
c© 2020 Rajgopal

SHORTEST SECURE PATH IN A VORONOI DIAGRAM

BY

RAJGOPAL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Advisor:

Professor Sariel Har-Peled

ABSTRACT

We investigate the problem of computing the shortest secure path in a Voronoi diagram.

Here, a path is secure if it is a sequence of touching Voronoi cells, where each Voronoi cell

in the path has a uniform cost of being secured. Importantly, we allow inserting new sites,

which in some cases leads to significantly shorter paths. We present an O(n log n) time

algorithm for solving this problem in the plane, which uses a dynamic additive weighted

Voronoi diagram to compute this path. The algorithm is an interesting combination of

the continuous and discrete Dijkstra algorithms. We also implemented the algorithm using

CGAL.

ii

To my parents, for their love and support, and Big B, for the music.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor for giving me the opportunity to work on this wonderful

problem and for his patience and support throughout the many difficulties, technical and

otherwise, that arose in the time spent on it. I don’t think I’ve ever come away from meeting

him without feeling that the time to resolving what I didn’t understand had been cut in half

or better.

I would also like to thank all the amazing people that make CGAL (the Computational

Geometry Algorithms Library) what it is and allow us to actually implement algorithms

such as the one in this thesis. I was once one content to see things solely in the mind’s eye,

but seeing them in reality was actually far more satisfying.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 THE ALGORITHM . 3
2.1 Understanding the Problem: The Flowering Process 3
2.2 The Algorithm . 6
2.3 Running Time Analysis . 10

CHAPTER 3 SOME IMPLEMENTATION AND USAGE DETAILS 12

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 14
4.1 Hex Meshes . 14
4.2 Random Meshes . 18
4.3 Illinois Point Set . 22

REFERENCES . 34

v

CHAPTER 1: INTRODUCTION

Motivation. Consider a facility in an environment where other facilities exist. A client

can communicate safely only with its nearest facility. The region where one can safely

communicate with the facility, is the Voronoi cell of this facility. Given two facilities s

and t, consider the problem of creating a safe corridor, where one can safely move from s

and t while still being able to communicate safely with both of them. This might require

inserting new middle facilities, such that the union of the new Voronoi cells (together with

the Voronoi cells of s and t), form a connected set. The natural question is where and how

many sites one needs to use/insert to establish such a reliable connection, see Figure 1.1.

Figure 1.1: Inserting two middle sites is enough. Here we insert both the two endpoints
into the diagram, and two middle sites (i.e., the two red cells). Note, that one can secure
an existing site, instead of inserting a new one – this has the same cost. In this specific
example, if one uses only existing cells, the price is six (the green cells).

Formal problem statement. Let P be a set of n points in the plane, and let V(P) denote

its Voronoi diagram. Two points s, t in the plane can directly communicate safely , if s and

t are “close” to each other. Formally, we require that the cells of s and t are adjacent in the

Voronoi diagram of P ∪{s, t} – geometrically, this corresponds to the existence of a disk that

contains s and t, and no other points of P . Naturally, most points can not communicate

safely. To overcome this, one can insert a set of points Q = {q1, . . . , qν} into the P , such

that q0 = s, qν = t, and in the new diagram V(P ∪Q) the point qi can safely communicate

with qi+1, for all i. It is natural to ask for the minimum size set Q, such that s and t can

communicate safely, via ν − 1 hops. Note, that a site qi might be an existing site – this can

1

be interpreted as securing this site (this cost the same as inserting a new site).

A naive approach is to insert s and t into the initial Voronoi diagram, and compute the

shortest path between them in the resulting dual graph (i.e., the Delaunay triangulation of

P∪{s, t}) – this corresponds to adding all the intermediate nodes in this path to Q. However,

there are natural scenarios, see Figure 1.1, where allowing the sites to be placed arbitrarily

in the plane significantly reduces the number of sites needed. As mentioned earlier, the price

of securing an existing site, or introducing a new site is the same.

The task at hand is thus to compute the maximal regions Ri that can be reached by

inserting i sites, from a starting site s, for all i. The region Ri is a closed connected set

that might have holes. Once the ith level and the Voronoi cell of the target site t share

a boundary, we will have obtained the smallest number of points that need to be inserted

to secure a pathway between the two points. One could then also determine the actual

locations of the points to be inserted.

