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Abstract—There is growing interest in investigating the 

biochemical pathways involved in cellular responses to drugs. 

Here we propose new methods to explore the relationships 

between drugs, biochemical pathways and adverse drug reactions 

(ADRs) at a large scale. Using sparse canonical correlation 

analysis of 832 drugs characterized by 173 pathways and 1385 

ADRs profiles, we identified 30 highly correlated sets of drugs, 

pathways and ADRs. This included known and potentially novel 

associations. To evaluate the predictive performance of our 

method, the extracted correlated components were used to 

predict known ADR profiles from drug pathway profiles. A 

relatively high prediction performance (AUC: 0.894) was 

achieved. To further investigate their association, we developed a 

network-based approach to extract potentially significant 

modules of pathway-ADR associations. Five statistically 

significant modules were extracted. We found that most of the 

nodes contained in the modules are either pathways linked to a 

very limited number of drugs or rare ADRs. The work provides a 

foundation for future investigations of ADRs in the context of 

biochemical pathways under different clinical conditions. Our 

method and resulting datasets will aid in: a. the systematic 

prediction of ADRs, and b. the characterization of novel 

mechanisms of action for existing drugs. This merits additional 

research to further assess its potential in improving personalised 

drug safety monitoring, as well as for the repositioning of drugs 

in the longer-term 

 
Index Terms— Biological pathways; adverse drug reactions;  

sparse canonical correlation analysis, pharmacogenetics 

I. INTRODUCTION 

ccording to the World Health Organisation [1], an 

adverse drug reaction (ADR) is defined as “a response to 
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a drug which is noxious and unintended, and which occurs at 

doses used in humans for the prophylaxis, diagnosis or therapy 

of disease, or for the modification of physiological function”. 

It has been well recognised that ADRs are a significant cause 

of morbidity and mortality, resulting in a significant burden on 

the healthcare service across the world [2], [3]. For example, it 

has been estimated that ADRs would account for 6.5% of all 

UK hospital admissions, which costs the National Health 

Service (NHS) up to £466 million annually [4]. Thus, during 

early phases of drug development, identification of potential 

ADRs is critical for successful drug development. 

The recognised significance has triggered huge efforts from 

industry and scientific communities to develop various 

computational models for predict potential ADRs at large 

scale. Bender et al. [5] explored the chemical space and made 

the first attempt to predict ADRs across hundreds of ADR 

categories from chemical structure alone, achieving 92% 

classification accuracy. Cami et al. [6] developed a 

computational network-based method for predicting ADRs. 

They constructed a network representation of the associations 

between drugs and adverse drug events (ADE) using 809 

drugs and 852 ADEs collected since 2005, and then trained a 

logistic regression model to predict unknown side effects of 

drugs in the network. Liu et al. [7] proposed a machine-

learning-based approach for ADR prediction by integrating 

chemical structure information, drug related biological 

properties, such as protein targets and pathway information, 

and drug phenotypic characteristics. They found that drug 

phenotypic information such as the drug indication is the most 

informative feature of ADR prediction. The model 

successfully predicted the ADRs that are associated with the 

withdrawal of rofecoxib and cerivastatin. More recently, 

Harpaz et al. [8] proposed a “signal-detection strategy” that 

combines the adverse event reporting system (AERS) of the 

USA Food and Drug Administration (FDA) and electronic 

health records (EHRs) for detection of ADRs. Finally, Lui et 

al. [9] proposed a causality analysis model based on structure 

learning to identify important factors that contribute 

significantly to specific drug ADRs. After applying the causal 

features captured by the proposed model to a traditional 

support vector machine classifier, a significant increase in 

performance was reported 

We have entered big data era. There are massive amounts of 

pharmacogenetic and related data already available, and 

growth rate of such data is expected to be even higher in the 
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next few years. Therefore, it is important for us to identify 

important molecular signals underlying the pharmacogenetic 

data. Specifically, it is promising to investigate biochemical 

pathways involved in cellular response to drugs because drug 

targets are often involved in important pathways. Wallach et 

al. [10] highlighted that understanding the biological processes 

behind the occurrence of ADRs may have significant 

applications and implications in the life sciences and 

pharmaceutical industries. This may lead to the development 

of safer and more effective drugs, the discovery of new bio-

markers, and the identification of new uses for existing drugs 

(drug repositioning). Silberberg et al. [11] argued that 

uncovering drug-induced signaling pathways is an important 

step in understanding a drugs’ mode of action and inferring 

drug properties such as ADRs. In an integrative analysis using 

human protein-protein and protein-DNA interactions, as well 

as drug targets and drug-induced gene expression data, they 

identified 428 drug-specific signalling sub-networks and 99 

putative signalling pathways. In another study by Chen et al. 

