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Abstract— This article proposes a new spike encoding and
decoding algorithm for analog data. The algorithm uses the
pulsewidth modulation principles to achieve a high reconstruction
accuracy of the signal, along with a high level of data compres-
sion. Two benchmark data sets are used to illustrate the method:
stock index time series and human voice data. Applications
of the method for spiking neural network (SNN) modeling
and neuromorphic implementations are discussed. The proposed
method would allow the development of new applications of SNNs
as regression techniques for predictive time-series modeling.

Index Terms— Analog data, data compression, spike encoding,
spike series decoding, spiking neural networks (SNNs), streaming
data.

I. INTRODUCTION: A REVIEW OF THE METHODS FOR

ENCODING OF ANALOG SIGNALS

INTO SPIKE SEQUENCES

THE basic idea behind artificial neural networks (ANN)
such as the perceptron neuron is basically a computing

system, whose central theme is borrowed from the analogy
of biological neural networks [1]. However, real biological
neurons communicate with each other using electrical pulses
called “spikes” [2]. A chain of spikes emitted by a single
neuron is called a spike train; a sequence of stereotyped events
occur at regular or irregular intervals [3]. Since all spikes of a
given neuron look similar, it is assumed that the form of the
spikes does not carry any information, so it is the number and
the timing of spikes that matter. The action potential or spike
is the elementary unit of signal transmission [3]. Therefore,
based on this idea, spiking neuron models were proposed
in [4] and [5]. Actually, in spiking neural networks (SNNs),
the “information” is transmitted as temporal spike sequences.

Due to the temporal encoding of the spikes, SNNs
inherently possess the capacity to manage temporal data,
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i.e., they are more suited for modeling dynamic data evolution.
SNNs have been widely used for classifying temporal data
such as ultrafast image recognition [6], image compression
and reconstruction [7], detection and classification of visual
objects [8], odor recognition [9], epilepsy detection [10], and
speech recognition [11], to mention only few of them. Finally,
more recently, a morphologic framework based on spiking
neurons has been presented for modeling spatio-temporal data
such as brain and multisensory environmental data, along with
video and speech [12]. However, much less effort has been
made in order to model dynamic evolutions such as one-step
ahead, multistep ahead forecasting, or complete dynamic
evolutions of future events. Only, few works of the same
research team can be found in [13] and [14]. These works
are based on the polychronization [15]. However, these works
perform a classification task rather than a true forecasting
task. Moreover, there is no analog data reconstruction, and
the output resolution is dependent on the number of spiking
neurons rather than on new and optimal encoding mechanisms.

The main reason is that so far there is not a proper method to
encode analog data into spikes and reconstruct the original data
precisely. Among different encoding methods used so far, two
gained major attention: rate coding and temporal coding [16].
In rate coding, information is encoded by the number of spikes
in a short-time moving window [17]. A common rate encoding
of analog signals follows a Poisson distribution, where the
firing rate is proportional to the amplitude of the analog signal
within a short-time window. This encoding method was used
for digit recognition [18] and [19]. However, Poisson distribu-
tion encoding is not recommended for real world applications
due to its imprecision when mapping analog signals into spike
trains [17]. Another encoding algorithm introduced was the
Hough Spiker algorithm (HSA) [20]. The basic idea behind
this algorithm is to try to do a reverse convolution of the
stimulus by a finite-impulse response (FIR) reconstruction
filter. The idea is that if the impulse response of the linear
filter is smaller than or equal to the input, then there has to
be a spike in order to reproduce the signal [21]. Based on the
HAS, the Ben’s spike algorithm (BSA) was proposed [21].
Like the HSA algorithm, this algorithm assumes the use of
an FIR reconstruction filter. At every instant of time τ , the
algorithm calculates two error metrics. If the first error is
smaller than the second minus a threshold, then produce a
spike and subtract the filter from the input, else do nothing.
In general, it is possible to reconstruct the original signal to

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nikola Kasabov. Downloaded on October 07,2020 at 03:38:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0838-8516
https://orcid.org/0000-0001-5128-0610
https://orcid.org/0000-0003-4433-7521


ARRIANDIAGA et al.: PWM-BASED ALGORITHM FOR SPIKE PHASE ENCODING AND DECODING 3921

a certain degree using these algorithms. However, there is
a significant lack of precision in the reconstruction of the
analog signal. Another encoding method is based on the simple
thresholding of the volume of the signal, used in several
address-event representation (AER) protocols [22]. With this
encoding algorithm, signal intensity changes over a given
threshold are encoded as spikes, where “ON” and “OFF” events
are dependent on the sign of the changes of the signal.
However, if the signal intensity changes dramatically, it is hard
to recover the original signal [12]. Based on the thresholding
AER protocols, an adaptive threshold-based (ATB) encoding
algorithm was proposed [23]. In ATB, the threshold was
calculated using the mean and the standard deviation of the
signal gradient and, thus, self-adapt to input signal changes.

