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ABSTRACT 

 

THE ECOLOGOCAL VALUE OF SPRUCE PLANTATIONS IN MASSACHUSETTS 

MAY 2020 

CALVIN RITTER, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed By: Professor David I. King & Professor Stephen DeStefano 

 

 

The establishment of monoculture plantations of exotic tree species is common 

practice for supplementing native timber stocks.  Such plantations typically provide 

inferior habitat for wildlife compared to native forest, which may result in a net 

reduction in biodiversity.  However, some studies report that plantations may increase 

net biodiversity at the landscape scale by introducing novel habitats or supplementing 

existing natural forests.  Using point count surveys, I examined six mature Norway 

spruce (Picea abies) plantations in western Massachusetts in 2016 and 2017 to evaluate 

bird use of these habitats relative to native forest stands.  Count data were analyzed 

using N-mixture models to correct for imperfect detection, providing more accurate 

estimates of true abundance.  Our findings showed that overall species richness for 

spruce plantations was not significantly lower than that of native forest habitats. Red-

breasted nuthatch (Sitta canadensis) and golden-crowned kinglet (Regulus satrapa) 

were most abundant in spruce plantations.  Conifer dependent species such as 

Blackburnian warbler (Setophaga fusca) and brown creeper (Certhia americana), were 
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significantly more abundant in spruce plantations relative to native deciduous, hemlock, 

and mixed stands.  Species that heavily associate with broadleaf habitat were rarely 

observed in spruce plantations.  Species that associate with eastern hemlock habitat, 

such as Blue-headed vireo (Vireo solitarious) and black-throated green warbler 

(Setophaga virens) were observed using spruce plantations at similar levels as eastern 

hemlock stands.  These results demonstrate that Norway spruce plantations can provide 

suitable habitat for native species associated with conifers, which is significant given 

projected continued decline of eastern hemlock in response to the hemlock wooly 

adelgid (Adelges tsugae).  Although large-scale conversion of native forest to plantations 

would likely lead to a loss in biodiversity, land managers could be justified in allowing 

small-scale plantations to persist without suffering negative impacts to native 

biodiversity. 
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CHAPTER 1 

PLANTATIONS AND BIODIVERSITY 

 

As global demand for timber rises and humans expand into previously 

undeveloped areas, the worlds’ forested lands become increasingly imperiled. 

Deforestation rates have increased steadily over recent decades leading to large losses 

in the amount of forested land cover worldwide. Recent global assessments estimate 

this net loss of forest to be 0.13% annually (FAO 2015). Natural forests, those that 

regenerated without human planting and therefore represent a closer approximation of 

true native ecosystems, are faced with the highest rates of deforestation, which 

currently amounts to 0.24% annually (FAO 2015). Reforestation efforts help mitigate the 

loss of forested land cover; however, a majority of reforestation comes in the form of 

planted and managed forests. Plantations, which are planted forests characterized by 

evenly spaced,  single aged trees consisting of one or two species, are widespread and 

often differ dramatically from natural forests in terms of structure, species composition, 

and disturbance regimes (Hanowski et al. 1997, Carnus et al. 2006, Demarais et al. 

2017). The loss of natural forests has widespread implications for wildlife species that 

depend on the resources and habitat they provide, yet the timber industry continues to 

adopt plantation production due to its capacity for higher resource production and 

efficiency (Noormets et al. 2015). As natural forests decline, planted forests are 

increasing at a rate of 1.84% annually (FAO2015), meaning that planted forests, 

including plantations, become more prevalent each year and account for a higher 
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percentage of total forested area worldwide (Keenan et al. 2015a). This trend of 

increased reliance on managed plantations is expected to increase over time (Alcamo et 

al. 2005, Wade et al. 2019). Remaining tracts of natural forests will become smaller and 

more fragmented (McGill et al. 2015) and thus plantations will make up a progressively 

larger proportion of the ranges of native wildlife species. Therefore, understanding the 

dynamics between plantations and wildlife is of great importance for the preservation 

of biodiversity in working forests. 

 With an estimated 50% of all terrestrial plant and animal species relying on 

forests for shelter or other resources (Hassan et al. 2005), preserving healthy forested 

areas is vital to maintaining biodiversity. As these ecosystems are removed and replaced 

with similar, yet functionally different plantations, many of the characteristics required 

to sustain plant and animal species may become inferior or absent all together. Forests 

consisting of diverse assemblages of native species with complex vegetation structures 

offer food, cover, breeding habitat, and other resources for a broad range of species 

(Macarthur and Macarthur 1961, Spies 1998). However, plantations are often 

characterized by their lack of structural and compositional diversity which has been 

shown to have a negative effect on biodiversity when directly compared to natural 

forests (Pawson et al. 2013, Castaño-Villa et al. 2019). The unique characteristics of 

plantations that are most commonly identified as being detrimental to biodiversity are 

homogenous age structure, increased disturbance regimes, high tree densities, reliance 

on exotic tree species, monoculture plantings, and lack of diverse understory structure 

and composition (Brockerhoff et al. 2009).  
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Plantations, especially those established for timber production, historically 

consisted of even-aged tracts of trees planted in dense, organized arrangements (Food 

and Agricultural Organization 2020). Once trees mature, they are clear-cut, and the 

process begins again (Lindenmayer and Franklin 2002). This system is ideal for 

maximizing the amount of wood mass that can be harvested but comes at the cost of 

eliminating any heterogeneity in age or species structure (Lindenmayer and Franklin 

2002). Naturally regenerating forests undergo a constant cycling of older trees dying off 

and new seedlings replacing them. This dynamic age structure provides a diverse suite 

of habitat characteristics for wildlife (McKelvey 2015) such as saplings and young trees 

providing foraging for deer and sub-canopy cover for birds, and old and dead trees 

providing nesting cavities for woodpeckers. A plantation that only has trees of a single 

age class is only likely to support species that utilize that specific seral stage. In a 

comparison of even and uneven-aged planting of pine in Texas, Thill and Koerth (2005) 

observed that stands with more diverse age structure supported similar to higher bird 

abundance, species richness, and diversity. Even aged pine plantations in Florida, USA 

were shown to support birds communities that shifted from primarily grassland species 

shortly after planting, to shrubland species, and eventually mature forest species, yet at 

no time did the plantations support communities similar to those of naturally 

regenerated stands (Repenning and Labisky 1985). A possible explanation for this is that 

diverse age structures allow for more light penetration to the sub canopy leading to the 

formation of more complex understory structure (Decocq et al. 2004), a quality known 

to promote wildlife diversity given many species’ affinity for specific structural features 
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(James and Wamer 1982). Un-even aged silviculture practices have been suggested as a 

way to offset or mitigate homogenous age structure in plantations in order to promote 

biodiversity. However, uneven-aged silviculture in plantations still results in the 

replacement of native tree species with native ones, and their effects on diversity have 

been mixed (Nolet et al. 2017). 

