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ABSTRACT 

 

 Soil nutrient loss is one of the major causes of soil degradation that threatens future 

global food security. Cover cropping is a promising sustainable agricultural method with the 

potential to enhance soil health and mitigate consequences of soil degradation. As one of the 

agricultural practices that can affect cover cropping, effects of tillage on cover cropping have 

been widely researched as well. Because cover cropping and tillage can form an agroecosystem 

distinct from that of bare fallow, the soil microbiome is hypothesized to respond to the altered 

environmental circumstances. Therefore, studying their impact on the soil microbiome is 

necessary because the soil microbes are important drivers of soil processes including those 

relevant to soil health. The objectives of this MS research were i) estimate the baseline effect 

size of cover cropping on soil microbial abundance, activity, and diversity, ii) identify 

environmental and agricultural factors that affect the cover crop effects sizes on the soil 

microbiome, iii) further understand the cover crop effects on the soil microbial diversity by 

investigating the shifts in the soil microbial compositions, and iv) contribute to understanding 

how the relationship between cover cropping and the soil microbiome may affect the soil health.  

A meta-analysis was conducted to estimate the global average effects of cover cropping 

on the soil microbiome. This study compiled the results of 60 relevant studies reporting cover 

cropping effects on soil microbial properties to estimate global effect sizes and explore the 

current landscape of this topic. Overall, cover cropping significantly increased parameters of soil 

microbial abundance, activity, and diversity by 27%, 22%, and 2.5% respectively, compared to 

those of bare fallow. Moreover, cover cropping effect sizes varied by agricultural covariates like 

cover crop termination or tillage methods. Notably, cover cropping effects were less pronounced 

under conditions like continental climate, chemical cover crop termination, and conservation 

tillage. This meta-analysis showed that the soil microbiome can become more robust under cover 

cropping when properly managed with other agricultural practices. However, more primary 

research is still needed to control between-study heterogeneity and to more elaborately assess the 

relationships between cover cropping and the soil microbiome. 

This meta-analysis revealed that cover cropping affect the overall soil microbial diversity 

and that tillage is a major cofactor that affect this relationship. To further investigate the cover 
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cropping and tillage effects on the soil microbial diversity, a metagenomics study was conducted. 

This second part of the study was to observe compositional changes in the soil microbiome in 

response to cover cropping and tillage. Also, this study sought to identify microbial indicators 

that can be used to gauge responses of microbial guilds with functions relevant to soil health. 

This study used soil DNA data from a long-term cover cropping and tillage experiment on corn 

and soybean rotation in Illinois, USA. This study found that copiotrophic bacterial decomposers 

increased with legume cover crops and tillage, while oligotrophic and stress tolerant bacteria did 

so with bare fallow and no-till. Fungal groups responded to cover cropping and tillage based on 

their physiology, interaction with plant hosts, and nutrient strategies. This study also found an 

ammonia-oxidizing archaea species that increased with bare fallow. The consistent patterns that 

the microbial groups in this study display make them potential microbial indicators. Also, grass 

cover crops with no-till showed most potential for soil nutrient loss.  

Overall, this MS research found that cover cropping significantly enriches the soil 

microbiome. However, cover cropping effects may apply differential pressures on microbial 

groups with different adaptations so that the overall diversity is not changed significantly. This 

research suggests that timing and other agricultural practices like tillage need to be carefully 

considered to direct the changes in the soil microbiome to benefit the soil health.  
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CHAPTER 1: META-ANALYSIS ON THE GLOBAL COVER CROPPING EFFECTS 

ON THE SOIL MICROBIOME 

 

ABSTRACT 

Cover cropping is a promising sustainable agricultural method with the potential to 

enhance soil health and mitigate consequences of soil degradation. Because cover cropping can 

form an agroecosystem distinct from that of bare fallow, the soil microbiome is hypothesized to 

respond to the altered environmental circumstances. Despite the growing number of primary 

literature sources investigating the relationship between cover cropping and the soil microbiome, 

there has not been a quantitative research synthesis that is sufficiently comprehensive and 

specific to this relationship. This study conducted a meta-analysis by compiling the results of 60 

relevant studies reporting cover cropping effects on soil microbial properties to estimate global 

effect sizes and explore the current landscape of this topic. Overall, cover cropping significantly 

increased parameters of soil microbial abundance, activity, and diversity by 27%, 22%, and 2.5% 

respectively, compared to those of bare fallow. Moreover, cover cropping effect sizes varied by 

agricultural covariates like cover crop termination or tillage methods. Notably, cover cropping 

effects were less pronounced under conditions like continental climate, chemical cover crop 

termination, and conservation tillage. This meta-analysis showed that the soil microbiome could 

become more robust under cover cropping when properly managed with other agricultural 

practices. However, more primary research is still needed to control between-study heterogeneity 

and to more elaborately assess the relationships between cover cropping and the soil 

microbiome.  

 

1.1 INTRODUCTION 

With the global population expected to reach nine billion by the year 2050, agriculture 

faces a major predicament of moderating its pressure on the environment while meeting that 

future food demand (Alexandratos and Bruinsma, 2012). One of the crucial drivers of this 

impending problem is soil degradation by conventional agriculture (Conacher, 2009; Stavi and 

Lal, 2015). Much attention has been given to restoring and maintaining soil health, and to 

exploring and validating alternative practices such as reduced tillage or crop rotations to not only 
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conserve and restore soil health, but also to address other agricultural side-effects like nutrient 

leaching, water pollution, and soil erosion (Bengtsson et al., 2005; Kessel et al., 2013; Paustian 

et al., 2016).  

Cover cropping is appreciated as a viable sustainable agricultural practice expected to 

provide many benefits like preventing soil erosion and nutrient leaching, weed suppression, and 

carbon sequestration (Daryanto et al., 2018; Poeplau and Don, 2015; Sturm et al., 2018; Thapa et 

al., 2018). These benefits largely develop from the physically, chemically, and biologically 

distinct agroecosystem that cover crops shape compared to that under bare fallow (Kaye and 

Quemada, 2017; Marshall et al., 2016; Reicosky and Forcella, 1998). Considering the extent of 

changes due to cover cropping, the soil microbiome is expected to respond to such modifications 

especially to those of the soil environment (Abdollahi et al., 2014; Abdollahi and Munkholm, 

2014). Cover cropping may impact soil microbial functionality responsible for important soil 

ecosystem services, especially as the agricultural soil microbiome is sensitive due to its typically 

low diversity (Tsiafouli et al., 2015). As a crucial component of soil health, the soil microbiome 

response to cover cropping needs to be assessed to support its viability as a conservation 

practice. 

Many studies have explored the effects of cover cropping on the soil microbiome, finding 

evidences of benefits like increased microbial biomass (King and Hofmockel, 2017), microbial 

enzymatic activities (Surucu et al., 2014), and evenness of relative abundances of bacterial taxa 

(Li et al., 2012). Yet, recent advancements in genetics and bioinformatics technologies have led 

to more efficient, precise, and accurate measurements of soil microbial properties (Gao et al., 

2018; Lienhard et al., 2014). With an increasing number of studies using these contemporary 

methods, synthesizing their results is necessary to make general claims about the cover cropping 

effects on the soil microbiome. As a method of quantitative synthesis, meta-analysis can estimate 

a global effect from studies with heterogeneous conditions (Koricheva et al., 2013). Indeed, 

many meta-analyses have reported on the relationships between cover cropping and crop yield 

(Marcillo and Miguez, 2017), greenhouse gas (GHG) emission (Basche et al., 2014), and weed 

suppression (Osipitan et al., 2018). However, there has not been an extensive meta-analysis 

dedicated to cover cropping effects on the soil microbial properties.  

A few meta-analyses on similar topics exist, but they were either confounded by studies 

with non-cover cropping practices, limited in microbial taxa, or confined themselves to 
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traditional soil microbial properties (Bowles et al., 2017; Daryanto et al., 2018; McDaniel et al., 

2014; Venter et al., 2016). McDanniel et al. (2014) included cover cropping studies in their 

meta-analysis on the effects of crop rotation and management on soil carbon (C) and nitrogen 

(N) dynamics. Their results showed that cover cropping increased total soil C and N; however, 

these properties are not the direct measures of the soil microbiome. More pertinent measures 

would have been microbial biomass C (MBC) and N (MBN). Venter et al. (2016) used 

Shannon’s diversity index to measure the effects of crop rotation on soil microbial diversity, 

concluding that microbial density is enhanced with crop diversity; but their results were not 

specific to cover cropping. The meta-analysis by Bowles et al. (2017) reported positive effects of 

cover cropping on microbial colonization of plant roots but focused only on arbuscular 

mycorrhizal fungi (AMF). Overall, there is a critical lack of global perspective on cover cropping 

effects on the soil microbiome despite the accumulating number of relevant studies.  

The goal of this study was to conduct a comprehensive meta-analysis to fill this gap of 

knowledge in cover cropping research. Specifically, this meta-analysis assessed whether i) soil 

microbial abundance, activity, and diversity differ under cover cropping compared to bare 

fallow, and whether ii) cover cropping effects on soil microbiome are dependent to 

environmental or managerial factors.  

 

1.2. MATERIALS AND METHODS  

1.2.1. Literature selection and data extraction procedure 

From September 2018 to March 2019, relevant peer reviewed articles were searched in 

Web of Science, SCOPUS, and Google Scholar. Search terms were generated from combinations 

of: scientific names of cover crop species, known measures of soil microbial properties, and 

methodology terms (Table B.1). This resulted in an initial collection of 985 studies. This 

collection was refined for studies that met the criteria for this meta-analysis: i) experimental 

design allowed pairwise comparison between cover cropping treatments and bare fallow 

controls, ii) defined cover cropping as crops that are not harvested nor removed, thereby 

excluding studies with  crop residues, iii) field or greenhouse studies, iv) the study reported 

sample sizes, means, and standard errors; if these statistics were not reported, authors were 

contacted or the statistics were calculated if possible. After this screening process, 60 studies 



4 

 

reporting 48 soil microbial parameters (Table S2) remained. This process is outlined in Figure 

1.9 modified from PRISMA flow diagram by Moher et al. (2009). 

The chosen studies were thoroughly examined to extract necessary information like 

experimental design, environmental conditions, and the soil microbial properties. The soil 

microbial properties were categorized into soil microbial abundance, activity, and diversity to 

represent the response variables (Table B.2 and 1.B3). Data only presented in figures were 

extracted using WebPlotDigitizer (Version 3.9; Rohatgi, 2015). Agricultural conditions and 

practices were recorded to assess their interactions with cover cropping effects. For fertilizer 

data, rotation average N input by year was recorded if different amounts of N were applied in 

each year of a rotation. For experimental site information, the site’s Köppen climate 

classification was recorded; if this information was missing, the region of the site was 

approximated using Google Earth, then assigned the climate according to the climate 

classification entry in Wikipedia (Arnfield, 2019; Beck et al., 2018). Soil order was recorded in 

USDA soil taxonomy; those without USDA soil taxonomy equivalent were recorded as reported 

(“Soil Taxonomy | NRCS Soils,” n.d.). Spring growth suppression methods of the cover crops 

were also categorized into mechanical and chemical termination methods. Tillage type was 

categorized into conservation (reduced tillage or no-till) and conventional tillage (any other 

tillage methods). If cover cropping planting and termination dates varied by year, dates of the 

sampling years were used. If a study’s soil sampling occurred multiple times a year or in 

multiple years, results from each sampling event were recorded. If the study only reported 

averages over multiple sampling events, the last sampling date was recorded. If the exact date of 

such events were not reported, the 15th of the reported month was recorded as an average. 

 

1.2.2 Statistical Analysis 

The statistical method of this meta-analysis follows the procedures described in 

Koricheva et al. (2013) for mixed-effects model with study weights: 

             (1.1) 

             (1.2) 

This model assumes that the observed effect size of a study ( ) is distributed around the true 

study effect size ( ) with a within-study variance of  (1.1), which is then distributed around 

the global true effect size (μ) with a between-study variance of  (1.2) (Koricheva et al., 2013).  
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1.2.2.1. Calculating global effect size means and variances 

The effect sizes of cover cropping on soil microbial properties were measured as the log 

response ratio (LRR, ), calculated as natural log of the ratio between the mean of a response 

variable under cover cropping treatment (  over that of the control : 

              (1.3) 

Cover cropping treatments and controls with comparable conditions, such as sampling 

depth and sampling year, were paired to calculate the effect size. Therefore, a study can yield 

multiple effect sizes if it reported each results from multiple treatments of different cover crop 

species or mixtures, experimental sites, or sampling years.  

Estimate of the study variance (  was calculated from the following formulae:  

                            (1.4) 

             (1.5) 

Here,  is the reported variance of the mean of the response variable ( ), and n is the sample 

size, which is the study’s number of replications. The variance  needed to be reported by the 

literature or be obtained from the authors.  

With the study effect sizes and variances calculated, R package metafor and its function 

rma were used to calculate the global effect sizes, 95% confidence intervals (CI), and total 

between-study heterogeneity (I2) (Viechtbauer, 2010). If the CI of a global effect size mean does 

not include zero, then the cover cropping effect on a soil microbial parameter is statistically 

significant. I2 is the proportion of total between-study heterogeneity in total variability among 

observations. A large I2 might imply that studies are too different from each other to perform a 

meta-analysis. However, identifying significant effects from the covariate factors as the sources 

of heterogeneity can resolve this issue. Function funnel was used to produce the funnel plots for 

each soil microbial parameters to visually check significant heterogeneity and publication bias (R 

Core Team, 2019; Viechtbauer, 2010).  