[12], the authors hypothesized that a portion of a pathway (i.e., 

a sub-graph of the pathway) might be more sensitive in drug 

response to a particular biological condition than the whole 

pathway. This hypothesis is valid because canonical pathways, 

like those annotated in the Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) database [13], might be too large and 

complicated while only subpart(s) of a pathway are under 

regulation in a cellular condition or in the response to 

environmental changes. Correspondingly, Chen et al. 

developed a computational framework for searching primary 

subnetwork(s) of drug responses by effectively utilizing the 

sub-pathway information. 

By extending our preliminary analysis [14], here, we further 

investigated the relationship between biochemical pathways 

and ADRs at a large scale using computational approaches. 

Through our computational analyses, we aimed to answer the 

following questions:  (1) Can we identify correlated sets of 

pathways and ADRs by a computational approach? (2) Can we 

predict a drugs’ ADR based on its pathway activity profiles? 

And (3) How to effectively measure the association between 

pathways and ADRs using the data from knowledge base? 

The rest of this paper is organized as follows. Section II 

briefly describes the method, including the datasets and 

prediction algorithms. The results are presented in Section III. 

The discussion and conclusions, together with future research 

directions, are given in Section IV.  

II. METHODOLOGY 

A. Datasets 

The dataset was obtained from a study by Liu et al. [7]. It 

contains 832 drugs, and each drug was represented by the 

following two high-dimensional profiles. 

1) A 1385 binary vector whose elements encode for the 

presence or absence of an ADR by “1” or “0”, respectively. 

The associations between drugs and ADRs were extracted 

from SIDER [16]. 

2) A 173 binary vector in which “1” indicates the 

association between a drug and a corresponding pathway. The 

relationship between drugs and pathways was constructed by 

mapping protein targets extracted from DrugBank [17] to the 

corresponding KEGG biological pathways [18], [19] through 

their protein-coding gene symbols.  

In total, 2182 links between 832 drugs and 173 KEGG 

pathways and 59,205 associations between the drugs and 1385 

ADRs were identified. While each drug has a relatively large 

number of ADRs with a mean of 42.7 and a standard deviation 

of 87.0, the number of pathways linked to each drug is 

relatively small (12.6 on average with a standard deviation of 

22.2). Among them, the drug arsenic trioxide was found to be 

associated with the largest number of pathways (51) derived 

from its protein targets, and pregabalin was found to have the 

largest number of ADRs (453) 

B. Canonical correlation analysis 

Developed by H. Hotelling [20], canonical correlation 

analysis (CCA) aims to quantify the associations among two 

sets of features (pathways and ADR in our case) on the same 

set of samples, i.e. drugs in this study. It has become a well-

known tool in statistical analysis and has attracted growing 

attention over the past years [21], [23] .  

Let each drug be represented by a pathway feature vector 

                and an ADR feature vector   

            
  where p and q stand for the number of 

pathways and ADRs under study respectively. Ordinary CCA 

(OCCA) seeks to find two weight vectors α and β for x and y, 

i.e.               
   and                

   such that 

the following correlation coefficient is maximized. 
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, where n is the total number of drugs under consideration. 

       and       are called canonical components 

(CCs). In the matrix form, the above optimization problem can 

be rewritten as follows: 

 

                       subject to 

‖ ‖ 
       ‖ ‖ 

    
(2) 

, where               
  and               

  

denote the      and      matrices, respectively. 

