chapter and Chapter 2 to show that dependency is a significant detriment to the privacy of users.
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Now, define

Qu(i) = P (Zu(k) = i) ,

where

Qu(i) = Pu(i)(1 − Ru) + (1 − Pu(i))Ru

= Pu(i) + (1 − 2Pu(i))Ru. (4.16)

The vectors Qu and Q which contain the obfuscated probabilities are defined as below:

Qu =



Qu(1)

Qu(2)

...

Qu(r − 1)



, Q = [Q1 Q2 · · · Qn] ,

and the vector containing the permutation of those probabilities after anonymization is W.

Thus,

W = Perm (Q1,Q2, · · · ,Qn;Π)

=
[
QΠ−1(1) QΠ−1(2) · · · QΠ−1(n)

]
= [W1 W2 · · · Wn] .

Theorem 9. For the above r-state model, if Z is the obfuscated version of X, and Y is the

anonymized version of Z as defined above, the size of the group including user 1 is s, and
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• m = Ω
(
cn

2
s(r−1)+α

)
for any α > 0;

• Ru ∼ Uniform[0,an], where an = O
(
n−

1
s(r−1)−β

)
for any β > α

4 ;

then, user 1 has no privacy at time k.

Discussion 6: It is insightful to compare this result to Theorem 2 of 2. We can see that

when users’ traces are dependent, the required level of obfuscation and anonymization to

achieve privacy is significantly higher. Therefore, we see that dependency can significantly

reduce the privacy of users. However, note that the asymptotic noise level is still zero in

this case. Specifically, if Am(u) =
|{k:Zu(k),Xu(k)}|

m , then

E[Am(u)] = E[Am] = O
(
n−

1
s(r−1)−β

)
→ 0,

implying that the asymptotic noise level is zero.

Proof of Theorem 9:

Proof. The proof of Theorem 9 is similar to the proof of Theorem 7 and consists of three

parts:

• First step: Showing the adversary can reconstruct the association graph of the ob-

fuscated and anonymized version of data with an arbitrarily small error probability.

• Second step: Showing the adversary can uniquely identify Group 1 with an arbitrar-

ily small error probability.

• Third step: Showing the adversary can successfully identify all of the members of

Group 1 with an arbitrarily small error probability.

First step: Reconstruction of the association graph: In Lemma 7, we show that for the

case of anonymization, the adversary can reconstruct the entire association graph of the
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anonymized data with an arbitrarily small error probability if the number of the adversary’s

observations per user (m) is bigger than (log n)3. Since obfuscation is done independently

(from other users’ obfuscation and from users’ data), it does not change the association

graph. Therefore, since n
2

s(r−1) > (log n)3, we can use Lemma 7 to show the adversary can

reconstruct the association graph of the obfuscated and anonymized data with an arbitrarily

small error probability.

Second step: Identifying Group 1 among all of the groups: Now, assume the size of

Group 1 is s. Without loss of generality, suppose the members of Group 1 are users

{1,2, · · · , s}, so there are at most n
s groups of size s. We call these Groups 1,2, · · · , n

s .

The adversary needs to first identify the Group 1 among all of these groups.

According to Section 4.3.1, Σs is defined as the set of all permutation on s elements,

and P(l) is a vector which contains probability distributions of users belong to Group l, and

P̃(l)
Π

is a vector which contains the estimate of adversary about the probability distribution

of users belong to Group l. For example, For Group 1, we have

P(1) =
[
p1 p2 · · · ps

]
,

and

P̃(1)
Π
=

[�pΠ(1) �pΠ(2) · · · �pΠ(s)] .
We claim for m = cn

2
s(r−1)+α, an = c′n−

(
1

s(r−1)+β
)
, and large enough n,

• P
(
D

(
P(1), P̃(1)

Π

)
≤ ∆n

)
→ 1,

• P
(

n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

})
→ 0 ,

where ∆n = n−
1

s(r−1)−
α
4 . As in Section 4.3.1,

F (n) =
{
(x1,x2, · · · ,xs) ∈

(
R(r−1)

) s
: max

u
{|xu − pu |} ≤ ∆n,u = 1,2, · · · , s

}
,

105



H (n) =
{
(x1,x2, · · · ,xs) ∈

(
R(r−1)

) s
: max

u
{|xu − pu |} ≤ 2∆n,u = 1,2, · · · , s

}
.

First, we prove, as n→∞,

P

(
D

(
P(1), P̃(1)

Π

)
≤ ∆n

)
→ 1.

Note that for all u ∈ {1,2, · · · ,n} and all i ∈ {1,2, · · · ,r − 1}, the adversary computes �pu(i)

as follow:

�pu(i) =
|{k : Yu(k) = i}|

m
, (4.17)

and as a result,

�pΠ(u)(i) = |{k : Zu(k) = i}|
m

=
(

M u(i)
m

, (4.18)

where

(

M u(i) = |{k : Zu(k) = i}|. Now, for all u ∈ {1,2, · · · ,n} and all i ∈ {0,1, · · · ,r − 1},

we have

P

(���� (

M u(i)
m
− pu(i)

���� ≤ ∆n

)
= P

(
pu(i) − ∆n ≤

(

M u(i)
m
≤ pu(i) + ∆n

)
= P

(
pu(i) − ∆n − qu(i) ≤

(

M u(i)
m
− qu(i) ≤ pu(i) + ∆n − qu(i)

)
.

Note that for all u ∈ {1,2, · · · ,n} and all i ∈ {0,1, · · · ,r − 1}, we have

|pu(i) − qu(i)| = |1 − 2pu(i)|Ru

≤ Ru ≤ an,
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so, we can conclude for all u ∈ {1,2, · · · ,n} and all i ∈ {0,1, · · · ,r − 1},

P

(���� (

M u(i)
m
− pu(i)

���� ≤ ∆n

)
= P

(
pu(i) − ∆n − qu(i) ≤

(

M u(i)
m
− qu(i) ≤ pu(i) + ∆n − qu(i)

)
≥ P

(
−∆n + an ≤

(

M u(i)
m
− qu(i) ≤ −an + ∆n

)
= P

(����� (

M u(i)
m
− qu(i)

����� ≤ m(∆n − an)

)
. (4.19)

By employing a Chernoff bound, we have

P

(����� (

M u(i)
m
− qu(i)

����� ≤ m(∆n − an)

)
≥ 1 − 2e−

(∆n−an)
2

3qu (i)

≥ 1 − 2e
−

(
1

3qu (i)

) (
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2

≥ 1 − 2e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
(4.20)

Now from (4.19) and (4.20), we can conclude for all u ∈ {1,2, · · · ,n} and all i ∈ {0,1, · · · ,r−

1},

P

(���� (

M u(i)
m
− pu(i)

���� ≤ ∆n

)
≥ 1 − 2e

− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
,

and

P

(���� (

M u(i)
m
− pu(i)

���� ≥ ∆n

)
≤ 2e

− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
. (4.21)

Now, for all u ∈ Group 1, all i ∈ {1,2, · · · ,r − 1} and any β > α
4 , (4.21) and the union

bound yield

P

(
D

(
P(1), P̃(1)

Π

)
≥ ∆n

)
≤

s∑
u=1

r−1∑
i=1

P

(���� (

M u(i)
m
− pu(i)

���� ≥ ∆n

)
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≤ 2s(r − 1)e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
→ 0,

as n→∞. As a result,

P

(
D

(
P(1), P̃(1)

Π

)
≤ ∆n

)
→ 1,

as n→∞.

In the next step, we prove P

(
n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

})
→ 0. For all groups other than

Group 1, we have

(4∆n)
s(r−1)δ1 ≤ P

(
P(l) ∈ H ′(n)

)
≤ (4∆n)

s(r−1)δ2,

and as a result,

P
(
P(l) ∈ H (n)

)
≤ δ2(4∆n)

s(r−1)

= δ24s(r−1) 1

n1+α4 s(r−1)
.

Similarly, for any σ ∈ Σs,

P
(
P(l)σ ∈ H ′(n)

)
≤ δ2(4∆n)

s(r−1)

= δ24s(r−1) 1

n1+α4 s(r−1)
,

and since |Σs | = s!, by a union bound,

P
©­«

n
s⋃

l=2

{ ⋃
σ∈Σs

{
P(l)σ ∈ H (n)

}}ª®¬ ≤
n
s∑

l=2

∑
σ∈Σs

P
(
P(l)σ ∈ H (n)

)
≤

n
s

s!δ24s(r−1) 1

n1+α4 s(r−1)

= (s − 1)!4s(r−1)δ2n−
α
4 s(r−1) → 0,
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as n→∞. Thus, all P(l)’s are outside ofH (n) with high probability.

Now, we claim that given all P(l)’s are outside of H (n), P

(
n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

})
is

arbitrarily small. In other words, by using a Chernoff bound, it is shown P̃(l)’s are close to

P(l)’s, and they will be outside of F (n). Thus, for all u ∈ Group l and all i ∈ {1,2, · · · ,r−1},

(4.21) and the union bound yield

P

(
D

(
P(1), P̃(l)

Π

)
≤ ∆n

)
= P

(
D

(
P(l), P̃(l)

Π

)
≥ ∆n

)
≤

s∑
u=1

r−1∑
i=1

P

(���� (

M u(i)
m
− pu(i))

���� ≤ ∆n

)

≤ 2s(r − 1)e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
.

Now, by using a union bound again, we can conclude, for any β > α
4 ,

P
©­«

n
s⋃

l=2

{
D

(
P(l), P̃(l)

Π

)
≤ ∆n

}ª®¬ ≤
n
s∑

l=2

P

(
D

(
P(l), P̃(l)

Π

)
≤ ∆n

)

≤ 2n(r − 1)e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
→ 0,

as n→∞. Thus, we have shown that for all l ∈ {1,2, · · · , n
s }, P̃(l)’s are close to P(l), which

are outside of set F (n). As a result, as n→∞,

P
©­«

n
s⋃

l=2

{
D

(
P(1), P̃(l)

Π

)
≤ ∆n

}ª®¬→ 0.