 One of the biggest factors that affects a plantation’s influence on wildlife 

biodiversity is the species diversity of the planted trees. Monoculture planting, utilizing 

a single tree species within a plantation, remains prevalent in production forests 

(Keenan et al. 2015b) despite concerns of reductions in wildlife diversity (Hartley 2002, 

Nichols et al. 2006). Similar to even-aged stands, forest monocultures offer 

heterogenous habitat compared to natural forests which are often a mixture of species. 

This can negatively impact the number of unique species within a stand as well as their 

diverse interactions (Castaño-Villa et al. 2014). Monoculture plantations, on average, 

will support fewer habitat specialized wildlife species when directly compared to both 

natural mixed stands and polyculture plantations (Carnus et al. 2006, Stephens and 

Wagner 2007, Iezzi et al. 2018) with species exhibiting narrow niche breadth being most 

impacted (Pryde et al. 2016). The incorporation of broadleaf trees into spruce 

monocultures in Sweden has been shown to increase stand level diversity of birds by 

attracting broad-leaf associated species without deterring conifer associated species 

(Felton et al. 2011). This positive response of interplanting broadleaf trees on 

biodiversity was also observed in herbaceous plants, lichens, and saproxylic beetles 

(Felton et al. 2010). Conversion of monoculture to polyculture plantations can have a 
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broad range of effects including increased light penetration (Iezzi et al. 2018), 

diversification of vertical structure in the subcanopy (Bergner et al. 2015), and greater 

heterogeneity in herbaceous vegetation (Hartley 2002), all of which have been 

demonstrated to promote wildlife biodiversity. 

In addition to the issue of planting monocultures or polycultures, foresters are 

also faced with the important decision of whether to utilize exotic or native tree species. 

This decision has equally significant implications for wildlife, as utilizing exotic trees can 

drastically reduce the amount habitat and other resources that native wildlife require. 

Exotic plantations have been widely used for timber production around the world 

despite criticisms of the potential effects on wildlife (Puettmann et al. 2009). 

Incorporating exotic trees into an ecosystem, especially as monocultures,  introduces 

novel, and often inferior, habitat for native wildlife that evolved and adapted alongside 

native tree species and can eliminate and fragment remaining patches of valuable native 

habitat (Cossalter and Pye-Smith 2003).  Previous studies have shown mixed results in 

terms of the effects exotic plantations can have on wildlife (Lindenmayer and Hobbs 

2004). In a review of studies conducted within exotic tree plantations, Stephens and 

Wagner (2007) identified 10 cases in which plantations exhibited lower biodiversity, 5 

studies with no differences, and 8 studies in which plantations supported higher 

biodiversity relative to nearby natural forests. One common trend is that of all the types 

of planted forests, exotic monoculture plantations tend to support the lowest levels of 

biodiversity and species abundances relative to native forest stands (Carlson 1986, 

Christian et al. 1998). Twedt et al. (1999) concluded that avian species richness, 



6 
 

diversity, and territory abundance were lower in cottonwood plantations when 

compared to native hardwood stands in southern North America  with similar trends 

reported for hybrid poplar plantations in Minnesota, Wisconsin, and South Dakota 

(Hanowski et al. 1997). Other taxa have also been shown to experience diminished 

diversity and abundance in plantations including invertebrates in eucalypt and pine 

plantations (Ratsirarson et al. 2002) and mammals in pine plantations (Iezzi et al. 2018). 

It should be noted, however, that exotic plantations that are established on already 

impoverished lands can promote biodiversity by creating forested habitat where it did 

not previously exist (Stephens and Wagner 2007, Brockerhoff et al. 2009). Another 

cause for concern is the vulnerability of monocultures to biotic disturbances such as 

pests and diseases, which could result in large losses of trees due to a lack of genetic 

variability or resistance within the host trees (Verheyen et al. 2016). 

The assertion that plantations support lower species abundances and diversity 

(Zurita et al. 2006, Barlow et al. 2007) is typically based on a direct comparison to prime 

natural habitat (Stephens and Wagner 2007). This method of direct comparison, 

however, is becoming less common in favor of plantations (both native and non-native) 

that are established on already impoverished lands such as abandoned agricultural 

fields (Twedt et al. 1999), which can result in suitable habitat in areas that were 

previously lacking, leading to increased biodiversity at a landscape scale. Monocultures 

and exotic species can increase landscape level biodiversity when planted in smaller 

patches and incorporated into a mosaic of natural forests (Herbohn et al. 2000). Even 

when small amounts of native habitat are lost, a combination of natural and planted 
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forests can yield higher biodiversity across the landscape than native stands alone 

(Franklin and Forman 1987, Lindenmayer and Hobbs 2004, Pina et al. 2019) by 

introducing novel habitat types without removing significant cover of existing habitats 

(Gjerde and Sætersdal 1997, Donald et al. 1998). In situations where limited 

connectivity between remnant natural forests is compromised, plantations can act as 

steppingstones or corridors between fragments (Bett et al. 2016).  Another method to 

promoting landscape level biodiversity within plantations is to allow small patches of 

natural forest to persist, scattered throughout the plantation in order to offer wildlife 

supplemental high quality habitat (Zurita et al. 2006, Azhar et al. 2013) 

 As demonstrated above there are many ways that plantations can be 

implemented, with varying effects on biodiversity. Although altering age structures, tree 

species and diversity, landscape characteristics, and management regimes can all have 

direct impacts on wildlife, they also indirectly effect biodiversity through alteration of 

forest structure. Variation and diversity in vertical and horizontal vegetation structure 

are perhaps the most important variables in terms of influencing bird biodiversity within 

plantation forests (Barlow et al. 2007, Bergner et al. 2015). Managing for variable age 

structure and precluding the formation of dense monotypic canopies promotes light 

penetration to the sub-canopy layers and positively influences the development of 

heterogenous vegetation structure (Barbier et al. 2008). Tree phenology, shade 

tolerance, and increased disease susceptibility were identified as likely drivers in an a 

increase in understory species diversity within mixed species stands when compared to 

monoculture stands in the northeastern United states (Himes and Puettmann 2020). 
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Understory vegetation structure was systematically removed within pine plantations in 

Chile, resulting in significant declines in medium-sized mammal abundance (Simonetti et 

al. 2013). Retention of understory vegetation has also been linked to increased mammal 

abundances in pine plantations in Argentina (Lantschner et al. 2011), Chile (Saavedra 

and Simonetti 2005), and Australia (Lindenmayer et al. 1999). Another important 

consideration in plantation ecology is the management regime being implemented. 

Plantations that are maintained for high timber yields and have short rotation times will 

undergo frequent disturbances that will be detrimental to many wildlife species and 

preclude mature forest structure from developing (Patterson et al. 1995, Carnus et al. 

2006). In a study looking at Norway spruce plantations in Europe, Baguette et al. (1994) 

found that plantations supported impoverished bird communities for the first 30 years 

after planting, after which species richness reached levels similar to that of surrounding 

native beech stands. Selective thinning is a common alternative to clearcutting and can 

increase vegetation diversity in the sub-canopy layer allowing plantations to approach 

the complexity of natural forests (Jason and Nick 2008, Cheng et al. 2017). 