Although rate encoding is widely used, recent experimental
evidences have suggested that precise spike timing preserves
and reveals information from the original signal that is not
available in rate codes [24]–[27]. Temporal coding offers sub-
stantial benefits because it can use time as both communication
and computation resource in SNNs [28]. One of the most fre-
quently used approaches for time encoding is phase encoding
because it is able to encode the analog signal with high spatial
and temporal selectivity [29]. It is a slightly modified approach
of time-to-first-spike coding where the measurement of the
relative timing is based on periodic background oscillations
in the considered neural system [30]. This encoding scheme
could allow neurons to encode information that is not encoded
in their firing rate using their temporal pattern of spikes [31].
Increased evidence shows that phase encoding is also used in
biological neurons [31], [32].

In [29], a phase encoding method was proposed using
gamma alignment. First, with latency encoding, the analog
signal is encoded into spikes in the encoding layer. Then,
the spikes are aligned to the nearest subthreshold membrane
potential oscillations (SMOs). With the gamma alignment,
it was possible to reconstruct the original signal. However,
due to the alignment, there is an error during the reconstruction
of the original signal. Based on the SMO, another encoding
algorithm was proposed [33]. In this case, instead of one neu-
ron input, three neurons were used: one positive neuron, one
negative neuron, and one output neuron. With this approach,
the alignment phase is avoided. However, the decoding phase
is based on the sequence recognition instead of using the
oscillation signal (SMO) for reconstructing the signal. In fact,
the decoding process is quite similar to the approach proposed
in [13]. In another different approach, leaky integrate-and-
fire (LIF) neurons were suggested for phase encoding [34].
However, in comparison to the time constant of the LIF
neuron, the input analog signal should be quasi-static [17].
In order to overcome this drawback, the wavelet decomposi-
tion data preprocessing was proposed [17]. The decomposed
wavelet spectrum amplitude was encoded into synchronized
spike trains. However, in both cases that use the LIF neuron
for phase encoding, the works do not show if it is possible to
reconstruct an analog signal. In addition, in almost all works
studied the encoding is carried out in a neuron layer with the
consequent increase of neurons in the SNN. Moreover, these
encoding algorithms cannot be used for forecasting because

Fig. 1. PWM example.

they do not ensure that there is a spike every time step of the
time series.

In this article, a new phase-encoding algorithm is proposed
based on the well-known pulsewidth modulation (PWM) for
encoding analog signals into spike sequences. It should be
noted that it is not the objective of this article to develop
a biologically plausible encoding algorithm but develop an
encoding algorithm for spiking neurons with capabilities to
be used for practical regression applications. The presented
approach does not need complex mathematical algorithms and
enables an easy hardware implementation to be used in neuro-
morphic hardware such as SpiNNaker [35] or TrueNorth [36].
In addition, in order to be used for modeling dynamic evolu-
tions of signals and for forecasting of the signal in future times,
the proposed algorithm can reconstruct precisely the encoded
analog signal, and the method is invariant to the frequency
components of the signal.

II. PWM-BASED SPIKE ENCODING–DECODING

ALGORITHM FOR ANALOG DATA

A. PWM Principles

PWM is one of the most commonly used techniques to
perform analog-to-digital conversion in applications of diverse
areas, including: motor control, signal processing, communica-
tion, and power electronics [37]. It is a fundamental technique
used for controlling power electronic circuits [38].

PWM is in itself a modulation technique used to encode a
reference signal r(t) into a pulsing signal that can be produced
simply by comparing the reference signal r(t), with a carrier
signal, c(t) that is commonly represented by a sawtooth. The
binary PWM output can be mathematically written as follows:

bpwm (t) = sgn [c (t) − r (t)] (1)

where “sgn” is the sign function.
As illustrated in Fig. 1, if the reference signal amplitude is

higher than the carrier signal amplitude, the modulated signal
is represented with a high-amplitude rectangular pulse. On the
contrary, if the reference signal amplitude is lower than the
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Fig. 2. PWM-based encoding example.

carrier signal amplitude, the modulated signal is represented
with low amplitude. Therefore, the modulated signal is a
quadratic signal with different pulsewidths.

