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ABSTRACT 

Bacterial spot is a major plant disease caused by many plant-pathogenic members of the genus 

Xanthomonas.  While each species is narrow in host range, bacterial spot Xanthomonads infect a 

large variety of plant hosts, leading to large economic losses for farmers around the world. 

Although Xanthomonas utilizes a wide array of virulence and pathogenicity factors to infect their 

hosts, plants have a range of methods to recognize invaders and prevent infection. Understanding 

the genomic and molecular interactions between Xanthomonas and their hosts are an important 

part of developing effective crop protection strategies and breeding plants for resistance.  

 

While X. cucurbitae has been identified as the causal agent of bacterial spot on cucurbits, no 

genomic-level analyses have been carried out regarding the pathogen. Using the first reference 

quality X. cucurbitae genome assembly, an RNA-seq analysis was carried out to assess virulence 

characteristics of the pathogen. By analyzing the X. cucurbitae transcriptome, we observed 

behavioral changes between nutrient-sufficient and host-mimicking conditions, as well as the 

upregulation of genes related to virulence and pathogenicity. We also identified virulence genes 

likely to be essential in successful bacterial spot infection. In addition, a RAD-seq analysis was 

performed to characterize populations clusters of X. cucurbitae isolated throughout the 

Midwestern United States. We revealed multiple populations of X. cucurbitae present throughout 

the region and demonstrated clear genetic differences between these populations using 

population genetics analyses. These studies demonstrate clear value in future genomic studies 

regarding X. cucurbitae. 
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X. euvesicatoria and X. perforans are two bacterial spot Xanthomonads affecting tomatoes and 

peppers. We conducted a comparative genomics study in X. euvesicatoria and X. perforans 

populations to identify genes under selection pressure, and to characterize potential genes 

involved in plant-pathogen interactions. By calculating the test statistic Tajima’s D, we found 

evidence of purifying selection throughout the genomes of both bacterial spot Xanthomonads. In 

addition, Tajima’s D was successfully able to detect known microbe-associated molecular 

patterns (MAMPs), and we were able to characterize the recognition of these MAMPs between 

species in luminol-based reactive oxygen species (ROS) assays. While this study was not yet 

able to identify novel MAMPs, we show that Tajima’s D is a powerful tool in detecting genes 

that are important to plant-pathogen interactions. 
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CHAPTER 1 

 

INTRODUCTION 

 

Pumpkin 

The terms “pumpkin” and “winter squash” refers to multiple members of the Cucurbita family.  

In general, the most commonly used scientific name for pumpkin is C. pepo, but some cultivars 

of C. moschata and C. maxima are also referred to as pumpkins; the term winter squash has been 

used interchangeably to refer to some cultivars of pumpkins as well (Babadoost and Zitter, 

2009). Initial domestication of C. pepo occurred between 8,000 and 10,000 years ago in Mexico, 

pre-dating the domestication of other crops such as maize and beans (Smith, 1997). Today, C. 

pepo is grown for a variety of uses, including human consumption, agricultural products, and 

ornamental purposes. Pumpkin cultivars can vary in many aspects, including size, shape, rind 

thickness, and color.  

 

Depending on the cultivar, fruits and/or seeds of C. pepo can be consumed at an immature stage 

(i.e., thin-skinned summer types) or at a mature stage (i.e., hard-skinned winter types) (Paris, 

1989). Pumpkin seeds are low in fat and rich in proteins, while the fleshy part of the fruits is high 

in β-carotene, carbohydrates, and other nutrients. Consuming pumpkins is also reported to 

bestow many health benefits, such as potentially acting in anti-carcinogenic or anti-diabetic 

capacities (Yadav et al., 2010). Beyond fresh consumption, mature pumpkin fruits can be 

processed into products such as canned pumpkin puree. Pumpkin fruits and seeds are also 

processed for medicinal and cosmetic purposes, such as dietary supplements and skin scrubbers. 
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Agronomic Production of Pumpkin 

From 2017 to 2018, over 27 million tons of pumpkins, squash, and gourds were produced 

worldwide, indicating an important crop for farmers around the world (FAOSTAT, 1997). 

Countries that are top producers of these crops include China, India, and Ukraine, with the 

United States (US) ranking within the top ten countries. Five states within the US, including 

Illinois, Indiana, Pennsylvania, Texas, and California, produce roughly 40% of the pumpkins 

nationally (USDA, 2019). Illinois is the largest pumpkin producer in the US; in 2018, Illinois 

produced about 500 million pounds of pumpkins, greater than the next four states combined. 

Nearly 80% of Illinois-grown pumpkins are used for processing, while 90% of the US processing 

pumpkins are grown in Illinois (USDA, 2019). In 2018, pumpkin production for fresh pumpkins 

and processed pumpkins combined totaled nearly $200 Million dollars (USDA, 2019). 

  

Tomato 

Tomato (Solanum lycopersicum) is a member of the Solanaceae family. This plant family 

contains many species that are staple foods in human diets worldwide such as tomatoes, potatoes, 

and peppers (Bergougnoux, 2014). The ancestor of modern tomato plants originated in the Andes 

Mountain Range in South America. Tomato plants were domesticated by the Incans and Aztecs, 

and subsequently brought to Europe in the 16th century. While initially avoided because of 

similarities to the related toxic nightshade plants, tomatoes have become the most widely 

consumed, non-starchy vegetable, and are a staple ingredient in food cultures worldwide 

(Burton-Freeman et al., 2011).  
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Tomato fruits come in a variety of shapes and sizes and can differ in many taste-related qualities 

such as texture, color, and flavor. Fresh-market varieties are commonly eaten raw, while canning 

varieties are usually processed and consumed as a sauce or paste. Tomato fruits are nutritionally 

dense and contain key/important/essential nutrients such as potassium and vitamin C. 

Additionally, tomatoes are one of the main human dietary sources of lycopene, a carotenoid that 

is responsible for the wide range of colors exhibited by the fruits. Recent data from 

epidemiological studies suggest that lycopene may confer a wide range of health benefits, such 

as lowering cancer and cardiovascular disease risk (Story et al., 2010). While these claims need 

to be substantiated, it is clear that tomato fruits are an integral component of human diets around 

the world. 

 

Agronomic Production of Tomato 

The top tomato producing countries are China, India, and the US. Within the US, Florida and 

California are consistently the top tomato-producing states, although other states also contribute 

to the industry. Florida and California account for about two-thirds of fresh tomato production in 

the US, with California producing 90% of the tomatoes used for processing (Guan et al., 2016). 

While production in the US has slowed down due to the rise of tomato imports from Mexico, the 

demand for tomatoes continues to grow (Baskins et al., 2019). In 2015, the value of the US fresh 

market and processing industries combined was more than $2.6 Billion dollars (Guan et al., 

2016). In addition to conventional field cropping systems, greenhouse tomato production has 

grown in popularity throughout the US, enabling year-round tomato production (Cook and 

Calvin, 2015). 
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Bacterial Spot Disease  

Bacterial spot is a major plant disease caused by many species in the bacterial genus 

Xanthomonas. For tomato and pepper, the causal agents of bacterial spot include four 

Xanthomonas species: X. euvesicatoria, X. perforans, X. vesicatoria, and X. gardneri. Symptoms 

of this disease include dark lesions over the flesh of the fruit and large necrotic areas on leaves 

and stems. This disease is responsible for large percentages in tomato yield losses every year, 

and in extreme cases can even lead to complete crop failure. In 2010, the Midwest tomato 

processing industry estimated that nearly $8 million dollars of potential revenue was lost due to 

bacterial spot disease (NIFA-USDA, 2016). Bacterial spot disease is also a worldwide problem, 

hindering tomato and pepper production in countries including Brazil and Korea (Kyeon et al., 

2016).  

 

In pumpkin, the causal agent of bacterial spot is X. cucurbitae. Symptoms include dark angular 

lesions on cucurbit leaves, and circular, sunken lesions on the rinds of fruit that enlarge as the 

fruit matures. X. cucurbitae has been found to cause yield losses of more than 50% in Illinois 

commercial pumpkin fields and has been isolated worldwide on various cultivars of X. pepo such 

as squash and jack-o’-lantern pumpkins (Babadoost and Zitter, 2009). 

 

Transmission of Bacterial Spot and Management Practices to Mitigate Disease Spread 

Bacterial spot thrives in warm and humid environments and can spread through seed and plant 

debris as well as by water splashes (Jones et al., 2000). It is more prevalent during seasons with 

high humidity, while occurrences decrease in drier or cooler conditions. Wind-dispersed water 

droplets can rapidly disseminate the pathogen throughout a field, and the bacteria can also be 
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spread via contaminated farm tools and transplant materials. In addition, it can infect seeds, as 

well as survive for weeks or months on infected plant debris.  

 

Growers take many measures to reduce bacterial spot disease occurrences in their fields. The 

primary mode of action is to prevent accidental introduction of the bacteria to uncontaminated 

fields and greenhouses, as the disease is difficult to manage once established. Crop rotations, 

seed treatments, and equipment decontaminations are common procedures used to prevent the 

spread of the bacterial (Ritchie, 2000). Additionally, copper-based chemical sprays have been 

widely used to control the disease; however, they are only effective prior to establishment of the 

disease. Unfortunately, the rise of copper-resistant and copper-tolerant xanthomonads have 

dulled the effectiveness of copper sprays, prompting research into other avenues of disease 

control (Behlau et al., 2011). Biological controls such as bacteriophages have had some success 

in controlling bacterial spot infection (Flaherty et al., 2000). Also, tomato breeding programs 

develop plants that resistant to bacterial spot, either using conventional breeding approaches with 

introgressions from wild relatives, or by developing transgenic plants. Together, cultural 

practices and resistant cultivars are integral components of successful disease management 

practices.  

 

Bacterial Spot Xanthomonads 

The genus Xanthomonas is comprised of gram-negative straight-rod shaped bacteria with a 

single polar flagellum for motility. Xanthomonas form yellow-pigmented colonies when cultured 

on growth media such as peptone-sucrose, and they produce the exopolysaccharide xantham 

gum, which is an important ingredient in the food production industry. Many species of 
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Xanthomonas are plant-pathogenic and infect staple food crops worldwide. While the host range 

for the genus is large, host specificity for each Xanthomonas species is generally narrow (Leyns 

et al., 1984) with only rare crossover in host plants between different Xanthomonas species. 

Common hosts of Xanthomonas bacteria include tomato, rice, and citrus.  

 

Phylogeny of Bacterial Spot Xanthomonads on Pepper and Tomato 

The phylogeny of tomato- and pepper-specific bacterial spot Xanthomonads has changed greatly 

since their discovery in 1921 (Doidge, 1921). While initially thought to be comprised of a single 

species, studies in the 1990s identified two distinct groups (Stall et al., 1994; Vauterin et 

al.,1995), while further phenotypic and genotypic studies elucidated three evolutionary lineages 

of Xanthomonas that caused disease on tomato and pepper (Jones et al., 2000). In 2004, Jones et 

al. used DNA-DNA relatedness studies to reclassify these Xanthomonas into the four distinct 

lineages that are used today: X. euvesicatoria, X. perforans, X. gardneri, and X. vesicatoria 

(Jones et al., 2004).  