Our results. We describe how the region of points that can be reached by (say) t insertions

looks like, and to compute it efficiently. We then describe an O(n log n) time algorithm for

computing the shortest such path between two points, using a process that is a variant of

the Dijkstra algorithm. We implemented the algorithm using CGAL, and provide the source

code.

Related results. The basic algorithm is a variant of continuous Dijkstra, a technique that

was used for shortest path algorithms among obstacles, and for shortest path on polyhedral

surfaces in three dimensions [1]. The basic process of inserting points, is similar in nature to

Delaunay refinement [2]. The new algorithm can be viewed as a combination of these two

techniques.

2

CHAPTER 2: THE ALGORITHM

Notations. For a point p and a radius r, let e(p, r) denote the disk of radius r centered

at p. For a set of objects X , in the plane, let V(X) denote the Voronoi diagram of X . For

an object x, let cellx(X) denote the cell of x in the Voronoi diagram of {x} ∪ X .

2.1 UNDERSTANDING THE PROBLEM: THE FLOWERING PROCESS

As an example, consider a point set formed by a hexagonal lattice – see Figure 2.1. Let

q0 = s be a starting site (which is one of the points of the lattice), and assume our purpose

is to reach a site qν = t ∈ P . The site s can communicate directly with all the sites that

are adjacent to its Voronoi cell R0 = cells(P), without requiring the insertion of any middle

sites.

If we insert a new middle site q1, then its cell must touch the cell of R0. Consider such a

location p for a middle site. For the new site of p to be adjacent to R0, after p is inserted,

there must be a point v ∈ R0, such that v is as close (or closer) to p than it is to q0.

This region of influence, where v can be “occupied”, is exactly the disk e(v, ‖s− q0‖). See

Figure 2.1. As such, the allowable region to insert this first site, is

U1 = ∪v∈R0e

(
v, ‖v − q0‖

)
. (2.1)

(Namely, sites inserted outside U1 are not going to be adjacent to R0 in the new Voronoi

diagram.) The set U1 is a union of disks – in this specific case, it is the union of disks placed

at vertices of the original Voronoi diagram, see Figure 2.1.

Let P1 = P \ U1. The region that can potentially be covered by such a single insertion of

a site into U1, belong to the region

R1 =
⋃
p∈U1

cellp(P1), (2.2)

The set R1 contains all the points, in the plane, that are closer to U1, than to any point

in P1. Namely, R1 = cellU1(P1). Any site u ∈ P1 that its Voronoi cell is adjacent to R1 in

V({U1} ∪ P1), can communicate with q0 via the insertion of a single site.

3

p

s
p

v p

U1

Figure 2.1: The hexagonal case.

s

U1

R1

s

U1

R1

U2

s

U1

R1R2

U2

s

U1

R1R2

U2

U3

s

U1

R1R2

U2

U3

R3

Figure 2.2: The flowering process of how the shortest path region grows.

The set R1 is the Voronoi cell of U1 in V(P1 ∪ {U1}). Crucially, the outer boundary of the

region U1 can be described by the boundary of the union of only a finite number of disks.

These disks are precisely those placed at the Voronoi vertices of R0. Indeed, to characterize

the boundary of U1 we first need only consider the disks e(v, ‖v − q0‖) where v lies on the

boundary of R0, ignoring disks in the interior of R0. Then it is clear that among these, only

the disks on the Voronoi vertices of R0, as illustrated in figure Figure 2.3, are required to

describe the boundary of U1. A brief argument for this is as follows: since Voronoi edges

are bisectors of adjacent sites, any disk with its center on an edge (henceforth just called ”a

disk on an edge”) intersects the disks at the endpoints of the edge (i.e. the Voronoi vertices)

exactly at the two sites defining the edge. Since two circles intersect at most at 2 points, the

disks on the edges do not intersect the disks on the vertices anywhere else. Consequently, for

4

any disk on an edge, the two arcs of the disk cut by the sites defining the edge completely

lie inside the disks at the vertices. Taking the union over all edges, the boundary of U1 is

defined completely by the boundary of the disks at the vertices of R0.