B. Proposed PWM Spike Encoding Algorithm

As shown in Fig. 1, the higher the amplitude of the reference
signal, the narrower the generated pulse is, which means that
the amplitude of the reference signal is somehow encoded in
the time domain. Thus, it is possible to use the idea behind
PWM to establish a new encoding method within the temporal
paradigm just by considering that each rising edge of the
PWM quadratic signal represents one spike or, in other words,
to generate spikes in the intersections between the reference
signal r(t) (which is indeed the signal to be encoded) and the
carrier signal c(t), as shown in Fig. 2.

It can be noticed that in this new encoding algorithm,
the spikes are generated in respect to a reference time
point (RTP), which is the 0-value point of the sawtooth, so as
the lower the amplitude of the reference signal is, the closer
the spike to RTP. In the same way, the higher the amplitude,
the farther the spike is generated from the RTP. With this
method, it is very easy to reconstruct the original signal by
just doing the opposite: The original values of the signal are
given by the intersections between the carrier signal and the
corresponding spikes (note that the same carrier signal, used
for encoding, is also used for decoding). Once the original
discrete values are recovered, the complete original signal can
be reconstructed by interpolation. In order to illustrate this
encoding algorithm, Fig. 3 highlights the recovered points
during the reconstruction process, and Fig. 4 summarizes the
encoding and decoding processes through the PWM-based
encoding algorithm. In Figs. 5 and 6, the pseudocode for
encoding and decoding is shown. Note that this new simple
method makes possible to fire one spike at each time step,
which is an essential issue in time-series forecasting, i.e., stock
exchange close price every day, hourly mean temperature,
and monthly unemployment. Therefore, this new and simple
method covers an important gap in the state of the art
concerning SNN.

For on-line use purposes, it should be noted that the
hardware PWM is a very well-established technology, making
it feasible to adapt it to the PWM-based encoding algorithm
in order to directly sample the analog signals and generate the
corresponding spike trains. Actually, a simple solution can be
the use of a microcontroller so that the input analog signals
are captured through ADCs, then, the PWM-based algorithm
applied, and finally, the spikes transmitted to digital outputs.

Fig. 3. PWM-based decoding example.

Fig. 4. Graphical representation of the PWM-based algorithm for spike
encoding and decoding of analog signal.

Fig. 5. Algorithm for encoding analog signals into spikes.

Fig. 6. Algorithm for decoding the spike trains into analog signals.

C. Parameter Selection for the Proposed PWM-Based
Encoding–Decoding Algorithm

There are two signals or time evolutions involved in the
proposed encoding algorithm: the reference signal r(t), which
is the signal to be encoded, and the carrier signal c(t).
The reference signal is defined by the application problem.
However, some decisions should be made about the parameters
of the carrier signal c(t). Those decisions should be taken,
presumably, considering the characteristics of the signal to
be encoded, i.e., the reference signal r(t). Thus, first of all,
the objective is to identify the parameters that characterize the
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Fig. 7. Carrier signal example. Parameters: nc = 20 and npc = 8.

Fig. 8. Classical sampling.

carrier signal, and second, some criteria and hypothesis are
established about the values of those parameters.

There are two important parameters that have a great
influence over the reconstruction accuracy: 1) the number of
carrier (nc) waves, which is directly related to the carrier
pulsewidth and 2) the number of points per carrier (npc) wave.

For instance, the carrier signal shown in Fig. 7 consists of
20 carrier waves of 0.05 units of time each, and the npc wave
used to encode the reference signal is 8. In this case, the values
of the parameters of this carrier signal are as follows.

1) nc = 20.
2) npc = 8.

As stated above, it is reasonable to think that proper values
of nc and npc parameters can be established depending on the
characteristics of the signal to be encoded r(t). Actually, in the
case of the nc waves, the sampling rate (the sampling require-
ments) of the original data r(t) can be taken into consideration.
As it is well-known, the Nyquist–Shannon sampling theorem
states that a bandlimited baseband x(t) within the frequency
bandwidth B can be exactly reconstructed from its sample
values by low-pass filtering if the sampling rate is higher
than 2B [39]. A classical sampling is a process of multiplying
the analog signal x(t), with a sampling signal s(t), which is
a train of impulses (delta dirac), where one value is evenly
captured per impulse (see Fig. 8).

