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ABSTRACT 
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INTRODUCTION:  Sensory systems within the head provide us with rich perceptual information and may 

require complex control of the head during locomotion when changing direction. Head position in space 

is maintained by head on trunk motion as well as lower extremity kinematic modifications, such as 

increased knee flexion and increased stance time in order to facilitate shock attenuation and reduce 

vertical CoM displacement. It has been established that the body organizes its degrees of freedom of the 

trunk, pelvis and lower extremities differently during anticipated and unanticipated sidestepping, which 

raises the question of how these modifications affect head control during change of direction tasks. 

METHODS: Fourteen collegiate soccer players performed 7 anticipated and 7 unanticipated sidestepping 

tasks. Kinematic data were recorded using an 11-camera motion capture system (Qualysis, Inc., 

Gothenburg, Sweden) sampling at 240 Hz. Head and trunk orientation was quantified at penultimate toe 

off. A modified vector coding analysis was used to quantify the coordination and coordination variability 

between the head and trunk during the anticipated and unanticipated side-stepping trials. Differences in 

head-trunk orientation and coordination pattern frequencies were assessed with a paired t-test with an 

𝛼𝛼 = 0.05. One-dimensional statistical parametric mapping (SPM1D) was used to compare coordination 

variability waveforms.  

RESULTS: The head (p < 0.01, ES = 0.82) and trunk (p < 0.05, ES = 0.59) were significantly more oriented 

toward the new travel direction during anticipated compared to unanticipated sidestepping. No 
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significant differences in transverse or sagittal plane coordination were observed throughout the change 

of direction stride. However, during unanticipated sidestepping we observed significantly reduced in-

phase head-trunk coordination during the preparatory phase in the sagittal (p = 0.04, ES = 0.63) and 

transverse (p = 0.02, ES = 0.73) planes but did not find differences in the stance or post-transition 

phases. Coordination variability did not differ between anticipated and unanticipated conditions. 

Irrespective of planning time, greater transverse plane coordination variability was observed during the 

flight phases compared to the stance phase (p < 0.01) of the change of direction stride. Sagittal plane 

coordination variability was significantly greater during the preparatory phase than the stance phase (p 

< 0.01), and stance phase coordination variability was significantly greater than post-transition phase 

variability (p < 0.01).  

SIGNIFICANCE: Our results suggest differences in coordination between the head and trunk between 

anticipated and unanticipated sidestepping emerge during the preparatory phase of the change of 

direction stride, from penultimate step toe off to transition step heel strike. Anticipated and 

unanticipated sidestepping are different tasks, but individuals are consistent in the way the head-trunk 

coupling is controlled. Relating variability to task goals may allow for a better understanding of the 

beneficial aspects of variability observed at the head.  
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GLOSSARY 

 
Figure 1: Tri-Planar Definitions of Head, Trunk and Pelvic Motion. The trunk represents the thorax-ab 
region of the body. The term obliquity is used to describe pelvic motion in the frontal plane to the 
ipsilateral and contralateral sides relative to the stance leg while lateral flexion can be used to describe 
neck and trunk motion. The stance leg will be specified. In the transverse plane, the neck trunk and 
pelvis can rotate clockwise (CW) and counter-clockwise (CCW).  

Trunk – Thorax-abdominal region of the body. Throughout the literature, the term trunk has 
been used to describe the thorax, thorax-ab, and thorax-ab-pelvic region of the body. 
Throughout this document, the term trunk will be used strictly to define motion of the thorax-ab 
region when appropriate (Figure 1). In circumstances where the original authors of an adapted 
figure use the term to represent something other than the thorax-ab region, the figure caption 
will provide the correct term. 
 
Obliquity – Term used to describe pelvic motion in the frontal plane.  Ipsilateral pelvic obliquity 
would refer to the pelvis being lower on the stance leg side and higher on the contralateral side 
in the frontal plane. 
 
Frankfort Plane – a plane referenced to anatomical landmarks of the head which closely aligns 
with the earth’s surface during quiet stance, from the inferior limit of the orbit of the eye to the 
center of the vestibular canals.  
 
Center of Mass (CoM) –  the concentrated point where the body mass can be considered for the 
entire body as well as each body segment 
 
Center of Pressure (CoP) –  The weighted average of all pressures over the surface of the area in 
contact with the ground, most commonly represented as the point under the feet where the 
vertical ground reaction force (GRFv) is exerted  
 
Base of Support (BoS) – The total surface area where a virtually projected CoM can be 
contained to maintain upright posture, defined by the outer boundaries.  
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CHAPTER 1  
INTRODUCTION 

1.1 Background  
 

The control of head position in space requires the integration of multiple sensory systems, 

mainly visual, vestibular and somatosensory. The head contains both visual and vestibular systems. 

Visual information allows for the perception of self-motion and obstacle avoidance with distant objects, 

while vestibular information allows for the sensation of angular and translational accelerations. The 

vestibulo-ocular reflex (VOR) and vestibulocollic reflex (VCR) collectively allow for a stable visual field 

and stable head position within space, respectively (Hirasaki, Moore, Raphan, and Cohen, 1999; Imai, 

Moore, Raphan, and Cohen, 2001; Moore, Hirasaki, Cohen, and Raphan, 1999). Somatosensory 

information from neck proprioceptors allows for the detection of changes in muscle length and thus the 

position of the head relative to the trunk (Pettorossi and Schieppati, 2014). A stable head facilitates a 

stable visual field as well as the optimization of vestibular input.  

The trunk plays a vital role in Center of Mass (CoM) control, as well as providing a stable 

platform for the head during locomotion (Cromwell, Newton, and Carlton, 2001; Pozzo, Berthoz, and 

Lefort, 1990; Romkes and Bracht-Schweizer, 2017). During walking and running, trunk motion oscillates 

around an equilibrium point in space, with a trunk flexion angle maintained within a few degrees in the 

sagittal plane (Pozzo et al., 1990; Romkes et al., 2017).  At moderate to fast walking speeds, sagittal 

plane head motion is compensatory for vertical CoM translation (Hirasaki et al., 1999; Moore et al., 

2001) while transverse plane head motion is compensatory for angular transverse plane motion of the 

trunk (Imai et al., 2001). While compensatory out-of-phase head motion occurs in the sagittal and 

transverse planes, the head tends to move in-phase with the trunk in the frontal plane (Pozzo, Levik, and 

Berthoz, 1995). The out-of-phase motion during running is also characterized by more dominant trunk 

motion in the transverse plane and more dominant head motion in the sagittal plane (Lim et al.,2020). 
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Throughout the stride cycle, the trunk oscillates twice in the sagittal plane, while only oscillating once in 

the frontal and transverse planes due to gait related events (Romkes et al., 2017). Despite large head on 

trunk motion, there is relatively little head in space motion during walking  with compensatory motion 

occurring at a similar frequency to trunk motion in the sagittal and transverse planes (Hirasaki et al., 

1999; Imai et al., 2001; Moore et al., 2001; Moore et al., 1999; Pozzo et al., 1990). Like the trunk, the 

head motion in the up-down direction is dependent on the step frequency, while frontal and transverse 

plane motion are both dependent on the stride frequency at faster walking speeds (Thorstensson et al., 

1984, Hirasaki et al., 1999; Imai et al., 2001; Moore et al., 2001). 

Lower extremity changes in joint and segmental motion may reduce head motion both with and 

without a visual task (Busa et al., 2016; Hamill, Derrick, and Holt, 1995; Lim et al., 2017; Mulavara, 

Verstraete, and Bloomberg, 2002). Accelerations at the head are attenuated relative to accelerations at 

the shank, primarily achieved through active modifications at the knee during late stance (Busa et al., 

2016; Hamill et al., 1995; Lim et al., 2017). With increased visual acuity demands, it has previously been 

reported that individuals increase knee flexion angle and increase double support time during walking 

(Mulavara, Verstraete, and Bloomberg, 2002), and increase knee and hip flexion angle as well as stride 

frequency during running (Lim et al., 2017). These kinematic modifications are suggested to facilitate 

shock attenuation (Busa et al., 2016; Hamill et al., 1995), reduce vertical CoM displacement and overall 

head motion (Lim et al., 2017; Mulavara et al., 2002).  

To successfully change direction, the CoM must move beyond the lateral Base of Support (BoS) in 

the desired travel direction (Patla et al., 1999). With adequate planning time a stepping strategy can be 

implemented to redirect the CoM, where a more medial penultimate step results in reduced CoM 

acceleration toward the transition limb, allowing for a wider transition step relative to the CoM to 

increase the vertical ground reaction force vector (GRFv) angle in the new direction of travel (Patla et al., 

1999). With reduced planning time a hip strategy is implemented to redirect the CoM (Patla et al., 
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1999). Without sufficient planning time to modulate penultimate step width, a more lateral penultimate 

step is taken, similar to straight running foot position (Lee et al., 2017; Patla et al. 1999). To redirect the 

CoM in a new travel direction, the hips are thrust toward the new travel direction commonly seen with 

trunk orientation away from the new travel direction in the frontal plane (Lee et al., 2017; Mornieux et 

al., 2014; Patla et al., 1999; Weir et al., 2019). During unanticipated change of direction tasks, increased 

trunk rotation and lateral trunk flexion in the opposite direction of travel, decreased hip flexion, 

increased hip abduction, and increased knee flexion are commonly reported as well as significant 

differences in vertical CoM displacement (Besier et al., 2001; Brown, Palmieri-Smith, and McLean, 2009; 

Mornieux et al., 2014; Wyatt et al., 2019). 

Anticipatory rotations of the head are also observed during change of direction tasks. Under 

normal conditions with adequate planning time, participants align their head with the new travel 

direction prior to aligning the rest of their body during sidestepping tasks (Hollands et al., 2001; Patla et 

al., 1999). When individuals are asked to walk around a curved trajectory, gaze and head direction are 

aimed toward future heading direction, even in darkness without visual cues (Authie et al., 2015; 

Bernardin et al., 2012; Grasso et al., 1996, 1998). While Cinelli and Warren (2012) have shown these 

anticipatory head rotations are neither sufficient nor necessary, they are typically observed in natural 

conditions both along curved trajectories (Authie et al., 2015; Bernardin et al., 2012; Grasso et al., 1998) 

and during sidestepping tasks  (Hollands, Sorensen, and Patla 2001; Patla et al., 1999).  This head 

direction alteration prior to changes in heading direction has been observed with adequate planning 

time, but may not be as prevalent during unanticipated change of direction tasks.  Mornieux et al. 

(2014) reported that, on average, the head was less rotated in the new direction of travel during 

unanticipated sidestepping conditions. However, the authors used range of motion assessments at 

discrete time points to present these findings, which may not provide the full information regarding the 

changes in the movement pattern of the head during a change in direction. 
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The body’s individual segments can be organized in a number of different ways during 

sidestepping tasks. In a dynamical systems approach, the organization and re-organization of the many 

degrees of freedom in the body occur through a process of self-organization in which changes are not 

implemented  in a top-down approach, but where the system components organize in a task-dependent 

manner. When assessing the state of a system, two of Bernstein’s principles can be implemented 

(Bernstein, 1967).  First, coordination between many joints/segments can be organized in a number of 

different ways to achieve the same task. Second, the variability of coordination is important as it 

provides a metric into the variety of coordination patterns utilized. It is important to note that 

coordination variability differs from end-point variability. In the context of sidestepping tasks, end-point 

variability may be approach velocity and change of direction angle while coordination variability refers 

to the variability of the segmental couplings utilized to achieve task goals (Weir et al., 2019).  

Dynamical systems theory has provided a language to describe and quantify complex movement 

patterns. When performing a complex task, the body must be flexible and adaptable. This requires 

stable patterns and qualitative transitions. These stable patterns are known as attractors, defined by a 

set of points in the state space (Kelso, 1995). When an attractor becomes unstable, it will undergo a 

phase transition via a bifurcation, defined as a qualitive change in the attractor structure (Kelso, 1995). 

To quantify specific attractors, collective variables known as order parameters describe pattern 

formation as well as their evolution. The relative phase between segments and joints has been identified 

as an order parameter and is used to describe the underlying dynamics of the system (Diedrich and 

Warren, 1995; Li, Van Den Bogert, Caldwell, van Emmerik, and Hamill, 1999). Control parameters, such 

as frequency or velocity, can induce a shift in the relative phase at a critical transition point. In the 

context of the walk-to-run transition, as gait speed (the control parameter) increases a critical point is 

reached where the relative phase of ankle-hip and ankle-knee coupling angles (order parameters) 
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become energetically costly and the attractor dynamics become unstable,  initiating the transition to 

running (Diedrich et al., 1995).  

The coordination literature has quantified task-dependent joint coupling to better understand the 

effects of aging and disease. In healthy individuals, transverse plane trunk-pelvis relative phase is 

dependent on gait speed, with more in-phase motion at slower walking velocities and more anti-phase 

motion at faster walking velocities (van Emmerik and Wagenaar, 1996; van Emmerik et al., 2005; van 

Emmerik et al., 1999; Wagenaar and, Beek, 1992). Changes in these coordination patterns during 

walking have been observed in those with movement disorders. van Emmerik et al. (1999) had newly 

diagnosed patients with Parkinson disease perform a treadmill walking task at a range of walking speeds 

while assessing the relative phase of trunk-pelvis transverse plane motion. Compared with healthy 

controls, Parkinson’s disease patients had significantly reduced changes in the mean relative phase and 

lower coordination variability. Reduced trunk-pelvis relative phase in the transverse, frontal and sagittal 

plane has also been reported in older adults across a range of walking speeds (van Emmerik et al., 2005). 

The relative phase pattern is not inherently good or bad, but instead represents a stable pattern at a 

specific frequency or velocity. At slower walking velocities, transverse plane trunk-pelvis in-phase 

motion represents a more stable pattern until it reaches a critical transition point, where the relative 

phase shifts to a more anti-phase pattern.  However, reductions in anti-phase coordinative patterns with 

aging and disease may represent the locking of the degrees of freedom to simplify the control task 

(Hamill, Palmer, and van Emmerik, 2012; Lipsitz et al., 2002; Vereijken et al., 1992).  

Weir et al. (2019) assessed trunk-pelvis and hip-knee coordination and coordination variability 

using methods from dynamical systems theory to better understand the role of the organization of 

degrees of freedom during anticipated and unanticipated sidestepping. During unanticipated side-

stepping tasks, there is more in-phase motion as well as an increase in variability for the trunk-pelvis and 

hip-knee coupling angles compared to anticipated sidestepping. By reducing planning time, task 
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difficultly increases which may have resulted in the locking of the degrees-of-freedom to simplify the 

control task.  

The coordination variability literature provides a means of describing the complexity in terms of 

the intrinsic dynamics and stability of specific patterns (Kelso, 1995). Attractors are inherently stable at  

specific velocities or frequencies, but as they approach transition points they become unstable and the 

relative phase variability increases (Kelso, 1984). While too much variability may characterize  unstable 

attractors, too little variability can also be detrimental as variability may also play a functional role in 

regards to overuse injuries and the adaptability of the system (Hamill et al., 2012). The loss of 

complexity hypothesis stated by Lipsitz et al. (2002) suggests a lack of variability may be a characteristic 

of dysfunction in performance, frailty due to injury or disease. Reduced coordination variability has been 

reported during running between the thigh-shank relative phase in patients with patellofemoral pain 

(Hamill et al., 1999) and between the trunk-pelvis relative phase in patients with low back pain (Seay, 

van Emmerik, and Hamill, 2011a). During unanticipated sidestepping, increased trial to trial coordination 

variability between the trunk-pelvis and thigh-shank relative phase was found compared to anticipated 

sidestepping (Weir et al., 2019), which may reflect problems in control of the degrees of freedom due to 

temporal constraints (Hamill et al., 2012). There appears to be an optimal range for variability, as too 

little variability may suggest a more constrained movement pattern, while excessive variability may 

interfere with functional actions (Fetters, 2010; Hamill et al., 2012). In the context of sidestepping with 

reduced planning time, attractors may not have enough time to settle on a desired pattern and may 

constantly be in an unstable mode. The increased variability may be the result of the subject attempting 

to move to a more stable coordination pattern (Kelso, 1995).  
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1.2 Statement of the Problem 
 

Athletes are often required to rapidly respond to external stimuli under high temporal demands. 

Despite the importance of perceptual information obtained through sensory systems within the head, 

our current knowledge of how the head is controlled in space during sport-specific tasks is limited. 

During treadmill walking and running, head position in space is maintained by compensatory head-on-

trunk motion, predominantly led by the trunk in the transverse plane and the head in the sagittal plane 

(Hirasaki et al., 1999; Imai et al., 2001; Moore et al., 1999; Moore et al., 2001, Pozzo et al., 1990, Lim et 

al., 2020). In addition, lower extremity modifications such as increased stride frequency and knee flexion 

angle (Boyer and Nigg, 2004; Busa et al., 2016; Edwards, Derrick, and Hamill, 2012; Hamill, Derrick, and 

Holt, 1995) reduce vertical CoM displacement and facilitate shock attenuation and reduce transmission 

to the head (Busa et al., 2016; Lim et al., 2017; Mulavara et al., 2002).  

During change of direction tasks, head position changes precede heading position in the 

transverse plane when walking along a curved trajectory (Authie et al., 2015; Bernardin et al., 2012; 

Grasso et al., 1998) and during sidestepping tasks (Hollands et al., 2001; Patla et al., 1999). However, 

when assessing the peak magnitude of head reorientation during anticipated and unanticipated 

sidestepping tasks, the head is less orientated toward the new travel direction when planning time is 

reduced (Mornieux et al., 2014). During change of direction tasks, head position is assessed in the 

transverse plane with a primary emphasis on temporal motion onset relative to other segments of the 

body. Little is known regarding the changes in the relationship between the head and trunk throughout 

the sidestepping motion. 