Third step: Identifying user 1 among all of the members of Group 1: In this step,

we need to prove that after identifying Group 1, the adversary can correctly identify each

member. In other words, the adversary should identify the permutation of Group 1.
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From (4.17) and (4.18), for all u ∈ {1,2, · · · , s} and all i ∈ {1,2, · · · ,r − 1}, we have

�pu(i) =
|{k : Yu(k) = i}|

m
,

and as a result,

�pΠ(u)(i) = |{k : Zu(k) = i}|
m

=

(

M u(i)
m

,

where

(

M u(i) = |{k : Zu(k) = i}|.

As in Section 4.3.1, we define sets B(n) and C(n) as

B(n) =

{
(x1, x2, · · · , xr−1) ∈ RP : |xi − p1(i)| ≤ ∆′n, i = 1,2, · · · ,r − 1

}
,

C(n) =

{
(x1, x2, · · · , xr−1) ∈ RP : |xi − p1(i)| ≤ 2∆′n, i = 1,2, · · · ,r − 1

}
,

where ∆n = n−
1

s(r−1)−
α
4 . We claim that for m = cn

2
s(r−1)+α and an = c′n−

(
1

s(r−1)+β
)
,

1. P
(�pΠ(1) ∈ B(n)) → 1,

2. P
(

s⋃
u=2

{�pΠ(u) ∈ B(n)}) → 0,

as n→∞. Thus, the adversary can identify Π(1) by examining p̃u’s and choosing the only

one that belongs to B(n).

First, we show that as n goes to infinity,

P
(�pΠ(1) ∈ B(n)) → 1.
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According to (4.21) and the union bound, for all u ∈ Group 1 and all i ∈ {1,2, · · · ,r − 1},

we have

P
(�pΠ(1) < B(n)) ≤ r−1∑

i=1

P

(����� (

M 1(i)
m
− p1(i)

����� ≥ ∆n

)

≤ (r − 1)
©­­«2e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2ª®®¬ ,
thus,

P
(�pΠ(1) ∈ B(n)) ≤ 1 − (r − 1)

©­­«2e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2ª®®¬→ 1,

as n→∞.

Now, we need to show that as n goes to infinity,

P

(
s⋃

u=2

{�pΠ(u) ∈ B(n)}) → 0.

First, we show as n goes to infinity,

P

(
s⋃

u=2

{
pu ∈ C

′(n)
})
→ 0.

Note for all u ∈ {2,3, · · · , s},

4 (∆n)
r−1 δ1 < P

(
pu ∈ C

′(n)
)
< 4 (∆n)

r−1 δ2,

and according to the union bound,

P

(
s⋃

u=2

{
pu ∈ C

(n)
})
≤

s∑
u=2

P
(
pu ∈ C

(n)
)
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≤ 4s (∆n)
r−1 δ2

≤ 4s
1

n
1
s +

α(r−1)
4

δ2 → 0;

as n→∞. Thus, all pu’s are outside of C(n) with high probability.

Now, we claim that given all pu’s are outside of C(n), P
(�pΠ(u) ∈ B(n)) is arbitrarily

small. Note that for all u ∈ {2,3, · · · , s} and all i ∈ {1,2, · · · ,r − 1}, (4.21) and the union

bounds yield

P
(�pΠ(u) ∈ B(n)) ≤ P (���pΠ(u) − pu

�� ≥ ∆n

)
≤

r−1∑
i=1

P
(����pΠ(u)(i) − pu(i)

��� ≥ ∆n

)
≤ 2(r − 1)e

− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2
.

As a result, by using a union bound again, as n becomes large,

P

(
s⋃

u=2

{���pΠ(u) − pu

�� ≥ ∆n
})
≤ s

©­­«2(r − 1)e
− 1
3

(
cn

2
s(r−1)

+α
) (

1

n

1
s(r−1)

+α4

− c′

n

1
s(r−1)

+β

)2ª®®¬→ 0.

Thus, for all u ∈ {2,3, · · · , s}, �pΠ(u)’s are close to pu’s, thus they will be outside of B(n).

Now, we can conclude as n→∞ that:

P

(
s⋃

u=2

{�pΠ(u) ∈ B(n)}) → 0.

So the adversary can successfully recover Z1(k). Since Z1(k) = X1(k) with probability

1 − Ru = 1 − o(1), the adversary can recover X1(k) with vanishing error probability. �
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4.4.2 r-State Markov Chain Model

In this section, users’ data patterns are modeled using Markov chains and there are r

possibilities for users’ data patterns. Similar to Section 4.3.2, we assume pu(i)’s are drawn

independently from some continuous density function, fP(pu), on the (0,1)|E |−r hypercube,

and pu, fP(pu), and RP are defined in Section 4.3.2.

By using the general idea stated in Section 4.3.2, we can now repeat the similar reason-

ing as Theorem 9 to show the following theorem.

Theorem 10. For an irreducible, aperiodic Markov chain model, iff Z is the obfuscated

version of X, and Y is the anonymized version of Z as defined above, the size of the group

including user 1 is s, and

• m = Ω
(
n

2
s( |E |−r)+α

)
for any α > 0;

• Ru ∼ Uniform[0,an], where an = O
(
n−

1
s( |E |−r)−β

)
for any β > α

4 ;

then, user 1 has no privacy at time k.

4.5 More General Setting for the Association Graph

The association graph structure that we have studied so far was somewhat general ex-

cept for one aspect: We assumed that people in a group can have dependency but they are

independent from members of other groups. It is natural to assume that there could be

dependency between members of each group and outside members. Here we discuss how

to apply the developed results to this more general setting.

Similar to [23, 32, 35, 37, 38, 53, 75, 77, 100, 125], we consider a community structure

with strong intra-community connections and weak inter-community connection. In the

community structure the nodes of the network can be grouped into sets of users such that

each set of users is densely connected internally as shown in Figure 4.6a. Here, we also

assume that the adversary has some knowledge about all of the covariances between users
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(a) A sketch of a small network displaying community
structure.

(b) The association graph consists of disjoint subgraphs.

Figure 4.6: The adversary uses their prior knowledge to break inter-community edges.

in addition to the marginal probability distributions: they know whether the value of each

covariance is less than or higher than a specific threshold. We show that the adversary can

reliably reconstruct the entire association graph for the anonymized version of the data (i.e.,

the observed data traces) with relatively few observations.

Let G(V,F) denote the association graph with set of nodes V, (|V| = n), and set of

edges F. In this case, we use an association graph based on a threshold as follows: we

assume two vertices (users) are connected if their data sets are strongly correlated, and are

not connected if their data sets are weakly correlated. More specifically,

• (u,u′) < F iff Cov (Xu(k); Xu′(k)) ≤ ε1,

• (u,u′) ∈ F iff Cov (Xu(k); Xu′(k)) ≥ ε2,

where Cov (Xu(k); Xu′(k)) is the covariance between the k th data point of user u and user

u′.

Lemma 8. Consider a general association graph, G(V,F), based on the threshold as de-

scribed above. If the adversary obtains m = (log n)3 anonymized observations per user,

they can construct G̃ = G̃(Ṽ, F̃), where Ṽ = {Π(u) : u ∈ V} = V, such that with high

probability, for all u,u′ ∈ V; (u,u′) ∈ F iff (Π(u),Π(u′)) ∈ F̃. We write this statement as

P(G̃ ' G) → 1.
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Proof. Note for u,u′ ∈ {1,2, · · · ,n}, we write v = Π(u) and v′ = Π(u′). We provide an

algorithm for the adversary that with high probability obtains all edges of F correctly. For

each pair w and w′, the adversary computes �Covvv′ as follows:

�Covvv′ =

r−1∑
i=1

r−1∑
j=1

i j M̂vv′(i, j)

m
−

r−1∑
i=1

iM̂v(i)

m

r−1∑
i=1

iM̂v′(i)

m
(4.22)

where

M̂vv′(i, j) = |{k : Yv(k) = i,Yv′(k) = j}|.

M̂v(i) = |{k : Yv(k) = i}|.

M̂v′( j) = |{k : Yv′(k) = j}|.

After observing m = (log n)3 data points per user and computing the above expressions, the

adversary constructs G̃ in the following way:

• If |�Covvv′ | ≤ ε1, then (v, v′) < F̃ .

• If |�Covvv′ | ≥ ε2, then (v, v′) ∈ F̃ .

We show the above method yields P(G̃ ' G) → 1 as n→∞, as follows. Note

M̂vv′(i, j) ∼ Binomial(m,wvv′(i, j)),

M̂v(i) ∼ Binomial(m,wv(i)),

Mv′(i) ∼ Binomial(m,wv′(i)),

where wvv′(i, j) = P (Yv(k) = i,Yv′(k) = j), wv(i) = P (Yv(k) = i), and wv′(i) = P (Yv′(k) = i).

From proof of Lemma 7, by using (4.4), for all v, v′ ∈ {1,2, · · · ,n} and all i, j ∈ {0,1, · · · ,r−

1}, we have

0 ≤ mwvv′(i, j) − m
3
4 ≤ M̂vv′(i, j) ≤ mwvv′(i, j) + m

3
4 . (4.23)
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0 ≤ mwv(i) − m
3
4 ≤ M̂v(i) ≤ mwv(i) + m

3
4 . (4.24)

0 ≤ mwv′(i) − m
3
4 ≤ M̂v′(i) ≤ mwv(i) + m

3
4 . (4.25)

Avv′(i, j) is defined as the event that (4.23), (4.24), and (4.25) are all valid, thus, based on

proof of Lemma 7, we have

P

(
n⋂

v=1

n⋂
v′=1

r−1⋂
i=0

r−1⋂
j=0

{Avv′(i, j)}

)
→ 1, (4.26)

as n → ∞. Let us define Cvv′ =
r−1⋂
i=1

r−1⋂
j=1
{Avv′(i, j)}. Now, if Cvv′ is true for some v, v′ ∈

{1,2, · · · ,n}, according to (4.22), we have

�Covvv′ =

r−1∑
i=1

r−1∑
j=1

i j M̂vv′(i, j)

m
−

r−1∑
i=1

iM̂v(i)

m

r−1∑
i=1

iM̂v′(i)

m

≤

r−1∑
i=1

r−1∑
j=1

i j
(
mwvv′(i, j) + m

3
4

)
m

−

r−1∑
i=1

i
(
mwv(i) − m

3
4

)
m

r−1∑
i=1

i
(
mwv′(i) − m

3
4

)
m

=

r−1∑
i=1

r−1∑
j=1

i jwvv′(i, j) −
r−1∑
i=1

iwv(i)
r−1∑
i=1

iwv′(i)