PWM, on the other hand, represents a signal by using
pulses of constant amplitude but variable widths. In this
sense, PWM is a substitute for classical sampling [40].
Making an analogy with classical sampling, in which “one
value is captured per impulse,” in the PWM-based encoding
algorithm, “one spike is generated per carrier pulse.” In other
words, and conceptually speaking, the sampling signal in the
PWM-based encoding algorithm is the carrier instead of the
train of impulses (see Fig. 9).

Taking into account that a proper selection of the sampling
rate is essential to guarantee a proper signal reconstruction,
the nc waves (i.e., the width of the carrier pulse) should be
directly related to the sampling requirements of the signal to
be encoded. At this point, it is important to highlight that

Fig. 9. PWM-based encoding “sampling.”

in most cases, the available data to train SNNs are already
digitized and stored in a computer system. The assumption
made here is that the original data to be encoded have been
acquired at a properly selected sampling rate (if more points
than necessary are acquired, well-known methods to reduce
the number of points could be applied; in the case where data
have been acquired at an insufficient sampling rate, no matter
which technique is employed to process the data, the results
may not be adequate). Our hypothesis is that if nc is equal to
the number of points acquired (minus one), this should provide
a satisfactory recovery accuracy.

For the task of forecasting applications, it is necessary to
have one value at each time step. With the state-of-the-art
encoding methods presented in the Introduction, it was not
possible to perform true forecasting with SNN because those
methods cannot generate one spike per time step. By contrast,
using the encoding method proposed here, it is possible to
generate one spike at each time step by setting nc equal to the
number of time steps (minus one) of the time series.

Regarding the decision about the npc wave, another
important parameter in classical sampling can be taken into
consideration: the resolution. As is well known, the resolution
is the smallest detectable change in the signal and has a
direct impact on the recovery accuracy. Making again an
analogy with classical sampling, in which the higher the
resolution is, the better the reconstruction can be achieved,
since smaller changes in the value of the signal are captured,
in the case of the proposed PWM-based encoding algorithm,
the smallest detectable change is determined by the number
of points within the carrier pulse. To illustrate this idea,
in Figs. 10 and 11, a reconstruction is shown for different
number of points (npc) with the same nc waves. Obviously,
the hypothesis in this case is that the more the npc, the better
is the accuracy; Figs. 10 and 11 show that when the npc is
higher, the accuracy of the reconstruction increases. Of course,
this means that depending on the application requirements,
the lowest possible resolution should be selected so as not to
increase excessively the number of points of the carrier.

III. EXPERIMENTAL RESULTS ON SPIKE ENCODING AND

DECODING OF STOCK EXCHANGE TIME-SERIES DATA,
HUMAN VOICE DATA, AND EEG DATA

In order to demonstrate the proposed PWM-based spike
encoding–decoding method, two benchmark data sets are
used: stock exchange time series and human voice records
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Fig. 10. Original analog signal (“-” red) and reconstruction signal (“-o” blue)
with npc = 5.

Fig. 11. Original analog signal (“-” red) and reconstruction signal (“-o” blue)
with npc = 50.

TABLE I

DATA USED IN THE EXPERIMENTS

(see Table I). These data sets have different sampling rates to
see the effect of the nc waves and the npc wave over time-
dependant sequence reconstruction.

A. Stock Exchange Time Series

As a time-series benchmark data set, the well-known IBM
closing stock price is used. This time series represents the
common daily closing stock price of IBM from May 17, 1961
to November 2, 1962. One value per day is collected, and
it consists of 369 points. This benchmark is widely used for
time-series forecasting and has been also used for forecasting
with SNN [13]. As mentioned in Section II, in forecasting,
at each time step, it is necessary to have one value; thus,
the nc waves must be set to 368. In order to analyze the effect
of nc and npc values, a different combination of them is also
studied (see Table II).

In Fig. 12, the encoding process is shown for the IBM
time series with nc = 184 and npc = 64 for the first 20%

TABLE II

nc WAVES AND npc WAVE USED TO ANALYZE THE PROPOSED METHOD
FOR ENCODING–DECODING OF STOCK TIME SERIES

Fig. 12. Encoding process of the IBM stock time-series signal into spikes
for nc = 184 and npc = 64. For a better understanding of the process, only
the first 20% of the used data are shown.

of the signal. Only initial 20% is shown to illustrate better the
encoding and decoding processes. The graph above shows the
original data scaled within the range [0, 1]. As explained in
Section II, this is done because the sawtooth wave is generated
within that range, as shown in the second graph (so-called
“Carrier Signal”). Then, comparing the original signal and the
sawtooth wave, the quadratic signal is generated (third graph).
Finally, the spike train is generated based on the rising edges
of the quadratic signal (fourth graph).