 

While all four Xanthomonas species share a common host range, there are varying degrees of 

genetic relatedness between them. Although a small core set of secreted proteins called type III 

effectors (T3Es) is shared amongst the four species, comparative genome studies have confirmed 

that these species are genetically distinct (Potnis et al., 2011). Each species of Xanthomonas that 

cause bacterial spot disease uses distinct groups of cell-wall degrading enzymes during infection, 

but not all enzymes are shared between the four species, and the genomic arrangement of these 

genes also varies (Potnis et al., 2011). If multiple Xanthomonas species are found in the same 

field, they can act as competitors against each other, since they share the same host. For example, 
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strains of X. perforans have been shown to outcompete and inhibit growth of X. euvesicatoria 

using X. perforans-derived bacteriocins (Hert et al., 2005; Hert et al., 2009).  

 

Recent studies have re-examined the distinctions between these four species. 16s rRNA analysis 

reveals that X. euvesicatoria and X. perforans are more related to each other than to X. 

vesicatoria and X. gardneri, but still indicated that X. euvesicatoria and X. perforans are separate 

species (Jones et al., 2004; Potnis et al., 2011). However, later taxonomic analyses of these 

species indicate that these two Xanthomonads could be considered a single species. Multi-locus 

sequence analysis, DNA-DNA hybridizations, and average nucleotide identity studies conducted 

by Constantin et al. suggested that X. perforans should be merged with X. euvesicatoria 

(Constantin et al., 2016). To add further complication, some bacterial spot strains show evidence 

of horizontal gene transfer and recombination-mediated evolution (Jibrin et al., 2018). Further 

research is necessary to resolve the phylogeny between X. euvesicatoria and X. perforans. 

 

Pattern Triggered Immunity 

The first line of defense in the plant immune system is known as Pattern Triggered Immunity 

(PTI). Microbe-Associated Molecular Patterns (MAMPs) are molecules that often are essential 

for growth and survival of the microbe, and thus can be highly conserved. Plant cells use cell 

surface pattern recognition receptors (PRRs) to recognize MAMPs (Zipfel, 2014). Upon PRR 

recognition of a cognate MAMP, the PRR is activated and triggers intracellular signals that 

includes kinase phosphorylation cascades, production and release of reactive oxygen species 

(ROS), and calcium bursts, ultimately leading to the expression of primary immune response 
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genes (Li et al., 2016). Through MAMP recognition, PTI protects plants from a broad range of 

possible pathogens. 

 

The best characterized example is the MAMP flagellin, which is the major protein component of 

bacterial flagella. The specific peptide region designated flg22 is the specific MAMP ligand that 

is recognized by the broadly-conserved PRR called FLS2 (Chinchilla et al., 2006). Another 

flagellin peptide region, designated flgII-28, is a MAMP recognized by FLS3, a PRR found in 

many solanaceous plants such as potatoes, tomatoes, and peppers (Hind et al., 2016).  

 

PRRs and MAMP Interactions 

The interplay between microbial MAMPs and plant PRRs constitute a significant part of 

selective evolutionary pressures in both pathogens and their host plants. Because PRRs recognize 

specific sequences or structures in MAMPs, mutations in those MAMP regions can prevent the 

plant immune system from detecting the pathogen. For pathogens, selection pressure will favor 

mutations that prevent MAMP recognition but do not impede pathogenicity. For plants, PRRs 

that have evolved flexibility in the MAMP recognition sites may be able to recognize variations 

of target MAMPs. Because avoiding recognition is so crucial to successful bacterial infections, 

the DNA sequences encoding some MAMPs can be highly variable. 

 

Effector Triggered Immunity 

Plants have additional defenses to protect against disease-causing microbes. Many bacteria, 

including bacterial spot Xanthomonads, have a type III secretion system, where a syringe-like 

protrusion from the bacteria can penetrate through the plant cell and ‘inject’ type III effector 
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proteins (T3Es) directly into the cytosol. For many Xanthomonas species, one important class of 

effector proteins are Transcription Activator-Like (TAL) effectors, which function as 

transcription factors inside the host cell. Once translocated into the cytosol, these TAL effectors 

target promoter regions of genes inside the host nucleus, thus affecting genes involved in 

immune response as well as general cellular housekeeping functions, and ultimately increasing 

host susceptibility to disease (White, 2016). If the plant recognizes these effector proteins inside 

the cytosol using resistance genes (R genes), Effector Triggered Immunity (ETI) occurs; this 

mode of plant resistance is more robust and occurs much faster than the immunity conferred by 

PTI. One component of ETI is the hypersensitive response (HR), which leads to programmed 

cell death of the infected plant cells and restriction of pathogen growth at the site of infection. 

 

Research Objectives 

The overall objective of this research was to study genes and gene products involved in plant-

pathogen interactions for bacterial species in the genus Xanthomonas. An RNA-seq analysis was 

carried on X. cucurbitae to identify genes important to infection on cucurbit plants. In addition, a 

RAD-seq analysis was used to characterize genetic clusters in X. cucurbitae isolates collected 

throughout the Midwestern United States. Finally, a comparative genomics approach was used to 

screen for novel MAMPs in X. euvesicatoria and X. perforans, the causal agent of bacterial spot 

disease on tomato and pepper plants. 
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CHAPTER 2:  

 

VIRULENCE CHARACTERIZATION AND POPULATION GENETICS ANALYSES 

OF XANTHOMONAS CUCURBITAE 

 

ABSTRACT 

RNA-seq and RAD-seq analyses were carried out to assess genetic and phylogenetic 

characteristics of X. cucurbitae, a non-vascular plant pathogen commonly found throughout US 

Midwestern commercial pumpkin fields. Analysis of the X. cucurbitae transcriptome in growth-

promoting versus host-mimicking conditions revealed many differences in expression of genes 

involved in cellular processes related to infection and metabolism. Under host-mimicking 

conditions, we observed increased expression in genes involved in virulence responses, such as 

type II cell wall-degrading enzymes and type III effector proteins and system genes. We also 

noted downregulation of genes involved in key homeostatic processes, indicative of alterations 

that are often observed when pathogens switch from growth to virulence phases. Analysis of our 

RAD-seq data revealed clear stratifications of X. cucurbitae populations throughout the 

Midwestern US. These population clusters were separated geographically, indicating little 

genetic admixture throughout our sampled population of X. cucurbitae isolates.  

 

INTRODUCTION 

Xanthomonas cucurbitae is a plant pathogen that infect members of the cucurbit plant family 

worldwide. X. cucurbitae was first isolated in 1926 in New York (Bryan, 1926), and since then 

has been identified all over the world, infecting various economically important cucurbit plants 

such as pumpkin, squash, and watermelon, among others (Liu et al., 2016). X. cucurbitae 

infection is characterized by symptoms on the leaves and fruits of its cucurbit host plants. 
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Cucurbit leaves infected with bacterial spot exhibit small lesions beige in color that are 

surrounded by yellow halos; these lesions eventually cover large areas of infected leaves as the 

infection progresses (Ravanlou and Babadoost, 2015). Symptoms on the fruit of infected 

pumpkin include lesions and necrotic areas across the surface (Ravanlou and Babadoost, 2015). 

In addition, these lesions and necrotic spots allow entryways for secondary infections by outside 

bacteria and fungi, leading to further decay of infected fruit (Liu et al., 2016). 

 

In recent years, X. cucurbitae has become a large threat to pumpkin production in the United 

States (US) (Zhang et al., 2018). Illinois ranks first among US states in terms of annual pumpkin 

production, accounting for approximately 90% of processing pumpkin production nationwide 

(USDA, 2019). In commercial fields throughout Illinois, bacterial spot infection frequently 

occurs and has been estimated to cause anywhere between 3% and 90% yield losses (Babadoost 

and Ravanlou, 2012). X. cucurbitae has been found throughout the Midwestern US as well as 

globally in other cucurbit production areas, indicating a clear need to study the pathogen and 

develop stronger crop management practices against this disease. While copper-based chemical 

sprays have been widely used to combat X. cucurbitae infection, their efficacy is limited and 

they present a risk of fomenting the development of copper-resistant strains due to selection 

pressures. Hence, more information is needed to develop more effective management strategies 

against bacterial spot of cucurbits.  

 

Plant pathogens utilize an array of strategies to successfully infect and colonize their hosts. In 

gram-negative species such as those found in the Xanthomonas genus, bacteria have evolved 

specialized machinery such as the type II and type III secretion systems that increase their 
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pathogenicity or virulence (Costa et al., 2015). The type II secretion system secretes molecules 

and proteins from the periplasm of the bacteria towards the extracellular space; these molecules 

include toxins, adhesins, and tissue-degrading enzymes like cellulase and protease (Ciancotto et 

al., 2017). The type III secretion system injects effector proteins from the bacteria directly into 

the host cell, where they can affect host processes and increase the virulence of pathogen 

infection. Furthermore, some Xanthomonas species contain Transcription Activator-Like (TAL) 

effector proteins that can enter the cell nucleus and manipulate gene expression. The array of 

type III effectors that a plant pathogen possesses has a large effect on pathogen phenotypes such 

as host range and recognition by host plants (Escalon et al., 2013). Therefore, knowledge of 

pathogenicity factors is useful for developing durable disease resistance in major crop plants 

(Potnis et al., 2015, Zhang and Coaker, 2017). 

 

While bacterial leaf spot is a widespread plant disease that affects cucurbits worldwide, no 

studies have been done previously to characterize the underlying genetic structure or molecular 

interactions of the pathogen X. cucurbitae. In this study we utilize two techniques, RNA 

sequencing (RNA-seq) and restriction site-associated DNA sequencing (RAD-seq), to 

understand more about X. cucurbitae on the molecular and genetic level.  

 

RNA-seq is a powerful technique for transcriptomic profiling based on short next-generation 

sequencing (NGS) reads. It has a large variety of demonstrated applications for biological 

studies, including showing differences in overall gene expression between genotypes and 

determining differentially expressed genes over time (Kogenaru et al., 2012, Socquet-Juglard et 

al., 2013). In plant pathogen studies, RNA-seq is a useful tool for determining pathogenic gene 
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expression, leading to a deeper understanding of pathogen behavior at the transcriptomic level 

(Kim et al., 2016). In this study, we grew X. cucurbitae cultures in vitro using host-mimicking 

media and evaluated different gene expression using RNA-seq to identify genes important for 

pathogenicity and infection.  

 

Population genetics analyses have been used for many years to determine genetic variation and 

evolutionary forces acting upon a pathogen (Linde, 2010). These studies can uncover many 

aspects of the evolutionary history of the pathogen, such as the spread of important pathogenic 

genes as well as the lineages that develop due to spatial and temporal isolation (Chien et al., 

2019, Restrepo et al., 2004). This information is important for the development of crop 

protection strategies and breeding programs (Trujillo et al., 2014). In this study, we generated 

double digested RAD-seq libraries of 81 isolates of X. cucurbitae collected throughout the 

Midwestern US and performed population genetics analyses to identify and characterize genetic 

clustering of the isolates.  

