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Abstract
Security surveillance is critical to social harmony and

people’s peaceful life. It has a great impact on strengthen-
ing social stability and life safeguarding. Detecting anoma-
ly timely, effectively and efficiently in video surveillance
remains challenging. This paper proposes a new approach,
called S2-VAE, for anomaly detection from video data.
The S2-VAE consists of two proposed neural networks: a
Stacked Fully Connected Variational AutoEncoder (SF -
VAE) and a Skip Convolutional VAE (SC -VAE). The
SF -VAE is a shallow generative network to obtain a
Gaussian mixture like model to fit the distribution of the
actual data. The SC -VAE, as a key component of S2-
VAE, is a deep generative network to take advantages
of CNN, VAE and skip connections. Both SF -VAE and
SC -VAE are efficient and effective generative networks
and they can achieve better performance for detecting
both local abnormal events and global abnormal events.
The proposed S2-VAE is evaluated using four public
datasets. The experimental results show that the S2-VAE
outperforms the state-of-the-art algorithms. The code will
be available publicly at https://github.com/tianwangbuaa/.

Index Terms—Spatio-temporal, anomaly detection, Variational
AutoEncoder, loss function,

I. INTRODUCTION

V IDEO surveillance is a key tool to maintain the security
and stability of public scene [1, 2]. Densely crowded

environments (such as shopping centers, train stations, etc.),
are equipped with CCTV cameras to meet the increasing chal-
lenges of security issues in these public areas. The surveillance
systems generate a large amount of video data. Detecting
abnormal events timely, effectively and efficiently from a
large amount of video data, without human interaction and
monitoring, has become a crucial task in video surveillance.

In video surveillance, abnormal events can be classified
into global abnormal event (GAE) or local abnormal event
(LAE) [3, 4]. We assume that abnormal events happen in
the foreground. Most of current research focuses on detecting
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abnormal events from foreground. The detection of GAE
is to identify the frames with an anomaly, while the task
of detecting LAE, beyond identifying the frames with an
anomaly, is to locate the individuals with abnormal behaviors
in the frames. It is more challenging to detect LAE than GAE.

In this paper, we aim to improve the detection of the LAE
and GAE. To this end, we propose to use a self-supervised
learning method so that the detection task can be achieved
more accurately and efficiently. The proposed algorithm, called
S2-VAE, includes 2 stages: the first stage is a shallow network,
called SF -VAE, with a low resolution input. And the second
stage is a deep neural network, called SC-VAE, with a high
resolution input. The shallow network SF -VAE was designed
to filter out some palpable normal samples quickly, so that
the next stage network SC-VAE can learn a model from the
remaining samples more effectively and more efficiently.

Inspired by the Gaussian mixture model (GMM), we design
SF -VAE, a new Variational AutoEncoder (VAE) model, so that
the GMM-like distributions can be learned with SF -VAE for
the raw input data. In our experiments, this SF -VAE is used
to learn several latent variables to overcome the limitation of a
single latent variable in traditional VAE. The purpose of using
SF -VAE is to filter out some obvious normal samples from the
original samples, which can significantly reduce the training
and testing time in the next stage.

In the second stage of S2-VAE network, the remaining
samples are firstly enlarged, and the enlarged samples are
fed into SC-VAE. This SC -VAE, is a deep generative net-
work with skip-connection between downsampling layers and
upsampling layers. The convolutional operation in SC-VAE
can learn hierarchical features and a local relationship from
the input, which can not be achieved by the fully connected
layers in SF -VAE. This deep SC-VAE network can also
integrate low/mid/high level features, and therefore it has
stronger learning ability than shallow networks. Finally, from
the information theory, the fusion of low-level and high-
level information achieved by skip-connection can reduce the
information loss caused by the transmission across layers in
the generative network. From the feature representation per-
spective, the low-level feature can be treated as the auxiliary
feature to the high-level feature [5, 6].