It has been shown that normally vectors u and v derived 

from OCCA are not sparse, making the interpretation of 

results quite difficult. In an attempt to impose the sparsity on 

weight vectors α and β to yield interpretable factors, we 

applied the sparse version of CCA (SCCA) based on a 

penalized matrix decomposition (PMD) technique introduced 

by Witten et al. [21]. The idea is to impose additional 

constraints to the elements of α and β, i.e.  
 

                       subject to 

‖ ‖ 
       ‖ ‖ 

      ( )       ( )     
(3) 

 
, where    (     and    (     are parameters used to 

control the sparsity. P1 and P2 are convex penalty functions, 
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which can take on a variety of forms [21]. In this study, the 

SCCA was implemented using (the R package) PMA [22]. A 

lasso penalty was used to obtain the corresponding CCs.  

In order to obtain multiple CCs, a deflation manipulation 

was carried out recursively. The criterion expressed in (3) was 

implemented repeatedly each time by using the       

matrix as the residuals obtained by subtracting the previous 

found factors from the matrix. As a result, m pairs of weight 

vectors, in which high scoring in both sets are extracted as 

correlated sets, will be obtained. The reader is referred to [21] 

and [23] for a detailed description of the implementation. 

III. RESULTS 

A. Associations between ADRs and pathways: a statistical 

analysis 

There is no direct link between the number of linked pathways 

and the number of associated ADRs for each drug as shown in 

Fig. 1 with the Pearson correlation coefficient being close to 

zero (0.074). For example, the drug pregabalin, a drug used 

for neuropathic pain, has the largest number of ADRs (453). 

However, its protein targets were mapped only to 2 KEGG 

pathways (hsa04614 and hsa01040). Interestingly, there is no 

KEGG pathway found to be associated with the drug 

venlafaxine, a drug used for the treatment of major depressive 

disorder, yet it has 319 ADRs. The number of associated 

ADRs for the top 10 drugs that have the largest number of 

pathways varies substantially, ranging from 19 to 244. These 

results highlight the limited amount of available knowledge 

about mechanism of action of clinically approved drugs. 

 
Fig. 1 The correlation between the number of pathways linked to each drug 

and the number of ADRs. 

 

B. Associations between ADRs and pathways: SCCA-based 

analysis 

In order to extract correlated sets of pathways and ADRs, we 

applied SCCA to the dataset. We then evaluated the predictive 

performance of the method by recovering known ADRs from 

the extracted drug pathway profiles. The system was 

implemented within the R framework [24]. The best 

performance was achieved with           and     .  

1) Extraction of KEGG pathway-ADR associations: The 

SCCA-based analysis provides us with 30 CCs, each 

containing a limited number of correlated, high scoring 

pathways and ADRs. To gain a global view of pathway-ADR 

associations, we merged the results for all derived components 

and represented them as a network, in which pathways and 

ADRs are connected if they are found in the same component  

(Fig.2). For simplicity of visulisation, we focused on pathways 

and ADRs whose weights are greater than 0.1. Accordingly, 

this network has a total of 353 nodes, including 296 ADRs and 

57 pathways, and 755 connections. 

 
Fig. 2 An illustration of the network of pathways and ADRs using the 
extracted 30 CCs. Pathways (light grey rectangles) and ADRs (dark circles) 

are connected if they are found in the same extracted CC 

 

The network shows a modular structure, where links 

between ADR and pathway nodes are much denser within 

each CC than between CCs. While CC14, CC21, and CC22 

share the same set of pathways, i.e. taste transduction 

(hsa04742) and type II diabetes mellitus (hsa04930), the 

ADRs having a high score in these three components are very 

different with those having a distinct set of ADRs (11 in 

CC14, 16 in CC21 and 17 in CC22). A similar observation can 

be made when examining the association between pathways 

and ADRs in CC10 and CC13, in which the same pathways, 

i.e. oocyte meiosis (hsa04114) and progesterone-mediated 

oocyte maturation (hsa04914), were found. 