+
r2(r − 1)2

4
m−

1
4 +

r(r − 1)

2

r−1∑
i=1

i(wv(i) + wv′(i))m−
1
4 −

r2(r − 1)2

4
m−

1
2

≤ Covvv′ +
r2(r − 1)2

4
m−

1
4 +

r(r − 1)

2

r−1∑
i=1

i(wv(i) + wv′(i))m−
1
4 +

r2(r − 1)2

4
m−

1
2 ,

(4.27)

where Covvv′ =
r−1∑
i=1

r−1∑
j=1

i jwvv′(i, j) −
r−1∑
i=1

iwv(i)
r−1∑
i=1

iwv′(i). Similarly,

�Covvv′ =

r−1∑
i=1

r−1∑
j=1

i j M̂vv′(i, j)

m
−

r−1∑
i=1

iM̂w(i)

m

r−1∑
i=1

iM̂v′(i)

m
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≥

r−1∑
i=1

i
(
mwv(i) − m

3
4

)
m

−

r−1∑
i=1

i
(
mwv(i) + m

3
4

)
m

r−1∑
i=1

i
(
mwv′(i) + m

3
4

)
m

= Covvv′ −
r2(r − 1)2

4
m−

1
4 −

r(r − 1)

2

r−1∑
i=1

i(wv(i) + wv′(i))m−
1
4 −

r2(r − 1)2

4
m−

1
2 .

(4.28)

Now, by using (4.27) and (4.28), we have

����Covvv′ − Covvv′
��� ≤ r2(r − 1)2

4
m−

1
4 +

r(r − 1)

2

r−1∑
i=1

i(wv(i) + wv′(i))m−
1
4 +

r2(r − 1)2

4
m−

1
2 .

(4.29)

Let us define event Dvv′ as the event that (4.29) is valid, thus, we have shown, for all

v, v′ ∈ {1,2, · · · ,n}, Cvv′ ⊆ Dvv′, and consequently,{
n⋂

v=1

n⋂
v′=1

{Cvv′}

}
⊆

{
n⋂

v=1

n⋂
v′=1

{Dvv′}

}
.

As a result,

P

(
n⋂

v=1

n⋂
v′=1

{Dvv′}

)
≥ P

(
n⋂

v=1

n⋂
v′=1

{Cvv′}

)
.

Thus, by using (4.26), we have

P

(
n⋂

v=1

n⋂
v′=1

{Dvv′}

)
→ 1,

as n→∞. Hence, with high probability, for all v, v′ ∈ {1,2, · · · ,n} , we have

����Covvv′ − Covvv′
��� ≤ r2(r − 1)2

4
m−

1
4 +

r(r − 1)

2

r−1∑
i=1

i(wv(i) + wv′(i))m−
1
4 +

r2(r − 1)2

4
m−

1
2 .

(4.30)
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Thus, we can conclude, with high probability, for all v, v′ ∈ {1,2, · · · ,n}, �Covvv′’s are close

to Covvv′’s.

Now, if (u,u′) is an inter-community edge, the adversary knows Covuu′ ≤ ε1, and

as a result, Covvv′ ≤ ε1, thus, the adversary removes that edge. Now, we can conclude

(v, v′) < F̃, and in other words, (Π(u),Π(u′)) < F̃ . This is true with high probability,

simultaneously for all u,u′ ∈ {1,2, · · · ,n} where (u,u′) is an inter-community edge.

In addition, if (u,u′) is an intra-community edge, the adversary knows Covuu′ ≥ ε2,

and as a result, Covvv′ ≥ ε2. Now, we can conclude (v, v′) ∈ F̃, and in other words,

(Π(u),Π(u′)) ∈ F̃ . This is true with high probability, simultaneously for all u,u′ ∈ {1,2, · · · ,n}

where (u,u′) is an intra-community edge.

As a result, for large enough n, we have P
(
G̃ ' G

)
→ 1, so the adversary can re-

construct the association graph of the anonymized version of the data which is based on a

threshold with an arbitrarily small error probability. �

Now, the adversary has a graph structure shown in Figure 4.6b, where subgraph G1 is

a connected graph with s1 vertices which is disjoint from the reminder of the association

graph (G′ = G − G1). In other words,

G = G1 ∪ G′.

Now, we can repeat the same reasoning as that in the proof of Theorem 7, Theorem 8,

Theorem 9, and Theorem 10 to obtain the same results for this case.

Discussion 7: The stochastic block model is a generative model for random graphs [1, 2,

49, 58, 86, 90, 121]. Note that there are two key differences between the stochastic block

model and the work here. First, in the stochastic block model, the edge set is sampled

at random and the probability distributions of edges are the key part of the work, while

here the analysis is based on the users’ data traces, and the statistical knowledge of the

adversary is a key part. Second, in the stochastic block model, nodes within a community
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connect to nodes in other communities in an equivalent way. In other words, any two

vertices u ∈ Ci and v ∈ Cj are connected by an edge with probability pi j , where Ci and

Cj are different blocks, so all edges between two communities have the same weights or

strengths. While here, as shown in Figure 4.6a, there is no need that the inter-community

edges, corresponding to the covariance of nodes in separate communities, has the same

value as others; in other words, there is no need for the nodes in a community to connect

to the nodes in other communities in an equivalent way. In our work, for each of intra-

community edges, Covuu′ ≥ ε2, and for each of inter-community edges, Covuu′ ≤ ε1, thus,

edges have different weights.

4.6 Improving Privacy in the Presence of Dependency

In the previous parts of this chapter, we argued and demonstrated that inter-user depen-

dency degrades the privacy provided by standard privacy-preserving mechanisms (PPMs).

In this section, we discuss how to design PPMs considering inter-user dependency in order

to better preserve privacy. First, note that independent obfuscation alone cannot be suffi-

cient even at a high noise level, because it cannot change the association graph. Therefore,

the adversary can still reconstruct the association graph with a small number of observa-

tions if we add independent obfuscation noise. To mitigate this issue, we suggest that

associated users collaborate in applying the noise when deploying a PPM.

For clarity, we focus on the two-state i.i.d. case (r = 2). In the first part, we also focus

on the case the association graph consists of subgraphs with the size of each of them less

than or equal to 2 (sl ≤ 2). Thus, according to Figure 4.7, there are some connected users

and there are also some isolated users. First, we state the following lemma.

Lemma 9. Let Xu(k) ∼ Bernoulli(pu) and Xu′(k) ∼ Bernoulli(pu′); then, there exists an

obfuscation technique with a noise level equal to

ǎ(u,u′) =
Cov(Xu(k),Xu′(k))

max{pu, pu′,1 − pu,1 − pu′}
,
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Figure 4.7: Graph G consists of some subgraphs (Gl) with sl ≤ 2.

for the dataset of user u and user u′ such that Žu(k) and Žu′(k) are independent from each

other. Note Žu(k) and Žu′(k) are the k th (reported) data point of user u and u′, respectively,

after applying obfuscation with the noise level equal to ǎ(u,u′).

Proof. Let Xu(k) ∼ Bernoulli (pu) and Xu′(k) ∼ Bernoulli (pu′). Then, to make these

two sequences independent, it suffices if Žu(k)| Žu′(k) = 0 has the same distributions as

Žu(k)| Žu′(k) = 1. We only prove for the case max{pu, pu′,1 − pu,1 − pu′} = 1 − pu′, and

the proofs of the other cases are similar to this one. Now, If Xu(k) = 1 and Xu′(k) = 1, we

pass Xu(k) through a BSC(Υ) in order to obtain Žu(k). Thus,

P (Xu(k) = 1,Xu′(k) = 0)

1 − pu′
=
P (Xu(k) = 1,Xu′(k) = 1) (1 − Υ)

pu′
,

and Υ can be calculated as

Υ = 1 −
pu′

1 − pu′

P (Xu(k) = 1,Xu′(k) = 0)

P (Xu(k) = 1,Xu′(k) = 1)
.

Now, we can conclude,

ǎ(u,u′) = ΥP (Xu(k) = 1,Xu′(k) = 1)

=

(
1 −

pu′

1 − pu′

P (Xu(k) = 1,Xu′(k) = 0)

P (Xu(k) = 1,Xu′(k) = 1)

)
P (Xu(k) = 1,Xu′(k) = 1)

= P (Xu(k) = 1,Xu′(k) = 1) −
pu′

1 − pu′
P (Xu(k) = 1,Xu′(k) = 0)

=
P (Xu(k) = 1,Xu′(k) = 1) − pu′ (P (Xu(k) = 1,Xu′(k) = 1) + P (Xu(k) = 1,Xu′(k) = 0))

1 − pu′
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=
P (Xu(k) = 1,Xu′(k) = 1) − pupu′

1 − pu′

=
Cov(Xu(k),Xu′(k))

max{pu, pu′,1 − pu,1 − pu′}
.

Now, we want to explain the idea behind this lemma by an example.

Example 3. Let Xu(k) ∼ Bernoulli
( 3
5

)
and Xu′(k) ∼ Bernoulli

( 1
5

)
, and let Table 4.1 show

the joint probability mass function of Xu(k) and Xu′(k).

Table 4.1: Joint probability mass function of Xu(k) and Xu′(k).

Xu(k)

Xu′(k)
0 1

0 7
20

1
20

1 9
20

3
20

As a result, if we observe 2000 bits of data, Table 4.2a shows the expected results

according to Table 4.1.

Then, to make Žu(k) and Žu′(k) independent, it is sufficient for Žu(k)| Žu′(k) = 0 to

have the same distribution as Žu(k)| Žu′(k) = 1. This means we should have

P
(
Žu(k) = 1, Žu′(k) = 1

)
P

(
Žu′(k) = 1

) =
P

(
Žu(k) = 1, Žu′(k) = 0

)
P

(
Žu′(k) = 0

) ;

thus, according to Table 4.2b,

300(1 − Υ)

100 + 300
=

900

700 + 900
→ Υ =

1

4
,

where Υ is the portion of data points Xu(k) that need to be flipped in the fourth region of

Table 4.2a (i.e., the region Xu(k) = 1,Xu′(k) = 1). Now, we need to change 1
4 · 300 = 75 of
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data bits. As a result, if Xu(k) = 1 and Xu′(k) = 1, then, we pass Xu(k) through a BSC(14 ),

and obtain Žu(k). Hence, asymptotic noise level is equal to

ǎ(u,u′) =
3

20
·

1

4
= 3.75%.