We show how the proposed S2-VAE can be used for anoma-
ly detection in video data in the experiments. Four public
datasets are used to evaluate the algorithm’s effectiveness and
efficiency by comparing with state-of-the-art approaches. From
the experimental results, we find that our S2-VAE outperforms
the state-of-the-art algorithms consistently.
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The contributions of this paper are as follows:
• a shallow generative neural network built based on VAE,

called SF -VAE network is proposed. This network can
help to reduce unnecessary normal samples, which helps
to improve the speed of the anomaly detection.

• a deep generative network with more powerful learning
ability, called SC-VAE, is proposed to detect the abnor-
mal event from video data. This SC-VAE network has a
skipped encoder-decoder structure, with a build-in VAE.
The SC-VAE makes full use of the advantages of both
CNN and VAE. The network fuses the feature between
the encoder layer and the decoder layer, which helps to
reduce information loss due to the transmission across
layers.

• the proposed approach was evaluated by using four public
datasets. The results show that the proposed approach
outperforms state-of-the-art algorithms.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents our S2-VAE.
The performance of S2-VAE is evaluated in Section IV. This
paper is concluded in Section V.

II. RELATED WORK

The state-of-the-art methods of the abnormal detection can
be categorized into: 1) motion based models, and 2) spatio-
temporal approaches combining motion with appearance in-
formation.

In the motion based models, the trajectory based method
was used to detect motions [7, 8], since such representations
can preserve the temporal structure of the abnormal events.
The computational cost rose significantly due to occlusion in
complex scenes. Thus, the no-tracking based methods were
favored. The descriptors such as quantized optical flow [9],
social model [10, 11], co-occurrence matrix based on frame
intensity [12, 13], sptiao-temporal context representations
[14, 15], etc had been proposed. For instance, an algorithm
monitoring optical flow in a set of fixed local spatial positions
was presented in paper [16]. The sum of squared differences
was transformed into a probability distribution. The likelihood
of observations respected to the probability distribution of
the observations was calculated, and the likelihood falling
below a preset threshold was detected as an alert. The sparse
reconstruction cost (SRC) model was introduced in paper [17]
over the multi-scale histogram of optical flow. Due to the
insufficient performance of huge training samples in paper
[17], the weighted orthogonal matching pursuit was adopted
in [18] to improve the ability of the model for handling
large samples. With suitable communication technology, the
anomaly detection method can used for application [19, 20].
The main limitation of the motion based approach is that it
cannot detect abnormal events with a sequence of similar nor-
mal actions, and it cannot distinguish among the appearance
characteristics.

The spatio-temporal approaches combining motion with
appearance [21] have been very successful in anomaly detec-
tion [22, 23]. These models provided a more comprehensive
representations than the motion based method. In paper [24]

the video was described by the nearby spatio-temporal inter-
est points (STIPs), then Gaussian process regression (GPR)
was adopted to cluster, learn, and infer the appearance and
position relationship of the STIPs, finally the abnormal event
was detected with competing performance while maintaining
lower space-time complexity. The mixture of dynamic textures
(MDT) was proposed in paper [25]. Moreover, a hierarchi-
cal mixture of dynamic textures (HMDT) was proposed for
handling the high computational cost of paper [25] later. The
events of low-probability were handled using discriminant
saliency. The high hierarchical levels and long-range dynamics
are important for event representation. Although several mod-
els have already been proposed, handcrafted features meet the
challenge of universality. The efficient and effective abnormal
event detection method consisting of a feature descriptor
with a suitable pattern classification method remains an open
problem.

The most recent research in this area is driven by deep
neural networks [26, 27], with some significant achievements
in abnormal event detection [28, 29]. The work in paper
[30] used both normal and abnormal events to construct the
training samples, and the spatio-temporal information had
been taken into account in a convolution neural network
in order to fuse the appearance and movement information
in video frames. The work in paper [28] first proposed a
fully-connected autoencoder with the handcrafted histograms
of gradients (HOG) and histograms of optical flows (HOF)
features as input. Then in consideration of feature represen-
tation, the video clips were used as input, in order to extract
features automatically by the fully convolutional autoencoder.
Despite the better performance that deep neural networks gain
compared with handcrafted features, the robustness of the
feature representation is still needed to be improved.

