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ABSTRACT

COMPOUND EFFECTS OF CLOCK AND VOLTAGE
BASED POWER SIDE-CHANNEL COUNTERMEASURES

MAY 2020

JACQUELINE R. LAGASSE

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Wayne Burleson

The power side-channel attack, which allows an attacker to derive secret infor-

mation from power traces, continues to be a major vulnerability in many critical

systems. Numerous countermeasures have been proposed since its discovery as a

serious vulnerability, including both hardware and software implementations. Each

countermeasure has its own drawback, with some of the highly effective countermea-

sures incurring large overhead in area and power. In addition, many countermeasures

are quite invasive to the design process, requiring modification of the design and

therefore additional validation and testing to ensure its accuracy. Less invasive coun-

termeasures that do not require directly modifying the system do exist but often offer

less protection.

This thesis analyzes two non-invasive countermeasures and examines ways to max-

imize the protection offered by them while incurring the least amount of overhead.

These two countermeasures are called clock phase noise (CPN) and voltage noise
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(VN), and are placed on the same FPGA as an AES encryption module that we are

trying to protect. We test these designs against a highly effective algorithm called

correlation power analysis (CPA) and a preprocessing technique called the sliding

window attack (SW).

We found that the combined effects of the two countermeasures was greater than

the impact of either countermeasure when used independently, and published a paper

in the 2019 IEEE 30th International Conference on Application-specific Systems, Ar-

chitectures and Processors (ASAP) on our findings. We found that our best combined

countermeasure protected about 76% of the maximum amount of traces that a well-

known but invasive competitor, wave dynamic differential logic (WDDL), could with

only about 41% of the area and 78% of the power. However, the sliding window attack

significantly reduced the amount of protection our combined countermeasure could

offer to only 11% of that offered by WDDL. Since then, we updated our methodol-

ogy and made some adjustments to VN and CPN. Our CPN countermeasure greatly

improved, and therefore so did our combined countermeasure, which on average pro-

tected up to about 90% of the maximum amount of traces that WDDL could with

only about 43% of the area and about 60% of the power. This is remarkable because

these results are after the sliding window attack, meaning that our post-proposal

countermeasures protect almost as well as WDDL while requiring only about half of

the resources.
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CHAPTER 1

INTRODUCTION

A side-channel attack is an attack that is based on information leaked during

the normal operation of a computer system, in comparison to exploiting a vulnera-

bility. The leaked information can be any physical phenomena on the system that

has some relationship to the calculations being performed on the device. Some of

the most popular side-channel attacks are based off measuring computation time,

power consumption, or electromagnetic radiation [2]. In a timing side-channel at-

tack, small differences in computation time for different calculations are exploited [3].

Electromagnetic side-channel attacks exploit small changes in the electromagnetic

field near the chip during computations. And in power side-channel attacks, changes

in power are captured and exploited to determine secret information [4]. The goal of

conducting any side-channel attack is to correlate the leaked measurements to some

computation, where the computation has some correlation to the secret information.

In this work, we are focusing on power-side channel attacks conducted on encryp-

tion modules. Encryption modules are used to convert plaintext inputs into unintel-

ligible ciphertext outputs using a secret key, allowing sensitive plaintext information

to only be known to those who can decrypt the ciphertext. This work uses the 128-

bit key version of the Advanced Encryption Standard (AES-128) for our encryption

module, which has a symmetric key, meaning that the secret key used to encrypt

plaintext data can also be used to decrypt ciphertext data [5]. AES-128 encrypts a

128-bit plaintext using a 128-bit key over the course of ten rounds. In each round,

four computations are performed on the plaintext to compute the ciphertext; substi-
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tute bytes, shift rows, mix columns, and add round key. The only exception is the last

round, which does not include the mix columns step. For each round, a key schedule

also computes a new round key to be used during the add round key step. Depend-

ing on the plaintext and the value of the original key, each step computes different

immediate values, which each consume slightly different amounts of power.

We are concerned with an attacker with recovering the secret encryption key,

which if obtained could be used to decrypt all data on the device. To prevent power

side-channel attacks, the power consumption of the device must be manipulated to

obscure the correlation between the power consumption and the encryption module’s

calculations. However, each of these countermeasures impose some sort of penalty.

Some penalties include increased area usage, power consumption, and computation

time. Our countermeasures incur additional penalties as well, but offer more protec-

tion per penalty than other existing countermeasures.

There are many existing countermeasures against power side-channel attacks.

Some of these countermeasures are invasive, meaning that they alter the way that

an encryption module is constructed and operates. Performing hardware modifica-

tions on an encryption module has the consequence of requiring a unique design, such

that chip designers are unable to use standard intellectual property (IP) modules that

have already been verified and are straightforward to add to a design. To modify

an encryption module using software, the instructions used by the operating system

are altered to modify the behavior of the encryption module, while the hardware is

untouched. Invasive countermeasures can be very effective, but remove the ability for

a designer to use standard IP blocks, and can introduce the potential for flaws in the

encryption process if unverified. All of our designs are non-invasive, meaning that

they do not require any internal modification of the AES module, which allows de-

signers to implement AES as standard IP. These non-invasive countermeasures can be

scaled to be suitable for different designs. For example, a resource-constrained design

2



could use a countermeasure that uses less resources, while a more security-conscious

design could use a countermeasure that may offer more protection with the caveat of

requiring more resources on the chip.

Previous work has shown that these non-invasive countermeasures are not as sub-

stantial as other invasive countermeasures. To overcome this, we experimented with

different ways of designing these countermeasures individually, and then combined

these non-invasive countermeasures in a novel way to maximize their effectiveness.

Our two main countermeasures are clock phase noise (CPN) and voltage noise (VN).

CPN creates a randomly phase-shifted clock that can be used as the input clock to

an external module in order to make the execution of the module unpredictable. VN

simply generates a random amount of power that is used to obfuscate the amount of

power consumed by the encryption module. We published our findings, and a course

was developed to teach undergraduate students the basic concepts of power side-

channel attacks and other computer engineering security related concepts. We then

improved our experimental methodologies, made further modifications to VN and

CPN, and conducted a new set of experiments with these countermeasures separately

and combined.

The rest of this document is organized as follows: Chapter 2 describes important

background information on different power side-channel attacks, including the one

used in this work, as well as the countermeasures we used and other existing counter-

measures. Chapter 3 covers our experimental methodology, including what hardware

and software were used in this work to our threat model and how our results were

measured. Chapter 4 details each experiment and its results. Chapter 5 descibes the

development of the course and our educational results. And finally, Chapter 6 states

our conclusions and lists areas for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Attacks

2.1.1 Simple Power Analysis

There are several well-known attacks that can be performed on leaked power

traces. The most basic is simple power analysis (SPA), which is described as “a tech-

nique that involves directly interpreting power consumption measurements collected

during cryptographic operations” [4]. The changes in power during different compu-

tations must vary significantly and there must be very little noise for SPA to work,

as SPA is ineffective on noisy data. When these conditions are met, SPA can be used

to solve for an encryption key.

In practice, only one or two traces are needed to perform SPA. Features are

recognized and analyzed visually, either from one trace or by comparing a pair of

traces [6]. With some existing knowledge of how different components of certain

systems, such as different types of encryption modules operate, one can examine

a power trace to recognize certain features and deduce where different parts of an

encryption are being performed. With just one trace, it is possible to deduce whether

or not a 0 or 1 was computed in a particular spot by examining the magnitude of

the power consumed. With two traces, the power consumption of the two traces

can be subtracted to yield the difference between them, which can better expose

the amplitude and timing differences between the two traces. With the appropriate

data in hand, an actual SPA attack can be implemented via specific algebraic or

collision-based attack to compute the encryption key or other desired information.
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2.1.2 Differential Power Analysis

The more advanced differential power analysis (DPA) technique uses many power

traces from encrypting different input data and derives the encryption key though

more advanced signal processing techniques. Unlike SPA, DPA is very effective on

noisy signals and therefore can be used on a wider array of devices than SPA. How-

ever, DPA can be more time consuming than SPA in the sense that many different

encryptions need to be performed for there to be enough data to conduct a DPA

attack.

The success of DPA relies on what model is used to compare against the power

that was actually measured from the device. One assumption that is often made

is that amount of power consumed is proportional to the Hamming weight, or the

number of 1’s, in a given byte of data. There are many possible models to chose

from, depending on where in the encryption algorithm we would like to attack, which

could be the output of any step in any round of the encryption algorithm. Let’s say

for example that the attacker is observing the output of the last round after adding

the round key. With the attacker knowing what plaintext is used, they would know

what the state or intermediate value of the algorithm would be after the last round

add round key step for different key guesses. Each intermediate value has a different

Hamming weight. In DPA, one could use the Hamming weight of this intermediary

value to partition traces into different groups. Then, all of the traces in each group

are averaged together, and then the two groups are subtracted from each other. If

there is some sort of correlation between the Hamming weight of this intermediary

value for different traces, then there will be a significant difference between these two

groups. Otherwise, there will be no statistical difference between these two groups.

