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Abstract—In recent years the processing of hexagonal pixel -
based images has been investigated, and as a result, a number of 

edge detection algorithms for direct application to such image 

structures have been developed. We build on this research by 

presenting a novel and efficient approach to the design of 
hexagonal image processing operators using linear basis and te s t 

functions within the finite element framework. Development of 

these scalable first order and Laplacian operators using this 

approach presents a framework both for obtaining large-scale 

neighbourhood operators in an efficient manner and for 
obtaining edge maps at different scales by efficient reuse of the 7-

point Linear operator. We evaluate the accuracy of these 

proposed operators and compare the algorithmic performance 

using the efficient linear approach with conventional operator 

convolution for generating edge maps at different scale levels. 

 
Index Terms—Hexagonal image processing, edge map scaling, 

scalable operator, finite element. 

 

I. INTRODUCTION 

IGITAL image representation traditionally involves the 

use of a rectangular image lattice, and therefore 

techniques for processing such images, e.g. edge detection, 

have been developed for direct use on rectangular pixel-based 

images. An alternative concept that has been investigated is 

the use of hexagonal pixels for image representation, 

introducing the area of hexagonal image processing.  

Hexagonal lattices have been explored for approximately forty 

years [14], [34], [37], making hexagonal sampling attractive 

for practical applications, although only recently have 

attempts been made to apply processing techniques directly to 

hexagonal images. An overview of the advancements in edge 

detection techniques can be found in [10], including an 

approach of Canny edge detection on a hexagonal grid . Other 

edge detection methods on a hexagonal grid have been 

developed in [8], [29], [34], [35].  

      One of the prominent areas within image processing 

applications is the area of machine vision, where research is  
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continuously being conducted to achieve improved vision 

systems for machine and robot control. As machine vision  

systems are often concerned with how fast processing can be 

completed, improving the computational efficiency of image 

processing tasks has become a dominant issue with the 

ultimate goal of real-time processing. Image processing tasks, 

in particular edge detection, are computationally expensive 

and to date techniques such as relaxation labelling [20], 

automatic scale selection [26], [27], watershed pyramids [23] 

and scale variant image pyramids [36] have been developed to 

address this issue.  Such algorithms assume the use of 

traditional rectangular pixel-based images. 

The use of hexagonally structured operators is 

computationally efficient when compared with square edge 

detection operators, due to approximately 13.5% fewer 

hexagonal pixels being needed to represent the same image 

resolution compared with a square structured grid [28]. In 

addition hexagonal operators typically contain fewer operator 

values than the corresponding square operators, thus achieving  

a significant overall reduction in computation. For example, 

for a given 256 × 256 image, removing boundary pixels, 

63504 pixels will be processed. Using a 3 × 3 operator there 

will be 63504 × 25  multiplications totalling 1,587,600. If the 

same image is re-sampled onto a hexagonal based image there 

will be 55566 pixels processed by an equivalent hexagonal 

gradient operator containing only 19 values. Therefore there 

will be only 1,055,754 multiplications, corresponding to 

66.5% of the computation required to generate a similar edge 

map using an equivalent traditional square pixel-based image.  

To date, research on processing hexagonal images includes 

areas such as image reconstruction [24], [37], hexagonal filter 

banks [21], [35], blue-noise halftoning [19], image 

segmentation [1], [2], [18] and facial recognition [25], [32]. 

Many edge detection algorithms that exist for conventional 

images are based on components strongly aligned with the 

horizontal and vertical axes, and hence they are not readily 

adaptable to a hexagonal lattice. Only a small number of edge 

detection operators have been designed for use on hexagonal 

images, namely Prewitt [34] and Sobel [28], [39] operators, 

which have been modified from existing edge detection 

operators designed for use on conventional rectangular grids. 

He et al. has investigated using these operators for edge 

detection based on a virtual processing environment [15], [16]. 

In addition Davies [8] and Shima [33] have proposed 

derivative operators designed explicitly for use on hexagonal 

images. Davies’ edge detection operator is comprised of two 
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masks designed on the Cartesian axes, enabling the 

conventional formulae for computing both the gradient 

magnitude and direction of an edge to be used. Davies 

computed these masks by comparing the relationship between 

three directional masks and using vector addition to generate 

masks in the 0o and 90o directions. More recently Shima 

designed tri-directional hexagonal operators derived within the 

frequency domain of hexagonal images. Using Fourier 

transforms, hexagonal operators were generated for explicit 

use on hexagonal images. This hexagonal operator design  is 

quite computationally expensive and does not offer flexibility 

to readily scale the operator neighbourhood to obtain larger 

operator sizes.  

In [3], [6], [11], [13] Gardiner et al., presented an approach 

to edge detection operator construction that incorporated 

operator scalability using Gaussian test functions. In this paper 

we build on this work by presenting a novel and efficient 

approach to the design of hexagonal image processing 

operators using linear basis and test functions within the finite 

element framework. Using a linear test function within the 

operator design is a simple way of approximating the Gaussian 

function used in [11], [13]. Section 2 discusses the approach 

used to generate hexagonal pixel-based images. Development 

of the scalable first order and Laplacian operators is presented 

in Section 3, with their accuracy performance evaluated in 

Section 4. In Section 5 we present a computationally efficient 

approach to hexagonal based edge detection by demonstrating 

the need to develop only a 7-point linear operator using the 

finite element approach to generate a linear operator level 

representation for obtaining operators at larger scales or to 

generate an edge map scaling approach whereby each level is 

an edge map obtained at a different scale generated from the 

edge map response of a 7-point linear operator. The efficient 

performance of this approach is demonstrated by comparing 

run-times for obtaining edge maps  by applying operators at 

various scales directly to hexagonal images with the edge map 

scaling approach. Finally a summary and details of future 

work is presented in Section 6. 