With reduced planning time during sidestepping tasks, a modified control strategy with altered 

kinematics and CoM displacement has been observed (Fox, 2018; Wyatt et al., 2019).  When performing 

an unanticipated sidestepping task, significant reductions in anterior-posterior and medio-lateral CoM 

displacement, as well as significant increases in vertical CoM displacement have been reported 
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compared to anticipated sidestepping tasks in male athletes (Wyatt et al., 2019). Head, trunk, pelvis, hip 

and knee range of motion assessments have been used to quantify differences between tasks such as 

anticipated and unanticipated side stepping  (Besier et al., 2001; Brown et al., 2009; Byrne et al., 2018; 

Houck, Duncan, and Haven 2006; Lee et al., 2017; Lee et al., 2013; McLean et al., 2004; Mornieux et al., 

2014) but do not capture the temporal development of specific movement patterns. Coordination and 

coordination variability analyses have the potential to reveal differences in upper body and lower 

extremity segmental coupling changes during unanticipated sidestepping (Weir et al., 2019). 

Collectively, more in-phase coupling angles have been reported during unanticipated sidestepping, 

suggesting individuals are locking the degrees of freedom to simplify the control task (Vereijken et al., 

1992; Weir et al., 2019). Additionally, increased coordination variability suggests a more unstable 

pattern when performing a sidestepping task with reduced planning time.  

Walking and running are different tasks and while there is a significant body of literature on head 

motion during change of direction tasks at a variety of walking speeds, our understanding of head 

motion throughout anticipated and unanticipated sidestepping tasks at running speeds is limited. 

Whole-body modifications are commonly seen to facilitate head control during forward locomotion but 

may differ during change of direction tasks. Reducing planning time further changes sidestepping 

kinematics but their relationship to head motion control remains unknown.  
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1.3 Specific Aims 
 

• Aim 1: Assess head and trunk orientation in the transverse plane during anticipated and 

unanticipated sidestepping 

Hypothesis 1: During unanticipated sidestepping, the head and trunk will be less 

oriented toward the new travel direction in the transverse plane compared to 

anticipated sidestepping at the penultimate step toe off.  

Rationale: During unanticipated sidestepping, Lee et al. (2017) found trunk 

reorientation to occur during the transition step, while an earlier reorientation was 

found during anticipated trials. Weir et al. (2019) reported that that trunk-pelvis and 

thigh-shank coordination were more in-phase when sidestepping with reduced planning 

time, which may suggest a reduction in out-of-phase movement between the head and 

trunk. This would be in agreement with Mornieux et al. (2014), who found the head to 

be less oriented in the new travel direction during unanticipated sidestepping when 

compared with anticipated conditions.  

• Aim 2: Assess head-trunk coordination in the transverse plane during anticipated and 

unanticipated sidestepping  

Hypothesis 2: During anticipated sidestepping, the head and trunk will have a more 

trunk dominant coordination pattern in the transverse plane compared to unanticipated 

sidestepping.  

Rationale: During treadmill running with a visual task, head-trunk coupling was 

predominantly driven by trunk motion in the transverse plane (Lim et al., 2020). These 

findings may provide insights into the preferred segment dominancy used during 

anticipated sidestepping. However, during unanticipated sidestepping a more in-phase 

pattern between the trunk-pelvis was found compared to anticipated sidestepping 
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(Weir et al., 2019), which may provide insights into the coordination pattern utilized 

when planning time is reduced. 

• Aim 3: Assess head-trunk coordination in the sagittal plane during anticipated and 

unanticipated sidestepping  

This aim is exploratory and therefore does not have a formal hypothesis. During forward 

locomotion while walking at slower velocities, sagittal plane head motion compensates 

for sagittal plane trunk motion, and while walking at preferred velocities, sagittal plane 

head motion compensates for CoM motion in the up-down direction (Hirasaki et al. 

1999; Pozzo et al., 1999)  While treadmill running with a visual task, head 

(flexion/extension)-trunk (flexion/extension) coupling was predominantly anti-phase 

throughout a range of visual tasks (Lim et al. 2020). However, during unanticipated 

sidestepping a more in-phase pattern between the trunk-pelvis was found compared to 

anticipated sidestepping (Weir et al., 2019). Based on current knowledge it is difficult to 

predict how the head-trunk coupling in the sagittal plane will behave during anticipated 

and unanticipated sidestepping.  

• Aim 4: Assess coordination variability between the head and trunk during anticipated and 

unanticipated sidestepping without an explicit goal in the new travel direction 

Hypothesis 4: During unanticipated sidestepping, there will be an increase in 

coordination variability between head-trunk relative phase in the transverse and sagittal 

planes, compared to anticipated sidestepping.   

Rationale: Weir et al. (2019) observed an increase in trunk-pelvis and hip-knee 

coordination variability between during unanticipated compared to anticipated 

sidestepping. 
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1.4 Significance of Thesis 
 

Understanding how the body organizes its degrees of freedom to facilitate head position in space 

allows for contributions to several bodies of literature. Currently, there is a limited amount of work 

regarding how head position in space is controlled during change of direction tasks at higher speeds. 

While the published work provides a strong starting point, many questions remain open regarding how 

we are able to coordinate complex tasks in sport-specific settings.  This thesis will contribute to the 

foundational development of head control literature during more dynamic tasks by considering the 

entire human body as a cohesive unit rather than assessing segments or joints in isolation. The primary 

emphasis of sidestepping literature is anterior cruciate ligament (ACL) injury risk with reduced planning 

time due to the high incidence rate and financial burden following injury. This body of literature 

highlights altered control strategies to facilitate change of direction placing high loads on the ACL. By 

considering the modified control strategies in the context of head control, a more thorough 

understanding of the underlying mechanisms behind lower extremity kinematics may be achieved.  

The proposed study will also provide the building blocks to better understand the effects of 

concussion on sport performance. A concussion is a traumatic brain injury that effects vestibulo-ocular 

function,  anticipatory postural adjustments and coordinative function, leaving athletes at an increased 

injury risk for both musculoskeletal injury and additional head trauma following return to play (Howell, 

Lynall, Buckley, and Herman, 2018; McCrory et al., 2017). Perceptual systems within the head provide 

individuals with rich information and may require more complex control of the head to continue to 

obtain accurate information. Future concussion studies can utilize information obtained from this thesis 

to better understand if modifications to head control may be part of the increased injury risk following 

return to play. Therefore, this thesis aims to better understand the consequences of whole-body 

kinematic modifications on head control during anticipated and unanticipated sidestepping tasks.  
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2 CHAPTER 2 
LITERATURE REVIEW  

 
2.1 Visual, Vestibular and Proprioceptive Systems  
 

The control of head position in space requires the integration from multiple sensory systems, 

mainly visual, vestibular and somatosensory. The head contains both visual and vestibular systems. 

Visual information allows for the perception of self relative to objects within space, self-motion and 

obstacle avoidance with distant objects, while vestibular information allows for the sensation of angular 

and translational accelerations. Somatosensory information from neck proprioceptors allows for the 

detection of changes in muscle length and thus the position of the head relative to the trunk.  

The vestibular organs are highly sensitive receptors that respond to angular and translational 

accelerations and can be found within the inner ears on each side of the head. The vestibulo-ocular 

reflex (VOR) enables a stable visual field by providing compensatory eye movement following head 

perturbations (Moore et al., 2001; Moore et al., 1999; Raphan and Cohen 2002). Angular head 

accelerations are sensed by semicircular canals, and generate compensatory eye movement via the 

angular vestibulo-ocular reflex (aVOR) (Hirasaki et al., 1999a; Imai et al., 2001; Moore et al., 1999). 

Meanwhile, linear accelerations of the head stimulate otoliths, contributing to the linear VOR (lVOR), 

commonly seen during the vertical translation of the head during locomotion  (Hirasaki et al., 1999a; 

Imai et al., 2001; Moore et al., 1999). While compensatory eye motion can be made by both the aVOR 

and lVOR, different responses are seen at a range of viewing distances (Moore et al., 2001; see section 

2.4 for more details). It is important to note that while the same otolith response will occur due to head 

tilt and translational acceleration, information from other sensory modalities such as the visual and 

proprioceptive systems will differ.  

Proprioceptive information at the neck allows for sensing the head location relative to the trunk. 

Neck musculature is highly concentrated with muscle spindles, facilitating sensitive information 
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regarding muscle length. The vestibulocollic reflex (VCR) and cervico-collic reflex (CCR) help stabilize the 

head in space through vestibular and muscle spindle stimulation. The VCR helps compensate for angular 

and translational motion by moving the head in the direction opposite of angular or translational 

motion, while the CCR maintains head position relative to trunk as muscle spindles detect change in 

length in the neck (Peterson et al., 1985). When the head is rotated in a single plane, semicircular canals 

that correspond with that specific plane are stimulated and provide the vestibular nuclei with 

information regarding the change in head position. Neural signals carry out the response to stimulate 

the appropriate neck musculature to counter the rotation and maintain appropriate head posture.  

The integration of information from multiple systems provides a more complete picture 

regarding postural orientation and location within the environment. The simple task of tilting the head 

backwards will stimulate the otoliths in a similar way as if an individual was falling backwards. The 

integration of proprioceptive information at the neck, in addition to visual information provides the 

system with rich information allowing for a more accurate representation of self-motion.  
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2.2 Upper Body Kinematics During Walking and Running 
 

The trunk plays a vital role in the control of the CoM during locomotion in all three planes. 

Kinematic analysis shows the oscillatory dynamics of the trunk and pelvis throughout locomotion, with 

two full oscillations at the trunk and pelvis per stride cycle within the sagittal plane (Romkes and Bracht-

Schweizer 2017; Thorstensson et al., 1984), while one full oscillation is observed in the frontal and 

transverse plane per stride cycle at a range of walking speeds (Romkes et al., 2017) (Figure 2) 

 

Figure 2: Three-Dimensional joint and segment rotations at several preferred walking speeds. The left, 
middle and right column display data from the sagittal, frontal and transverse planes, respectively. 
Thorax and pelvic tilt can be considered flexion (positive) and extension (negative) in the sagittal plane.   
The vertical lines indicate toe off, separating stance from swing phase. Figure adapted from Romkes et 
al. (2017). 

2.2.1 Trunk and Pelvis Kinematics  
 
2.2.1.1 Sagittal Plane 
 

Trunk flexion oscillates around an equilibrium point in space, maintaining a flexed position 

throughout the stride cycle (Pozzo et al., 1990; Romkes et al., 2017). During walking, a maximal flexion 
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angle is seen during double support, with a minimal flexion angle during single support, highlighting the 

subtle oscillatory trunk dynamics during walking (Figure 2) (Romkes et al., 2017; Thorstensson et al., 

1984). During mid-stance, the trunk reaches its most flexed position, decreasing its flexion angle until 

toe off where the trunk increases its flexion angle again (Thorstensson et al., 1984). A similar trend is 

seen at the level of the pelvis, with predominantly in-phase motion between the trunk and pelvis during 

walking near preferred walking speeds (Romkes et al., 2017).  

During running, a similar oscillatory trend is observed at the trunk and pelvis. The trunk 

maintains a flexed position throughout the stride cycle, with the least flexed position at or just prior to 

heel strike (Elliot and Roberts 1980; Thorstensson et al., 1984).  Throughout stance, trunk flexion angle 

increases, reaching the maximal flexion angle at mid-to-late stance (Elliot and Roberts 1980; 

Thorstensson et al.,  1984). At toe off, trunk flexion angle is reduced as the cycle continues (Elliot and 

Roberts 1980; Thorstensson et al., 1984). Similar to the trunk, the pelvis oscillates twice, maintaining a 

flexed position throughout the stride cycle (Novacheck, 1998). During the absorption phase, the least 

pelvic flexion is observed but pelvic flexion angle increases through stance, reaching the most flexed 

position at toe off (Novacheck 1998). Collectively during both walking and running the trunk and pelvis 

maintain an anteriorly flexed position in the sagittal plane, facilitating forward locomotion (Novacheck 

1998; Thorstensson et al., 1984). 

2.2.1.2 Frontal Plane 
 

During walking, ipsilateral pelvic obliquity facilitates foot clearance of the contralateral limb 

during the swing phase of gait (Romkes et al., 2017) (Figure 1). The trunk tends to move anti-phase 

relative to the pelvis in the frontal plane during the initial portion of single support to control CoM 

motion through contralateral flexion toward the stance limb (Romkes et al., 2017) (Figure 2).  As the 

swing limb begins to contact the ground, the pelvis approaches a more neutral position along with the 

trunk (Romkes et al., 2017). During running, a similar trend is present, with peak ipsilateral trunk flexion 
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limb at early to midstance during the weight acceptance phase (Novacheck, 1998). A less sinusoidal 

pattern is seen at the pelvis during running. At heel strike, ipsilateral pelvic obliquity is seen but 

approaches a near horizontal position at midstance, then approaches contralateral obliquity to facilitate 

toe clearance of the initial stance limb (Novacheck, 1998). 

2.2.1.3 Transverse Plane  
 

During walking at higher speeds, the trunk and pelvis move in an out-of-phase pattern, 

suggested to minimize whole body motion in the transverse plane (Hinrichs, 1990) (Figure 3) . From mid-

to-late stance, the stance leg (right leg) provides a propulsive force against the ground, facilitating 

forward locomotion, while simultaneously the swing leg (left leg) moves forward. To extend the stride 

length, a “pelvic step” may be taken, seen as a clockwise pelvic rotation to allow for a more anterior left 

foot position.   

 
 

Figure 3: Trunk (solid line) and pelvis (dashed line) motion during treadmill walking at 1.2 ms-1 in healthy 
individuals in the frontal plane (lateral flexion), sagittal plane (flexion-extension) and transverse plane 
(axial rotation). Adapted from van Emmerik et al. (2005). 
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During running, a less clear cut relation between the trunk and pelvis is present. The arms tend 

to counter leg motion, with trunk motion closely following, producing one full oscillation per stride 

(Figure 4). While Figure 4 depicts angular momentum, a similar visual trend is seen in trunk and pelvis 

kinematics during treadmill running at 3.8 ms-1 (Seay, van Emmerik, and Hamill 2011a).  However, 

describing trunk-pelvic motion in terms of angular momentum may provide us with a better 

understanding of the kinematics; when the angular momentum of the arms and trunk were summated 

and plotted against the summated angular momentum of the legs and pelvis, a clear relationship is 

present (Hinrichs, 1987) (Figure 4). Pelvic and lower extremity angular momentum is countered via 

counterclockwise trunk and upper extremity arm motion, producing a counterclockwise moment 

(Hinrichs, 1987; van Emmerik et al., 2005). As a result, minimal deviations in the whole body CoM are 

present. Motion at the pelvis facilitates propulsive motion to  continue locomotion while motion at the 

trunk for momentum regulation allows for arm motion to counter-balance lower extremity momentum 

in both walking at higher speeds and during running (Hinrichs 1987;  Romkes et al., 2017; van Emmerik 

et al., 2005).  
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Figure 4: Mean angular momentum of the upper body (head, arms and trunk), lower body (pelvis and 
legs) and whole body in the transverse plane while running 4.5 ms-1. Adapted from Hinrichs (1987). 

2.2.2 Center of Mass Movements 
 

During both walking and running, the center of mass shows two full vertical oscillations per 

stride cycle, reaching the lowest point during the double support phase in walking (Thorstensson et al.,  

1984) and during stance in running (Figure 5). During walking, the CoM reaches its highest point during 

the middle of single support phase, while in running, the CoM reaches its highest point when airborne. 
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Figure 5: The inverted pendulum model for walking (A) and spring-mass model for running (B) illustrates 
the different mechanisms involved in moving the body’s CoM forward. Both models provide a snapshot 
of the single support phase of walking and running.  I = initial spring length. Adapted from Delattre, 
Lafortune, and Moretto (2009). 

Lateral CoM motion shows a single oscillation during a stride cycle in both walking and running 

(Thorstensson et al., 1984) (Figure 6). During stance the CoM moves along the medial border of the 

center of pressure (CoP) of the support limb (Thorstensson et al., 1984; Winter 1995).  

                                                                                                                                            

 

 
Figure 6: Whole body center of gravity (CoG) and 
CoP relationship during level walking. Shortly 
following right heel contact (RHC), swing phase 
of gait is initiated as left toe off (LTO) while the 
CoG moves toward the stance foot. Throughout 
the gait cycle, the CoG must remain within the 
lateral boundaries of the CoP. RHC – right heel 
contact,  LHC – left heel contact, RTO – right toe 
off. Adapted from Winter (1995).  
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2.3 Change of Direction Segmental Kinematics and Center of Mass Motion During 
Walking and Running and Segmental Kinematics when Changing Direction 

 
2.3.1 Center of Mass Motion During Walking and Running 

 
CoM motion in the frontal plane is mainly dictated by foot placement but can also be modulated 

via hip abduction. To maintain forward locomotion, the CoM must be contained within the lateral 

borders of the BoS (Winter, 1995). The BoS area depends on the specific phase of gait in walking and 

running. During walking a larger BoS is present during the bipedal stance phase, where two feet are in 

contact with the ground while during the swing phase there is only a single foot support surface. During 

running, stance phase contains only a single foot while swing phase is airborne with no ground contact. 

Once foot placement is established, modifications at the ankle and hip can correct for destabilizing force 

imbalances to keep the CoM within the lateral border of the BoS (Winter, 1995). Subtalar inversion 

moves the CoP laterally to reduce the lateral component of the GRF acting on the CoM (Winter, 1995). 

To modulate CoM motion, increased hip abduction at the supporting hip during stance aids in more 

medial trunk motion, allowing for the maintenance of the CoM within the BoS (Winter, 1995). 