By repeating this for all possible key guesses, one may eventually be able to deduce

the key.
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More specifically, DPA uses a Boolean selection function based on a model as de-

scribed previously. This selection function which determines if a captured ciphertext

C and observed bit b from the power trace indeed correlate to a specific possible key

value K [4]. This selection function partitions traces into groups, averages the groups,

and then takes the difference of these groups to determine if there is any correlation.

DPA is a very powerful technique, however it is susceptible to false positive results

due to the fact that the S-box implementation’s power consumption is also observed

by the selection function, called ghost peaks.

2.1.3 Correlation Power Analysis

Correlation power analysis (CPA) is the most powerful attack among the three

discussed in this work and is therefore what we use for all of our experiments. CPA

is a variation of DPA meant to prevent ghost peaks or false positives [7]. Just as

with DPA, in CPA we assume that the attacker has access to the plaintexts and

ciphertexts used during encryption in addition to being able to capture the power

consumed during encryption. CPA also requires a similar model based on where

in the encryption we are attacking, such as the Hamming weight of the intermediary

state after adding the round key after the last round. The amount of power consumed

in this model is correlated to the Hamming weight of the intermediate value. CPA

considers every possible value for each byte of the key, computing the correlation

between each possible byte and each captured power trace using this model over

many traces. These byte-guesses are ranked by this correlation, and the highest-

ranked guess is considered to be the most likely key-byte [8]. In our work, we do in

fact correlate power traces with the Hamming weight of the potential last-round state

resulting from each byte-guess.

The algorithm used to compute the correlation coefficient for CPA used by the

ChipWhisperer software is based on a formula that can be found in ”Power Analysis
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Attacks” by Mangard et al. on page 124, formula 6.2 [9]. This equation is shown be-

low as Equation 2.1. In ChipWhisperer, the algorithm has been optimized to reduce

the amount of calculations required. Essentially, there is a matrix R of estimated cor-

relation coefficients, where each individual coefficient is r. The correlation coefficient

is used to determine the linear relationship between columns for hi and tj, where h is

the hypothetical power consumption for i=1,...,K total possible key byte guesses and

t is the measured power trace for j=1,...,T parts of the trace. There are D elements

in columns hi and tj. ChipWhisperer performs this computation for each possible key

guess for each key byte of the key for each power trace collected.

ri,j =

∑D
d=1(hd,i − hi) × (td,j − td)√∑D
d=1(hd,i − hi)2 × (td,j − td)2

(2.1)

2.1.4 Sliding Window Attack

Preprocessing techniques can be performed on the raw power traces in order to

make the power analysis attacks more powerful. In a recent paper, a ”charge and

decay modeling” technique was used against a CR countermeasure. It reduced the

number of power traces needed for a successful CPA attack from 3 million to less

than fourteen thousand [10]. The full 3 million traces still needed to be captured,

therefore the time to capture traces was not reduced, but the time to analyze traces

was significantly reduced. This modeling technique mainly relies putting the collected

power trace through filters and then detecting peaks in power consumption, in essence

realigning the power trace with the clock and making the data easier to process using

power side-channel attacks.

Another group used a sliding window preprocessing attack (SW). This attack is

simply a function that sweeps over x sample points of a power trace at a time,

magnifying any correlations within the fixed window x [11]. Inside this window, all

samples are aggregated, which amplifies the correlation between the data and the
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power consumption. However, amplification only occurs under certain circumstances,

particularly if the appropriate sized window is used such that multiple leakage points

fit inside the window, but not too much information is collected as to blur out the

result. Choosing the correct window size is crucial to the success of this attack.

Using the sliding window preprocessing technique before performing CPA was shown

to be significantly more effective than CPA alone against the clock randomization

countermeasure a time. These findings suggest that clock randomization alone is not

a sufficient countermeasure against power side-channel attacks. Our implementation

of the sliding window attack in Python is shown below.

# sliding window attack with window size ’size’ on trace array ’traces’

# returns new trace of averaged values

def window_traces(traces, size):

wndw_traces = [] # traces to output

window_size = int(size) # store size in int

half_window = int(window_size/2) # calculate half of window size

for trace in traces:

temp = []

for i in range(len(trace)):

cnt = 0

total = 0

# sum points within window

for a in range(-1*half_window, window_size-half_window):

if(i+a>=0) & (i+a<len(trace)):

total += trace[i+a]

cnt += 1

temp.append(total/cnt)

wndw_traces.append(temp)

return wndw_traces
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2.2 Hardware Countermeasures

2.2.1 Wave Dynamic Differential Logic

Numerous countermeasures against power side-channel attacks exist and have been

proposed. One technique, aimed at removing the correlation between power consump-

tion and data at its source, is to use a completely different logic style that uses the

same amount of power for every transition instead of using standard logic gates. One

example of this is using Simple Dynamic Differential Logic (SDDL) gates, which is

inspired by Sense Amplifier Based Logic (SABL). SABL is an existing technology

that has constant power consumption as it has ”exactly one switching event per cycle

... independently of the input value and sequence” but is unable to be implemented

using existing standard cell logic gates [1]. SSDL logic gates use the inputs and a

precharge signal to determine their output. Their output always consists of two sig-

nals, one being logic high and the other being logic low, unless precharge is high n

which cause the outputs are both logic zero regardless out the inputs as shown in

Figure 2.1. Wave Dynamic Differential Logic (WDDL) is simply SDDL that has been

optimized to omit some of the precharge operations in order to reduce the number of

standard cells needed for each WDDL logic gate. WDDL logic gates are guaranteed

to only have one switching event per cycle. WDDL was implemented and tested in

both ASIC and FPGA devices [1].

More thorough testing was performed by implementing an AES-128 module us-

ing WDDL on an ASIC device [12]. This device was fabricated using 0.18 µCMOS

technology. The 128-bit secret key was not fully disclosed, meaning that some of

the bytes of the key were unsolved, after 1.5 million traces using DPA, whereas they

found that a standard module would divulge its secret key after only 8,000 traces

using the same attack. However, this WDDL device required 3.1 times more area

than standard AES to implement, had a maximum operating frequency of only about

25% of standard AES, and used about 3.7 times more power as standard AES. The
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Figure 2.1. Example of an AND gate using SDDL logic [1].

metric used to determine whether or not a key has been divulged is measurements to

disclosure (MTD), which they define as ”the crossover point between the correlation

coefficient of the correct key and the maximum correlation coefficient of all the wrong

key guesses” in a DPA attack. This essentially means that they consider a key, or byte

of a key, to be known when the correct key has a greater than or equal to correlation

coefficient compared to the most likely wrong key.

While WDDL offers significant protection compared to unprotected AES, it is

highly invasive in the sense that it requires the entire encryption module to be re-

designed using a different logic style. This creates the potential for design flaws and

removes the possibility of a designer being able to use standard IP blocks, which can

be a significant drawback.

2.2.2 Voltage Noise

The voltage noise (VN) countermeasure is simply a noisy circuit. By generating

noise, one attempts to mask the correlation between power consumption and en-

crypted data by adding extraneous power consumption to the circuit. One approach

to creating an efficient VN circuit in an FPGA, in the sense that it generates as much

power as possible using the least amount of hardware, involves using shift register

LUTs (SRL) [13]. Shift registers are simply circuits that input one bit at a time,

pushing all of its contents over by one bit, creating a cascading effect. A LUT is a

lookup table, which is a fundamental circuit of FPGAs that can be reprogrammed to
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represent many different functions. When the SRL module is initialized to a value

consisting of an alternating pattern of 1’s and 0’s, and is fed inputs that continue this

pattern, maximum power is generated as the circuit is constantly changing the value

of all of its registers.

The overall topology of our noisy circuits is what we refer to as VN, which is

shown in Figure 2.2. In this topology, there are r rows of shift register modules.

An input clock is used to control when a pseudo-random number generator produces

new outputs, as well as for clocking the shift registers in each row. The output of

the pseudo-number generator is r bits wide, such that there is one bit for each row.

These bits are used as enable signals for all of the shift registers in a certain row. In

this way, r controls the variance of the noise, as it controls which rows are operating

at a given time. In each row, there are s individual shift registers. By increasing or

decreasing s, one is able to change the amplitude of noise generated when a row is

enabled.