As such, we may treat U1 simply as the union of disks at the finitely many vertices of

R0. The boundary of U1 is all that is necessary to accurately compute the boundary of R1

(which may be viewed as a wavefront computed by the algorithm). R1 is then the union of

Voronoi cells in a Voronoi diagram of disks and points. This underlying diagram is therefore

an additive weighted Voronoi diagram, and its boundary edges are portions of hyperbolas

and straight segments. See Figure 2.2.

One concern with inserting only the bounding disks to function as the whole region is the

introduction of artifacts such as holes or ”pockets” that require careful treatment. However,

the existing tools for additive Voronoi diagrams in CGAL allow them to be handled with

relative ease.

Another potential concern is when the region R0 contains a vertex at infinity, i.e. the cell

is unbounded because it is at the edge of the diagram. In this case the circle through the

point at infinity degenerates into two rays which we have to include in the Voronoi diagram.

We avoid this issue by adding bounding points around the input sites to make the input

points be in the interior. Another plausible route would have been to add support for rays

to the AW-Voronoi library in CGAL.

The finiteness argument for the insertion of disks works as long as disks on edges are

covered by disks at the vertices. When one site is itself a disk and the other is a point, disks

on the edges and disks at the vertices still intersect at the point and then somewhere on the

other side of the edge. The coverage of the disks on the edges is no longer complete, and this

creates the previously mentioned issue of pockets, as in Figure 2.4. However, the disks at

the vertices of the ith reachable region still completely cover the boundary of the (i + 1)th

occupied region, allowing us to continue working with an additive weighted Voronoi diagram

throughout.

Formally, let the set Ri be the set reachable by inserting i middle sites starting at s. The

set Ui+1 is the region where one can insert an (i+ 1)th point, qi+1, such that one can form a

connected, safe chain back to s. By the discussion above, Ui+1 can be treated as the union

of finitely many disks at the vertices of Ri, with some additional care. Let Pi+1 = P \ Ui.
The (i+ 1)th occupied region is

Ui+1 = ∪v∈Rie

(
v, d(v, P \Ri)

)
, (2.3)

5

where d(v, P) = minp∈P ‖v − p‖. And the (i+ 1)th reachable region is

Ri+1 =
⋃

p∈Ui+1

cellp(P), (2.4)

As soon as the region Ri+1 shares a boundary with the Voronoi cell of t, one can stop, and

reconstruct the safe path.

pa

pb

v v0 pc

Figure 2.3: Why circles at vertices are enough. Here, suppose we have a portion of a Voronoi

diagram with sites pa, pb and pc. Consider a vertex v on the edge between pa and pb. The

red disk centered at v through pa also passes through pb, as the edge is a bisector. Thus the

arc of red disk from pa to pb on the same side of v0 lies entirely within the blue disk. The

remaining part of the red disk would be covered by a disk at the other endpoint of the edge.

The covering argument would still work when pa is a circle and pb is a point, and the edge

is a hyperbolic arc, but in this case we can only guarantee covering the portion of the disk

on the same side of the arc as the point, pb. The potentially problematic case when both pa

and pb are circles with positive radius never arises in the course of the algorithm.

2.2 THE ALGORITHM

2.2.1 The basic algorithm.

The input is a set P of n points in the plane, and two point s, t ∈ P . The algorithm

initially computes the Voronoi diagram of P , and has a queue Q of sites, which is initially

set to s. A site here is a disk (the initial point is a disk of radius 0, naturally).

The algorithm works in rounds. In each round, it extracts all the sites in the queue, and

inserts them into the current additive weighted Voronoi diagram – these are the outer disks,

whose outer boundary forms the boundary of Ui in the ith round. Next, the algorithm scans

all the inserted sites, and looks at the adjacent Voronoi vertices of their cells. All of the

Voronoi vertices that are outside Ui (how to check for this condition we describe below), are

inserted into the queue to be handled in the next round.

6

Once the wavefront reaches t, the processes stops – or alternatively, we compute this

diagram till the whole plane is covered, and preprocess the resulting map for point location.

What disks to insert. What the algorithm does is that it inserts the disks of Eq. (2.3).