 The relationship between plantation forests and biodiversity is complex and 

dependent on a number of variables. Although early research used the term “green 

deserts” to describe plantations (Horák et al. 2019), the term has become less accurate 

as plantation forestry evolved over the past few decades. Shifts towards more 

sustainable practices have helped mitigate many of the negative impacts of planted 

forests. Although plantations, especially production forests, rarely exceed natural stands 

in terms of biodiversity metrics, there are a number of management options available 
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that can greatly reduce the gap. Additionally, the impact of plantations is better 

assessed on a broader landscape scale and their value to biodiversity needs to be 

examined on a case by case basis.  
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CHAPTER 2 

THE ECOLOGOCAL VALUE OF SPRUCE PLANTATIONS IN MASSACHUSETTS 

 

 

 

2.1 Introduction 

Total forested area has decreased globally over the past decade (FAO 2015). 

Although some losses are mitigated through reforestation efforts, there remains a net 

annual loss of 0.13%.  Furthermore, natural forests are in decline and most reforestation 

is achieved through the implementation of planted forests, which are increasing at a 

rate of 1.84% annually (FAO 2015).  This loss of natural forest and subsequent 

replacement with planted forest has implications for wildlife species that depend on 

forested habitats.  Planted forests, such as plantations, can differ greatly from 

surrounding natural forests (Carnus et al. 2006) in terms of simplified vegetation 

structure, vegetation composition, and age structure (Hanowski et al. 1997).  Also, 

production plantations are subjected to disruptive management regimes such as clear-

cutting and high density planting (Carnus et al. 2006) that negatively affect wildlife  

(Demarais et al. 2017).  Despite the potential adverse effects planted forests can impose 

on wildlife (Castaño-Villa et al. 2019), timber production and other ecosystem services 

such as erosion control have historically been the primary motivating factor for the 

establishment of such plantations, especially those utilizing monocultures and exotic 

tree species (Brockerhoff et al. 2009, Pawson et al. 2013).  However, concerns about 

unprecedented increases in species decline and extinction rates due primarily to habitat 
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loss (Groombridge 1992) and climate change (Parmesan et al. 2003) have resulted in the 

emergence of more sustainable and ecologically conscious forestry practices to better 

support conservation objectives (Puettmann et al. 2009, D’Amato et al. 2017).  Such 

practices include implementing management regimes that diversify the sub-canopy 

layers, creating complex vertical and horizontal structure (Dickson and Segelquist 1979, 

Carnus et al. 2006), relying more heavily on native tree species to support associated 

native fauna (Castaño-Villa et al. 2019), polyculture planting to provide a wider breadth 

of habitat niches (Kerr 1999), and integration with the surrounding landscapes to 

improve connectivity and colonization between native habitat patches (Laurance and 

Bierregaard 1997, Castaño-Villa et al. 2019).   The degree to which biodiversity is 

impacted can also depend on plantation size, composition, characteristics of adjacent 

habitat, and the needs of native flora and fauna (Hartley 2002, Quine and Humphrey 

2010).   

The removal of native forest habitat and subsequent replacement with non-

native or monoculture plantations has been shown to result in an overall net reduction 

in biodiversity within that stand, but not all plantations involve the large-scale removal 

of native habitats and their impact on biodiversity is dependent on a number of 

variables (Stephens and Wagner 2007).  For example,  monoculture Norway spruce 

(Picea abies) plantations in western Norway were shown to have a positive net effect on 

landscape-level biodiversity when incorporated into a mosaic of pine stands (Gjerde and 

Sætersdal 1997, Christian et al. 1998).  Humphrey et al. concluded that various non-

native conifer plantations in the United Kingdom provided suitable habitat for many 
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non-vertebrate and fungal species, resulting in an overall positive contribution to the UK 

biodiversity action plan (2002).   

Norway spruce is a common species used in monoculture plantations across 

North America due to its fast growth rate and ability to tolerate warmer temperatures 

and more acidic soils compared to other conifers (Tjoelker et al. 2007).  In 

Massachusetts, where native spruce can be regionally rare or absent, Norway spruce 

plantations may supplement native forest stands by offering pure coniferous habitat.  

Norway spruce plantations are characterized by dense canopies of short needle 

vegetations and shady understories with sparse vegetation.  These characteristics are 

similar to those of habitat provided by eastern hemlock (Tsuga canadensis), a conifer 

native to Massachusetts (DeGraaf and Yamasaki 2001).  Eastern hemlock is in steep 

decline (Paradis et al. 2008) due to the hemlock woolly adelgid (Adelges tsugae), an 

invasive aphid-like insect, resulting in removal of pure hemlock stands (Small et al. 

2016).  Furthermore, the effects of climate change are likely to amplify the range and 

severity of adelgid infestations over the next century (Parker B. L. 1998, Paradis et al. 

2008, Ellison et al. 2018), leading to decline in habitat availability for wildlife that use 

short-leaved conifer species for foraging and nesting (Yamasaki et al. 1999).  As hemlock 

recedes, it is most commonly replaced by birch and other opportunistic deciduous 

species (Orwig et al. 2002) leading to a net reduction in available conifer habitat.   

The ecological value of spruce plantations relative to their surrounding native 

forested habitats had not been assessed in Massachusetts. Given the idiosyncratic 

nature of plantations in terms of their contributions to local biodiversity, it is often 
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unclear which actions should be taken to manage them in cases where promoting 

biodiversity is a priority.  Understanding the relative value of a plantation as well as its 

role in a larger landscape context is necessary for land managers to make informed 

decisions about these habitats.  Furthermore, the value of a particular habitat cannot be 

entirely described using common metrics like abundance and species richness.  Some 

species may represent a higher level of conservation priority.  The Partners in Flight (PIF) 

bird conservations scores offer a method of calculating conservation values for each bird 

species based on a suite of population metrics (Partners in Flight 2019), giving land 

managers a more objective method of comparing the conservation value of differing 

habitats.  Additionally, birds are effective indicators of overall biodiversity due to their 

diversity, prevalence, and relatively high observability (Butler et al. 2012). 

For this study, I was interested in examining the differences in bird compositions 

among Norway spruce plantations and native forest stands in Massachusetts. My 

primary objectives were to:  

1) Determine the bird species characteristic of Norway spruce 

plantations 

2) Compare bird abundances and pooled PIF scores among Norway 

spruce plantations and native cover types in order to assess the role 

plantations serve in facilitating bird conservation goals within the 

study area and the region 

3) Compare bird communities among cover types, with an emphasis on 

the comparison between Norway spruce plantations and eastern 
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hemlock stands given the habitat similarities between the two to 

determine the extent to which Norway spruce could support species 

typical of hemlock stands in the face of continued hemlock decline. 