The control of whole body mediolateral CoM precedes the reorientation of the rest of the body 

during change of direction tasks while walking (Patla et al., 1999) and running (Wyatt et al., 2019). The 

difference between the position of the CoP and CoM during stance dictates the magnitude and direction 

of CoM acceleration (Winter, 1995). To change direction, the CoM must move beyond the lateral border 

of the BoS in the intended new direction of travel. Two strategies are often seen, with either a “step 

strategy” or a “hip strategy”. During a step strategy, advanced knowledge of the change of direction is 

typically required two steps prior to the transition step. A more medial penultimate step allows for a 

decrease in CoM acceleration in the opposite direction of travel by decreasing the GRFv angle (Patla et 

al., 1999) (Figure 7).  A wider transition step is then taken relative to the CoM position to increase the 

GRFv angle in the new direction of travel, redirecting the CoM towards the new travel direction (Patla et 
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al., 1999). Lee et al. (2017) found individuals’ penultimate foot opposite the direction of the sidestep 

during anticipated sidestepping (Figure 8). In doing so, the penultimate step began to shift the CoM 

toward the new travel direction prior to the transition limb making contact with the ground. As a result, 

a more upright trunk position is maintained, oriented in the new direction of travel (Lee et al., 2017). 

During change of direction tasks at higher speeds, greater inertia requirements may lead to a 

penultimate step opposite the new direction of travel, while at lower speeds, a more medial 

penultimate step is still seen, but remains on the intended new direction of travel  (Patla et al., 1999;  

Lee et al., 2017). Collectively, a stepping strategy is represented by a more medial penultimate step, 

thus reducing the medial GRFv requirements from the transition limb to shift the CoM to a new travel 

direction (Wyatt et al., 2019). However, without sufficient planning time to modulate the penultimate 

step width, a more lateral penultimate step is taken, similar to normal running foot position (Patla et al., 

1999, Lee et al., 2017). Following penultimate toe off, the CoM is moving opposite the intended travel 

direction with greater velocity (Patla et al., 1999) (Figure 7). 

 

Figure 7: CoM and CoP trajectories during a foot and hip strategy during sidestepping to the right while 
walking. On the left, the typical CoM trajectory during forward locomotion. The middle figure displays a 
more medial penultimate step that reduces the CoM acceleration toward the transition limb, thus 
reducing the GRFv requirements to move the CoM in the new direction of travel, which in this case is to 
the right. With reduced planning time, the CoM and CoP look similar to forward locomotion (left figure) 
which requires a hip strategy to move the CoM toward the new travel direction.  Adapted from Patla et 
al. (1999). 
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Figure 8: Frontal views examples of a stepping strategy during sidestepping while running. Anticipated 
(a) and unanticipated (b) anterior view snapshots of the penultimate step during a sidestep directed to 
the right while running. During the anticipated condition (arrow-planned), the penultimate step is 
opposite the midline, shifting the CoM toward the new direction of travel prior to the transition step. 
During the unanticipated condition (arrow-unplanned), the penultimate step is on the same side as the 
intended new travel direction, which accelerates the CoM toward the transition limb. Adapted from Lee 
et al. (2017). 

When a stepping strategy fails, a hip strategy is often seen, with an increase in hip abduction 

from the transition limb shifting the CoM towards the new direction of travel enabling a new travel 

direction (Patla et al., 1999; Lee et al., 2017). When a hip strategy is used, increased lateral trunk flexion 

in the opposite direction of travel is often observed (Patla et al., 1999; Lee et al., 2017). Wyatt et al. 

(2019) found a decrease in mediolateral CoM motion, with increases in anterior and vertical CoM 

displacement when planning time was reduced in both male and female collegiate athletes (Figure 9). 

CoM velocity and displacement was assessed throughout both the preparatory phase (penultimate toe 

off to transition limb heel strike) and stance phase (transition limb heel strike to transition limb toe off) 

to further explore the effects of anticipation on sidestepping. During the preparatory phase, there were 

significant differences in mediolateral and anterior CoM displacement (Figure 10). During both the 

preparatory and stance phase, decreased medial CoM velocity and an increase in downward vertical 
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CoM velocity was found as a function of reduced planning time (Wyatt et al., 2019). Collectively, these 

findings highlight the influence of planning time on whole body kinematics, with the greatest CoM 

differences in the preparatory phase with reduced planning time (Wyatt et al., 2019; Lee et al., 2017). 

With reduced planning time, a hip strategy is implemented during the stance phase to facilitate  CoM 

motion in the new direction of travel, manipulating whole body kinematics and kinetics (Lee et al., 2017; 

Mornieux et al. 2014; Patla et al., 1999; Weir et al., 2019). 

 

Figure 9: Whole-body AP and ML CoM path with respect to AP and ML boundaries of the right stance 
foot for the preparatory phase and stance phase during anticipated and unanticipated sidestepping 
between males and females. X’s on the CoM path represent a transition point from the preparatory to 
stance phase. Adapted from Wyatt et al. (2019). 
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Figure 10: Time-normalized CoM displacement from the stance foot and CoM velocity during 
preparatory (Penultimate toe off to transition step heel strike) and stance phases (transition step heel 
strike to transition step toe off) of anticipated (A) and unanticipated (UA) sidestepping for males (M) and 
females (F). Shaded bars indicate periods of statistical significance.  Adapted from Wyatt et al. (2019). 

2.3.2 Change of Direction Segmental Kinematics at the Upper Body During Running 
 

Change of direction segment and joint kinematics have primarily been assessed in the context of 

anterior cruciate ligament (ACL) injury, with injury mechanisms occurring in the frontal and transverse 

planes at the knee, while it has been suggested that sagittal plane forces are not sufficient to cause ACL 

injury (McLean et al., 2004). Frontal and transverse plane motion of the trunk, pelvis and knee have 

been assessed more extensively, while the body of literature in the sagittal plane is less developed. 

2.3.2.1 Frontal Plane 
 

Change of direction maneuvers require a medially directed GRFv to facilitate direction change. A 

more medial penultimate  step allows for a more upright trunk posture in the frontal plane (Houck et al., 

2006; Lee et al., 2017; Mornieux et al., 2014).  With a more lateral penultimate step, a hip strategy is 

implemented during stance, associated with the trunk oriented in the opposite direction of travel in the 
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frontal plane (Houck et al., 2006) (Figure 11). During unanticipated sidestepping reduced ipsilateral 

pelvic obliquity is seen during the penultimate step (Byrne et al., 2018) (Table 1).   

Table 1: Comparison of Mean (SD) pelvis kinematics in the frontal plane at toe off of the penultimate 
step during straight run, planned sidestep, and unplanned sidestep. Participants ran between 4.5 and 
5.5 ms-1 with a change of direction angle of 45°  Negative value denotes ipsilateral pelvic obliquity. 
Adapted from Byrne et al. (2018).        
 *significant different to straight run       
 ^significant difference between planned and unplanned sidestep 

Variable Straight Run Planned Sidestep Unplanned Sidestep 

Pelvic Obliquity -8 (3.3) -15(5.1)* -7(4.3)^ 

 

During the weight acceptance phase at the transition limb, the main differences between 

anticipated and unanticipated sidestepping can be seen by the initial starting posture (Figure 11; Houck 

et al., 2006; Weir et al., 2019). While the overall trend of motion in the frontal plane is similar, the initial 

orientation at heel strike is less oriented toward the new direction of travel when planning time is 

reduced (Weir et al., 2019). During anticipated sidestepping, a more neutral pelvic orientation is seen, 

with stance limb (transition limb) ipsilateral pelvic obliquity at heel strike, increasing throughout the 

weight acceptance phase (Figure 12; Weir et al., 2019). During unanticipated sidestepping, the pelvis 

maintains ipsilateral pelvic obliquity throughout stance (Weir et al., 2019). During anticipated side-

stepping the initial posture at the trunk is more favorable for change of direction at heel strike of stance 

already oriented towards the new direction of travel, while during unanticipated sidestepping, the trunk 

is oriented in the opposite direction of travel at heel strike (Weir et al., 2019). 
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Figure 11: Average lateral foot placement, hip, trunk, pelvis and thorax angle values (+/- standard 
deviation) during anticipated and unanticipated sidestepping in the frontal plane during the transition 
step. All joint angles were calculated with respect to the global reference frame. Adapted from Houck et 
al. (2006). 

To investigate frontal plane kinematics, Houck et al. (2006) had participants perform 

unanticipated sidesteps while walking at speeds ranging from 1.9-2.1 ms-1, responding to an arrow 

display.  A significantly larger lateral trunk orientation opposite the new direction of travel was observed 

during unanticipated sidestepping. However upon further analysis, the authors concluded that the trunk 

and pelvis move as a single segment, suggesting trunk orientation was not due to an increase in lateral 

trunk flexion, but instead a change in foot placement and hip abduction angles. It has been suggested a 

decreased lateral foot placement and hip abduction angle may be responsible for the increased lateral 

trunk orientation (Houck et al., 2006). While demands may differ between walking and running, a more 

in-phase coordination pattern between the trunk and pelvis has been reported during unanticipated 

sidestepping while running (Weir et al., 2019) (See Section 2.6.4).  
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2.3.2.2 Transverse Plane 
 

The transition to a new travel direction requires the reorientation of the body from a forward 

position to a new direction. During forward locomotion, at footstrike the trunk is rotated with the chest 

and shoulders directed towards the stance leg (Hinrichs 1987). During change of direction tasks, the 

trunk is oriented away from the intended travel direction, but more so during unanticipated conditions 

(Mornieux et al., 2014) (Table 2). During anticipated conditions, prior knowledge of the sidestep 

direction was given. The additional conditions varied the time the stimulus was given before initiating 

the sidestep from 850-500 ms. The peak knee abduction moment typically happens during the weight 

acceptance phase of the transition limb. The authors did not find significant differences between 

anticipated and the 850 ms condition, which they concluded suggests 850 ms is adequate planning time 

to perform a sidestepping maneuver at the given speed and angle. 

Table 2: Mean (SD) values of trunk rotation at time of peak abduction movement during sidestepping 
with reduced planning time. Participants ran 5 +/- 0.2 ms-1 while performing a 45° sidestep. Negative 
values indicate orientation away from new travel direction. Adapted from Mornieux et al., (2014).  
 *expresses a significant difference        
 b compared to the 850 ms sidestepping condition 

 Anticipated 850 ms 600 ms 500 ms 

Trunk rotation (°) -4.8 (11.0) -3.3 (11.1) -7.3 (10.3) *b -8.8 (9.9)*b 

 
 
2.3.2.3 Sagittal Plane 
 

For both anticipated and unanticipated sidestepping, trunk flexion angle increases throughout 

stance, with an increased trunk flexion angle during unanticipated conditions (Weir et al., 2019) (Figure 

12). An increase in the pelvic flexion angle can be seen throughout the weight acceptance phase, though 

the pelvic flexion angle decreases following the weight acceptance phase. While significant differences 

in the trunk and pelvic flexion angle have been reported during both anticipated and unanticipated 
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sidestepping when compared to straight running, no significant differences have been reported 

between anticipated and unanticipated sidestepping (Byrne et al., 2018). 

 
Figure 12: Trunk and  pelvis segment kinematic patterns during the stance phase of anticipated (grey) 
and unanticipated (black) sidestepping for the sagittal (A), frontal (B), and transverse planes (C).            
AT = anterior tilt, PT = posterior tilt, FLEX = flexion, EXT – extension, ASIS = anterior superior iliac spine, 
LF = lateral flexion, C = clockwise, AC = anti-clockwise. Adapted from Weir et al. (2019) 
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2.4 Head Stabilization in Space During Straight Path Locomotion 
 

During locomotion, we do not see complete stabilization of the head in space, but instead an 

intermittent position around discrete angular positions, accomplished by large head relative to trunk 

motion (Hirasaki et al., 1999; Imai et al., 2001; Moore et al., 1999; Moore et al., 2001; Pozzo et al., 

1990). The Frankfort plane closely aligns with earth’s surface and may be used as a set-point for the 

head, where the head has been shown to oscillate around this plane with and without visual information 

(Pozzo et al., 1990). Ultimately the position of the head is goal-directed (Bloomberg, Reschke, Huebner, 

and Peters, 1992) and dependent on the line of sight,  but has been shown to maintain a specific head 

fixation distance (HFD) (Moore et al. 1999; Moore et al. 2001; Pozzo et al., 1990) (Figure 13).  Gaze is 

stabilized through a combination of head and eye compensation for translational and angular 

movement. An angular or translational perturbation to the head may cause the head to counter rotate, 

mediated by the VCR, which maintains head position in space within a few degrees  (Hirasaki et al., 

1999; Imai et al., 2001; Moore et al., 1999; Moore et al., 2001; Pozzo et al., 1990); in addition VOR 

adjustments allow for compensatory eye movements in response to head movement to align gaze with 

desired visual information (Moore et al., 1999; Moore et al., 2001). 
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Figure 13. Illustration of compensatory 
vertical and horizontal head motion while 
treadmill walking at 1.67 ms-1. Vertical head 
translation occurred at a frequency twice 
that of horizontal head translation. Both a 
vertically projected head fixation distance 
(VP-HFD) and horizontally projected head 
fixation distance (HP-HFD) were maintained 
in space through compensatory head 
relative to trunk motion. The HFD in both 
the vertical and horizontal planes was 
calculated from the average intersection of 
the projected naso-occipital axes with the 
respective plane over a series of stride 
cycles. In the sagittal plane, the direction of 
compensatory eye motion is dependent on 
viewing distance (See Figure 15). Adapted 
from Moore et al. (2001). 
 

 
The head and trunk have been shown to vertically translate in a similar fashion at a range of 

walking speeds (Hirasaki et al., 1999) (Figure 14). While walking at speeds between 0.6-2.2 ms-1, the 

vertical translation ranged from amplitudes of 10-35 mm (20-70 mm peak to peak amplitudes), with 

amplitudes increasing at speeds up to 2.0 ms-1, before declining as the maximal step length is reached  

(Hirasaki et al., 1999). Similar findings have been reported, with a mean vertical head translation peak to 

peak amplitude of 48 mm and 53-60 mm at moderate (1.39 ms-1) and  fast (1.78-1.87 ms-1) walking 

speeds, respectively (Bloomberg et al., 1992; Murray, 1967). Additionally, a mean lateral head 

translation peak to peak amplitude  of 50 mm and 58 mm at moderate (1.39 ms-1) and  fast (1.87 ms-1) 

walking speeds has been reported, respectively (Murray, 1967). It is important to note, Hirasaki and 

colleagues reported the peak amplitude, while the other authors reported the peak to peak magnitude 

of displacement. The reported studies presented treadmill walking data, though a similar vertical 

translation has been found during over ground walking from 1.4-1.8 ms-1 (Imai et al., 2001).  No 

significant difference have been found between the head, upper and lower trunk regarding the vertical 
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accelerations during walking (Kavanagh, Barrett, and Morrison, 2006; Waters, Morris, and  Perry, 1973). 

This suggests the head, thorax and pelvis vertically translate in a similar fashion. 

 

Figure 14: Vertical head (HZH) and trunk (TZH) translation changes relative to walking velocity. Adapted 
from Hirasaki et al. (1999). 

The body translates (Figure 5) and angularly rotates (Figure 2) at different frequencies in each 

plane of motion. To better understand how gaze compensates for translational and angular 

perturbations, Moore et al. (2001) had participants fixate on an environment-fixed target 0.25-2.0 m 

from the eye while walking on a treadmill at 1.67 ms-1; assessing both vertical and horizontal head and 

eye compensatory movements. The authors found different compensatory mechanisms in the 

transverse and sagittal planes as a function of viewing distances (Figure 15).  The HP-HFD remained 

between the subject and target at all viewing distances which suggests the aVOR is compensatory for 

head rotation, while the target location relative to the VP-HFD location varied dependent on viewing 

distance. With near targets, the VP-HFD was beyond the target, which suggests the lVOR is providing the 

compensatory eye movements. Collectively, this suggests that the aVOR is mainly compensatory for 

horizontal eye movements at target distances 0.25-2.0 m while both the aVOR and lVOR allow for 

compensatory vertical eye movements, depending on viewing distance. When viewing distances were 

less than 1 m, the visual target was between the participant and their vertical HFD, but when viewing 
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distances were greater than 1 m, the vertical HFD was between the participant and the visual target. The 

authors suggest translational motion stimulated compensatory eye motions at viewing distances less 

than 1 m, but angular motion was the main driver of compensatory eye motions at viewing distances 

greater than 1 m. However, in the horizontal direction all visual targets persisted beyond the horizontal 

HFD suggesting head rotation in the transverse plane stimulated compensatory eye motion.  

During locomotion, the oscillatory nature of the head is dependent on specific gait events, with 

vertical head and trunk motion occurring at twice the frequency of mediolateral head motion (Grossman 

et al., 1988; Hirasaki et al. 1999; Imai et al. 2001; Moore et al. 2001) (See Figure 16). The head vertically 

oscillates once per step and horizontally oscillates once per stride (Murray, 1967). At walking speeds 

ranging from 1.2-1.8 ms-1 , the compensatory sagittal plane head motion is dependent on the step 

frequency, while frontal and transverse plane motion are dependent on the stride frequency (Hirasaki et 

al. 1999; Imai et al. 2001; Thorstensson et al., 1984; Moore et al. 2001) (Figure 15).  

 
Figure 15: HFD relative to target location while walking at 1.67 ms-1 at a range of viewing distances. 
Adapted from Moore et al., (2001). 
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Figure 16: Tri-planar translational motion of the head at preferred (1.51 ms-1) and fast (2.18 ms-1) 
walking speeds. Adapted from Murray (1967). 

During both treadmill (Moore et al., 2001, Hirasaki et al., 1999) and over ground (Imai et al., 

2001) walking, translational motion at the head stimulates the VCR, producing compensatory head 

motion to maintain a head position in space. Lateral head translation occurs at a frequency exactly half 

of the vertical head translation (Moore et al., 1999, Moore et al., 2001, Imai et al., 2001, Hirasaki et al., 

1999).  Sagittal and transverse plane head motion in space is maintained within a narrow range, while 

trunk motion in space, and head motion related to trunk motion rotate at larger ranges (Imai et al., 

2001, Moore et al., 2001) (Figure 17). At typical adult walking speeds, ranging from 1.4-1.8 ms-1, the 

compensatory effect is suggested to be due to stimulation of otoliths, producing an lVCR (Moore et al., 
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2001, Imai et al., 2001, Hirasaki et al., 1999,).  