In Fig. 13, the reconstruction of the original signal from
Fig. 12 is shown. The spike train used for the reconstruction
is the same one generated and shown in Fig. 12. In the middle,
the sawtooth wave signal is represented, and on the bottom,
both the analog signal and the reconstructed one after the
spike encoding–decoding are shown. Although the npc value
is one of the lowest considered, the reconstruction is excellent
(see the graph below in Fig. 13). Moreover, the mean square
error (MSE) for the reconstruction of the original signal with
nc = 184 and npc = 64 is lower than U.S. $50 (see Fig. 14).

In Fig. 14, the MSE values for different nc waves and npc
wave are shown. Analyzing the nc waves, one can see that
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Fig. 13. Decoding process of the IBM time series for nc = 184 and npc = 64.
For better understanding of the process, only the first 20% of the used data
are shown.

Fig. 14. MSE results of the reconstruction of the IBM stock time series for
different nc = [46, 92, 182, 368, 736] and npc = [32, 64, 128, 256, 512].

increasing the nc waves improves the reconstruction results
for all “resolutions” or npc. However, after 368 carrier waves,
the improvement is minimal. Therefore, the results confirm the
hypothesis of Section II: “nc equal to the number of points
acquired (minus one) should provide a satisfactory accuracy.”
This means that using equal number of points of the original
data, it is possible to use SNNs for forecasting because it
ensures that there will be at least one spike at each time step.

Regarding the npc wave, the results are quite similar: At
the beginning, the results improve dramatically increasing the
resolution, but after npc = 128, the improvement decreases
as we increase the npc. It is noteworthy that by increasing
the npc, the number of points required for reconstruction
and, consequently, the computational requirements increase.
Therefore, when selecting the npc, as said in Section II, the
lowest possible resolution should be selected depending on the
application and the resolution requirements.

In this particular case, the MSE value yielded with
nc = 368 and npc = 128 is satisfactory. Of course, with
npc = 256 (see Fig. 15) and npc = 512, the accuracy of

Fig. 15. First 100 points of the original and reconstructed signals of the
IBM stock time series for nc = 368 and npc = 256.

TABLE III

AUDIO PROPERTIES OF THE HUMAN VOICE RECORDING
DATA USED (“arctic_a0001.wav”)

TABLE IV

nc WAVES AND npc WAVE USED TO ANALYZE THE PROPOSED ENCODING

METHODOLOGY FOR A HUMAN VOICE RECORDING

signal reconstruction increases with a consequent increase in
the number of points, double for npc = 256 and quadruple
with npc = 512. It should be noted that in Fig. 15, the results
are within the normalization range [0, 1].

B. Human Voice Data Encoding–Decoding

The second time-dependent data set used is a human voice
record from Carnegie Mellon University ARCTIC speech
databases [41]. Each voice recording data is acquired with a
sample rate of 32 kHz. From the data available, the so called
“arctic_a0001.wav” file of the subfolder “US bdl (US male)”
is used in this work. The audio properties of the file are shown
in Table III.

Taking into account that the sampling rate of 32 kHz during
3.5 s corresponds to 112 960 data points, the following nc
waves and npc are selected to compare the encoding and
reconstruction of the signal, as shown in Table IV.

The MSE for the encoding and reconstruction of the
human voice recording signal are shown in Fig. 16. After
nc = 112 960, the accuracy improvement is minimal which
confirms the hypothesis of Section II. It means that increasing

Authorized licensed use limited to: Nikola Kasabov. Downloaded on October 07,2020 at 03:38:10 UTC from IEEE Xplore.  Restrictions apply. 



3926 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Fig. 16. MSE results of the reconstruction of the human voice recording
time series for different nc = [14 120, 28 240, 56 480, 112 960, 225 920]
and npc = [32, 64, 128, 256, 512].

TABLE V

MSE RESULTS FOR DIFFERENT nc AND npc WITH

THE SAME NUMBER OF POINTS PER DATA

Fig. 17. 6000 points of the original and reconstructed signals of the human
voice recording signal for nc = 56 480 and npc = 256. The results are shown
within the normalization range [0, 1].

the nc waves beyond the number of points of the original signal
increases the number of points in the encoded data, with no
remarkable improvement in the reconstruction of the signal.
Thus, it is not recommended to use more carrier waves than
data points of the original signal.