 

2.2 Study Area 

 I conducted my research during the 2016 and 2017 breeding seasons (May to 

August) at two separate sites in Massachusetts: one within the watershed of the 

Quabbin reservoir (Fig. 1), and a second at the Beartown State Forest (Fig. 2). The 

Quabbin watershed is located in central Massachusetts, USA (42.38° N, 72.36° W), is 

managed by the Massachusetts Department of Conservation and Recreation, Division of 

Water Supply Protection, and consists of ~ 38,445 ha of hardwood-conifer mixed 

forests. The second site, Beartown State forest in western Massachusetts (42.21 N, 

73.23 W) is managed by the Massachusetts Department of Conservation and 

Recreation, State Parks and consists of mixed hardwood-conifer forest similar in 

composition to that found at the Quabbin site. Elevations ranged from approximately 

175 – 325m at the Quabbin site, and 400 – 600m at the Beartown site.  Nearly all the 

land within the Quabbin watershed had been formerly cleared for agriculture but was 

later abandoned and allowed to reforest throughout the late 1800s and early 1900s 

(Foster 1998).  The Quabbin site is protected to maintain water quality within the 

adjoining reservoir, which was established in the 1930s through the impoundment of 

the Swift River.  The Quabbin site encompassed a network of narrow dirt roads with 

locked gates to restrict public vehicle access.  In addition to smaller trails, Beartown was 
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also accessible via a limited number of paved roads, which were open to the public.  

Both sites encompassed three Norway spruce plantations that occurred within a matrix 

of native forest cover types.  It is worth noting that natural regeneration of Norway 

spruce was not occurring within these plantations and some trees were beginning wo 

die off naturally.  

2.3 Methods 

2.3.1 Point Selection 

 Initial selection of point count locations was made based on forest cover GIS 

layers provided by the Massachusetts Department of Conservation and Recreation.  At 

the Quabbin site, I selected 150 point count locations (Fig. 1) stratified across five 

distinct forest cover types (30 points per cover type), which were characterized by 

dominant tree species, according to GIS data.  The five cover type categories were 

Norway spruce, eastern hemlock, white pine (Pinus strobus), deciduous, and conifer-

deciduous codominant mix.  The planted Norway spruce stands consisted of discrete 

habitat patches of nearly pure spruce and represented the focal plantation species 

within the study.  Eastern hemlock was of particular interest due to the potential impact 

of hemlock woolly adelgid on hemlock stands as well as wildlife species that may 

depend on the habitat these stands provide.  Both Norway spruce and eastern hemlock 

are short-needled conifers that form dense stands, and these structural similarities 

suggest the potential for Norway spruce to support bird species commonly associated 

with eastern hemlock (Tingley et al. 2002), which could have increasingly important 

implications as hemlock habitat continues to decline.  White pine stands represent the 
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most widespread native conifer habitat in the study area and may also have the 

potential to support hemlock associated species.  Deciduous and mixed stands were also 

included to contrast Norway spruce with other widespread cover types that would likely 

replace Norway spruce stands in the event they were converted through silviculture.  

Any additional cover types within the study area were sparse and fragmented and were 

therefore not included as a sampled cover type.  An additional 24 points were selected 

at the Beartown site (Fig. 2), split evenly between Norway spruce and eastern hemlock.  

Pine, deciduous, and mixed stands were not sampled at the Beartown site due to time 

constraints. 

All points were established > 50 m from the “edge” of contiguous cover type 

patches (according to the GIS cover type data) in order to reduce the chance of sample 

areas overlapping more than one cover type.  All points were spaced > 200 m apart to 

minimize counting the same birds at multiple locations.  Additionally, the first round of 

point selection was constrained to areas within 100 m of a trail or access road to limit 

the time spent moving between points.  Trails and access roads within the study site 

were relatively narrow with minimal foot or vehicle traffic, making them unlikely to bias 

bird abundances or detection probabilities (Deluca and King 2014).  If there was not 

enough suitable habitat within 100 m of a trail to fit the required number of points, the 

buffer was extended until enough habitat was contained within it.  All points were 

evaluated during the first visit to make sure they were suitable for inclusion.  If a point 

was deemed unsuitable (wetland areas, clearings, too difficult to access, etc.), the point 
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was eliminated, and a replacement was chosen based on the same process outlined 

above. 

2.3.2 Bird Surveys 

Avian point count surveys were conducted over the course of two breeding 

seasons (May- June 2016 and 2017).  Surveys were 50 m fixed-radius point counts with a 

10-minute duration (Ralph et al. 1995).  All surveys were conducted by trained 

observers beginning at sunrise and ending no later than 6 hours after sunrise on days 

with no precipitation or strong sustained winds.  During each survey, all birds seen or 

heard within the 50 m radius sample area were recorded, except for birds only seen 

flying over without stopping.  In order to collect additional information on bird 

detectability each point was visited three times throughout the breeding season in both 

years.  Whenever possible, repeat visits to survey points were sampled by different 

observers and at different time-periods (early, mid, and late morning) to minimize 

biases associated with observer or time of day (Ralph et al. 1995). 

2.3.3 Vegetation Surveys 

From the center of each point count site, a 10-factor cruising prism was used to 

select a sample of trees in order to estimate total basal area per tree type for each 

point.  Additionally, I used a point-intercept approach to measure vegetation height in 

two height classes: herbaceous (0-0.5 m) and understory (0.5 - 3.0 m) (James and 

Shugart 1980, Martin et al. 1997).  Originating from the survey plot center, five 

measurements were taken in each cardinal direction spaced 3 m apart (twenty 

measurements total per plot).  At each 3m increment, a measuring pole was held 
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vertically and the height of the highest contact with vegetation in each height class was 

recorded.  An additional 5 m radius sub-plot was established at the survey plot center 

and all woody vegetation >1.5 m in height were tallied, separated into two size classes 

(<2.5 cm and 2.5 - 8.0 cm) based on stem diameter.  Finally, canopy closure was 

measured using the average of five densiometer measurements taken from the survey 

plot center and 15m in each cardinal direction. 

2.4 Statistical Analyses 

2.4.1 N-Mixture Models 

N-mixture models (Royle et al. 2004) were used to analyze the abundance (ʎ) of 

birds as a function of forest cover type while allowing for potential heterogeneity in 

detectability (p) of birds.  Detectability was modeled as a function of covariates for 

observer, date (both linear and quadratic), time, and distance to stream.  Distance to 

stream was included as a proxy variable to account for increased noise caused by 

streams, potentially reducing the number of birds heard during point counts.  Candidate 

models also included terms for year and site, which were removed if the effects were 

not significant.   In order to increase the likelihood of model convergence, all continuous 

predictor variables were standardized to have mean equal to 0 and standard deviation 

equal to 1.  Data analysis was conducted using the program R (R Core Team 2017).   