We have tested two different designs which were used as the contents of the rows

in Figure 2.2. The first design is the simplest, and is denoted as SRL after the shift

register LUTs themselves. For the remainder of this work, SRL will refer to this design

shown in Figure 2.3 instead of an individual shift register. In this design, s 32-bit

shift registers are chained together such that their 1-bit inputs D and 1-bit outputs Q

are connected. The same clock and enable signals are used for all shift registers, and

come from the clock and pseudo-random number generator output shown in Figure

2.2. On every clock cycle, a new input is inserted into the shift register while the

remaining values are shifted down, where the last value is shifted out entirely and

becomes the output.

The other design is referred to as SRL-LFSR, in that it is nearly identical to SRL

except for the fact that each row is shaped as a type of pseudo-random number gener-

ator called an Linear-Feedback Shift Register (LFSR). LFSR modules are essentially
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Figure 2.2. Diagram of the overall topology for VN, where a PRNG selects which
rows of noisy circuits are activated at a time.

chains of registers that are connected together, where some of the inputs or outputs

of the registers are XOR-ed together and used as the input for the first register in

the chain. In doing so, the chain of registers receives a pseudo-random feedback,

as the output looks random but is repeatable. The sequence of a LFSR depends

on what the registers were initially storing and on what inputs or outputs of these

registers were chosen to be XOR-ed, which can be represented as a polynomial. For

this work, we chose to XOR the outputs of the shift registers and use an appropriate

length irreducible polynomial to maximize the amount of pseudo-randomness we can

generate.

Using an SRL-LFSR structure will obviously generate less protection in terms of

noise amplitude than simply using SRL, because the internal values inside each shift

register are no longer always alternating between 0’s and 1’s. However, the amount of

power generated by SRL-LFSR is more variable than SRL in the sense that it is not
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Figure 2.3. Diagram of the SRL design, which can be used as the contents for the
rows of VN. Shift registers are chained together, flipping values whenever the clock
and enable are active.

Figure 2.4. Diagram of the SRL-LFSR design, which can be used as the contents
for the rows of VN. SRL-LFSR generates less power than SRL, but is more irregular
and theoretically more difficult for an attacker to model.

as dependent on VN’s pseudo-random number generator and that each shift register

is not generating a fixed amount of power. This might make SRL-LFSR more useful
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Figure 2.5. Example of a three-stage ring oscillator.

than SRL in the event that an attacker was able to predict the amount of power

generated by VN and was somehow able to subtract it from a captured power trace.

By itself, VN is a very weak countermeasure because power side-channel attacks

like DPA and CPA are designed to be resistant to relatively small and statistically

insignificant changes in power due to noise. In order to provide significant protection

by itself, a very large VN module would need to be used, which would most likely not

be able to offer enough protection to justify the amount of resources it would occupy,

which we discuss in further detail with our results, and is the reason why we combine

VN with other countermeasures.

Shift registers are not the only circuit that can be used to generate noise. We

considered using ring oscillators, another compact and noisy circuit, instead of using

shift registers. Figure 2.5 is an example of a ring oscillator, which are simply chains

of inverters. However, we felt that shift registers would be more effective than ring

oscillators because shift registers change value only at the clock edge, meaning that

we have more control over where noise occurs if we use shift registers instead of ring

oscillators. For example, if AES and the shift registers use the same input clock,

then the shift registers will certainly be able to obfuscate the power consumed by

AES directly on the clock edge, ensuring that a relevant part of the power trace is

obfuscated. For a ring oscillator, we would assume it to be a free-running circuit

which may be more difficult to align with AES.
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Figure 2.6. Diagram of a generic 4 clock phase CPN implementation. A MMCM
module generates phase-shifted clocks. The clock multiplexers are enabled by the
ouput of PRNG, which determines which clock is used as the random clock output.

2.2.3 Clock Phase Noise

The clock phase noise countermeasure, previously referred to as the clock ran-

domization (CR) countermeasure, is module that generates a pseudo-random clock

signal. This random clock output is created by randomly sampling multiple clock

signals with different phases [13]. This ultimately generates a clock signal that has

random delays in between pulses. When used as the input to an encryption module,

this clock is used to add delays in between operations performed by the encryption

module. An example of a generic implementation is shown in Figure 2.6.
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In order to generate multiple clocks on an FPGA, one can use a mixed-mode clock

manager (MMCM) or phase-locked loop (PLL) to generate different clock signals from

a reference clock. Typically, all of the clocks generated by the MMCM or PLL have

the same frequency, but have different phases. To select which clock should be the

output of the CR module at any given time, special clock multiplexers are used.

These clock multiplexers are connected to the clocking fabric of the FPGA such that

the resulting clock is still able to drive other logic, which would not be possible if

a standard multiplexer was used instead. These clock multiplexers also ensure that

the output is not cut off prematurely, allowing all clock pulses to completely finish

before switching to another clock source, which might introduce a delay. A pseudo-

random number generator is used to select between the different clock pulses, where

the output of the PRNG is used as the enable bits for the clock multiplexers.

CPN makes it more difficult for an attacker to find where the encryption is occur-

ring in the trace when used as the input clock of an encryption module by introducing

random delays to the clock being used by the encryption module. CPN has proven

to be significantly more effective than VN in previous works, however it is not an ac-

ceptable countermeasure by itself. This is because CPN has been found to be highly

vulnerable to preprocessing techniques such as the previously mentioned Sliding Win-

dow Attack, which work to ”correct” the jitter and delay introduced into the clock

before an attack is run on the collected traces. Of course, in order for an encryption

to work properly, whatever clock used by the encryption module should also be used

to feed inputs and sample outputs from the encryption module as well, or else the

encryption module will not work properly.

2.3 Software Countermeasures

We came across two interesting examples of software-based power side channel

countermeasures. One was called MUTE-AES, which used a dual processor archi-
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tecture where two processors encrypt with AES in parallel but used complementary

data in order to balance out the total power used [14]. This design required a second

processor, effectively doubling the amount of hardware needed. When no encryp-

tion was being performed, the two processors executed tasks independently. When

encryption was needed, both processors were used in conjunction, where one pro-

cessor was computing the desired encryption and the other processor was being fed

instructions using an algorithmic balancing technique, which balanced out the power

consumption. This work showed that DPA was ineffective on this countermeasure.

A similar work made this countermeasure possible on a single core, instead of

requiring two separate processors as in MUTE-AES. This was achieved by doubling

the width of a typical AES module in order to run the original and complementary

AES data at the same time on the same core [15]. This work also used an algorithmic

balancing technique to control the complementary AES module. This countermeasure

required only a 16.6% increase in instruction memory overhead and a 15.8% increase

in data memory overhead. It was also able to render DPA ineffective.

Both of these software-based implementations are invasive but in a different man-

ner than WDDL, as they require the encryption module’s operations to be restruc-

tured, creating an opportunity to produce a flawed encryption module. We are also

more interested in preventing these leaks from occurring at the hardware level, rather

than using software to patch these issues. For these reasons, we didd not use software

countermeasures in this work.
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CHAPTER 3

METHOD

3.1 Hardware

To capture live power traces, we used two boards specially designed for test-

ing power side-channel attacks from NewAE Technology [16]. The ChipWhisperer

CW305 board, as shown in Figure 3.1, is the target board. The target board contains

an Artix-7 field-programmable gate array (FPGA) and is what we used to test AES

and our countermeasures. FPGAs can be reprogrammed to represent different hard-

ware designs, allowing us to test many designs on real physical devices very quickly.

The target board has a shunt resistor placed in between the wire connecting the power

supply to the FPGA’s voltage pin. A shunt resistor is simply a resistor with a very

low resistance. Knowing the resistance value of the shunt in Ohms and the voltage

drop across the resistor, we can measure the power consumption. The target board

also includes an operational amplifier with a gain of 20 dB to increase the value of

the power consumption so that it is readable by the capture board.

The ChipWhisperer-Lite CW1173, shown in Figure 3.2, is the capture board. The

capture board is used to process the power traces from the target board. For our work,

we connected probes from across the 20 dB operational amplifier on the target board

to the capture board. The capture board has a 55 dB low-noise amplifier as well as an

Analog to Digital (ADC) converter, which is used to convert the analog power trace

into discrete values. The discrete output of the capture board is then stored in files

on the connected computer, which are later used by the ChipWhisperer software.
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Figure 3.1. ChipWhisperer CW305 Target Board with Artix-7 FPGA.

Figure 3.2. ChipWhisperer-Lite CW1173 Capture Board.

3.2 Software

We used Xilinx Vivado Design Suite for synthesizing and testing our designs, as

well as for generating the final bitstreams used to program the FPGA device. All of

our circuit designs were described in Verilog, which is a hardware description language

(HDL). Vivado provides report files describing board area utilization, estimates on

timing and power consumption, and more. NewAE Technology Inc., the company that

sells the target and capture boards used in this work, also have software available to
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assist in conducting the attacks on their boards. More detail on how we used this

software to configure our experiments is provided below.