   

Figure 17: Head and Body (Trunk) transverse plane motion throughout a gait cycle while walking at 
faster walking speeds (1.4-1.8 ms-1).  Body yaw in space completes a full oscillation once per stride. Head 
yaw relative (re) to body compensates for body yaw in space, allowing minimal deviations of head yaw 
in space. Open and closed circles represent heel strike. Adapted from Imai et al. (2001). 

The demands placed on the VCR are largely dependent on walking speed, as walking speed can 

be modulated by changing both step length and step frequency. Individuals tend to increase walking 

speed by increases in step length from 1.2-1.8 ms-1 (Hirasaki et al., 1999). In doing so, participants 

increase the vertical CoM displacement throughout the gait cycle and rely more heavily on the lVCR to 

maintain vertical head position in space (Hirasaki et al., 1999). However, at walking velocities 0.6-1.2 ms-

1, step length does not significantly change, while step frequency changes to increase walking speed. At 

these slower speeds, head motion does not compensate for translational motion, but instead for 

changes in trunk angle throughout the gait cycle, suggesting angular vestibular information is used to 

maintain head posture in the sagittal plane through the aVCR (Hirasaki et al., 1999). Collectively this 

suggests that both angular and translational information may be used by the vestibular system to 

maintain head posture at different walking speeds, with translational information utilized more heavily 

at walking speeds greater than 1.2 ms-1 (Moore et al., 1999, Moore et al., 2001, Imai et al., 2001, 
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Hirasaki et al., 1999). However, little is known regarding the angular information used by the vestibular 

system at faster velocities.  

In the frontal plane, the trunk laterally shifts toward the support limb during each step, with 

increased lateral trunk flexion toward the support limb. The head moves in-phase to the trunk during 

locomotion in the frontal plane. During a series of dynamic balancing tasks that decreased the medio-

lateral BoS, Pozzo et al. (1990) found that head position was maintained relative to earths horizontal in 

the frontal plane.  

Collectively these findings highlight that specific gait events, as well as visual tasks, place different 

demands on the vestibular system and the corresponding change in eye movements in different planes 

(Grossman et al., 1988; Hirasaki et al., 1999; Moore et al., 2001; Imai et al., 2001). 

 
2.4.1 The Influence of Visual Task Constraints on Head Stability  
 

Lower body alterations maintain head stability both with and without a visual task (Busa et al. 2016; 

Hamill et al., 1995; Lim et al., 2017; Mulavara et al., 2002). Individuals are able to stabilize the head and 

attenuate shock at a wide range of stride lengths and stride frequencies, primarily through active 

modulation during late stance (Busa et al., 2016; Hamill et al., 1995; Lim et al., 2017). To study the effect 

of visual feedback on head stability and shock attenuation, Busa et al. (2016) had participants run at 3.1 

ms-1 at their preferred speed under 5 stride frequency conditions (+/- 0, 10, and 20% of preferred stride 

frequency) under two visual conditions, with and without visual feedback of head-gaze orientation. To 

maintain running speed, an inverse relationship between stride length and frequency was present (i.e. 

increase in frequency results in decrease in length). Individuals were able to modulate the amount of 

impact shock at the head across a range of stride frequencies (-10% - +20% preferred), but had 

significantly larger magnitudes and integrated power of tibia and head accelerations with extreme 

reductions in stride frequency (-20% preferred). Visual feedback of head gaze orientation resulted in an 
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increase in the active adjustments during late stance to reduce head accelerations and overall head 

motion.  

To further explore the effect of visual feedback, Lim et al., (2017) had participants run at their 

preferred speed while receiving real-time feedback while visual angle was reduced through decreasing 

box sizes. The size of the static box, initially set by a 21° vertically and horizontally subtended visual 

angle, decreased by increments 3° for 7 trials (visual angle ranged from 21°- 3° for all trials).  By 

decreasing the size of the box, Lim and colleagues were able to increase head stability demands. As 

head stability demands increased, head motion and vertical CoM displacement decreased, while stride 

frequency, hip flexion*, and knee flexion increased (Figure 18).  These findings highlight that individuals 

make active adjustments during late stance at their preferred running speed to stabilize head 

orientation with increased visual task demands.  

During treadmill walking, Muluvara et al. (2002) had participants perform gaze stabilization tasks 

such as focusing on a central point target (low visual acuity demands) or reading numeral characters 

(high visual acuity demands). With increased visual acuity demands, they found an increase in head 

pitch motion despite no significant difference in trunk pitch or trunk vertical translation, and increased 

knee flexion. Collectively these studies suggest head stability requires whole body modifications. With 

increased head stability demands, individuals increase stance time, thereby decreasing the amount of 

vertical CoM translation. Additionally, the increase in knee flexion may utilize the human body’s shock 

attenuation capacity. The knee joint may act as a low pass filter, facilitating shock attenuation from the 

impact shock to the head (Edwards et al., 2012). The human body attenuates shock primarily by 

mechanisms at the knee joint (Derrick, Hamill, and  Caldwell, 1998; Edwards et al., 2012). With increased 

flexion at the knee, active muscle tissue may play a more active role in shock attenuation, preventing a 

larger range of frequencies found at the impact shock to be transmitted to the head (Boyer et al., 2004; 

*increased at impact, decreased at takeoff 
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Edwards et al., 2012). Together, this suggests an increase in knee flexion angle increases the shock 

attenuation characteristics of the body, thus minimizing large accelerations at the head.  

 

Figure 18: Mean percent change for key dependent variables as visual task demand difficulty increased 
while treadmill running. Adapted from Lim et al. (2017). 
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2.5 Anticipatory Changes to Head Kinematics during Directional Changes  
 

Spatial and temporal anticipation of eye movement, followed by the head is often found toward 

the new travel direction (Bernardin et al., 2012; Grasso et al., 1996, 1998a, 1998b; Hollands, Ziavra, and 

Bronstein 2004; Hollands, Patla, and Vickers 2002; Imai et al. 2001). Gaze shifts greater than 15° often 

require head movements following initial eye saccade (Fuller, 1992). Motion of the head precedes 

heading direction, followed by the trunk (Patla et al., 1999), and then the pelvis (Bernardin et al., 2012). 

Several studies had participants change direction or turn in darkness and continued to find a change in 

the head direction preceding the heading direction during the turn, suggesting aligning the head with 

the new travel direction initiates a steering synergy where head motion initiates a chain of motor 

commands (Authie et al., 2015; Grasso et al., 1998). With head rotation in the new direction of travel, 

the visual and vestibular systems are aligned, as well as proprioceptive information that can be used as 

an egocentric reference frame to change whole body direction.  

Hollands et al. (2002) had participants perform anticipated turns at 30 and 60 degrees with the 

head fixed to the trunk via blocks, requiring enbloc movements. With the head fixed to the trunk, the 

authors found individuals realigned their trunk with the new direction of travel in a shorter period of 

time. The direction of travel is suggested to be controlled by fixating the goal, then aligning the head and 

body with gaze direction, suggesting people follow their eyes and head.  

Vallis and Patla (2004) had participants perform voluntary and involuntary head perturbations in 

an attempt to better explain the role of the head in steering. Participants were instructed to continue 

walking straight ahead; during the voluntary head perturbation, participants were instructed to realign 

gaze with an environment fixed target in the periphery while involuntary head perturbations were 

implemented via a pressurized head apparatus. The authors found involuntary head perturbations 

caused the participants to deviate from the straight path in the direction of perturbation, while 

voluntary head perturbations provided no significant deviation. The authors concluded that a steering 
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synergy was released following an unexpected head perturbation but suppressed with voluntary head 

motion. However, during the voluntary head perturbation, the participants were given an explicit visual 

goal, providing the system with self-to-object information, while the involuntary perturbation did not 

include an explicit goal.  

 Cinnelli and Warren (2012) further explored the role of explicit targets during change of 

direction and concluded that head reorientation is neither sufficient nor necessary to change direction 

when the change of direction target is within 55° of the current travel path. Two visual strategies can be 

implemented to determine heading direction. The optic flow strategy is used based on the visual angle 

between the goal and one’s current heading direction, specific to optic flow. Alternatively, the 

egocentric direction strategy is based on the angle between the goal direction and the foot-centered 

locomotor axis. The authors concluded that people do not follow their head, suggesting head movement 

during steering may be a byproduct of gaze shifts to fixate the goal or intended walking direction. 

Instead, steering is controlled by closing the angle between the direction of the goal and the current 

direction of travel, independent of head orientation.  

While anticipatory head reorientation may not be sufficient or necessary, it is still observed in 

conditions in the absence of a visual goal (Bernardin et al., 2012). Bernardin and colleagues had 

participants memorize a high curved, medium curved and continuous curved trajectory before 

performing the pre-cued trajectories in an environment free of notable landmarks. The authors found 

the head to precede the trunk which preceded the pelvis during all conditions both temporally and 

spatially. Interestingly, the authors also found the leading foot to precede the pelvis, suggesting both a 

top-down and bottom-up approach are used during larger and medium sized curves. While changing 

direction can be accomplished throughout a single stride (Patla et al., 1999), walking around a curved 

trajectory requires multiple strides and is comprised of small turns and straight walking which utilizes 

the oscillatory mechanics between the head and body (Imai et al., 2001). Changing direction involves 
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mediolateral CoM initiation in the new travel direction followed by head, and then whole body 

reorientation (Patla et al., 1999). However, the stance foot provides a stable support for the CoM, and 

therefore may be required to anticipate the CoM, which is located near the pelvis.  

With less time available while running the head tends to be less oriented in the new direction of 

travel throughout the preparatory and weight acceptance phase of stance during a sidestepping task.  

Mornieux et al. (2014) had participants run 5 +/- 0.2 ms-1 while performing a 45° sidestep while a visual 

stimulus in the direction of travel would turn on at specific time points (Figure 19).  

 

 

Figure 19: Schematic representation of protocol for sidestepping study. Participants were instructed to 
change direction toward the light stimuli in one of the three directions under four temporal conditions. 
During the anticipated condition, participants were aware of which light would turn on before the start 
of the run. For the other three conditions, the light stimulus would turn on 850, 600 and 500 ms before 
ground contact. All trials were randomized. A = penultimate step. B = Transition step. Adapted from 
Mornieux et al. (2014).  

Head rotation is influenced by time available, and while a reduction in head orientation in the 

new travel direction was present for both conditions with reduced planning time, only the 600 ms 

condition produced significant differences while the 500 ms condition did not during both the 

penultimate step and transition step (Table 3). While noticeable changes in change of direction 

mechanics are seen below the head with reduced planning time (Lee et al., 2017; Patla et al., 1999; Weir 



41 
 

et al., 2019), it is likely that head motion onset may be reduced with decreased planning time (Mornieux 

et al., 2014).  

Table 3:  Mean (SD) values (° ) of head rotation during the penultimate step and at the time of the peak 
knee abduction moment during the transition step. Larger values indicate greater orientation toward 
new direction of travel. The authors concluded the anticipated and 850 ms condition were not 
significantly different and should both be considered anticipated conditions. Adapted from Morniuex et 
al. (2014).          
 *expresses a significant difference (p < 0.05)       
 a significant difference compared to the Anticipated and 850 ms sidestepping condition 

Time Point Anticipated 850 ms 600 ms 500 ms 

Penultimate Step 11.1 (9.1) 10.9 (9.9) 6.5 (10.5) *a 6.9 (7.1) 

Transition Step 18.0 (11.3) 17.6 (13.1) 13.3 (13.5)*a 13.5  (11.5) 
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2.6 Coordination and Variability  

2.6.1 Dynamical Systems   

“The study of biological systems under the lens of self-organizing systems, the components of a system 
create new patterns in a self-organized fashion” – J.A. Scott Kelso 
 

A dynamical systems approach provides researchers with a means to better untangle human 

movement dynamics by not considering the system in terms of computerized functions, but instead 

view it as a pattern-forming, open self-organized system governed by nonlinear dynamical laws (Kelso, 

1995). Open in the sense that the subsystems can interact with the environment, and self-organized in 

the sense that the subsystems’ intrinsic properties determine pattern formation (Kelso, 1995). While 

traditional viewpoints consider variability to be detrimental to performance, a dynamical systems 

perspective sheds light on the importance of variability in the transition to different stable patterns.  

Complex physical systems show stable patterns and qualitative transitions, and from a 

dynamical systems perspective, allow for the classification of stable patterns and critical transition 

points (Schöner and Kelso, 1988). These stable patterns are known as attractors, defined by a set of 

points in the state space (Kelso, 1995). When an attractor becomes unstable, it will undergo a phase 

transition via a bifurcation, a qualitive change in the attractor structure (Kelso, 1995). To quantify 

specific attractors, collective variables known as order parameters describe pattern formation as well as 

their evolution.  The behavior of biological systems can be quantified through the order parameter, a 

low-dimensional collective variable which represents the organization of the system.  Phase relations 

between body segments can be considered order parameters as they reflect the interaction between 

components of the system. Modification of control parameters, such as frequency or velocity, can 

induce a shift in order parameters at a critical transition point. Phase transitions between order 

parameters occur once the attractor becomes unstable and the system bifurcates to a new attractor. An 
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attractor represents a series of focal points within the state space where neighboring solutions converge 

following perturbation.  A bifurcation is a rapid jump from one attractor to another.  

Systemic reorganization toward a more stable pattern requires bifurcation, where a qualitative 

change in the order parameter occurs. As the system approaches a transition, critical fluctuations 

emerge, where the variability within the system increases and also exhibits critical slowing down (where 

the relaxation time required to recover from a perturbation increases). The system also has a tendency 

to display hysteresis (a directional response where the transition does not happen at similar values of 

the control parameter when scaling up and down) (Kelso, 1995). In the study of human movement, 

greater variability has shown the system is closer to a phase transition, with less variability highlighting a 

more stable pattern in bimanual coordination (Kelso, 1984; Kelso et al. 1981), and during the walk to run 

transition in locomotion (Diedrich et al., 1995). A lack of relative phase variability also been shown in 

older populations, individuals with low back pain and Parkinson’s disease patients in both walking (van 

Emmerik et al. 2005; van Emmerik et al. 1999) and running (Seay et al., 2011b), suggesting age and 

disease to reduce the adaptability of the system. 

Head, trunk, pelvis, hip and knee range of motion assessments have been used to quantify 

differences between tasks such as anticipated and unanticipated side stepping (Besier et al., 2001; 

Brown et al., 2009; Byrne et al., 2018; Houck et al., 2006; Lee et al., 2017; Lee et al., 2013; McLean et al., 

2004; Mornieux et al., 2014) but do not capture the development of specific movement patterns.  

Bernstein’s principles outline two key factors in determining the state of the system, where redundant 

degrees of freedom are used to achieve the same task while separately,  the variability of coordination 

provides a metric into the variety of coordination patterns utilized (Bernstein, 1967). From this 

perspective, analysis of coordination and variability through relative phase analysis may provide deeper 

insights into the state of the system. 
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2.6.2 Coordination  

Human movement is composed of a series of subsystems that have locally defined properties, 

brought together to complete specific goals in a coordinated pattern. From a dynamical systems 

perspective, principles of coordination emerge from the interaction of the underlying degrees of 

freedom in the system.  Bernstein defined coordination as a problem of mastering the redundant 

degrees of freedom involved in a particular movement, or reducing the number of independent 

variables to be controlled (Bernstein, 1967; Turvey, 1990).  It is possible to organize different degrees of 

freedom in the same way to achieve the same purpose and organize the same degrees of freedom in a 

different way to achieve a different purpose (Turvey, 1990).  

Walking and running are different tasks but similar coordinative patterns emerge when 

comparing the two tasks at the same speed (Li et al., 1999). When learning a new task, or when planning 

time is reduced the system may lock the degrees of freedom to simplify the control task (Vereijken et 

al., 1992; Weir et al., 2019). Biological systems are equipped with excess, in the sense that with injury, 

we are still able to ambulate through the environment but may possess less complexity in our actions. A 

loss of complexity hypothesis brought forth through the work of Lipsitz et al. (2002) suggests that with 

aging and disease, less complexity may be linked to a reduction in the degrees of freedom, and with this 

reduction there is also a decrease in variability (Figure 20). 
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Figure 20: Loss of complexity hypothesis based on the work of Lipsitz et al. (2002). Top panel shows a 
reduction in the degrees of freedom used over time to accomplish the same task, explained graphically 
by the middle panel. A reduction in the degrees of freedom utilized is associated with a reduction in 
variability in the system. The bottom figure relates degrees of freedom and variability to functionality, 
with a reduction in variability related to a reduction in functionality. Over time, the reductions seen may 
relate to disease, injury and injury risk. Adapted from van Emmerik et al. (2013). 

Age related changes in gait have been well documented, with a major emphasis on the changes 

at the lower extremity and their influence on the reduction in gait speed and stride length (Murray, 

1967). However, a growing body of literature highlights the importance of trunk-pelvis motion, and the 

relationship to gait stability (van Emmerik and Wagenaar, 1996; Hinrichs, 1987; Murray, 1967; Stokes,  

Andersson, Forssberg 1989; Wagenaar and Beek, 1992). The phase relationship between the trunk and 

pelvis is dependent on gait speed, with a more in-phase relationship at lower velocities, and more anti-

phase relationship at higher walking velocities (Wagenaar and Beek, 1992). During human locomotion, 

the pelvic step increases stride length through greater transverse plane motion of the pelvis,  starting 

between 0.75 (Stokes et al., 1989)  and 1.0 ms-1 (van Emmerik and Wagenaar, 1996; Wagenaar and 

Beek, 1992) in healthy participants. The counter rotation between the trunk and pelvis may reduce 
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whole body angular momentum (Figure 4), allowing for more stable gait (Hinrichs, 1987; Stokes et al., 

1989).  