As discussed before, one needs to insert only the disks that have their center on the boundary

of Ri. This boundary is a union of hyperbolic segments. For simplicity and efficiency, we

insert only the vertices of these hyperbolic edges. As illustrated in Figure 2.4, there are

a few different kinds of vertices that appear. For one, the sites of the original unweighted

Voronoi diagram will themselves lie along hyperbolic edges of the additive Voronoi diagram

every time they are part of the boundary of some region Ui. However, sites of the original

diagram are rarely Voronoi vertices of cells in the additive diagram.

The discussion of the earlier section implies that all Voronoi vertices of type ”A” as in

Figure 2.4 are necessary to correctly generate the regions Ui.

However, the insertion of circles causes edges to be created in the additive diagram along

bisectors of adjacent circles. These edges intersect the wavefront at points of type ”B” as in

Figure 2.4. They are equidistant from one undiscovered site of the original diagram and two

adjacent inserted disks. As such, the largest empty circles at these vertices do not actually

participate in defining any boundary Ui, except when these points are also points of type

”A” in degenerate cases. Any choice to include or exclude these points will have no effect

on the correctness of the algorithm. Not inserting these points would reduce the complexity

of the additive Voronoi diagram at every wavefront and may be more efficient in practice.

However, the improvement would not be major and must be weighed against the check to

distinguish between Voronoi vertex types on the wavefront. In an implementation, it is

usually easier in practice to include all Voronoi vertices on the boundary of the regions Ri

without concerning ourselves with the distinction.

Finally, we have the previously anticipated issue of ”pockets” that are behind the front.

Since these pockets can not contribute to the front, and they are shallow – we leave them

behind. Such a pocket is marked in Figure 2.4.

To correctly leave the pockets behind, the algorithm remembers for each site inserted the

layer (i.e., generation) of the propagation it came from. As such, when inspecting a Voronoi

vertex, the algorithm knows the sites that gave rise to it, and their generation. All sites that

are from two or more generations ago are not inserted, thus blocking the wavefront from

propagating backwards.

7

A

B

Figure 2.4: Two generations of disks inserted, and the three kinds of sites that we may

encounter as the algorithm progresses. a) Dark blue points like point ”A” are Voronoi

vertices that actually contribute to the boundary of Ui for some i. They are adjacent to at

least two new sites of the original diagram. b) Light green points like point ”B” are Voronoi

vertices that do not contribute to the boundary, but are harmless to add. They are adjacent

to only one new site of the original Voronoi diagram, and equidistant to two other circles

inserted over the course of the algorithm. c) The light green region between three circles

encircled in red is a ”pocket”. This pocket corresponds to a middle of a hyperbolic edge

from previous generation, which was covered by the inserted disks.

8

Figure 2.5: Reconstructing the shortest path

Reconstructing the shortest path. The basic reconstruction process is illustrated in

Figure 2.5. In the figure, the sites to connect are marked in light blue. Then one iteration of

the flowering process occurs. At this point, it is already the case that the region R1 shares a

boundary with the target cell. The reconstruction step involves first identifying the nearest

vertex of the region R1 to the target site. In the example there are two choices, and we

arbitrarily pick one.

Now, the largest empty circle from this vertex touches the target site and touches (tangent

to) one disk of U1 at some point. This point of tangency is where we insert a point in the

unweighted diagram.

This is justified as points on the boundary of U1 will always just touch some vertex of R0

by definition, and the point we chose will share the Voronoi vertex of the additive diagram

with the target site’s cell (as the target site is the closest site to the Voronoi vertex by

construction), accomplishing the safe connection.

In general, the algorithm proceeds until some vertex of Ri is adjacent to the target site.

9

Then the largest empty circle at that vertex is (conceptually) created, and the point of

tangency to Ui is computed. The point of tangency is inserted to the original diagram. By

the discussion from earlier sections the cell of this point must touch the region Ri−1 at some

Voronoi vertex on its boundary. So we may continually repeat this process until we just

touch some vertex of the region R0, which is the Voronoi cell of the starting site.

In practice, computing the point of tangency is just computing the intersection of the line

joining the centers of two Voronoi vertices with a disk. However to avoid the cost of nearest

neighbor searches we remember for each type ”A” Voronoi vertex the disk that generated it

(during the insertion phase of the algorithm). Then the intersection and backtracking steps

can be done in constant time per point of the optimal solution.