 

MATERIALS AND METHODS 

RNA extraction and preparation 

RNA was extracted using E.Z.N.A. total RNA kit (Omega Bio-tek, Norcross, GA, USA) from 

bacteria grown on nutrient-sufficient peptone-sucrose (PS) or Hrp-inducing (XVM2) 

(Wengelnik, Marie et al. 1996) media for 24 hrs prior to harvesting. Ribosomal RNA was 

removed with the Ribo-Zero rRNA Removal Kit for Gram-Negative Bacteria and libraries were 

prepared using the TruSeq Stranded mRNA Library Prep (Illumina). Paired end 250 bp reads 

were sequenced using the MiSeq Nano V2 platform and yielded 985,288 reads.  
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Aligning RNA-seq reads 

Read quality was checked using FastQC and adapters were trimmed using Cutadapt (version 2.0) 

(Martin 2011). We used an unpublished reference genome of X. cucurbitae strain ATCC 23378 

for RNA-seq read alignments. A reference genome index of X. cucurbitae was generated using 

the alignment tool STAR (version 2.7) (Dobin, Davis et al. 2013) with the parameter of 

genomeSAindexNbases = 8. Reads were aligned to the genome index using options 

alignIntronMax 1 and outSAMtype BAM. featureCounts (version 1.6.4)  (Liao, Smyth et al. 

2013) was used to count mapped reads for genomic features on the X. cucurbitae reference 

genome.  

 

Differential expression analysis 

The R package EdgeR (Robinson, McCarthy et al. 2010) was used to perform differential 

expression analysis. Genes were considered differentially expressed if the absolute value of log-

fold change was greater than 1.5, and the Benjamini-Hochberg adjusted P-value was less than 

0.05 after EdgeR analysis. Functional and pathway analysis was carried out using the DAVID 

Functional Annotation platform (Huang, Sherman et al., 2009, Huang, Sherman et al., 2009). 

Figures were made using R packages ggplot2 (version 3.1.1) (Wickham 2009) and pheatmap 

(version 1.0.12). 

 

X. cucurbitae RAD library preparation 

 

Based on the information provided by our collaborators (Liu, 2015), 81 bacterial isolates used in 

this analysis were collected from commercial pumpkin fields in the North Central Region (NCR) 

during 2012-2013. In addition, the reference strain X. cucurbitae ATCC 23378 was included in 
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this study.  Bacterial isolates were cultured on Laurie Bertani agar (LB) in Petri plates and plates 

were incubated in dark at 24 ± 1°C for 48 hrs. One loop of bacterial cells from a colony on LB 

plate was transferred into a centrifuge tube and suspended in 1 ml of sterile distilled water 

(SDW). Bacterial DNA was extracted using FastDNA™ Spin Kits (MP Biomedicals, Solon, 

OH) according to the manufacturer’s instruction for a double-digest RAD-seq analysis (Peterson 

et al., 2012). Restriction endonucleases MspI (New England BioLabs, #R0106T) and SacI (New 

England BioLabs Inc., Ipswich, MA) were used to digest DNA fragments. Digested DNA 

fragments for each isolate were ligated to adapter 1 and adapter 2 each with indexed barcodes 

(Table 2.1).  

 

Barcoded DNA fragments for each individual isolate were PCR amplified, and size selection 

using gel electrophoresis was used to confirm that digestion and ligation were performed 

correctly. DNA fragments with lengths between 200 and 500 bp were excised from the agarose 

gel, and DNA was recovered using Wizard SV gel and PCR CleanUp system (Promega 

Corporation, Madison, WI) according to the manufacturer’s instruction. The DNA libraries for 

the 82 X. cucurbitae isolates were pooled and submitted to the High-Throughput Sequencing and 

Genotyping Unit of the Biotechnology Center at the University of Illinois, Urbana-Champaign. 

Sequencing runs were performed on one flow cell lane for Illumina HiSeq2000 using 100 bp 

single-end reads. 

 

Generating RAD loci 

 

RAD-seq analysis was carried out according to the protocol established by Rochette and 

Catchen, 2017. Initial quality of the sequencing runs was checked using FASTQC (version 

0.11.2) software. Sample reads were demultiplexed using the process_radtags tool in STACKS 



19 

 

(version 2.5) (Catchen et al., 2013) using default parameters. Using process_radtags, low quality 

reads and reads missing either barcodes or RAD cut-sites were filtered out during 

demultiplexing. Filtered reads were then aligned to X. cucurbitae strain ATCC 23378 using 

default parameters in BWA-MEM (version 0.7.17) (Li et al., 2009). Alignment files were 

assessed using the flagstats function as part of the SAMtools suite (version 1.1) (Li et al., 2009). 

isolates Iowa 384 and Iowa 385 were removed from the study due to poor alignments with the 

reference genome; The 79 remaining X. cucurbitae strains collected throughout the Midwestern 

US, plus strain ATCC 23378, aligned more than 80% of reads to the reference genome. The 

remaining filtered reads of these 80 X. cucurbitae strains were assembled into loci and genotyped 

by the reference-based Stacks pipeline, ref_map.pl. 79913 SNP loci were seen from Stacks using 

the populations program. Populations was then run with the following parameters: --smooth, -R 

.5, --genepop, --phylip, --structure, --write-single-snp, --ordered-export, resulting in 3,548 SNP 

loci kept. 

 

Population genetics analyses 

To analyze phylogenetic and genetic structure of the X. cucurbitae populations, we used 

principal component analysis, maximum likelihood phylogenetic inference, and Bayesian 

clustering. Genetic clusters and cluster membership probabilities were computed using 

STRUCTURE (version 2.3.4) (Pritchard et al., 2000). To estimate K, we searched from K=2 to 

K=15 with 10 replicates; 10,000 burnin reps and 5,000 after burnin reps was used for each 

replicate, with admixture allowed. An optimum K was computed using Structure Harvester (Earl 

and vonHoldt, 2012), and a Structure plot for K=3 were generated using Structure Plot 

(Ramamasy et al., 2014). For Illinois substructure analysis, we searched from K=2 to K=7. 
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Cluster membership probability analysis was carried out identically to the whole population 

analysis. A maximum likelihood phylogenetic inference tree was built using concatenated SNP 

data derived from populations. IQTree (version 1.6.12) (Nguyen et al., 2015) was used to infer 

an ML-tree using the parameters auto and ultrafast bootstrap inferences = 10000. Using auto, 

K2P+ASC was determined to be the best-fit model. The resulting consensus tree was visualized 

in Figtree (version 1.4.4). PCA was performed using the dudi.pca function within the R package 

adegenet (version 2.1.2) (Jombart, 2008) and visualized using R package factoextra (version 

1.0.7). 

 

RESULTS 

RNA-seq analysis reveals genes important for infection 

Differential gene expression was analyzed between cultures of the X. cucurbitae strain ATCC 

23378 grown on nutrient-sufficient PS media or host-mimicking XVM media. We observed 441 

genes that were differentially expressed between the two treatments; using the PS media 

treatment as a control, 296 genes were downregulated in XVM media, while 145 genes were 

upregulated (Figure 2.1A-B). We observed a variety of genes that were differentially expressed 

under host-mimicking conditions. Many genes found to be upregulated in host-mimicking media 

included virulence and pathogenicity factors (Figure 2.1C). We observed an increase in gene 

expression for type II secreted proteins such as extracellular proteases and cellulases as well as 

an exoglucanase (1,4-beta-cellobiosidase) encoded by the gene cbhA (Table 2.2). Type III 

secretion system genes and type III effector proteins were also more highly expressed in cultures 

grown in host-mimicking media (Table 2.3). In addition, we observed upregulation in genes for 

motility, chemotaxis, and some cell membrane transporters, all of which are cellular processes 
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important for pathogen virulence (Figure 2.1C). Genes related to sulfur metabolism were 

upregulated as well, likely due to the high sulfur concentration in XVM media (Table 2.4). In 

contrast, genes related to general stress response, as well as other cellular processes and 

metabolism genes, were downregulated under host-mimicking conditions. 

 

The log-fold gene expression patterns observed in one replicate for the nutrient-sufficient control 

treatment varied considerably from the other two replicate samples, as well as compared to the 

host-mimicking samples (Figure 2.2). While FASTQC verified all sequencing data to be high 

quality, it is possible that there were other mitigating factors that impacted sample collection or 

processing, or the alignment and quantification of reads. Upon further investigation, we found an 

overrepresentation of ribosomal RNA reads in our abnormal control replicate compared to other 

samples in the study, indicating failure of complete rRNA depletion during library preparation. 

Nevertheless, results for differential gene expression were consistent between the other replicate 

samples for each treatment, and analysis using all samples resulted in identification of several 

hundred genes that were significantly altered in their gene expression between treatments. 

 

DAVID analysis yielded gene enrichment groups similar to observed in Figure 2.1. This study 

uses the first reference quality X. cucurbitae genome, ATCC 23378, annotated using the NCBI 

Prokaryote Genome Annotation Pipeline. Since there was no published reference genome for X. 

cucurbitae at the time of analysis, the DAVID gene database was not able to map all 

differentially expressed genes towards enrichment groups. Regardless, the DAVID analysis was 

able to find significant enrichment groups for sulfur metabolism, sulfur assimilation, amino acid 
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synthesis, glycoside hydrolases and enzymes, and outer membrane receptor and transporters 

(Table 2.4). 

 

Population structures and phylogenetic analysis of X. cucurbitae  

Isolates of X. cucurbitae were taken from many commercial pumpkin and gourd farms 

throughout the Midwestern United States (Figure 2.3). For our study, an optimum K of 3 was 

determined for X. cucurbitae based on delta K and mean log probabilities (Table 2.5). Michigan, 

Wisconsin, and Iowa strains built a single population cluster, along with the reference strain from 

New York. Ohio and Indiana formed a separate cluster, and Illinois formed a population cluster 

with Kansas. Interestingly, we observed possible substructures as K increased: at K greater than 

or equal to 5, Kansas began to form its own distinct population cluster, while Illinois separated 

into multiple cluster groupings (Figure 2.4). This is likely due to the diversity of sampling 

locations within the state of Illinois (Figure 2.3). To follow up on this observation, further 

STRUCTURE analysis was performed on Illinois strains, separating individuals by sampling 

location.  An optimum K of 2 was observed, with select isolates from Keenes, Illinois, clustered 

separately from the rest of Illinois strains (Table 2.6). 

 

Maximum likelihood trees were built using RAD loci generated from stacks. An unrooted tree 

was generated to visualize the relationships between X. cucurbitae strains isolated from different 

sampling locations (Figure 2.5). Multiple soft polytomies were observed across the tree; more 

genetic data may be required to resolve these polytomies at a higher resolution. South Charleston 

and Elmwood were found to have identical alignments; therefore, we computed our tree with 

those populations as a single group. Regardless, two distinct clades were observed in our 
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phylogenetic tree, separating Iowa, Wisconsin, and Michigan strains from Illinois, Kansas, Ohio, 

and Indiana strains (Figure 2.5).  

 

PCA clustering revealed similar trends as our other analyses based on RAD loci. X. cucurbitae 

strains generally clustered near individuals taken from the same sampling location (Figure 2.6). 

Illinois strains again were the most diverse grouping of X. cucurbitae strains, separating from 

other populations on both PC1 and PC2 axes. The separation of Iowa, Wisconsin, and Michigan 

strains from the rest of our individuals mirror results seen in our phylogenetic tree, showing clear 

genetic differences between X. cucurbitae strains. 

  

DISCUSSION 

Plant pathogens undergo many transcriptional changes during periods of invasion and 

colonization of host tissues. Behavioral changes in organisms can be understood at the molecular 

level by analyzing the transcriptome in response to new environmental factors; studying the 

transcriptome under different conditions can elucidate which genes are important to the infection 

process. In this study, we compared the transcriptome of X. cucurbitae under nutrient-sufficient 

and host-mimicking conditions to observe cellular changes during infection. We observed 

significant upregulation in predicted cell-wall degrading enzymes such as glucanases, cellulases, 

and proteases. These upregulated proteins show that, like other species of plant pathogenic 

Xanthomonas, X. cucurbitae uses a variety of enzymes secreted by the type II secretion system 

during infection (Ciancotto et al., 2017). Whether or not these enzymes are necessary for 

pathogenicity or virulence remains to be tested, and future studies into these questions will allow 
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a greater understanding of the enzyme arsenal X. cucurbitae deploys during infection (Tayi et al., 

2016). 