A more in-phase transverse plane trunk-pelvis motion during walking has been observed in 

stroke (Wagenaar and Beek 1992) and Parkinson’s disease patients (van Emmerik et al., 1999), and with 

aging (van Emmerik et al., 2005; Murray, 1967), as well as with lower back injury during walking and 

running (Seay et al., 2011a). McGibbon and Krebs (2001) had young and older participants walk over 

ground at their preferred speeds and found no age-related differences in trunk-pelvis ranges of motion  

in the sagittal plane but did find different leading strategies between age groups, with younger 

participants displaying a pelvis leading strategy while older participants displayed a trunk leading 

strategy. When controlling for walking speed with young, middle aged and older individuals, van 

Emmerik et al. (2005) found a reduction in pelvic motion in the frontal, sagittal and transverse planes, as 

well as a reduction in trunk motion in the sagittal plane as a function of age. Interestingly the authors 

found an increase in transverse trunk motion, but a reduction in compensatory motion between the 

trunk and pelvis in older individuals.  

 When assessing the effect of low back pain on pelvis-trunk coordination during walking and 

running, Seay et al. (2011a) found a more in-phase movement pattern between the trunk and pelvis in 

the transverse plane in individuals with a history of low back pain compared to healthy controls. With 

reduced planning time, a reduction in the degrees of freedom utilized has been observed with more in-

phase trunk-pelvis and hip-knee motion during an unanticipated sidestepping task (Weir et al., 2019). 

These findings highlight the loss of complexity by locking the degrees of freedom to simplify the control 

task seen with a reduced system capacity either with aging, disease or a reduction in planning time.  

2.6.3 Coordination Variability  

An increase in coordination variability can pinpoint unstable patterns near a transition point 

(Kelso, 1984), but variability may also play a functional role in regards to overuse injuries and the 
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adaptivity of the system (Hamill, Palmer, and van Emmerik 2012). The traditional view of variability is 

based on the concept of end point variability, which greatly differs from coordination variability (Hamill 

et al., 2012). End-point variability refers to the task goal, which in the context of pistol shooting may 

involve pistol aiming location prior to pulling the trigger (Arutyunyan, Gurfinkel, and Mirskii 1969). 

Coordination variability refers to the variability in the joint and segment coupling strategies used to 

achieve a task goal. When comparing novice and expert marksmen, Arutyunyan et al. (1969) found 

experts to have less end-point variability, while coordination variability of the shoulder, elbow and wrist 

was greater than novice marksmen. These findings highlight the differences between coordination 

variability and end-point variability.  

Variability can be both beneficial and adaptive, with a reduction in variability commonly seen in 

aging and disease (van Emmerik et al., 1999; Hamill et al., 1999; Seay et al., 2011b). Trunk-pelvis 

coordination was examined in patients recently diagnosed with Parkinson’s disease  during treadmill 

walking as speed incrementally increased, and then decreased by 0.2 ms-1 from 0.2 ms-1 to 1.4 ms-1 (van 

Emmerik et al., 1999). A significantly smaller adaptation in coordination and reduced coordination 

variability was seen in Parkinson’s disease patients compared to healthy controls, which the authors 

concluded may be a more sensitive metric to assess patients compared to traditional gait parameters 

(van Emmerik et al., 1999). A similar protocol was used during the walk to run transition to assess the 

effect of low back pain on coordination and coordination variability, with treadmill speeds ranging from 

0.8 to 3.8 ms-1 (Seay et al., 2011b). Individuals with low back pain showed reduced coordination 

variability (Seay et al., 2011b). During a running study comparing healthy individuals with individuals 

with patellar femoral pain, patients with patellar femoral pain showed a reduction in coordination 

variability throughout the entire stride cycle, with the most observable differences during terminal 

stance (Hamill et al., 1999) (Figure 21). In the context of injury, and injury prevention, the narrow range 

of movement patterns may result in repeated stress to a segment or joint, and may provide insight into 
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the underlying cause of injury (Hamill et al., 1999; Hamill et al., 2012).  The authors suggest lower 

coordination variability may be an indicator of pathology (Hamill et al., 2012).  

 

Figure 21: Continuous Relative Phase (CRP) variability of lower extremity coupling during running in 
healthy individuals and individuals with patellofemoral pain (PFP). The vertical line separates stance 
phase from swing phase during running. There were significant differences in the variability during 
terminal stance in healthy compared to PFP. Throughout the entire stride cycle, the PFP group displayed 
less variability.  a: thigh flexion/extension – tibia rotation , b): thigh rotation – tibia rotation, c):  thigh 
abduction/adduction – tibia rotation, d): tibia rotation -foot eversion/inversion.  Adapted from Hamill et 
al. (1999). 

 
Regarding variability, it appears there may be an “optimal” range, where too little variability suggests 

that a reduced number of movement patterns may result in overuse of specific tissues, and an inability 

to appropriately respond to a perturbation (Hamill et al., 2012; Weir et al., 2019) . However, too much 

variability may also be detrimental also highlighting an injured state (Figure 22).  
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Figure 22. A schematic illustrating the theoretical relationship between high and low variability. Adapted 
from Hamill et al. (2012). 

 
2.6.4 Coordination and Coordination Variability Assessments During Side-Stepping 

The majority of side-stepping literature places a major emphasis on kinematics and kinetics of 

the lower extremity joints in isolation, rather than assessing the interaction between the joints of 

interest (Brown, Brughelli, and Hume, 2014; Fox, 2018).  Non-contact ACL injuries typically occur during 

sidestepping or single leg landing tasks, commonly the result of rapid redirection of whole body CoM 

during the weight acceptance phase (Besier et al., 2001; Cochrane, Lloyd, Buttfield, Seward, and 

McGivern, 2007), with female athletes at a higher risk than males (Griffin, Garrett, and Huston 2000). A 

growing body of literature utilizes coordination and variability analysis during anticipated and 

unanticipated sidestepping (Pollard, Heiderscheit, van Emmerik, and Hamill, 2005; Pollard, Stearns, 

Hayes, and Heiderscheit, 2015; Weir et al., 2019). Multiple complex coordination patterns are needed to 

successfully change direction, which requires a large kinematic solution space. With reduced planning 
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time, more in-phase coupling between the trunk-pelvis and hip-knee segments has been observed, with 

an increase in coordination variability (Weir et al., 2019). By manipulating the time available to plan a 

movement, the task complexity increases, displaying significant differences in joint coupling and 

coupling variability (Weir et al., 2019). 

 Gender differences in ACL risk have also been reported, with women at an increased injury risk, 

possibly due  anatomical differences between males and females (Griffin et al., 2000). However, when 

assessing the coupling variability, females have a decrease in coordination variability prior to ACL injury 

with an increase in coordination variability following ACL reconstruction during the same sidestepping 

task (Pollard et al., 2005; 2015). Decreased variability in intralimb coupling may highlight a less flexible 

system, with a reduction in pattern flexibility or adaptability increasing overuse injury risk through 

repetitive loading (Hamill et al., 1999).  

 
2.6.5 Quantifying Coordination and Coordination Variability  
 

Visual graphical inspection has been used in an attempt to quantify the phasic relation between 

segments but does not provide a quantifiable metric (Stokes et al., 1989). To quantify coordination and 

coordination variability, the three primary methods are relative phase (DRP), continuous relative phase 

(CRP) and vector coding (VC) (van Emmerik et al., 2013).  DRP calculation is relatively simple, extracting 

the relative timing of two corresponding peaks from different time series. However, DRP is limited as it 

only provides a discrete measure of coordination. When assessing signals where coordination can 

change within the cycle, CRP and VC may be more suitable options. CRP allows for the extraction of 

higher order metrics between two segments or joints by quantifying the coordination between two 

oscillations based on the difference in their phase plane angles, though this requires to construction of a 

phase plane and extraction of phase plane angles. The phase plane is often constructed from position-

velocity or angular position-angular velocity data.   DRP provides  a single discrete event in a time series 

while CRP allows for the quantification of coordination across an entire movement cycle, such as a stride 
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cycle during walking or running (van Emmerik et al., 1999; Li et al., 1999). The construction of the phase 

plane enables the assessment of both velocity and displacement of the joint or segment.  

CRP and DRP can be used to assess the spatial-temporal coordination between segment angles 

while manipulating a control parameter such as walking velocity to better understand the effects of 

aging and disease (van Emmerik and Wagenaar, 1996; van Emmerik et al., 1999; Li et al., 1999). To 

quantify coordination variability, the between-cycle standard deviation of the CRP can be taken from a 

normalized gait cycle. While higher order dynamics of the system can be extracted from CRP analysis, 

this also requires a sinusoidal pattern and is difficult to interpret when the question of interest mainly 

deals with spatial phasing. Instead, a modified vector coding (VC) analysis, originally presented by 

Sparrow, Donovan, van Emmerik, and Barry (1987), allows for the classification of a coordination pattern 

with both sinusoidal and non-sinusoidal data and may be more clinically applicable (Chang, van 

Emmerik, and Hamill, 2008; Needham, Naemi, and Chockalingam, 2014, 2015). Coupling angles, 

extracted through circular statistics from angle-angle plots (Figure 23), allow for more information 

regarding the development of the movement. While CRP provides the relative phase, VC can clarify the 

different coordination patterns such as in-phase, anti-phase and with proximal or distal dominancy 

based on spatial changes (Chang et al., 2008; Needham et al., 2014, 2015). It is important to note that 

CRP and vector coding do not always provide the same relevant information (Miller, Chang, Baird, van 

Emmerik, and Hamill, 2010). When both a CRP and VC analysis were performed on the same dataset, 

differences in coordination and coordination variability patterns suggest that the comparison between 

CRP and VC should be used with caution (Miller et al., 2010). While CRP may provide a more complete 

metric for variability, a VC technique may be preferable when assessing sidestepping coordination. The 

coupling angle extracted from VC provides direction information about the movement patterns without 

the need for higher order variables. CRP requires a sinusoidal signal to accurately capture the 

coordination and coordination variability while VC has the capacity to handle non-sinusoidal signals, 
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which may be present during anticipated and unanticipated sidestepping. Lastly, VC may be more 

clinically interpretable; while the higher-order variables from CRP may be more sensitive to subtle 

changes, they may not be as easily translated at a clinical level (van Emmerik et al., 2013). 

 

Figure 23: (a) Polar plot adapted from Chang et al. (2008) to quantify the coupling angle through a 
modified vector coding technique. (b) Angle-angle diagram of pelvic-lumbar coordination in the 
transverse plane of the mean of 10 participants while walking at their preferred speed. (c) Coupling 
angle (γi) determined by the vector orientation between two adjacent data points in time relative to the 
right horizonal. Adapted from Needham et al. (2014). 
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3 CHAPTER 3 
METHODS  

3.1 Introduction 
 

This study was a secondary analysis of the data published by Weir et al. (2019). The original 

purpose was to identify if coordination and coordination variability differences exist when planning time 

was reduced in sport-specific tasks to better understand the role of the organization of the degrees of 

freedom in ACL injury risk. The primary objective of this thesis was to better understand how the body’s 

degrees of freedom organize themselves during sidestepping tasks with and without reduced planning 

time in collegiate athletes in regard to head control. Whole-body modifications are commonly seen to 

facilitate head control during forward locomotion, but kinematic differences are present during 

sidestepping tasks with and without reduced planning time compared to forward locomotion and their 

relationship to head motion control remains unknown. 

3.2 Participants 
 

Fourteen male collegiate athletes 18-25 years of age with no physical or neurological disorders 

were recruited to participant in this study. All athletes were free from injury at the time of testing and 

had no history of serious lower extremity injury or surgery within the previous year. Approval for this 

research was gained from the University Institutional Review Board and written informed consent for all 

participants was obtained. 

3.3 Experimental Setup: 
 
Kinematic data were recorded using an 11-camera motion capture system (Qualysis, Inc., 

Gothenburg, Sweden) sampling at 240 Hz synchronously with ground reaction forces from a 1.2×0.6 m 

force platform at 1200 Hz (AMTI, Watertown, MA). Participants were fitted with 70 14-mm 

retroreflective markers as per a customized head, trunk and lower limb kinematic marker set and model 

(Weir et al., 2019). Four markers were fixed to the head via a head band. Four markers were placed on 



54 
 

the suprasternal notch, xiphoid process, C7 and T10 to define the trunk (Figure 24). Markers were 

placed on the shoulder, elbows and wrists, with clusters placed on the pelvis, thigh, shank and feet to 

calculate segmental and whole body CoM. All participants wore standardized footwear provided by the 

laboratory. 

 

Figure 24: Anterior and posterior views of market set up to define the head and trunk. RFH - Right Front 
Head, LFH - Left Front Head, RBH - Right Back Head, LBH - Left Back Head, CLAV – Suprasternal notch, 
STRN – xiphoid process, C7 - Cervical vertebrae 7, T10 - Thoracic vertebrae 10. 

3.4 Protocol 
 

Participants were asked to complete a series of anticipated and unanticipated run, run-stop and 

sidestepping tasks using their dominant limb. Dominant limb was determined by asking participants 

which leg they would kick a soccer ball with. All participants were right limb dominant. Run and run-stop 

tasks were used for task randomization to limit predictability of the unanticipated sidestepping tasks 

and were not used formally in this analysis. Symbols representing these tasks (i.e. arrow or stop sign) 

were displayed on a 1.65 m television screen at the end of a 20 m runway (Figure 25). Participants were 

instructed to run at 4.0 ± 0.5 ms−1 down the runway and perform the task displayed on the screen. 
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During these tasks, the screen either displayed the task prompt before the initiation of the run 

(anticipated) or it appeared at non-dominant limb (penultimate step) limb toe off prior to contacting the 

force platform with the dominant leg to perform the task (unanticipated) (Figure 25b). An unanticipated 

task prompt was triggered by the athlete running through a set of timing gates. Participants were given 

approximately 30 s of rest between tasks to minimize any effects of fatigue. Sidestepping trials were 

considered successful if the athlete’s average approach velocity was 4.0 ± 0.5 ms−1 and they contacted a 

black line ± 10° marked on the ground at 45° with the contralateral limb upon exit of the sidestep 

maneuver. A total of 7 anticipated and 7 unanticipated sidestepping trials were collected for each 

participant. 

 

Figure 25: Sidestepping Protocol. Participants were instructed to run at 4.0 ± 0.5 ms−1 and perform a task 
present on the screen. (a) During unanticipated trials, a blank screen would be present prior to passing 
through the timing gaits. (b) A stimulus on screen would be present at penultimate step toe off, 
instructing the participant to change direction. For anticipated sidestepping tasks, the task prompt on 
the screen would be present at the start of the trial. Trials were considered successful with an approach 
velocity of 4.0 ± 0.5 ms−1 and a change of direction angle (θ) of 45°± 10° (LTO – left toe off, RHS – right 
heel strike,  RTO – right toe off, LHS – left heel strike). 
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3.5 Data Analysis 
 
Marker data were initially processed in Qualisys Tracking Manager (Qualisys, Gothenburg, 

Sweden). All the markers were labeled and gap filled (when appropriate). A residual analysis was 

performed on kinematic trajectories for the head and trunk separately to determine the appropriate cut 

off frequency. Once an appropriate cut-off frequency was determined, tracked marker data and ground 

reaction forces were exported to Visual 3D software (C-motion, Rockville, MD), where data filtering and 

processing was performed. A zero-lag fourth-order low pass 14 Hz Butterworth filer was applied. A 

complete stride, from left toe off to left heel strike was used to export normalized head and trunk 

segment angles, as well as vertical CoM motion of the trunk, relative to the global coordinate system.  

Mean spatial-temporal, segment orientation, segment range of motion, and segment/joint 

coordination and coordination variability were calculated for seven trials for anticipated and 

unanticipated sidestepping. Spatial-temporal variables included pre-contact velocity (average pelvis 

CoM velocity at penultimate toe off) and change of direction angle (angle between the two CoM 

position vectors from dominant limb toe off to contralateral limb foot strike during change of direction 

stride) (Donnelly, Lloyd, Elliott, and Reinbolt, 2012). Segment orientation was calculated independently 

for the head and trunk as the angular position in the transverse plane at penultimate step toe off 

relative to the global coordination system. Segment range of motion was calculated independently for 

the head and trunk using transverse plane angular position data relative to the global coordinate system 

as the maximum value minus the minimum value across the entire gait cycle from left toe off to left heel 

strike.  Segment/joint coordination and coordination variability were calculated using a modified vector 

coding technique for each participant and each sidestepping condition throughout the entire stride from 

left toe off to left heel strike (Equations 1-9) (Figure 26) (Chang et al., 2008). 
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3.5.1 Coupling Angle Calculation 
 
The following procedures follow the modified vector coding technique developed by Chang et al.,  
(2008). 
 
Coupling angles (𝑦𝑦𝑖𝑖) were calculated for each instant ( 𝑖𝑖  ) from a normalized stride cycle based on the 
consecutive proximal segment angles (𝜃𝜃𝑃𝑃(𝑖𝑖),𝜃𝜃𝑃𝑃(𝑖𝑖+1)) and consecutive distal segment angles  
(𝜃𝜃𝐷𝐷(𝑖𝑖),𝜃𝜃𝐷𝐷(𝑖𝑖+1)) (Figure 23).  
 