 

1.2.2.2. Selecting response variables 

Of the 48 soil microbial parameters reported, statistical analyses were conducted on those 

with at least 30 observations. Those with fewer observations came from less than three studies, 
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which is too few for meta-analysis. The 13 soil microbial parameters that met the criteria were 

grouped into three categories: abundance, activity, and diversity. Soil microbial abundance and 

activity parameters are common metrics recommended by the U. S. Department of Agriculture 

(USDA) Natural Resources Conservation Service (NRCS) as soil health indicators particular to 

soil microbial properties (NRCS, 2018). The units of the parameters in this study are listed in 

Table B.2.  

The selected soil microbial abundance parameters estimate the overall size of the soil 

microbial community: colony forming units (CFU), MBC, MBN, and phospholipid fatty acid 

(PLFA). Soil microbial activity parameters included two enzyme activities, β-glucosidase (BG) 

and phosphatase (Phos), and laboratory soil respiration (CO2-C). Finally, soil microbial diversity 

parameters that reflect the richness, diversity, or evenness of a soil microbial population included 

Operational Taxonomic Units (OTU), Chao 1 richness index, Shannon-Wiener Index (H’), 

genetic richness (S), Pielou’s Evenness Index (J), and Simpson’s Diversity Index (1-D).  

 

1.2.2.3. Assessing the effects of moderators on cover crop effects on soil microbial properties 

This study assessed whether cover cropping effect size means varied by agricultural 

factors to explain the between-study heterogeneity and infer on the importance of these factors 

on cover cropping management. Agricultural factors will henceforth be referred to as 

“moderators”, to be consistent with how package metafor dubs covariate factors (Viechtbauer, 

2010). Table S3 summarized the moderators and their levels.  These moderators were chosen 

based on their prevalence in the database, and relevance to cover cropping management and soil 

microbial properties. In summary, discrete moderators were climate, soil order, cover crop type, 

cover crop termination method type, tillage type, N fertilization, and soil sampling timing. 

Continuous moderators were soil pH, annual N fertilizer rate, cover cropping duration, and soil 

sample depth.  

The function rma was used for the statistical analysis on the effects of moderators on 

cover cropping effect sizes. Also, ANOVA provided the overall significance of each moderator 

effect. For discrete moderators, an estimate of the effect size means and CIs for each 

combination of a moderator’s levels and soil microbiome parameters were calculated, and then 

were visually analyzed the significance with forest plots. Combinations of soil microbial 
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parameters and discrete moderators with at least 30 observations were considered. Combinations 

were further subset by moderator level if there were at least five observations.  

For continuous moderators, rma was used and was included the continuous moderators in 

the function to calculate the estimate of the coefficients, their associated p-values, and R2. The 

relationship was considered significant if its rma p-value was significant, therefore the 

coefficient is likely not zero, and if the R2 was reasonably high (>10%). Combinations of soil 

microbial parameters and continuous moderators with less than 30 observations were 

disregarded.  

 

1.3. RESULTS 

1.3.1 Overview of cover cropping effects on soil microbial properties 

Overall, global cover cropping effect size means were significantly larger than zero for 

all soil microbial properties, as shown in Figure 1.1 and Table 1.1. Global effect size means of 

soil microbial abundance parameters (CFU, MBC, MBN, and PLFA) ranged between 0.14 and 

0.41, and activity parameters (BG, Phos, and CO2-C) ranged between 0.14 and 0.35. Global 

effect sizes for diversity parameters (OTU, H’, S, J, and 1-D) were also positive but much 

smaller, ranging from 0.003 to 0.05. As shown in Table 1, total heterogeneity (I2) for OTU, S, 

and 1-D were very small, while it was very high for the other ten parameters (46~99.9%), which 

can be explained by effects from the moderators. Funnel plots also confirmed this result where 

many observations for parameters except OTU, S, and 1-D were not contained in the funnel, 

which indicate between-study heterogeneity and possible publication bias (Figure B.6). Indeed, 

each soil microbial parameters had at least one moderator to explain their between-study 

heterogeneity. 

 

1.3.2 Moderator effects on the soil microbial abundance 

Effects of climate were significant for all abundance parameters except CFU, which only 

reported one climate category (Figure 1.2). For MBC, effect size means by climate varied 

significantly in the order of tropical (0.87), temperate (0.30), arid/semi-arid (0.19), and 

continental (0.08), from highest to lowest. For MBN, continental climate had a significantly 

lower effect size mean (0.05) than arid (0.29) and temperate (0.28) climates. For PLFA, the 

temperate climate had a significantly larger effect size mean (0.28) than tropical (0.08) and 
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continental climates (0.09). Overall, the continental climate had lower effect size means than 

others.  

Soil order also had significant relationships with MBC, MBN, and PLFA (Figure 1.3). 

For MBC, Oxisols had a significantly larger effect size mean (1.02) than Entisols (0.25), Alfisols 

(0.13), and Mollisols (0.17); however, Oxisols had much fewer observations (n = 15) than 

Mollisols (n = 121) and Alfisols (n = 86). For MBN, Mollisols had significantly larger effect size 

mean (0.27) than Ultisols (0.05). For PLFA, effect size means for Entisols (0.29) and Ultisols 

(0.36) were significantly larger than those of Alfisols (0.09) and Inceptisols (0.08). Except for 

MBN, less fertile soils like Oxisols, Ultisols, and Entisols had larger effect size means than those 

of more fertile soils.  

Cover crop termination method had significant effects only on PLFA, where mechanical 

termination effect size mean (0.16) was significantly larger than that of chemical termination 

(0.09) (Figure 1.4). Cover crop type had significant but inconsistent effects on CFU and MBC. 

Grass cover crops had the highest effect size mean (0.82), followed by Others (0.23) and Mixed 

(0.02) for CFU. Conversely, Mixed (0.34) was significantly larger than Grass (0.17) for MBC. 

Nitrogen fertilizer input demonstrated no significant effects for PLFA.  

Soil sampling timing had significant effects on MBC and PLFA (Figure 1.7). For MBC, 

sampling after the cash crop harvest (0.30) and during the cover crop (0.38) had larger effect size 

means than that of sampling during the cash crop (0.18). For PLFA, the opposite was observed 

where sampling during the cash crop (0.24) had the highest effect size mean than compared to 

those of sampling during cover crop (0.12), after cover crop termination (0.04) and before cash 

crop planting (0.05). Overall, while sampling timing had a significant influence on effect size 

means, the influence was inconsistent. Finally, tillage types were significant for CFU and MBC. 

Conventional tillage methods had larger effect sizes for CFU (0.67) and MBC (0.38) than no-till 

and reduced tillage (CFU: 0.27; MBC: 0.21). For continuous moderators, soil sample depth had 

significant negative correlation with CFU (β1 = -0.05; p-value < 0.001; R2 = 0.35; Figure B.2; 

Table B.4).  
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1.3.3. Moderator effects on the soil microbial activity 

Effects of climate was significant for BG, where arid climates had a larger effect size 

(0.33) than that of continental (0.12); temperate climates also had a lower effect size mean (0.08) 

but the CI slightly overlapped with arid climates (Figure 1.2). 

Soil order was significant for CO2-C where the Entisols effect size mean (0.54) was 

significantly larger than that of Ultisols (0.24) (Figure 1.3). Cover crop termination method was 

only significant for Phos where mechanical termination had a larger effect size mean (0.29) than 

that of chemical termination (-0.08) (Figure 1.4). Cover crop type was significant for CO2-C 

only, where effect size mean of Other cover crops (0.62) was significantly larger than that of 

Legume (0.21) (Figure 1.5). N fertilizer input was not significant for soil microbial activity 

(Figure B.1).  

Soil sampling timing was significant for Phos and CO2-C (Figure 1.7). For Phos, effect 

size mean of sampling during cover crop (0.37) was significantly larger than that of sampling 

after cash crop harvest (-0.11). For CO2-C, sampling during cover crop (0.52) was larger than 

that during cash crop (0.28). Tillage type was not significant for soil microbial activity (Figure 

1.6).   

Only BG had a significantly positive yet very weak linear relationship with annual N 

fertilizer amount (β1 = 0.00154; p-value < 0.001; R2 = 0.11; Table S4). Visually (Figure B.3), 

however, these results seem dubious, as effect sizes at higher N input were not significantly 

larger than that at lower N fertilizer rate, which confirmed that the association is very weak. This 

was also supported by the overlapping CI for MBC effect sizes between N fertilized and non-

fertilized observations (Figure B.1).  

 

1.3.4. Soil microbial diversity 

The soil microbial diversity parameters OTU, Chao 1, H’, S, J, and 1-D had a wide range 

of between-study heterogeneity from 0.3% to 92.5%. Despite the high heterogeneity for H’ 

(92.5%) and Chao 1 (46.1%), none of the ANOVA results were significant (Table 2.4). Soil 

order was significant for Chao 1, where the effect size mean of Mollisols (0.06) was larger than 

that of Entisols (<0.001) (Figure 1.3). Cover crop termination method had a significant effect on 

H’ and J (Figure 1.4). In both cases, mechanical termination had larger effect size mean (H: 

0.025; J: 0.007) than that of chemical termination (H’: -0.001; J: -0.006), similar to results of soil 
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microbial abundance and activity. Tillage type was significant for S and J (Figure 1.6). Like soil 

microbial abundance and activity, conventional tillage had larger effect size mean (S: 0.044; J: 

0.021) than that of conservation practice (S: -0.016; J: -0.006). For Chao 1, effect size means 

from sampling during cash crop (0.056) and before cash crop planting (0.081) was significantly 

larger than that of sampling after cash crop harvest (-0.046) (Figure 1.7).  

OTU had statistically significant negative correlations with soil pH (β1 = -0.04; p-value = 

0.003; R2 = 0.65; Figure B.8) and soil sample depth (β1 = -0.003; p-value = 0.021; R2 = 0.38; 

Figure B.2). Soil pH ranged from 6.28 to 8.3, and the negative correlation between OUT and pH 

was expected, as the soil microbiome generally thrives under neutral pH condition (Fierer and 

Jackson, 2006; Lauber et al., 2009). However, this relationship had small number of observations 

and much skewed distribution, requiring careful interpretation of this result. Chao 1 also 

demonstrated significant negative correlation with N fertilizer rate (β1 = -0.0007; p-value = 

0.0096; R2 = 0.36; Figure B.3). 

 

1.4. DISCUSSION 

1.4.1 Overall positive effects of cover cropping on soil microbial properties 

Past meta-analyses have generally suggested positive effects of cover cropping on soil 

microbial properties (Daryanto et al., 2018; McDaniel et al., 2014; Venter et al., 2016). Indeed, 

cover cropping increased all 13 soil microbial parameters in this meta-analysis as well. However, 

heterogeneity between studies was high for most of the soil microbial parameters with the 

exception of those with fewer observations: OTU, S, and 1-D. According to the significant 

differences between effect size means by moderator levels, most of the high heterogeneity could 

be attributed to the effects of agricultural moderators on the soil microbial parameters.  

All four soil microbial abundance parameters increased with cover cropping treatments 

by large ratios (14.5~40.7%). Considering that cover cropping provides above- and belowground 

plant biomass and root exudates known to boost soil microbial growth and prevent rich topsoil 

from eroding, the significant cover cropping benefits on soil microbial abundance were indeed 

expected (Vukicevich et al., 2016). Meta-analysis by Daryanto et al. (2018) reported similar 

increases in MBC, MBN, and microbial biomass P (MBP), and significantly decreased soil loss 

under cover cropping treatments. Based on the consistency with past meta-analyses and 
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significant mean global effect sizes, these results suggest that cover cropping can be expected to 

increase soil microbial abundance.  

BG and Phos are two of the four enzymes accepted by the USDA NRCS as indicators of 

general microbial activity for soil health assessment along with N-acetyl-β-D-glucosaminidase 

and arylsulfatase (NRCS, 2018). The positive global effect size means for these enzymes and 

CO2 respiration rate suggest positive cover cropping effects on soil microbial activity. Since BG 

reflects the last step in cellulose decomposition, an increase in BG activity is expected with 

increased cellulose input from cover crop decomposition; likewise, increases in other enzymes 

responsible for previous processes in cellulose decomposition would be expected (Shewale, 

1982). As for Phos, the presence of organic P substrates can promote phosphatase production. 

Cover crops return the biomass P to the soil during decomposition which could have resulted in 

increased Phos (Almeida et al., 2018; Hallama et al., 2019; Nannipieri et al., 2011; Sharma et al., 

2018). Moreover, a meta-analysis by Hallama et al. (2019) suggested that cover cropping 

indirectly enhances soil P availability. For example, cover cropping may enhance AMF 

colonization that improves access to P pool, or change soil pH to levels more favorable for Phos 

and other enzyme activities. Meanwhile, since some plants are known to produce phosphatase 

themselves, this result requires careful interpretation to account for plant-originated Phos 

(Tarafdar and Claassen, 1988). 

This meta-analysis is the first to exclusively assess the effects of cover cropping on soil 

microbial diversity. The most closely related meta-analysis focused on soil microbial diversity 

and richness and reported positive weighted mean differences of 3.36% for diversity and 15.11% 

for richness (Venter et al., 2016). However, their analysis focused on the effects of crop rotations 

that happened to include cover cropping studies. Compared to those of soil microbial abundance 

and activity, the present study’s global effect size means for diversity parameters were also 

positive but almost ten-fold smaller on average. In fact, the global effect size mean for 

Simpson’s diversity index was negative (-0.009) until 6 outliers with relatively extreme 

variances (>0.4) or effect sizes (<-0.5) were removed. Nonetheless, such sensitivity may be 

limited to parameters with smaller number of observations like 1-D. However, without historical 

references for comparison and with effect sizes small enough to raise doubt on the significance 

of cover cropping effects on the soil microbial diversity, making a solid and generalized 

statement on this relationship will require more primary research and meta-analyses.  