 

cbhA is one enzyme found to be significantly upregulated in X. cucurbitae when grown under 

host-mimicking conditions. cbhA encodes a 1,4-beta-cellobiosidase enzyme that is regularly 

observed in vascular species of Xanthomonas such as X. oryzae pv. oryzae and X. campestris pv. 

campestris, where it serves an important role for invading vascular tissues enriched in cellulose 

like xylem cells (An et al., 2020). In addition, genome sequences from non-vascular species of 

Xanthomonas such as X. oryzae pv. oryzicola and X. sacchari have been observed to not encode 

cbhA. Hence, it is unusual for the nonvascular pathogen X. cucurbitae to both possess a cbhA 

gene and for us to observe  upregulation of these gene during conditions mimicking host 

infection. Since other Xanthomonas species have been observed to break the boundaries between 

vascular and non-vascular methods of infection (Mensi et al., 2014), it is possible that X. 

cucurbitae acquired this enzyme as an adaptation to infecting cucurbit hosts. Further studies are 

needed to ascertain the role of cbhA in X. cucurbitae pathogenicity on pumpkin plants, as well as 

tracing its evolutionary origin.  

 

Many predicted type III effector proteins were found to be upregulated under host-mimicking 

conditions. These predicted effectors include AvrBs2, HpaA, and several Xop and Hop family 

effectors, which are well-characterized genes involved in plant pathogen virulence (Kearney and 

Staskawicz, 1990, Li et al., 2015, Lorenz et al., 2008. White et al., 2009). Interestingly, the one 

TAL effector predicted in the X. cucurbitae genome, tal1, was not differentially expressed, with 

a log-fold change of -0.276. The type III effector repertoire present within species of 
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Xanthomonas has been observed to vary between species, pathovars. and even different strains, 

likely due to phenomena such as horizontal gene transfer and homologous recombination (Jibrin 

et al., 2018). Since effector repertoires can widely vary between strains of Xanthomonas, 

studying type III effectors in genetically distinct isolates of X. cucurbitae could potentially reveal 

key virulence determinants among isolates and track the spread of important or novel virulence 

factors. 

 

Evolutionary forces are important factors impacting the relationships between the host and the 

pathogen. With the rise of high-throughput sequencing, we can better understand the effects of 

these evolutionary forces and use in silico-derived insights to develop stronger crop protection 

strategies. In our analysis, we obtained 3,548 RAD loci using a stringent cutoff that required a 

locus to be found in at least 50% of individual isolates to be considered. Our data shows clear 

differences in genome content between geographically isolated strains of X. cucurbitae, with 

little genetic admixture overall. STRUCTURE plots reveal little overlap between individuals 

across different regions, and phylogenetic tree construction shows large genetic distances 

between two regional clusters. Gene flow in X. cucurbitae may be at a low rate due to its main 

vector of transmission, as rain splashes and wind dispersal may not be able to effectively 

disseminate X. cucurbitae far enough to mingle with geographically distant populations 

(McDonald and Linde, 2002). This may explain why there are clearly delineated populations of 

X. cucurbitae throughout the Midwestern US region. To further support that theory, 

geographically close isolates tended to cluster together. While pumpkin production is highest in 

Illinois, farms in other states are smaller scale, and mostly grown for ornamental, recreational, or 

cooking purposes. We observed clustering in both PCA space and the phylogenetic tree among 
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Iowa, Michigan, and Wisconsin isolates, all states that are in close geographic contact with each 

other. Similarities between Indiana and Ohio isolates were also observed. Kansas and Illinois 

isolates tended to cluster together, but we found that as predicted K increased, Kansas isolates 

trended to become their own population, while Illinois isolates broke down into two sub-

populations. Overall, there seems to be little gene flow between strains at both the state level as 

well as within individual states. While our study was informative in assessing the diversity of X. 

cucurbitae, whole-genome sequencing may further resolve polytomies present in our dataset as 

well as provide a higher resolution to perform population genetic analyses.  

 

CONCLUSIONS 

Genomic analyses such as RNA-seq and RAD-seq are powerful tools in studying plant 

pathogens. Here, we uncovered transcriptional differences between X. cucurbitae cultures grown 

under nutrient-sufficient and host-mimicking conditions. We observed significant differences 

between these transcriptomic profiles, mainly involving genes related to bacterial virulence and 

pathogenicity. Also, we used genomic data from 80 total bacterial strains to generate population 

genetics analyses for the endemic cucurbit pathogen X. cucurbitae. We observed differences in 

genetic structure between different sampling locations and revealed the diversity of X. cucurbitae 

strains throughout the Midwestern US. Due to the decreasing costs of whole-genome sequencing, 

future studies could utilize entire genome sequences from representative isolates to resolve the 

phylogenetic relationships between X. cucurbitae isolates and to understand the complexity of 

the Midwestern US X. cucurbitae population at a deeper resolution. Overall, further genomic 

studies of X. cucurbitae strains would be helpful in determining the breadth of diversity within 

this pathogen and inform us regarding future crop protection strategies to combat this disease. 
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TABLES AND FIGURES 

Table 2.1. X. cucurbitae isolates and corresponding barcode adaptors used for restriction 

associated DNA sequence analysis (RAD-seq). Isolates were collected from Jack O'Lantern 

(JOL), processing pumpkins (PP), or winter squash (S) cultivars. The isolates indicated in red 

(IA_3_384 and IA_4_385) were removed from the final analysis due to poor alignment of 

sequences to the reference genome. 

 

Isolate State 

Field Location 

(City, County) 

Year 

Collected Plant 

Adaptor 1 

Sequence 

Adaptor 2 

Sequence 

IA_1_380 IA Wever, Lee 2013 JOL GCGT ACTTGA 

IA_2_382 IA Wever, Lee 2013 JOL TGCGA ATCACG 

IA_3_384 IA Wever, Lee 2013 JOL TGCGA CGATGT 

IA_4_385 IA Wever, Lee 2013 JOL TGCGA TTAGGC 

IA_5_386 IA Wever, Lee 2013 JOL TGCGA TGACCA 

IA_6_3881 IA Wever, Lee 2013 JOL TGCGA GCCAAT 

IA_7_389 IA Wever, Lee 2013 JOL TGCGA CAGATC 

IA_8_390 IA Wever, Lee 2013 JOL TGCGA ACTTGA 

IL_21_3241 IL Belleville, St. Clair 2013 JOL AGTA ACTTGA 

IL_22_3251 IL Belleville, St. Clair 2013 JOL CAGA ATCACG 

IL_23_3751 IL Elmwood, Peoria 2013 S CAGA CGATGT 

IL_5_185 IL Huntley, McHenry 2013 JOL CTCC GCCAAT 

IL_6_222 IL Keenes, Wayne 2013 JOL CTCC CAGATC 

IL_7_225 IL Keenes, Wayne 2013 JOL CTCC ACTTGA 

IL_8_226 IL Keenes, Wayne 2013 JOL TGCC ATCACG 

IL_9_228 IL Keenes, Wayne 2013 JOL TGCC CGATGT 

IL_10_2301 IL Keenes, Wayne 2013 JOL TGCC TTAGGC 

IL_11_231 IL Keenes, Wayne 2013 JOL TGCC TGACCA 

IL_12_232 IL Keenes, Wayne 2013 JOL TGCC GCCAAT 

IL_13_2341 IL Keenes, Wayne 2013 JOL TGCC CAGATC 

IL_14_236 IL Keenes, Wayne 2013 JOL TGCC ACTTGA 

IL_15_2381 IL Keenes, Wayne 2013 JOL AGTA ATCACG 

IL_3_138 IL Malta, DeKalb 2013 JOL CTCC TTAGGC 

IL_4_139 IL Malta, DeKalb 2013 JOL CTCC TGACCA 

IL_16_307 
IL 

Pontoon Beach, 

Madison 2013 JOL AGTA CGATGT 

IL_17_3081 
IL 

Pontoon Beach, 

Madison 2013 JOL AGTA TTAGGC 
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Table 2.1. (cont.) 

 

Isolate State 

Field Location 

(City, County) 

Year 

Collected Plant 

Adaptor 1 

Sequence 

Adaptor 2 

Sequence 

IL_18_3101 
IL 

Pontoon Beach, 

Madison 2013 JOL AGTA TGACCA 

IL_19_318 
IL 

Pontoon Beach, 

Madison 2013 JOL AGTA GCCAAT 

IL_20_3212 
IL 

Pontoon Beach, 

Madison 2013 JOL AGTA CAGATC 

IL_1_1221 IL Princeville, Peoria 2013 PP CTCC ATCACG 

IL_2_123 IL Princeville, Peoria 2013 PP CTCC CGATGT 

IN_1_332 IN Brookston, White 2013 JOL CGCTT ATCACG 

IN_2_333 IN Brookston, White 2013 JOL CGCTT CGATGT 

IN_3_334 IN Brookston, White 2013 JOL CGCTT TTAGGC 

IN_4_336 IN Brookston, White 2013 JOL CGCTT TGACCA 

IN_5_337 IN Brookston, White 2013 JOL CGCTT GCCAAT 

IN_6_338 IN Brookston, White 2013 JOL CGCTT CAGATC 

IN_7_339 IN Brookston, White 2013 JOL CGCTT ACTTGA 

IN_8_340 IN Brookston, White 2013 JOL TCACC ATCACG 

IN_9_341 IN Brookston, White 2013 JOL TCACC CGATGT 

IN_10_3441 IN Brookston, White 2013 JOL TCACC TTAGGC 

IN_11_345 IN Brookston, White 2013 JOL TCACC TGACCA 

IN_12_346 IN Brookston, White 2013 JOL TCACC GCCAAT 

IN_13_347 IN Brookston, White 2013 JOL TCACC CAGATC 

IN_14_348 IN Brookston, White 2013 JOL TCACC ACTTGA 

IN_15_349 IN Brookston, White 2013 JOL CTAGC ATCACG 

KS_1_430 
KS 

Courtland, 

Republic 2013 S CAGA ACTTGA 

KS_2_433 
KS 

Courtland, 

Republic 2013 S AACT ATCACG 

KS_3_4551 KS Norway, Republic 2013 JOL AACT CGATGT 

KS_4_456 KS Norway, Republic 2013 JOL AACT TTAGGC 

KS_5_4581 KS Norway, Republic 2013 JOL AACT TGACCA 

KS_6_4591 KS Norway, Republic 2013 JOL AACT GCCAAT 

KS_7_460 KS Norway, Republic 2013 JOL AACT CAGATC 

KS_8_461 KS Norway, Republic 2013 JOL AACT ACTTGA 

KS_9_462 KS Norway, Republic 2013 JOL GCGT ATCACG 

KS_10_4631 KS Norway, Republic 2013 JOL GCGT CGATGT 

KS_11_466 KS Norway, Republic 2013 JOL GCGT TTAGGC 

KS_12_467 KS Norway, Republic 2013 JOL GCGT TGACCA 

KS_13_4681 KS Norway, Republic 2013 JOL GCGT GCCAAT 

KS_14_470 KS Norway, Republic 2013 JOL GCGT CAGATC 

MI_1_358 MI 

Benton Harbor, 

Berrien 2013 JOL CTAGC CGATGT 
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Table 2.1. (cont.) 