Equation 1: Calculation of coupling angle based on consective proximal and distal segment angles part 1 

𝑦𝑦𝑖𝑖  = Atan �𝜃𝜃𝐷𝐷(𝑖𝑖+1)−𝜃𝜃𝐷𝐷(𝑖𝑖)

𝜃𝜃𝑃𝑃(𝑖𝑖+1)−𝜃𝜃𝑃𝑃(𝑖𝑖)
� ∗  180

𝜋𝜋
  𝜃𝜃𝑃𝑃(𝑖𝑖+1) − 𝜃𝜃𝑃𝑃(𝑖𝑖) > 0 

 
Equation 2: Calculation of coupling angle based on consecutive proximal and distal segment angles part 
2 

𝑦𝑦𝑖𝑖  = Atan �𝜃𝜃𝐷𝐷(𝑖𝑖+1)−𝜃𝜃𝐷𝐷(𝑖𝑖)

𝜃𝜃𝑃𝑃(𝑖𝑖+1)−𝜃𝜃𝑃𝑃(𝑖𝑖)
� * 180

𝜋𝜋
+ 180   𝜃𝜃𝑃𝑃(𝑖𝑖+1) − 𝜃𝜃𝑃𝑃(𝑖𝑖) < 0 

 
Equation 3: Calculation of coupling angle part 3 

𝑦𝑦𝑖𝑖

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑖𝑖 = 90                            𝜃𝜃𝑃𝑃(𝑖𝑖+1) − 𝜃𝜃𝑃𝑃𝑃𝑃 = 0    𝑎𝑎𝑎𝑎𝑎𝑎  𝜃𝜃𝐷𝐷(𝑖𝑖+1) − 𝜃𝜃𝐷𝐷𝐷𝐷 > 0  
𝑦𝑦𝑖𝑖 = −90                         𝜃𝜃𝑃𝑃(𝑖𝑖+1) − 𝜃𝜃𝑃𝑃𝑃𝑃 = 0    𝑎𝑎𝑎𝑎𝑎𝑎  𝜃𝜃𝐷𝐷(𝑖𝑖+1) − 𝜃𝜃𝐷𝐷𝐷𝐷 < 0  
𝑦𝑦𝑖𝑖 = −180                       𝜃𝜃𝑃𝑃(𝑖𝑖+1) − 𝜃𝜃𝑃𝑃𝑃𝑃 < 0    𝑎𝑎𝑎𝑎𝑎𝑎  𝜃𝜃𝐷𝐷(𝑖𝑖+1) − 𝜃𝜃𝐷𝐷𝐷𝐷 = 0  
𝑦𝑦𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢             𝜃𝜃𝑃𝑃(𝑖𝑖+1) − 𝜃𝜃𝑃𝑃𝑃𝑃 = 0    𝑎𝑎𝑎𝑎𝑎𝑎  𝜃𝜃𝐷𝐷(𝑖𝑖+1) − 𝜃𝜃𝐷𝐷𝐷𝐷 = 0  

 

 
 
Equation 4 allows for coupling angle (𝑦𝑦𝑖𝑖) correction to present a value between 0° and 360°  
 
Equation 4: Coupling angle correction  

𝑦𝑦𝑖𝑖 �
𝑦𝑦𝑖𝑖 + 360            𝑦𝑦𝑖𝑖 < 0
𝑦𝑦𝑖𝑖                          𝑦𝑦𝑖𝑖 ≥ 0 

 
3.5.2 Average Coupling Angle and Coordination Variability Calculation  
 
As the coupling angle is directional, the average coupling angle (𝑦𝑦�i) was then calculated based on the 
average vertical (𝑦𝑦�i) and horizontal (𝑥̅𝑥i) components at each instant using circular statistics (Batschelet 
1981).  
 
Equation 5: Average coupling angle based on horizontal components 

𝑥̅𝑥i = 1
𝑛𝑛

 ∑ cos𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1  

 
Equation 6: Average coupling angle based on vertical components 

𝑦𝑦𝑖𝑖  =  1
𝑛𝑛

 ∑ sin𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1  
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To correct for the average coupling angle (𝑦𝑦�i), Equation 7 was applied to present a value between 0°   
and 360°  
 

Equation 7: Correction for average coupling angle 

𝑦𝑦𝑖𝑖

⎩
⎪⎪
⎨

⎪⎪
⎧𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑦𝑦𝑖𝑖
𝑥𝑥�𝑖𝑖 ∗ 180𝑛𝑛                                  𝑥𝑥𝑖𝑖 > 0, 𝑦𝑦𝑖𝑖 > 0       

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑦𝑦𝑖𝑖
𝑥𝑥�𝑖𝑖 ∗ 180𝑛𝑛 +180                      𝑥𝑥𝑖𝑖 < 0                     

    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑦𝑦𝑖𝑖
𝑥𝑥�𝑖𝑖 ∗ 180𝑛𝑛 +360                      𝑥𝑥𝑖𝑖 > 0, 𝑦𝑦𝑖𝑖 < 0    

90                                                     𝑥𝑥𝑖𝑖 = 0, 𝑦𝑦𝑖𝑖 > 0     
      

−90                                                   𝑥𝑥𝑖𝑖 = 0, 𝑦𝑦𝑖𝑖 < 0             
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢                                  𝑥𝑥𝑖𝑖 = 0, 𝑦𝑦𝑖𝑖 = 0             

   

 
Equation 8 was used to calculate the length of average coupling vector 𝑟𝑟𝑖𝑖  
 
Equation 8: Calculating length of average coupling angle  

𝑟𝑟𝑖𝑖 =  �   𝑥̅𝑥𝑖𝑖2 +  𝑦𝑦�𝑖𝑖2   
 
Lastly, Equation 9 was used to calculate coupling angle variability 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 
 
Equation 9: Calculating Coupling Angle Variability  

𝐶𝐶𝐶𝐶𝐶𝐶 =  �2(1 −  𝑟𝑟𝑖𝑖 ) ∗
180
𝜋𝜋  

 

 
 
Angle-angle plots were created for motion between the head and trunk in the transverse and sagittal 

planes. Coordination patterns were classified into in-phase, proximal dominancy, anti-phase, distal 

dominancy (Figure 26). In order to understand which patterns were most prevalent, the percentage of 

stance from which each coordination pattern emerged was quantified using frequency plots. 

Coordination variability was calculated as the standard deviation of the vector connecting corresponding 

consecutive time points of the angle-angle plots across all trials in each condition using circular statistics 

(Equation 9). Based on the plane dependent relationship between the head and trunk, the following 

couplings were examined: 1) head (rotation) – trunk (rotation) and 2) head (flexion/extension) – trunk 

(flexion/extension).  
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Figure 26: Polar plot showing coordination pattern classification as described by Chang et al. (2008).  

 
 

Hypothesis 1 predicts when performing a sidestepping task with reduced planning time, both 

the head and trunk will be less oriented toward the new travel direction in the transverse plane 

compared with performing the same sidestepping task with adequate planning time. The dependent 

variable for this analysis will be the discrete measure of head and trunk orientation at penultimate toe 

off. Differences in head and trunk orientation during anticipated and unanticipated sidestepping will be 

assessed with a paired t-test with an 𝛼𝛼 = 0.05. 

 Hypothesis 2 predicts when performing a sidestepping task with reduced planning time, 

coordination between the head and trunk will be less trunk dominant in the transverse plane compared 

with performing the same sidestepping task with adequate planning time. The dependent variables for 

this analysis will be head-trunk coupling angle. A binning method, as described by Chang et al., (2008) 

Coordination Pattern Coupling Angle Definition 
Anti-Phase 112.5° ≤ γ < 157.5°, 292.5° ≤ γ < 337.5° 
In-Phase 22.5° ≤ γ < 67.5°, 202.5° ≤ γ < 247.5° 
Proximal Dominancy 0° ≤ γ < 22.5°, 157.5° ≤ γ < 202.5°, 337.5° ≤ γ < 360° 
Distal Dominancy 67.5° ≤ γ < 112.5°, 247.5° ≤ γ < 292.5° 
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will be used to determine the coordination pattern. Differences in coordination pattern frequencies 

during anticipated and unanticipated sidestepping will be assessed with a paired t-test with  

an 𝛼𝛼 = 0.05.  

Hypothesis 3 is exploratory and will assess coordination between sagittal plane head and trunk 

motion during anticipated and unanticipated sidestepping.  The dependent variable for this analysis will 

be head-trunk coupling angle. A binning method, as described by Chang et al., (2008) will be used to 

determine the coordination pattern. Differences in coordination pattern frequencies during anticipated 

and unanticipated sidestepping will be assessed with a paired t-test with an 𝛼𝛼 = 0.05. 

Hypothesis 4 predicts an increase in coordination variability between head-trunk relative phase 

in the transverse and sagittal plane during unanticipated sidestepping compared with anticipated 

sidestepping. The dependent variables for this analysis will be head-trunk coupling angle variability.  

One-dimensional statistical parametric mapping (SPM1D) will be used to compare coordination 

variability waveforms during anticipated and unanticipated sidestepping (Pataky, Robinson, and 

Vanrenterghem, 2013). 

 
 
3.6 Statistical Analysis  
 

Differences in the means and standard deviations spatial-temporal variables, orientation, range of 

motion and coordination pattern frequencies throughout the stride cycle will be assessed with paired t-

tests with an α=0.05. Cohen’s d effect sizes will be calculated and defined as small (0.2), moderate (0.5) 

and large (0.8) (Cohen, 1988).  For all data means, standard deviations and 95% confidence intervals (CI)  

will be presented.  

One-dimensional statistical parametric mapping (SPM1D) will be used to compare coordination 

variability waveforms over stance (Pataky et al., 2013). The scalar output SPM t-statistic curves will be 

calculated for each time point over stance forming a statistical parametric map. The temporal 



61 
 

smoothness based on the average temporal gradient of the data curve will then be estimated using 

random field theory (Pataky et al., 2013). Statistical significance is achieved when the value of the test 

statistic breaches the threshold above which only 5% of the data would be expected to reach had the 

SPM t curve resulted from an equally smooth random process. 
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4 CHAPTER 4 
RESULTS 

 
4.1 Demographics 
 

We examined spatial-temporal variables, coordination and coordination variability on 14 male 

collegiate soccer players (20.14 ± 1.82 yrs, 1.82 ± 0.07 m, 71.76 ± 6.27 kg).  

4.2 Spatial-Temporal Variables  
 

No statistically significant differences were observed between approach velocities at the 

penultimate step (left toe off) (p = 0.61, ES = -0.14) (Table 4).  Change of direction angle was greater 

during anticipated compared to unanticipated conditions (p < 0.001, ES = 1.45) (Table 5). 

Table 4: Change of direction velocity throughout the change of direction stride. The velocity was 
calculated at each gait event. 

Change of Direction Velocity 
Gait event Anticipated Mean (SD) Unanticipated Mean (SD) P ES 

Left Toe Off 4.52 (0.37) 4.58 (0.24) 0.61 -0.14 
Right Heel Strike 4.21 (0.29) 4.30 (0.39) 0.49 -0.19 

Right Toe Off 3.96 (0.44) 3.90 (0.37) 0.38 0.24 
Left Heel Strike 3.84 (0.40) 3.77 (0.36) 0.20 0.36 

 
Table 5: Change of direction angle calculated from the angle of the two center of mass position vectors 
from left toe off to left heel strike 

Change of Direction Angle 
Condition Angle ° (SD) p ES 

Anticipated 40.45 (4.87) < 0.001 1.17 
Unanticipated 33.87 (5.16) 

 
4.3 Static Calibration 

 
A standing calibration was performed to determine local segment coordinate systems. The tri-

planar change in head and trunk angle with respect to the global coordinate system was based off a 

static calibration angle of 0°. The following data presented represent orientation change with respect to 

the static calibration and should be interpreted as such.   
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4.4 Head and Trunk Orientation  
 
Significant differences in head (p = 0.009, ES = 0.82) and trunk (p = 0.047, ES = 0.59) orientation at 

penultimate toe off during anticipated and unanticipated sidestepping were observed  (Table 6). The 

greater mean head angle during anticipated sidestepping (10.21°) compared to unanticipated 

sidestepping (5.90°) indicated the head was more oriented toward the new travel direction when 

adequate planning time was provided. The greater negative trunk angle during unanticipated 

sidestepping (-8.42°) compared to anticipated sidestepping (-5.59°) indicates the trunk was more 

oriented toward the opposite direction of travel when planning time was reduced.  

 
Table 6: Transverse plane head and trunk orientation (°) at penultimate toe off. Negative values indicate 
orientation opposite the new direction of travel  

 
 

4.5 Head and Trunk Coordination  
 
Head and trunk coordination was assessed in both the transverse and sagittal planes. Segment 

coupling pattern was assessed throughout the entire change of direction stride, as well as during the 

preparatory, stance and post-transition step phases of the change of direction stride.  

 
4.5.1 Transverse Plane  

 
4.5.1.1 Transverse Head and Trunk Kinematics  

 
Despite significantly different initial head position at penultimate toe off, there were no observed 

differences in transverse plane head reorientation trajectories during the change of direction stride as 

an effect of planning time (Figure 27). However, there was delayed trunk reorientation when planning 

time was reduced during the preparatory phase. Initial trunk reorientation is seen during anticipated 

Segment Condition Mean(°) (SD) 95% CI p Effect Size 
 
Head 

ANT 10.21 (1.37) 5.77, 18.77 0.009 0.82 
UNANT 5.90 (2.20) -0.22, 9.89   

 
Trunk 

ANT -5.59 (1.58)  -6.64, 2.43  0.047  
 

0.59  
UNANT -8.42 (1.55)  -8.66, -4.37   
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sidestepping at approximately 5% of the change of direction stride. During unanticipated sidestepping, 

the trunk rotates towards the opposite direction of travel before reorienting toward the new direction 

of travel at approximately 10% of the change of direction stride (Figure 27).  Throughout the stance 

phase, we did not observe differences in trunk reorientation. During the post-transition phase, the trunk 

continues to rotate towards the new travel direction during anticipated conditions but appears to stop 

rotating during unanticipated conditions despite continued head reorientation toward the new direction 

of travel. 

 

Figure 27: Transverse plane head and trunk segment angles. Positive values indicate new travel direction 
while negative values indicate the opposite direction of travel. 

4.5.1.2 Transverse Head and Trunk Coordination 
 

Throughout the change of direction stride, transverse plane head and trunk rotations were 

predominantly in-phase with the second largest percentage of trunk dominancy during anticipated and 

unanticipated sidestepping. No significant differences in head and trunk coupling pattern frequencies 

were observed between anticipated and unanticipated conditions throughout the change of direction 

stride (Table 7). Adequate planning time had a small effect on in-phase coupling pattern frequency        
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(p = 0.25, ES = 0.32), while reducing planning time had a small effect on trunk dominant coupling pattern 

frequency throughout the change of direction stride (p = 0.23, ES = -0.33). 

Table 7:  Transverse plane head and trunk couple binning percentage means during anticipated and 
unanticipated sidestepping across the entire change of direction stride.  

 

 When assessed during the individual phases of the change of direction stride, we found 

significant differences in coupling pattern frequencies during the preparatory phase (Figure 28). During 

the preparatory phase, the primary coordination pattern remains in-phase for both anticipated and 

unanticipated conditions, with greater in-phase coordination during anticipated trials compared to 

unanticipated trials (p = 0.02, ES = 0.73) (Table 8). Planning time had a moderate effect on head 

dominancy, with greater head dominancy coupling pattern frequency during unanticipated compared to 

anticipated trials (p = 0.07, ES = -0.53). Throughout the stance phase, the predominant coordination 

pattern remains in phase, followed by the trunk dominant pattern. No statistically significant differences 

with very small effect sizes were observed throughout the stance phase in the transverse plane. During 

the post-transition phase an initial trunk dominant coordination pattern shifts towards an in-phase and 

then head dominant coordination pattern (Figure 28). No differences were reported for the frequencies 

of trunk dominancy between anticipated and unanticipated conditions. Small effects were observed 

during the post-transition phase, with greater in-phase coupling pattern frequencies during anticipated 

sidestepping compared to unanticipated sidestepping (p = 0.16, ES = 0.40) and reduced head dominancy 

during anticipated sidestepping compared to unanticipated sidestepping (p = 0.19, ES = -0.37). 

 Transverse Plane 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 24.36 

(18.34, 30.37) 
27.29 

(22.08, 32.49) 
0.23 -0.33 

In-Phase 59.43 
(51.49, 67.37) 

55.71 
(49.80, 61.63) 

0.25 0.32 

Anti-Phase  5.29 
(3.80, 6.78) 

4.71 
(3.20, 6.23) 

0.63 0.13 

Head 10.93 
(6.59, 15.26) 

12.29 
(8.84, 15.73) 

0.60 -0.14 
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Table 8: Transverse plane head and trunk couple binning percentage means during the preparatory, 
stance and post-transition phases of the change of direction stride. 

 
Figure 28: Transverse plane mean head and trunk coupling angle during anticipated and unanticipated 
sidestepping. 

 Preparatory 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 13.50 

(4.31, 22.69) 
18.64 

(8.09, 29.19) 
0.25 -0.32 

In-Phase 58.50 
(44.84, 72.16) 

44.36 
(31.33, 57.38) 

0.02 0.73 

Anti-Phase  11.14 
(3.69, 18.59) 

10.43 
(4.95, 15.91) 

0.88 0.04 

Head 16.86 
(5.88, 27.83) 

26.57 
(14.13, 39.02) 

0.07 -0.53 

 Stance 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 23.64 

(15.25, 32.04) 
24.64 

(18.69, 30.59) 
0.76 -0.08 

In-Phase 68.79 
(60.00, 77.57) 

69.50 
(61.26, 77.74) 

0.84 -0.06 

Anti-Phase  1.29 
(0.08, 2.49) 

0.64 
(-0.50, 1.78) 

0.34 0.27 

Head 6.29 
(1.50, 11.07) 

5.21 
(-0.67, 11.10) 

0.73 0.09 

 Post-Transition 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 46.00 

(28.61, 63.39) 
49.14 

(31.50, 66.79) 
0.60 -0.14 

In-Phase 30.14 
(16.84, 43.44) 

22.14 
(11.77, 32.52) 

0.16 0.40 

Anti-Phase  7.50 
(2.17, 12.83) 

9.21 
(2.36, 16.07) 

0.59 -0.15 

Head 15.93 
(2.62, 29.23) 

19.50 
(6.95, 32.05) 

0.19 -0.37 



67 
 

 
4.5.2 Sagittal Plane  

 
4.5.2.1 Sagittal Head and Trunk Kinematics and Center of Mass Vertical Displacement  

 
Throughout the change of direction stride, the head maintained a more extended posture 

compared to the initial static calibration (See section 4.3), ranging from 4-10°, with reduced extension 

during unanticipated sidestepping (Figure 29). During the preparatory phase, the head extension 

orientation decreased during unanticipated conditions, while a subtle increase in head extension 

orientation change was observed during anticipated conditions. Throughout the stance and post-

transition phases, similar head flexion/extension orientation patterns were observed between 

anticipated and unanticipated conditions. 