II. HEXAGONAL IMAGE SIMULATION 

A factor that has limited the use of hexagonal images for 

image representation is a lack of hardware to capture and 

display images structured on a hexagonal lattice. A hexagonal 

image can be obtained by resampling a standard square pixel-

based image using an appropriate resampling technique.  In 

Gardiner et al. [12], a comparative evaluation was completed 

to determine the most appropriate resampling technique to 

generate hexagonal pixel-based images, evaluating those 

discussed in [14], [28], [37], [38]. Based on the evaluation 

results obtained in [12], we have chosen to use the resampling 

technique in [37] throughout this work. To avoid the loss of 

image resolution that may result from other resampling 

approaches, Wu et al. [37] partition each original pixel into a 

𝑛𝑥𝑛  block of sub-pixels having the same intensity as the 

original pixel. As illustrated in Fig. 1(a), each pixel in the 

original image is represented by a 7 × 7 block of equal 

intensity in the new sub-pixel image. Each hexagonal pixel is 

then created by clustering 56 of these sub-pixels (Fig. 1 (b)), 

with its intensity calculated as the average intensity of the 56 

sub-pixels as shown in Fig. 1 (c).     
 

 
Fig. 1. Hexagonal pixel at sub-pixel level 

III. OPERATORS FOR PROCESSING HEXAGONAL IMAGES 

In order to develop scalable and efficient gradient operators 

for use on hexagonally structured images, we use the 

flexibility offered by the finite element framework. The use of 

the finite element framework for the derivation of image 

processing techniques has been successfully demonstrated in 

work such as [31] where the finite element framework was 

implemented on a traditional rectangular pixel array to 

develop and analyse near-circular edge detectors, [22] where 

the framework was used to develop a scale invariant interest 

point detector, and in [5] where the framework is adapted for 

use on range and intensity images. When used with a 

hexagonal pixel array the six-fold symmetry of the naturally 

occurring computational grid of equilateral triangular elements 

enables particularly efficient implementation through use of 

rotational symmetries. This means that, unlike other hexagonal 

methods, not only are we able to provide a systematic 

technique for scaling operators on a hexagonal grid, we can do 

this with low computational complexity – even more so than 

on a rectangular grid due to the increased degree of rotational 

symmetry present in the computational mesh.  

A. Hexagonal Image Representation 

In order to apply a finite element based approach to image 

processing tasks, the hexagonal image must be represented as 

a discrete function. Typically an image can be represented by 

an array of samples of a continuous function u of image 

intensity on a domain Ω. Nodes are placed in the centre of 

each hexagonal pixel within the hexagonal image domain. 

These nodes are the reference points for finite element 

computation throughout the domain Ω. Interconnecting each 

of these nodes in the image domain produces the edges of the 

triangular structured finite elements. A representation of the 
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finite element mesh of equilateral triangular elements is shown 

in Fig. 2. The broken lines represent the hexagonal pixels 

throughout the image array. A finite element mesh now exists 

where a nodal numbering scheme 1,…,N is employed globally 

throughout the entire image. 

 

 
 

Fig. 2. Finite element mesh of equilateral triangular elements 

 

A common approach to addressing pixels on a hexagonal 

grid is to use a three axes co-ordinate system that utilises the 

three axes of symmetry of a hexagon. An advantage is that 

moving from the centre of one pixel to the centre of a 

neighbouring pixel requires a unit shift along only one axis 

(see Fig. 3). A disadvantage is that any pixel centre does not 

have a unique address. 

 
Fig. 3.  Three axes hexagonal co-ordinate system 

 

An alternative approach is to select two of the three skewed 

axes providing unique representation for any point in the 

image plane. We choose the x and y axis in Fig. 3. 

Using the two axes co-ordinate system, the continuous 

image intensity function u is approximated on the domain Ω 

by the function U from a finite dimensional function space 

𝑆ℎ (Ω).  A set of functions 𝜑𝑖
(𝑥, 𝑦), 𝑖 = 1, … , 𝑁, is chosen as a 

basis for 𝑆ℎ. Such a basis can be formed by associating any 

node i, with co-ordinates (𝑥 𝑖, 𝑦𝑖 ), with a piecewise linear basis 

function which has the properties  

𝜑
𝑖
(𝑥𝑗, 𝑦

𝑗
) = {

1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

 (1) 

𝜑𝑖
(𝑥, 𝑦),  is thus a "tent-shaped" function with support 

restricted to a small neighbourhood centred on node i 

consisting of only those elements that have node i as a vertex. 

A 3D representation of the basis function is shown in Fig. 4.  

 
Fig. 4. 3D representation of basis function 

 

We can represent any function 𝐹(𝑥,𝑦) ∈ 𝑆ℎ

 
by a set of co-

efficients {𝐹1 , … , 𝐹𝑁
}
 
in the form 

𝐹(𝑥, 𝑦) = ∑ 𝐹𝑗 𝜑𝑗(𝑥,𝑦)

𝑁

𝑗=1

 (2) 

In particular, we can use this form to approximately represent 

the image u by a function 

𝑈(𝑥, 𝑦) = ∑ 𝑈𝑗𝜑𝑗(𝑥, 𝑦)

𝑁

𝑗=1

 (3) 

in which the parameters {𝑈𝑗 } are mapped from the hexagonal 

image intensity values. The approximate image representation 

is therefore a simple piecewise linear function on each 

triangular element in the finite element mesh.  

B. Hexagonal Operator Design 

To develop an operator that is implemented on a specific 

neighbourhood, a test function is selected and used within the 

weak form of the operator.  This involves numerical 

integration of the test function with the image derivative over 

the neighbourhood; operators at different scale can  be 

achieved by selecting differently sized neighbourhoods and 

correspondingly scaled test functions. Each test function is 

restricted to have support over the neighbourhood, centred on 

node i. In general the size of the neighbourhood Ω𝑖
𝜎   may be 

related explicitly to the scale parameter 𝜎 [9], as illustrated by 

the first three sizes of neighbourhoods shown in Fig. 5, i.e., 7-

point (H3), 19-point (H5), and 37-point (H7) hexagonal 

neighbourhood operators, which are approximately equivalent 

in size to the 3x3, 5x5 and 7x7 conventional rectangular 

operators, respectively. The parameter 𝜎 corresponds to the 

“operator width”: for 𝐻𝑛 , 𝜎 = 𝜎 =
𝑛−1

2
.  