It is recognised that the deep neural network, especially the
generative models (e.g, VAE) can yield better performance for
abnormal event detection. We aim to design new generative
models to extract more robust features, so that the LAE
and GAE can be detected simultaneously by using the same
architecture.

III. MODEL ARCHITECTURE

This section presents our approach for abnormal event de-
tection from video sequences. Fig. 1 presents the workflow and
visualization of our approach, including Fully Convolutional
Neural network (FCN) [31] for foreground extraction and our
proposed abnormal detection of SF -VAE and SC-VAE. The
first row in Fig. 1 is our network, and the second row is the
samples and results from the network.

Suppose we have N + 1 video frames {Xi}N+1
i=1 , the first

step in this model is to extract the foregrounds {Gi}N+1
i=1 from

this N +1 frames by using FCN. The FCN used in this paper
is FCN-16s, which is built based on VGG-16 and pre-trained
on Pascal VOC 2012 [32]. Two consecutive foregrounds Gi

and Gi+1 are used to calculate motion feature with the optical
flow algorithm [33], which results in a set of N motion images
{Oi}Ni=1 represented by the Munsell Color System [33]. Now,
both Gi and Oi will be used as input to SF -VAE. The SF -VAE
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Fig. 1: The architecture for anomaly detection with a fully convolutional network (FCN), SF -VAE and SC -VAE. This
architecture aims to detect LAE and GAE. For example, in LAE detection, it should be able to identify the abnormal objects.

will remove some unnecessary Gi and Oi, and the filtered Gi

and Oi, as shown in blue in Fig. 1, will be used as input to
SC-VAE for detection.

In S2-VAE, the SF -VAE network, a shallow neural network,
is designed to quickly filter some normal samples from the
input sequences. The reduction of the training samples will not
only decrease the training time of SC-VAE, but also improve
the robustness of the model. For the final stage, the SC-VAE
can extract abundant hierarchical features and allow the fusion
of low-level and high-level features. It provides a more precise
detection result.

A. The SF -VAE network

The proposed SF -VAE network is used to learn a Gaus-
sian mixture model. The study of VAE shows that a VAE
is a perfect combination of neural network and variational
inference [34]. From the neural network perspective, a VAE
is an encoder-decoder architecture and from the variational
inference perspective, it consists of an inference procedure
and a generation procedure.

Let x and z be the inputs, where x is the data input to VAE.
z as the latent representation of x, is learned by VAE. A VAE
can be used to learn a Gaussian model such that p(z|x) ∼
N(µ, σ2I) for approximating x. The loss function of VAE is
shown as follows:

L = −Ez∼pθ(z|x)[log qϕ(x|z)] +KL(pθ(z|x)||p(z)), (1)

where θ and ϕ are the corresponding parameters to be trained
in the encoder and decoder in the network. The first term
is the reconstruction error between the input x and the output
decoded from z. The second term is the KL (Kullback-Leibler)
divergence measuring the similarity between the distribution
of z and a known distribution where Gaussian distribution is
mostly used.

Although VAE performs well in several applications, a VAE
network with single latent variable may have limited capacity.
Therefore, we propose to embed n latent variables in a VAE
network for abnormal event detection (shown in Fig. 2). The
solid boxes represent all of the neurons in the corresponding
layers, and the black dashed boxes represent the neurons of

z1 z2 z3

μ1 μ2 μ3σ1 σ2 σ3

Input Cell

Hidden layer

p(zi)~N(μi,σi)

Subpart

Hidden layer

Output

Fig. 2: The architecture of SF -VAE in the first stage. The
appearance of the region of the interest is taken as the training
and testing samples in this figure. The motion based feature
can also be handled in the same architecture.

each subpart. The large gray dashed box represents n Gaussian
components p(zi|xi) ∼ N(µi, σ

2
i ) where 1 ≤ i ≤ n. We

define the loss function of the SF -VAE as:

L = −Ez∼pθ(z|x)[log qϕ(x|z1, · · · , zn)]
+ 1

n

∑n
i=1 KL(pθ(zi|x)||p(zi)), (2)

where the first term is the log-likelihood of the data, or the
reconstruction error, and the second term is the average KL
divergence between the distribution of the encoded n-latent
variable and normal Gaussian distribution p(zi) ∼ N(0, 1).
Here, θ and ϕ are similar to the corresponding parameters in
the Eq. 1.