 

Figure 29: Sagittal plane head and trunk angle and center of mass vertical displacement during the 
change of direction stride. A neutral position of 0° was defined in the global coordinate system during 
static trials (See Section 4.3).  Postive values indicate greater extension, and negative values indicate 
greater flexion relative to the global coordinate system. Center of mass displacement represented the 
vertical center of mass translation in meters with respect to the global coordinate system.  
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The trunk maintained a mean flexion angle relative to the initial static calibration throughout 

the change of direction stride, with a slightly greater mean flexion angle when planning time was 

reduced. During the preparatory phase, the trunk approached a less flexed position when planning time 

was reduced despite subtle extension followed by subtle flexion observed during anticipated conditions. 

Like the head, the trunk maintained similar flexion/extension patterns throughout the stance and post-

transition phases during anticipated and unanticipated sidestepping.  

Sinusoidal center of mass displacement, calculated as the whole-body center of mass vertical 

displacement in meters with respect to the global coordinate system, was observed, with the highest 

center of mass position observed during the flight phases (preparatory and post-transition) and lowest 

center of mass position observed during the stance phase. During anticipated conditions a 

compensatory head-to-center of mass relationship is observed; as the center of mass vertically 

translates upward, the head extension orientation decreases, and as the center of mass vertically 

translates downward, the head extension orientation increases. However during the preparatory phase, 

as the center of mass vertically translates downward, the head extension orientation decreases during 

unanticipated sidestepping. The compensatory head-to-center of mass relationship was not observed 

during the preparatory phase of unanticipated sidestepping but is maintained throughout the stance 

and post-transition phases.  

 
4.5.2.2 Sagittal Head and Trunk Coordination 

 
In the sagittal plane trunk dominancy was the primary coordination pattern throughout the 

change of direction stride, with modest amounts of head and trunk in-phase and anti-phase 

coordination during both anticipated and unanticipated sidestepping. Planning time had a moderate 

effect on coupling pattern frequency, with greater in-phase coordination during anticipated 

sidestepping  compared to unanticipated sidestepping throughout the entire change of direction stride 

(p = 0.08, ES = 0.50) (Table 9). Small effects were observed on head dominancy, with greater head 
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dominant coupling pattern frequency during unanticipated sidestepping compared to anticipated 

sidestepping (p = 0.19, ES = -0.37). No significant differences and effect sizes greater than 0.20 were 

observed for the anti-phase or trunk dominant coupling patterns across the entire stride. 

Table 9: Sagittal plane head and trunk couple binning percentage during anticipated and unanticipated 
sidestepping across the entire change of direction stride. 

 

Significant differences in coupling pattern frequency were observed during the preparatory 

phase (Figure 30), with greater in-phase coordination during anticipated sidestepping compared to 

unanticipated sidestepping (p = 0.04, ES = 0.63) (Table 10). Trunk dominancy was the primary 

coordination pattern throughout stance and the post transition stride during both anticipated and 

unanticipated conditions. No significant differences between anticipated and unanticipated sidestepping 

were observed during stance and the post-transition phase with very small effect sizes. During both 

anticipated and unanticipated sidestepping, the mean head-trunk coordination pattern was anti-phase 

by the end of the preparatory phase and trunk dominant by the end of the stance phase. However, the 

directionality of the mean phase angle as the head-trunk coordination approach the specific patterns 

differed between the two tasks (Figure 30).  

 Sagittal Plane 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 45.64 

(39.82, 51.47) 
46.50 

(39.29, 53.71) 
0.82 -0.06 

In-Phase  
 

28.00 
(21.50, 34.50) 

22.86 
(17.85, 27.86) 

0.08 0.50 

Anti-Phase 17.79 
(13.48, 22.09) 

19.14 
(15.94, 22.34) 

0.67 -0.12 

Head 8.57 
(6.39, 10.75) 

11.50 
(8.04, 14.96) 

0.19 -0.37 
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Figure 30: Sagittal plane head and trunk coupling angle during anticipated and unanticipated 
sidestepping. 

Table 10: Sagittal plane head trunk coupling pattern frequency throughout the preparatory and stance 
phases of the change of direction stride. Binning percentages were taken from normalized data for each 
phase of the change of direction stride. 

 Preparatory 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 36.79 

(24.08, 49.49) 
29.93 

(18.06, 41.79) 
0.51 0.18 

In-Phase 19.79 
(12.80, 26.77) 

8.93 
(4.56, 13.30) 

0.04 0.63 

Anti-Phase  26.57 
(16.44, 36.71) 

34.71 
(23.14, 46.29) 

0.35 -0.26 

Head 16.86 
(7.50, 26.21) 

26.43 
(14.41, 38.44) 

0.24 -0.33 

 Stance 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 42.07 

(35.59, 48.55) 
42.93 

(35.46, 50.29) 
0.83 -0.06 

In-Phase 19.86 
(14.21, 25.51) 

22.21 
(16.08, 28.35) 

0.59 -0.15 

Anti-Phase  25.14 
(18.93, 31.36) 

22.00 
(17.40, 26.60) 

0.35 0.26 

Head 12.93 
(10.16, 15.70) 

12.86 
(9.22, 16.50) 

0.98 0.01 

 Post-Transition 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 60.50 

(44.12, 76.88) 
65.07 

(50.10, 80.04) 
0.61 -0.14 

In-Phase 34.71 
(17.52, 51.91) 

34.93 
(19.96, 49.90) 

0.98 -0.01 

Anti-Phase  4.79 
(-1.80, 11.38) 

0.00 
(0.00, 0.00) 

0.22 0.34 

Head 0.00 
(0.00, 0.00) 

0.00 
(0.00, 0.00) 

NaN NaN 
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4.6 Coordination Variability  
 
4.6.1 Transverse Plane Coordination Variability  
 

No significant difference in transverse plane head and trunk coordination variability was 

observed as an effect of planning time (Figure 31). However significant differences between the 

individual phases of the change of direction stride were observed during both anticipated and 

unanticipated sidestepping (Table 11). There was significantly greater transverse plane head and trunk 

coordination variability during the preparatory phase compared to the stance phase (p < 0.01) and 

significantly greater coordination variability during the post-transition phase compared to the stance 

phase (p < 0.01). The preparatory and post-transition phases did not significantly differ (p = 0.15). 

 

Figure 31: Head trunk transverse plane coordination variability calculated through statistical parametric 
mapping. The solid line represents the mean variability throughout stride. The light shaded regions 
represent the standard deviation of the variability for each condition. Dark shaded regions indicate 
areas of overlap where variability between both conditions occur. 
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4.6.2 Sagittal Plane Coordination Variability  
 

No difference in sagittal plane head and trunk coordination variability was observed as an effect 

of planning time (Figure 32). Significant differences in the individual phases of the change of direction 

stride were observed, with significantly greater head and trunk coordination variability during the 

preparatory phase compared to the stance phase (p < 0.01) and post-transition phase (p < 0.01) (Table 

11). Stance phase coordination variability was significantly greater than post-transition phase 

coordination variability (p < 0.001). 

     

Figure 32: Head trunk sagittal plane coordination variability calculated through statistical parametric 
mapping. The solid line represents the mean variability throughout stride. The light shaded regions 
represent the standard deviation of the variability for each condition. Dark shaded regions indicate 
areas of overlap where variability between both conditions occur. 

Table 11: Mean coordination variability (° ) during anticipated and unanticipated sidestepping in the 
transverse and sagittal planes   

 Preparatory Stance Post-Transition 
Anticipated Transverse 26.90°  a 12.05°  c 35.74° 
Unanticipated Transverse 25.62°  a 14.10°  c 33.19° 
Anticipated Sagittal 43.32°  ab 25.40°  c 18.87° 
Unanticipated Sagittal 43.45°  ab 27.77°  c 19.65° 

Note: Main effect of phase of change of direction stride (* p < 0.05). a denotes significant differences between preparatory and 
stance means. b denotes significant differences between preparatory and post-transition means. c denotes differences between 
stance and post-transition means. 
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5 CHAPTER 5 
DISCUSSION 

 
The purpose of this study was to better understand head control during cutting maneuvers 

typically seen in many sporting activities. We approached this question specifically looking at the spatial 

development of head and trunk orientation and coordination during sidestepping tasks, and the effect 

of reduced planning time on head and trunk orientation and coordination during sidestepping tasks. In 

agreement with our initial hypothesis, during anticipated sidestepping the head and trunk were 

significantly more oriented toward the new travel direction compared to unanticipated sidestepping. 

While no significant differences in head and trunk coordination strategies were observed across the 

entire change of direction stride, statistically significant differences in coordination were observed 

during the preparatory phase of the change of direction stride with greater in-phase coordination during 

anticipated sidestepping in the transverse and sagittal planes. Interestingly, no significant differences in 

head and trunk coordination were observed in the sagittal and transverse planes during the stance 

phase despite significantly different coordination strategies previously reported at the lower extremity 

when comparing anticipated to unanticipated sidestepping tasks (Weir et al., 2019). We did not observe 

a locking of the degrees of freedom between the head-trunk in the transverse or sagittal planes during 

unanticipated sidestepping despite increased in-phase coordination previously reported when planning 

time was reduced (Weir et al., 2019). No significant differences in coordination variability were observed 

in both the transverse and sagittal planes. Anticipated and unanticipated sidestepping are different tasks 

in the context of whole body kinematics, kinetics, coordination and CoM control, but individuals are 

consistent in the way the coordinate their head and trunk during both sidestepping tasks.  
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5.1 Anticipatory Postural Adjustments 
 

During change of direction tasks, the head direction precedes heading direction when walking 

along a curved trajectory (Authie et al., 2015; Bernardin et al., 2012;  Grasso et al., 1998) and during 

sidestepping tasks (Hollands et al., 2001). Prior sidestepping studies had participants respond to a visual 

stimulus in the new direction of travel  (Hollands et al., 2001; Mornieux et al., 2014; Patla et al., 1999), 

while our protocol involved a visual stimulus to change direction in the original direction of travel in the 

absence of specific visual cues in the new travel direction. Despite these differences, we observed 

similar findings; during anticipated sidestepping we found the head and trunk to be significantly more 

oriented toward the new travel direction compared to unanticipated sidestepping.  

Aligning the head with the new travel direction may provide a natural frame of reference for 

visual and vestibular information (Pozzo et al., 1990). While multiple visual orientating strategies can be 

used to successfully navigate through the environment and change direction, it may be preferred to 

align gaze with the new travel direction in richly textured environments  (Warren, Kay, Zosh, Duchon, 

and Sahuc, 2001). Despite previous reports of a “steering synergy” initiated by head reorientation to 

change travel direction (Grasso et al. 1996, 1998; Vallis and Patla, 2004), transverse plane head rotations 

found in our study may be a byproduct of gaze realignment to utilize optic flow in visual guidance during 

both anticipated and unanticipated sidestepping (Cinelli and Warren, 2012). The optic flow hypothesis 

suggests individuals shift gaze (which often includes head realignment) to align the focus of expansion 

with the intended travel direction while the egocentric direction hypothesis suggests individuals 

perceive the desired direction with respect to the body to orient towards the new direction of travel 

(Warren et al., 2001). In richly textured well-lit environments, it may be preferential to align the focus of 

expansion with the intended travel direction to enhance visual perception but both strategies can be 

used to navigate during change of direction tasks (Cinelli et al., 2012; Warren et al., 2001).  
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5.2 Coordination 
 

We hypothesized a reduction in trunk dominant coordination during unanticipated sidestepping 

but found no statistically significant differences in transverse plane trunk dominant coupling pattern 

frequency between anticipated and unanticipated tasks. During both anticipated and unanticipated 

sidestepping, the head and trunk in the transverse plane moved in-phase throughout the change of 

direction stride with a substantial portion of trunk dominancy. The rationale for our hypothesis was 

based on earlier findings of a trunk dominant contribution to the transverse plane head and trunk 

coordination pattern observed during treadmill running with a visual task (Lim et al., 2020). Unlike 

forward locomotion, sidestepping requires the reorientation of the entire body toward the new travel 

direction which is likely responsible for the predominantly in-phase transverse plane coordination 

pattern during both anticipated and unanticipated sidestepping. Head reorientation onset often occurs 

prior to the trunk (Patla et al., 1999) and remains more orientated toward the new travel direction 

compared with the trunk at the penultimate step and throughout stance during sidestepping tasks 

(Mornieux et al., 2014), but as individuals progressed throughout the change of direction stride, 

coordination patterns become predominantly more trunk dominant from the preparatory phase to 

stance to the post-transition phase. 

During the preparatory phase, in the transverse plane there was significantly less in-phase 

motion between the head and trunk in the unanticipated condition, with no difference in trunk 

dominancy but a trend towards greater head contribution. This is likely due to the delayed onset of 

trunk reorientation during the preparatory phase of the change of direction task, while head 

reorientation during unanticipated sidestepping followed a similar trajectory to anticipated 

sidestepping. During unanticipated sidestepping a hip strategy is implemented, often associated with 

significantly greater trunk lateral flexion in the opposite direction of travel. The interaction between 
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frontal plane trunk motion and transverse plane reorientation may have played a role in this, but we can 

only infer the multi-planar interaction.  

Sagittal plane head and trunk coordination was primarily trunk dominant throughout the change 

of direction stride, which likely aids in CoM control at specific gait events (Romkes et al., 2017; 

Thorstensson et al., 1984). The trunk maintained a flexed posture throughout the change of direction 

stride. Decreased trunk flexion prior to heel strike likely facilitated in the reduction of CoM momentum, 

and increased trunk flexion following heel strike facilitating forward acceleration of the CoM. The most 

notable sagittal plane kinematic differences between anticipated and unanticipated sidestepping were 

observed at the head during the preparatory phase (Figure 29), where head extension orientation subtly 

increased during anticipated sidestepping but decreased when planning time was reduced. We found 

small kinematic observational differences in trunk flexion, but the sagittal plane head orientation 

changes may be better explained with respect to CoM vertical displacement.  

During forward locomotion, compensatory sagittal plane head motion relative to translational 

CoM motion allows for reduced perturbations to the visual field (Hirasaki et al., 1999; Moore et al., 

1999; 2001; Pozzo et al., 1990). During anticipated sidestepping, a compensatory relationship between 

sagittal plane head orientation and vertical CoM displacement was observed throughout the entire 

change of direction stride (Figure 29). During the preparatory phase of unanticipated sidestepping, 

sagittal plane head orientation appeared to move in-phase with vertical CoM displacement, opposite of 

what was observed during anticipated sidestepping (Figure 29). This closely mimics a “strapped down” 

strategy where the head is fixed to the trunk, or a locking of the degrees of freedom (Lipsitz et al., 2002; 

Nasher, 1985). By reducing the degrees of freedom, the head and trunk can be considered a single 

segment, simplifying the control task but reducing the flexibility of head and trunk control. Head on 

trunk motion allows for reduced head in space motion, minimizing perturbations to the visual field. By 

reducing the degrees of freedom between the head and trunk in the sagittal plane during the 
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preparatory phase, a simpler control task is achieved but visual perception may be compromised, 

though further testing is needed to validate this claim. 

Similar to the transverse plane, there were no significant sagittal plane head-trunk coordination 

differences throughout the change of direction stride despite a moderate effect of greater in-phase 

head-trunk coordination during anticipated sidestepping. This is due to significantly greater in-phase 

coordination during the preparatory phase. Throughout the stance and post-transition phases, the 

predominant sagittal plane head trunk coupling pattern was trunk dominancy.  Lim et al. (2020) found 

sagittal plane head-trunk coupling to be predominantly anti-phase during treadmill running with a visual 

task, with a substantial portion of the stride being trunk dominant. Trunk dominant sagittal plane head 

and trunk couples made up a substantial portion of the change of direction stride, with greater trunk 

dominant coordination during the stance and post-transition phases.  

In the context of sidestepping literature, Weir et al. (2019) found significantly greater anti-phase 

sagittal plane trunk-pelvis coordination during anticipated sidestepping but reported no significant 

differences in transverse plane trunk-pelvis coordination throughout the stance phase of the change of 

direction stride. We did not observe significant coordination differences during the stance phase in both 

the sagittal and transverse planes. The different findings between our study and the one conducted by 

Weir et al. is not due to the different binning methods used to quantify coordination (Chang et al., 2008; 

Needham et al., 2014) but instead due to different demands placed on the head-trunk compared to the 

trunk-pelvis during sidestepping tasks (See appendix 2 for coupling pattern frequency using the 

Needham method). 

5.3 Coordination Variability  
 

We did not find significant differences in coordination variability between sidestepping tasks 

throughout the change of direction stride or within the individual phases of the change of direction 

stride when comparing anticipated sidestepping to unanticipated sidestepping. Weir et al. (2019) did not 
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find differences in coordination variability during anticipated and unanticipated sidestepping during the 

stance phase between the trunk and pelvis in the transverse plane, which corresponds with our findings. 

In our study, greater transverse plane variability was observed during the initial portion of the 

preparatory phase, but decreased as the coordination settled on a more stable pattern during the 

transition from late preparatory phase to stance during both anticipated and unanticipated 

sidestepping. In the sagittal plane, significant differences between anticipated and unanticipated 

sidestepping trunk-pelvis coordination variability were previously reported from 7-8% of stance (Weir et 

al., 2019). When comparing the remaining 99% of stance in the sagittal plane, similarities are present 

when comparing head-trunk coordination variability to trunk-pelvis coordination variability. 