For the IBM time-series forecasting problem above, at least
one spike must fire in the output spiking neuron. However,
in other applications, there may not be such a restriction,
so the output time-dependent data could have fewer data points
than the original one. In those cases, it could be possible
to achieve higher reconstruction accuracy with another com-
bination of nc and npc, being a combination close to the
number of points of the original signal (see Table V). Although
it is possible to reconstruct the original signal with higher
accuracy, the improvement is not significant (see Fig. 17).

Therefore, unless for high-accuracy applications with limited
computational requirements, it is highly recommended to use
nc waves equal to the number of points of the original data,
only changing the npc wave based on the resolution needed
in the reconstruction accuracy.

In order to show the effectiveness of the proposed algorithm
for signal reconstruction, a comparison between the BSA and
the proposed algorithm is carried out. Similar to the HSA
algorithm, the BSA is strongly nonlinear. Therefore, it is
not possible to use linearity properties and perform classical
optimisation techniques for parameter optimization. For this
purpose, a classical differential evolution (DE) is applied
(DE/rand/bin/1) [42], an iterative heuristic continuous space
optimizer, for fitting both the FIR filter and the threshold. The
DE generates trial parameter vectors and creates new points
that are perturbations of the existing points. It adds the weight
difference between two randomly chosen vectors to a third
vector. In this case, every candidate solution is an R3 vector
whose elements represent values for the order of the filter,
the cutoff frequency, and the threshold of the BSA.

The algorithm is initialized with a constant population
of 30 vectors, which is ten times the dimensionality of the
problem as suggested in [42]. The weighting factor is set to
f = 0.05, and crossover rate toc = 0.7. Every vector competes
against another vector with the same index in the current
population to form the next generation of solutions. The fitness
of every new vector is assessed using MSE between the
original signal and the reconstructed one. In the presented case,
the iterative process continued until the best candidate solution
achieved the optimal value, MSE = 0, or until 100 iterations
are complete.

The MSE result achieved for the reconstruction of the
signal with the best candidate is 4.5782e-04 dB, far from the
results yielded with the proposed algorithm (see Table V).
In order to see and compare the effectiveness of the proposed
methodology, original and reconstructed audio signals are
provided as supplementary material.

C. Training

In this section, an SNN is trained using DE. Optimization
methods make possible to train small SNNs without comput-
ing the derivative of the spiking neuron as it is done with
backpropagation (BP). The main objective is to show that is
possible to train spiking neurons for forecasting using MSE
as loss function and the PWM-based proposed algorithm.

SNNs with Izhikevich neurons [4] are used for four dif-
ferent forecasting scenarios: using 1 input and 1-step-ahead
prediction, 2 inputs and 2-step-ahead prediction, 3 inputs
and 3-step-ahead prediction, and 3 inputs and 5-step-ahead
prediction. It is noteworthy that the inputs are delayed on-
step; for example, for the 2 inputs 2-step-ahead prediction,
two inputs (t and t − 1) are used to predict t + 2. The
Izhikevich neuron is configured using a = 0.02, b = 0.2,
c = −65 and d = 6. To carry out this proof of concept,
the IBM data set previously introduced is used. The data are
preprocessed subtracting the previous value from each value
in the data to remove the trend. Five synaptic weights in the
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Fig. 18. Target (blue), MLP output (red), and spiking neuron output (orange)
after training the MLP and spiking neuron using one input for forecasting IBM
closing stock price for one day ahead.

TABLE VI

RMSE AND MAPE RESULTS FOR THE FOUR FORECASTING

hidden layer initialized to zero are used. One of the drawbacks
of using optimization methods for training SNNs is that the
more the synaptic weights the network contains, the more the
parameters to optimize and the longer the training time.

The DE is configured with 40 (20 × parameters to optimize)
population members, 0.8 step size, and 20 iterations. The two
synaptic weights are optimized to minimize the MSE between
the output of the spiking neuron and the ground truth or target.
To do this, the output spikes are decoded using the proposed
algorithm, therefore making it possible to compute the MSE.

To evaluate the performance of the spiking neuron,
the results are compared with a multilayer perceptron (MLP)
neural network. The MLP has two inputs, ten neurons in
the hidden layer and one output. The Levenberg–Marquardt
algorithm is used to train the network.

Root-mean-square error (RMSE), mean absolute percentage
error (MAPE), and mean absolute average percentage change
(MAAPC) (2) are used to compare the error of ANN and SNN
for the four forecasting cases

MAAPC = 100%
n∑

t=1

⌈
Ft+s − At

At

⌉
(2)

where Ft+s is the forecasted value s steps ahead and At is the
real value.