Each survey point was combined with the survey year to create a unique point-

year identity, which allowed us to analyze both years of data together similar to a single 

season model (Fogg et al. 2014). N-mixture models were fit to all species occurring at 

≥10% of points across both years using the pcount function in the unmarked R package 



19 
 

(Fiske and Chandler 2011).  Species occurring at fewer than 10% of all surveyed points 

were excluded from this analysis due to increased issues with  N-mixture model 

reliability for smaller sample sizes (Dennis et al. 2015).  All potential predictor variables 

for both abundance and detection probability were first modeled individually.  Any 

variable that produced a model with a lower Akaike’s Information Criterion (AIC) value 

relative to the null model was retained for further selection (Burnham and Anderson 

2002).  Retained variables were then included in a new global model and a backwards 

stepwise selection (Hocking 1976) process was used to systematically remove variables 

until all remaining variables were significant (p < 0.05).  From this list of candidate 

models, the model with the lowest AIC score was selected as the top model. Poisson, 

negative binomial, and zero-inflated Poisson models were explored for modeling 

abundance of each species.  Model fit was assessed by calculating a chi-squared statistic 

from the observed data and comparing it to a distribution of expected chi-square 

statistics derived from a parametric bootstrapping of the data using the global model 

(Kéry and Royle 2016). For the modeling process, the Norway spruce cover type was set 

as the intercept in order to assess the differences in mean bird abundances relative to 

native cover types.  The difference in means between spruce and other cover types was 

considered significant if 95% confidence intervals of the parameter estimates did not 

overlap zero. 

2.4.2 Generalized Linear Models 

Abundance for all species observed at ≥5 points was compared among cover types 

using generalized linear models (GLMs), with Tukey post hoc pairwise comparisons of 
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group means.  For each survey point, the highest observed count value across all within-

year replicate surveys was used as the dependent variable rather than using the mean 

value, as this metric has been shown to be more closely correlated with true abundance 

(Toms et al. 2006).  The modeling of species abundance using GLMs does not account 

for imperfect detection and therefore the fitted estimates can only be interpreted as a 

relative index of true abundance, but given our study objective of comparing relative 

differences between forest cover types, relative abundance was deemed sufficient for 

less common species (Johnson 2008).  Additionally, using GLM’s for the more common 

species that were also analyzed using N-mixture models allowed us to compare relative 

patterns between the two methods.   

2.4.3 Community Analyses 

 Non-metric multidimensional scaling (NMDS) was used to visualize 

dissimilarities between cover types (Shepard 1962, Kruskal 1964).  For the NMDS 

analysis, total counts for each species were calculated within each cover type based off 

maximum within-year counts across replicate surveys using the R package vegan (Jari 

Oksanen et al. 2019).  Analysis of similarity (ANOSIM) was used to test for significant 

differences in avian communities among cover types (Clarke 1993).  Pairwise ANOSIM 

comparisons were made for each combination of cover types and p-values were 

adjusted using the Bonferroni method.  Similarity percentage (SIMPER) analysis was also 

conducted to identify particular species that contributed most to among group 

differences in community using Bray-Curtis dissimilarity matrices (Clarke 1993).  For 

SIMPER analyses, pairwise comparisons among groups were made after converting 
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species counts to presence-absence data in order to reduce the effect of common 

species with high average abundances, which can confound results (Warton et al. 2012).   

To assess overall differences in biodiversity, both Simpson (Simpson 1949) and Shannon-

Wiener (Shannon and Weaver 1949) diversity indices were calculated and compared  

among cover types using Analysis of Variance (ANOVA) and post-hoc comparisons of 

group means.  A model containing an interaction effect between site (Quabbin vs 

Beartown) and cover type was also evaluated to see if there was a difference in diversity 

indices between study sites.  Additionally, the maximum counts of all species at each 

site were used to conduct individual based rarefaction in order to estimate the number 

of expected unique species while compensating for heterogeneity in survey effort and 

the number of individuals sampled (Gotelli and Colwell 2011). 

2.4.4 PIF Ranking 

 Partners in Flight 2019 regional combined scores (Partners in Flight 2019) for the 

New England region (Table 1) were used in conjunction with predicted abundance 

estimates from GLM models.  Species scores were multiplied by mean abundance 

estimates and upper/lower 95% confidence intervals to yield weighted scores.  These 

weighted scores were summed across all species within each cover types and the totals 

were compared among cover types to assess a relative “value” of each stand type in 

regard to the combined conservation significance of the species within them (Nuttle et 

al. 2003). 
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2.4.5 Vegetation Variables 

 Variables derived from vegetation surveys were not normally distributed 

according to Shapiro-Wilk test (Shapiro and Wilk 1965), and therefore were analyzed 

using non-parametric methods. Differences in habitat variables among cover types was 

assessed using Kruskal–Wallis tests (Kruskal and Wallis 1953) with post-hoc pairwise 

comparison of group means. 

2.5 Results 

2.5.1 N-mixture models 

Over the course of two field seasons, there were 82 unique species observed 

during 970 point count surveys. Of these 82 species, 27 were observed in ≥ 10 % of all 

surveys and were included in our initial analysis using N-mixture models (Table 1). A 

Poisson mixture was favored for the error distribution of the abundance portion of the 

model for 25 species with a zero-inflated Poisson mixture being preferred for the 

remaining 2 species (Table 2).  Model convergence was achieved for all species with 

cover type included as a predictor of abundance in the top models for 22 of the species.  

Goodness of fit tests indicated no significant lack of fit due to overdispersion (p < .05).  

However, 10 species showed a significant level of underdispersion (p > 0.95).  Golden-

crowned kinglet, red-breasted nuthatch, and Blackburnian warbler were all more 

abundant in spruce than in any of the native cover types (Table 3).  Magnolia warbler 

and blue jay were more abundant in spruce when compared to hemlock, deciduous, and 

mixed stands but were similar to abundance estimates within pine stands.  Spruce 

plantations showed higher abundances of blue-headed vireo when compared to pine 
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stands, and higher abundances of gray catbird compared to mixed stands.  Chipping 

sparrow were less abundant in deciduous and hemlock stands than in spruce but were 

more abundant in pine when compared to spruce.  Relative to spruce, black-and-white 

warbler were more abundant in mixed stands, black-capped chickadee were more 

abundant in pine, and yellow-bellied sapsucker were more abundant in both deciduous 

and mixed stands.  With the exception of pine, eastern wood peewee were more 

abundant in native stands than in spruce.  Least flycatcher were less abundant in spruce 

than in deciduous, mixed, and pine stands. 

2.5.2 Generalized Linear Models 

 In total, there were 47 species that occurred in at least 5 surveys which were 

modeled using GLMs, including the 27 species that were also analyzed using N-Mixture 

models (Table 1).  Models containing cover type as a significant variable were preferred 

over the null model for 26 of these species (Table 4).  Golden-crowned kinglet and red-

breasted nuthatch were more abundant in spruce than in all native cover types with 

nuthatches also being more abundant in pine stands than deciduous stands.  Brown 

creeper and Blackburnian warbler were more abundant in spruce when compared to 

hemlock, deciduous, and mixed stands but were similar to abundance estimates within 

pine stands.  Spruce plantations supported more yellow-rumped warblers than either 

deciduous or hemlock stands.  Hemlock stands supported lower numbers of gray catbird 

than all other forest types, including spruce.  Relative to spruce, American robin were 

more abundant in deciduous, eastern towhee were more abundant in hemlock, eastern 

wood peewee were more abundant in deciduous and mixed stands, pine warbler were 
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more abundant in pine, least flycatcher were more abundant in both mixed and pine 

stands and yellow-bellied sapsucker were more abundant in all native stands except for 

deciduous.  Red-eyed vireo was the only species that was least abundant in spruce 

compared to all other stand types.  Abundance estimates within spruce plantations for 

all remaining species showed no significant differences when compared to other stand 

types.  