It is evident from Fig. 5 that a 7-point hexagonal operator is 

computed on a six element neighbourhood, a 19-point operator 

is computed over 24 elements, and a 37-point operator has 54 

elements present in its neighbourhood. Development of 

scalable first order derivative and Laplacian operators is 

presented in Section 3.2.1 and Section 3.2.2 respectively.  
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Fig. 5. Hexagonal operator neighbourhoods for operator sizes H3, H5 and H7 

 

1) First Order Derivative Operator 

 

Computation of the first order derivative operator follows a 

standard finite element approach that uses a weak form of the 

derivative. The weak form requires the image function to be 

once differentiable in the sense of belonging to the Hilbert 

space 𝐻1(Ω) over the image domain Ω. That is, 𝑢 = 𝑢(𝑥, 𝑦) is 

such that the integral ∫ (|∇𝑢|
2

+ 𝑢2)Ω 𝑑𝜔  is finite, where 𝜔  

is the Lebesgue measure on Ω, and ∇𝑢 is the image gradient. 

Thus by requiring that 𝑢 ∈ 𝐻1, the problem is to find the weak 

form of the directional derivative of the image on the image 

domain Ω, namely 

𝐸(𝑈) = ∫ b ⋅ ∇𝑢𝑣 𝑑𝜔

Ω

 (4) 

where vÎ H1 , and b  is the unit direction vector. Altering the 

direction of the unit vector in the weak form would produce an 

operator design for use on alternative co-ordinate systems e.g. 

using vectors in the hexagonal x and y axes directions 

produces weak form for use on a hexagonal co-ordinate 

system. 

In order to use the finite element approach to construct 

scalable first order operators, the weak form of the x-

directional derivative is used, which is given by the functional 

𝐸𝑖
σ(𝑈) = ∫

𝛿𝑢

𝛿𝑥
𝜓𝑖

𝜎 𝑑𝜔𝑖

Ω𝑖
𝜎

 (5) 

In developing a Linear-Linear derivative operator (i.e. both 

basis and test functions are linear) at the smallest scale we use 

the Galerkin formulation, i.e. the test functions  𝜓
𝑖
𝜎used in the 

weak form are from the same space as those used in the image 

representation, i.e. 𝜓
𝑖
𝜎 = 𝜑𝑖 . 

To illustrate the implementation of a first order Linear-

Linear operator (L), we build a 7-point hexagonal operator as 

shown in Fig. 6. At the smallest scale, the neighbourhood Ω𝑖
𝜎   

(𝜎 = 1) covers a set of six elements {em} where the piecewise 

linear basis function φ𝑖  is associated with the central node i 

which shares common support with the surrounding six basis 

functions φ𝑗 . On each element em a local co-ordinate 

reference system for a general equilateral triangular element is 

used with one of the nodes α, b , λ, corresponding to the 

central node i, as illustrated in Fig. 6 for element e1  of a 

neighbourhood. 
 

e5

e4

e3

e2

e1

e6

i α

λ

β

 
Fig. 6. Elements within neighbourhood Ω𝑖

𝜎, 𝜎 = 1 

To create a derivative operator over a neighbourhood Ω𝑖
𝜎 , 

we substitute the image representation in (3) into the 

functional 𝐸𝑖
σ(𝑈), which yields 

𝐸𝑖
σ(𝑈) = ∑ 𝐾𝑖𝑗

𝜎 𝑈𝑗

𝑁

𝑗=1

 (6) 

where 𝐾𝑖𝑗
𝜎  are the entries in the 𝑁 × 𝑀 global matrix 𝐾𝜎

given 

by 

𝐾𝑖𝑗
σ = ∑ 𝑘𝑖𝑗

𝑚,𝜎

𝑚|𝑒𝑚∈𝑆𝑖
𝜎

 (7) 

And 𝑘𝑖𝑗
𝑚,𝜎

is the element integral 

𝑘𝑖𝑗
𝑚,𝜎 = ∫

𝛿𝜑
𝑗

𝛿𝑥
𝜑𝑖  𝑑𝜔𝑖

𝜎

Ω𝑖
𝜎

 (8) 

The integral shown in equation (8) is computed only over the 

neighbourhood Ω𝑖
𝜎  rather than the entire image domain Ω 

since 𝜑𝑖 has support restricted to Ω𝑖
𝜎 . For each of the six 

triangular elements within the neighbourhood, a triangular 

element operator is generated whose entries then map directly  

to the corresponding locations within the 7-point operator 

neighbourhood. For example, consider element e1  shown in 

Fig. 6. On this element the basis functions 𝜑𝑗 for 𝑗 = 𝛼, 𝛽, 𝜆 

share common support with 𝜑𝑖. Hence the first derivative 

triangular element operator is computed as  

𝑘𝑖
1,𝜎 = [

𝑘𝑖𝜆
1,𝜎

𝑘𝑖𝛼
1,𝜎 𝑘𝑖𝛽

1,𝜎] (9) 

where 𝑘𝑖𝑗
1,𝜎

is computed using the element integral in (8) with 

the linear basis functions 
𝜑

𝛼
= 1 − 𝑥 − 𝑦        𝜑

𝛽
= 𝑥        and      𝜑

𝜆
= 𝑦 (10) 

 

i 
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which when differentiated with respect to x give 

𝛿𝜑𝛼

𝛿𝑥
= −1        

𝛿𝜑𝛽

𝛿𝑥
= 1        and       

𝛿𝜑𝜆

𝛿𝑥
= 0 (11) 

Using the hexagonal co-ordinate system presented in Fig. 3, 

𝑘𝑖𝑗
1 ,𝜎

is represented as 

𝑘𝑖𝑗
1,𝜎 = ∫ ∫

𝛿𝜑𝑗

𝛿𝑥

1−𝑥

0

𝜑𝑖
|𝐽|𝑑𝑦 𝑑𝑥

1

0

    (12) 

where the Jacobian J has the value √3 2⁄ . 