We note that the choice of points to be inserted is not unique. For instance, we could

have chosen any point of the shared edges between Ri and the target cell to start the

backtracking from. However it is convenient to only use vertices of the intermediate additive

Voronoi diagram as the entities we would otherwise have to keep track of would be arcs

rather than points.

2.3 RUNNING TIME ANALYSIS

A point p of the input is active at time i, if it is adjacent to a site inserted in the ith

iteration.

Lemma 2.1. An input point can be active for at most two iterations.

Proof: An input point p is discovered at time i, if its Voronoi cell C in Vi = V({Ui} ∪ (P \ Ui))
is adjacent to the cell of Ui in this diagram.

Informally, once a cell is being discovered, in the next iteration of insertions, disks would

inserted that touch it, and the following iteration it would be blocked from the (wave) front.

Namely, the boundaries of C and Ri intersects, as Ri is the cell of Ui in Vi. As such, p is

on the boundary of Ui+1, or p might be contained in the interior of Ui+1. Indeed, consider

a point q on the common boundary between C and Ri, and consider the disk of radius

‖p− q‖ centered at q, and observe that this disk has p on its boundary, and it is contained

in Ui+1, see Eq. (2.3). But that implies that C is contained in the Voronoi cell of Ui+1 in

Vi+1 = V({Ui+1} ∪ (P \ Ui+1)). This cell is thus Ri+1. Thus, the cell of p might interact

with cells created in Ui, and Ui+1. Clearly, p can not be adjacent to cells inserted in later

iterations. QED

Let ni be the number of the active input points at time i. Since inserting a disk, updating

the Voronoi diagram, and discovering the new Voronoi sites is all done locally, and can be

10

charged to new entities created or deleted, the following is straightforward to verify. It is

critical here that we are inserting sites centered at Voronoi vertices, which we already know

their location – that is, there is no need to perform point-location query for the insertion.

As such, we get the following.

Lemma 2.2. The total running time of the ith iteration, is bounded by O(
∑i+2

j=i−2 nj).

Proof: We only sketch the proof. The quantity stated above bounds the number of sites that

the wavefront might interact with in the ith iteration. In particular, it bounds the number

of sites inserted at time i. By Lemma 2.1, a site is active only for a constant number of

iterations. A new site inserted which is adjacent only to inserted sites, is a pocket, and

the algorithm does not insert it. As such, inserted sites must be adjacent to original input

points. It is easy to verify that an input site can support only a constant number of such

sites around it, which readily implies that while a site is active, only a constant number of

new sites inserted might be charged to it.

This implies by planarity, that the total complexity of the Delaunay triangulation in the

ith iteration is proportional the total complexity of the input points in the adjacent layers,

which implies the claim. QED

Theorem 2.1. The running time of the algorithm is O(n log n).

Proof: Reading the input and computing the Voronoi diagram takes O(n log n) time. By

Lemma 2.2, the total running time of the later stages is proportional to
∑

iO(ni) = O(n).QED

11

CHAPTER 3: SOME IMPLEMENTATION AND USAGE DETAILS

The algorithm was implemented in C++ using CGAL [3]. Specifically, we use the 2D

Apollonius Graphs implementation (which was implemented by Menelaos Karavelas and

Mariette Yvinec), see [4, 5].

The source is available at bitbucket https://bitbucket.org/vrdhrjn2/voronoi insertion.

The repository also include an input file, and a script to run the program on various inputs.

The source code provides functionality to generate point sets and then to run the algorithm

on them. At the end, the results of the algorithm are generated as four pdf files and one txt

file.

The pdf files that are generated are:

1. A file of the initial Voronoi diagram with ”start” and ”end” cells highlighted for the

user.

2. A file showing the BFS path along the Delaunay triangulation, for comparison with

the optimal solution.

3. A file with an optimal sequence of points inserted into the unweighted diagram, real-

izing the safe connection of ”start” and ”end” cells.

4. A file showing the disks inserted, and the state of the underlying additive weighted

Voronoi diagram at termination.

The point sets that are generated are of three types: diagrams of regular hexagonal Voronoi

cells, diagrams of randomly chosen points, and diagrams of points representing the state of

Illinois constructed from census data. The point sets are written into text files for the user

to be able to reuse multiple times.