The proposed SF -VAE is inspired by the mixture of
several Gaussian distributions. According to the theory of
pattern recognition and machine learning, a simple Gaussian
distribution does not have the ability to describe complex
structures [35]. However, the mixture of Gaussian distribution
is more powerful to fit the distribution of actual data. We
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will demonstrate this proposed SF -VAE’s ability for modeling
data in our experiments. The shallow network SF -VAE was
designed to filter out some palpable normal samples, so that
the next stage network SC-VAE can learn a model from the
remaining samples more effectively and more efficiently.

B. The SC-VAE network

Despite the strength of Gaussian mixture like model in the
first stage, it can only filter some normal samples out of the
data samples. Since the SF -VAE is still a shallow network,
and the input is the direct flatten of the samples without
considering the position relationship of the pixels. Then in the
second stage of S2-VAE, we build a deep network to extract
more local relationship and hierarchical features from the
input. And at the same time, in order to reduce the information
loss across layers, we add a skip connection between low-level
features and high-level features by using the concatenation of
the feature map along the dimension of channel. Take the two
feature maps shown in Fig. 3 with size 20 × 16 × 16 as an
example. The two feature maps are in the encoder step and
decoder step. 20 and 16 are the height and width. The second
16 is the number of channels. After the skip connection which
is labeled as ‘M’, the new feature map is with size 20×16×32.
It is the output of the skip connection and is also the input
to the next decoder layer. The feature information is passed
across the layers in the end-to-end network. The reason for
adding the features from the encoder layer to the decoder layer
is that information loss is inevitable in the decoding process.
Therefore, it makes sense to combine the low-level features
and the high-level features to reduce information loss.

The SC-VAE network is built by combining U-net [36],
and VAE (shown in the green rectangle in Fig. 3). The SC -
VAE network can not only extract local relationship and latent
variables of the input data, but also integrate the feature
maps with same resolution in the downsampling layers and
upsampling layers, in order to obtain more accurate pixel-wise
reconstruction.

Since the SC-VAE network is to reconstruct the input data.
The loss function for SC-VAE for N training samples is
proposed as:

L=
1

N

N∑
i=1

(
(xi − x̂i)

2
)
+KL (p(z|x)||p(z))+γ ∥w∥22, (3)

where the first term is the average reconstruction error of the
training samples. x is the input of the network, xi is the pixel
value of one sample, x̂i is the output of the network (the
reconstruction of xi). The second term limits the latent variable
distribution to be a Gaussian distribution. The last term is a
regularizer to avoid over-fit.

There are also other methods to reduce information loss
including highway network [37], ResNet network [38] and
so on. They are quite effective but they require very deep
architecture. Our network is effective but it is not as deep
as them [37], [38]. Therefore the skip connection proposed
in this paper is more efficient for training our network. In
addition, the built-in VAE network is not a general fully
connected network consisting of layers with the same number

of neurons, but is a reconstruction of its input. This is also
beneficial to reduce information loss. On the other hand, the
skip connection is an auxiliary feature added to the high-
level features. The SC -VAE network is a powerful generative
network with less information loss and we will demonstrate
its ability in the experiments.

C. Anomaly detection

After we use SF -VAE to process the input samples of Gi

and Oi, the output from the SF -VAE network will be resized
and the resized images will be the input to the SC-VAE
network. For example, if we have 16 × 12 images from SF -
VAE, we can resize them to 80 × 60, which is then fed to
the SC-VAE network. The convolution operation is similar to
VGGNet [39]. Here, we have an example of how the SC-VAE
network operates on a resized images:
I(80, 60, 3) → CC(80, 60, 64) → P (40, 30, 64) →
Z(40, 32, 64) → CC(40, 32, 32) → P (20, 16, 32) →
CC(20, 16, 16) → P (10, 8, 16) → CC(10, 8, 8) →
F (640) → FC(6) → FC(640) → R(10, 8, 8) →
U(20, 16, 8) → C(20, 16, 16) → M(20, 16, 32) →
CC(20, 16, 32) → U(40, 32, 32) → C(40, 32, 32) →
M(40, 32, 64) → CC(40, 32, 64) → C(40, 30, 64) →
U(80, 60, 64) → C(80, 60, 64) → M(80, 60, 128) →
CC(80, 60, 128) → C(80, 60, 3).