 

To demonstrate the linear element computation, consider 

nodes 𝛼, 𝛽, 𝜆 in e1 . 𝑘𝑖𝛼
1,𝜎

may be written as 

𝑘𝑖𝛼
1,𝜎 = ∫ ∫ (−1)(1 − 𝑥 − 𝑦)

√3

2

1−𝑥

0

𝑑𝑦 𝑑𝑥
1

0

 

          

= ∫ ∫ (−1 + 𝑥 + 𝑦)
√3

2

1−𝑥

0

𝑑𝑦 𝑑𝑥
1

0

 

(13) 

 

 

  

(14) 

 

Similarly 𝑘𝑖𝛽
1,𝜎

may be written as 

𝑘𝑖𝛽
1,𝜎 = ∫ ∫ (1)(1 − 𝑥 − 𝑦)

√3

2

1−𝑥

0

𝑑𝑦 𝑑𝑥
1

0

 

         

= ∫ ∫ (1 − 𝑥 − 𝑦)
√3

2

1−𝑥

0

𝑑𝑦 𝑑𝑥
1

0

 

(15) 

 

 

  

(16) 

 

and 𝑘𝑖𝜆
1,𝜎

may be written as 

𝑘𝑖𝜆
1,𝜎 = ∫ ∫ (0)(1 − 𝑥 − 𝑦)

√3

2

1−𝑥

0

𝑑𝑦 𝑑𝑥
1

0

 

 

          = 0 

(17) 

 

The element operators for the six elements may thus be 

computed as: 

𝑘𝑖
1 ,𝜎 = [ 0

−𝑎 𝑎
],       𝑘𝑖

2 ,𝜎 = [−𝑎 𝑎
0

],  

𝑘𝑖
3 ,𝜎 = [ 0

−𝑎 𝑎
],       𝑘𝑖

4 ,𝜎 = [−𝑎 𝑎
0

],            

𝑘𝑖
5 ,𝜎 = [ 0

−𝑎 𝑎
],       𝑘𝑖

6 ,𝜎 = [−𝑎 𝑎
0

]. 

                                          

(18) 

 

where a = 0.1443. These element operators can then be 

appropriately assembled to generate a 7-point Linear-Linear 

hexagonal operator. This is achieved by carrying out a 

standard finite element assembly procedure, providing the 

neighbourhood structure for the x-derivative operator shown 

in Fig. 7. 

 

-a a

0

-a a

0

-a a

0

0

0 0

-a a

-a a -a a

e5

e4

e3

e2

e1

e6

 

Fig. 7.  Element operators within neighbourhood Wi

s   

 

Combination of the element operators in Fig. 7 yields 

 

L3

x =

(0 - a) (0 + a)

(-a- a) (-a+ a- a+ a) (a+ a)

(0 - a) (0 + a)

é

ë

ê
ê
ê

ù

û

ú
ú
ú

 

     

= [
−𝑎 𝑎

−2𝑎 0 2𝑎
−𝑎 𝑎

]

      

 
(19) 

 

  

 

(20) 

 

Substituting the value of a into equation (20) completes the x-

derivative operator as 

L3
𝑥 = [

−0.144 0.144
−0.288 0 0.288

−0.144 0.144

]

     

(21) 

 

By rotating the x-directional operator anti-clockwise by 60o 

and 120o, the y- and z- directional operators can be readily 

obtained, respectively, as  

L3
𝑦 = [

𝑎 2𝑎
−𝑎 0 𝑎

−2𝑎 −𝑎

]

    

L3
𝑧 = [

2𝑎 𝑎
𝑎 0 −𝑎

−𝑎 −2𝑎

]

     

 

(22) 

When calculating the gradient response for tri-directional 

derivative operators, redundancy is introduced due to the 

relationships by rotation between the three operators, and the 

gradient magnitude can be represented using only operators L𝑛
𝑥   

and L𝑛
𝑧  as 

|𝐺𝑛 | =
2

√3
√(𝐿𝑛

𝑥 )
2

+ (𝐿𝑛
𝑧 )

2
+ L𝑛

𝑥 .L𝑛
𝑧

 
 

 

(23) 

where n represents the size of neighbourhood of the operator.  

 

2) Laplacian Operator 
 

In developing Laplacian Linear-Linear hexagonal operators 

(LL) we can combine the approximate image representation 

and test function to generate an approximate representation of 

the weak form of the x-component of the Laplacian operator, 

which is represented by the functional 
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𝑅𝑖
σ(𝑈) = ∫

𝛿𝑈

𝛿𝑥

𝛿𝜑𝑖

𝛿𝑥
 𝑑𝜔

Ω

    (24) 

 

Substitution of the hexagonal image representation 

𝑈(𝑥, 𝑦) = ∑ 𝑈𝑗 𝜑𝑗(𝑥, 𝑦)

𝑁

𝑗=1

 (25) 

into equation    (24) gives  

𝑅𝑖
σ = ∑ 𝐾𝑖𝑗

𝜎 𝑈𝑗

𝑁

𝑗=1

 (26) 

where 𝐾𝑖𝑗
𝜎

 are the entries in the global matrix 𝐾𝜎
given by 

𝐾𝑖𝑗
𝜎 = ∫

𝛿𝜑
𝑗

𝛿𝑥

𝛿𝜑
𝑖

𝛿𝑥
 𝑑𝜔𝑖

𝜎

Ω𝑖
𝜎

 (27) 

Again, the integral shown in equation (27) is computed only 

over the neighbourhood Ω𝑖
𝜎  as opposed to the entire image 

domain Ω as the linear test function 𝜑𝑖 has support restricted 

to Ω𝑖
𝜎 . This 7-point operator (LL3

𝑥 ) has the structure shown in 

equation (15), with the values of the co-efficients a and b  

being 0.866 and 1.732, respectively. 