Table 4.2: (a) The expected results of Xu(k) and Xu′(k) according to Table 4.1 after observ-
ing 2000 bits of data, and (b) The desired results to make Žu(k) and Žu′(k) independent
from each other.

(a)

Xu(k)

Xu′(k)
0 1

0 700 100

1 900 300

(b)

Žu(k)

Žu′(k)
0 1

0 700 175

1 900 225

It is easy to check that the asymptotic noise level will be given by the equation in

Lemma 9. Specifically, for the above example,

Cov(Xu(k),Xu′(k)) = P(Xu(k) = 1,Xu′(k) = 1)−P(Xu(k) = 1)P(Xu′(k) = 1) =
3

20
−

3

5
·
1

5
=

3

100
,

and we have

ǎ(u,u′) =
Cov(Xu(k),Xu′(k))

max{pu, pu′,1 − pu,1 − pu′}
=

3
100
4
5

= 3.75%.

�

Lemma 9 provides a method to convert correlated data to independent traces. The

remaining task is to show that we can achieve perfect privacy after applying such a method.

As shown in Figure 4.8, two stages of obfuscation and one stage of anonymization are

employed to achieve perfect privacy for users. Note that the first stage of obfuscation is
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due to Lemma 9 and the second stage (as will be explained in Theorem 11) is the same

obfuscation technique given in Theorem 1 of Chapter 2. In Figure 4.8, Žu(k) shows the

(reported) data point of user u at time k after applying the first stage of obfuscation with

the noise level equal to

ǎ(u,u′) =
Cov(Xu(k),Xu′(k))

max{pu, pu′,1 − pu,1 − pu′}

for the dataset of user u and user u′, Zu(k) shows the (reported) data point of user u at time

k after applying the second stage of obfuscation with the noise level equal to

an = c′n−(
1
s −β),

and Yu(k) shows the (reported) data point of user u at time k after applying anonymization.

Figure 4.8: The sequence Zu(k), k = 1,2, . . . ,m, is the obfuscated version of Xu(k), k =
1,2, . . . ,m, and the sequence Yu(k), k = 1,2, . . . ,m, is observed by the adversary after Xu(k),
k = 1,2, . . . ,m, is obfuscated and anonymized.

Consider G(V,F), where sl ≤ 2. We have the same model for pu as in the previous

sections: pu is chosen from some density fP(pu) such that, for δ1, δ2 > 0:


δ1 < fP(pu) < δ2, pu ∈ (0,1).

fP(pu) = 0, pu < (0,1).
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Also, if (u,u′) ∈ F, ρuu′ is chosen according to some density fP(ρuu′ |pu, pu′) with

range of
[
0,min

{√
pu(1−pu′)
pu′(1−pu)

,
√

pu′(1−pu)
pu(1−pu′)

}]
. The following theorem states that we can in-

deed achieve perfect privacy if we allow collaboration between users.

Theorem 11. For the two-state model, if Z is the obfuscated version of X, Y is the

anonymized version of Z, and the size of all subgraphs are less than or equal to 2, there

exists an anonymization/obfuscation scheme such that for all (u,u′) ∈ F, the asymptotic

noise level for users u and u′ is at most

a(u,u′) =
Cov(Xu(k),Xu′(k))

max{pu, pu′,1 − pu,1 − pu′}
,

to achieve perfect privacy for all users. The anonymization parameter m = m(n) can be

made arbitrarily large.

Proof. There are two main steps.

Step 1: De-correlate based on Lemma 9. In particular, note that for at least half of the

users, no noise is added in this step. More specifically, define

U = Set of unaffected users = {u : no noise is added to user u in this step}.

Then after step 1, we have Žu(k) ∼ Bernoulli(q̌u). As a result,

• For u ∈ U; Žu(k) = Xu(k) and q̌u = pu.

• For u ∈ {1,2, · · · ,n} − U; Žu(k) , Xu(k) and q̌u , pu.

Note |U| ≥ n
2 , because the main graph consists of some subgraphs with sl ≤ 2.

Step 2: Assume q̌u’s are known to the adversary. The setup is now very similar to

Theorem 1 in Chapter 2, where perfect privacy is proved for the i.i.d. data. But there is

a difference here. Specifically, although the users’ data Žu(k) are now independent, the

distribution of q̌u’s are not, since they are the result of the data-dependent obfuscation
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technique of Lemma 9. Luckily, this issue can be easily resolved so that we can show

perfect privacy for user 1. The main idea is to use the fact that as stated above, at least n
2 of

the users are not impacted by the de-correlation step. As we see below, these users will be

sufficient to ensure perfect privacy for user 1 (which may or may not be in the setU).

Let us explore the distributions of Q̌u = q̌u for users in the set U. For any correlated

pair of users, the method of Lemma 9 leaves the one whose pu is farthest from 1
2 intact.

Since pu’s are chosen independently from each other and each user is correlated with only

one user, it is easy to see that for users in the set U, the q̌u’s are i.i.d. with the following

probability density function

fQ̌(q̌u) = 2 fP(q̌u)

∫ max(q̌u,1−q̌u)

min(q̌u,1−q̌u)
fP(x)dx.

Therefore, the setup is the same as Theorem 1 in Chapter 2 where we want to prove perfect

privacy for user 1, and we have n
2 users who are independent from user 1 and their parameter

q̌u is chosen i.i.d. according to a density function. However, we need to check that the

density function fQ̌(q̌) satisfies the condition δ̌1 < fQ̌(q̌u) < δ̌2 for some δ̌1 and δ̌2 on a

neighborhood q̌u ∈ [pu − ε
′, pu + ε

′]. First, note that

fQ̌(q̌u) = 2 fP(q̌u)

∫ max(q̌u,1−q̌u)

min(q̌u,1−q̌u)
fP(x)dx.

< 2δ2
2 = δ̌2.

Next,

fQ̌(q̌u) = 2 fP(q̌u)

∫ max(q̌u,1−q̌u)

min(q̌u,1−q̌u)
fP(x)dx.

> 2δ2
1 |1 − 2q̌u | = δ̌1.
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Thus, as long as pu ,
1
2 , the condition is satisfied 3. Therefore, we can show perfect

privacy for user 1. Note that here, in the second step, we need to apply a second stage of

obfuscation and apply anonymization according to Theorem 1 in Chapter 2. Nevertheless,

since the noise level an → 0 for this second stage, the asymptotic noise level will stay the

same as that for step 1, i.e.

a(u,u′) = ǎ(u,u′) =
|Cov(Xu(k),Xu′(k))|

max{pu, pu′,1 − pu,1 − pu′}
.

�

Now, the above method can be extended to the case where sl > 2. Let sl = 3. From

Figure 4.9, there are two different situations in this case:

1. Case 1: As shown in Figure 4.9b, user 1 and user 2 are correlated, and user 2 and

user 3 are correlated. In the first step, we de-correlate user 2 and user 3 based on

Lemma 9. Now, we face a similar situation as that in the case sl = 2 (as shown in

Figure 4.9a), and we de-correlate them based on Lemma 9. Hence, we can make all

of the users independent from each other and then according to Theorem 11, we can

achieve perfect privacy for all of them.

2. Case 2: As shown in Figure 4.9c, all three users are correlated to each other. In the

first step, we use Lemma 9 to make user 1 and user 3 uncorrelated. Now, we have a

similar situation as case 1, so we can make all the users independent from each other

and then, according to Theorem 11, we can achieve perfect privacy for all of them.

Discussion 8: Note that obfuscating data by adding non-zero asymptotic noise may degrade

utility significantly. Therefore, in practice, it is usually not possible to de-correlate all

3The case pu = 1
2 has zero probability, and thus need not be considered. Nevertheless, the result can be

shown for pu = 1
2 , as all we require is a number of users proportional to the length of the interval in the

vicinity of pu .
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(a) sl = 2. (b) sl = 3: Case 1. (c) sl = 3: Case 2.

Figure 4.9: Three different ways which 3 users can be correlated to each other.

Table 4.3: Summary of the results for the case anonymization is employed as a PPM for
"no privacy" as a function of number of adversary’s observations per user (m). Here, s is
the size of group of users whose data traces are dependent, r is the number of possible
values for each user’s data point, |E | is the size of set of edges in the Markov chain, and
the results hold for any α > 0.

Users’ data model
Independent users [73] Dependent users

m m

Two-state i.i.d. model Ω
(
n2+α

)
Ω

(
n

2
s +α

)
r-state i.i.d. model Ω

(
n

2
r−1+α

)
Ω

(
n

2
s(r−1)+α

)
r-state Markov chain model Ω

(
n

2
|E |−r +α

)
Ω

(
n

2
s( |E |−r)+α

)

dependent users without imposing substantial utility degradation. In addition, in order to

convert correlated data to independent data, users should collaborate together and disclose

their private data to each other, which degrades privacy unless users trust each other. In

such a setting, a possible approach in applying our technique is to only add de-correlation

noise to the data of highly-dependent users (e.g., spouses and close friends), and leave data

of less-dependent users (e.g., co-workers) unchanged.
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Table 4.4: Summary of the results for the case both obfuscation and anonymization are
combined to be employed as a PPM for "no privacy" as a function of number of adversary’s
observations per user (m) and the amount of noise level (an). Here, s is the size of group
of users whose data traces are dependent, r is the number of possible values for each user’s
data point, |E | is the size of set of edges in the Markov chain, and the results hold for any
α > 0.