 

Isolate State 

Field Location 

(City, County) 

Year 

Collected Plant 

Adaptor 1 

Sequence 

Adaptor 2 

Sequence 

MI_2_359 MI 

Benton Harbor, 

Berrien 2013 JOL CTAGC TTAGGC 

ATCC 23378 NY 

Ithaca, Thompkins 

(Bryan 1930) 1926 S CGAT CAGATC 

OH_1_2561 OH 

South Charleston, 

Clark 2013 JOL CAGA TTAGGC 

OH_2_261 OH 

South Charleston, 

Clark 2013 JOL CAGA TGACCA 

OH_3_2831 OH 

South Charleston, 

Clark 2013 JOL CAGA GCCAAT 

OH_4_2871 OH 

South Charleston, 

Clark 2013 JOL CAGA CAGATC 

WI_1_2001 WI Janesville, Rock 2013 JOL CTAGC TGACCA 

WI_2_201 WI Janesville, Rock 2013 JOL CTAGC GCCAAT 

WI_3_292 WI Janesville, Rock 2013 JOL CTAGC CAGATC 

WI_4_2031 WI Janesville, Rock 2013 JOL CTAGC ACTTGA 

WI_5_2051 WI Janesville, Rock 2013 JOL ACAAG ATCACG 

WI_6_206 WI Janesville, Rock 2013 JOL ACAAG CGATGT 

WI_7_2071 WI Janesville, Rock 2013 JOL ACAAG TTAGGC 

WI_8_2081 WI Janesville, Rock 2013 JOL ACAAG TGACCA 

WI_9_2091 WI Janesville, Rock 2013 JOL ACAAG GCCAAT 

WI_10_2101 WI Janesville, Rock 2013 JOL ACAAG CAGATC 

WI_11_2111 WI Janesville, Rock 2013 JOL ACAAG ACTTGA 

WI_12_2121 WI Janesville, Rock 2013 JOL CGAT ATCACG 

WI_13_2131 WI Janesville, Rock 2013 JOL CGAT CGATGT 

WI_14_2141 WI Janesville, Rock 2013 JOL CGAT TTAGGC 

WI_15_219 WI Janesville, Rock 2013 JOL CGAT TGACCA 
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Table 2.2. Differentially expressed predicted type II cell wall-degrading enzymes (CWDE). 

Protein IDs and predicted CWDEs were generated by the NCBI Prokaryote Genome Annotation 

Pipeline. LogFC and P-values were generated by the differential gene expression R package 

EdgeR. 

Protein ID Predicted CWDE logFC P-Value 

EBN15_16330 endo-1,4, β-D-glucanase 2.122322871 0.000084 

EBN15_16380 endo-1,4, β-D-glucanase 3.460835471 0.000000656 

EBN15_14660 1,4-beta-cellobiosidase 2.369366016 0.000744918 

EBN15_10500 polygalacturonase 1.62114129 0.005630933 

EBN15_11860 extracellular proteases 2.359483444 0.0000166 

 

 

Table 2.3. Differentially expressed predicted type III effector proteins. Protein IDs and predicted 

effector proteins were generated by the NCBI Prokaryote Genome Annotation Pipeline. LogFC 

and P-values were generated by the differential gene expression R package EdgeR. 

Protein ID Predicted Effector logFC P-Value 

EBN15_00540 AvrBs2 2.37024304 0.00029867 

EBN15_16965 HpaA 2.556234889 0.00108774 

EBN15_11365 XopE2 1.703475429 0.00200625 

EBN15_13550 XopL 1.872431048 0.00035353 

EBN15_17030 XopAD 2.143826874 0.0000808 

EBN15_17060 HopAE 2.26402211 0.0000640 
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Table 2.4. Summary of DAVID Analysis for Differentially Expressed Genes (DEGs). Gene 

functional annotation terms are indicated as “Key Terms/Categories” and the number of X. 

cucurbitae ATCC 23378 genes that grouped into different clusters based on these terms are 

indicated. An enrichment score ≥ 1.3 indicates significantly overrepresented terms as compared 

to the whole-genome proportion of genes within each category. 

Cluster Key Terms/Categories Number of Genes Enrichment Score 

1 Sulfur metabolism; sulfate assimilation 8 3.21 

2 Amino acid biosynthesis 15 1.86 

3 
Glycoside hydrolase; starch and sugar 

metabolism 
12 1.80 

4 Membrane; receptor; transport 19 1.63 

 

Table 2.5. Bayesian clustering results for X. cucurbitae isolates collected throughout the 

Midwestern US. The calculated optimal K is indicated in bold. 

K Reps Mean LnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| ΔK 

2 10 -17099.35 511.1908 NA NA NA 

3 10 -11713.75 8.2243 5385.6 3585.47 435.963 

4 10 -9913.62 488.8794 1800.13 600 1.227297 

5 10 -8713.49 555.7292 1200.13 1864.04 3.354223 

6 10 -9377.4 1517.902 -663.91 19605.48 12.91617 

7 10 -29646.79 64847.33 -20269.39 25450.56 0.392469 

8 10 -24465.62 50998.11 5181.17 10608.94 0.208026 

9 10 -8675.51 229.0476 15790.11 16028.3 69.97803 

10 10 -8913.7 458.8687 -238.19 443.87 0.967314 

11 10 -9595.76 1514.06 -682.06 553.42 0.365521 

12 10 -9724.4 2088.304 -128.64 11184.96 5.356001 

13 10 -21038 39540.1 -11313.6 4972.21 0.125751 

14 10 -27379.39 59253.28 -6341.39 13418.11 0.226453 

15 10 -47138.89 81645.24 -19759.5 NA NA 
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Table 2.6. Bayesian clustering results for X. cucurbitae isolates sampled within Illinois. 

Calculated optimal K is in bold. 

K Reps Mean LnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| ΔK 

1 10 -7634.63 4.6819 NA NA NA 

2 10 -5911.26 2.806 1723.37 602.82 214.8306 

3 10 -4790.71 4.094 1120.55 535.64 130.8347 

4 10 -4205.8 7.9846 584.91 332.81 41.68165 

5 10 -3953.7 71.0455 252.1 2175.87 30.62645 

6 10 -5877.47 3498.045 -1923.77 3322.3 0.949759 

7 10 -4478.94 1663.46 1398.53 NA NA 
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Figure 2.1. Transcriptional profile of X. cucurbitae 23378 identifies genes differentially 

expressed (DEGs) under host-mimicking conditions compared to nutrient-sufficient conditions. 

(A) Volcano plot showing gene expression vs. significance on the x and y axes, respectively. 

Vertical dashed lines indicate a log-fold change ≥ 1.5 or ≤ -1.5, and above the horizontal dashed 

line indicate a P-value < 0.05. Pink and turquoise represent genes with upregulated and 

downregulated expression, respectively. (B) Total numbers of upregulated and downregulated 

differentially expressed genes (DEGs). (C) DEGs categorized by predicted function. The number 

of genes grouped within each category is indicated. 

A            B 

 

C 
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Figure 2.2. Heatmap showing differences in gene expression between X. cucurbitae cultures 

grown in nutrient-sufficient (PS) or host-mimicking (XVM) conditions. Scaled counts of reads to 

genomic features derived from FeatureCounts are shown. Euclidian distance clusters on rows 

and columns were generated by pheatmap. Legend indicates whether each bacterial replicate was 

grown on nutrient-sufficient (green) or host-mimicking (pink) media. 
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Figure 2.3. Map of sampling sites where X. cucurbitae samples were isolated. Data provided by 

Google Maps (n.d.). 
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Figure 2.4. STRUCTURE clustering at (A) K = 3, (B) K= 4, and (C) K = 5 for X. cucurbitae 

isolates collected from the Midwestern US. Labeled boxes underneath each plot signifies 

grouping by the state in which each isolate was sampled. 
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Figure 2.5. Unrooted maximum likelihood tree for X. cucurbitae isolates from the Midwest. 

Branch labels show bootstrap support for 10,000 ultrafast bootstrap replicates from IQTREE; 

only bootstrap values ≥ 60 are shown. Each tip label signifies sampling site location and the 

number of isolates taken from each sampling site. Colors represent different states while the 

scale bar indicates maximum phylogeny pairwise distances. South Charleston, Ohio, and 

Elmwood, Illinois, were found to have identical concatenated SNP sequences 
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Figure 2.6. Principal components analysis (PCA) visualization of X. cucurbitae strains isolated 

throughout the Midwestern US. Each color represents a different state. Results of the first two 

PCs are shown. 
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CHAPTER 3 

 

UTILIZING TAJIMA’S D TO DISCOVER NEW MICROBE-ASSOCIATED 

MOLECULAR PATTERNS IN XANTHOMONAS 

  

ABSTRACT 

The coevolution between plants and pathogens constitute a significant proportion of evolutionary 

history for both host and parasite. The decreasing costs of whole-genome sequencing and the 

proliferation of publicly available sequencing data has led to the creation of large collections of 

genome sequences, and computational methods can be employed to look for genetic signatures 

of evolution. In this study, we used the population genetics test statistic Tajima’s D to identify 

potential genes involved in plant-pathogen interactions between tomato and Xanthomonas 

euvesicatoria and X. perforans, the causal agents of bacterial spot disease of tomato. We 

assessed the usefulness of this method and experimentally confirmed alleles of known microbe-

associated molecular patterns (MAMPs). While we were not yet able to identify any new 

MAMPs, we demonstrated the utility of population genetic statistics such as Tajima’s D for the 

identification of genes that may be important for pathogen recognition by the host immune 

machinery. 

INTRODUCTION 

Bacterial spot of tomato (Solanum lycopersicum) and pepper (Capsicum annum) is a major 

disease caused by four species in the bacterial genus Xanthomonas, including X. euvesicatoria, 

X. perforans, X. vesicatoria, and X. gardneri (Jones et al., 2004). Bacterial spot can lead to major 

crop losses in warm, humid regions and is characterized by dark lesions on the fruit as well as 

necrotic areas on stems and leaves (Potnis et al., 2015). It can spread across a field through wind 
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and water droplets and often can be transferred via contaminated farm equipment (McInnes et 

al., 1988). Pathogenic Xanthomonads can also survive on crop debris and residues for long 

periods of time, making bacterial spot difficult to fully control (Jones et al., 1986). Farmers 

utilize common cultural practices, including crop rotations, seed treatments, and equipment 

decontaminations, to limit the spread of the disease (Ritchie et al., 2000). Additionally, copper-

based chemical sprays have been widely used to control bacterial spot (Behlau et al., 2011); 

however, they are most effective prior to establishment of the disease. Unfortunately, the rise of 

copper-resistant and copper-tolerant Xanthomonads have reduced the effectiveness of copper 

sprays, prompting research into other avenues of disease control (Behlau et al., 2011). 