 Plots of corrected abundance estimates from N-mixture models and mean 

abundance estimates from GLMs were visually compared for the species that were 

analyzed using both methods.  Overall, the two methods produced similar patterns in 

relative abundance among cover types with some exceptions (Fig. 3).  N-mixture models 

identified some small yet significant differences between cover types that were not 

identified using GLMs, however p-values from GLMs were corrected to adjust for 

multiple comparisons so this is expected. 

2.5.3 Community Analysis  

 Results from ANOSIM analysis show that cover type has a significant effect on 

bird communities within the study sites (Table 5).  All pairwise comparisons of cover 

types showed a significant differentiation of bird communities (p < 0.05) with the 

exception of the comparison between mixed and pine stands.  However, the R statistics 

for these comparisons were low (<0.3) indicating that although the communities were 

distinct, the effect was weak.  Smaller R statistic occur when the differences between 

sites of the same treatment (cover type) are similar to the differences among sites in 
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other treatments.  This lack of strong community differentiation is further illustrated in 

NMDS analysis (Fig. 4) where there is substantial species overlap between cover types.   

 Comparisons of Shannon and Simpson diversity indices showed that spruce, 

mixed, and pine stands had similar diversity scores (Fig.5).  Spruce plantations had 

significantly higher diversity scores than both deciduous and hemlock stands. There 

were no significant differences in either diversity index between deciduous, mixed, and 

pine stands but all three were more diverse than hemlock.  Models containing only 

cover type as the predictor were supported over models containing an interaction effect 

between site and cover type for both diversity indices. 

Individual-based rarefaction curves with 95% confidence intervals (Fig. 6) for all 

cover types overlap one another across most of the sampling space with the exception 

of spruce and deciduous.  The hemlock cover type had the fewest individual bird 

detections (n=1145) across the entire study.  Using the rarefaction curves to predict 

species diversity at this sample size across all cover types shows that deciduous stands 

would contain fewer unique species than spruce stands (Fig. 7). 

2.5.4 PIF Ranking 

 The pooled scores for each cover type all had 95% confidence intervals that 

overlapped (Fig. 8) suggesting no significant differentiation of conservation value among 

cover types.    

2.5.5 Vegetation Data 

 With the exception of percent canopy cover, all vegetation related habitat 

variables showed some level of significant difference between cover types (Table 7).  
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Hemlock points exhibited the highest percentage of bare ground. Spruce points had 

more bare ground compared to deciduous points.  Understory cover was similar 

between spruce and hemlock, with the latter being significantly lower than the 

remaining cover types.  Spruce and hemlock stands also had similar shrub densities for 

both small and large size classes.  Spruce plantations had a higher total basal area and 

percent conifer amongst all cover types. 

2.6 Discussion 

 According to my results, exotic Norway spruce plantations in Massachusetts are 

capable of supporting diverse avian communities that are not depauperate relative to 

surrounding native forests.  Rarefaction showed that spruce stands, on average, 

contained more unique species than mixed stands, and species diversity was higher in 

spruce stands compared to both hemlock and deciduous stands.  Norway spruce 

plantations supported the highest abundances for Blackburnian warbler, golden-

crowned kinglet, and red-breasted nuthatch, bird species that are commonly associated 

with pure coniferous stands (DeGraaf and Yamasaki 2001).  Other conifer associated 

species such as black-throated green warbler, magnolia warbler, blue-headed vireo, and 

yellow-rumped warbler were all observed utilizing spruce habitat at levels similar to 

native conifer stands.  Spruce stands consistently exhibited the highest percentage of 

conifer dominance (mean= 93%), with most points being characterized by pure spruce.  

Conversely, native conifer stands were heavily interspersed with deciduous trees with 

pine and hemlock stands averaging only 75% and 63% conifer respectively, leading to 

spruce stands representing the most conifer-pure habitat within the study sites.  This 
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characteristic is likely the reason why conifer associated species utilized spruce habitat 

at levels similar to less pure native conifer stands, despite plantations being limited to a 

non-native tree species.   Additionally, golden-crowned kinglets and red-breasted 

nuthatches have a known preference for spruce habitat (DeGraaf and Yamasaki 2001) 

which explains why these species were only rarely observed in native forest types, given 

that there was no native spruce within the study area.  The characteristics of spruce 

plantations, such as dense, short-needle canopies for foraging (Andrle 1971), potentially 

provide supplemental habitat for these species.  This pattern is consistent with the 

findings of Andrle (1971), who also observed golden-crowned kinglets utilizing both 

Norway and white spruce (Picea glauca) plantations in New York, USA, when the species 

was otherwise uncommon in the area. 

 Species known to utilize both coniferous and deciduous habitats, such as 

American redstart, American robin, black-and-white warbler, ovenbird, veery, and 

various woodpecker species  (DeGraaf and Yamasaki 2001) did not show an avoidance 

of spruce, and abundances were similar among plantations and native cover types.  This 

suggests that the lack of a deciduous component within plantations was not detrimental 

to the abundance of those species that utilize both coniferous and deciduous habitats.  

This pattern supports the findings of Christian et al (1998) who noted that relatively 

common habitat generalists were the species most often observed utilizing plantations 

consisting of native poplar and cottonwood trees in the American mid-west.  My results 

show that this pattern also holds true for a monoculture of an exotic tree species. 
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Interestingly, the data also showed that some unlikely species inhabited spruce 

plantations within the study area. Chipping sparrows, which are known to prefer open, 

grassy areas and forest edges (DeGraaf and Yamasaki 2001), were observed in higher 

abundances within spruce compared to deciduous and hemlock stands.  A possible 

explanation for this pattern involves the unique layout of some of the spruce points.  

Within the Quabbin study site, one of the three Norway spruce plantations was 

relatively narrow and laid out in a patchwork arrangement with low scrubby vegetation 

filling in the gaps.  Although each point count location was > 50 m from any edge of 

contiguous spruce habitat, 8 of the points had a scrubby clearing within 20 m of the 

survey area periphery that may have attracted chipping sparrows to the area, as well as 

other species associated with gaps such as Rose-breasted grosbeak and black-capped 

chickadee.  Additionally, Reynolds and Knapton (1984) noted that white spruce was the 

most common tree species found near chipping sparrow nests in Canada implying that 

the species selects nest sites with a heavy spruce component.  This juncture of low 

clearings bordering dense spruce trees was unique to the study site and is a potential an 

example of how the distribution of plantations within a landscape may have differing 

effects on the native fauna.  As plantation patches get smaller, the amount of edge 

habitat relative to interior habitat increases and attracts more edge-associated species 

to the plantation (Christian et al. 1998).  This is also the likely explanation for the high 

abundance of bluejays, another edge associated species, observed in spruce plantations 

despite the species’ tendency to avoid pure conifer woodlands (DeGraaf and Yamasaki 

2001). 
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Two types of bird species that were most averse to spruce plantations were 

those that associate with deciduous dominant stands and those that prefer dense, 

heterogeneous understory and herbaceous vegetation.  Yellow-bellied sapsucker 

showed a preference for mixed forests over spruce, which is not surprising given the 

species’ affinity for mature deciduous trees for creating nest cavities in (Tozer et al. 