A closer look at the degree distribution reveals that the 

distribution over ADR and pathway nodes is different. All the 

pathways are associated with at least 8 ADRs while other 

pathways: taste transduction (hsa04742) and type II diabetes 

mellitus (hsa04930) are connected to the largest number of 

ADR (41). On the other hand, more than 70% of ADRs are 

connected to less than 3 pathways. Out of 296 ADRs, only 17 

are found to be associated with more than 5 pathways with the 

ADR parapsoriasis (C0030491) linked to the highest number 

of pathways (11). 
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For each component, the associated canonical correlation 

coefficient was estimated. We observed that the components 

with high correlation tend to contain pathways related to very 

few drugs and rare ADRs mainly observed in these drugs. For 

example, CC9 has a highest canonical correlaction close to 1.0 

(0.985). The only pathway found in this component with a 

score greater than 0.1 is proteasome pathway (hsa03050), 

which is only related to bortezomib, the first therapeutic 

proteasome inhibitor to be tested in humans. Intererstingly, all 

14 ADRs contained in the components with a score higher 

than 0.1 are associated with this drug. They are : C0004030, 

C0015544, C0018775, C0032768, C0025309, C0155773, 

C0019357, C0040558, C0002726, C0235329, C0259749, 

C0155919, C0162323, and C0085077. The top pathway found 

in CC6 with the canonical correlation 0.942 is inositol 

phosphate metabolism (hsa00562). The only drug whose 

target protein  is mapped to this pathway is lithium, which 

affects the flow of sodium through nerve and muscle cells in 

the body. The top two ADRs, i.e. nontoxic goiter (C0221777) 

and toxic goiter (C0600086) contained in this component are 

found to be associated with this drug only.  

Our analyses provide two lists of drugs for each extracted 

component: those with a high score for the associated 

pathways and ADRs respectively. Interestingly, most drugs 

that have high scores for pathways in a component with a high 

correlation are found to have high scores for the ADRs in the 

same component. This is consistent with the idea that, in 

principle, the more we know about the mechanism of action of 

a drug, the more we can know about its potential adverse 

effects. For example, the drug lithium has the highest scores 

for both the pathways and ADRs contained in CC6. 

 

2) Performance evaluation: We tested the assumption 

that the extracted correlated sets are predictive of ADRs. To 

do this, we evaluated the performance of the method by using 

the extracted CCs and drug pathway profiles to detect known 

ADR profiles extracted from the SIDER database [16]. 

A 5-fold cross-validation was applied, i.e., the entire 

dataset is randomly partitioned into 5 subsets of approximately 

equal size and each subset in turn is used as the test set while 

the remaining 4 subsets are used as training data. The goal of 

the classification posed in this application is to predict ADRs 

associated with each drug based on its pathway information. 

The performance was assessed by a receiver operating 

characteristics (ROC) curve, which is a plot of  true positive 

rate (the percentage of actual positives correctly identified) 

against  false positive rate (the fraction of false positives out of 

the negatives) at various prediction score thresholds. Any 

predicted ADR with a prediction score greater than a given 

threshold is considered as positive and negative otherwise. 

The area under the ROC curve (AUC) was estimated to 

summarize the prediction performance, as illustrated in Fig.3, 

where the prediction scores for all the ADRs were merged and 

a global ROC curve was obtained. Afterwards, we estimated 

the performance by changing the sparsity parameter, i.e. c1 

and c2, from 0 to 1 with 0.1 increments and the number of CC 

from 10 to 100 with 10 increments. The optimal performance 

was derived with           and     . Both SCCA and 

OCCA achieved fairly good results with SCCA having a 

slightly better performance (AUC: 0.894 for SCCA and 0.888 

for OCCA, well above the performance based on random 

assignment). This suggests that the extracted pathway-ADR 

associations are indeed useful for drug ADR prediction. In 

comparisons with other studies, the results derived from our 

method are at a competitive level with models based on 

chemical and biological features [7], [26]. 

 
Fig. 3 ROC curves based on a 5-fold cross validation. Comparison of the 
performance between SCCA, OCCA, and random 

 

The predictive power of the proposed method can be 

further demonstrated by examining the prediction accuracy of 

the predicted ADRs for each drug. We checked the predicted 

ADRs with high prediction scores against the known ADRs 

reported in the SIDER database [16]Error! Reference source 

not found.. For example, for the drug pramipexole, the ADR 

ranked highest in the prediction score is nasal polyps 

(C0027430), a known ADR for pramipexole [16]. Among the 

top 10 high scoring ADRs, 6 are the known ADRs linked to 

pramipexole. Similarly, the top predicted ADR for the drug 

ropinirole is one of the known ADRs listed in the SIDER 

database, and 9 out of top 15 ADRs with high prediction 

scores are known ADRs for this drug [16]. 