 

Pattern-triggered immunity (PTI) is the first set of immune defense response in plants and can 

stave off infection from many plant pathogens. Cell-surface pattern recognition receptors (PRRs) 

recognize conserved microbial features known as microbe-associated molecular patterns 

(MAMPs) (Zipfel, 2014). When these PRRs recognize a cognate MAMP, the signal transduction 

pathway for pattern-triggered immunity is activated, with the recognition of MAMPs triggering 

intracellular signaling that includes calcium bursts, kinase phosphorylation cascades, and 

production and release of reactive oxygen species (ROS), ultimately leading to the expression of 

primary immune response genes (Yu et al, 2017). While PTI responses can protect plants from a 

broad range of diseases, many factors influence their effectiveness. Variations in either MAMPs 

or PRRs can reduce or prevent the recognition of plant pathogens (Bhattarai et al., 2016, Vetter 

et al., 2016), and some pathogens attempt to bypass the PTI system by deploying effector 

proteins that suppress PTI response (Spoel et al., 2012).  
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Because PTI is an important mechanism for disease resistance, characterizing new PRR and 

MAMP relationships is a promising avenue for durable disease resistance. In controlled 

laboratory conditions, it has been observed that transferring the PRR EFR from Arabidopsis 

thaliana to susceptible Nicotiana benthamiana and Solanum lycopersicum can confer broad PTI 

resistance against certain pathogenic bacteria (Lacombe et al., 2010). Similarly, immune system 

defenses can be primed when plants encounter disease resistance inducers (Thakur et al., 2013). 

While the discovery rate of new MAMPs has increased in recent years, much of the research on 

PTI interactions focuses on well-characterized MAMPs and PRR receptors, such as flg22 and 

FLS2 (Felix et al., 2004) and EF-Tu and EFR (Zipfel et al., 2006). The flg22 region of flagellin 

is widely recognized in the plant kingdom by the cognate plant recognition receptor FLS2 

(Gómez-Gómez and Boller, 2000, Zipfel et al., 2004). In addition, the flgII-28 region of flagellin 

is recognized by the FLS3 receptor present in many solanaceous plants such as potato, tomato, 

and pepper (Hind et al., 2016).  

 

Screening for non-neutrally evolving genes products has been successfully used to identify new 

MAMPs in plant pathogens (Mott et al., 2016, McCann et al, 2012). Because MAMPs are 

usually associated with the fitness of the pathogen, beneficial MAMP mutations are 

hypothesized to occur at low frequencies; these mutations allow the pathogen to evade PRR 

detection, while not impacting pathogen fitness. The statistic Tajima’s D (Tajima, 1989) has 

been used to identify MAMPs in the plant pathogen Ralstonia solanocearum (Eckshtain-Levi et 

al., 2018). In population genetics, purifying selection indicates the removal of deleterious alleles 

in a population, and subsequently the fixation of a single allele. Balancing selection indicates the 

maintenance of multiple alleles in a population. Since the Tajima’s D statistic screens for both 
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purifying and balancing selection, it is a powerful tool in identifying potential MAMPs.  We 

utilized a comparative genomics approach using Tajima’s D to identify novel MAMPs in X. 

euvesicatoria and X. perforans, and tested peptide sequences related to those proteins using 

oxidative burst assays to confirm their ability to induce an immune response in tomato leaves. 

 

MATERIALS AND METHODS 

Core genome building  

X. euvesicatoria and X. perforans were chosen for this study due to their close genetic 

relatedness. Genomic information for 41 X. euvesicatoria and 44 X. perforans strains was 

accessed and downloaded from NCBI (summarized in Table 3.1). All Xanthomonas genome 

assemblies present in the study were uploaded to the Bacterial Isolate Genome Sequence 

Database (BIGSdb; https://pubmlst.org/software/database/bigsdb/) (Jolley and Maiden, 2010), 

and each Xanthomonas species as separately analyzed by the GenomeComparator tool. For this 

analysis, the core genome was defined as genes present in 90% of strains within each species. X. 

euvesicatoria strain 85-10 and X. perforans strain 91-118 were used as reference genomes in 

GenomeComparator for X. euvesicatoria and X. perforans strains, respectively. Coding 

sequences from each assembly were extracted and used for comparison against sequences from 

other isolates. Pairwise all-vs-all blastn searches against other genomes was used to determine 

orthologs, which were defined as having a minimum 70% percent identity and 50% alignment 

coverage, and word-size of 20.  

 

 

 

https://pubmlst.org/software/database/bigsdb/
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Tajima’s D and GO term analysis 

Core genome orthologs were aligned for each of the two Xanthomonas species using MAFFT. 

Resulting alignment files were imported into R and Tajima’s D values were calculated using the 

R package ‘pegas’. Benjamini-Hochberg adjusted P-values were calculated with a false 

discovery rate of 0.05 (Benjamini and Hochberg, 1995). The RefSeq Protein identifiers for each 

core genome sequence were extracted from GenomeComparator and translated into UniProt 

identifiers using the UniProt Retrive/ID mapping tool. Subsequent UniProt identifiers were 

submitted to the Web Gene Ontology Annotation Plot (WEGO; http://wego.genomics.org.cn/) 

(Ye et al., 2018) tool to visualize GO term annotations of non-neutrally evolving genes.  

 

Peptides 

Predicted MAMP residues of OmpW were designed from the OmpW protein sequence of X. 

perforans 91-118 (Shwartz et al., 2015). Peptide sequences were synthesized (Genscript), with 

all peptides having greater than 80% purity. Peptide preparations for OmpW1-Allele 1, OmpW2-

Allele 1, and OmpW2-Allele 2 were dissolved in water, while OmpW1-Allele 2 was initially 

solved in a small volume (i.e., 50 µl) of 1 M HCl prior to addition of water. Additional peptides 

included the consensus flg22 (Genscript), flg22 from X. euvesicatoria strain 85-10, flgII-28 from 

Pseudomonas syringae pv. tomato strain T1 (Cai et al., 2011), consensus flgII-28 from 

Xanthomonas species, and flgII-28 from X. euvesicatoria strain 85-10. 

 

Plant conditions and luminol based ROS assay 

Six-week-old tomato plants (Solanum lycopersicum pv. Moneymaker) were grown in a 

greenhouse with daily cycles of 16 hours light/8 hours dark at 25°C day/21°C night 

http://wego.genomics.org.cn/
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temperatures. Leaf discs were punched using a #2 cork borer and placed into wells of a 96-well 

luminometer plate containing 200 μL distilled water, then incubated at room temperature for 16 

hours in the dark. After water removal, 100 µl of a solution containing 34 µg/ml luminol, 20 

µg/ml horseradish peroxidase, and peptide solutions at the concentrations indicated, was placed 

into each well. The plate was placed into a Molecular Devices Filtermax F5, where the Relative 

Light Units (RLU) for each well was measured every three minutes for a total of 16 

measurements over 45 minutes. 

 

RESULTS 

Publicly available X. euvesicatoria and X. perforans genomes with less than 200 scaffolds were 

chosen for core genome analysis. 41 X. euvesicatoria strains and 44 X. perforans strains were 

analyzed for each respective species (Table 3.1). Using the BIGSdb GenomeComparator tool, 

the core genome of X. euvesicatoria included 4,361 genes, while the X. perforans core genome 

contained 4,217 genes.  

 

Orthologs identified using GenomeComparator were aligned and the gene alignments were 

extracted to calculate the Tajima’s D values for each gene in the core genomes. Although many 

genes in X. euvesicatoria and X. perforans were found to be non-neutrally evolving, it is possible 

that many of these significant genes could be false positives. Therefore, Benjamini-Hochberg 

adjusted P-values were calculated to control for false discovery rate. P-values for Tajima’s D 

were calculated according to a beta distribution, and a Benjamini-Hochberg correction was 

applied to control for false positives. 
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In general, a Tajima’s D value less than -2 suggests significant purifying selection, and a value 

larger than 2 indicates significant balancing selection. The average Tajima’s D value for X. 

euvesicatoria was -2.15 with a standard deviation of 0.61 (Figure 3.1A). Similarly, the average 

Tajima’s D value for X. perforans was -1.58 with a standard deviation of 1.45 (Figure 3.1B). 

After adjusting the P-values, a single gene was found to have a significantly positive Tajima’s D 

value in X. euvesicatoria, while 2,731 genes had significantly negative Tajima’s D values. In X. 

perforans, 98 genes were found to have significantly positive Tajima’s D values, while 521 

genes had significantly negative Tajima’s D values. Both core genomes for X. euvesicatoria and 

X. perforans were found to be trending towards purifying selection. 

 

To observe trends in the types of genes that were identified to be evolving non-neutrally, we 

extracted GO Terms from the list of significant X. perforans genes and grouped them according 

to their Cellular Component and Molecular Function domains (Figure 3.2). Interestingly, most 

significant genes had Gene Ontology (GO) Terms related to the structure of the cell, the cell 

membrane, or cellular components. In addition, many genes with significant Tajima’s D values 

are known to be involved in virulence and pathogenicity, such as secretion systems machinery, 

TonB-dependent receptors, and secreted proteases (Blanvillain et al., 2007, Figaj et al., 2019). 

Thus, use of Tajima’s D statistic seems to be an effective tool in identifying genes involved in 

plant-pathogen interactions. 

 

Bacterial flagellin is a highly abundant protein that functions as a MAMP in plants through 

perception of the peptides flg22 and flgII-28 (Gómez-Gómez and Boller, 2000, Cai et al., 2011). 

In X. euvesicatoria, the Tajima’s D value for flagellin was significantly negative at -3.47, while 
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X. perforans flagellin had a negative but non-significant Tajima’s D value of -2.46. Looking at 

allele frequencies within our Xanthomonas populations, 39 out of 41 X. evuvesicatoria and all X. 

perforans strains shared identical flg22 peptide sequences (Table 3.2). However, the X. 

euvesicatoria flgII-28 allele shared by the majority of our X. euvesicatoria strains differed from 

the consensus allele present in our X. perforans population and generally present in many 

Xanthomonas species (designated ‘flgII-28 X. spp’). 39 out of 41 of our X. euvesicatoria 

contained a lysine (K) at the 18th amino acid position, while 42 out of 44 of our X. perforans 

strains contained an asparagine (N) (Table 3.3).   

 

To evaluate the accuracy of the Tajima’s D statistic and to test for differences in MAMP 

perception between flgII-28 alleles, we used a luminol-based oxidative burst assay to measure 

rates of ROS production, which is a well-known component of the plant PTI response. Peptide 

sequences of flg22 and flgII-28 from X. euvesicatoria strain 85-10, the Xanthomonas consensus 

sequence of flgII-28, and control peptides for flg22 and flgII-28 were assayed for PTI elicitation 

(Figure 3.3). The flg22 allele present in X. euvesicatoria and X. perforans strains did not elicit a 

PTI response in S. lycopersicum cultivar Moneymaker leaves, compared to the flg22 consensus 

peptide (Figure 3.3A and C). The flgII-28 peptide from the Xanthomonas consensus sequence 

(flgII-28 X. spp) elicited an oxidative burst response in tomato plants similar to that elicited by 

the flgII-28 control peptide from Pseudomonas syringae pv. tomato T1; however, the flgII-28 

peptide corresponding to the allele present in the majority of X. euvesicatoria strains did not 

cause an oxidative burst response (Figure 3.3B and C).  