The results show (see Table VI) that the performance of
the SNN for the four forecasting cases gets worse when the

Fig. 19. Target (blue), MLP output (red), and spiking neuron output (orange)
after training the MLP and spiking neuron using three inputs (t , t − 1, and
t − 2) for forecasting IBM closing stock price for five days ahead (t + 5).

Fig. 20. Compressing the data required for PWM encoding.

complexity of the task increases. The best result is yielded
with one input and one step-ahead prediction (RMSE equal
to 9.453) and the worst with three inputs and five step-head
prediction (RMSE equal to 29.033). This can also be observed
by analyzing MAPE and MAAPC results. It can be noted
that although it is possible to train SNNs for forecasting,
the results are not yet close to those achieved with ANNs.
However, given that in this work, an optimization method and
five neurons in the hidden layer are used; there is still much
room for improvement regarding the training algorithms for
SNNs, which presumably will yield much better results.

The forecasting results are shown in Figs. 18 and 19 for
the days between 100 and 200 using one input for forecasting
IBM closing stock price: for one day ahead and three inputs
(t , t − 1, and t − 2), and five days ahead (t + 5) and also three
inputs (t , t − 1, and t − 2), respectively.

IV. LEVEL OF COMPRESSION ACHIEVED BY THE

PWM-BASED ENCODING ALGORITHM

In view of the proposed PWM-based encoding method,
it is evident that many bits would be required to store the
encoded data, indeed, as many as the npc. Many applications
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will require the use of large data sets that often are generated
remotely (e.g., in the cloud or in computer clusters), impos-
ing a significant cost of transferring data. One of the most
important approaches to deal with this bottleneck is to remove
any redundancy in the data, e.g., using data compression [52].
Nevertheless, it is also important to highlight those scientific
applications that work with large arrays of floating-point
numbers demand compression methods that still preserve the
data with high accuracy.

Data compression algorithms are commonly classified into
either lossless or lossy. Lossless data compression involves a
transformation of the original data set such that it is possible to
reproduce exactly the original data set by the decompression
process. In contrast, in lossy data compression, it is not
possible to reproduce exactly the original data set, such that
performing the decompression permits only an approximate
representation to be recovered [53].

Most of the works on compression of double-precision
data have focused on lossless compression because very high
precision is common in high-accuracy demanding applica-
tions [52]. Most of the proposed methods use linear pre-
diction and encode the smaller residuals using some variant
of nonstatistical [54]–[56] or statistical [57]–[59] variable-
length codes (e.g., entropy codes). Although important in
many applications, lossless methods rarely achieve more than
1.5× compression on double-precision data and have only
limited impact on bandwidth reduction [52].

Regarding lossy compression, one of the main research
lines is focused on volume rendering within the visualization
scope. Furthermore, it is unknown what the effect of these
methods would be on nonvisual, quantitative tasks other
than on volume rendering. In [43], an evaluation of lossy
compression on a simulation task was performed. This work
proposes a fixed-rate (fixed length bit stream) scheme for
compressing 3-D arrays of double precision numbers, tailored
to the high dynamic range and precision demands of scientific
applications. Despite the method being lossy, the author
claims that it allows the user to specify the exact amount of
compression level, making possible to achieve a lossless mode.

Data compression ratio C is defined as the ratio between
the size of the original data and the size of the compressed
data [52]

C = Uncompressed size

Compressed Size
. (3)

It can also be defined as the reduction R in the original data
quantity [53], given by

R = Uncompressed size-Compressed Size

Uncompressed Size
. (4)

For measuring the compression ratio of the proposed
algorithm, as usual, the standard IEEE 754 is taken as baseline
although the algorithm could also be applied to similar formats
[60]. In this case, we consider the binary floating-point basic
formats encoded with 32 and 64 bits, the well-known
single-precision floating-point format (binary32), and double-
precision floating-point format (binary64), respectively.
The IEEE 754 standard specifies a binary32 as having one

TABLE VII

VARIATION OF C AND R WITH THE npc PULSE

sign bit, an 8-bit exponent, and a mantissa with 23 bits.
Regarding binary64, the standard specifies an 11-bit exponent
and a mantissa with 52 bits.

Regarding a single-precision and double-precision floating-
point number, uncompressed size is 32 and 64 bits, respec-
tively, and compressed size is the number of bits required by
the proposed encoding algorithm. As stated above, the pro-
posed PWM-based encoding method requires many bits to
store the encoded data (as many as the npc). This means
that this method would require, in general, more bits than the
standard IEEE 754 to encode floating point numbers. However,
this drawback can be easily solved by storing the position of
the spike within the carrier pulse, instead of storing the whole
sequence of bits. For instance, for npc = 8, 3 bits are needed
to encode the position of the spike within the carrier pulse,
i.e., the resolution of the encoding algorithm is 3 in this partic-
ular case (see Fig. 20). Thus, to take the most advantage of the
binary encoding of the position of the spike within the carrier
pulse, the npc should be the maximum allowed by the selected
resolution, which is, after all, the corresponding power of two.