Users’ data model
Independent users Chapter 2 Dependent users

m an m an

Two-state i.i.d. model Ω
(
n2+α

)
O

(
n−1−β

)
Ω

(
n

2
s +α

)
O

(
n−

1
s −β

)
r-state i.i.d. model Ω

(
n

2
r−1+α

)
O

(
n−

1
r−1−β

)
Ω

(
n

2
s(r−1)+α

)
O

(
n−

1
s(r−1)−β

)
r-state Markov chain model Ω

(
n

2
|E |−r +α

)
O

(
n−

1
|E |−r −β

)
Ω

(
n

2
s( |E |−r)+α

)
O

(
n−

1
s( |E |−r)−β

)

4.7 Summary of the Results

Consider a setting with n total users. As in Chapter 2, privacy depends on two param-

eters: (1) m = m(n), the number of data points after which the pseudonyms of users are

changed in the anonymization technique, i.e., smaller m implies higher levels of anonymiza-

tion; and (2) an, which indicates the amplitude of the obfuscation noise, i.e., larger an

implies higher levels of obfuscation.

When there are a large number of users in the setting (n → ∞) and each user’s dataset

is governed by an i.i.d. process with r possible values for each data point (e.g., r possible

locations), we obtain a no-privacy region in the m(n) − an plane. Figure 4.10a shows the

no-privacy region for the case when there exists inter-user dependency, and Figure 4.10b

shows the no-privacy region when the users’ traces are independent across users. There

exists a larger no-privacy region in the presence of inter-user dependency; therefore, we

find that dependency between users weakens their privacy.
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(a) The dependent case. (b) The independent case.

Figure 4.10: Representations of the no-privacy region in the case of dependent and indepen-
dent users. Note that m(n) is the number of the adversary’s observations per user (degree
of anonymization), and an is the amount of noise level (degree of obfuscation). Here, the
size of the group of users whose data traces are dependent is equal to s.

In addition, for the case where users’ datasets are governed by an irreducible and ape-

riodic Markov chains with r states and |E | edges, we obtain similar results, again showing

that inter-user dependency degrades user privacy.

The summary of the results is also shown in Tables 4.3 and 4.4.Note that for only

anonymization case, an initial extension in Gaussian case with known covariance matrix is

also presented in [114].
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CHAPTER 5

LEVERAGING PRIOR KNOWLEDGE ASYMMETRIES IN THE
DESIGN OF IOT PRIVACY-PRESERVING MECHANISMS

5.1 Introduction

Emerging technologies such as the Internet of Things (IoT) [31] promise to revolu-

tionalize users’ lives by adapting to each user’s specific needs and habits as gleaned from

their data traces. However, this necessitates that the data of an immense number of users

are interconnected, thus posing intrinsic threats to user privacy and leaving sensitive in-

formation vulnerable [85]. There has been significant work on privacy-preserving mecha-

nisms (PPMs) [6, 10, 18, 30, 33, 39, 40, 45, 71, 74, 96, 99, 102]. These PPMs can largely be

categorized into two groups: anonymization and obfuscation. Anonymization techniques

enhance privacy by removing the information that discloses the personal identity from data

sets [18, 33, 45, 71, 74, 96, 102]. In contrast, obfuscation techniques enhance privacy by

using misleading, false, or ambiguous information [6, 10, 30, 39, 40, 99]. These two classes

of techniques have one common problem: that they degrade system’s utility to enhance

privacy [29, 99].

Recently, a new method termed “remapping”, which is similar to posterior data pro-

cessing in database systems, has emerged as an effective method to exploit asymmetries in

the privacy problem to substantially improve system utility without a corresponding loss in

privacy for a PPM that employs obfuscation [12]. In particular, remapping is employed in

scenarios where a friend (e.g. an IoT application) exists that does not have prior statisti-

cal information about user behavior, whereas the adversary in the environment has perfect

The work presented in this chapter was submitted in [113].
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statistical information about the user’s behavior. This may occur, for example, when each

intended recipient is either naive or only looking at a single datum or small set of data from

the user, whereas the adversary is sophisticated and has access to data across a large time

period from the user.

In such a case, the adversary can use their statistical advantage to obtain a better esti-

mate of the user’s data than the friend. Remapping recognizes this fact and reveals a more

accurate version of the data that the adversary would have been able to obtain anyway using

their statistical advantage, so there is no loss in privacy, but which will improve the accu-

racy for the user’s friend. Hence, by recognizing this asymmetry, utility has been improved

at no loss in privacy versus a scheme that did not do remapping; a simple example of the

mechanism is demonstrated in Section II. Not surprisingly, this approach has garnered a

growing amount of interest in the privacy community [51, 72, 79, 80, 82], hence motivating

a more fundamental analysis.

Here, we take the first information-theoretic look at this remapping technique. We in-

troduce a simple information-theoretic model to explain how the utility can be improved

without a loss in privacy. Next, we employ our model to explore important aspects of

remapping that have not been considered. As acknowledged briefly in [12], a risk of remap-

ping is that it relies critically on accurate knowledge of the adversary’s statistical model.

In particular, if the adversary does not have accurate statistical information and the user

employs remapping, we discuss that privacy is compromised in two separate ways: (i)

the adversary obtains a more accurate version of the data than they would have had without

remapping; and (ii) the adversary is able to improve their statistical knowledge of the users’

data beyond what they would have been able to do without remapping. Interestingly, we

will see that the second type of leakage is increased if the obfuscation noise is increased.

We provide the first analysis of the loss of privacy due to each of these factors.

After analyzing the loss in privacy under standard remapping [12], we next turn to

countermeasures. We introduce a random remapping algorithm, where data points are in-
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dependently remapped with some probability. For a given utility for the intended recipient,

this approach greatly complicates model improvement at the adversary versus deterministic

remapping approaches, thus it improves the privacy-utility trade-off.

The rest of this chapter is organized as follows. In Section 5.2, we present the frame-

work: system model, metrics, and definitions. We next demonstrate in Section 5.3 how the

current remapping technique proposed by [12] increases utility while satisfying the same

level of privacy if the adversary has the perfect prior. In Section 5.4, we quantify infor-

mation leakage caused by the mentioned remapping technique [12] if the adversary does

not have a perfect prior. In particular, we show that leakage about the distribution of true

data is a serious issue. Motivated by this, in Section 5.5 we propose our new method called

"Randomized Remapping" to improve the privacy for a given utility in this situation. This

method provides a trade-off between leakage of distribution of true data and the utility.

5.2 System Model, Definitions, and Metrics

We assume a system with one user who creates a length-m sequence X of data:

X = [X(1),X(2), · · · ,X(m)] ,

where X(k) denotes the user’s true data at time k which should be protected from a potential

adversary. To preserve the privacy of the user’s true data, the obfuscated data is obtained by

adding noise (W) to (X). In other words, the reported noisy version of data (Y) is obtained

as Y = X +W, where

W = [W(1),W(2), · · · ,W(m)] .

Y = [Y (1),Y (2), · · · ,Y (m)] .

As shown in Figure 5.1, there exists an “intended” friend (e.g., an IoT application)

who doesn’t have prior statistical knowledge about the user behavior and a “sophisticated”

adversary who has knowledge about the prior behavior of the user (πAdv). The adversary
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Figure 5.1: System Model: Case where additive obfuscation (without remapping) is applied
to the user’s data points. The (naive) intended friend does not have a prior distribution for
X and hence employs Y for the user’s data. A sophisticated adversary, who possesses a
prior distribution for X, can use this prior to obtain a better estimate of the user’s data.

observes the noisy reported data Y and uses it to find the estimate X̃Adv, which denotes the

estimate of the adversary given her observed data (Y) and her knowledge of the prior about

the user (πAdv) as X̃Adv = E [X|Y, πAdv]. As a result, there exist asymmetries in knowl-

edge and/or sophistication between the intended friend and the adversary. The remapping

technique, which is introduced by Chatzikokolakis et al. [12], exploits these asymmetries

to publish a more accurate version of data that the sophisticated adversary would have been

able to obtain anyway. As shown in Figure 5.2, each reported data is remapped into the

best possible data point according to the perfect prior information of the adversary.

Figure 5.2: Remapping: X is the user’s true data, W is the amount of noise added through
the obfuscation process, Y is the noisy reported data after applying obfuscation, and YR
is the remapped data which is the best possible estimate of the adversary according to her
perfect prior knowledge about the user.

Data Sample Model: We adopt a Gaussian model that facilitates analysis. User traces

are assumed to be independent and identically distributed (i.i.d.) Gaussian series, and each

data point is drawn from a normal distribution with mean µ variance σ2
s , X(k) ∼ N

(
µ,σ2

s
)
.
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We also assume there exists some underlying prior for the distribution of the mean (µ); we

also take this to be Gaussian, and hence assume µ ∼ N
(
0, σ2

µ

)
.

Obfuscation Mechanism: The obfuscated data is obtained by passing the data through an

additive white Gaussian noise (AWGN) channel. Hence, Y, the reported data of the user, is

the sum of the true data, X, and the noise, W, where all W(k) are i.i.d. with respect to time

and are drawn from a zero-mean normal distribution with variance equal to σ2
w. Thus, we

have

Y = X +W ∼ N
(
µ,σ2

s + σ
2
w

)
.

Sophisticated Adversary Model: Here, the adversary logs the user’s data over time to

generate a prior about the behavior of the user and performs an inference attack to estimate

the best possible data given this generated prior. Note that the remapping literature [12]

has considered a perfect prior for the adversary. In reality, the adversary, however strong,

cannot have exact knowledge of the user’s whereabouts, so she cannot build the perfect

prior. In this paper, different adversarial settings have been considered: in Section 5.3,

we assume an adversary with perfect prior, and in Section 5.4, we assume an adversary

with imperfect prior. It is critical to note that the adversary knows the mechanism of the

obfuscation, but she does not know the exact value of the noise which will be added during

obfuscation and does not have any other auxiliary information or side information about

user’s data.

Remapping Mechanism: In the absence of remapping, and given the perfect prior for the

adversary, the adversary can estimate X, using the reported noisy version of the data (Y)

as:

YR = E [X|Y, µ] =
σ2
w

σ2
s + σ

2
w

µ +
σ2

s

σ2
s + σ

2
w

Y, (5.1)
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where YR is the estimate of the adversary given the observed data (Y) and her perfect

knowledge of the prior (πAdv). Remapping simply notes that, since the adversary obtains

YR anyway (as shown in Figure 5.2), we might as well provide it to the applications to

improve the utility [12].