12 

 

1.4.2 Significance of agricultural moderators 

Statistical results suggested that agricultural moderators can determine how responsive 

soil microbial properties are to cover cropping effects. The environmental moderators, climate 

and soil order, had significant effects on soil microbial abundance and activity. Results varied by 

parameters for observations on tropical, arid, and temperate climates, but continental climates 

consistently had the smallest effect size means. Interestingly, 46% of the studies on continental 

climates were on productive soils like Alfisols and Mollisols, primarily from the fertile 

agricultural regions like the Midwest, USA (NRCS, 2005). Consistently lower effect size means 

for continental climates may be attributed to the high fertility of these soils on which cover 

cropping benefits experience diminishing return on already productive soils. Overall, climate 

results indicate that cover cropping can improve the soil microbiome especially in regions 

expected to have less robust soil microbiome. However, previous studies warn that cover 

cropping may put more pressure on dry agroecosystems , highlighting the need for careful 

irrigation and management decisions (Calderon et al., 2016). 

Meanwhile, the main effects from soil order exhibited conflicting results, with less 

productive soil orders showing larger effect size means for MBC and PLFA and smaller effect 

size means for MBN and Chao 1. This discrepancy should be further explored with an emphasis 

on interactions between climates and soil orders. However, the current database has too few 

observations to make reliable inference on interactions. Together, climate and soil order should 

be considered when managing cover cropping to maximize the benefits.  

Management factors also had significant influences on the cover cropping effects sizes. 

Tillage type consistently affected cover cropping effects where conservation tillage had smaller 

effect size means than those of conventional tillage. This result initially seemed contradictory to 

previous findings which reported the benefits of reduced tillage or no-till on various soil 

properties (Blanco-Canqui and Ruis, 2018; Bowles et al., 2017; Hussain et al., 1999; Zuber and 

Villamil, 2016). For example, a meta-analysis on the effects of tillage on soil microbiome by 

Zuber and Villamil (2016) reported negative effect sizes for soil microbial properties with 

conventional tillage. Another meta-analysis by Bowles et al. (2016) on the effects of cover 

cropping and tillage on AMF colonization reported benefits of alternative tillage methods, 

although they did not find evidence for benefits from interactions between cover cropping and 

tillage. Considering these past findings, negative effects of conventional tillage on the soil 
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microbial properties may have been mitigated by cover cropping, thereby pronouncing the cover 

cropping effects. Another potential explanation is that bare fallow under conservation tillage 

often allows weed covers that can mimic some cover cropping effects, thereby leading to smaller 

cover crop effect size compared to that under conventional tillage. 

Chemical cover crop termination methods that used herbicide showed smaller cover crop 

effect size means than mechanical termination methods. This result may be relevant to herbicide 

effects on plants and soil microbiome. Past studies have found that herbicides may directly 

impact soil properties and the microbial community. For example, herbicides may decrease soil 

denitrification (Tenuta and Beauchamp, 1996), promote plants to exudate ammonium, thus 

stimulating growth of specific microbial functional groups (Damin et al., 2010, 2008; Mijangos 

et al., 2010; Nyerges et al., 2010; Zabaloy et al., 2017), and temporarily change microbial 

respiration and biomass (Nguyen et al., 2016). Because both termination method categories 

included studies with tillage and those without, tillage or other mechanical methods are unlikely 

to have contributed to the differences. Although further investigation is necessary to verify this 

result, it suggests that mechanical termination will maximize cover crop benefits. 

As expected, soil sampling timing had significant effects on soil microbial properties, 

where either observations during the cover crop or cash crop phases had larger effect size means. 

This result emphasizes that soil sampling timing must be accounted for in the analysis of soil 

microbial properties, as they are time dependent. More than half of the observations were during 

cash crop phase (n > 600), followed by the cover cropping phase with just under 300 

observations. For consistent research synthesis without a timing bias, primary research should 

report the crop phase of soil measurements.  

 

1.4.3. Limitations of this study 

While the cover cropping effects on soil microbial activity are clearly positive, this 

relationship must be interpreted carefully because microbial activity correlates with both 

abundance and diversity. First, the increase in microbial activity could be attributed to an overall 

increase in microbial abundance, and their significant positive correlation has been observed by 

others (Acosta-Martinez et al., 2011). More work is needed to discern whether activity increased 

because of changes in abundance of active microbes or via an increase in per-capita enzyme 

production rate. Of course, both may be responsible. Indeed, effect sizes on BG and Phos had 
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positive linear relationships with MBC, although the number of observations was small for Phos 

(Figure 1.9). This result also suggests other correlations between enzymes and microbial 

abundance parameters, such as Phos and PLFA or MBP, are likely. However, more studies 

reporting both soil microbial activity and abundance are needed perform multivariate analysis 

and to confirm these results. 

Second, soil microbial activity closely intertwine with microbial diversity because 

extracellular enzyme production varies by soil microbial group and is not universal, especially 

for soil microbial activities responsible for ecosystem services like nutrient cycling (Wang et al., 

2017; Zang et al., 2018). To assess cover cropping effects on these specific soil microbial 

processes, using soil microbial genes and their products involved in those processes are 

potentially more informative than the parameters assessed in this study. For example, to 

understand cover cropping effects on N fixation, abundance changes in genes like nifH and their 

products should be analyzed. Some studies in this study’s database included this type of 

information but the studies were too sparse. Moreover, if the identities of soil microbial groups 

harboring specific genes are known, assessing cover cropping effects on their relative abundance 

may strengthen the argument that cover cropping enhances soil microbial processes beneficial 

for agriculture. However, studies reporting both soil microbial activity and diversity are lacking, 

and information linking soil microbial groups with specific enzyme productions and genomic 

data is  largely unavailable (Hai et al., 2009; Wang et al., 2017). Therefore, more future cover 

cropping studies connecting soil microbial diversity and activity are needed.  

As a meta-analysis, this study will inevitably share the methodological limitations of its 

compiled primary research. For example, current enzyme activity assays are optimized for 

laboratory conditions and may not accurately distinguish soil enzymes that were segregated 

physically and biologically, therefore overestimating the in situ activity. Laboratory enzyme 

assays require disturbing the soil aggregates , which may release stabilized enzymes that would 

have been inactive in situ (Burns, 1982; Wallenstein and Weintraub, 2008). Also, enzyme 

activity assays may not accurately demonstrate in situ activity because of the in vitro conditions 

of the assays. Current enzyme assay methods are done under ideal conditions for enzyme 

activity, which can overestimate the actual enzyme activities in situ (Tabatabai, 2003). The 

similar is also true for some microbial abundance parameters like CFU that cultures and counts 

the microbes in the laboratory condition. In general, the understanding of the role of management 
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practices on the soil microbial community will be limited by the best available methods, and 

research will be required to reevaluate the state of knowledge as better methodologies develop.  

 

1.4.4. Current state of cover cropping research on soil microbiome and future needs 

Out of 48 soil microbial parameters reported by a total of 60 studies, only 13 had a 

statistically significant number of observations (n ≥ 30). MBC was the parameter with the 

greatest number of observations (403 observations). The most studied soil microbiome property 

was microbial abundance, and further research seems unnecessary with the clear cover cropping 

benefits that this study has demonstrated. Soil microbial activity had the second most studies, 

primarily represented by two enzyme activities. These enzymes alone are insufficient 

considering the vast complexity of soil microbial activity crucial for agriculture. Therefore, more 

enzymes and the genes coding them need to be studied to better understand the still largely 

unknown complexity of soil microbial activity. As for soil microbial diversity, most studies 

reported diversity indices derived from changes in relative abundances of soil microbial phyla or 

genera; some derived from a broader classification such as PLFA data (gram +/-, fungi, and 

eukaryote). Some studies used community catabolic profiles like average well color development 

(AWCD) which can capture both activity and diversity. However, the number of such studies 

was small and they are subject to limitations on data integration arising from various 

methodological considerations like cell culture conditions (Konopka et al., 1998; Preston-

Mafham et al., 2002; Weber et al., 2007).  

The current landscape of cover cropping research and its effects on soil microbial 

properties is still unable to answer more complex questions. Making meaningful inferences on 

such questions like “how much do changes in soil microbial abundance contribute to changes in 

activity” requires more studies that address comprehensive sets of soil microbial parameters. 

Nevertheless, this meta-analysis marks a meaningful start in this effort, and the trend seems 

hopeful as half of the studies in this study’s database were conducted in the last four years (2016-

2019), thanks to developing technology, lowering costs, increased interest in sustainable 

agriculture, and accumulating experience. Meaningful updates on this meta-analysis could be 

possible with a larger database in the near future that would include analyses that this study 

could not perform due to insufficient number of observations.  
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1.5. CONCLUSION 

As the first meta-analysis dedicated to evaluating the cover cropping effects on soil 

microbial properties, this study concludes that cover cropping generally enhances soil microbial 

abundance, activity, and, to a lesser degree, diversity. With proper implementation considering 

termination methods, climate, soil order, and tillage, cover cropping will build a more robust soil 

microbiome. Other than these significant moderators, this study found no strong evidence for 

dependence on other agricultural factors. This meta-analysis showed that cover cropping still 

needs more research but also demonstrated that this need is being met with an increasing number 

of recent relevant studies. Nonetheless, this study urges more researchers to investigate the 

interactions between microbial properties and cover cropping practices as more important 

answers surrounding the complex interactions still lie unveiled. With a database large enough to 

perform more complex analysis, future meta-analyses may reveal specific cover cropping effects 

on the soil microbiome that are relevant to both agricultural and environmental interests.  
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TABLES AND FIGURES 

Table 1.1. Global results of cover cropping effects on 13 soil microbial parameters with at least 

30 observations, reporting global effect size means, its 95% confidence interval (CI), number of 

observations (n), estimated total heterogeneity (τ2), and total between-study heterogeneity (I2). 

The 13 soil microbial parameters were: colony forming unit (CFU), microbial biomass C (MBC) 

and N (MBN), phospholipid fatty acid (PLFA), β-glucosidase activity (BG), phosphatase activity 

(Phos), respiration (CO2-C), operational taxonomic unit (OTU), Chao 1 richness index, 

Shannon’s diversity index (H’), genetic richness (S), Pielou’s evenness index (J), and Simpson’s 

diversity index (1-D). 

soil microbiome parameter Global Mean n CI τ2 I2 

CFU 0.407 54 0.117 0.167 97.461 

MBC 0.254 408 0.029 0.060 85.542 

MBN 0.256 197 0.051 0.094 84.620 

PLFA 0.145 436 0.026 0.046 82.202 

BG 0.138 155 0.038 0.042 99.930 

Phos 0.181 60 0.106 0.153 99.920 

CO2-C 0.349 39 0.088 0.032 89.396 

OTU 0.033 32 0.017 0.000 3.504 

Chao 1 0.050 78 0.022 0.003 46.088 

H' 0.023 199 0.009 0.002 92.475 

S  0.030 57 0.019 0.000 0.311 

J 0.010 50 0.008 0.001 72.098 

1-D 0.003 61 0.002 0.000 20.116 
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Table 1.2. ANOVA results of effects of agricultural moderators on soil microbial abundance parameters: colony forming unit (CFU), 

microbial biomass C (MBC) and N (MBN), and phospholipid fatty acid (PLFA). Df is the degrees of freedom and p-values less than 

threshold 0.05 are in bold. Dashes (-) indicate that that combination of soil microbiome parameter and moderator had less than two 

levels, therefore unable to perform ANOVA.  

  
CFU 

 
  

 
MBC 

 
  

 
MBN 

 
  

 
PLFA 

 
Moderators Df Error Df p-value   Df Error Df p-value   Df Error Df p-value   Df Error Df p-value 

Climate - - -   3 404 0.000   2 194 0.015   2 433 0.000 

Soil Order 1 50 0.524   5 261 0.000   2 66 0.030   3 420 0.000 

cover cropping Termination 1 34 0.152   1 374 0.042   1 177 0.889   1 404 0.256 

cover cropping Type 2 51 0.000   3 404 0.063   3 193 0.135   3 432 0.290 

Tillage Type 1 52 0.044   1 335 0.001   1 166 0.004   - - - 

Sample Timing 1 20 0.000   3 404 0.000   2 194 0.644   4 431 0.000 

N Fertilizer 1 20 0.003   1 369 0.584   1 193 0.151   1 350 0.002 

N Fertilizer Rate 1 20 0.297   1 337 0.326   1 172 0.027   1 350 0.143 

Soil pH 1 34 0.758   1 294 0.899   1 193 0.351   1 76 0.213 

cover cropping Duration 1 34 0.134   1 368 0.252   1 176 0.999   1 404 0.458 

Sample Depth 1 52 0.001   1 406 0.000   1 195 0.342   1 434 0.206 
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Table 1.3. ANOVA results of effects of agricultural moderators on soil microbial activity parameters: β-glucosidase activity (BG), 

phosphatase activity (Phos), and respiration (CO2-C). Df is the degrees of freedom and p-values less than threshold 0.05 are in bold.  