3.2.1 Pre-Proposal Setup using ChipWhisperer 4

Our experiments were originally conducted using version 4.0.2 of ChipWhisperer’s

software. Version 4 and all previous software versions were developed using Python

version 2. ChipWhisperer 4 consisted of two different programs, Capture and Analyze,

each requiring the user to interact with a different graphical user interface (GUI). In

Capture, we were able to create a new ChipWhisperer project and set the clock source

and desired frequency, sample rate, and upload the bitstream to the target board.

The captured power traces were saved in files within the project. In Analyzer, we

were able to customize the attack scripts and plot results. Despite the ability to run

Python scripts inside of each GUI, there was limited functionality exposed to the user,

so many tasks could not be automated. In our experiments using ChipWhisperer 4,

we set the clock frequency of all of our countermeasures to 100 Hz, sampling at a rate

of 400 Hz.

3.2.2 Post-Proposal Setup using ChipWhisperer 5

We upgraded to version 5 of the ChipWhisperer software upon its release. Chip-

Whisperer 5 is built off of Python version 3 and is integrated with Jupyter Notebooks.

Instead of having separate GUI environments for both Capture and Analyzer, the user

is able to write their own custom functionality for both into a single Jupyter Note-

book project. Because of this, version 5 is easier to customize, allowing the user the

ability to more freely write scripts for modifying settings, algorithms, plots, and more.

For example, we were able to write scripts to generate and save plots and result files

automatically, run bash scripts to execute different experiments consecutively and

automatically, and write custom code to re-use plaintext files for multiple experi-

ments. The first two changes were implemented for convenience and saving time, as
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these experiments can take hours to days to execute and test, while the last change

was implemented to reduce variability in our results. All of these changes were much

more difficult to implement on ChipWhisperer 4 to the point that we were not able

to implement them at all, since every change required modifying ChipWhisperer 4

source code. This is because ChipWhisperer 5 has an API available to expose more

functionality of the user, and the removal of the GUI makes directly manipulating

scripts more straightforward.

In addition to these changes, we experimented with different clock settings and

found that we were able to collect better power traces when running the boards at 19.2

MHz and sampling at 76.8 MHz. The improvements gained by reducing the frequency

included cleaner data, as in that it is easier to observe all of the individual rounds

of an encryption across all countermeasures, and reducing the number of failures

when capturing power traces. The ease of observing the encryption rounds is mostly

relevant to attacks using CPN. Failure to capture power traces happens periodically

in countermeasures containing CPN, as the changing clock makes it more likely that

the two boards will not sync up the sending and receiving of the target signal, causing

a power trace to not be captured properly.

3.3 Threat Model

We assume a very ideal situation for the attacker, as our experiments are per-

formed in an ideal setup where it is easy to collect data from our device. We assume

that the attacker has unlimited physical access to the target board in order to cap-

ture power traces from it, as we capture however many traces necessary to obtain

the encryption key, which can take hours or days to obtain. In order to perform our

experiments, we use a shunt resistor, probes, amplifiers, and an ADC converter. An

attacker would need to have the knowledge and resources to obtain these components

and set them up properly to create a comparable setup. However, none of the equip-
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ment required to capture or analyze power traces is very sophisticated or expensive,

so an attacker could truly be anyone ranging from an individual actor as well as a

more capable group or organization.

In a very critical system, it would be unlikely that an attacker would have this

level of access to the device. For a standard home appliance or computer, however,

this scenario may be perfectly feasible. In addition, we assume that the attacker

either has knowledge on how to write a program to conduct a CPA attack on the

power traces, or has access to already made scripts and algorithms. Such software

can be executed on any standard modern computer, but may require many hours to

execute. The attacker would also need to be able to interpret results of such software

properly.

3.4 Measuring Protection

The effectiveness of each countermeasure is measured in terms of the resultant par-

tial guessing entropy (PGE) for each byte of the secret key. The PGE is the number

of incorrect key byte guesses which are ranked above the correct key byte in terms of

correlation. The correlation is calculated using the equation for the correlation coef-

ficient between the measured power consumption and a model of power consumption

for key byte guess, as described in the explanation of Correlation Power Analysis in

the last chapter. AES-128 has a 128-bit key, and therefore has sixteen different key

bytes. Each byte can represent 256 different values. A PGE value between 0 and

255 is given to each possible value of each key byte, where 255 represents when the

correct key byte is ranked last, and a PGE of 0 represents that the correct key byte

is ranked as the key byte that is most likely to be correct. As more power traces are

analyzed, more information is available for the algorithm to repeatedly recalculate

the correlation between the key byte guesses and the observed power consumption.

For a weak countermeasure, not many power traces are needed until the PGE for all
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key bytes reduces to zero. For a strong countermeasure, millions of power traces may

need to be collected before the correct key guess is divulged. An example of the PGE

values changing over time for each of the sixteen key bytes in an unprotected AES-128

module is shown in Figure 3.3, where each line on the plot represents the PGE of a

different key byte. At around 800 traces, the PGE for all key bytes has reduced to

zero, meaning that the secret key has been determined. As one can see, unprotected

AES is solved easily with less than a thousand power traces, which means that this

attack only takes a few minutes to capture and analyze using our board and software.

As previously stated, a PGE value of 0 occurs when the correct key guess has a

higher amount of correlation than all of the incorrect key guesses. Another commonly

used metric to measure the success of a power side-channel attack is called measure-

ments to disclosure (MTD), and was briefly discussed in the previous chapter. MTD

is the amount of measurements or power traces collected when the correlation coeffi-

cient of the correct key is first equal to or greater than the correlation coefficient of the

highest ranked incorrect key. This means that MTD is equivalent to a PGE of zero

for all key bytes. However, the difference in correlation between different key byte

guesses can be very slim and can fluctuate, leading to situations where the correct

key guess is ranked within the top few guesses but has not surpassed all other keys.

In this work we assume that an attacker is more sophisticated and does not need

to wait until the entire key has been disclosed. Instead, we consider a successful

attack to occur when all of the key bytes have a PGE of less than five, implying that

the correct key byte is among the top five guesses for each key byte. This amount

of remaining guesses is considered to be brute forcible, or susceptible to being solved

using a brute force attack. The reasoning for this is that if an attacker can narrow

the byte guesses to five choices for each byte of the key, the amount of possible

combinations remaining is small enough such that it can be computed in a reasonable
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Figure 3.3. The PGE of unprotected AES-128, where each line is the PGE value
for each byte of the key over the total number of power traces analyzed.

amount of time, and as such a brute force approach could be used by an attacker to

determine the correct key from the remaining values [11].

3.5 Measuring Cost

Cost is measured in terms of area, power consumption, and delay. For each coun-

termeasure, we measured these three variables and compared them to an unprotected

AES-128 module. Area in terms of the number of components used on the FPGA

board is provided in reports generated by Xilinx Vivado, which gives a full breakdown

of how many of each type of component has been used. It also shows the exact place-

ment and configuration of each component. Xilinx Vivado also gives an estimate of

power consumption and timing. The power consumption estimate given is in terms of

how many Watts of power the board will consume at any given time, which is useful

for an overall estimate of power consumption. Actual values can be measured using an

oscilloscope. Additionally, plots of the power traces generated from ChipWhisperer
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software can show changes in power over each power trace collected, giving a more

granular look at the power consumed during encryption. A timing report generated

by Xilinx Vivado states if timing constraints, including setup and hold time, are met.

Timing also can be inferred from observing the power traces from the ChipWhisperer

software, as it is possible to view each of the rounds in the power trace.
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CHAPTER 4

EXPERIMENTS & RESULTS

Two different setups were used to test these experiments, as explained in the

previous chapter. One was used for experiments conducted before the proposal for

this project (pre-proposal), while the other was used for all experiments conducted

afterwards (post-proposal). Our pre-proposal experiments involved testing Voltage

Noise (VN) and Clock Phase Noise (CPN) separately and combined, and were used

to obtain the results that were published in the 2019 IEEE 30th International Con-

ference on Application-specific Systems, Architectures and Processors (ASAP) [17].

Our post-proposal work expands on our pre-proposal work by performing different

experiments with VN, and testing CPN and a combined countermeasure, but by us-

ing slightly different software and settings. In the following sections, we describe our

pre- and post-proposal work for all countermeasures.

4.1 Voltage Noise

4.1.1 Pre-Proposal

Our pre-proposal results first looked at Voltage Noise as an individual counter-

measure to protect AES, with a topology as shown in Figure 4.1. The overall design

of VN is shown in Figure 2.2, which shows a PRNG generating outputs to control

rows of noisy circuits. Two different row types of noisy circuits were discussed, SRL

and SRL-LFSR. SRL simply uses chains of shift register LUTs as a noise generator,

while SRL-LFSR is identical to SRL except that it mixes up the internal values of
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Figure 4.1. Overall topology of VN as an individual countermeasure to protect
AES from power side-channel attacks, where the same system clock is used as input
to both VN and AES.

the shift registers in order to make the power output less predictable. These are both

depicted in Figures 2.3 and 2.4 respectively.