LL3
𝑥 = [

0 0
−𝑎 𝑏 −𝑎

0 0

] 

 

(28) 

The Laplacian hexagonal operator LL3 can be expressed as 

the sum of the Laplacian components x, y and z denoted as 

LL3
𝑥 , LL3

𝑦
and LL3

𝑧  respectively. In order to obtain LL3
𝑦

 and LL3
𝑧 , 

the co-efficients of LL3

xmust be rotated anti-clockwise by 60o 

and 120o respectively. The Laplacian operator is then obtained 

by appropriate summation of these operators                    

LL𝑛 =
2

3
(LL3

𝑥 + LL3
𝑦

+ LL3
𝑧 ), where n represents the size of 

neighbourhood of the operator. In the case of n=3, we obtain 
 

LL3 = [
−0.577 −0.577

−0.577 3.462 −0.577
−0.577 −0.577

] (29) 

IV. PERFORMANCE EVALUATION 

To evaluate the Linear-Linear operators developed in this 

work we initially compare the performance of the 7-point 

Linear-Linear operator with other existing hexagonal 

operators such as the well-known Prewitt, Sobel, Davies 

operators and the recent technique of Shima. In making this 

selection we note that the Sobel operator corresponds to the 

simplest form of the Canny operator without any additional 

post-processing steps. As the Linear-Linear operators are 

using a linear approximation of the Gaussian smoothing 

incorporated in the operators presented in [11], we further 

evaluate the operators by comparing the accuracy performance 

of these Gaussian based operators with the performance of the 

proposed operators. We have chosen two evaluation 

techniques: a quantitative method, the Figure of Merit 

evaluation [30], and a qualitative method, the Robust Visual 

Method [17]. We have adapted the well-known Figure of 

Merit (FoM) algorithm to enable evaluation using synthetic 

hexagonal pixel-based images of curved edges as well as 

straight edges at various orientations. The Robust Visual 

Method is used to visually evaluate operator edge maps, based  

on human evaluators rating the visual integrity of edge maps 

generated by different operators. 

A. Figure of Merit Evaluation 

We initially evaluated the output responses of these 

operators using the Figure of Merit evaluation technique. This 

technique considers three major areas of error associated with 

the determination of an edge: missing valid edge points; 

failure to localise edge points; classification of noise 

fluctuations as edge points. In addition to these considerations, 

when measuring edge detection performance, edge detectors 

that produce smeared edge locations should be penalised, 

whilst those that produce edge locations that are localised 

should be awarded credit. Hence Pratt introduced the Figure of 

Merit technique as one that balances the three types of error 

above, defined as 

𝑅 =
1

max (𝐼𝐴, 𝐼𝐼)
∑(

1

1 + 𝛼𝑑2
)

𝐼𝐴

𝑖=1

 (30) 

where IA is the actual number of edge pixels detected, II  is the 

ideal number of edge pixels, d is the separation distance of a 

detected edge point normal to a line of ideal edge points, and 

 is a scaling factor.  The Figure of Merit is normalised such 

that R takes values between 0 and 1, where 1 represents a 

perfectly detected edge.  The scaling factor, , is most 

commonly chosen to be 1/9, although this value may be 

adjusted to penalise edges that are localised but offset from the 

true edge position.  Since knowledge of the actual edge 

location is necessary, this method can only be used on 

synthetic images. 

To provide a realistic environment to compare operator 

responses, the Figure of Merit (FoM) technique is used on 

images with varying signal-to-noise ratios (SNR), where 

𝑆𝑁𝑅 = ℎ2 /𝜎𝑛
2, h is the height of the step edge and 𝜎𝑛

2 is the 

variance of the noise. Synthetic images for Figure of Merit 

measurements typically contain horizontal, vertical or oriented 

edges. However, one proposed advantage of hexagonal pixel-

based images is their ability to accurately represent curves in 

real images. Therefore, we extend the standard use of the 

Figure of Merit technique to incorporate the measure of 

detected curved edges. The synthetic test images used for 

evaluation are generated using h=58 with SNR = 100, 50, 20, 

10, 5 and 1 and contain a horizontal edge, an edge oriented at 

600 or a curved edge (examples of which are presented in Fig. 

8)  Five sets of test images were generated for each edge type, 

at each SNR (totalling 90 test images).  The FoM was 

calculated for each operator over the test image set and 

averaged to obtain an accurate Figure of Merit result.  
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(a) Horizontal edge 

(SNR=1) 

 
(b) 600 oriented edge  

(SNR=10) 

 
(c) Curved Edge 

(SNR=100) 
 

Fig. 8. Example images for use in Figure of Merit   
 

Fig. 9 to Fig. 11 inclusive show Figure of Merit results 

comparing the 7-point Linear-Linear operator, denoted by L3, 

with existing hexagonal operators of the same neighbourhood 

size, i.e. Sobel, Davies, Prewitt and Shima operators. The 

results illustrate that the proposed L3 operator has increased 

accuracy over the Prewitt operator in all evaluated edge 

directions, while demonstrating that the L3 operator achieves 

the same performance accuracy as the Sobel, Davies and 

Shima operators. This is due to the Sobel, Davies and Shima 

operators being equivalent to the L3 operator in relation to 

their weight proportions, i.e., the weight values of the operator 

are proportioned to achieve smoothing by giving greater 

importance to the centre weight values. However, the L3 

operator design facilitates the implementation of larger sizes 

of operators using the flexibility of the finite element 

framework for neighbourhood operator scaling, which is 

discussed in Section 3. 

As the Linear-Linear operators use a linear approximation 

of the Gaussian smoothing incorporated in the operators 

presented in [11], we further evaluate the operators by 

comparing the accuracy performance of these Gaussian based 

operators with the performance of the proposed operators. For 

comparison we consider the three smallest operator scales, i.e. 

7-point, 19-point and 37-point neighbourhood operators. Fig. 

12 to Fig. 14 inclusive show Figure of Merit results comparing 

the set of scaled Linear-Linear operators, denoted by L3, L5 

and L7 with previously developed Linear-Gaussian hexagonal 

operators, denoted by LG3, LG5 and LG7.  

Results show that, in most cases, our first order Linear-

Linear operators perform as well as the Linear-Gaussian 

operators. The 7-point Linear-Linear operator (L3) generates 

equivalent results to the 7-point Linear-Gaussian (LG3), 

whereas the 19-point and 37-point Linear-Gaussian operators 

perform slightly better compared with the equivalent sized 

Linear-Linear operators on images with high levels of noise. 

This slight decrease in performance would be expected of the 

family of Linear-Linear operators as the linear function used 

when constructing the operators is only an approximation to 

the Gaussian function. However, this minor difference in 

output performance is counteracted by the Linear-Linear 

operator structure enabling methods to efficiently obtain edge 

detection results by either linear operator scaling or linear 

edge map scaling, as discussed in Section 5. It also should be 

noted that work previously published by the authors [7] has 

compared the performance of the Linear-Gaussian operators 

with conventional square operators at multiple scales, demons- 

 
Fig. 9. Comparing with existing hexagonal operators using a 60

o
 oriented edge 

 

 

 
Fig. 10. Comparing with existing hexagonal using a Curved edge 

 

 
Fig. 11. Comparing with existing hexagonal using a vertical edge 

 

 

-trating that the performance of the Linear-Gaussian operators 

were comparable to, and in some cases slightly superior than, 

the equivalent use of typical operators on standard square 

pixel-based images. Therefore comparing the performance of 

the proposed Linear-Linear operators with the Linear-

Gaussian operators also highlight how the proposed operators 

produce comparable results to those obtained from 

conventional square operators. 