Turning to biological interpretability, we found that the 

proposed SCCA method has the advantage over other machine 

learning techniques, such as Support Vector Machine and 

Naïve Bayesian, which do not provide direct biological 

interpretation clues. As shown in Fig. 4, each correlated set 

derived by SCCA has only a few dominant elements whose 

weight is far greater than the average. Most of the elements in 

the weight vectors associated with each component are zero or 

close to zero in each component, suggesting that SCCA has 

the ability to select a small number of features as informative 

pathway and ADRs. In contrast, almost all elements contained 

in the weight vectors derived from OCCA are non-zero and 

there is no clear dominant element found in most of 

components. Interpreting such a weight vector may prove to 

be rather difficult in practice. 

C. Associations between ADRs and pathways: Network-

based analysis 

In this section we explore the feasibility of using a 

network-based approach to extract associations between 

pathways and ADRs. We first estimated the similarity between 

a pathway and an ADR in terms of their drug profiles. Let a 

pathway, pi, be represented by a binary vector in which each 
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element indicates that the corresponding drug is known to 

impact the pathway or not, i.e.                 (  
         ). 

 

   {
                                            
                                                                            

 (4) 

 
Fig. 4 The distribution of weight vectors over pathways in (a) OCCA and (b) 

SCCA. The first ten canonical components are shown. 

 

Similarly, let an ADR, i.e., sj, be represented by a binary 

vector whose elements encode whether the ADR is associated 

with the corresponding drug,                 (  

         ). 

 

   {
                                           
                                                                     

 (5) 

 

The association between pathway, pi, and ADR,   , can be 

estimated using the Jaccard similarity coefficient, i.e. 

   (     )  
|     |

|     |
 (6) 

The values generated by (6) vary between 0 and 1 where 

“1” implies that the ADR is associated with the same set of 

drugs that impact the given pathway. 

We then constructed a pathway-ADR network, in which the 

edge between pathway and ADR nodes is represented by the 

Jaccard similarity estimated using Equation (6) as shown in 

Fig. 5. Unlike the unweighted network depicted in Fig. 2, in 

which a pathway and a ADR is connected if they are found in 

the same extracted CC, the weighted network illustrated in 

Fig. 5 is based on the proportion of drugs associated with both 

the ADR and the pathway. For a better visualization, here we 

focused on the analysis of the association with the similarity 

greater than 0.1. The resulting network including 724 nodes 

(160 pathways and 564 ADRs) and 1744 weighted edges is 

characterized by a small number of nodes having a high 

degree accompanied by a large number of nodes whose degree 

is less than 3 as depicted in Fig. 5. The top 10 most connected 

nodes are all pathway nodes and the top 3, i.e. gap junction 

(hsa04540), calcium signaling pathway (hsa04020), 

neuroactive ligand-receptor interaction (hsa04080) connect to 

more than 100 ADRs. Interestingly, the cell adhesion 

molecules pathway (hsa04514) is associated with only 2 

drugs, i.e. glatiramer acetate used to treat multiple sclerosis 

and lenalidomide used to treat patient with myeloma yet it 

connects to 33 ADRs, suggesting that these two drugs may in 

reality have a large number of ADRs. The actual numbers of 

known ADRs associated with these 2 drugs are 234 and 234 

respectively. A similar observation can be made when we 

examine the Proteasome pathway (hsa03050), which is only 

linked to one drug (bortezomib) but it has connections with 22 

ADRs.  

The most connected ADR node is C0085786, i.e. alveolitis 

fibrosing, while nearly of ADR nodes are connected to less 

than 3 pathways. Unlike pathway nodes whose degree is 

strongly correlated with the number of associated drugs 

(Pearson correlation coefficient: 0.828), there is virtually no 

correlation between the degree and the number of associated 

drugs for ADR nodes (Pearson correlation coefficient: 

0.0337). For example the ADR C0027497, i.e.nausea, is 

observed in more than 700 drugs, while it is found to link to 4 

pathways, i.e. gap junction (hsa04540), neuroactive ligand-

receptor interaction (hsa04080), calcium signaling pathway 

(hsa04020) and salivary secretion (hsa04970).  