2011), a feature entirely absent from spruce plantations.  Another species, eastern 

wood pewee, saw lowest abundance estimates in conifer dominated stands.  Wood 

pewee abundance has been shown to decrease as the amount of living hemlock 

increases within a stand, but conversely, will increase in abundance during hemlock die-

off.  This phenomenon is a response to a marked increase in understory structure that 

occurs in the wake of hemlock die-off as deciduous and herbaceous plants fill in the 

gaps (Becker et al. 2008, Toenies et al. 2018).  Sitka spruce (Picea sitchensis) plantations 

in Ireland exhibited a negative relationship between canopy cover and bird diversity due 

to decreased understory structure (Smith et al. 2008).  Norway spruce plantations and 

hemlock stands were similar in terms of their dense canopy and lack of complex 

herbaceous and understory layers, which many bird species, including least flycatchers 

and eastern wood pewee, rely on for food, nesting, and cover (Macarthur and 

Macarthur 1961). Therefore, it is plausible that these species would also begin to utilize 

plantations as mature trees naturally die off and are encroached by deciduous trees and 

sub-canopy vegetation.  Plantations left in place without management would see their 

avian communities shift over time to include more species that rely on deciduous trees 

and complex understories as the mature spruce trees die off.   



30 
 

The only species that exhibited the lowest abundance estimates in spruce was 

red-eyed vireo, which is often associated with deciduous habitats, but also known to 

utilize coniferous forest on occasion (Bent 1950).  One explanation for this species 

aversion to spruce plantations is their known preference for deciduous leaves while 

foraging for insects (Gabbe et al. 2002). So, although red-eyed vireo did nest within the 

plantations, the lack of prime foraging appears to have made plantations less appealing 

than the ample deciduous-rich habitats nearby.  

Both Shannon and Simpson-Wiener diversity indices suggested a similar pattern, 

in which hemlock stands had the lowest bird diversity of all the cover types.  Black-

throated green warbler, Blackburnian warbler, and red-breasted nuthatch, which are all 

species that are known to have strong associations with eastern hemlock (Yamasaki et 

al. 1999), were not more abundant in hemlock stands compared to spruce plantations.  

All hemlock stands at the Quabbin site had at least some hemlock woolly adelgid 

infestation, with varying degrees of hemlock dieback as a result.  The diminished habitat 

quality of infested hemlock stands is a likely explanation for lower diversity scores and 

the relatively low abundances of hemlock associated species (Brown and Todd 2014a, 

Buchanan et al. 2016).  As woolly adelgid kills off hemlock, deciduous trees replace them 

and begin shifting avian communities more towards habitat generalists and deciduous 

associated species (Toenies et al. 2018).  Although I was not able to directly link hemlock 

quality or adelgid prevalence to bird abundance or diversity, previous studies have 

noted such shifts within the region (Tingley et al. 2002, Becker et al. 2008) with reduced 

needle density in infested stands being a possible mechanism driving this pattern, which 
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in turn reduces foraging opportunities for birds.  Another possible explanation for the 

lower abundance estimates of these species and others in hemlock is decreased 

detectability of birds due to ambient noise.  Eastern hemlock favors moist ridges and 

ravines (Foster et al. 2014), leading to a majority of hemlock points in our study being 

located near running streams that made aural bird detections more difficult.  We 

attempted to correct for this variation in detectability by including distance to stream as 

a covariate in the detection portion of our N-mixture models.  Given the covariates’ 

inclusion in the top model for seven species, it is clear that it did have an effect on 

overall detectability. However, it is still possible that it did not fully compensate for all 

missed birds.  However, after correcting for unequal sample size using rarefaction 

curves, hemlock stands were shown to have a similar amount of expected unique 

species compared to other cover types. 

Significant differences in bird communities among all pairwise comparisons of 

stand types were of note given the high level of overlap among cover types made 

apparent by NMDS plots.  R statistics derived from ANOSIM analysis were low for all 

comparisons, indicating that although the communities significantly differed among 

stands types, the overall effects were weak (Clarke and Warwick 2001).  Closer 

examination of NMDS plots highlight that a majority of bird species were mutually 

common among stand types, with only a few species showing strong preference for one 

or a subset of stand types.  Further investigation using SIMPER analysis supports this 

notion, and show that red-breasted nuthatch, golden crowned kinglet, and Blackburnian 

warbler were consistently the most important species in regard to differentiating the 
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bird community of spruce from those of other cover types.  Without these highly 

selective species, spruce plantations would consist mainly of generalist species and 

likely would not differ greatly from native conifer stands in terms of bird communities. 

The difference in overall species communities between spruce and hemlock 

stands is of particular interest given the potential loss of significant hemlock habitat in 

the future due to hemlock woolly adelgid infestation.  The fact that a number of 

hemlock associated species such as black-throated green warbler, Blackburnian warbler, 

magnolia warbler, red-breasted nuthatch, and blue headed vireo (Yamasaki et al. 1999) 

were observed utilizing spruce habitat lends further support to the idea that spruce 

plantations could offer suitable replacement habitat in areas where hemlock stands  

continue to deteriorate are become absent all together (Evans 2008).  Black-throated 

green warblers in particular were shown to be negatively affected by hemlock decline 

(Brown and Todd 2014b), and could find refuge in Norway spruce plantations.  In the 

case of Blackburnian warblers and red-breasted nuthatches, abundances were higher in 

spruce than hemlock.  Although both of these species commonly associate with native 

spruce habitat, it is interesting that a monoculture of non-native spruce was attracting 

more birds than nearby native hemlock stands.  With spruce plantations consisting 

almost entirely of uninterrupted conifer, it is possible that plantations will become 

increasingly attractive to species that prefer conifer-rich habitat as hemlock stands 

decline.  However, further research is required to determine which specific 

characteristics are driving these bird abundances at a scale finer than categorical cover 

type.  Although our vegetation surveys were intended to examine such relationships, we 
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were not able to capture a specific variable that predicted abundance better than cover 

type.  It should be noted that the plantations within our study were all mature 

plantations that had not been managed for at least ten years prior to the study. As a 

result, some natural tree loss has occurred leading to canopy gaps that may have 

contributed to higher bird diversity and abundances compared to managed plantations.   

Of all the species analyzed for this study, there were none that were recognized 

as being of priority conservation concern according to Partners in Flight scores.   Scarlet 

tanager and wood thrush. However, were regionally important with the two highest PIF 

scores (17), but scarlet tanagers occurred equally across all cover types and wood thrush 

differed only slightly between hemlock and mixed stands.  Additionally, all species 

remaining analyzed also occurred across all cover types to some degree.  As a result of 

these distributions and lack of critically important species, there was no differentiation 

in conservation value among cover types when abundance estimates were pooled and 

weighted using PIF scores. This lack of differentiation shows that Norway spruce 

plantations can support native birds, and they are able to maintain biodiversity at levels 

similar to that found within native forests.   