For all of our experiments, we used a 32-bit LFSR as our PRNG module. The

number of shift register in each row was fixed at 32, meaning that s was always set to

32 and therefore the amplitude of the noise for all experiments was fixed. We changed

the variance of the noise by using four different amounts of r rows. Specifically, we

tested using 8, 16, 24, and 32 rows, which is equivalent to 256, 512, 768, and 1024

individual shift register LUTs. Each shift register is 32-bits wide and is initialized

with alternating bits of 1’s and 0’s.

We then used the CPA attack against the SRL and SRL-LFSR implementations

of VN five separate times, each using a different plaintext but the same key each

time. Because each plaintext was completely random, each trial produced a slightly

different PGE result. Our results are the average of these five trials, and are shown in

Table 4.1 along with the power consumption and amount of LUTs and registers used.

Notice that adding VN does increase protection by a few hundred traces compared

to unprotected AES, as shown in Figures 4.2 and 4.3. Additionally, the amount

of protection does increase slightly as more shift registers are used. However, this
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Figure 4.2. Results of our pre-proposal experiments on VN, specifically SRL.

Figure 4.3. Results of our pre-proposal experiments on VN, specifically SRL-LFSR.

increase in the amount of traces that an attacker would need to collect could be

obtained in a matter of minutes. For example, using our setup, we can capture and

analyze 1,000 traces in about 2 minutes. It is clear from these results that neither

SRL or SRL-LFSR are effective countermeasures against CPA on their own.
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Experiment Rows Power (mW) LUTs Registers PGE<5
AES Only 0 165 2,287 851 780

SRL

8 172 2,702 1,011 980
16 172 2,958 1,011 1,124
24 173 3,213 1,011 1,130
32 176 3,469 1,011 1,168

SRL-LFSR

8 173 2,966 1,011 1,174
16 176 3,484 1,011 920
24 175 4,005 1,011 1,070
32 176 4,525 1,011 1,144

Table 4.1. Power, area, timing, and protection measurements for pre-proposal ex-
periments using unprotected AES, SRL, and SRL-LFSR.

4.1.2 Post-Proposal

When collecting our pre-proposal results for CPN, it was observed that the Mixed-

Mode Clock Manager (MMCM) component used to generate clocks uses a very large

amount of power. MMCM and PLL modules are known to consume large amounts of

power relative to other components [18]. As described in detail later on in this chapter,

the CPN module offers much more protection than the VN module. We hypothesized

that the success of CPN could be due to the power-hungry MMCM module instead

of the countermeasure itself. So in order to make a more fair comparison between

CPN and VN, and to ensure that the success of CPN was not largely due to the

MMCM module, we implemented an MMCM module in all of our post-proposal

experiments using VN. The MMCM module was simply used to generate a fixed

19.2 MHz clock as shown in Figure 4.4, or multiples of this clock frequency in other

experiments as shown in Figure 4.5. No phase shifted clocks were generated by

the MMCM module for experiments with VN. All pre-proposal experiments used

completely random plaintexts, but the same plaintext sequence was used for all of

the post-proposal experiments in an effort to increase consistency among the results.

For all of our post-proposal results, we only used the SRL implementation of VN.
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Figure 4.4. Overall topology of VN as an individual countermeasure, including a
MMCM module into the design to make for a more fair comparison between VN and
CPN.

Figure 4.5. Overall topology of VN as an individual countermeasure, where the
input clock for VN is a multiple of the clock used for AES.

One can compare the results between the pre- and post-proposal experiments

shown in Tables 4.1 and 4.2 and see that there is a slight increase in protection for

unprotected AES in the post-proposal results. In the pre-proposal results, unpro-

tected AES reached a PGE <5 for all key bytes, or became brute forcible, at around

780 traces. The post-proposal results using the MMCM module became brute forcible

at around 1300 traces. This shows that adding the MMCM module to VN does add

about 1.5 times more protection. However, at such small values this increase does not

offer meaningful protection, as it would take an attacker only a minute or so to collect
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Figure 4.6. Results of our post-proposal experiments using VN, which shows that
increasing the frequency used by VN significantly increases the number of traces
required until it can be solved by brute force.

an additional few hundred traces. Therefore, we do not believe that the presence of

the MMCM module has a significant effect on the protection offered by VN as an

individual countermeasure.

The second component of out post-proposal testing of VN as a standalone coun-

termeasure consisted of experimenting with increasing the clock frequency used by

our VN module. A diagram of the topology used for these experiments is shown in

Figure 4.5. Note that the clock frequency used by the AES module remains at 19.2

MHz for all experiments. In addition, only SRL was used and all designs used an

MMCM module. We experimented with two different frequencies for VN, 38.4 MHz

which is double the frequency used by AES, and 76.8 MHz which is quadruple the

frequency used by AES.

With each increase in the frequency, a significant increase in protection was ob-

tained, as shown in Figure 4.6. We can see that when SRL is added to AES and they
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are both operating at the same clock frequency, there is no significant increase in the

amount of protection, which mirrors our pre-proposal results in Table 4.1. When the

frequency for VN is increased from matching AES to double the frequency of AES,

the protection increases anywhere from about 5.5 to 30 times compared to when the

frequency for AES and VN are the same. This is substantial, but still not necessarily

enough for it to be used as a standalone countermeasure. When the frequency for

VN is quadrupled, it offers 27 to 103 times the amount of protection possible when

AES and VN use the same frequency clock. This is much more substantial, and at

the higher end offers enough protection where it may be suitable as a standalone

countermeasure for systems which only need to protect up to a few hours worth of

data collection. We can see from Table 4.2 that the protection offered is significant

without dramatically increasing area, power consumption, or execution time in a way

that would be prohibitive to implement.

Experiment Rows Power (mW) LUTs Registers PGE<5 Time (µs)
AES Only 0 238 2,473 979 1,300 5.85

SRL @ 19.2 MHz

8 239 2,730 1,011 1,275 6.38
16 239 2,985 1,011 1,325 6.38
24 239 3,240 1,011 1,600 6.38
32 240 3,498 1,011 2,250 6.38

SRL @ 38.4 MHz

8 219 2,729 1,011 9,225 6.38
16 220 2,985 1,011 9,750 6.38
24 220 3,241 1,011 8,900 6.38
32 221 3,497 1,011 67,575 6.38

SRL @ 76.8 MHz

8 246 2,729 1,011 78,700 6.38
16 247 2,986 1,011 140,725 6.38
24 248 3,241 1,011 43,425 6.38
32 249 3,497 1,011 231,600 6.38

Table 4.2. Power, area, timing, and protection measurements for post-proposal
experiments of unprotected AES and increased clock frequency SRL.

Another way to look at the impact of increasing the clock frequency of VN as

an individual countermeasure is to directly observe power traces. Figure 4.7 shows

four different power trace plots. The top left plot is of unprotected AES, while the
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Figure 4.7. Diagram of power traces for unprotected AES and the VN countermea-
sure, where SRL is used and VN uses different frequency clocks. Higher frequency
clocks disfigure the power trace more significantly.

other three are of unprotected AES and different versions of the increased frequency

countermeasure. One can see that as the frequency used by VN is increased, it

becomes much more difficult to identify the original unprotected AES trace, or even

characteristics of the AES trace. This would plausibly make it more difficult for CPA

to be performed successfully.
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Figure 4.8. Overall topology of CPN as an individual countermeasure, where CPN
generates a random clock based on the system clock to be used as the clock for AES.

4.2 Clock Phase Noise

4.2.1 Pre-Proposal

The overall topology for CPN as an individual countermeasure is shown in Figure

4.8, which shows CPN generating a random clock from the system clock, which is

then used as the input clock for AES. As part of our pre-proposal experiments, three

CPN modules were developed and tested, each implementing a different number of

clock phases. The design for the four-phase implementation of these experiments is

shown in Figure 4.9. For CPN designs with fewer than four phases, fewer clocks

are generated from the MMCM module and fewer clock buffers are required. In this

design, the system clock is the first clock that is being used as part of the random

clock output, and is running at 100 MHz. We experimented with using one, two, and

three additional clocks generated from the MMCM module, corresponding to 2, 3,

and 4 total clock phases. Each of these clocks ran at 100 MHz as well. The PRNG

used for all CPN experiments is an 8-bit LFSR.