As discussed in earlier sections, bounding points along the edges of a bounding box of the

point set are added for the underlying additive diagram phase of the algorithm, to ensure no

edges are infinite. The start and end points are chosen by considering a rectangular subset of

points in the interior and choosing the furthest two points among them. Then the algorithm

is run until a path is found safely connecting the two cells.

Potential floating point or degeneracy issues are avoided by adding small perturbations to

the point set as they are inserted into the initial diagram. Radii of the disks being inserted

are also dilated by a very small factor for the same reasons.

We chose not to distinguish between type ”A” and ”B” points in the insertion phase of

the algorithm, but use a generation variable to avoid pockets, as discussed earlier.

12

While we are not reporting the running times, they seem to be near linear, and agree with

the theoretical analysis. To clarify, however, we mean that this is excluding the diagram

construction phases that happen in the very beginning and at the very end of the code, when

drawing the final results. The construction phases do have O(n log n) behavior, as expected

for the construction of unweighted Voronoi diagrams.

We used the CGAL Apollonius Graph hierarchy for the implementation. The provided

library insertion function has two phases - locating a nearest neighbor, and then constructing

a new Voronoi cell by identifying conflict edges, etc. The nearest neighbor location in

our algorithm can theoretically be done in constant time, because all the points we insert

are Voronoi vertices whose adjacent sites are immediately known. However, we did not

bypass the internal nearest neighbor search because the results of using the Apollonius

Graph hierarchy were consistently linear time overall in practice.

13

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION

We finally show in this section the types of point sets generated by our code and typical

results of the application of our algorithm. We will discuss each of the hex, random, and

Illinois point sets separately.

A summary of our experimental results are provided in Figure 4.22.

4.1 HEX MESHES

Throughout the exposition in this thesis we have relied on hexagonal meshes for typical

illustrations of the basic idea of the algorithm.

Regular hexagonal meshes are particularly important in the context of this algorithm,

because they provide a natural configuration for which our algorithm cannot do better than

BFS on the dual graph. Indeed, it might seem that the results in Figure 4.22 disagree, but

that is only because of the cumulative effect of the perturbations we use while reading the

point set adding up to distort the graph just enough to allow our algorithm to create an

improvement.

When the perturbations are not added in to the coordinates in the point set reading

function, the number of points computed by BFS and our algorithm agree exactly, even on

the 90 layer and 120 layer hexagonal meshes. Even with the perturbations, these large point

sets only see improvements of about two points.

Point set generation To generate close to completely regular hexagonal Voronoi dia-

grams, we ask the user to input the number of points to uniformly space out in the horizontal

direction. Then our code generates a roughly square region of roughly n2 points with the

right spacing in both dimensions for the grid to be hexagonal. Here is an example for a grid

with n = 30, and with a ”start” and ”end” cell chosen for the purposes of the algorithm.

14

Figure 4.1: A 30 layer hexagonal grid produced by our code, with endpoints chosen. The

start is at the lower left corner, in darker green. The end is on the upper right, in lighter

yellow. This is the typical convention chosen for point sets except the Illinois points, where

the start and end locations are inverted, i.e., we start at the upper right and try to securely

find a path to a destination on the lower left.

BFS structure BFS on hex meshes is very straightforward, and the layers are larger and

larger hexagonal regions of cells in contact with each other. A path chosen by BFS to link

the cells from our previous cells is displayed here.

15

Figure 4.2: A BFS path produced by traversing the dual graph

Points chosen by the algorithm We expect the algorithm to perform only as well as

BFS in the hex mesh case in terms of the number of points used. However the actual path

chosen looks quite different from BFS and weaves through cells irregularly. A thing to be

noted here is that the hyperbolic region after i steps is always slightly bigger than the union

of i BFS layers, but still contained within i+ 1 BFS layers, for no net improvement in terms

of reaching points but for an improvement in area.

16

Figure 4.3: An optimal sequence of points computed by the algorithm

Structure of sites inserted The flowering process in the hex mesh case looks like a BFS

traversal of hexagonally arranged disks. We have shown examples of this in miniature earlier

in this thesis, but here is a full run as produced by our code, consisting of growing regions

of disks and a hyperbolic wavefront ending at the target cell.