Consider also the Laplacian Linear-Linear operators. The 

use of small Laplacian operators, e.g. 3x3 or equivalent opera- 
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Fig. 12. Comparing with previously developed Linear-Gaussian hexagonal 

operators using a 60
o
 oriented edge 

 

 
Fig. 13. Comparing with previously developed Linear-Gaussian hexagonal 

operators using a Curved edge 

 

 
Fig. 14. Comparing with previously developed Linear-Gaussian hexagonal 

operators using a vertical edge 

 

-tors, is not common due to the general performance of such 

operators being poor in the presence of noise. Therefore, 

evaluation is presented in this section using two operator 

sizes,19- and 37-point, in order to comparatively evaluate the 

Laplacian Linear-Linear operators with existing Laplacian 

hexagonal operators [4]. Fig. 15 to Fig. 17 inclusive show 

Figure of Merit results comparing the Linear-Linear and 

Linear-Gaussian hexagonal operators of equivalent sizes using 

the three oriented edge types used above. 

When  comparing  19-point  hexagonal  operators,  LL5 and  

 
Fig. 15. Comparing with previously developed Laplacian Linear-Gaussian 

operators using a 60
o
 oriented edge 

 

 

 
Fig. 16. Comparing with previously developed Laplacian Linear-Gaussian 

operators using a Curved edge 

 

 
Fig. 17. Comparing with previously developed Laplacian Linear-Gaussian 

operators using a Vertical edge 

 
LLG5, the results are quite similar for most edge orientations. 

The results obtained for the proposed 37-point Laplacian 

Linear-Linear operator (LL7) have slightly decreased accuracy 

when compared with the Laplacian Linear-Gaussian operator 

(LLG7) in the 60o and curved edge orientations. 

B. Robust Visual Method Evaluation 

The robust visual method is used to evaluate operator edge 

maps based on human evaluators rating the visual integrity of 

edge maps generated by each operator.  
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(a) 
 

(b) 
 

(c) 

 
(d) 

 
(e) 

 
(f) 

     
                (g)                                         (h) 

 

Fig. 18. Image set for robust visual method of evaluation 
 

Most methods of evaluating operator output responses rely  on  

the use of ground truth, but creating ground truth for real 

images can be time consuming and inaccurate. An advantage 

of the robust visual evaluation method is that it uses real 

images that rely on the subjective evaluation of edge maps by 

the human visual system and therefore does not require the use 

of ground truth. The real images used are selected such that 

they have a centrally placed object in the image foreground 

(Fig. 18). 

In the robust visual method, the subjects rank the edge 

image on a scale of 1 to 7 according to how well they can 

recognise the centrally placed object, where 7 indicates easy 

recognition and 1 indicates no coherent information.  The 

Intraclass Correlation Coefficient, calculated by the statistical 

measure 𝐼𝐶𝐶(3, 𝑘) =
𝐵𝑀𝑆 −𝐸𝑀𝑆

𝐵𝑀𝑆
 was used to ensure image 

rating consistency within the set of human subjects , where 

BMS is the mean square value of the rating, EMS is the total 

mean square error and k  is the number of evaluators.  In phase 

1 of the technique, for any one image the human subjects rate 

six edge images generated by an operator over a range of 

thresholds. This results in the visually best edge map 

corresponding to each image for each operator being selected 

by the evaluators.  In phase 2, the human subjects then rated 

the selected edge maps for each image on a scale of 1 to 7 in 

order to compare the overall performance of different 

operators.  Again consistency was  checked using ICC(3,k). 

Initially edge maps were generated for each of the eight 

images at a range of thresholds using the proposed 7-point, 19-

point and 37-point Linear-Linear hexagonal operators, and for 

comparison, equivalently sized Linear-Gaussian hexagonal 

operators have been applied to the same set of images. Fig. 19 

shows an example edge map set (for six different threshold (T)  

 
(a) T=20 

 
(b) T=25 

 
(c) T=30 

 
(d) T=35 

 
(e) T=40 

 
(f) T=45 

 

Fig. 19. An example image set for the L3 operator at various thresholds  
  

values) for the L3 operator applied to the image shown in Fig. 

18(e).   
 

The information collected from each evaluator was analysed 

for consistency using an Intraclass Correlation Coefficient. 

The new image set was created using only the visually best 

edge map for each operator determined by the results obtained 

from the human evaluators. This image set was used to 

determine which operator performed best overall with respect 

to detecting edges. Again seven evaluators ranked the image 

set and consistency was tested using the Intraclass Correlat ion  

Coefficient. The mean ratings throughout the image set for 

each of the evaluated operators are presented in Table I. These 

ratings identify which operator, based on human evaluation, 

provides the best results when used to detect edges for a range 

of input images. 

The results obtained indicate that the family of Linear-

Linear hexagonal operators are ranked by the evaluators to 

perform marginally less well than the corresponding set of 

Linear-Gaussian operators, with the largest mean rating 

difference of 0.34 occurring between the 7-point operators 

with as little as a 0.09 mean rating difference occurring 

between the 37-point operators. Based on a mean rating scale 

between 1 and 7, these results demonstrate that visually an 

insignificant difference exists between the performance of the 

Linear-Linear operator and the Linear-Gaussian operator set.  
 

T ABLE I 

MEAN RATING FOR EACH FIRST ORDER OPERATOR 

FIRST ORDER OPERATOR MEAN 

7-point Linear-Linear (L3) 5.16 

7-point Linear-Gaussian (LG3) 5.50 

19-point Linear-Linear (L5) 5.18 

19-point Linear-Gaussian (LG5) 5.46 

37-point Linear-Linear (L7) 5.14 

37-point Linear-Gaussian (LG7) 5.23 

 

It is necessary to also evaluate the performance of Laplacian 

Linear-Linear operators and compare with previously 

developed Laplacian Linear-Gaussian operators [4]. The same 
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set of real images was used as shown in Fig. 18. Again seven 

evaluators ranked the image set and consistency was tested 

using the Intraclass Correlation Coefficient. The mean ratings 

throughout the image set for each of the evaluated operators 

are presented in Table II. 