The two-phase implementation selected between two clocks, the first being the

system clock and the other being a phase-shifted clock from the MMCM module,

which was shifted 90°from the system clock. Only one clock multiplexer and therefore

one bit from the PRNG was required to generate the random clock output. The three-

phase implementation used the system clock and two phase-shifted clocks generated

from the MMCM module at 90°and 180°each. Only two clock multiplexers and two
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Figure 4.9. Diagram showing the pre-proposal implementation of CPN, where the
system clock is used along with phase-shifted clocks generated from an MMCM mod-
ule to produce a random clock output.

bits from the PRNG were required. The four-phase implementation used an additional

270°clock and an additional clock buffer, as shown in Figure 4.9.

Each of these CPN implementations generated a random clock, which was used as

the main clock input for AES-128 and tested against CPA. The results are described

in Figure 4.10 and Table 4.3. One trial was performed for each clock phase, with all

encryptions being performed using using the same 128-bit key and different random

plaintexts. Our results show that with each additional clock phase, CPN offers sub-

stantially greater protection. This is due to the increased variation in possible clock
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Figure 4.10. Results of CPN countermeasure with AES, which shows that increasing
the number of clock phases in CPN increases the number of traces needed until the
key is brute forcible.

Number of Phases CPA PGE<5
1-Phase (AES Only) 786
2-Phases 283,280
3-Phases 1,098,840
4-Phases 1,265,400

Table 4.3. Pre-proposal results for different CPN implementations.

delay lengths and combinations. Note that the implementation corresponding to only

one clock phase is simply plain AES-128.
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Figure 4.11. Diagram showing the post-proposal implementation of CPN, where
two 19.2 MHz clocks are generated from the MMCM module to produce a random
clock output.

4.2.2 Post-Proposal

In our post-proposal experiments, we tested CPN as shown in Figure 4.11, where

two 19.2 MHz clocks are generated from the MMCM module. One of these clocks is

phase shifted 90°from the other, mimicking the two-phase example from the first phase

of experiments. We limited our post-proposal experiments to only the two-phase

implementation due to time restrictions, and because our pre-proposal experiments

already proved that protection drastically increases as more clock phases are included

to create the random clock output. We also only performed the SW-CPA attack

instead of both the CPA and SW-CPA attacks.

We performed three different trials of our experiment and averaged the results, as

shown in Table 4.4. Each trial produced a significantly different result, with Trial 1

producing the maximum of about 1.3 million traces, Trial 2 producing the minimum

of 330 thousand traces, and with an average of about 766 thousand traces until brute

forcible. All results are significantly higher than our pre-proposal results, in which
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Trial SW-CPA PGE<5
1 1,309,600
2 330,825
3 659,025
Average 766,483

Table 4.4. Post-proposal results for CPN over three trials with an average.

Power (mW) LUTs Registers SW-CPA Time (µs)
Pre CPN 2-Phase 402 2,453 986 50,960 2.8
Post CPN 2-Phase 218 2,476 986 766,483 11.4

Table 4.5. Comparing pre- and post-proposal results for the CPN countermeasure.
SW-CPA is measured in traces until PGE<5, or it is brute forcible.

the 2-phase results after CPA were about 283 thousand traces and the results after

SW-CPA were about 50 thousand traces until brute forcible, as shown in Tables 4.5

and 4.6. SW-CPA denotes when the sliding window attack was performed on the

collected power traces before executing CPA. This difference can only be attributed

to the slight design change of only using clocks generated from the MMCM module

instead of incorporating the system clock. It could be that using the system clock

in our pre-proposal design did not offer much of a benefit, making our pre-proposal

design less effective than our post-proposal design. A less likely cause could be some

discrepancy between the different software or configuration of such software used for

the pre- and post-proposal results.

We can observe the effect of the CPN countermeasure by directly observing power

traces. Figure 4.12 shows a power trace of unprotected AES and an example of

CPN. One can clearly see in unprotected AES that each round completes in the same

amount of time. However, in the power trace of CPN, some rounds take almost twice

as long to execute compared to unprotected AES due to the clock randomization.

One can see how this delays AES in time, as unprotected AES finishes around 500

samples while AES with CPN finishes at around 550 traces. One can also see that
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Figure 4.12. Diagram of power traces for unprotected AES and the CPN counter-
measure, where SRL is used and VN uses different frequency clocks. Higher frequency
clocks disfigure the power trace more significantly.

after the delay, the following clock pulses are indeed phase shifted and no longer

aligned with unprotected AES. In this example, only two clock cycles are extended.

But the worst case timing scenario, every clock cycle would be delayed, causing AES

with CPN to take about twice as long to execute as unprotected AES.
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Figure 4.13. Overall topology of the combined countermeasure, where CPN gener-
ates a random clock based on the system clock to be used as the clock for AES and
VN.

4.3 Combined Experiments

4.3.1 Pre-Proposal

In our pre-proposal experiments, we tested one combined experiment as shown

in Figure 4.13, where CPN generates a random clock based on the system clock.

This random clock is used as the input for both AES and VN. Note that in all of

the combined experiments, we only tested VN modules with 16 rows and CPN with

two clock phases as to limit the total number of experiments performed. Figure

4.14 shows the amount of protection offered by CPN alone and CPN combined with

the two different VN countermeasures against CPA and SW-CPA. Again, SW-CPA

denotes when the sliding window attack was performed on the collected power traces

before executing CPA. The first pair of bars show that CPN by itself can withstand

about 283 thousand traces until the key is brute forcible when attacked using CPA,

but this protection is reduced by about 83% to about 50 thousand traces if the sliding

window attack is performed before CPA. This confirms that the SW preprocessing

attack is very effective against CPN.

The next two pairs of bars show the combined results, first using SRL as the

VN implementation and the second with the SRL-LFSR implementation. There is
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Figure 4.14. Pre-proposal results of CPN and our combined countermeasure, show-
ing that the combined countermeasure offers a substantial increase in protection

a dramatic increase in protection against CPA for both combinations. The overall

protection from CPA increases by about 245% to 975 thousand traces until the key is

brute forcible for SRL, and 95% to 550,000 traces for SRL-LFSR. This is surprising

because both SRL and SRL-LFSR offer almost negligible protection by themselves, as

shown in Figures 4.2 and 4.3. The combined experiment’s protection is also reduced

significantly by SW, as the protection is reduced by about 85% for SRL and by about

76% for SRL-LFSR. The SW-CPA results for CPN with SRL are quite similar to those

of CPN alone, implying that Sw is equally effective against both countermeasures.

SW is about 10% less vulnerable to SW based on these results, which is a slight

improvement but is clearly not enough to remove the vulnerability.

Table 4.6 shows a summary of all of our results from our pre-proposal experiments

in terms of protection and resources required, as well as a comparison to the WDDL

countermeasure. This graph includes protection, area, and power results for unpro-
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Power (mW) LUTs DPA CPA SW-CPA
AES Only 165 2,287 780
SRL 172 2,958 1,124
SRL-LFSR 176 3,484 920
CPN 402 2,453 283,280 50,960
CPN + SRL 383 2,811 977,230 141,360
CPN + SRL-LFSR 377 3,484 553,800 133,130
WDDL 486 6,861 1,276,186

Table 4.6. Pre-proposal summary of all results, where each VN countermeasure is
the 16 row version and CPN uses only 2-phases. CPA and SW-CPA are in terms of
PGE<5, or traces until brute forcible.

tected AES-128, the individual countermeasures, the combined countermeasures, and

WDDL [12]. WDDL was implemented on an ASIC and quantified area in terms of

millimeters squared, where all of our results are from an FPGA and are in terms of

the amount of LUTs and Registers utilized. In order to make a fair comparison, we

looked at the total area required for WDDL versus AES in their results, and noticed

that WDDL used about 3 times as much area as the original unmodified AES module.

Therefore, we took the number of LUTs and Registers used by our implementation

of AES and multiplied it by 3 to get a rough estimation of the area we would expect

WDDL to require compared to our experiments. The total power consumption for

WDDL was already listed in Watts.

WDDL also did not use CPA as their attack algorithm, but rather used DPA

and used measurements to disclosure (MTD) as their way of measuring protection.

WDDL performed their experiments multiple times, obtaining minimum, mean, and

maximum values for MTD. The minimum MTD for WDDL is 21,185 traces, the mean

MTD is 255,391 traces, and the maximum MTD is 1,276,186 traces. We did not repeat

our experiments multiple times for our pre-proposal combined countermeasures, and

therefore do not have such a range available. Therefore, we consider our results to be

the maximum amount of protection, and therefore use the maximum amount of traces

until disclosure that WDDL listed for the protection offered by WDDL. Compared
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to our metric of PGE<5 for all key bytes, measurements to disclosure is roughly

equivalent to PGE=0 for all key byes. Obviously, PGE<5 is easier to obtain than

PGE=0, and therefore the maximum amount of traces offered by WDDL would be

at least somewhat less than its current value if the PGE<5 metric was used.