 

  BG      Phos      CO2-C  

 Moderators Df Error Df p-value    Df Error Df p-value    Df Error Df p-value 

Climate 2 152 0.000    2 57 0.144    2 36 0.044 

Soil Order 1 118 0.001    3 50 0.001    4 34 0.088 

cover cropping Termination 1 153 0.646    1 58 0.001    1 31 0.999 

cover cropping Type 3 151 0.007    3 56 0.267    3 35 0.052 

Tillage Type 1 130 0.876    1 34 0.033    1 8 0.464 

Sample Timing 2 152 0.047    2 57 0.002    2 36 0.384 

N Fertilizer 1 153 0.003    1 50 0.462    1 32 0.021 

N Fertilizer Rate 1 126 0.001    1 22 0.522    1 32 0.467 

Soil pH 1 107 0.001    1 33 0.484    1 14 0.608 

cover cropping Duration 1 153 0.000    1 51 0.278    1 26 0.541 

Sample Depth 1 153 0.905    1 58 0.092    1 37 0.191 
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Table 1.4. ANOVA results of effects of agricultural moderators on soil microbial diversity parameters: operational taxonomic unit 

(OTU), Chao 1 richness index, Shannon’s diversity index (H’), genetic richness (S), Pielou’s evenness index (J), and Simpson’s 

diversity index (1-D). Df is the degrees of freedom and p-values less than threshold 0.05 are in bold. Dashes (-) indicate that that 

combination of soil microbiome parameter and moderator had less than two levels, therefore unable to perform ANOVA, or the 

combination had no observations. 

 
  OTU    Chao 1    H'    S    J    1-D  

 Moderators Df Error Df p-value  Df Error Df p-value  Df Error Df p-value  Df Error Df p-value  Df Error Df p-value  Df Error Df p-value 

Climate 2 29 0.032  2 75 0.610  2 196 0.366  2 54 0.658  1 48 0.077  2 58 0.084 

Soil Order 1 26 0.000  2 70 0.463  4 153 0.261  1 16 0.430  - - -  1 52 0.073 

cover cropping 

Termination 

1 28 0.433  1 73 0.331  1 171 0.520  1 41 0.183  1 34 0.021  1 54 0.235 

cover cropping 

Type 

2 29 0.004  3 74 0.077  3 195 0.667  2 54 0.423  1 48 0.077  3 57 0.009 

Tillage Type 1 26 0.010  1 30 0.938  1 155 0.254  1 47 0.062  1 48 0.047  1 29 0.000 

Sample Timing 1 30 0.008  3 74 0.420  3 195 0.293  2 54 0.844  2 47 0.038  2 58 0.008 

N Fertilizer 1 30 0.188  1 76 0.379  1 194 0.969  1 55 0.786  1 48 0.598  1 59 0.485 

N Fertilizer Rate 1 30 0.564  1 47 0.247  1 147 0.943  1 12 0.000  1 12 0.009  1 34 0.253 

Soil pH 1 30 0.001  1 75 0.412  1 137 0.286  1 5 0.130  - - -  1 56 0.656 

cover cropping 

Duration 

1 28 0.000  1 73 0.286  1 135 0.634  1 5 0.130  - - -  1 54 0.005 

Sample Depth 1 30 0.028  1 76 0.367  1 197 0.334  1 55 0.952  1 48 0.650  1 59 0.826 
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Figure 1.1. Forest plot of global effect size means for 13 soil microbial properties with at least 

30 observations: colony forming unit (CFU), microbial biomass C (MBC) and N (MBN), 

phospholipid fatty acid (PLFA), β-glucosidase activity (BG), phosphatase activity (Phos), 

respiration (CO2-C), operational taxonomic unit (OTU), Chao 1 richness index, Shannon’s 

diversity index (H’), genetic richness (S), Pielou’s evenness index (J), and Simpson’s diversity 

index (1-D). Numbers in the parentheses are the number of observations used to calculate the 

global effect size mean. Whiskers are 95% CIs. Means larger than zero indicate that soil 

microbiome parameter was larger with cover cropping than bare fallow. 
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Figure 1.2. Forest plots of interactions between soil microbial parameters and climate that had 

levels with significant differences between effect size means. Number of observations per level 

is noted in parentheses. Climate is classified by A (tropical), B (arid/semi-arid), C (temperate), 

and D (continental). Significant soil microbial parameters were microbial biomass C (MBC) and 

N (MBN), phospholipid fatty acid (PLFA), and β-glucosidase activity (BG). Levels (y-axis) with 

means larger than zero indicate that cover cropping increased the soil microbiome parameter at 

those levels, and decreased if the means smaller than zero. Levels with CIs that do not overlap 

indicate that their effect size means are significantly different.   
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Figure 1.3. Forest plots of interactions between soil microbial parameters and soil order that had 

levels with significant differences between effect size means. Number of observations per level 

is noted in parentheses. Significant soil microbial parameters were microbial biomass C (MBC) 

and N (MBN), phospholipid fatty acid (PLFA), respiration (CO2-C), and Chao 1 richness index. 

Levels (y-axis) with means larger than zero indicate that cover cropping increased the soil 

microbiome parameter at those levels, and decreased if the means smaller than zero. Levels with 

CIs that do not overlap indicate that their effect size means are significantly different.   
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Figure 1.4. Forest plots of interactions between soil microbial parameters and cover cropping 

termination method type that had levels with significant differences between effect size means. 

Number of observations per level is noted in parentheses.  Significant soil microbial parameters 

were phospholipid fatty acid (PLFA), phosphatase activity (Phos), Shannon’s diversity index 

(H’), and Pielou’s evenness index (J). Levels (y-axis) with means larger than zero indicate that 

cover cropping increased the soil microbiome parameter at those levels, and decreased if the 

means smaller than zero. Levels with CIs that do not overlap indicate that their effect size means 

are significantly different.   
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Figure 1.5. Forest plots of interactions between soil microbial parameters and cover cropping 

type that had levels with significant differences between effect size means. Number of 

observations per level is noted in parentheses.  Significant soil microbial parameters were colony 

forming unit (CFU), microbial biomass C (MBC), and respiration (CO2-C). Levels (y-axis) with 

means larger than zero indicate that cover cropping increased the soil microbiome parameter at 

those levels, and decreased if the means smaller than zero. Levels with CIs that do not overlap 

indicate that their effect size means are significantly different.   
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Figure 1.6. Forest plots of interactions between soil microbial parameters and tillage type that 

had levels with significant differences between effect size means. Number of observations per 

level is noted in parentheses.  Significant soil microbial parameters were colony forming unit 

(CFU), microbial biomass C (MBC), genetic richness (S), and Pielou’s evenness index (J). 

Levels (y-axis) with means larger than zero indicate that cover cropping increased the soil 

microbiome parameter at those levels, and decreased if the means smaller than zero. Levels with 

CIs that do not overlap indicate that their effect size means are significantly different.   
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Figure 1.7. Forest plots of interactions between soil microbial parameters and soil sampling 

timing that had levels with significant differences between effect size means. Number of 

observations per level is noted in parentheses.  Significant soil microbial parameters were 

microbial biomass C (MBC), phospholipid fatty acid (PLFA), phosphatase activity (Phos), 

respiration (CO2-C), and Chao 1 richness index. Levels (y-axis) with means larger than zero 

indicate that cover cropping increased the soil microbiome parameter at those levels, and 

decreased if the means smaller than zero. Levels with CIs that do not overlap indicate that their 

effect size means are significantly different.   



28 

 

 

Figure 1.8. Scatter plot and linear regression of cover cropping effect sizes of β-glucosidase 

(BG; A) and those of phosphatase activity (Phos; B) on those of microbial biomass C (MBC). 

The linear coefficient of the model (slope) and R2 are noted. Both linear coefficients had 

significant (p-values). These relationships signify the unit change in soil microbial activity by 

abundance. 
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Figure 1.9. PRISMA flow diagram modified from that by Moher et al. (2009). The chart shows 

what criteria was applied and how many literature remained at each stage (n=). 
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CHAPTER 2: METAGENOMIC ANALYSIS ON THE RESPONSES OF THE SOIL 

MICROBIOME TO COVER CROPPING AND TILLAGE  

 

ABSTRACT 

Cover cropping (CC) has been promoted as a viable strategy to mitigate soil nutrient loss 

that threatens future global food security and environmental integrity. However, the research on 

how the soil microbial community respond to CC and tillage, which may greatly alter this 

relationship, has only recently begun to employ metagenomics to scrutinize this topic at a finer 

detail below the whole community level. This metagenomics study measured the responses of 

absolute abundances of each microbial operational taxonomic units (OTUs) to CC and tillage 

treatments to identify sensitive microbial indicators that can gauge the responses of specific 

microbial groups to these practices. This study used soil DNA data from a long-term experiment 

on corn and soybean rotation in Illinois, USA, that compared grass CC and legume-grass CC 

rotation to bare fallow, and chisel tillage to no-till. Overall, CC and tillage significantly shifted 

the microbial composition but not the whole community’s richness and diversity. This study 

identified 18 bacterial, 12 fungal, and 1 archaeal potential indicator species whose responses to 

CC and tillage were consistent with their known physiological and ecological characteristics, 

thereby representing important microbial guilds that occupy different soil ecological niches. 

Legume-grass CC rotation and tillage increased the abundances of copiotrophic microbes while 

bare fallow and no-till favored oligotrophic/stress-tolerant guilds. Grass CC displayed 

intermediate results and more than halved the soil nitrate level compared to the other two 

systems. These results suggested that grass CC and no-till has better capability to reduce soil 

nutrient loss than legume CC.  

 

2.1. INTRODUCTION 

The future of global food security depends on preventing further soil degradation and 

restoring the affected areas (FAO, 2015). Soil chemical imbalance is a major cause of soil 

degradation whose detriments extend beyond the soil and into the waters and atmosphere. As one 

of its major sources, excess fertilizer input has been polluting the water sources (Pennino et al., 

2017), disrupting the marine ecosystems (US-EPA, 2017), and emitting greenhouse gas (GHG) 
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(Fowler et al., 2013). In the USA, federal and state agencies are responding to these threats. For 

example, Environmental Protection Agency (EPA) developed comprehensive nutrient reduction 

strategies (US-EPA, 2013). 

Cover cropping has been widely researched and promoted as a promising strategy to 

mitigate nutrient loss (IL-EPA et al., 2015). Cover crops (CC) are grown between harvesting and 

planting cash crops to provide various benefits to the agroecosystem, including scavenging 

excess nutrients (Kaspar et al., 2012; Tonitto et al., 2006), preventing soil erosion (Daryanto et 

al., 2018), improving soil organic matter (SOM) and water retention (Villamil et al., 2006; 

Villamil et al., 2008), and suppressing weeds (Daryanto et al., 2018; Quemada et al., 2013). 

Cover cropping provides a physical cover above ground and root structures belowground that 

protect the soil from water and wind erosion, preventing nutrient losses (Snapp et al., 2005). 

Also, CC take up soil nutrients and immobilize them into biomass, leaving less nutrients to be 

lost (Acuña and Villamil, 2014; Behnke and Villamil, 2019).  

Yet the benefits potentially achieved with CC depend on environmental factors such as 

soil fertility (Behnke et al., 2020), weather conditions and length of the growing season (Behnke 

and Villamil, 2019). Management practices are also crucial factors, such as tillage (Dozier et al., 

2017; Villamil et al., 2006), seeding strategies (Haramoto, 2019), fertilization (Wittwer and van 

der Heijden, 2020), and time and method of suppression of spring growth (Kim et al., 2020; 

Wayman et al., 2014). Among these practices, the effect of tillage on soil properties has been 

widely studied, finding effects like decreasing soil aggregate stability and water infiltration 

(Blanco-Canqui and Ruis, 2018), decreasing soil organic C (SOC) content (Kibet et al., 2016), 

and reducing soil compaction and soil moisture in the subsoil (Feng et al., 2018). Studies also 

evaluated tillage effects on soil nutrient loss and found high possibility that tillage can worsen 

nutrient loss via runoff (Endale et al., 2019) and leaching (Singh et al., 2018). Therefore, many 

studies investigated whether tillage influences the CC benefits. For example, Singh et al. (2018) 

found that nitrate (NO3
-) leaching was greater with legume CC than grass CC and bare fallow 

when the soil was tilled. Also, short-term studies like Acuña and Villamil (2014) and Dozier et 

al. (2017) found that tillage affected neither CC capability to scavenge soil N nor soybean and 

corn yield. Meanwhile, five year-long study by Behnke et al. (2020) on the CC and tillage 

practice in Illinois found that chisel tillage increased corn yields by 4% but did not affect 
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soybean yield regardless of CC presence, and that grass-only CC rotation significantly reduced 

soil NO3
- compared to bare fallow.  

Due to their direct and indirect effects on soil properties and nutrient cycling, CC in 

combination with tillage practices have the potential to alter the structure and function of the soil 

microbiome. Soil microbes are the major drivers of the agriculturally and environmentally 

important soil biogeochemical processes (Frasier et al., 2016; Hallama et al., 2019; Hirsch and 

Mauchline, 2015; Thomas et al., 2017). For example, much of the soil N cycle is dictated by the 

soil microbes that involve in the N addition or loss (Coskun et al., 2017). Here, biological N-

fixation annually adds a global estimate of about 60 Tg of N in agricultural lands (Fowler et al., 

2013). The soil microbiome also controls the amount of soil inorganic N through immobilization 

and mineralization, which also affects plant nutrient availability (Jacoby et al., 2017). Moreover, 

nitrifying and denitrifying microbes contribute to nutrient loss by converting soil N into 

compounds vulnerable to leaching and emission (80 and 13 Tg per year, respectively, globally) 

(Coskun et al., 2017; Hirsch and Mauchline, 2015). Therefore, soil microbiome is a crucial factor 

for soil nutrient loss, and understanding the contributions of cover cropping and tillage to the soil 

microbiome is a necessary task.  

A few recent meta-analyses have summarized the past research on this relationship 

(Daryanto et al., 2018; Kim et al., 2020; Venter et al., 2016; Zuber and Villamil, 2016). A 

comprehensive meta-analysis on CC effects by Daryanto et al. (2018) reported that soil microbial 

abundance measured as microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus 

(MBP) all increased under CC. Another meta-analysis by Kim et al. (2020) reported that cover 

cropping increased not only abundance, but also activity and overall diversity. They also 

reported that CC effects depend on other management practices including tillage, where no-till 

decreased the CC effect size on the soil microbiome (Kim et al., 2020). Likewise, Zuber and 

Villamil (2016) found that conservation or no-till strategies increased microbial abundance, 

respiration, and enzyme activities associated with plant residue decomposition.  