Coordination patterns settled during early stance before transitioning during mid-to-late stance to a 

new stable pattern; this was observed for both head-trunk and trunk-pelvis coordination. While 

different demands are placed on the lower extremities and trunk-pelvis compared to the head-trunk, 

greater variability is present during the transition from one stable pattern to another.  

Irrespective of planning time we found significantly greater transverse plane head-trunk 

coordination variability during the flight phases compared to the stance phase, and in the sagittal plane. 

We also found greater variability during the preparatory phase, with reduced variability during the post-

transition phase. The mean sagittal plane head-trunk coordination variability in the preparatory phase 

was significantly greater than the mean stance phase coordination variability, which was significantly 

greater than the post-transition phase coordination variability. The variability differences throughout 

the individual phases of the change of direction stride highlight head-trunk attractor dynamics 

transitioning toward more stable patterns (Kelso, 1995). Systemic reorganization toward a more stable 

pattern requires bifurcation, where a qualitative change in the coordination pattern occurs. As the 

system approaches a transition, critical fluctuations emerge, where the variability within the system 

increases. In the transverse plane, greater variability in the preparatory phase highlights the transition 
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toward a more stable coordinative pattern late in the preparatory phase and throughout stance. As the 

system prepares for the transition from the change of direction to forward locomotion, another 

bifurcation occurs, noted by the increase in transverse plane coordination variability during the post-

transition phase. Sagittal plane head-trunk coordination undergoes two transitions, with one occurring 

late in the preparatory phase, and another occurring in mid-to-late stance during both sidestepping 

tasks. Like the transverse plane, as sagittal plane head-trunk coordination shifted toward a more stable 

pattern, variability around the bifurcation point promoted pattern transition. Bernstein’s principles state 

1) the coordination between the head and trunk can be organized in a number of different ways and 2) 

the variability of coordination provide a metric into the variety of coordination patterns utilized.  While 

this suggests greater variability may highlight greater adaptability of the head-trunk couples, we did not 

relate variability to performance outcome measures and therefore can only infer. 

5.4 Limitations 
 

Approach velocity in the forward direction was controlled (4.0 ± 0.5 ms−1) but differences in 

mediolateral velocities have previously been reported when comparing anticipated to unanticipated 

sidestepping tasks (Wyatt et al., 2019). We therefore calculated and presented the velocity vectors, 

which accounts for anterior-posterior and mediolateral velocities. Change of direction velocities 

throughout the total stride did not differ (both in the anterior direction and the velocity vector), but 

there were statistically significant differences in change of direction angle between tasks which may 

have influenced our results. Differences reported were greater than 5°, which is larger than those 

previously reported during sidestepping tasks and may have placed different demands on the 

participants between anticipated and unanticipated sidestepping tasks (Besier et al., 2001). Visual 

stimulus location has the ability to evoke head motion in a given direction. Previous studies examining 

head motion during sidestepping tasks (Hollands et al., 2001; Mornieux et al., 2014; Patla et al., 1999) 

provided a visual stimulus in the new travel direction to prompt direction change. Our stimulus location 
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was not in the new travel direction, and comparisons of head control between this study and previous 

ones should be made cautiously. Additionally, a stronger correlation between sagittal head orientation 

and vertical CoM displacement compared to sagittal head-sagittal trunk orientation when traveling at 

greater velocities has previously been reported (Hirasaki et al., 1999). Sagittal plane head trunk 

coordination variability data therefore may not be reflective of the head-trunk coupling itself as neck 

flexion/extension may be compensating for vertical CoM displacement. 

5.5 Conclusion 

Our findings provide novel insights into the spatial development of the head and trunk during 

sidestepping tasks. Significant differences in head and trunk control emerge during the preparatory 

phase of the change of direction stride during anticipated and unanticipated sidestepping, with 

significantly greater in-phase head-trunk coordination during anticipated tasks in both the transverse 

and sagittal planes. However, the segment responsible for coordination differences between tasks is 

dependent on the plane of movement. Transverse plane preparatory phase differences between tasks 

was due to differences observed at the trunk, while sagittal plane coordination differences were due to 

differences observed at the head. By the post-transition phase, coordination patterns shift toward a 

trunk dominant strategy in the sagittal and transverse planes during both anticipated and unanticipated 

sidestepping. The lack of differences in head-trunk coordination variability suggests that while 

anticipated and unanticipated sidestepping are different tasks in the context of whole body kinematics, 

kinetics, coordination and CoM control, individuals are consistent in the way they coordinate their head 

and trunk during both sidestepping tasks. There are different demands placed on the head compared to 

the lower extremities during change of direction tasks, but the link between lower extremity 

modifications on head control, as well as whether different lower extremity couples are present during 

the flight phases of the change of direction phase remains unknown. Future studies should explore how 

the differences in head control during anticipated and unanticipated sidestepping affect perceptual 
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awareness during and following the change of direction tasks, if a link exists between head control and 

knee injury risk, and if concussion effects head control during sidestepping tasks. 
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APPENDIX A 
FRONTAL PLANE KINEMATICS, COORDINATION AND VARIABILITY 

A.1.1 Frontal Plane Head and Trunk Kinematics 
 

Throughout the change of direction stride, the trunk followed a similar trajectory during both 

anticipated and unanticipated sidestepping, with a greater change in lateral flexion angle during 

unanticipated sidestepping. Greater frontal plane trunk stance lateral flexion was observed during 

unanticipated sidestepping, with the largest differences occurring during the stance phase highlighting 

the “hip strategy” to laterally shift the CoM toward the new travel direction (Houck et al., 2006; Patla et 

al., 1999) (Figure 33). During anticipated sidestepping during stance greater lateral flexion was also 

observed, but to a lesser extent.  A more neutral head orientation was observed at penultimate toe off 

during unanticipated sidestepping compared to anticipated sidestepping. During the preparatory and 

stance phases, the head followed a similar trajectory during both anticipated and unanticipated 

sidestepping task. Increased ipsilateral lateral flexion was observed throughout the post-transition 

phase during anticipated sidestepping, but was reduced during unanticipated sidestepping. 

 

Figure 33:  Frontal plane head and trunk kinematics throughout the change of direction stride. Positive 
values indicate orientation toward the right side of the body. Negative values indicate orientation 
toward the left side of the body. 
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A.1.2 Frontal Plane Head and Trunk Coordination 

 
Figure 34: Frontal plane head and trunk coordination calculated through the binning method described 
by Chang et al. (2008). 

Throughout the change of direction stride, frontal plane head and trunk coordination was 

predominantly trunk dominant (Figure 34Error! Reference source not found.). Statistically significantly 

greater head dominant coupling pattern frequencies were observed during anticipated sidestepping 

throughout the change of direction stride (p = 0.03, ES = 0.66) (Table 12). Reducing planning time had a 

small effect on increasing in-phase coupling pattern frequency compared to anticipated conditions (p = 

0.12, ES = -0.44). 

 

Table 12: Frontal plane binning frequency throughout the change of direction stride 

 

 Frontal Plane 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 32.57 

 (27.13, 38.01) 
34.36 

 (26.46, 42.25) 
0.44 -0.21 

In-Phase  
 

18.93 
 (13.61, 24.25) 

24.36 
 (19.91, 28.80) 

0.12 
  

-0.44 

Anti-Phase 27.29 
 (22.90, 31.67) 

26.07 
 (21.04, 31.11) 

0.76 0.08 

Head 21.21 
 (15.30, 27.13) 

15.21 
 (8.73, 21.70) 

0.03 
  

0.66 
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Table 13: Frontal plane binning frequency for the individual phases of the change of direction stride 

 
During the preparatory phase of the change of direction stride, there was significantly greater anti-

phase coupling pattern frequency during anticipated sidestepping (p = 0.03, ES = 0.66)(Table 13).  

Reducing planning time had a small effect on increasing trunk dominancy compared to anticipated 

sidestepping (p = 0.10, ES = -0.47). No significant differences were observed throughout the stance and 

post-transition phases.  

 Preparatory 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 31.79 

 (22.81, 40.76) 
45.29 

 (31.90, 58.67) 
0.10 -0.47 

In-Phase  
 

13.86 
 (3.70, 24.02) 

22.21 
 (11.94, 32.49) 

0.26 
  

-0.31 
  

Anti-Phase 42.21 
 (29.04, 55.38) 

22.12 
 (9.87, 34.42) 

0.03 0.66 

Head 12.14 
 (5.96, 18.33) 

10.36 
 (2.85, 17.86) 

0.69 
  

0.11 

 Stance 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 22.43 

 (14.38, 30.48) 
26.07 

 (18.15, 33.99) 
0.17 -0.38 

In-Phase  
 

21.57 
 (13.72, 29.42) 

24.36 
 (18.90, 29.81) 

0.52 
  

-0.18 
  

Anti-Phase 29.43 
 (21.91, 36.95) 

28.07 
 (21.07, 35.07) 

0.78 0.08 

Head 26.57 
 (17.75, 35.39) 

21.50 
 (12.02, 30.98) 

0.16 
  

0.40 

 Post-Transition Phase 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
Trunk 38.93 

 (26.78, 51.08) 
48.00 

 (30.62, 65.38) 
0.36 -0.25 

In-Phase  
 

22.64 
 (6.85, 38.44) 

32.07 
 (14.09, 50.05) 

0.51 
  

-0.18 
  

Anti-Phase 28.29 
 (18.86, 37.71) 

16.93 
 (3.50, 30.36) 

0.27 0.31 

Head 10.14 
 (0.03, 20.26) 

3.00 
 (-2.05, 8.05) 

0.28 
  

0.30 
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A.1.3 Frontal Plane Coordination Variability 

 
 

Figure 35: Frontal plane head-trunk coordination variability  

No frontal plane head-trunk variability difference were observed as an effect of planning time.  

During anticipated conditions, the preparatory phase was significantly greater than stance (p = 0.03), 

while during unanticipated conditions, the preparatory phase was significantly greater than the post-

transition phase (p = 0.03) (Table 14). 

Table 14: Frontal plane head-trunk coordination variability 

Frontal Plane Coordination Variability  
 Preparatory Stance Post-Transition 

Anticipated  38.74° a 29.98° 31.82° 
Unanticipated  40.57° b 33.28° 28.42° 

Note: Main effect of phase of change of direction stride (* p < 0.05). a denotes significant differences between preparatory and 
stance means. b denotes significant differences between preparatory and post-transition means. 
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APPENDIX B 
NEEDHAM ET AL. BINNING METHODS 

 
Sagittal plane head trunk coupling pattern frequency throughout the preparatory and stance phases of 
the change of direction stride. Binning percentages were taken from normalized data for each phase of 
the change of direction stride. 

A.2.1 Needham Transverse Plane  
Table 15: Transverse plane binning frequency for the change of direction stride calculated with methods 
described by Needham et al. (2014) 

Table 16: Transverse plane binning frequency for the phases of the change of direction stride calculated 
with methods described by Needham et al. (2014)  

 Transverse Plane 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 56.86 

 (49.67, 64.05) 
46.57 

 (41.84, 51.30) 
0.053 0.57 

In-Phase Head 32.14 
 (25.83, 38.46) 

36.86 
 (31.65, 42.07) 

0.249 -0.32 

Anti-Phase Trunk 5.21 
 (2.92, 7.50) 

9.71 
 (5.76, 13.67) 

0.056 -0.56 

Anti-Phase Head 5.79 
 (3.88, 7.69) 

6.86 
 (5.60, 8.11) 

0.373 -0.25 

 Preparatory 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 43.64 

 (26.84, 60.45) 
30.07 

 (13.86, 46.28) 
.110 0.46 

In-Phase Head 36.71 
 (21.76, 51.67) 

42.29 
 (28.55, 56.02) 

.331 -0.27 

Anti-Phase Trunk 8.14 
 (2.73, 13.55) 

11.14 
 (4.57, 17.72) 

.529 -0.17 

Anti-Phase Head 11.50 
 (5.56, 17.44) 

16.50 
 (9.88, 23.12) 

.169 -0.39 

 Stance 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 60.79 

 (51.62, 69.95) 
54.93 

 (47.63, 62.23) 
.333 0.27 

In-Phase Head 36.00 
 (27.14, 44.86) 

39.29 
 (32.82, 45.75) 

.494 -0.19 

Anti-Phase Trunk 2.21 
 (0.20, 4.22) 

4.36 
 (-0.22, 8.93) 

.468 -0.20 

Anti-Phase Head 1.00 
 (0.02, 1.98) 

1.43 
 (-0.33, 3.19) 

.708 -0.10 

 Post-Transition Step 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 50.79 

 (32.50, 66.37) 
41.79 

 (29.42, 54.15) 
.190 0.37 

In-Phase Head 19.14 
 (10.33, 27.95) 

17.86 
 (10.91, 24.81) 

.752 0.09 

Anti-Phase Trunk 18.93 
 (5.33, 32.53) 

25.36 
 (13.31, 37.40) 

.347 -0.26 

Anti-Phase Head 10.71 
 (1.88, 19.55) 

15.00 
 (4.66, 25.34) 

.193 -0.37 
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A.2.2 Needham Sagittal Plane 
 
Table 17: Sagittal plane binning frequency calculated with methods described by Needham et al. (2014) 

 
Table 18: Sagittal plane binning frequency for the phases of the change of direction stride calculated 
with methods described by Needham et al. (2014) 

 
 
 
 
 

 Sagittal Plane 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 40.36 

 (33.97, 46.75) 
38.07 

 (33.39, 42.75) 
.624 0.13 

In-Phase Head 14.64 
 (10.95, 18.34) 

15.36 
 (12.53, 18.19) 

.786 -0.07 

Anti-Phase Trunk 34.64 
 (27.89, 41.40) 

33.93 
 (29.66, 38.20) 

.848 0.05 

Anti-Phase Head 10.29 
 (8.02, 12.55) 

12.64 
 (8.89, 16.39) 

.387 -0.24 

 Preparatory 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 25.07 

(18.64, 31.51) 
20.14 

(11.00, 29.29) 
.353 0.26 

In-Phase Head 19.07 
(10.29, 27.86) 

13.29 
(6.91, 19.66) 

.283 0.30 

Anti-Phase Trunk 36.57 
(26.74, 46.40) 

35.07 
(23.42, 46.73) 

.861 0.05 

Anti-Phase Head 19.29 
(10.57, 28.00) 

31.50 
(19.59, 43.41) 

.189 -0.37 

 Stance 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 28.36 

(22.85, 33.87) 
28.93 

(22.17, 35.68) 
.878 -0.04 

In-Phase Head 18.50 
(13.40, 23.60) 

19.71 
(15.45, 23.98) 

.672 -0.12 

Anti-Phase Trunk 38.93 
(33.12, 44.74) 

39.43  
(33.63, 45.23) 

.908 -0.03 

Anti-Phase Head 14.21 
(10.48, 17.95) 

11.93 
(8.81, 15.05) 

.409 0.23 

 Post-Transition Step 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 72.71 

(58.24, 87.19) 
75.21 

(62.16, 88.26) 
.811  -0.07 

In-Phase Head 4.14 
(-0.87, 9.16) 

8.07 
(0.26, 15.89) 

.438 -0.21 

Anti-Phase Trunk 23.14 
(9.33, 36.96) 

16.71 
(3.51, 29.92) 

.444 0.21 

Anti-Phase Head 0.00 
(0.00,0.00) 

0.00 
(0.00,0.00) 

NaN NaN 
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A.2.3 Needham Frontal Plane 
 

Table 19: Frontal plane binning frequency calculated with methods described by Needham et al. (2014) 

 

Table 20: Frontal plane binning frequency calculated with methods described by Needham et al. (2014) 

 
 
 
 
 
 

 Frontal Plane 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 23.29 

 (16.53, 30.04) 
33.86 

 (26.04, 41.68) 
0.01 -0.81 

In-Phase Head 17.93 
 (12.64, 23.21) 

15.64 
 (11.48, 19.81) 

0.532 
  

0.17 
  

Anti-Phase Trunk 35.57 
 (29.13, 42.01) 

32.64 
 (25.93, 39.35) 

0.421 0.22 

Anti-Phase Head 23.21 
 (16.76, 29.66) 

17.79 
 (11.63, 23.95) 

0.153 
  

0.41 

 Preparatory 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 25.14 

 (14.13, 36.16) 
38.71 

 (27.04, 50.39) 
0.07 -0.54 

In-Phase Head 11.43 
 (2.52, 20.33) 

14.93 
 (4.63, 25.23) 

0.57 
  

-0.16 
  

Anti-Phase Trunk 40.36 
 (28.35, 52.36) 

36.86 
 (26.66, 47.05) 

0.64 0.13 

Anti-Phase Head 23.07 
 (15.71, 30.44) 

9.50 
 (3.79, 15.21) 

0.02 
  

0.72 

 Stance 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 18.07 

 (9.69, 26.45) 
27.50 

 (18.21, 36.79) 
0.01 -0.77 

In-Phase Head 22.64 
 (15.29, 30.00) 

20.07 
 (14.31, 25.84) 

0.58 
  

0.15 
  

Anti-Phase Trunk 29.00 
 (19.58, 38.42) 

25.86 
 (18.52, 33.20) 

0.47 0.20 

Anti-Phase Head 30.29 
 (20.69, 39.89) 

26.50 
 (17.21, 35.79) 

0.47 
  

0.20 

 Post-Transition Step 
 Frequency (95% CI)  
 Anticipated (%) Unanticipated (%) p ES 
In-Phase Trunk 17.93 

 (8.07, 27.78) 
52.36 

 (36.97, 67.75) 
< 0.01 -1.14 

In-Phase Head 18.21 
 (2.54, 33.89) 

6.43 
 (1.26, 11.60) 

0.24 
  

0.33 
  

Anti-Phase Trunk 49.86 
 (30.84, 68.88) 

33.07 
 (19.94, 46.21) 

0.27 0.31 

Anti-Phase Head 13.93 
 (2.84, 25.02) 

8.14 
 (-1.49, 17.77) 

0.40 
  

0.23 
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