 



52 

 

Non-neutrally evolving genes in X. perforans were analyzed to identify possible MAMP 

candidates, specifically those with significantly positive values, indicating that these genes may 

be undergoing balancing selection. The gene encoding the outer membrane protein OmpW was 

found to have a significantly positive Tajima’s D value of 3.09. OmpW is a porin comprised of 

an 8-stranded beta-barrel, and its purported function is to transport hydrophilic molecules across 

the outer membranes of bacteria (Hong et al., 2006). OmpW is widely conserved across gram-

negative bacteria and may be involved in many processes related to homeostasis; it is also a 

largely abundant protein found in the cell membrane across Xanthomonas species (Watt et al., 

2005). While its specific biochemical function has yet to be determined, OmpW has been shown 

to be important for salinity tolerance (Xu et al., 2005, Wu et al., 2006, Fu et al., 2018), iron 

transport (Catel-Ferriera et al., 2015), and bacterial survival during environmental stress (Xiao et 

al., 2016). Furthermore, it has been shown that the OmpW homolog in members of the 

Burkolderia cepacia complex cause immunogenic MAMP responses in mammalian cells 

(McClean et al., 2016). 

 

Alignments of the OmpW alleles within our X. perforans population showed the presence of two 

major alleles. Several of the allelic differences corresponded to amino acid residue changes in 

the surface-exposed regions of OmpW, specifically in the 2nd and 3rd extracellular loop structures 

(Figure 3.4). Because the side chain properties of these amino acids differed greatly (Table 3.4), 

these alleles could have structural variations, potentially leading to changes in PRR perception if 

these regions contained MAMP sequences. The location of these allelic differences, in tandem 

with a significant Tajima’s D value, indicated to us that OmpW was a strong candidate for 

MAMP testing. Peptides containing the 2nd and 3rd extracellular regions of OmpW were 
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synthesized for both alleles and were tested in the luminol-based oxidative burst assay. At 

concentrations of 1 µM, none of the four OmpW peptides induced a ROS response in leaf disks 

from Moneymaker tomato plants in any of three independent experiments (Figure 3.5A and C). 

A fourth experiment was carried out using 10 µM of OmpW peptides, and similar results were 

obtained (Figure 3.5B). 

 

DISCUSSION 

Bacterial spot is a worldwide threat to tomato and pepper production, and growers have used a 

variety of methods to prevent or manage the disease (Potnis et al., 2015). Due to the ubiquity of 

the disease, researchers have a significant interest in understanding more about the interactions 

between bacterial spot causing Xanthomonads and their hosts. With the rise of bioinformatics 

methods and high-throughput sequencing, large-scale comparative genomics analyses have led to 

the discovery of new MAMPs involved in plant-pathogen interactions (Mott et al., 2016, 

McCann et al., 2012, Eckshtain-Levi et al., 2018). We utilized a similar approach to characterize 

the core genomes of X. euvesicatoria and X. perforans, identify non-neutrally evolving genes, 

and select promising MAMP candidates for testing using tomato plants. While our laboratory 

experiments were not able to confirm any novel MAMPs, our results allow for a deeper 

understanding of the genomes for these pathogens and the MAMP flgII-28 in Xanthomonas. 

 

We observed a small reduction in core genome size compared to the average number of genes in 

a Xanthomonas genome. The average gene count for a X. euvesicatoria genome from the public 

NCBI genome database is 4,723 genes, while it is 4,689 genes for X. perforans. At a 90% core 

genome threshold, our core genome sizes are 92% and 90% of the average genome sizes for X. 
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euvesicatoria and X. perforans, respectively, indicating that most genes are conserved between 

strains for each species. The smaller percentage of core genome coverage in X. perforans is 

likely due to the greater genetic variability found in the species (Jibrin et al., 2018). In addition, 

both core genomes in our study are trending towards purifying selection, with more non-

neutrally evolving genes exhibiting a significantly negative Tajima’s D value than a positive 

value. While many of the genes identified by Tajima’s D may not be directly involved in MAMP 

perception, they may instead be involved in other aspects of plant-pathogen interactions, be 

under other strong selection pressures, or be associated with genes that have strong selection 

pressures. The size of our X. euvesicatoria and X. perforans core genomes, as well as their 

measures of selection pressure, are indicative of highly specialized pathogens, which agrees with 

the small and specialized host range of these bacteria.  

 

We set a cutoff for Xanthomonas genome assemblies consisting of no more than 200 scaffolds, 

in order to avoid the highly fragmented assemblies that likely would be missing several gene 

sequences within the gapped regions. The choice of strains in our studies directly impacts the 

characteristics of the core genome and adding different genome assemblies of these species 

would greatly impact the composition of the core genome (Roach et al., 2019). Indeed, studies 

such as Roach et al. determine very different core and pan genomes when using different sets of 

Xanthomonas genome assemblies. Future comparative genomics studies of Xanthomonas would 

benefit greatly from using a diversity of high-quality genomes to capture the natural diversity of 

bacterial spot causing Xanthomonads. 
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We used a luminol-based oxidative burst assay to determine the recognition of different 

Xanthomonas flg22 and flgII-28 peptides in Moneymaker tomato plants. The most prevalent 

flg22 sequence found in our populations of  X. euvesicatoria and X. perforans strains was not 

perceived by tomato leaves, indicating that this allele may provide a fitness advantage for the 

bacteria through evasion of FLS2-mediated PTI responses; similar findings were also observed 

for Arabidopsis thaliana plants treated with flg22 peptides from Xanthomonas campestris pv. 

campestris strains (Sun et al., 2006). While the majority of strains in both Xanthomonas 

populations had the same flg22 sequence, X. euvesicatoria and X. perforans strains had distinct 

flgII-28 sequences. The flgII-28 peptide present in most X. perforans strains is shared with many 

other Xanthomonas species and was found to cause PTI response in tomato. In contrast, a single 

amino acid difference present in the X. euvesicatoria flgII-28 sequence prevents induction of 

oxidative burst responses in tomato leaves treated with the peptide. This flgII-28 epitope likely 

evades recognition by its cognate PRR FLS3, and furthermore suggests that, unlike X. perforans 

strains, most X. euvesicatoria strains should be able to completely avoid flagellin-based 

recognition by tomato plants. The significant Tajima’s D value of flagellin in X. euvesicatoria 

indicates evidence of purifying selection within that species. It is possible that this advantageous 

flgII-28 allele can be transferred from X. euvesicatoria into X. perforans, shown by evidence of 

homologous recombination between strains of these two species (Jibrin et al., 2018). 

 

OmpW was a strong MAMP candidate in our core genome dataset, as it had a significant 

Tajima’s D value of 3.09 in X. perforans. Additionally, it is a highly abundant transmembrane 

protein present in the outer membranes of bacteria, and variable amino acid residues are present 

on extracellular domains of the OmpW proteins. However, OmpW peptide treatments failed to 
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induce an oxidative burst response in tomato leaves. This outcome mirrors that of OmpW in 

another Xanthomonas species, Xanthomonas campestris pv. campestris (Watt et al., 2006). In 

that study, whole OmpW proteins were isolated from two-dimensional gels and used in an 

oxidative burst assay, but it failed to elicit responses in tobacco cell cultures. While OmpW was 

identified as a gene undergoing significant balancing selection, this selection pressure may not 

necessarily result from plant-pathogen interactions. Instead, OmpW may function in other 

essential processes that are under selection pressure, or alternatively OmpW may be genetically 

or functionally linked to other cellular factors that are under selection.  

 

CONCLUSIONS 

We established that while the widespread allele of flgII-28 present in X. euvesicatoria can evade 

the FLS3 receptor, the allele present in X. perforans and other Xanthomonas species is still 

perceived by the PRR. We also demonstrate that MAMPs can be identified using the statistic 

Tajima’s D, although functional confirmation of putative MAMPs remains a time-consuming 

and difficult process. Utilizing population genomic screens to identify novel MAMPs has been 

shown for other plant pathogens such as R. solanacearum (Eckshtain-Levi et al., 2018), but R. 

solanacearum a large and varied host range, while Xanthomonas euvesicatoria and X. perforans 

have a host range limited to a subset of solanaceous plants including tomato and pepper. While 

OmpW from these species may not elicit a PTI response in tomato plants, this does not preclude 

using signatures of balancing selection to successfully identify novel MAMPs s (Chen et al., 

2019). The quality of genomes assemblies used has a direct effect on core genome building and 

subsequent Tajima’s D calculations. A diversity of high-quality genome assemblies, and 

subsequent gene alignments, can lead to a clearer understanding of selection pressures observed 
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in Xanthomonas. Further studies into the effectiveness of population genetics statistics like 

Tajima’s D will help develop effective and more reliable pipelines for computationally 

identifying novel MAMPs.  
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TABLES AND FIGURES 

Table 3.1. List of Xanthomonas genomes used in the study. Information in the table includes the 

species, strain identifier, level of genome assembly, number of contigs or scaffolds, and NCBI 

Assembly accession identifier. X. euvesicatoria is organized alphabetically by strain identifier, 

then X. perforans. 

Species 
Strain 

identifier 

Assembly 

Level 
# Scaffolds 

GenBank 

assembly accession 

X. euvesicatoria 181 Scaffold 107 GCA_001010095.1 

X. euvesicatoria 199 Scaffold 110 GCA_001008975.1 

X. euvesicatoria 206 Scaffold 133 GCA_001008815.1 

X. euvesicatoria 376 Scaffold 128 GCA_001009045.1 

X. euvesicatoria 455 Scaffold 137 GCA_001009055.1 

X. euvesicatoria 490 Scaffold 132 GCA_001009075.1 

X. euvesicatoria 515 Scaffold 118 GCA_001008825.1 

X. euvesicatoria 526 Scaffold 178 GCA_001008835.1 

X. euvesicatoria 586 Scaffold 120 GCA_001008885.1 

X. euvesicatoria 679 Scaffold 109 GCA_001008895.1 

X. euvesicatoria 681 Scaffold 104 GCA_001008905.1 

X. euvesicatoria 683 Scaffold 108 GCA_001009095.1 

X. euvesicatoria 684 Scaffold 157 GCA_001009125.1 

X. euvesicatoria 685 Scaffold 124 GCA_001009135.1 

X. euvesicatoria 689 Scaffold 143 GCA_001009205.1 

X. euvesicatoria 695 Scaffold 110 GCA_001009215.1 

X. euvesicatoria BRIP38997 Contig 112 GCA_003993175.1 

X. euvesicatoria BRIP39016 Contig 96 GCA_003993195.1 

X. euvesicatoria BRIP62390 Contig 137 GCA_003993345.1 

X. euvesicatoria BRIP62391 Contig 131 GCA_003993335.1 

X. euvesicatoria BRIP62392 Contig 183 GCA_003993725.1 
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Table 3.1 (cont.) 