Metrics: Here, the mean squared error (MSE) is employed as a metric to quantify both

utility degradation and privacy (In Appendix 5.6, we also include mutual information as

a measure of privacy leakage). In this paper, “ UD ” denotes the MSE of the intended

application/friend which quantifies utility degradation. Also, “ P ” denotes the MSE of

the adversary about the true data and “ P̀ ” denotes the MSE of the adversary about the

distribution of the true data. Note that both “ P ” and “ P̀ ” quantify the level of privacy.

5.3 Case 1: Perfect Knowledge of the Adversary

In this section, we assume the adversary knows the exact value of the mean (µ).

5.3.1 Without Remapping Technique

Without remapping, the user’s intended friend, which is oblivious to the prior knowl-

edge of the user, observes only the noisy data (Y ). Thus, the MSE of the application which

quantifies the utility degradation can be calculated as:

UD
(I)
NR = E

[(
X̃App − X

)2
]
= E

[
(Y − X)2

]
= σ2

w . (5.2)

In comparison to the user’s friend, the sophisticated adversary obtains X̃Adv = E [X |Y, µ].

As a result, the MSE of the adversary which quantifies the level of privacy is calculated as:

P
(I)
NR = E

[(
X̃Adv − X

)2
]
= E

[
(YR − X)2

]
=

σ2
wσ

2
s

σ2
s + σ

2
w

. (5.3)
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5.3.2 With Remapping Technique

In this case, both the adversary and the user’s friend observe the same reported data,

X̃Adv = X̃App = YR = E [X |Y, µ]. Now, the MSE of the adversary and the MSE of the

application are equal and can be quantified as:

UD
(I)
R = P

(I)
R = E

[
(YR − X)2

]
=

σ2
wσ

2
s

σ2
s + σ

2
w

. (5.4)

Since the intended friend/application is oblivious to the prior statistical knowledge

about the user behavior, the MSE of the adversary is always smaller than or equal to the

MSE of the application (P ≤ UD). From Sections 5.3.1 and 5.3.2, we can conclude the

remapping technique provides the best utility among techniques satisfying the same level

of privacy in the case of perfect knowledge of the adversary [12].

5.4 Case 2: Imperfect Knowledge of the Adversary

Here, we assume the adversary has a noisy version of the prior information, as might

be obtained from a learning set of limited length. Specifically, the adversary has µ̌ = µ+E ,

where E has a zero-mean normal distribution with variance equal to σ2
e , as would be the

case if µ̌ were the minimum mean square estimate (MMSE) based on prior observations

with additive Gaussian obfuscation. We consider not only the leakage of true data (X) but

also the leakage of distribution of true data (µ), which is a serious issue.

5.4.1 Without Remapping Technique

If remapping is not employed, the user’s intended friend observes the reported data (Y ).

Thus, the MSE of the application is

UD
(I I)
NR = E

[(
X̃App − X

)2
]
= E

[
(Y − X)2

]
= σ2

w . (5.5)
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In contrast, the sophisticated adversary uses both Y = µ+ S +W and µ̌ = µ+ E to improve

her knowledge not only about the true data (X) but also about the distribution of the true

data (µ), (Here, we write X = µ + S, where S ∼ N(0, σ2
s )). Thus,


µ̌

Y


=


1 0

1 1




µ

S


+


E

W


.

Thus, the adversary has µ̃Adv = E [µ|Y, µ̌] and X̃Adv = E [X |Y, µ̌]. In the first step, we

should calculate the conditional expectation E [X |Y, µ̌] required for the minimum mean

square error estimator (MMSE). Note that the MMSE estimate in the case of bivariate

Gaussian variables has a nice linear form, which will be called linear minimum mean square

error (LMMSE) estimator. Using linear MMSE, S and µ given µ̌ and Y have linear forms

as

µ̃Adv = a0 + a1Y + a2 µ̌, (5.6)

s

S̃Adv = b0 + b1Y + b2 µ̌, (5.7)

where a0, a1, a2, b0, b1, and b2 are to be determined in order to minimize the MSE.

Note that the linear MMSE should satisfy:

• E
[
X − X̃Adv

]
= 0, in other words,

– E [µ] = E [µ̃Adv] .

– E [S] = E
[
S̃Adv

]
.
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• Cov
(
X − X̃Adv, µ̌

)
= 0, in other words,

– Cov (µ, µ̌) = Cov (µ̃Adv, µ̌) .

– Cov (S, µ̌) = Cov
(
S̃Adv, µ̌

)
.

• Cov
(
X − X̃Adv,Y

)
= 0, in other words,

– Cov (µ,Y ) = Cov (µ̃Adv,Y ) .

– Cov (S,Y ) = Cov
(
S̃Adv,Y

)
.

In order to satisfy the conditions of linear MMSE, a0, a1, a2, b0, b1, and b2 are calcu-

lated as

a0 = b0 = 0.

a1 =
σ2
µσ

2
e(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

.

b1 =
σ2

s

(
σ2
µ + σ

2
e

)
(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

.

a2 =
σ2
µ

(
σ2

s + σ
2
w

)(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

.

b2 =
−σ2

s σ
2
µ(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

.

Thus, µ̃Adv = E [µ|Y, µ̌] is

µ̃Adv =
σ2
µσ

2
e(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

Y+

σ2
µ

(
σ2

s + σ
2
w

)(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

µ̌.

Also, remember X̃Adv = E [X |Y, µ̌] = µ̃Adv + S̃Adv, thus, we have

X̃Adv =
σ2

s σ
2
µ + σ

2
s σ

2
e + σ

2
µσ

2
e(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

Y+

σ2
µσ

2
w(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

.
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Now, the MSE of the adversary about the distribution of true data (µ) is calculated as:

P̀
(I I)
NR = E

[
(µ̃Adv − µ)

2
]

=
σ2

e σ
2
µ

(
σ2

s + σ
2
w

)(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

. (5.8)

and MSE of the adversary about true data (X) is calculated as:

P
(I I)
NR = E

[(
X̃Adv − X

)2
]

=
σ2

s σ
2
w

σ2
s + σ

2
w

+
σ4
wσ

2
e σ

2
µ(

σ2
s + σ

2
w

) ( (
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ σ2

e σ
2
µ

) . (5.9)

Extension to m observations: In the next step, we assume the adversary observes m

observations of the user, and tries to use all of her observations to make better estimations

about both true data (X) and the distribution of true data (µ). Note that she has

• µ̌ = µ + E .

• Y (k) = µ + S(K) +W(k), for k ∈ {1,2, · · · ,m}.

The adversary should calculate µ̃Adv = E [µ|Y, µ̌] and X̃Adv = E [X|Y, µ̌].

Using linear MMSE, S(1) and µ given µ̌ and Y have linear forms as

µ̃Adv = a0 + a1Y (1) + a2Y (2) + · · · + amY (m) + am+1 µ̌, (5.10)

and

S̃(1)Adv = b0 + b1Y (1) + b2Y (2) + · · · + bmY (m) + bm+1 µ̌, (5.11)

where ak’s and bk’s are to be determined in order to minimize the MSE.
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In order to satisfy the conditions of linear MMSE, we have

a0 = b = 0

a1 =
σ2
µσ

2
e(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

,

b1 =
σ2

s

(
σ2
µ + σ

2
e

)
(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

+
(m − 1)σ2

s σ
2
µσ

2
e(

σ2
s + σ

2
w

) ( (
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

) .
ak =

σ2
µσ

2
e(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

, for k ∈ {2,3, · · · ,m}.

bk =
−σ2

e σ
2
µσ

2
s(

σ2
s + σ

2
w

) ( (
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

) , for k ∈ {2,3, · · · ,m}.

am+1 =
σ2
µ

(
σ2

s + σ
2
w

)(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

bm+1 =
−σ2

s σ
2
µ(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

.

Thus, µ̃Adv = E [µ|Y, µ̌] can be calculated as

µ̃Adv =

m∑
k=1

σ2
µσ

2
e(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

Y (k)

+
σ2
µ

(
σ2

s + σ
2
w

)(
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

µ̌.

Also, remember �X(1)Adv = E [X(1)|Y, µ̌] = µ̃Adv + S̃(1)Adv, thus, we have

�X(1)Adv =

(
σ2

s σ
2
µ + σ

2
s σ

2
e + σ

2
µσ

2
e

) (
σ2

s + σ
2
w

)
+ (m − 1)σ2

s σ
2
µσ

2
e(

σ2
s + σ

2
w

) ( (
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

) Y (1) (5.12)

+

m∑
k=2

σ2
e σ

2
µσ

2
w(

σ2
s + σ

2
w

) ( (
σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

)Y (k)

+
σ2
µσ

2
w(

σ2
µ + σ

2
e
) (
σ2

s + σ
2
w

)
+ mσ2

e σ
2
µ

µ̌.

(5.13)
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Now, the MSE of the adversary about the distribution of the true data (µ) can be calculated

as

P̀
(I I)
NR = E

[
(µ̃Adv − µ)

2
]

=
σ2

e σ
2
µ

(
σ2

s + σ
2
w

)(
σ2

s + σ
2
w

) (
σ2
µ + σ

2
e
)
+ mσ2

e σ
2
µ

, (5.14)

and the MSE of the adversary about user’ true data at time k, X(K), can be calculated as

P
(I I)
NR = E

[(�X(k)Adv − X(k)
)2

]
=

σ2
s σ

2
w

σ2
s + σ

2
w

+
σ4
wσ

2
e σ

2
µ(

σ2
s + σ

2
w

) ( (
σ2

s + σ
2
w

) (
σ2
µ + σ

2
e
)
+ mσ2

e σ
2
µ

) . (5.15)

5.4.2 With Remapping Technique

If the remapping technique is employed, our friend observes the remapped data, so, the

MSE of the application can be quantified as:

UD
(I I)
R = E

[(
X̃App − X

)2
]
= E

[
(YR − X)2

]
=

σ2
s σ

2
w

σ2
s + σ

2
w

. (5.16)

However, the adversary observes not only YR, but also µ̌, and uses both of them to estimate

µ̃Adv and X̃Adv. In other words,


µ̌

YR


=


1 0

1
σ2
s

σ2
s +σ

2
w




µ

S


+


E

σ2
s

σ2
s +σ

2
w

W


.