 
Fig. 5 An illustration of a pathway-ADR network, in which the weighted 
edges between pathway and ADR nodes reflect the proportion of drugs 

associated with both the ADR and the pathway estimated using Equation (6). 

 

Next we applied a recently published network clustering 

algorithm, ClusterOne [27], to extract potentially significant 

modules of pathway-ADR associations. A total of 5 modules 

were identified (p < 0.01) as shown in Fig. 6. The p-value was 

established by using a one-sided Mann-Whitney U test 

performed on the in-weights (The sum of the weights of all the 
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edges both of whose endpoints lie in the cluster) and out-

weights (The sum of the weights of the edges having one 

endpoint in the cluster and the other outside) of the vertices 

[27]. A closer look at these modules reveals that most of nodes 

contained are either pathways linked to a very limited number 

of drugs or rare ADRs. For example, the pathway proteasome 

(hsa03050) in Module 1 is found to be only connected to one 

small molecule drug, i.e. bortezomib, which is the first 

proteasome inhibitor to be approved for the treatment of 

relapsed multiple myeloma and mantle cell lymphoma. All the 

other nodes in Module 1 are rare ADRs, which are observed in 

less than 3 drugs including bortezomib. They are aspergillosis 

(C0004030), toxoplasmosis (C0040558), hearing loss bilateral 

(C0018775), keratitis herpetic (C0019357), 

meningoencephalitis (C0025309), failure to thrive 

(C0015544), portal vein thrombosis (C0155773), and post 

herpetic neuralgia (C0032768). Another example is Module 4 

which consists of 6 pathways and 10 ADRs. The average 

number of drugs associated with these nodes is 3.25. The 

ADR benign neoplasm of skin (C0004998) is linked to the 

largest number of drugs (10). The top 2 drugs shared by these 

nodes, i.e. glatiramer acetate (ATC code: L03AX13) and 

thalidomide (ATC code: L04AX02) belong to antineoplastic 

and immunomodulating agents. The drug glatiramer acetate 

used for reduced frequency of relapses in relapsing-remitting 

multiple sclerosis interacts with all 6 pathways, i.e. intestinal 

immune network for IgA production (hsa04672), type I 

diabetes mellitus (hsa04940), asthma (hsa05310), allograft 

rejection (hsa05330), graft-versus-host disease (hsa05332), 

and autoimmune thyroid disease (hsa05320) and has 4 ADRs 

listed in the module, i.e. benign neoplasm of skin (C0004998), 

systolic murmur (C0232257), xanthoma (C0302314), and 

Cervix carcinoma stage 0 (C0851140). The small molecule 

drug thalidomide used for a number of immunological and 

inflammatory disorders is linked to 4 pathways, i.e. type I 

diabetes mellitus (hsa04940), asthma (hsa05310), allograft 

rejection (hsa05330), and graft-versus-host disease (hsa05332) 

and has 6 ADRs contained in the module, i.e. benign neoplasm 

of skin (C0004998), causalgia (C0007462), uterine cervical 

erosion (C0007869), chronic myeloid leukaemia (C0023473), 

lichen unspecified (C0023643), phocomelia (C0031575) and 

microcytic anaemia (C0085576).  

The nodes in Module 3 are linked to more than 25 drugs on 

an average with the ADR hyperkalaemia (C0020461) being 

observed in more than 90 drugs. However, the proportion of 

drugs shared by at least two nodes in this module is relatively 

high. For example, out of 13 drugs found to have the ADR 

pemphigus (an autoimmune blistering skin disorder, 

C0030807), 10 are linked to all 3 pathways in the module, i.e. 

hypertrophic cardiomyopathy (hsa05410), chagas disease 

(hsa05142), and renin-angiotensin system (hsa04614). 