In this structure, I(i, j, k) is the input data, meaning that
k channels of i × j pixels; C is a convolution operation;
CC is to perform the same convolution operation twice. P is
max-Pooling; Z is Zero-padding; F is to flatten the feature
map after the convolution operation, FC represents fully-
connected; R is to reshape the output of the fully-connected
layer to a suitable format as input to the latter operation; U is
Upsampling; M is to concatenate additional link between the
downsampling layers and upsampling layers, as shown in the
red rectangle in Fig. 3. This operation concatenates the low-
level features and high-level features which have the same
resolution.

For accurate detection of an abnormal event, we use both
motion and appearance features of the samples. In order
to extract robust features, we train the network in every
stage twice, one for motion feature extraction, and one for
appearance feature extraction. The input samples are optical
flow and intensity of the pixels, respectively. After getting
the training samples, we then feed them into the S2-VAE to
represent both motion and appearance features. Since both of
the SF -VAE and SC-VAE are generative models, the abnormal
event is detected by the reconstruction error of the input
with a threshold set by the highest reconstruction cost during
training. The final decision is the union set of the motion and
appearance anomaly detection results.

IV. EXPERIMENTS

In this section, we conduct experiments to validate the
proposed networks. All the experiments are run on an NVIDIA
GTX-1080 GPU. We use four benchmark datasets: UCSD
[40], Avenue [15], UMN [41] and PETS [42].
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Fig. 3: The structure of the SC -VAE network in the second stage. C: Convolution. CC: Convolution twice. P: max-Pooling.
F: Flatten. R: Reshape. U: Upsampling. Z: Zero-padding. M: Merge link between the downsampling layers and upsampling
layers.

A. Pre-processing

For each video frame Xi, its foreground is extracted by
using FCN as shown in Fig. 1. Fig. 4 shows an example of
the foreground extraction for the original image.

For each foreground, blocks are extracted to cover every
area in the foreground. To do so, we suppose each block has
height bh and weight bw and each block contains cell units,
where the size of each cell unit is ch×cw. As such, one block
will have bh

ch
× bw

cw
cell units. For example, in Fig. 4, the size of

the foreground image is 158× 238. If the size of each cell is
16× 12, which is shown in the little red filled rectangle, then
we can get at most 9× 19 ( 15816 × 238

12 ) cell units in the block,
which covers all the pixels between (1, 1) and (16×9, 12×19).

In order to cover the remaining pixels, we shift the block
by a stride of 2 pixels to obtain different blocks so that all
the pixels will be covered by a set of blocks. For example, in
Fig. 4, the remaining pixels at the right and at the bottom are
10 pixels and 14 pixels respectively. We will shift the block
to the right by 2 pixels to cover the pixels between (1, 1+ 2)
and (16 × 9, 12 × 19 + 2), which results in a new block. By
continuing this shift to the right or to the bottom, we could
obtain 35 blocks in total, so that all the pixels will be covered
at least by one block.

In our experiments, we only keep the cells whose area
is covered at least 40% with the foreground. And, the size
of the cell is defined as 16 × 12 empirically so that it can
cover an action and at the same time reduce the scale of the
training samples. The extracted cells will then be used for
LAE detection.

B. Evaluation criteria

For abnormal event detection, the frame-level criterion is
commonly used to evaluate both GAE and LAE detections.

10 pixels

1
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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9

Original Image Foreground Extraction
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Fig. 4: The pre-processing for foreground detection and cell
extraction.

But this is not good enough for LAE evaluation. The pixel-
level criteria have been proposed for evaluating LAE detection
[25].