The results obtained indicate that the family of Laplacian 

Linear-Linear hexagonal operators are ranked by the 

evaluators to achieve comparable results with the 

corresponding set of Linear-Gaussian operators, i.e. improved 

mean rating for the 19-point Linear-Linear operator and a 

slight decrease in the mean rating value for the 37-point 

Linear-Linear operator.  
 

TABLE II 

MEAN RATING FOR EACH LAPLACIAN OPERATOR 

LAPLACIAN OPERATOR MEAN 

19-point Laplacian Linear-Linear (LL5) 5.18 

19-point Laplacian Linear-Gaussian (LLG5) 4.82 

37-point Laplacian Linear-Linear (LL7) 5.71 

37-point Laplacian Linear-Gaussian (LLG7) 5.95 

 

The comparable accuracy achieved throughout the 

evaluation methods presented for first order and Laplacian 

Linear-Linear operators, combined with the efficient approach 

in obtaining these results (discussed now in Section 5) 

highlights the benefits of this proposed family of scalable 

derivative operators for edge detection tasks. 

V. EFFICIENT APPROACH TO HEXAGONAL EDGE DETECTION 
 

We utilise the linear characteristics of the Linear-Linear 

operators to introduce two separate approaches to conducting 

edge detection efficiently on hexagonal pixel-based images. 

Firstly we show how it is necessary to develop only a 7-point 

Linear operator and then the larger scale derivative operators 

can be efficiently obtained via linear combinations of the 7-

point operators. Secondly, efficient implementation is 

achieved by combination of values from the edge map at the 

smallest scale, and we illustrate this approach for edge 

detection.   

It is necessary to compute the operators at only the smallest 

scale, as these can then be combined linearly to generate the 

operators  at   larger   scales.   This  is  because  the  linear  test  

function ψi
σ  used in the Ln

x (n = 5, 7, … , m) operator design at 

scale σ > 1 can be expressed as a linear combination of the 

test functions ϕ used to compute the L3
x  operators at the lowes t  

scale σ = 1.  To demonstrate the building of the operators, 

consider Fig. 20, in which we have used a radial coordinate 

system. Here p indicates the level of the neighbourhood nodes, 

i.e., p = 0at the centre node, p =1 for each of the surrounding 

nodes at the next level, etc., and q measures the angular 

location within a given level p.  The smallest operator size (7-

point operator) corresponds to neighbourhood level p =1 , the 

next operator size (19-point operator), corresponds to 

neighbourhood level p = 2  etc.  

 

(1,3)(0,0)(1,0)

(1,1) (1,2)

p=1

p=0

p=2

p=3

(2,0)(3,0) (2,6) (3,9)

(2,1)(3,1) (2,5) (3,8)

(2,2) (2,3)(3,2) (2,4) (3,7)

(3,4) (3,5)(3,3) (3,6)

(1,5) (1,4)(2,11)(3,17) (2,7) (3,10)

(2,10) (2,9)(3,16) (2,8) (3,11)

(3,14) (3,13)(3,15) (3,12)
 

 

Fig. 20. Finite element mesh corresponding to 4 neighbourhood levels, p = 

0, 1, 2, 3 

In order to generate an L5
𝑥  hexagonal operator, we place an L3

𝑥  

mask at the centre node of the mesh at level 0, node (0,0), and 
1

2
× (L3

𝑥 )
 
mask at the other six internal nodes at level 1.  The 

value of 
1

2
× (L3

𝑥 )
 
is used at each node at level 1 as the value of 

the linear test function ψi
σ  for the L5

𝑥  operator design, i.e. σ =

2, can be expressed in terms of the linear test function 𝜑 in the 

L3
𝑥  operator as 

     ψi
2 = ϕ(0,0) +

1

2
∑ ϕ(1,q)

x=6

x=0

 (31) 

where 𝜑(𝑝,𝑞) 
are the linear test function values of the L3

𝑥  

operator at nodes (p,q). These linear combinations are then 

used in the typical finite element assembly manner. This is 

illustrated in Fig. 21 for an L5
𝑥  x-directional mask, showing L3

𝑥  

applied to the centre node and 
1

2
× (L3

𝑥 )
 
 applied to one of the 

nodes in level 𝑝 = 1. Once assembly is completed, the 

computed nodal values correspond to the operator values at 

each of the points in an L5
𝑥

 
 x-directional mask. 

 

 

Fig. 21. Illustrating the combining of the L3

x
 masks to obtain the L5

x
  mask 

We can generalise this procedure for any operator size L𝑠
𝑥 , 

where s > 3 (the initial operator). Again using the nodal 

system illustrated in Fig. 20, we let 𝐾(𝑝,𝑞) 
be the values of the 
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L3
𝑥  hexagonal mask placed at each node (𝑝, 𝑞). Consider the 

hexagonal operator size s (5, 7 etc.), then the radius of the 

approximately circular hexagonal operator 𝑂𝑅  can be 

determined as  

𝑂𝑅 =
𝑠 − 1

2
 (32) 

 

For each operator size s (>3), the x-directional operator, L𝑠
𝑥 , 

can be computed using the following formula: 

 

L𝑠
𝑥 = 𝐾(0,0) + ∑ ∑ (

𝑂𝑅 − 𝑝

𝑂𝑅
)

6𝑞−1

𝑞=0

𝐾(𝑝,𝑞)

𝑜𝑅−1

𝑝=1

 (33) 

 

where the number of levels, p, to be included is 𝑂𝑅 − 1. As 

previously discussed, the y- and z- directional derivative 

operators can then be efficiently obtained by rotating the co-

efficients of L𝑠
𝑥  anti-clockwise by 60o and 120o to obtain L𝑠

𝑦
 

and L𝑠
𝑧  respectively. 