17

Figure 4.4: The disks inserted during execution. The reader is encouraged to zoom in to

observe details such as the dark gaps actually being pockets of vertices correctly ignored by

the algorithm (where three edges intersect), and the sites of the original diagram occurring

exactly where circles of the same color touch each other, etc. Another interesting fact is the

circles introduced by type ”B” vertices themselves propagating in a hexagonal shape.

4.2 RANDOM MESHES

After the hex mesh experiments, random meshes are a welcome change because they

almost always allow us to observe a significant improvement over BFS.

18

Point set generation Yet again, we generate points in a 2500x2500 unit region. However,

this time the user directly specifies the number of points they would like and the mesh

generation function would sample that many points in the square uniformly at random. For

this section we will use the following random mesh of 2000 points, yet again with endpoints

marked.

Figure 4.5: A random mesh of 2000 uniformly sampled points, with ”start” and ”end” cells

marked

19

BFS structure Here is what a BFS path generated by our code connecting the two points

in question looks like. The BFS solution of 16 intermediate points yet again looks quite good,

but unlike the regular hex mesh case is nearly always going to be beaten by the algorithm.

Figure 4.6: A BFS path of 16 intermediate points connecting the terminal cells

Points chosen by the algorithm Here are the points that our algorithm inserts to safely

connect the cells. It beats BFS by a respectable 4 points with only 12 insertions.

20

Figure 4.7: An optimal length sequence of 12 inserted points between the terminal cells

Disk structure Here is the diagram of disks inserted by the algorithm. Unlike the hex

mesh case, it is quite irregular and has larger holes of many pockets clumped together in

places.

21

Figure 4.8: The disks inserted by the algorithm

4.3 ILLINOIS POINT SET

Finally, we turn our attention to the Illinois point set. Data on cities in Illinois was

obtained from the census, and coordinates were mapped into our 2500x2500 square. The

point set has 35252 points in it.

22

Sparsification The way we went about introducing different ways to use this point set

was by sparsifying it. Our sparsification function independently either keeps or tosses a

point with equal likelihood, and each successive sparsification roughly reduces points by

half. Figure 4.10 shows us what the point set sparsified looks like over successive iterations.

Algorithm execution example First we demonstrate, as we did in the previous two

cases, a typical example of running the algorithm on our Illinois point set. For an example

of the algorithm behavior on it, let us consider an initial diagram sparsified five times, with

”start” and ”end” cells marked

Figure 4.9: A five times sparsified illinois point set

23

Sparsified once Sparsified twice

Sparsified thrice Sparsified four times

Figure 4.10: A point set made out of locations in Illinois (downloaded from the census and

sparsified)

24

BFS distance for the 5 times sparsified set The BFS distance for our small Illinois

example turns out to be 9 between the ”start” and ”end” cells

Figure 4.11: The BFS distance between the terminal sites

Optimal algorithm distance for the 5 times sparsified set Our algorithm manages

to save one point over BFS and connect the cells in 8 insertions. However the diagram is

already quite sparse so a meager improvement is not too surprising.

Figure 4.12: The optimal sequence of insertions to connect the sites

BFS distance for the 4 times sparsified set Just for comparison, we include the results

of the algorithm on the four times sparsified set. Naturally one would expect the distance

25

to increase with the density of the set, and that is broadly true. For the choice of end

points in the 4 times sparsified set, BFS finds a path of length 23 between the end points.

However note how this path now leaves the implicit boundary of the point set, because of

the irregularly concave distribution of points around the boundary of the Illinois point set.

Figure 4.13: The BFS distance between the terminal sites

Optimal distance for the 4 times sparsified set The concave portions of the boundary

also feature in this solution, which uses 17 points. The concavity allows points inserted

outside the point set to still never meet the bounding vertices.

Figure 4.14: The optimal distance between the terminal sites

Disks for the 4 and 5 times sparsified sets For completeness we include what the

inserted disks look like for the two sets we described earlier

26

Figure 4.15: Disks inserted in the 5 times sparsified set

Figure 4.16: Disks inserted in the 4 times sparsified set

27

4.3.1 The once sparsified Illinois point set

We end by discussing an unusual way in which our algorithm behaved in experiments.