However, these studies were limited to the responses of the microbial community as a 

whole. The whole microbiome as a unit is too broad to evaluate microbial guilds or individual 

microbes that can represent important microbial processes and potentially act as indicators of 

sustainable management. When scrutinizing a complex system, its parameters that are sensitive 

to stimuli are used as indicators to represent the effects on the system (Villamil et al., 2008). For 
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example, soil properties like SOM content that are sensitive to management have been selected 

as indicators of the soil quality (Villamil et al., 2008), while ecological studies use indicator 

species to assess changes in the ecosystems (Siddig et al., 2016). Likewise, responsive microbial 

groups can be used as microbial indicators to gauge the soil microbial responses to management 

(Schloter et al., 2018). For instance, Wolińska et al. (2018) proposed five bacterial genera 

including Nitrospira and Burkholderia as microbial indicators of soil resistance to agriculture. 

The same can be applied to find microbial indicators to measure effects of CC and tillage 

practices on the soil microbiome.  

With the advancement of metagenomics, taxonomic and functional profiling of the soil 

microbial community has been widely adopted by cover cropping research. This led to the 

quantification of the individual responses of each microbial taxa at different scopes (i.e. phyla, 

classes, order, family, and genera, or functional guilds), and identify sensitive groups as potential 

microbial indicators (Balota et al., 2014; Schloter et al., 2018). So far, metagenomics studies 

found that soil microbial groups are primarily sensitive to CC and tillage induced changes in the 

soil nutrient availability, and respond differentially based on their r/K strategies or substrate 

preferences (Alahmad et al., 2019; Pascault et al., 2013; Romdhane et al., 2019). For example, a 

study by Alahmad et al. (2019) on wheat-green pea-maize rotation investigated the effects of 

legume-grass mix CC and N fertilization on the soil microbial taxonomic and functional 

compositions. This study found that CC treatments recruited more specialist species, like 

Streptomyces grisemus in phylum Actinobacteria, than bare fallow, which the authors speculated 

as a result of changes in the soil nutrient from CC-originated C and N compounds like root 

exudates (Alahmad et al., 2019). 

Another study by Romdhane et al. (2019) on the effects of CC termination methods on 

soil microbial composition found that CC biomass had positive correlation with soil organic C 

and soil C:N ratio, which the authors attributed to C-rich CC root exudates. They found that soil 

C:N ratio, SOC, and total soil N differentially affected the relative abundances of microbial 

genera; for example, two unknown genera of phylum Gemmatimonadetes had positive 

relationship with soil C:N ratio while Salinibacterium of Actinobacteria had a negative 

relationship (Romdhane et al., 2019).  

Pascault et al. (2013) also demonstrated that CC induced changes in the soil nutrient 

availability are time-dependent and create transitions in the dominant soil microbial groups. This 
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study described that phyla Firmicutes and Proteobacteria dominated the fresh organic matter 

(FOM) degrading community at the earlier stages of residue decomposition (Pascault et al., 

2013). However, phyla like Acidobacteria and Gemmatimonadetes dominated the SOM 

degrading community after easily degradable nutrients have been depleted (Pascault et al., 2013). 

Moreover, Pascault et al. (2013) speculated that lower C:N of alfalfa CC residue promoted initial 

FOM degrading microbial groups to execrate more exoenzymes, which later degraded more 

SOM and benefited the succeeding microbial groups, compared to wheat CC. This alluded that 

C:N of the CC residues is an important factor of soil nutrient dynamics and subsequent microbial 

responses.  

Meanwhile, agricultural metagenomics studies on archaea mostly focused on the 

ammonia-oxidizing archaea (AOA), which not only is important for the soil microbial N cycling, 

but also seemingly the dominant archaeal group in agricultural soil based on current 

methodology (Babin et al., 2019; Segal et al., 2017; Somenahally et al., 2018). Past studies have 

identified genus Nitrososphaera as one of the most abundant and consistently sensitive group to 

changes in the soil, therefore a likely candidate for an indicator archaea group (Babin et al., 

2019; Zhalnina et al., 2013). Study by Schmidt et al. (2018) on the effects of depth, tillage, and 

CC on the soil microbiome found that archaea responded positively to CC but less so compared 

to bacteria. This study suggested that, like bacteria, CC impact on soil nutrient availability is an 

important factor because archaea are less competitive in nutrient-rich environment (Schmidt et 

al., 2018; Valentine, 2007).  

Tillage also affects the soil nutrient availability by breaking and incorporating crop 

residues into the soil, thereby aiding microbial decomposition. A study by Sharma-Poudyal et al. 

(2017) investigated the effects of tillage on soil fungal community, comparing no-till to chisel 

tillage. This study found that saprophytic fungal genera like Humicola were more dominant with 

no-till, while genera like Cladosporium did so under tillage (Sharma-Poudyal et al., 2017). The 

authors attributed these contrasting responses to each microbial group’s substrate preferences, 

explaining that the former group is better adapted to degrading intact biomass under no-till, 

while the latter prefers more labile C and N sources from tilled crop residues (Sharma-Poudyal et 

al. 2017). This tillage effect on crop residues also applies to CC residues, amplifying their impact 

on the soil nutrient availability and microbial composition (Lupwayi et al., 2004; Lynch et al., 

2016). This study also emphasized the physical effects of tillage that can increase soil 
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abundances of plant pathogens and endophytes by incorporating the infected biomass into the 

soil. The differences in fungal morphology may also be a factor where tillage can disrupt hyphal 

fungi but less so for conidia producing fungi (Sharma-Poudyal et al., 2017). This tillage physical 

disturbance also affects soil aeration (Khan, 1996), which soil microbes are also highly sensitive 

to according to their metabolic adaptations (Degrune et al., 2017; Linn and Doran, 1984). These 

sensitive microbes include anaerobes that perform processes like denitrification that lead to soil 

nutrient loss, emphasizing the importance of CC and tillage effects on these soil properties and 

how the microbial indicators respond to them (Coskun et al., 2017; Hirsch and Mauchline, 2015).  

Metagenomics studies introduced so far have investigated how the soil microbial groups 

respond differentially to the soil properties that CC and tillage alter significantly; these efforts 

also identified sensitive microbial groups that are potential microbial indicators. Studies like 

these should be further accumulated to improve the list of microbial groups that are consistently 

sensitive to effects of CC and tillage, and verify them as the microbial indicators. This is 

especially true for reports at genus and species level that only started accumulating recently. As a 

part of this effort, this study analyzed the responses of the bacterial, archaeal, and fungal 

communities to CC and tillage, using metagenomics data from a long-term cover cropping and 

tillage experiment in Illinois, USA, under corn (Zea mays L.) and soybean (Glycine max L.) 

rotation. The objectives of this study was to i) identify microbial groups whose abundance 

differed significantly by CC and tillage treatments, ii) determine to which specific factors these 

microbial groups were sensitive to, based on other microbial, soil, and CC biomass properties 

and past reports, and iii) evaluate what implications do CC and tillage effects on these factors 

and their subsequent microbial responses have on soil nutrient loss. Results of this study will 

help illustrate a more accurate picture of the soil microbiome under cover cropping and tillage, 

which will lead to better use of these practices to reduce soil nutrient loss.   

 

2.2. MATERIALS AND METHODS 

2.2.1. Experimental site description 

The experimental site was established in the fall of 2012, at Crop Sciences Research and 

Education Center at Urbana, IL (40.057N, 88.227W), as part of a larger effort to investigate 

cover cropping and tillage on soil properties and yields (Dozier et al., 2017; Behnke et al., 2020). 

The experimental site spanned Drummer–Catlin–Flanagan soil association where 70% of the site 
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was Drummer silty clay loam (fine-silty, mixed, superactive, mesic, Typic Endoaquoll), 20% 

Flanagan silt loam (fine, smectitic, mesic, Aquic Argiudoll), and 10% Catlin silt loam (fine-silty, 

mixed, superactive, mesic, Oxyaquic Argiudoll). These dark-colored soils developed under 

prairie on mostly level to very gently sloping (0 to 2%) topography in upland positions. Flanagan 

is somewhat poorly drained, Catlin is moderately to well-drained soil occupying the higher 

landscape positions, and Drummer is poorly drained soil in the lower positions in the landscape 

(Soil Survey Staff, 2019).  

 

2.2.2. Treatments and field management practices 

The experimental site was arranged in a split-block design with eight blocks total. Four 

blocks were each assigned to corn and soybean, and the cash crop phase rotated each year. Each 

block was divided in the N-S direction into tilled (T) and no-till (NT) plots, and subplots of corn 

soybean rotations with CC were allocated in the W-E direction. The CC treatments included 

annual ryegrass (Lolium multiflolum Lam.) before and after cash crops (CarSar), cereal rye 

(Secale cereale L.) following corn and hairy vetch (Vicia villoa Roth.) following soybean 

(CcrShv), and using corn soybean rotations without CC as unseeded controls (CT). In any year, 

there were eight subplots for each CT and CarSar, and four under cereal rye phase of CcrShv and 

four under hairy vetch phase of CcrShv.   

Detailed information regarding field management practices during the project period is 

publicly available (Villamil and Nafziger, 2019). Briefly, the following field management 

practices were implemented each year from 2012 to 2017. Corn was planted on mid-May except 

2012 (mid-April) and 2013 (early-June), and harvested on mid-October to early-November; 

soybean was planted on mid-May to early-June except 2012 (mid-April) and harvested on mid- 

to late-October, except in 2017 (mid-June). Pre-plant N fertilizers were applied to corn as urea 

ammonium nitrate (UAN 28%) at the rate of 190 kg N ha-1. Plots under tillage treatment were 

tilled by chisel plow down to 20-25 cm deep in the spring following CC suppression before 

planting the cash crop (mid-May to early-June). The CC seeds were broadcasted by hand on 

standing cash crops on mid-September, except 2012 (early-October). Seeding rates and growth 

suppression followed the online decision tool by the Midwest Cover Crop Council (online at: 

mcccdev.anr.msu.edu/Vertindex.php): 16.8 kg/ha for annual ryegrass, 22.4 kg/ha for hairy vetch, 

and 100 kg/ha for cereal rye. Cover crops were suppressed with glyphosate [N-
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(phosphonomethyl)glycine] at 1.12 kg a.i. ha-1 by the end of April. The exact dates of the field 

practices can be found in Table B.5.  

 

2.2.3. Soil and biomass sampling, DNA extraction, qPCR, and sequencing 

Soil samples were collected on the April 21st, 2017 at the end of the project that this study 

was a part of, following five years since initial CC establishment (Behnke et al., 2020). 

Eijelkamp grass plot sampler (Eijkelkamp Agrisearch Equipment, Netherlands) was used to take 

two composited subsamples of 500 g each per subplot to a depth of 10 cm to analyze the soil 

DNA. Soil samples were kept with ice in the field and stored in the freezer in the laboratory. 

Three soil core samples with a diameter of 4.3 cm were also taken randomly down to 90 cm 

depth for each subplot using a tractor-mounted automated soil sampler (Amity Technology, Inc., 

Fargo, ND, USA). These soil samples were analyzed for soil properties. Soil nitrate-N (NO3-N) 

and ammonium-N (NH4-N) (mg kg-1) were measured using KCl extraction (1:5 ratio) and 

analyzed using SmartChem 200 Discrete Analyzer Auto-Spectrophotometer (Westco Scientific 

Instruments, Inc., Brookfield, CT, USA). Soil phosphorus (P, mg kg-1) was measured by Bray P1 

extraction. Soil pH was measured using potentiometry with a Mettler Toledo Ag SevenEasy pH 

Meter (Schwerzenbach, Switzerland). Soil samples were also air-dried and sieved to 2 mm then 

sent to commercial laboratory (Brookside Laboratories, Inc., New Bremen, OH, USA). The 

commercial lab used standard procedures recommended for the U.S. North Central region 

(Brown, 1998). Here, cation exchange capacity (CEC, cmol kg-1) was determined by summation 

of exchangeable cations (Ca, Mg, K, Na, H) (Sumner and Miller, 2018). Soil pH was measured 

with potentiometry by a Mettler Toledo Ag SevenEasy pH Meter (Schwerzenbach, Switzerland), 

and soil organic matter (SOM, %) by loss on ignition. Cover crop biomass samples were taken in 

April 11th, 2017 using three random tosses of 0.25m2 quadrat per subplot and cut at ground level. 

Biomass samples were oven-dried at 60 °C and recorded their carbon and nitrogen contents (%), 

C:N ratio, and the dry weight (Mg ha-1). Soil and CC biomass properties are summarized in 

Table 2.1. 