Table 4.6 shows that WDDL offers more protection than our most effective coun-

termeasure, but also requires significantly more area and power. WDDL protects up

to 1.3 times more traces than our best combined countermeasure, but as previously

discussed, this value is likely higher than it would be if the same metric was used for

measuring protection. WDDL uses 3 times more area and 2.9 times more power than

AES, compared to our best combined countermeasure which only uses 1.4 times the

area and about 2.3 times more power than AES. It could be argued that the increase

in protection offered from WDDL is not great enough, considering the increase in

area and power, to be used instead of our best countermeasure. However, WDDL

has not been tested against the sliding window attack or CPA. Since WDDL is not a

clock based countermeasure, we assume that it would be significantly more resilient

to the sliding window attack than our countermeasures.

4.3.2 Post-Proposal

In our post-proposal results, we essentially repeated the same experiment as in our

pre-proposal work. However, we only tested against SW-CPA instead of both CPA

and SW-CPA, as SW-CPA the more effective. We repeated our experiment three

times and averaged the results, as shown in Table 4.7. Similarly to out post-proposal

CPN results, each trial produced a significantly different result. Trial 3 produced the

maximum result of about 1.7 million traces, Trial 2 produced the minimum result

of 530 thousand traces, and the average was about 1.1 million traces until brute

forcible. These results were about 17% larger than our pre-proposal result of about

977 thousand traces until brute forcible, which is significant, but close enough where
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Figure 4.15. Post-proposal averaged results of CPN and our combined countermea-
sure, again showing that the combined countermeasure offers an increase in protection.

Trial SW-CPA PGE<5
1 1,184,425
2 530,875
3 1,730,350
Average 1,148,550

Table 4.7. Post-proposal results for the combined countermeasure over three trials
with an average.

we could expect this difference to decrease if more trials were conducted on both our

pre- and post-proposal experiments. The average of our CPN and combined results

are shown in Figure 4.15 in order to visually compare them to our pre-proposal results

in Figure 4.14.

Table 4.8 is a summary of all of our post-proposal results. We have included timing

measurements in our post-proposal results, which were obtained by visually measuring

the worst case amount of samples required to capture AES and multiplying by the
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Power (mW) LUTs DPA CPA SW-CPA Time (µs)
AES Only 238 2,473 1,300 5.85
SRL 239 2,985 1,325 6.38
CPN 218 2,476 766,483 11.45
CPN + SRL 291 2,986 1,148,550 11.45
WDDL 486 6,861 1,276,186

Table 4.8. Post-proposal summary of all results, where each VN countermeasure is
the 16 row version and CPN uses only 2-phases. CPA and SW-CPA are in terms of
traces until brute forcible.

period for each sample. For WDDL, only the operating frequency was provided, so

we were unable to calculate worst case completion time. These results show that our

combined countermeasure is even more compelling than in our pre-proposal results.

Our post-proposal results for SW-CPA mirror our pre-proposal results under just

CPA. Our combined countermeasure uses about 43% of the area in LUTs and 59%

of the power used by MMCM, but on average protects almost 90% of the maximum

traces that MMCM can protect against. We attribute this increase to the increase in

protection offered by our post-proposal implementation of CPN.
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4.4 Key Dependency

Another area of interest in this research was to determine whether or not our

results were significantly dependent on certain key values. In other words, we wanted

to make sure that certain keys did not have characteristics that always led to more

or less successful attacks. For all of our experiments discussed previously, we use the

same key for consistency, so it would be good to know if certain keys could be used to

produce different results. To test this, we automated the data capture and analysis of

unprotected AES. Each trial used a different key throughout, but the same sequence

of plaintexts as all other trials.

For each trial, we recorded the key used and the number of traces until brute

forcible with CPA. We then calculated the Hamming weight of each byte of the key,

since our attack relies on Hamming weight values of potential key guesses. If there

was a dependency between the results and certain keys, we would expect keys from

results that required few traces to brute force to have a different distribution of bytes

with certain Hamming weights than keys that required more traces to brute force.

For example, all results that were easiest to brute force would have significantly more

bytes with low Hamming weights than results that were more difficult to brute force.

However, this is just an example as there is no specific pattern we are searching for,

just the presence of any pattern.

First, we tested keys that were random numbers and edge cases, such as all 0’s.

We tested 799 keys, with about 50 of them being edge cases. Our results are shown

in Figure 4.16, which on the left has a histogram of the number of traces that became

brute forcible at different numbers of traces. On the right, it has a color coded

plot of the Hamming weight of the key used for different trials, sorted by trials that

required the least to most traces to brute force. The average number of traces needed

until brute forcible is 669, with a minimum of 350, maximum of 1400, and standard

deviation of 146.
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Figure 4.16. Histogram and plot of Hamming weight of keys for 799 random and
edge case key values.

Figure 4.17. Histogram and plot of Hamming weight of keys for 1672 key values.

In the right plot, each vertical slice represents the Hamming weight for the key

used to produce a given set of results, with easier to brute force keys on the left and

more difficult to brute force keys on the right. Each key is 128 bits or 16 bytes. The

y-axis of this plot simply breaks up the key into 16 bytes, where the color between

y=0 and y=1 represents the hamming weight of one byte, the color between y=1 and

y=2 represents the hamming weight of another byte, and so on. The bytes are not

sorted by index, but by Hamming weight; byte 0 of the key can be placed anywhere

in the plot, but the byte of the key with the lowest Hamming weight is always placed

closer to the bottom of the graph. Vertical lines of one solid color are specific edge

cases that tested keys with the same Hamming weight throughout, such as a key of

all 0’s or f’s in hex.
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We can see from examining this plot that there is no obvious dependence between

certain keys and the amount of traces until their trial became brute forcible. If there

were, we would see some sort of pattern, whereas the keys seem to be somewhat evenly

distributed. For example, if having many bytes with low Hamming weights always

led to fewer traces required until brute forcible, all of the leftmost keys would have

many bytes with low Hamming weight (ie many yellow, orange, and red lines) which

would decrease almost linearly as we progress more towards the right side. However,

this is just not the case, nor does there seem to be any trend (linear or otherwise)

with any of the colors.

Lastly, we tested 1672 keys produced by an AES key generator. Unlike the random

numbers and edge cases used in the previous test, all of these keys have a generally

uniform distribution because they are meant to be keys. For example, none of these

keys are all 0’s or 1’s or any other value. In fact, none of the bytes have Hamming

weights below 2 or above 6 at all. In Figure 4.17, we can see that the left plot of

the histogram is very similar to the one from Figure 4.16. The average number of

traces needed until brute forcible is 675, with a minimum of 325, maximum of 1225,

and standard deviation of 134. All of these values are slightly less extreme than our

previous results. We again do not observe any pattern in the rightmost graph, linear

or otherwise. With a total population of 2128 keys and a sample size of 1672 keys,

we know our results are accurate with 95% confidence plus or minus about 2.4%. It

seems that there is no relationship between having more key bytes with a certain

Hamming weight and offering more or less protection from CPA.
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CHAPTER 5

CURRICULUM DEVELOPMENT & EDUCATIONAL
RESULTS

While working towards the completion of this thesis, a new course for undergrad-

uate students was developed titled ECE 317: Introduction to Security Engineering.

It is a junior level class that introduces security concepts, FPGA usage, and hard-

ware description languages and reinforces skills in programming in Python and C. We

developed the majority of the laboratory experiments that the students performed,

all of which focused on applying different security topics to real situations. Teams

were broken up into groups of two or three students, with about 70 students in the

class in total. We also held office hours in the laboratory for students to receive help

with the experiments, and held sessions for the students to demonstrate their final

projects. Typical teaching assistant work such as grading and responding to students

via email and an online forum was also done. The other teaching assistant for this

course was Shayan Moini, who also helped with many of the tasks required to create

and maintain this course.

There were five laboratory experiments in this course. The first course involved

performing a buffer overflow in a C program. The second composed of writing C code

to capture an image from a camera attached to the board, and then encrypting and

decrypting the image in two different modes of AES, one being cipher-block chaining

and the other being electronic code book. The third experiment involved modifying

Python code to encrypt and decrypt a static image using RSA. The fourth experiment

had the student use Verilog for their first time to implement a linear feedback shift

register, which was then used to generate an initialization vector for AES in cipher
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block chain mode used in experiment two. The last project explored power side-

channel attacks, where the students were provided with traces captured from a board

running AES and performed and analyzed different attacks on the trace data. Out

of these projects, we designed all but the third project.