From the previous two disk diagrams, it looks like the diagram sometimes chooses circles

that skirt around the outside of the point set when the point set has parts that cave inwards

on the boundary. Our implementation of both BFS and the algorithm stop propagating when

a bounding point is reached. However, while that stops BFS from using any paths outside

the input points’ diagram, the algorithm manages to find ways to avoid the bounding points

while staying outside the diagram to a large extent. The only way to stop the algorithm

from doing so is to keep track of which region is the inside or outside on either side of the

line joining edges on the boundary of the input points. This feature has not been added to

our implementation and it is worthwhile to know that if one is actually trying to determine

points at which to insert vertices for a real world purpose, the boundary or some kind of

boundary function need to be readily specified (or one adds code to identify points on the

edge and learn where the inside and outside are with respect to them).

The initial diagram is already available in Figure 4.10. Here is what the BFS solution

joining the ”start” and ”end” cells looks like, and then we will see the algorithm’s solution

Figure 4.17: The 55-point BFS path for the once sparsified Illinois point set

28

Figure 4.18: The 38-point optimal path for the once sparsified Illinois point set. The inserted

points that are ”outside” what we understand to be the interior of the input points actually

form cells that do not touch the bounding vertices inserted. This persists even if we move the

bounding vertices very close to the input, because of the concave portions of the boundary

of the input Voronoi diagram. This situation can only be avoided by internally computing

the boundary in some way, which we do not implement in the demos.

29

The disk picture helps understand how this sequence of insertions is valid, too:

Figure 4.19: The disks inserted by the algorithm for the once sparsified Illinois point set.

Many disks outside the point set are still shielded from the bounding points.

However, the algorithm is still useful on large point sets when choosing endpoints just a

little away from the edges to avoid the phenomena observed before. Here is a comparison of

30

BFS and the algorithm on the same point set when the endpoints are moved inwards:

Figure 4.20: A 39-point bfs path on the once sparsified Illinois point set, with endpoints

moved inwards

31

Figure 4.21: A 31-point optimal path that lies completely within the very large point set.

32

Input name # points BFS path Algorithm path len

hex 010 100 5 5
hex 030 900 18 18
hex 060 3,600 56 54
hex 090 8,100 63 61
hex 120 14,400 77 75

i d 02 17,560 55 38
i d 04 8,816 39 28
i d 08 4,435 30 23
i d 16 2,242 22 15
i d 32 1,123 17 12
i d 64 559 11 9

rand 00100 100 5 4
rand 00200 200 8 6
rand 00400 400 12 9
rand 01000 1,000 17 14
rand 02000 2,000 28 21
rand 04000 4,000 37 30
rand 08000 8,000 47 38
rand 16000 16,000 76 61
rand 32000 32,000 95 74
rand 64000 64,000 137 110
rand 128000 128,000 206 164

Figure 4.22: Input used, and the algorithm performance on these inputs.

33

REFERENCES

[1] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete geodesic
problem,” SIAM J. Comput., vol. 16, no. 4, pp. 647–668, 1987. [Online]. Available:
https://doi.org/10.1137/0216045

[2] J. Ruppert, “A Delaunay refinement algorithm for quality 2-dimensional mesh
generation,” J. Algorithms, vol. 18, no. 3, pp. 548–585, 1995. [Online]. Available:
https://doi.org/10.1006/jagm.1995.1021

[3] The CGAL Project, CGAL User and Reference Manual. CGAL Editorial Board, 2020,
5.0.2. [Online]. Available: https://doc.cgal.org/5.0.2/Manual/packages.html

[4] M. Karavelas, “2D voronoi diagram adaptor,” in CGAL User and Ref-
erence Manual. CGAL Editorial Board, 2020, 5.0.2. [Online]. Available:
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgVoronoiDiagram2

[5] M. Karavelas and M. Yvinec, “2D apollonius graphs (delaunay graphs of disks),” in
CGAL User and Reference Manual. CGAL Editorial Board, 2020, 5.0.2. [Online].
Available: https://doc.cgal.org/5.0.2/Manual/packages.html#PkgApolloniusGraph2

34