Using linear MMSE, S and µ given µ̌ and Y have linear forms as

µ̃Adv = a0 + a1YR + a2 µ̌, (5.17)
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and

S̃Adv = b0 + b1YR + b2 µ̌, (5.18)

where a0, a1, a2, b0, b1, and b2 are to be determined in order to minimize the MSE.

Note the linear MMSE should satisfy:

• E
[
X − X̃Adv

]
= 0, in other words,

– E [µ] = E [µ̃Adv] .

– E [S] = E
[
S̃Adv

]
.

• Cov
(
X − X̃Adv, µ̌

)
= 0, in other words,

– Cov (µ, µ̌) = Cov (µ̃Adv, µ̌) .

– Cov (S, µ̌) = Cov
(
S̃Adv, µ̌

)
.

• Cov
(
X − X̃Adv,YR

)
= 0, in other words,

– Cov (µ,YR) = Cov (µ̃Adv,YR) .

– Cov (S,YR) = Cov
(
S̃Adv,YR

)
.

In order to satisfy the conditions of linear MMSE, a0, a1, a2, b0, b1, and b2 are calcu-

lated as

a0 = b0 = 0,

a1 =
σ2

e σ
2
µ

(
σ2

s + σ
2
w

)
σ4

s
(
σ2
µ + σ

2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

)
b1 =

σ4
s

(
σ2
µ + σ

2
e

)
σ4

s
(
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2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

)
a2 =

σ4
s σ

2
µ

σ4
s
(
σ2
µ + σ

2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

)
142



b2 =
−σ4

s σ
2
µ

σ4
s
(
σ2
µ + σ

2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

)
Thus, µ̃Adv = E [µ|YR, µ̌] can be calculated as

µ̃Adv =
σ2
µσ

2
m

(
σ2

s + σ
2
w

)
σ4

s
(
σ2
µ + σ

2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

)YR

+
σ4

s σ
2
µ

σ4
s
(
σ2
µ + σ

2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

) µ̌.
Remember X̃Adv = E [X |YR, µ̌] = µ̃Adv + S̃Adv, so we have

X̃Adv = YR.

Now, the MSE of the adversary about the distribution of true data (µ) can be calculated as

P̀
(I I)
NR = E

[
(µ̃Adv − µ)

2
]

=
σ4

s σ
2
e σ

2
µ

σ4
s
(
σ2
µ + σ

2
e
)
+ σ2

e σ
2
µ

(
σ2

s + σ
2
w

) , (5.19)

and the MSE of the adversary about true data (X) can be calculated as

P
(I I)
R =E

[(
X̃Adv − X

)2
]

=
σ2

s σ
2
w

σ2
s + σ

2
w

. (5.20)

Extension to m observations: Now, we assume the adversary observes m observations

of the user, so, she has

• µ̌ = µ + E .

• YR(k) = µ +
σ2
s

σ2
s +σ

2
w

S(k) + σ2
s

σ2
s +σ

2
w

W(k), for k ∈ {1,2, · · · ,m}.
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The adversary should calculates µ̃Adv = E [µ|YR, µ̌] and X̃Adv = E [X|YR, µ̌]. Using linear

MMSE, S(1) and µ given µ̌ and YR have linear forms as

µ̃Adv = a0 + a1YR(1) + a2YR(2) + · · · + amYR(m) + am+1 µ̌, (5.21)

and

S̃(1)Adv = b0 + b1YR(1) + b2YR(2) + · · · + bmYR(m) + bm+1 µ̌, (5.22)

where ak’s and bk’s are to be determined in order to minimize the MSE. In order to satisfy

the conditions of linear MMSE, we have

a0 = b0 = 0

a1 =
σ2
µσ

2
e
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2
w

)
σ4

s
(
σ2
µ + σ

2
e
)
+ mσ2

e σ
2
µ

(
σ2

s + σ
2
w

) .
b1 =
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µ
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2
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) , , for k ∈ {2,3, · · · ,m}.
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) .
Thus, µ̃Adv = E [µ|YR, µ̌] can be calculated as

µ̃Adv =

m∑
k=1
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and �X(1)Adv = E [X(1)|YR, µ̌] = µ̃Adv + S̃(1)Adv, so, we can conclude

�X(1)Adv = YR(1),

As a result, the MSE of the adversary about the distribution of the true data (µ) can be

calculated as

P̀
(I I)
R = E

[
(µ̃Adv − µ)

2
]

=
σ2

e σ
2
µσ

4
s

σ4
s
(
σ2
µ + σ

2
e
)
+ mσ2

e σ
2
µ

(
σ2

s + σ
2
w

) , (5.23)

and the MSE of the adversary about true data at time k, X(k), can be calculated as

P
(I I)
R =E

[(�X(k)Adv − X(k)
)2

]
=

σ2
s σ

2
w

σ2
s + σ

2
w

. (5.24)

5.4.3 Discussion: Leakage of the Statistical Model

By (5.19) and (5.23), we can conclude that increasing the obfuscation noise somewhat

surprisingly increases the leakage about the distribution of the true data (µ) when remap-

ping is employed. Note that YR = E [X|Y, µ̌] depends on two parameters: 1) µ̌ = µ + E

and 2) Y = X +W; thus, if we increase the obfuscation noise by increasing σ2
w, YR relies

less on Y and more on µ̌. Now in the extreme case, where σ2
w goes to infinity, the observed

data (Y) is useless and, as a result, YR = E [X|Y, µ̌] = µ. Hence, remapping leaks complete

information about the statistical model (µ) as σ2
w goes to infinity.

5.5 Randomized Remapping

As derived in Section 5.4, the remapping technique can leak a lot of information about

the distribution of the true data (µ) if the adversary does not have the perfect prior about
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the user. Here, we introduce a new technique called randomized remapping to improve

privacy. This technique provides a trade-off between the leakage of the distribution of the

true data (µ) and the leakage of true data (X). In the randomized remapping, we have an

unfair coin where the probability of a head is equal to pH . For each data point, we toss the

coin and if a head is observed, the remapped data (YR) is released, and if a tail is observed,

the noisy version of data (Y ) is released. As a result,

Z =


YR, with probability pH,

Y, with probability of 1 − pH,

Here, user’s friend observes Z , thus, the MSE of the application can be calculated as,

UD
(I I I)
Rand = E

[
(Z − X)2

]
= pH

σ2
w

σ2
w + σ

2
s
+ (1 − pH)σ

2
w . (5.25)

However, the adversary observes both Z and µ̌ = µ + E to estimate the true data (X) and

distribution of the true data (µ). We can calculate P̀(I I I)
Rand which indicates the MSE of the

adversary about the distribution of true data (µ) as:

P̀
(I I I)
Rand = E

[
(µ̃Adv − µ)

2
]
. (5.26)

Figure 5.3 shows the MSE of the adversary about the statistical model (P̀(I I I)
Rand) versus the

MSE of the intended application/friend (UD(I I I)
Rand).

We can also calculate P(I I I)
Rand which indicates the MSE of the adversary about the true

data (µ) as:

P
(I I I)
Rand = E

[(
X̃Adv − µ

)2
]
. (5.27)

Figure 5.4 shows the MSE of the adversary (P(I I I)
Rand) versus the MSE of the intended appli-

cation/friend (UD(I I I)
Rand).
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Figure 5.3: The MSE of the adversary about the statistical model (µ) versus the MSE of the
application for three cases. Case 1: remapping technique is not employed (pH = 0), Case 2:
a randomized remapping technique is employed with pH = 0.2, 0.4, 0.6, and 0.8, and Case
3: standard remapping [12] is employed (pH = 1). Here, we assume σ2

µ = σ
2
e = σ

2
s = 1

and σ2
w is swept from 0 to 1 with steps of 0.1.

From Figures 5.3 and 5.4, we can conclude that the standard remapping leaks a lot

of information about the statistical model, while providing the best privacy level about the

user’ true data. Here, the randomized remapping provides a much better trade-off compared

to standard remapping. The value of pH is a design parameter, so, based on the application

requirements and privacy requirements, the appropriate amount of pH should be chosen.

5.6 Appendix

Here, the mutual information is employed as a metric to quantify both utility and pri-

vacy. In this paper, ”U” denotes the mutual information between the true data and signal re-

ceive by the intended application/friend; this quantifies the system’s utility. Likewise, ”L”

denotes the mutual information between the true data and the adversary’s observations;

this quantifies the information leakage. Note that the level of privacy can be quantified as

H (X |Y ) = H (X) − I (X;Y ), where H(.) is the entropy and I(.) is the mutual information.
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Figure 5.4: The MSE of the adversary about the user’ true data (µ) versus the MSE of the
application for three cases. Case 1: remapping technique is not employed (pH = 0), Case 2:
a randomized remapping technique is employed with pH = 0.2, 0.4, 0.6, and 0.8, and Case
3: standard remapping [12] is employed (pH = 1). Here, we assume σ2

µ = σ
2
e = σ

2
s = 1

and σ2
w is swept from 0 to 1 with steps of 0.1.

Table 5.1: Results of case 1: Perfect knowledge of the adversary.

Utility Leakage of true data

Without Remapping 0.5 ln

(
σ2
w+σ

2
s +σ

2
µ

σ2
w

)
0.5 ln

(
σ2
w+σ

2
s

σ2
w

)
With Remapping 0.5 ln

(
σ2
w+σ

2
s +σ

2
µ

σ2
w

+
σ2
µ

σ2
s

)
0.5 ln

(
σ2
w+σ

2
s

σ2
w

)

Here, our goal is to minimize the information leakage to maximize the level of privacy at

the highest possible utility.

5.6.1 Case 1: Perfect Knowledge of the Adversary

In this section, we assume the adversary knows the exact value of the mean (µ). The

results for the case the remapping technique is employed and the case remapping technique

is not employed are shown in Table 5.1.
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Table 5.2: Utility for case 2: Imperfect knowledge of the adversary, one observation.