 

Species 
Strain 

identifier 

Assembly 

Level 
# Scaffolds 

GenBank 

assembly accession 

X. euvesicatoria BRIP62395 Contig 168 GCA_003993315.1 

X. euvesicatoria BRIP62396 Contig 161 GCA_003993275.1 

X. euvesicatoria BRIP62400 Contig 131 GCA_003993685.1 

X. euvesicatoria BRIP62403 Contig 144 GCA_003993675.1 

X. euvesicatoria BRIP62425 Contig 163 GCA_003993265.1 

X. euvesicatoria BRIP62438 Contig 99 GCA_003993255.1 

X. euvesicatoria BRIP62441 Contig 135 GCA_003993655.1 

X. euvesicatoria BRIP62555 Contig 139 GCA_003993605.1 

X. euvesicatoria BRIP62757 Contig 149 GCA_003993615.1 

X. euvesicatoria BRIP62858 Contig 144 GCA_003993595.1 

X. euvesicatoria BRIP62959 Contig 129 GCA_003993225.1 

X. euvesicatoria BRIP63464 Contig 140 GCA_003993185.1 

X. euvesicatoria DAR26930 Contig 101 GCA_003993445.1 

X. euvesicatoria DAR34895 Contig 69 GCA_003992805.1 

X. euvesicatoria F4-2 Scaffold 123 GCA_001009165.1 

X. euvesicatoria G4-1 Scaffold 112 GCA_001009245.1 

X. euvesicatoria H3-2 Scaffold 108 GCA_001009175.1 

X. euvesicatoria L3-2 Scaffold 152 GCA_001009255.1 

X. euvesicatoria LMG12749 Contig 54 GCA_001401675.2 

X. euvesicatoria LMG930 
Complete 

Genome 
5 GCA_001908795.1 

X. perforans BRIP62383 Contig 61 GCA_003993135.1 

X. perforans BRIP62384 Contig 77 GCA_003993115.1 

X. perforans BRIP62386 Contig 80 GCA_003993575.1 

X. perforans BRIP62397 Contig 45 GCA_003993535.1 

X. perforans BRIP62398 Contig 57 GCA_003993095.1 

X. perforans 
BRIP62398

9 
Contig 70 GCA_003993105.1 
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Table 3.1 (cont.) 

 

Species 
Strain 

identifier 

Assembly 

Level 
# Scaffolds 

GenBank 

assembly accession 

X. perforans BRIP62404 Contig 109 GCA_003993055.1 

X. perforans BRIP62405 Contig 76 GCA_003993035.1 

X. perforans BRIP63262 Contig 98 GCA_003993015.1 

X. perforans BRIP63565 Contig 72 GCA_003993025.1 

X. perforans BRIP63666 Contig 59 GCA_003992975.1 

X. perforans CFBP 7293 Contig 32 GCA_001976075.1 

X. perforans GEV1001 Contig 78 GCA_001010025.1 

X. perforans GEV1026 Scaffold 70 GCA_001010035.1 

X. perforans GEV1044 Scaffold 82 GCA_001009935.1 

X. perforans GEV1054 Scaffold 85 GCA_001009925.1 

X. perforans GEV1063 Scaffold 93 GCA_001010085.1 

X. perforans GEV2120 Contig 85 GCA_004102205.1 

X. perforans GEV839 Contig 109 GCA_001009475.1 

X. perforans GEV872 Scaffold 80 GCA_001009485.1 

X. perforans GEV893 Scaffold 116 GCA_001009545.1 

X. perforans GEV904 Scaffold 134 GCA_001009795.1 

X. perforans GEV909 Contig 71 GCA_001009825.1 

X. perforans GEV915 Scaffold 70 GCA_001009855.1 

X. perforans GEV917 Scaffold 122 GCA_001009865.1 

X. perforans GEV936 Scaffold 104 GCA_001009845.1 

X. perforans GEV940 Contig 98 GCA_001009885.1 

X. perforans GEV968 Contig 96 GCA_001010015.1 

X. perforans GEV993 Scaffold 69 GCA_001010005.1 

X. perforans LH3 
Complete 

Genome 
5 GCA_001908855.1 

X. perforans NI1 Contig 64 GCA_003136155.1 

X. perforans TB6 Scaffold 148 GCA_001009945.1 
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Table 3.1 (cont.) 

 

Species 
Strain 

identifier 

Assembly 

Level 
# Scaffolds 

GenBank 

assembly accession 

X. perforans Xp10-13 Contig 78 GCA_001009405.1 

X. perforans Xp11-2 Contig 50 GCA_001009445.1 

X. perforans Xp15-11 Contig 63 GCA_001009465.1 

X. perforans Xp17-12 Contig 84 GCA_001009745.1 

X. perforans Xp18-15 Contig 78 GCA_001009765.1 

X. perforans Xp2010 Scaffold 13 GCA_001009785.1 

X. perforans Xp3-15 Contig 93 GCA_001009675.1 

X. perforans Xp4-20 Contig 71 GCA_001009705.1 

X. perforans Xp5-6 Contig 70 GCA_001009365.1 

X. perforans Xp7-12 Contig 65 GCA_001009385.1 

X. perforans Xp8-16 Contig 62 GCA_001009685.1 

X. perforans Xp9-5 Contig 113 GCA_001009395.1 
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Table 3.2. Flg22 peptide sequences used in the study. Red amino acids indicate differences 

between peptides. * indicates alleles also shared by the majority of X. perforans strains. 

Peptide Name Sequence 

flg22 QRLSTGSRINSAKDDAAGLQIA 

flg22 Xe 85-10* QQLSSGKRITSFAVDAAGGAIA 

 

  

Table 3.3. FlgII-28 peptide sequences used in the study. Red amino acids indicate differences 

between peptides. * indicates alleles also shared by the majority of X. perforans strains. 

 

Peptide Name Sequence 

flgII-28 Pst T1 ESTNILQRMRELAVQSRNDSNSSTDRDA 

flgII-28 X. spp* EIGNNLQRIRELSVQSANATNSSTDREA 

flgII-28 Xe 85-10 EIGNNLQRIRELSVQSAKATNSSTDREA 

 

Table 3.4. OmpW peptide sequences used in the study. Red amino acids indicate differences 

between peptides. OmpW peptide sequences were derived from X. perforans 91-118. OmpW-1 

Allele 1 and 2 are found on the 2nd extracellular residue of OmpW. OmpW-2 Allele 1 and 2 are 

found on the 3rd extracellular residue of OmpW. 

Peptide Name Sequence 

OmpW-1 Allele 1 DIALRGLGRVGST 

OmpW-1 Allele 2 DIAIGGLGRVGST 

OmpW-2 Allele 1 FDTDTGGSLAGSTLELD 

OmpW-2 Allele 2 FDTDRGGSLAGSTKELD 
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Figure 3.1. Tajima’s D distributions for the core genome of X. euvesicatoria (A) and X. 

perforans (B). X-axis indicates Tajima’s D values found using the R package pegas, while Y-

axis indicates counts of genes. Dashed line represents the mean Tajima’s D value for each 

species, which were -2.15 for X. euvesicatoria (A) and -1.58 for X. perforans (B).  

 

 

A B
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Figure 3.2. GO terms of genes with significantly positive Tajima’s D values in X. perforans. GO 

terms were derived from Protein IDs and the UniProt Retrieve / ID mapping tool. Groupings of 

Go terms was performed using the Web Gene Ontology Annotation Plot (WEGO) web tool. X-

axis indicates functional characteristics of genes as determined by Gene Ontology classification. 
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Figure 3.3. Oxidative burst produced by S. lycopersicum cv. ‘Moneymaker’ leaf disks treated 

with 100 nM flg22 (A) and flgII-28 (B) peptides listed in Tables 3.2 and 3.3, respectively. Each 

data point represents the mean of four biological replicates (n = 4 plants), with each plant 

represented by the average of four technical replicates. Error bars represent standard deviations. 

Similar results were obtained in three independent experiments, with one representative 

experiment shown here. (C) Total oxidative burst production for each peptide treatment. Each 

bar represents the average total relative light units (i.e., area under the curve) produced for each 

treatment for three independent experiments, with error bars representing the standard error. 

Groups were derived using the post-hoc analysis Tukey’s Test. 
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Figure 3.4. 3D transmembrane view of OmpW. Image from the RCSB PDB (rcsb.org) of PDB 

ID 2F1T (Hong, H., D. Patel, L. Tamm and B. van den Berg) (2006). "The Outer Membrane 

Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel." The Journal 

of Biological Chemistry 281(11): 7568-7577. Blue and red dots designate the cytoplasmic 

membrane and outer membrane respectively. Red colored protein region indicates 

transmembrane region of OmpW, while grey colored protein region indicates extracellular 

regions of OmpW. 

 

 

 

 

 

http://www.rcsb.org/
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Figure 3.5. Oxidative burst produced by S. lycopersicum cv. ‘Moneymaker’ leaf disks treated 

with 1 µM (A) or 10 µM (B) OmpW peptides listed in Table 3.4. Each data point represents the 

mean of four biological replicates (n = 4 plants), with each plant represented by the average of 

four technical replicates. Error bars represent standard deviations. Similar results were obtained 

across three independent experiments in (A), with one representative experiment shown here. A 

single experiment was performed using 10 µM OmpW peptides (B), shown here. (C) Total 

oxidative burst production for each peptide treatment. Each bar represents the average total 

relative light units (i.e., area under the curve) produced for each treatment for three independent 

experiments, with error bars representing the standard error. Significant groups were derived 

using the post-hoc analysis Tukey’s Test. 
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CHAPTER 4 

 

FUTURE DIRECTIONS 

 

Throughout these studies, I have characterized genes important to pathogenicity and virulence in 

X. cucurbitae, the causal agent of bacterial spot disease in cucurbits such as pumpkin, squash, 

and cucumber. In addition, I have discovered genetic clusters between X. cucurbitae isolates 

collected throughout the Midwestern United States. This research represents the first steps in 

characterizing X. cucurbitae on a genomic level and provides a framework for further studies 

regarding the plant pathogen. 

 

In the future, a dual RNA-seq approach can be used to further elucidate the relationship between 

X. cucurbitae and cucurbit host plants. Dual RNA-seq will allow us to study the host response to 

infection in cucurbit plants and determine genes important to defense against bacterial spot 

disease. Dual RNA-seq will also allow us to observe how X. cucurbitae behaves during infection 

in vivo, instead of simulating host cells on host-mimicking media. In addition, collecting dual 

RNA-seq data at different timepoints can be used to monitor genes in both organisms throughout 

the infection process, from initial stages of invasion to eventual host manipulation by the 

pathogen.  

 

The gene cbhA was found to be upregulated in X. cucurbitae grown in host-mimicking 

conditions. Although X. cucurbitae is a non-vascular pathogen, cbhA is a gene largely found only 

in vascular plant pathogenic Xanthomnas species. It is currently unknown how our strain of X. 

cucurbitae acquired this gene, as well as how widespread this gene is throughout the Midwestern 
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US X. cucurbitae population. Future phenotypic and genomic studies regarding this gene should 

be carried out to understand its importance in pathogenicity and virulence.  

 

Further genome wide studies of X. cucurbitae can be carried out to discover the evolutionary 

connections between isolates. While RAD-seq is a useful tool for characterizing regions of a 

genome, whole genome comparisons between isolates can be carried out due to the continually 

lowering costs of whole-genome sequencing. Type II enzymes and type III effectors have a 

direct effect on host specificity and pathogenicity; utilizing whole-genome sequencing to 

compare these repertoires between isolates can uncover the adaptability and pathogenicity of the 

Midwestern US X. cucurbitae population. Whole-genome sequencing can also be used to resolve 

phylogenetic relationships between isolates at a deeper resolution. In addition, using whole-

genome sequencing for core genome and pan genome analyses can determine the diversity of X. 

cucurbitae isolates in the Midwestern US population. 

 

While our studies were not able to discover novel MAMPs in X. euvesicatoria and X. perforans, 

other studies have shown success in using a comparative genomics approach to identifying novel 

MAMPs. Future research using this approach will benefit from using higher quality, more 

diverse genome assemblies, as they will capture more diversity between bacterial populations. 

These higher quality genome assemblies will also increase the power of population genetic 

statistics such as Tajima’s D. While Tajima’s D was an effective statistic for identifying MAMPs 

in our Xanthomonas populations, other population genetics statistics such as Li’s D or dN/dS may 

also provide further insight into non-neutrally evolving genes or gene products.  
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