Interestingly, these drugs act on the cardiovascular system and 

are annotated with the same Anatomical Therapeutic Chemical 

Classification (ATC) code at the third level, i.e. C09AA (ACE 

inhibitors). A similar pattern was observed when examining 

the drugs shared by the ADR  hyperkalaemia (C0020461) and 

the three pathways. Despite that a wide range of ATC codes 

are used to annotate the 92 drugs having the ADR 

hyperkalaemia (C0020461), the ATC codes for the drug set 

shared by C0020461 (hyperkalaemia), hsa05410 (hypertrophic 

cardiomyopathy), hsa05142 (chagas disease), and hsa04614 

(renin-angiotensin system)  are exactly the same at the first 3 

levels, i.e. (ACE inhibitors). 

 

 
Fig. 6 Five statistically significant modules identified by ClusterOne. 

Rectangle nodes denote biochemical pathways and circle nodes represent 
ADRs. The p-values associated with each module are 0.002, 0.0001, 0.001, 

0.004, and 0.000004 respectively.   

IV. CONCLUSION 

This investigation proposes a new method to study the 

relationship between biochemical pathways and ADRs at a 

large scale. Using sparse canonical correlation analysis of 832 

drugs with two profiles for 173 pathways and 1385 ADRs, a 

total of 30 correlated sets of pathways and ADRs were 

extracted. To evaluate the performance of the method, the 

extracted correlated components were used to identify known 

ADR profiles from drug pathway profiles using a 5-fold cross 

validation. A relatively high prediction performance (AUC: 

0.894) was achieved. To have a global view of pathway-ADR 

associations, we represented all the components through a 

network, in which pathways and ADRs are connected if they 

are found in the same correlated set.  We found that nearly 

half of ADRs were associated with only a few biochemical 

pathways. To further investigate the association between 

pathways and ADRs, we developed a network-based 

approach, in which the association between a pathway and an 

ADR was estimated by using the Jaccard similarity 

coefficient.  A network consisting of 160 pathways, 564 ADRs 

and 1744 weighted edges was constructed and 5 statistically 

significant modules were extracted. We found that most of the 

nodes contained in the modules are either pathways linked to a 

very limited number of drugs or rare ADRs. At one level, this 

corroborates the limitations of available knowledge about 

ADRs and drug action mechanisms. But it also highlights the 

opportunities for improving such knowledge through 

systematic, network-based prediction approaches. 

To assess global prediction performance across all ADRs, 

we followed the approach adopted by Pauwels et al. [26], i.e. 
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drawing a global ROC based on combining the prediction 

scores for all ADRs. It is worth noting that some ADRs are 

observed in only a few drugs. For example, it has been 

observed that the ADR acanthosis nigricans (C0000889) is 

only associated with one drug in the dataset, i.e. nicotinic acid 

used to treat high levels of cholesterol and triglycerides. The 

resulting imbalanced dataset may have a significant impact on 

the estimation of the prediction performance, which would be 

an important part of our future research. Another limitation of 

our study is the constrained sample of drug-pathway 

associations, which is typically based on the notion of single 

drug-single target relationships. However, the resulting 

pathway-centric models go beyond this classical notion of 

drug-induced perturbation, and can expand our view of drug-

target interactions. We will further explore the drug-pathway 

associations in a dynamic cellular systems, though such data is 

currently still a limitation. In comparison to other 

computational approaches such as support vector machines 

and k-nearest neighbours [7], the SCCA-based approach used 

in this study has a clear advantage in terms of interpretability 

of results [26]. Nevertheless, the comparison with other 

related methods, such as those introduced in [5], and the 

examination of the potential clinical implications of novel 

extracted associations between KEGG pathways and ADRs 

deserve further investigation. One possible approach to 

investigate this in a prospective way is to build prediction 

models based on information available until a particular year, 

EndYear, followed by an independent validation on data 

generated after EndYear. 

In summary, our method and resulting datasets will aid in: 

a) the systematic prediction of ADRs, and b) the 

characterization of novel mechanisms of action for existing 

drugs. The predictions that our method generate are both 

testable and biologically interpretable. We believe that the 

combination of these advantages into a single prediction 

strategy opens new research opportunities for improving 

personalised drug safety monitoring, as well as for the 

repositioning of drugs in the long-term.  
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