Soil DNA was extracted from 0.25 g of the composited soil samples on June 2019 using 

PowerSoil® DNA isolation kits (MoBio Inc., Carlsbad, CA, USA), according to the 

manufacturer's instructions. The quantity and quality of the extracted DNA were tested using 

Nanodrop 1000 Spectrophotometer according to the manufacturer’s protocol (Thermo Fisher 
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Scientific, USA). Extracted DNA was stored at −20 °C. Illumina HiSeq compatible amplicon 

library containing individual barcodes for each samples was constructed. For this library, 25 µL 

PCR reactions were done using a BioRad T100 thermal cycler in 25 µL volumes with 1× buffer 

(GoTaqfi Flexi buffer; Promega Corp.), with the following composition: 2.5 mM MgCl2, 200 

µM dNTPs, 0.4 µM each primer (forward and reverse), 1.0 µL template DNA (pooled 

amplicons), and 1.0 unit of GoTaq polymerase. PCR parameters were: initial denaturation at 95 

◦C for 10 min, followed by 34 cycles of amplification (45 secs at 95 ◦C; 45 s at 58 ◦C; 45 s at 72 

◦C), and a final extension at 72 ◦C for 10 min. PCR products were visualized on a 1.3% agarose 

gel containing GreenGlo™ Safe DNA dye (Denville Scientific, Inc. Metuchen, NJ, USA) under 

UV illumination. Bacterial 16S rRNA gene (V4 region) was amplified using primer set of 515F 

(GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACVSGGGTWTCTAAT) (Fierer et al., 

2005), archaeal 16S using 349F (GTGCASCAGKCGMGAAW) and 806R 

(GGACTACVSGGGTATCTAAT) (Colman et al., 2015), and fungal ITS region using 3F 

(GCATCGATGAAGAACGCAGC) and 4R (TCCTCCGCTTATTGATATGC) (Crawford et al., 

2012). The primers were designed as 5’-PCR-specific + gene region + 3’-PCR-specific + 10 nt 

barcode and the Fluidigm platform utilized two primer sets simultaneously to create the final 

DNA amplicon. Qubit Fluorometer quantified the resulting amplicon libraries, which were then 

run on Bio-analyzer to evaluate the profile of fragment lengths. The barcoded libraries were 

pooled in equimolar concentrations and diluted to 10 nM. The diluted libraries were sequenced at 

the Roy Carver Biotechnology Center Functional Genomics lab at the University of Illinois at 

Urbana-Champaign (Urbana, IL, USA) using paired-end sequencing on the Illumina MiSeq nano 

2 (Illumina, San Diego, CA, USA) yielding 250 nt long reads.  

 

2.2.4. Bioinformatics analysis 

Quality check and processing of the sequences were done through QIIME2 (Bolyen et al., 

2019; Hall and Beiko, 2018). First, quality of the 16S and ITS marker gene sequences were 

checked to determine the positions to retain where the average quality score (probability of base 

calling error) is at least 30 (Li et al., 2015). This resulted in retaining bacterial sequences 

between base-pair positions 6 to 250, fungal sequences 6 to 200, and archaeal sequences 6 to 

136. Next, sequences were denoised by removing chimeric and low-quality sequences with 

chimera-method consensus option in plugin DADA2 (Callahan et al., 2016). Then, sequences 
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were aligned to compare them and create the phylogenetic tree. Reference sequences from 

SILVA ribosomal RNA gene database (silva-132-99-515-806-nb-classifier_2019_4) (Quast et 

al., 2013) were used to compare bacterial and archaeal 16S rRNA sequences and 

Fungi_97_classifier_2019_4 for ITS sequences, and clustered them into operational taxonomic 

units (OTUs) at 97% similarity threshold. The rarefaction curves plateaued at the sampling 

depths of 5000 sequences per sample for bacteria, 900 for fungi, and 300 for archaea at the cost 

of losing 2 bacterial, 15 fungal, and 14 archaeal samples (out of 144 total samples for each taxa) 

because they did not have enough sequences for subsampling. Yet all the subplots were 

represented by at least one sample. This compromise between sampling depth and sample 

retention had to be made because lower sampling depths would have underestimated the 

diversity. At these depths, QIIME2 calculate the observed OTUs (OTUs), Shannon’s Diversity 

Index (H’), and Chao 1 Richness Index (Chao1) for each sample for later α-diversity analysis. 

Also, weighted UniFrac distance was calculated by QIIME2 to measure β-diversity. The 

rarefaction curves (Figure B.9) of the microbes are created using package ggplot2 in R, Version 

3. 5. 3. (R Core Team, 2019; Wickham, 2016).  

 

2.2.5. Statistical analysis 

After processing the DNA sequences and identifying OTUs, the absolute abundances of 

each OTU were statistically analyzed to identify indicators microbes and gauge treatment effects 

(Props et al., 2017; Tang, 2019). First, the JMP “Predictor Screening” platform used a bootstrap 

forest partitioning method to rank most responsive OTUs based on their contribution to 

predicting CC and tillage treatment effects (SAS Institute Inc., 2019). This led to selection of 42 

out of 1832 OTUs for Bacteria, 5 out of 19 OTUs for Archaea, and 36 out of 313 OTUs for 

Fungi. The selected taxa each contributed a minimum one percent to the variability captured by 

the model algorithms.  

Principal component analyses (PCA) were then used to further select indicator bacterial 

and fungal taxa from the list of top contributing microbes from the previous procedure. As 

described above, the previous procedure selected only five archaeal OTUs, therefore, archaea 

were not included in the PCA procedure because further selection was unnecessary. First, the top 

contributing bacteria and fungi were each grouped into a smaller set of uncorrelated composite 

variables, or Principal Components (PCs), to be use as dependent variables in a follow-up 



40 

 

ANOVA. To do this, the FACTOR procedure was used in SAS with option priors=1. Then, top 

contributing PCs with eigenvalues ≥1 that also explained at least 5% of the variability of each 

bacterial and fungal data were selected for further analyses; OTUs that consist these top 

contributing PCs are considered potential microbial indicators. Therefore, a PC is an aggregate 

of correlated variables, or OTUs included in this procedure, each with unique correlation with 

the PC represented by the PC loading value (Tabachnick et al., 2007). In other words, responses 

of a PC to treatments summarize the responses of the PC’s OTUs to the treatments, which differ 

by each OTU's PC loading value. A positive PC loading of an OTU within a PC indicates that 

this OTU is positively correlated to the PC: an increase in the PC score results in an increase in 

the OTU. Likewise, negative loadings indicate a negative correlation. OTUs with the same sign 

indicate a similar direction of the response. Thus, microbial variable loadings greater than |0.5| 

were considered in the interpretation of each PC as they indicate a strong effect on that PC.  

Next, linear mixed models were fitted to the PCs extracted in each set using PROC 

GLIMMIX in SAS (link=id) to evaluate the response of the selected microbial taxa to the effects 

of tillage, CC rotations, and their interaction. Blocks were considered random effects. The model 

used to estimate the effects of CC and tillage treatments was a generalized linear mixed effects 

model:  

                   (2.1) 

Here, Y is the response variable, μ is the global mean of Y, B is the random block effect, T 

is the fixed tillage effect, CC is the fixed CC effect, T*CC is the fixed tillage and CC interaction 

effect, ε1 is the plot error, and ε2 is the subplot error. The response variables analyzed by this 

model were PC scores of the top contributing PCs from previous PCA procedure, the α-diversity 

indices calculated by QIIME2, and soil and CC biomass properties. This procedure yielded 

ANOVA (Type III) results and least-square means (lsmeans) of the response variables separated 

by treatment levels. Relationships that had at least marginally significant ANOVA results (p-

value < 0.1) and significant mean separation results (α=0.05) were considered for further 

analysis.  

Of the PCs that had at least marginally significant ANOVA results (p-value<0.1), the 

responses of top contributing PCs and their microbial indicator OTUs selected by PCA were 

visualized by using both the OTUs’ PC loadings and mean separation results of the PC scores 

from previous procedures. As described above, PC loading values of the OTUs represent their 
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individual relationship to the PCs that they consist. Multiplying the PC loading value of an OTU 

to the mean PC scores separated by the treatment levels yields this OTU’s responses to each of 

the treatment levels. For example, if PC1 had means PC scores of 10 for NT and -10 for T, they 

were each multiplied by PC loading of -0.60 of the selected microbial taxon X in PC1. The 

products, -6 for NT and 6 for T, indicate that the abundance of species X increased under T 

relative to that of NT. Package ggplot2 in R, Version 3. 5. 3., were used to create figures 

illustrating relative responses for each significant relationships between PC scores and treatments 

(R Core Team, 2019; Wickham, 2016). To compare the responses of the selected taxa to the 

overall patterns of their parent phyla, above PCA and ANOVA procedures were also applied to 

the relative abundances of microbial phyla.  

The α-diversity indices (OTUs, H’, and Chao1) were compared between treatments using 

the same mixed effects model and PROC GLIMMIX procedure as above. The α-diversity data 

was retrieved from alpha rarefaction data using QIIME2 View. These data were in matrices of α-

diversity indices calculated in 10 iterations for each sample. As these iterations did not differ 

significantly, the last iteration for each sample was used for analysis. The β-diversity measured 

by weighted UniFrac distance was analyzed with pairwise PERMANOVA by QIIME2 to 

compare differences between treatment levels using pseudo-F test statistics and their p- and q-

values (expected false positive and negative, respectively, rate in multiple hypothesis testing) 

(Anderson, 2017; Storey, 2003).  

 

2.3. RESULTS 

2.3.1. Soil and cover crop biomass properties 

Table 2.1 shows the mean separation of the soil and CC biomass properties by CC and 

tillage treatments. As for soil properties, CEC did not have significant influence from neither 

tillage (p = 0.43) nor CC (p = 0.63). Soil pH was also not affected by neither tillage (p = 0.72) 

nor CC (p = 0.74). Likewise, SOM did not have significant relationship with tillage (p = 0.34) 

and CC (p = 0.38). While tillage did not have significant impact on soil NO3-N (p = 0.85), CC 

did have marginal effects (p = 0.07) where it halved under CarSar (0.85 mg kg-1) compared to 

CcrShv (1.80 mg kg-1) and CT (1.83 mg kg-1). However, NH4-N did not have significant effects 

from tillage (p = 0.50) and CC (0.85). Soil P level also did not differ by tillage (p = 0.74) and CC 

(p = 0.18). 
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As for CC residue properties, the biomass C content did differ significantly by tillage (p 

= 0.04) and marginally by CC (p = 0.08). No-till had more residue C content (42.77%) than till 

(41.46%); CcrShv biomass had more C (42.85%) than CarSar (41.38%). However, CC biomass 

N content did not differ by tillage (p = 0.14) and CC (p = 0.99). The CC residue C:N ratio did 

not differ by tillage (p = 0.58) and CC (p = 0.41). The CC dry weight also did not vary by tillage 

(p = 0.27) and CC (p = 0.33) 

 

2.3.2. Overall characterization of the soil microbiome  

2.3.2.1. Bacteria 

Overall, the bacterial community had more than 1.2 million 16S V4 region sequences 

clustered into 1832 different OTUs. The means of observed OTUs, H’, and Chao1 are 

summarized in Table 2.2. Number of OTUs also did not differ by tillage (p = 0.54) and CC (p = 

0.38). Neither tillage (p = 0.57) nor CC (p = 0.27) had significance on H’. Also, Chao1 was not 

affected by tillage (p = 0.54) and CC (p = 0.37).  

The β-diversity based on weighted UniFrac distance and pairwise PERMANOVA 

between treatment levels showed some significant differences between tillage treatments (Table 

2.3). Bacterial communities between T and NT showed significant pseudo-F of 4.325 (p = 0.001; 

q = 0.001). But they did not differ between CC treatments: CT to CarSar (p = 0.296; q = 0.444), 

CT to CcrShv (p = 0.192; q = 0.444), CarSar to CcrShv (p = 0.774; q = 0.774).  

The most relatively abundant phylum across the samples was Proteobacteria (34.2%), 

followed by Actinobacteria (20.4%), Chloroflexi (9.7%), Acidobacteria (9.5%), and 

Bacteriodetes (8.5%). The most relatively abundant classes were Gammaproteobacteria (15.1%), 

Alphaproteobacteria (14.1%), Thermoleophilia (9.6%), Actinobacteria (8.9%), and Bacteroidia 

(8.4%). As shown in Figure 2.1, phyla Acidobacteria, Bacteroidetes, Chloroflexi, 

Gemmatimonadetes, and Proteobacteria responded significantly (p = 0.0023) to tillage effects, 

where Bacteroidetes and Proteobacteria were more abundant under tillage than no-till while the 

other three responded oppositely. Other microbial phyla, including fungi and archaea, did not 

have significant PCA and ANOVA results (p > 0.1, data not shown) 
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2.3.2.2. Fungi 

The fungal community had 213,860 ITS region sequences clustered into 313 OTUs. 

Number of OTUs did not show significant relationships with tillage (p = 0.26) and CC (p = 

0.89). Also, H’ was not affected by tillage (p = 0.11) and CC (p = 0.30). Lastly, tillage (p = 0.28) 

and CC (p = 0.90) did not have significant effects on Chao1 (Table 2.2).  

Fungal communities showed significant β-diversity among both tillage and CC 

treatments (Table 2.3). Between NT and T showed significant pseudo-F value of 2.782 (p = 

0.019; q = 0.019). Between CC treatments, the pseudo-F value was 5.417 between CT and 

CarSar (p = 0.002; q = 0.003), 3.137 between CT and CcrShv (p = 0.013; q = 0.013), and 4.106 

between CarSar and CcrShv (p = 0.001; q = 0.003).  

The most abundant fungal phylum was Ascomycota (54.8%), followed by Basidiomycota 

(9.5%), and Mortierellomycota (4.6%). The most abundant identified classes were 

Dothideomycetes (20.3%), Sordariomycetes (14.3%), Leotiomycetes (8.8%), and 

Tremellomycetes (6.4%).  

 

2.3.2.3. Archaea 

The archaeal community had 13,272 archaeal 16S rRNA region sequences clustered into 

19 OTUs. The mean of the number of archaeal OTUs did not differ by tillage (p = 0.58) and CC 

(p = 0.98). Tillage (p = 0.73) and CC (p = 0.76) also did not have significant impact on H’. 

Species richness by Chao1 was also unaffected by tillage (0.58) and CC (0.97) (Table 2.2). 