Frame-level Criterion: The frame-level criterion is the
accuracy of detecting abnormal events. A frame is classified as
abnormal if an abnormal event is found in this frame, and the
frame-level criterion only takes the whole frame into account.
For frame-level evaluation, the equal error rate (EER), a trade-
off between accuracy and recall, and the Receiver Operating
Characteristic (ROC) curve, will be used. It is defined as the
percentage of misclassified frames when the false positive rate
equals the false negative rate.

This frame-level criterion is not an accurate evaluation
method. For example, for an abnormal frame with a car on a
walkway street as the abnormal event, a model may correctly
classify this frame as abnormal but this decision was made
based on the wrong detection that classifies a walking person
as abnormal. Therefore, the frame-level is not accurate enough
to locate a local abnormal event. As a result, we need pixel-
level to fill this gap.

Pixel-level Criterion: This is to locate the abnormal events
in a frame, rather than just tell if the frame contains abnormal
events. In this case, a frame is classified as abnormal only if
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the detected abnormal events have more than 40% overlapping
with the pixel-level ground truth. So the pixel-level criterion
is a more accurate measure for evaluating the quality of the
algorithm.

For pixel-level evaluation, the ROC curve, Rate of Detection
(RD), and Area Under receiver operating characteristic Curve
(AUC) are used. The RD is defined as the detection rate
at equal error. The AUC is the area under the ROC curve.
Therefore, if an algorithm is robust enough, then it will have
low EER, high RD and high AUC.

C. Experimental results

In this section, we will introduce the procedure and per-
formance comparison of the experiment. The result estima-
tion includes the comparison between the performance of
networks with different architectures, and the comparison
between proposed S2-VAE network and state-of-the-art meth-
ods. In the SF -VAE, 3 latent variables are constructed. For
the network we propose, we make experiments on different
networks similar with the proposed networks, and compare the
results among them to make sure the proposed networks have
gained the best performance in the aspect of the network. For
comprehensive comparison, we compare our algorithm with
autoencoder based model such as Conv-AE [28], and other
state-of-the-art methods, such as Sparse [17], MDT [25], SF
[43], MPPCA [44], MPPCA+SF [25], Adam [16], Feng [45]
and so on. And this is to make sure the proposed algorithm
has outperformed others in the detection of abnormal event in
the aspect of algorithm.

1) The UCSD dataset: This is an LAE detection dataset,
containing sequences taken on a walkway street by a stationary
camera [40]. The density of the pedestrians varies from low to
high. Each sequence contains 200 frames, and the resolution of
each frame is 158× 238. The normal events used for training
are human walking, while the abnormal events are the frames
with moving bikes, cars, wheelchairs and so on.

For the UCSD PED1 dataset, we first extract the foreground
information by FCN network. Then we extract foreground
blocks based on the cell units with size 16×12 in each frame
and calculate their optical flow images. For each sequence in
the dataset, as there are 200 frames, optical flow of 199 frames
are extracted. We can get 9× 19× 199 = 34, 029 cells in the
block of one position. After foreground extraction, we can get
about 11,000 cells, including both normal and abnormal cells.
Then for each cell unit, their raw pixels and their optical flow
images are first fed to the SF -VAE network to filter out some
normal samples in the first stage, respectively. After SF -VAE,
we enlarge the height and weight of the remaining samples to
80 × 60, which are input into SC-VAE in the second stage.
The final decision is made based on the union of the motion
feature and the appearance feature. The activations used in
all of the neural network are Relu [46], and the optimizer is
Adam with learning rate of 1e−4. The results are shown in the
3D figures Fig. 5. In this dataset, each frame has 35 blocks,
meaning that a pixel will be contained in at most 35 cells. The
value for each pixel in Fig. 5 (e,f,g,h) is calculated based on
the number of cells which contains the pixel and are classified

TABLE I: The network comparison in the first stage. Com-
parison of our SF -VAE network with general VAE networks.

Stage 1 UCSD result

Filter rate
SF -VAE VAE
5.7778 % 1.1858 %

TABLE II: The network comparison in the second stage. Com-
parison of our SC -VAE network with other similar networks.