Utility

Without Remapping 0.5 ln

(
σ2
w+σ

2
s +σ

2
µ

σ2
w

)
With Remapping 0.5 ln

(
σ2
w+σ

2
s +σ

2
µ

σ2
w

+
σ2
µ

σ2
s

)

Since the intended friend/application is oblivious to the prior statistical knowledge

about the user behavior, we always have L ≤ U. As you can observed in Table 5.1, we can

conclude the remapping technique provides the best utility among techniques satisfying the

same level of privacy in the case of perfect knowledge of the adversary [12].

5.6.2 Case 2: Imperfect Knowledge of the Adversary

Here, we assume the adversary has a noisy version of the prior information, as might

be obtained from a learning set of limited length. Specifically, the adversary has µ̌ = µ+E ,

where E has a zero-mean normal distribution with variance equal to σ2
e , as would be the

case if µ̌ were the minimum mean square estimate (MMSE) based on prior observations

with additive Gaussian obfuscation. We consider not only the leakage of true data (X) but

also the leakage of distribution of true data (µ), which is a serious issue. The results for

the case the remapping technique is employed and the case remapping technique is not

employed are shown in Tables 5.2, 5.3, and 5.4.

Extension to m observations: Next, we assume the adversary observes m samples

from the user, and tries to use all of her observations to make better estimations about

both the true data (X) and the distribution of the true data (µ). The results for the case the

remapping technique is employed and the case remapping technique is not employed are

shown in Tables 5.5 and 5.6.
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Table 5.3: Leakage of true data for case 2: Imperfect knowledge of the adversary, one
observation.

Leakage of true data

Without Remapping 0.5 ln

(
σ2
s +σ

2
w

σ2
w
+

σ2
e σ

2
µ

σ2
w(σ2

e +σ
2
µ )

)
With Remapping 0.5 ln

(
σ2
s +σ

2
w

σ2
w
+

σ2
e σ

2
µ (σ

2
s +σ

2
w)

σ2
s σ

2
w(σ2

e +σ
2
µ )

)

Table 5.4: Leakage of the statistical model for case 2: Imperfect knowledge of the adver-
sary, one observation.

Leakage of the statistical model

Without Remapping 0.5 ln

(
1 +

σ2
e σ

2
µ

(σ2
s +σ

2
w)(σ2

e +σ
2
µ )

)
With Remapping 0.5 ln

(
1 +

σ2
e σ

2
µ (σ

2
s +σ

2
w)

σ4
s (σ2

e +σ
2
µ )

)

Table 5.5: Leakage of true data for case 2: Imperfect knowledge of the adversary, m obser-
vations.

Leakage of true data

Without Remapping 0.5ln
(
σ2
s +σ

2
w

σ2
w
+

σ2
e σ

2
µ

σ2
w(σ2

e +σ
2
µ )
+

(m−1)σ4
e σ

4
µ /(σ

2
e +σ

2
µ )

(σ2
s +σ

2
w)(σ2

s σ
2
e +σ

2
s σ

2
µ+σ

2
e σ

2
µ )+(m−1)σ2

s σ
2
e σ

2
µ

)
With Remapping 0.5 ln

(
σ2
s +σ

2
w

σ2
w
+

σ2
e σ

2
µ (σ

2
s +σ

2
w)

σ2
s σ

2
w(σ2

e +σ
2
µ )

)
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Table 5.6: Leakage of the statistical model for case 2: Imperfect knowledge of the adver-
sary, m observations.

Leakage of the statistical model

Without Remapping 0.5 ln

(
1 +

mσ2
e σ

2
µ

(σ2
s +σ

2
w)(σ2

e +σ
2
µ )

)
With Remapping 0.5 ln

(
1 +

mσ2
e σ

2
µ (σ

2
s +σ

2
w)

σ4
s (σ2

e +σ
2
µ )

)

5.6.3 Randomized Remapping

In the randomized remapping, we have an unfair coin where the probability of a head is

equal to pH . For each data point, we toss the coin and if a head is observed, the remapped

data (YR) is released, and if a tail is observed, the noisy version of data (Y ) is released. As

a result,

Z =


YR, with probability pH,

Y, with probability of 1 − pH,

Here, user’s friend observes Z , thus, the utility level can be calculated as:

U
(I I I)
Rand = I (X; Z) = 0.5pH ln

(
σ2
w + σ

2
s + σ

2
µ

σ2
w

+
σ2
µ

σ2
s

)
+ 0.5 (1 − pH) ln

(
σ2
w + σ

2
s + σ

2
µ

σ2
w

)

However, the adversary observes both Z and µ̌ = µ + E to estimate the true data (X) and

distribution of the true data (µ). We can calculate L̀(I I I)
Rand which indicates the leakage of the

statistical model (µ) as:

L̀
(I I I)
Rand = I (µ; Z | µ̌) . (5.28)

Figure 5.5 shows the leakage of the statistical model (L̀(I I I)
Rand) versus the level of the system’s

utility (U(I I I)
Rand). A key point here is that randomized remapping provides a much better

trade-off compared to standard remapping.
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Figure 5.5: The leakage of the statistical model (L̀(I I I)
Rand) versus the level of system’s utility

(U
(I I I)
Rand) for three cases. Case 1: remapping technique is not employed (pH = 0), Case 2: a

randomized remapping technique is employed with pH = 0.2, 0.4, 0.6, and 0.8, and Case
3: standard remapping [12] is employed (pH = 1). Here, we assume σ2

µ = σ
2
e = σ

2
s = 1

and σ2
w is swept from 0 to 1 with steps of 0.1.
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CHAPTER 6

CONCLUSION

The Internet of Things (IoT) enables users to share and access information on a large

scale and provides many benefits to individuals (e.g., smart homes, healthcare) and indus-

tries (e.g., digital tracking, data collection, disaster management). However, such benefits

are provided by tuning the system to user characteristics based on potentially sensitive in-

formation about their activities. Thus, the use of IoT comes with a significant threat to

users’ privacy: leakage of sensitive information.

Two main privacy-preserving techniques are anonymization and obfuscation, where

the former is hiding the mapping between data and the users by replacing the identification

fields of users with pseudonyms, and the latter is perturbing the user data such that the

adversary observes false but plausible data. Although these methods have been addressed

widely, statistical inference methods can be applied to them to break the privacy of the

users. Furthermore, achieving privacy using these methods comes with a cost: reducing

the utility of the system for the users. Hence, it is crucial to consider the trade-off between

privacy and utility when employing privacy-preserving techniques, and to seek to achieve

privacy with minimal loss of functionality and usability. Despite the growing interest in

IoT privacy, previous works do not offer theoretical guarantees on the trade-off between

privacy and utility. In this dissertation, we took a foundational approach to understand the

theoretical limits.

Firstly, in Chapter 2, we have considered both obfuscation and anonymization tech-

niques to achieve privacy. The privacy level of the users depends on both m(n) (number of

observations per user by the adversary for a fixed anonymization mapping) and an (noise
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level). That is, larger m(n) and smaller an indicate weaker privacy. We characterized the

limits of privacy in the entire m(n) − an plane for the i.i.d. case; that is, we obtained the

exact values of the thresholds for m(n) and an required for privacy to be maintained. We

showed that if m(n) is fewer than O
(
n

2
r−1

)
, or an is larger than Ω

(
n−

1
r−1

)
, users have per-

fect privacy. On the other hand, if neither of these two conditions is satisfied, users have

no privacy. For the case where the users’ patterns are modeled by Markov chains, we ob-

tained a no-privacy region in the m(n) − an plane. Note that in this work we obtained the

requirements on anonymization and obfuscation for “perfect” user privacy when traces are

independent between users.

Secondly, in Chapter 3, we considered the discrete case, in particular, when the observa-

tion sequences are binary sequences, and we focus on the non-asymptotic case where users’

data samples are i.i.d.. Then we analyzed the ability of a strong adversary, who knows the

prior distribution of users’ behavior, to correctly identify users’ data samples as a function

of the rate of anonymization and degree of obfuscation. We obtained the exact expression

for two cases: case 1) only the anonymization technique is used to achieve privacy; case

2) both anonymization and obfuscation techniques are used to achieve privacy. We have

shown that the level of privacy of the users depends on three factors: Number of users (n),

number of observations per user (m), and noise level (a). We also provide numerical and

simulation results for the correct probability in identifying a given user with different pa-

rameter settings to investigate the degree to which privacy is protected for various values

of n, m, and a. The results were then used to answer a compelling question left open in

Chapter 2: can the two techniques could be used productively together in the finite case?

In contrast to what previous asymptotic results suggest, we find that the two techniques can

be used in conjunction to provide privacy when neither is sufficient by itself.

Thirdly, in Chapter 4, we assumed users have correlated data traces, as relationships

between users establish dependence in their behavior. Then, we demonstrated that such

dependency degrades the privacy of PPMs, as the anonymization employed must be signif-

154



icantly increased to preserve perfect privacy, and often no degree of independent obfusca-

tion of the traces can be effective. We have also presented preliminary results on dependent

obfuscation to improve users’ privacy.

Finally, in Chapter 5, we have provided an information-theoretic investigation of the

technique of “remapping” which has been introduced in the privacy literature to improve

the utility of a naive intended recipient while maintaining the same level of privacy against

a sophisticated adversary, in particular one with a prior distribution of the user’s data. We

first formulated and analyzed remapping under the standard assumption of perfect knowl-

edge of the prior at the adversary. Then, we showed that if the adversary has imperfect

knowledge of the statistics of the user data, the proposed remapping technique introduces

leakage about not only the true data but also the user’s statistical model. Finally, we pro-

posed a new method termed “randomized remapping” which makes it difficult for the ad-

versary to improve their statistical model at a given utility, thus providing a better utility-

privacy trade-off than standard remapping. Since the work here was done under a Gaussian

model to facilitate analysis, future research will consider an extension of the analysis and

countermeasures to more general models.

Future research in this area needs to characterize the exact privacy/no-privacy regions

when the underlying statistical model for users’ data are not known. Moreover, for the case,

we might not have any clue on what patterns the adversaries obtain. It is also important

to consider different ways to obfuscate users’ data sets and study the utility-privacy trade-

offs for different types of obfuscation techniques. In addition, since the work in Chapter 5

was done under a Gaussian model to facilitate analysis, future research will consider an

extension of the analysis and countermeasures to more general models.
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