Archaeal communities showed significant β-diversity among CC treatments (Table 2.3). 

Pseudo-F value between CT and CcrShv was 3.981 (p = 0.01; q = 0.03) while it was marginally 

significant between CT and CarSar with 2.901 (p = 0.054; q = 0.081); it was not significant 

between CarSar-CcrShv (p = 0.437; q = 0.437). The β-diversity did not vary by tillage (p = 

0.272; q = 0.272). The archaeal community was dominated by phylum Thaumarchaeota (96.8%) 

and class Nitrososphaeria (95.8%).  

 

2.3.3. Responses selected microbial taxa to cover crops and tillage treatments 

2.3.3.1. Bacteria 

Total of six PCs explained 49.4% of the variability in the selected 42 top-contributing 

bacterial OTUs. The PC1 had eigenvalue of 5.90 and explained 13.4% of the variability, 
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including positive loadings from seven OTUs belonging to genera Cellulomonas, 

Solirubrobacter, Altererythrobacter, Massilia, and the families Archangiaceae, 

Burkholderiaceae, and AKYH767; three OTUs in the genera Gemmatimonadetes and 

Rhodocyclaceae, and in the family Gemmatimonadaceae had negative loadings. The PC2 had 

eigenvalue of 4.48 and explained 10.2% of the variability, including positive loadings from four 

OTUs each belonging to the genus Nocardioides, the order C0119, the class TK10, and the 

family SC-I-84. The PC3 had eigenvalue of 3.77 and explained 8.6% of the variability, including 

positive loadings from three OTUs in the class Gitt-GS-136, and the families 

Gemmatimonadaceae and Geminicoccaceae. The PC4 had eigenvalue of 2.77 and explained 

6.3% of the variability, including positive loadings from three OTUs each in the families A4b 

and Gemmataceae, and genus Haliangium. The PC5 had eigenvalue of 2.46 and explained 5.6% 

of the variability, including loadings from two OTUs in the families SC-I-84 and Opitutaceae. 

The PC6 had eigenvalue of 2.34 and explained 5.3% of the variability, including positive loading 

from an OTU in the phylum Latescibacteria, and a negative loading from one in family 

Gemmatimonadaceae. This information is summarized in Table B.6.  

The ANOVA tests performed on these bacterial PCs detected statistically significant CC 

and tillage effects (Table 2.4). The PC1 had significant tillage (p = 0.046) and CC (p = 0.012) 

main effects where mean scores reflected a contrasting responses of the microbial taxa in that 

PC1 under tillage (0.303) compared to no-till (-0.303) (Figure 2.2). Likewise, PC1 mean score 

was statistically different under CcrShv (0.539) compared to bare fallows (-0.526), with CarSar 

showing intermediate PC score (-0.013) (Figure 2.3). But PC1 did not have significant CC and 

tillage interaction effect (p = 0.900). The PC2 did not have significant tillage (p = 0.724), CC (p 

= 0.378), and interaction effects (p = 0.277). The PC3 did not have tillage main effect (p = 0.232) 

but had significant main effect from CC (p < 0.001), and CC and tillage interaction (p = 0.026) 

where lsmean PC scores were 0.59 for CT, 0.093 for CarSar, and -0.638 for CcrShv, each 

significantly different from each other (Figure 2.3); lsmean PC scores were higher under NT x 

CT (0.788), T x CarSar (0.514), and T x CT (0.392) than those of the rest which were negative 

(Figure 2.4). The PC4 did not have significant tillage effect (p = 0.849), but had marginal CC 

main effect (p = 0.053) and interaction effect (p = 0.053) where lsmean PC score was higher 

under CarSar (0.328) than CT (-0.440) (Figure 2.3); lsmean PC score was higher under CC with 

tillage (T x CarSar, 0.582; T x CcrShv, 0.373) than bare fallow with tillage (-0.866) (Figure 2.4). 
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The PC5 did not have effects from tillage (p = 0.120), CC (p = 0.137), and their interaction (p = 

0.504). The PC6 was not affected by main effects of tillage (p = 0.922) and CC (p = 0.214), but 

their interaction did have significance (p = 0.006): lsmean PC scores of T x CarSar (0.479), T x 

CT (0.362), NT x CcrShv (0.287), and NT x CarSar (0.214) were significantly larger than those 

of NT x CT (-0.543) and T x CcrShv (-0.799) (Figure 2.4). Overall, these results amounted to 18 

bacterial OTUs in four PCs responding significantly to CC and tillage treatments.  

 

2.3.3.2. Fungi and Archaea 

Total of seven PCs explained 49.1 % of the variability in the 36 selected top-contributing 

fungal OTUs. The PC1 had eigenvalue of 3.28 and explained 9.1% of the variability, including a 

positive loading from an OTU in the genus Tetracladium, and a negative loading from one in the 

genus Penicillium. The PC2 had eigenvalue of 2.90 and explained 8.1% of the variability, 

including positive loadings from Trichoderma spirale, Saitozyma podzolica, and an unknown 

phylum. The PC3 had eigenvalue of 2.59 and explained 7.2% of the variability, including 

positive loadings from two OTUs each in the family Chaetomiaceae and the class 

Agaricomycetes. The PC4 had eigenvalue of 2.46 and explained 6.8% of the variability, 

including positive loadings from two OTUs each in the genus Ascochyta and the class 

Agaricomycetes. The PC5 had eigenvalue of 2.36 and explained 6.6% of the variability, 

including a positive loading from an OTU in the order Xylariales, and a negative loading from 

one in the order Agaricales. The PC6 had eigenvalue of 2.2 and explained 6.1% of the 

variability, including a negative loading from Minimedusa polyspora. The PC7 had eigenvalue of 

1.88 and explained 5.2% of the variability, including a positive loading from a Plectosphaerella 

OTU. This information is summarized in Table B.7. 

The ANOVA tests on these PCs detected significant CC and tillage effects (Table 2.4). 

The PC1 had significant CC main effects (p = 0.029) where lsmean PC score was higher under 

CcrShv (0.417) than CarSar (-0.306) (Figure 2.3). The PC1 did not have significant tillage (p = 

0.660) and interaction effects (p = 0.220). The PC2 had significant tillage main effect (p = 0.001) 

where lsmean PC score was higher under tillage (0.463) than no-till (-0.463) (Figure 2.2). There 

was no significant CC (p = 0.771) and interaction (0.681) effects on PC2. Next, the PC3 had 

significant tillage main effect (p = 0.008) where lsmean PC score was higher under NT (0.366) 

than T (-0.366) (Figure 2); CC also had marginal main effect (p = 0.078) where mean PC score 
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was higher under CT (0.430) than CarSar (-0.273) (Figure 2.3). PC3 did not have significant 

interaction effect (p = 0.623). The PC4 had significant CC main effect (p = 0.005) and 

interaction effect (p = 0.041) where lsmean PC score was higher under CarSar (0.727) than the 

rest which were negative (Figure 2.3); PC score was the highest under NT x CarSar (1.095), and 

T x CarSar (0.359) was significantly higher than NT x CT (-0.798) (Figure 2.4). The PC5 had 

significant tillage main effect (p = 0.024) where mean PC score was higher under T (0.351) than 

NT (-0.351) (Figure 2.2). PC5 did not have significant CC (p = 0.248) and interaction effects (p 

= 0.238). The PC6 did not have significant tillage (p = 0.778) and CC (p = 0.739) main effects 

but did have marginal interaction effects (p = 0.081). However, lsmean separation did not show 

significant differences among CC and tillage interactions. The PC7 did not have significant 

tillage (p = 0.582) and CC (p = 0.564) main effects but did have marginal interaction effect (p = 

0.060), where lsmean PC score of T x CarSar (0.603) was significantly larger than those of T x 

CcrShv (-0.416) and NT x CarSar (-0.463) (Figure 2.4). These results amounted to 12 fungal 

OTUs in six PCs responding significantly to CC and tillage.  

The five top contributing archaeal OTUs all belonged to the family Nitrososphaeraceae: 

an unidentified Candidatus Nitrososphaera OTU, and unidentified archaeal OTUs SCA1154, 

SCA1158, SCA1166, and SCA1173. The OTU belonging to Ca. Nitrososphaera did not have 

significant effects from CC (p = 0.970), tillage (p = 0.970), and their interaction (p = 0.997). The 

OTU of SCA1154 was not affected by CC (p = 0.290), tillage (p = 0.461), and their interaction (p 

= 0.164). The OTU of SCA1158 did not have significant effects from tillage (p = 0.221), CC (p = 

0.620), and their interactions (p = 0.240). That of SCA1166 also was not affected by tillage (p = 

0.258), CC (p = 0.301), and their interactions (p = 0.460). Only the OTU of SCA1173 had 

significant main effect from CC treatments (p < 0.001) where mean of this OTU was greater 

under CT (42.52) than CcrShv (17.04) and CarSar (9.77). This OTU did not have significant 

effects from tillage (p = 0.188) and interactions (p = 0.949). This information is summarized in 

Table 2.5.  

 

2.4. DISCUSSION 

2.4.1. Long-term tillage and cover crop effects on soil properties 

As summarized in Table 2.1, soil properties did not differ significantly by CC and tillage 

treatments except for NO3-N, which more than halved under CarSar compared to the other CC 
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treatment and bare fallow control. Likewise, Behnke et al. (2020), which included this study’s 

experimental site, reported that annual ryegrass CC decreased NO3-N by 9% compared to bare 

fallow, while CcrShv showed intermediate estimates. White et al. (2017) also found that grass 

CC decreased NO3-N more than legume CC. There are reports that soil NO3-N did not differ by 

CC types (García-González et al., 2018; Villamil et al., 2008), but meta-analyses on CC 

reduction of NO3
- leaching suggest that grass CC generally are more effective at reducing soil 

NO3
- (Basche et al., 2014; Tonitto et al., 2006). As for CcrShv, Perrone et al. (2020) estimated 

that hairy vetch CC can fix up to 136 kg ha-1 of N until suppression. This study’s legume-grass 

CC rotation treatment seems to have maintained as much NO3-N as bare fallow partially by 

increasing the soil inorganic N through N-fixation. This surplus of soil inorganic N under legume 

CC would have also benefited the soil microbiome. Soil NH4-N may not have differed between 

treatments because crops preferentially utilize NO3
- before NH4

+, which also explains the lower 

NO3-N under CarSar (Yan et al., 2019).  

As for soil pH, there is no evidence that CC affect the soil pH significantly enough to 

produce visible shifts in the soil microbial composition (Fernandez et al., 2016; Qi et al., 2020; 

Sharma et al., 2018a; Tiecher et al., 2017). This was consistent with this study’s results that saw 

no significant change in soil pH between CC treatments. Likewise, tillage effect on soil pH is 

uncertain, as Blevins et al. (1983) found that no-till lowered soil pH of unlimed soil but increased 

that of limed soil; recent studies found conflicting effects as well (Li et al., 2020; Tiecher et al., 

2017). Also, specifically for this study’s experimental site, its superactive Mollisols had high 

CEC that leads to more base saturation, and therefore more buffering capacity against soil pH 

changes (Lumbanraja and Evangelou, 1991). Although numerous studies emphasized that the 

soil pH dictates the soil microbial composition, this does not seem to be a factor in this system 

with no significant CC and tillage effects (Chamberlain et al., 2020; Qi et al., 2020; Xu et al., 

2020). The high-CEC soil of the present study may also explain why treatment effects on CEC 

did not have statistical significance. Like in this study, other reports did not find significant CC 

and tillage effects on soil CEC (Behnke et al., 2020; Medeiros et al., 2017; Sharma et al., 2018b). 

Haruna and Nkongolo (2019) reported that CEC increased with cereal rye CC, but the difference 

was less than 1 cmol kg-1, smaller than the differences in the present study. Indeed, their soil 

order was Entisols with only little more than half the CEC of that of the present study’s 

Mollisols, whose high CEC makes the soil less sensitive to changes (Soil Survey staff, 1992). 
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Also, this result is not surprising considering that other properties like soil pH and SOM that are 

highly associated with CEC did not differ by treatments in this study.  

As for SOM, a meta-analysis by Daryanto et al. (2018) on comprehensive effects of CC 

reported that biomass input from cover cropping generally increases SOC, an important 

component of SOM. While the means of SOM was indeed larger with CC treatments than bare 

fallow, this difference was not statistically significant. According to Poeplau and Don (2015), 

organic C input from CC residues can incite priming effect that compel soil microbes, especially 

organotrophs, to actively consume SOM for resource. Therefore, priming effect from CC 

residues could have contributed to insignificant differences between CC treatments and bare 

fallow despite the SOM input from long-term CC treatments. Moreover, cash crop residues are 

another sources of SOM, perhaps even more so than from CC. The difference could have been 

statistically insignificant because cash crop residues provided much of the SOM and dwarfed the 

differences from CC residues.  

Meanwhile, CC biomass properties did not vary significantly between the two CC 

treatments (Table 2.1). This is likely because the biomass samples were taken during vegetative 

state of CC when both grass and legume CC have higher N content. The biomass C content was 

the only exception that differed between both CC and tillage treatments with statistical 

significance. However, the difference in biomass C was only 3%, which may not have practical 

significance, and could have been results of minor differences in the C:N ratios of the CCs at the 

time of sampling.  

 

2.4.2. Cover crop and tillage treatments significantly shifted indicator soil microbes 

2.4.2.1 Bacteria 

This study showed that bacterial OTUs in PC1, 3, and 4 responded significantly to CC 

and tillage effects (Figure 2.2 and 2.3). Bacterial PC1 had seven out of ten OTUs that were more 

abundant under CcrShv than bare fallow, while the remaining three OTUs behaved oppositely. 