Stage 2 UCSD result

Pixel-level AUC
SC -VAE No skip FC

0.9425 0.7629 0.9303

as abnormal. It is obvious that pixels of the hikes in the 3D
figures are the objects which are identified as abnormal.

To show the advantage of using both SF -VAE and SC-VAE
networks, we do experiments to prove the effectiveness of the
proposed networks. The results are shown in Table I and II.
In Table I, we compare the performance on the proposed SF -
VAE with general VAE network by using the filter rate, where
the filter rate is the proportion of filtered normal samples in all
of the testing samples. We find that SF -VAE has higher filter
rate than the normal VAE. For stage 2, after using the SF -
VAE network for the first stage, we compare the performance
on the proposed SC-VAE with networks: 1) without the skip-
connection in SC-VAE; 2) without VAE, namely F (640) →
FC(640) → FC(640) in the architecture. The ROC of them
is shown in Fig. 6 and the AUC is shown in Table II. The pixel-
level AUC of the 3 networks is 0.9425, 0.7629, and 0.9303,
respectively, which proves the advantage of using the SC-VAE
network.

We also compare the proposed approach with the state-of-
the-art algorithms, shown in Fig. 7 for the ROC curve, in
Table III for EER, RD and AUC. Our approach has lower
EER, higher RD and higher AUC, compared to state-of-the-art
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Fig. 6: The network comparison in the second stage on the
UCSD dataset. Pixel-level ROC comparison between the SC-
VAE and other similar networks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Examples of LAE detection via our proposed algorithm. The hikes in (e), (f), (g) and (h) indicate objects being identified
as abnormal. The values of the hikes are the number of times for a pixel being identified as abnormal in cells.

TABLE III: The algorithm comparison in our experiment.
Comparison of our method with state-of-the-art methods for
LAE of UCSD PED1 dataset. The best performances are
shown in bold font. The F and P in brackets represents that
the criterion is for the frame-level or the pixel-level.

Method
Evaluation Criteria

EER (F) RD (P) AUC (P)

Sparse [17] 19 % 46 % 46.1 %

Adam [16, 25] 38 % 24 % 13.3 %

MPPCA+SF[25] 32 % 27 % 21.3 %

SF [43] 31 % 21 % 17.9 %

MPPCA [25, 44] 40 % 18 % 20.5 %

MDT [25] 25 % 45 % 44.1 %

HOG+HOS [12] 27.02 % 78.87 % –

Conv-AE [28] 27.9 % – 81.0 %

Lu [15] – 59.1% 63.8%

sRNN [9] 12.5 % – 89.9 %

Feng [45] – 64.9 % 69.9 %

S2-VAE (ours) 14.3 % 87.4 % 94.25 %

methods. In the S2-VAE, on one hand, the SC -VAE exploits
robust feature extraction of CNN and data representation of
VAE; on the other hand, the skip connections designed in
the SC -VAE can reduce information loss to gain a finer
reconstruction of the input. Also, the first stage of SF -VAE
contributes to the detection of abnormal events by filtering out
some normal samples effectively and reduce the number of
input samples to the SC-VAE. Thus, the performance of SC -
VAE can be improved by training without unnecessary normal
samples.

2) The Avenue dataset: The Avenue dataset is an anomaly
detection dataset provided by Lu et al. [15]. Since the ground
truth of the Avenue dataset has been labeled by rectangles, it
can be treated as an LAE dataset. There are 16 video clips for
training, and 21 video clips for testing. The abnormal events
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Fig. 7: ROC comparisons of UCSD PED1 dataset. (a) Frame-
level ROC for UCSD dataset. (b) Pixel-level ROC for UCSD
dataset. The ROC of the compared algorithm is extracted from
[17, 25].
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TABLE IV: The algorithm comparison in our experiment.
Comparison of our method with state-of-the-art methods for
LAE of Avenue dataset. The best performance is shown in
bold font.

Method AUC

Conv-AE [28] 70.2 %

Lu [15] 80.5 %

sRNN [9] 81.71 %

Spatiotemporal-AE [47] 80.3 %

Feng [45] 75.4 %

S2-VAE (ours) 87.6 %

TABLE V: The algorithm comparison in our experiment.
Comparison of our method with state-of-the-art methods for
GAE of UMN dataset. The best performances are shown in
bold font.