The characteristics of Linear operators not only permit 

construction of derivative operators at many scales by linear 

combinations of smaller operators but also provide an 

alternative method for obtaining the scaled edge map outputs 

by directly using linear combinations of edge map outputs 

obtained at the lowest scale. 

Again this approach involves the construction of only the 7-

point hexagonal operator as described in Section 3. The 7-

point operator is applied to the hexagonal image to obtain an 

edge map. Instead of constructing a larger scale operator and 

convolving it with the image, we can use linear combinations 

of the gradient responses generated by the 7-point operator to 

construct the edge maps at larger scales (see Fig. 20).  In this 

way, each edge map (Ms) is equivalent to the edge map that 

would be generated by our proposed linear operator at scale s. 

It is important to note that the image resolution is not altered 

at each level, but it is the operator scale that changes. The 

procedure of efficiently generating these edge maps is as 

follows. Firstly let M1 be the output generated using the 

smallest size linear operator (e.g. L3 
for first order operator). 

Using the pixel reference system shown in Fig. 20, a linear 

combination of the original edge map M1 is used to generate 

an edge map at any level. Consider the generation of an edge 

map equivalent to the result of applying an L5 
sized operator 

to a hexagonal pixel-based image. The level 2 output, denoted 

as M2, is computed directly from the level 1 edge map M1. To 

obtain a gradient response at any pixel (𝑥, 𝑦) in M2, using the 

radial coordinate system in Fig. 20, we compute the following: 
 

 

𝑀2(0,0) = 𝑀1(0,0) +
1

2
(

𝑀1(1,0) + 𝑀1(1,1) + 𝑀1(1,2)

+𝑀1(1,3) + 𝑀1(1,4) + 𝑀1(1,5)
) (34) 

 

  
Fig. 22. Example of edge map scaling for the image shown in Fig. 17(e) to 

obtain resultant edge maps for various operator sizes 

 

Stepping through each point in the edge map, M2 can be 

readily obtained using this linear combination. This procedure 

can be generalised to compute edge maps at larger scales that 

correspond to convolution of the image with any operator size 

greater than the initial operator; in general an edge map at 

scale S (>1) can be constructed by a linear combination of 

values from the edge map at scale 1:   

M𝑠 = 𝑀1(0,0) + ∑ ∑ (
𝑆 − 𝑝

𝑆
)

6𝑞−1

𝑞=0

𝑀1(𝑝, 𝑞)

𝑆−1

𝑝=1

 (35) 

This procedure demonstrates a simplified approach to 

obtaining edge maps at multiple scales compared with 

conventional methods of constructing an operator at each scale 

and convolving each operator with the desired image. Instead, 

we need create only one 7-point hexagonal operator and apply 

this once to the image. It should be noted that this edge map 

scaling approach can be used to generate first order or 

Laplacian derivative operator edge maps at any scale. 

As the output edge maps obtained from direct application of 

Linear-Linear operators are equivalent to those generated by 

the edge map scaling approach, it is not necessary to conduct 

comparative evaluation with respect to edge localisation when 

using the edge map scaling approach. However, in order to 

evaluate the efficiency, we provide run-times to determine 

increase in efficiency that can be achieved by using this 

approach. 

We present the run-times for application of the Linear-

Linear operator family to a hexagonal image, and the times 

taken to generate the equivalent edge maps using the edge 

map scaling approach. The results are provided in Table III, 

where the run-times (in milliseconds) are averaged over 100 

runs on a PC with processor speed 2.88Ghz. 

The results show that the generation of edge maps using the 

edge map scaling approach is more efficient than applying 

Linear-Linear scaled operators directly to hexagonal images. 

Using the proposed approach, it takes approximately half the 

time to generate the equivalent edge maps at each scale 

compared with those obtained by direct application of Linear-

Linear operators.  
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TABLE III 

RUN-T IMES TO COMPARE DIRECT OPERATOR APPROACH WITH EDGE MAP 

SCALING APPROACH 

 

VI. CONCLUSION 

We have presented an approach to image processing 

operator construction that incorporates operator scalability 

using linear test functions within the finite element 

framework. In developing a linear hexagonal derivative 

operator the test functions used in the weak form are from the 

same space as those used in the image representation. 

Construction of first order and Laplacian Linear-Linear 

operators was demonstrated in Section 3. 

We have demonstrated the efficient implementation of 

Linear-Linear operators through a process in which larger 

operators are generated using combinations of the 7-point 

Linear-Linear operator. This provides a more efficient way of 

constructing hexagonal operators at different scales than the 

conventional method of obtaining an operator by computing 

each element in the operator’s neighbourhood and using finite 

element assembly to construct the operator, particularly as the 

size of the operator neighbourhood increases. Quantitative and  

qualitative methods were used to evaluate the accuracy of the 

proposed operators and the results obtained demonstrate that 

the Linear-Linear operators are comparable with the 

previously developed Linear-Gaussian operators [6].  

We have presented an approach that provides an efficient 

method of obtaining scaled edge map outputs by directly using 

linear combinations of edge map outputs obtained at the 

lowest scale. The results show that when using the edge map 

scaling approach, significant computational gain is achieved 

with no reduction in the accuracy of the detected edges thus 

demonstrating the benefits of the proposed family of scalable 

derivative operators for edge detection tasks.  

Furthermore this approach forms a framework for edge 

detection within the context of Scale Space Theory, where 

combinations of derivatives at various levels in zero-crossing 

based edge detection algorithms have been used. In the work 

on edge detection with automatic scale selection developed in 

[40], significant scale-space edge points are identified by 

maxima of specified edge strength measures that are located 

by zero-crossings of two functions (of varying order) of the 

scale-space image. This approach can be very successful in 

both identifying the most significant edges and demonstrating 

how the most salient scale varies along an edge. In [41] we 

have developed an alternative approach that naturally and 

systematically combines the smoothing and discrete derivat ive 

approximation steps that are carried out separately in [40], 

thus avoiding the use of ad hoc finite difference 

approximations. This work can naturally be extended for use 

to hexagonal pixel based images via the proposed multiscale 

framework. Although discrete second derivative operators do 

not usually form the sole basis of edge detection methods, 

developments in the field of Scale Space theory have used 

combinations of derivatives at various levels  in zero-crossing 

based edge detection algorithms [40] .  
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