The use of N-mixture models to derive corrected abundance estimates by 

accounting for imperfect detection has been used widely in recent years despite some 

criticisms (Barker et al. 2017, Link et al. 2018).  Simulations conducted by Coutirier et al. 

(2013) suggest that biased abundance estimates become more likely as the probability 

of detecting an animal falls below 0.5.  In our study, most species exhibited estimated 

detection probabilities << 0.5.  Although corrected abundance estimates from our N-
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mixture models showed signs of significant differences among cover types, the relatively 

low detection probabilities led to high standard errors and inflated abundance 

estimates.  Even after removing species with lowest detection probabilities, N-mixture 

models still produced corrected abundance estimates that were several times higher 

than the actual maximum observed count at a given point.  This is cause for concern 

given the ecological implausibility of such high estimates.  As a result, I concede that for 

many of our species with low detection probabilities, N-mixture model estimates should 

not be interpreted as true abundance estimates.  Rather, these estimates more closely 

approximate an index of relative abundance similar to those obtained using more 

traditional GLM regression methods.  However, in the case of N-mixture models, 

uncertainty arising from the detection process has been greatly reduced by accounting 

for variables that affect heterogeneity in detection across surveys.  Given the lack of 

evidence that accounting for imperfect detection changed the relative abundance 

predictions combined with the more parsimonious GLM models, I deemed it sufficient 

to prefer the GLM model predictions over the N-mixture model predictions, which have 

been shown to become decreasingly reliable as detection probability becomes low 

(Barker et al. 2017) or when there is unmodeled heterogeneity (Duarte et al. 2018). 

2.7 Management Implications 

 Plantations are an important, and often necessary, component in the production 

of timber and other ecological services.  Although exotic tree plantations are not a 

preferred substitution for native forest stands in terms of ecological value, they can still 

contribute towards achieving conservation goals. If maintaining biodiversity is a primary 
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concern, steps can be taken to establish plantations that help achieve that goal. Spruce 

plantations incorporated into a landscape of native forests stands (as in our study sites) 

can provide valuable patches of conifer habitat, especially in areas with limited native 

conifer stands.  It should be noted that plantations benefit different species across their 

lifespan and may not always align with specific conservation plans.  If land managers 

wish to promote early successional species or specific, non-conifer associated species of 

special concern, then Norway spruce plantations may not offer as much value.  

However, this study shows that well-established Norway spruce patches integrated into 

a mosaic of native forest are relatively benign in terms of negative impacts on 

biodiversity and can also support species that are not otherwise common in the 

immediate area.  Conclusions on whether to allow existing Norway spruce plantations to 

persist will depend on site-specific conservation objectives as well as available 

resources, but given my results, land managers could be justified in allowing some 

Norway spruce to persist without a negative impact on maintaining healthy avian 

biodiversity.  This conclusion only pertains to existing plantations however, and my 

research did not explore the effects of plantation age on biodiversity.  Therefore, 

recommendations as to whether establishing new plantations could be justified from a 

conservation standpoint may differ.  However, previous research suggests that the 

period of time before new Norway spruce plantations reach their full potential in terms 

of biodiversity is only ~30 years, which lends some support for the idea that new 

plantations could be an effective method to supplement conifer habitats and support 

the species that depend on them.  
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CHAPTER 3 
TABLES 

 
 
 

Table 1 
 
Common and scientific names for all species included in analyses along with alpha codes, Partners in 
Flight (PIF) scores and count summaries by cover type. 

 
*NS = Norway Spruce, DE = Deciduous, EH = Eastern Hemlock, MX = Mixed, WP = White Pine 
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Table 2 
Included covariates and output statistics from top N-Mixture models and corresponding goodness-of-fit 
tests.  Species’ scientific names are presented in Table 1. 

 
a λ Mixture: P = Poisson, ZIP = Zero-inflated Poisson 
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Table 3 
N-Mixture model coefficients with standard errors from (species for which cover type was not included in 
top model or did not pass goodness-of-fit tests excluded).  Coefficients for deciduous, hemlock, mixed and 
pine represent differences in relation to spruce (the model contrast).  Values in bold signify significant 
differences. Species’ scientific names are presented in Table 1. 
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Table 4 
Mean abundance with standard errors from GLM models.  Lines in bold represent models in which cover 
type had a significant effect based on corrected p-values (Bonferroni method).  Cover types with common 
superscripts represent lack of significant difference among them.  Species’ scientific names are presented 
in Table 1. 
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Table 5 
Results from pairwise ANOSIM analysis of species communities between among cover types with 
Bonferroni corrected p-values. 

 

 

 

 

Table 6 

Summary of SIMPER results for between-group dissimilarities in species communities.  The top six 

contributing species are listed for each pairwise comparison along with their respective contribution 

percentages. Species’ common and scientific names are presented in Table 1. 
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Table 7 
Mean values for habitat variables with standard errors.  Common superscripts represent lack of significant 
difference among cover types according to Kruskal–Wallis tests with post-hoc pairwise comparisons of 
group means. 
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CHAPTER 4 
FIGURES 

 
 
 
 

 

Figure 1.   Point count locations for the Quabbin study site, Hampshire and Franklin counties, MA.  
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Figure 2.   Point count locations for the Beartown study site, Berkshire county, MA. 
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Figure 3. Comparison of abundance estimates from N-Mixture models and GLMs (species for which cover 

type was not included in top N-Mixture models or did not pass goodness-of-fit tests excluded).  NS = 

Norway Spruce, DE = Deciduous, EH = Eastern Hemlock, MX = Mixed, WP = White Pine 
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Figure 4.  Non-metric multidimensional scaling ordination based on cover type for all 47 species observed 

in at least 5 points.  Colored confidence interval ellipses encompass 95% of all points for each respective 

cover type and species alpha codes are overlain to show the species’ associations to each cover type.  NS 

= Norway Spruce, DE = Deciduous, EH = Eastern Hemlock, MX = Mixed, WP = White Pine.  Species’ alpha 

codes are presented in Table 1. 
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Figure 5.  Mean values of two diversity indices (Shannon, Simpson) with 95% confidence intervals 

compared among cover types.  NS = Norway Spruce, DE = Deciduous, EH = Eastern Hemlock, MX = Mixed, 

WP = White Pine 
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Figure 6.  Sample based rarefaction curves with 95% confidence intervals comparing expected number of 

unique species as a function of total individuals sampled.  NS = Norway Spruce, DE = Deciduous, EH = 

Eastern Hemlock, MX = Mixed, WP = White Pine 
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Figure 7.  Number of expected unique species with 95% confidence intervals when 1145 individuals have 

been sampled.  Values derived from individual based rarefaction.  NS = Norway Spruce, DE = Deciduous, 

EH = Eastern Hemlock, MX = Mixed, WP = White Pine 
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Figure 8.  Pooled PIF scores weighted by abundance with 95% confidence intervals.  NS = Norway Spruce, 

DE = Deciduous, EH = Eastern Hemlock, MX = Mixed, WP = White Pine 
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