Method
AUC

lawn indoor plaza

Social Force [43] 96 %

NN [17] 93 %

HOG+HOS [12] 97.02 %

SRC [17] 99.5 % 97.5 % 96.4 %

HOFO [9] 98.45 % 90.37 % 98.15 %

CLP [48] 98.72 % 95.21 % 99.34 %

S2-VAE (ours) 100 % 99.92 % 99.51 %

include running, abnormal direction and so on. The resolution
of each frame is 360 × 640. Compared with UCSD dataset,
the Avenue dataset has higher resolution. The comparison,
according to frame-level AUC, between our S2-VAE with
other algorithms is shown in Table IV. As can be found in
the table, our method has better results than state-of-the-art
methods.

3) The UMN dataset: This is a GAE detection dataset with
three scenes: lawn, indoor and plaza. The image resolution of
the dataset is 240× 320. The global frame is handled by the
proposed S2-VAE method. In this dataset, the normal scenes
are the events of people walking around, while abnormal
scenes are the events of people running.

For the UMN dataset, as the behaviors (people running) of
the abnormal events are similar in the scenes, we aim to train
a model only on the lawn scene and then transfer this model to
the indoor and plaza scenes. We show the experimental results
in Table V. From the results, we find that our approach gains
higher AUC, which also means our model is transferable.

4) The PETS dataset: This is a GAE detection dataset,
captured by multiple cameras. The image resolution of PETS
dataset is 576 × 768. This dataset has been applied to dif-
ferent tasks: event recognition, tracking, etc [42]. There are 2
different scenarios of abnormal events in this scene. In the first
scenario, the normal events are defined as people walking in
different directions, while the abnormal events are defined as
people gathering and walking ahead in the same direction. In
the second scenario, the normal events are defined as people

TABLE VI: The algorithm comparison in our experiment.
Comparison of our method with state-of-the-art methods for
GAE on the Time14-17 scene and the Time14-31 scene in the
PETS dataset.

Method
Detection accuracy

Time 1417 Time 1431

DT [49] 93.8 %

BoTG [49] 91.2 %

HOFO [9] 97.8 % 94.6 %

S2-VAE (ours) 99.3 % 98.8 %

walking in one queue, while the abnormal events are defined
as people leaving the queue.

For the PETS dataset, since the abnormal events are differ-
ent in different scenarios, we train the model by the normal
samples in each of the scenarios. Similar to UMN dataset, the
proposed algorithm also works well on the PETS dataset. The
results are shown in Table VI.

All of the experiments on different networks comparison
demonstrate the superiority of our proposed network. The
proposed network exploits the advantage of the robust feature
extraction of CNN, the data representation of VAE, and the
fusion of skip connections. This can reduce the information
loss and gain a finer reconstruction of the input. As a result,
the S2-VAE gains excellent performance on abnormal event
detection. And this superiority is also proved obviously by the
latter experiments of both the comparison among similar net-
works and the comparison among state-of-the-art algorithms
on the detection of LAE as well as GAE.

V. CONCLUSION

Abnormal event detection from video sequences remains
very challenging, due to the complexity of the video data. In
this paper, a 2-stage algorithm, i.e. S2-VAE, is proposed for
the detection of both local abnormal event and global abnormal
event. The proposed algorithm consists of 2 networks: SF -
VAE and SC-VAE. The SF -VAE network in the first stage
is a shallow generative network for the powerful description
of data distribution. It is used to filter out some unnecessary
normal samples quickly. Then the SC-VAE in the second
stage is a deep generative network for accurately locating
the abnormal events. The skip connection in SC-VAE is to
make the low-level features added to the high-level features as
auxiliary features. In addition, the skip connection can also be
viewed as the fusion of the information between the encoder
and decoder, which can reduce the information loss across
layers. And the VAE in the hidden layer also has the same
effect. Finally, we show the effectiveness and efficiency of our
proposed algorithm by the comparison on similar networks and
the experiments on four public datasets.
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