The last laboratory project was heavily related to this research, where the power

trace samples the students worked with were directly captured from the boards that

we use. They specifically were given 5,000 power traces worth of encryptions from an

unprotected AES-128 module. The students downloaded a copy of the ChipWhisperer

4 software and used the default attacks, an attack for DES and another attack for

CPA on AES, to first gain an idea of what these attacks did. The attack for a

DES encryption module was unsuccessful, as the students were using traces from

AES, and therefore the attack was not relevant to the actual power trace. The other

default attack for an AES encryption module using CPA was also unsuccessful, as

that specific attack looked at the SBox output, which is more difficult to break using

CPA on hardware and would require more than 5,000 traces to break.

They were then asked to modify the default CPA attack script to attack a more

fruitful location, specifically the last round state which we use for this research, and

which should have been successful at less than 1,000 traces. The students had to

examine the provided scripts, source code, and online examples to figure out what

needed to be changed in the attack script. They then had to figure out how to

add noise and clock jitter to the traces, which can be done in preprocessing using

ChipWhisperer. Each team of students had to add a different amount of noise or

jitter to their experiments depending on the value of their student ID’s. This led

to some groups having both attacks be successful, as a high amount of noise was

added, while other groups did not. The students were required to write a lab report

explaining what they did, what their final Python scripts were, and plots of their

results. They also demonstrated their results to us and answered simple questions
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about the lab. For example, some of these questions were ”What do noise and jitter

do to the attacks?” and ”What would you need to do to solve an attack that was

unsuccessful?”. Most students received full credit for the demonstration portion of

the lab, and the overall average grade for this assignment was an A.

Formal feedback from students reported all 4’s and 5’s out of 5 total for all ques-

tions asked about the quality of the course. When asked about the instructor’s teach-

ing of the course, students responded quite positively, but also made some comments

about some small bugs in the assignments that we did not find until the students

started working on them. As this was the first version of this course, we ran into a

few hiccups along the way. We particularly found that students needed more clar-

ification on the instructions than expected, that there were small typos in some of

the materials, and that we ran into new bugs that we did not expect when testing

the experiments ourselves. Overall, we were able to resolve this issues in a timely

manner. For every laboratory assignment, students received a small amount of credit

for explaining what they did and did not like about the experiment, issues that they

encountered, how work was divided with their group, and how many hours were spent

on the project. This information will be used to update the course materials for next

year.
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CHAPTER 6

CONCLUSIONS & FUTURE WORK

The following sections discuss thoughts on each experiment tested and their re-

sults, as well as suggestions for future experiments and other areas of improvement.

6.1 Experimental Methodology

We were able to successfully use Xilinx Vivado, ChipWhisperer 4, and ChipWhis-

perer 5 for our research. We developed several Python scripts for automating tests,

reusing plaintexts, processing our results, and more. However, there is room for ex-

pansion. One improvement that we considered implementing into our experiments

was to better ”lock in” the location of certain components of our designs into certain

regions of our FPGA, to keep our experiments more consistent. This would prevent

some components from being optimized out of the design or placed in different lo-

cations, which could potentially skew the results of our experiments. For example,

if one design had a component optimized away unknowingly, that design may gener-

ate slightly less power and offer slightly less protection than expected. Changes in

placement and routing may lead to similar effects.

We experimented with using incremental compile in Vivado as a way to ensure

that designs that were similar would keep some similar placement and routing. For

example, we used the same Xilinx project for different VN experiments, but changed

which type or number of noisy circuits that was used each time we generated a new

bitstream. However, the changes were too dramatic for the incremental compile tool

to work properly, as the increase in size from the different sizes of VN modules were
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probably more than what the tool was intended for, and therefore generated designs

with many timing violations. A second method we tried was to export the base

AES design as an IP block and import it into all of the designs such that the AES

configuration would be identical in all designs. However, we were unable to get Vivado

to properly import our IP blocks, and so this was abandoned.

One aspect of conducting this research is that capturing and analyzing interesting

data can take a very long time. When possible, we used multiple ChipWhisperer

boards on multiple computers in order to increase throughput and capture as much

data at a time as possible. We would recommend having multiple boards for anyone

conducting similar research. The main bottleneck for capturing power traces is the

board itself, while the main bottleneck for analyzing traces is processing power. For

future experiments, it may be helpful to use the newly released LASCAR integration

with ChipWhisperer to speed up analysis, or to offload the analysis onto the cloud or

a dedicated server.

6.2 Voltage Noise

We were able to thoroughly examine Voltage Noise as an independent countermea-

sure between the different pre- and post-proposal experiments that we conducted. We

could have continued to test implementations of VN using different numbers of rows,

shift registers per row, or sizes of individual shift registers. However, it was apparent

that these differences were very insignificant and only showed more useful insights

when combined with other countermeasures. Our pre- and post-proposal results both

showed that VN is an ineffective countermeasure by itself, only increasing protection

by a negligible few hundred traces. The only potential exception was found in the

post-proposal experiments where the clock frequency of VN was increased, in which

we found that as much as 231 thousand traces were required until the secret key was

brute forcible. This is still not satisfactory for a critical application, but is a dramatic
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improvement over our previous results. We would anticipate that running VN at even

higher frequencies than we tested could potentially provide enough protection for VN

to be used as a standalone countermeasure in some situations. In addition, it would

be useful to formally compare VN to ring oscillators to test if our intuition that shift

registers offer more protection than ring oscillators is true.

6.3 Clock Phase Noise

Our pre-proposal results showed that CPN can offer substantial protection on its

own, protecting more than a million traces if three or more clock phases were used.

However, this protection was reduced by about 83% in the face of SW-CPA. In our

post-proposal work, we slightly changed out design such that the system clock was no

longer used as an output of the CPN module, but instead all clocks were generated

from an MMCM module. We found that protection dramatically increased, requiring

about 766 thousand traces on average until brute forcible after SW-CPA with only

two clock phases. We attribute this dramatic increase to our design change, but it

could have also been impacted by our changes to our experimental methodology.

We would have liked to test more than four clock phases in total for both our

pre- and post-proposal results to see if the relationship between protection and clock

phases constantly increases, or if it converges to some maximum value. For our

post-proposal results, we only tested the two-phase countermeasure. We were able to

repeat our post-proposal experiments three times to gain an understanding of how the

amount of protection offered by CPN can vary. We obtained minimum and maximum

estimates of protection offered by CPN. However, these results could have been further

improved by conducting more trials. Other modifications, such as changing value of

the phase offset to values other than 90°increments may also have been interesting,

especially if it was found that certain phase offset combinations would be resistant to

any window size of the sliding window attack.
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Figure 6.1. Diagram of Constant Latency design for CPN, where the resultant clock
ensures that one AES encryption will always complete in the same amount of time
regardless of how many times the clock is switched.

Another idea to be explored is a version of CPN that always takes the same

amount of time to encrypt a plaintext regardless of what clock sequence was used to

generate the random clock. This would have been referred to as Constant Latency, as

shown in Figure 6.1 and would be implemented by enforcing that a certain clock was

used immediately after one that was picked by the pseudo random number generator.

For example, if we used three clocks of the same frequency but with one clock phase

shifted -90°and another phase shifted +90°, we could theoretically always enforce that

the positive shifted clock would be used for the next clock cycle if the negative clock

was selected and vice versa. However, preventing timing violations is a significant

concern for this implementation, as this design inherently would reduce the amount

of time in between rising clock edges in some cases. Our current CPN countermeasure

only increases time between rising clock edges because the clock multiplexers simply
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wait to select a new clock until the next rising clock edge if a period would be cut

short, preventing timing issues.

6.4 Combined Experiments

In both our pre- and post-proposal combined experiments, we made a compelling

case for our combined countermeasures. In our pre-proposal work, our best combined

countermeasure protected about 76% of the maximum amount of traces that WDDL

could with only about 41% of the area and 78% of the power required for WDDL.

However, the sliding window attack significantly reduced the amount of protection

our combined countermeasure could offer to only 11% of that offered by WDDL.

In our post-proposal results, our CPN countermeasure performed remarkably better,

and as follows so did our combined countermeasure. Our combined countermeasure

on average protected up to about 90% of the maximum amount of traces that WDDL

could with only about 43% of the area and about 60% of the power required for

WDDL. This is remarkable because these results are after the sliding window attack,

meaning that our post-proposal countermeasures protect almost as well as WDDL

while requiring only about half of the resources.

Other combined countermeasures to be examined include using different clocks

for AES and VN, where only VN or AES uses the clock generated from CPN and

not both. It would be interesting to see if there would indeed be less protection,

as we would expect, if only one of these modules used the random clock while the

other used a fixed clock. Other potential combined countermeasures include using

the increased frequency for VN and the output of CPN for AES. Since the increased

frequency version of VN was so successful, we would expect this combination to add a

very significant increase in protection compared to our existing countermeasure with

very little overhead.
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