Under this approach, it can also be noticed that C and R
only depend on the selected npc pulse, i.e., on the resolution.
Obviously, the more the resolution, the less the compression
ratio C and the less reduction in the original data R, as illus-
trated in Table VII.

For example, in the case of the human voice record from the
Carnegie Mellon University ARCTIC speech databases [41]
(see Section III-B), the original size of each sample size
is 16 bit (see Table III). Thus, if the selected npc is 512
(resolution = 9), C is 1.77, and R is 0.4375.

Actually, the proposed PWM base encoding method pro-
vides many of the advantages that are usually claimed for the
compression algorithms [52].

1) Simplicity: This method is significantly far from the
complicated mathematical definitions of other methods.

2) signal-to-noise ratio (SNR) scalability; lossy → lossless:
It allows the user to specify the exact amount of com-
pression (and, consequently, the quality). Furthermore,
it depends on one unique eligible parameter, the selected
resolution.

V. CONCLUSION

In this article, we propose a new phase-encoding algorithm
based on the well-known PWM for encoding analog signal into
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spikes following the assumption that for modeling dynamic
evolution of analog using SNN, a precise reconstruction of
the analog signal may be needed regardless of the frequency
components of the signal.

There are two major applications of the proposed method:
1) analog data encoding for SNN and neuromorphic imple-

mentations;
2) data compression for remote communication systems.
More specifically, the following conclusions can be made.
1) A new phase-encoding algorithm is proposed based on

the well-known PWM for encoding analog signal into
spikes. The proposed algorithm can precisely reconstruct
an analog signal no matter what the frequency compo-
nents of the signal are, ensuring that for forecasting,
at least one spike is emitted in each time step of the
time series.

2) It is easily possible to use the idea behind PWM to
establish a new encoding method within the temporal
paradigm just by considering that each rising edge of the
PWM quadratic signal represents one spike or, in other
words, by generating spikes in the intersections between
the reference signal and the carrier signal.

3) For a high reconstruction accuracy, two parameters have
a great influence: 1) the nc waves, which is directly
related to the carrier pulsewidth and 2) the npc wave.

4) The results confirm the hypothesis that the nc waves
equal to the number of points acquired (minus one)
should provide a satisfactory accuracy. This means that
using an equal number of points of the original data,
it is possible to use SNN for forecasting because this
ensures that there will be at least one spike at each time
step.

5) In applications, where the output time-dependent data
could have fewer data points than the original one,
it may be possible to achieve higher reconstruction
accuracy with other combinations of nc and npc, being a
combination close to the number of points of the original
signal. However, unless for high-accuracy applications
with limited computational requirements, it is highly
recommended to use the nc waves equal to the number
of points of the original, only changing the npc wave
based on the resolution needed in the reconstruction
accuracy. The reconstruction MSE for the two bench-
mark data used with different sample rates is very low
and confirms that the encoding algorithm used is suitable
for regression and forecasting with SNN. Thus, for the
IBM stock time series, the MSE value is lower than
U.S. $50 for nc ≥ 92 and npc ≥ 64. Likewise, for human
voice recording, MSE value is lower than 0.2×10−03 dB
for nc ≥ 56 480 and npc ≥ 128.

6) Using the proposed method, it is possible to train an
SNN for forecasting. The results achieved are worse
than those achieved with the MLP network. However,
there is room for improvement developing new training
algorithms to extract all the potential from the temporal
characteristics of SNNs.

7) The encoded data can be compressed by storing
the position of the spike within the carrier pulse,

instead of storing the whole sequence of bits, which
allows the user to specify the exact amount of com-
pression (and, consequently, the quality). Moreover,
it depends on one parameter, the selected resolution.

8) The proposed method can be used for analog stream data
encoding as a preprocessing phase for on-line learning
and signal value prediction with SNN on various stream-
ing data in such applications as: fMRI data [61], [62];
EEG data [63]–[66]; environmental data for personalized
modeling and individual stroke and cardio event predic-
tion [67]; remote sensing data for horticulture and agri-
culture [68], [69]; radio-astronomy; and brain–computer
and brain-to-brain telecommunication systems.
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