Also, the same seven OTUs were more abundant under tillage while the other three did so under 

no-till. Interestingly, the seven OTUs that increased with CcrShv have been described as 

chemoorganotrophs or organic matter decomposers that belong to phyla Actinobacteria, 

Bacteriodetes, and Proteobacteria (Chen et al., 2017; Garrity et al., 2015; Huntley et al., 2010; 

Kim et al., 2007; Lang et al., 2015; Li et al., 2014; Whitman, 2015; Yuan et al., 2017; Zheng et 



49 

 

al., 2018). These three phyla have been recognized largely as copiotrophic groups that prefer 

easily degradable organic matter and adapted to high nutrient environments (Fierer and Jackson, 

2006).  

The influx of labile sources of C and N from fresh CC residues after suppression is a 

widely recognized CC benefit (Hubbard et al., 2013; Pascault et al., 2013; Sharma et al., 2018a). 

Moreover, tillage breaks and incorporates the CC residues into the soil so that microbes have 

better contact with the biomass, thereby increasing the decomposition rate (Lupwayi et al. 2004; 

Lynch et al. 2016). Even before suppression, CC exude nutrient rich compounds from their roots 

that also have been credited to explain the increase in copiotrophic microbial guilds under CC 

(Coskun et al. 2017; Alahmad et al. 2019; Romdhane et al. 2019). Indeed, studies have found 

that these three PC1 phyla increase with CC and tillage, and explained their responses as 

sensitivity to influx of readily available nutrients from CC residues and exudates (Romdhane et 

al. 2019; Alahmad et al. 2019; Pascault et al. 2013; Sharma-Poudyal et al. 2017). As for the 

intermediate responses of these seven PC1 decomposers to CarSar, both CC treatments had 

residues with C:N lower than 24:1 (Table 2.1), which below this ratio the decomposition of these 

residues compels the microbes to mineralize N and create a surplus of inorganic N (Sainju et al., 

2005). In both CarSar and CcrShv, the soil microbes would have utilized the inorganic N to 

further decompose parts of the CC residues with higher C:N (Sainju et al., 2005). But CcrShv 

had legume CC phase that fixed N for even more soil inorganic N availability (Perrone et al., 

2020), which nitrified into the greater NO3-N content in CcrShv (Table 2.1). This extra soil N 

availability from legume CC could have further benefited the decomposers, making them most 

abundant under CcrShv. Overall, the consistency between the past reports on these seven PC1 

OTUs as copiotrophic decomposers and this study’s results of their sensitivity to soil nutrient 

availability presents these OTUs as great candidates of microbial indicators representing the 

copiotrophic decomposer guild. Moreover, the sensitivity of this microbial guild to CC residues 

and tillage may gauge how actively the soil microbiome can decompose easily degradable 

components of the CC residues.  

On the contrary, three OTUs from PC1 and another three from PC3 that belong to the 

phyla Chloroflexi, Gemmatimonadetes, and Proteobacteria were significantly more abundant 

under bare fallow than CcrShv (Figure 2.3). First, PC1 and PC3 each included a different OTUs 

from family Gemmatimonadaceae, in phylum Gemmatimonadetes. As explained above, the lack 
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of CC residues and exudates in bare fallow makes the soil less rich in C than CC treatments, 

which compels the organotrophic microbes to use the native SOM to procure the necessary 

energy sources (Pascault et al., 2013). Pascault et al. (2013) found that Gemmatimonadetes 

correlated negatively to C inputs to soil and that it dominated the SOM-degrading community, 

demonstrating that this phylum is oligotrophic and better adapted to scavenging complex C 

substrates from SOM under low nutrient environment. Considering the consistency with this past 

finding, these PC1 and PC3 Gemmatimonadetes OTUs may be used as indicators of the 

oligotrophic microbial guilds that respond conversely to availability of labile C sources than the 

copiotrophic decomposers.  

In addition to soil C availability, all six OTUs in PC1 and PC3 could have responded to 

the CC and tillage effects on soil aeration and moisture. The family Gemmatimonadaceae is 

reported to be aerobes adapted to lower soil moisture and extreme environments (DeBruyn et al., 

2011; Fawaz, 2013; Wang et al., 2014; Zeng et al., 2015). As for the two OTUs in phylum 

Chloroflexi, class Gitt-GS-136 in PC3 is not well documented, but Anaerolineae in PC1 is a 

class of strictly anaerobic chemoorganotrophs capable of fermentation (Yamada et al., 2006; 

Yang et al., 2020). Likewise, reports on the two Proteobacteria OTUs suggest that they either 

possess fermentative metabolism (PC1 family A21b) (McIlroy et al., 2015) or have advantage in 

anaerobic conditions as facultative anaerobes (PC3 family Geminicoccaceae) (Proença et al., 

2018). While this study did not measure soil aeration and moisture, there are several reports that 

no-till and bare fallow make the soil environment more anaerobic and drier. For example, 

Villamil et al. (2008) found that cereal rye and hairy vetch decreased bulk density, which leads to 

less porosity for air and water. Also, Demir and Isik (2019) found that no-till reduced soil water 

availability. Martínez et al. (2016) found that no-till decreased soil gas transport, thereby making 

the soil more anaerobic. The anaerobic and dry conditions put strong selection pressures on the 

soil microbiome and increase relative abundances of anaerobic (Degrune et al., 2017; Linn and 

Doran, 1984) or more stress tolerant microbes (Schmidt et al., 2018). Overall, above reports on 

these six PC1 and PC3 OTUs represent the oligotrophic microbes that occupy different 

ecological niche from the seven copiotrophic OTUs from PC1. Therefore, these OTUs have the 

potential to be used as microbial indicators for stress-tolerant microbial guilds.  

The OTUs in bacterial PC4 had statistically significant CC and tillage interaction effects 

(Figure 2.4). Their abundances increased under CC with tillage compared to bare fallows with 
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tillage, and no-till showing intermediate results. First, Haliangium is an aerobic predatory genus 

(Huntley et al., 2010; Wang et al., 2020) and members of its parent order Myxococcales can 

survive in oligotrophic environments through predation (Huntley et al., 2010). As described 

earlier, CC and tillage enhance the labile soil nutrient availability, and increase the microbial 

abundance as demonstrated in a meta-analysis by Kim et al. (2020). As a dominant predatory 

group, Myxococcales and its Haliangium OTUs will not directly benefit from the CC residues 

but indirectly from the increasing prey population that multiply on nutrient-rich soil environment 

under CC and tillage (Table 2.1). Consistent with this study’s results, Jin et al. (2019) found that 

relative abundances of Myxoccocales and Haliangium increased with legume-grass mixed CC. 

Also, Gao et al. (2017) reported that wheat CC increased the relative abundance of 

Myxococcales. Likely, Haliangium is sensitive to the prey population controlled by CC and 

tillage effects on the soil nutrients, and is a good candidate as microbial indicator of predatory 

bacteria groups.  

Another PC4 bacterial OTUs, in the family Gemmataceae, is a strictly aerobic 

chemoorganotroph (Kulichevskaya et al., 2017) and its parent phylum Planctomycetes has been 

found to increase with CC (Alahmad et al., 2019; Verzeaux et al., 2016). The OTUs in family 

A4b belongs to the class Anaerolineae, previously described as anaerobic chemoorganotroph, 

which Jin et al. (2019) reported to have increased with CC as well. These two OTUs are 

probably decomposers and one of them in Gemmataceae is likely to be sensitive to changes in 

the soil nutrients and aeration from CC and tillage in similar way as the PC1 copiotrophic 

decomposers. However, as described, A4b is likely an anaerobe, which is expected to be more 

competitive under no-till and bare fallow like its sister taxa in PC1 (Yamada et al., 2006; Yang et 

al., 2020). Because not much is known about the family A4b, this study can only speculate that 

this genus has different sensitivity to soil nutrient and aeration as its sister taxa in PC1. Indeed, 

Romdhane et al. (2019) demonstrated that each genera of Chloroflexi, parent to Anaerolineae, 

responded contrastingly to soil properties like SOC and soil N.  

Overall, this study identified bacterial OTUs that responded to CC and tillage 

consistently with their known ecological and physiological characteristics. These responses were 

mostly attributed to bacterial sensitivity to the soil nutrient altered by CC and tillage, which was 

also suspected by similar past studies (Alahmad et al., 2019; Romdhane et al., 2019; Pascault et 

al., 2013). In addition to soil nutrients, this study found that CC and tillage effects on soil 
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aeration and moisture could also have differential selective pressure on the bacterial community. 

Each of the bacterial groups found in this study well represented various microbial guilds 

including copiotrophic and oligotrophic decomposers, predators, and stress-tolerant microbes. 

This study suggests that these bacterial indicators can provide a snapshot of the microbial 

properties like capability to decompose different types of nutrient sources, or responses to the 

indicators of soil health. Moreover, meta-analysis by Kim et al. (2020) questioned how much soil 

microbial abundance contributed to the greater microbial activity under CC. Results of the 

present study suggest that compositional changes that favored decomposers adapted to fresh CC 

residues could translate to differential production of enzymes such as β-glucosidase studied by 

Kim et al. (2020) that is involved in cellulose decomposition. This alludes that compositional 

changes under CC may be responsible for increased activity, but also raises the possibility that 

enzymes produced by microbial guilds not favored by CC may respond less or even negatively to 

the practice.  

 

2.4.2.2. Archaea and Fungi 

All five indicator archaeal OTUs identified in this study belonged to the family 

Nitrososphaeraceae, one of the most represented ammonia oxidizing archaea (AOA) and 

important initiators of nitrification (Kerou and Schleper, 2016; Taylor et al., 2010). Like in this 

study, the dominance of archaeal population by Nitrososphaeraceae was also observed by 

Somenahally et al. (2018). Also similar to this study’s results, Segal et al. (2017) did not find 

significant tillage effects on archaea. Of these five indicator archaea, only the unidentified 

archaeon SCA1173 responded significantly to CC and tillage where it was more abundant under 

bare fallow than CC. Ammonia-oxidizing archaea like SCA1173 are known to dominate in acidic 

soils (He et al., 2012), and Zhalnina et al. (2013) found that OTU Ca. Nitrososphaera, parent to 

one of the OTUs in the present study, is positively correlated with soil NH3
+ level. As NH3

+ is 

the substrate for ammonia oxidation, the same is expected to apply to SCA1173 as well (Hirsch 

and Mauchline, 2015). Ammonia oxidizing microbes gain energy primarily from ammonia 

oxidation, unlike typical organotrophic decomposers like bacteria in PC1 and PC4 whom organic 

C is the energy source (Prosser and Nicol, 2012). Without CC residues nor root exudates, bare 

fallow soil is C-limited than those of CC treatments, thereby favoring lithotrophic AOA over 

organotrophic decomposers. Indeed, nitrifiers including AOA have been found to thrive in lower 
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energy environment like bare fallow (Valentine, 2007), which explains why SCA1173 was more 

abundant in bare fallow. Overall, this result suggests that cover cropping may decrease 

nitrification from archaea by promoting competitiveness in other microbial groups with fresh 

organic C sources. Also, considering that Nitrososphaeraceae dominates the archaeal population 

in agricultural soil, SCA1173 is also a strong candidate for indicator archaea representing both 

AOA and the archaeal community.  

Fungal species in this study responded to CC and tillage by two possible factors: 

morphology and soil nutrient. First, the most striking consistency found in fungal responses was 

the relationship between fungal morphology and tillage. Abundances of fungal species in PC2, 3, 

and 5 differentially responded to tillage according to their morphology (Figure 2.2). Hyphal, or 

possibly hyphal, fungi including T. spirale, and three species each belonging to the family 

Chaetomiaceae, class Agaricomycetes, and order Agaricales increased under no-till, while those 

more abundant under tillage were yeasts (S. podzolica) or conidia producing species (order 

Xylariales) (Aliyu et al., 2019; Baiyee et al., 2019; Hibbett et al., 2014; Smith et al., 2003; 

Walther et al., 2005; Wang et al., 2019). This result is consistent with the findings of Sharma-

Poudyal et al. (2017) where hyphal Humicola species (Chaetomiaceae) increased with no-till. 

Besides other explanation that the authors have discussed, they also emphasized that physical 

disruption of the hyphal structure can be detrimental for fungi (Sharma-Poudyal et al., 2017). 

The peculiar consistency between fungal morphology and their responses to tillage gives weight 

to this past speculation that fungal morphology is a major factor in sensitivity to tillage.  

Second, similar to bacteria, CC and tillage impact on the soil nutrient may be a sensitive 

factor for the fungal community. Fungi are mostly organotrophic decomposers, which is 

especially true for the phyla Ascomycota and Basidiomycota that dominated this study’s fungal 

community (Wang et al., 2016). Indeed, fungal genera in PC1, 3, and 4 include decomposer 

species, for example, Penicillium and Tetracladium in PC1 (Klaubauf et al., 2010; Yadav et al., 

2018), family Chaetomiaceae in PC3, and Ascochyta in PC4 and (Osono, 2003; Sharma-Poudyal 

et al., 2017). The class Agaricomycetes, in PC3 and PC4, includes species adapted to a wide 

variety of niches including decomposers, pathogens, and mutualists. Further taxonomic 

identification is required to determine how its species in this study relate to CC effects (Hibbett 

et al., 2014). Sharma-Poudyal et al. (2017) suggested that crop residues that are broken and 

incorporated into soil by tillage promote fungal groups that prefer easily decomposed nutrient 
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sources, indicating that fungal community share similar sensitivity towards soil nutrients as 

bacteria. This observation can also be applied to CC residues, which provide easily degraded 

nutrient sources unlike bare fallow. Of the six fungal species except those of Agaricomycetes, 

PC1 species were more abundant under CcrShv while those of PC4 were so under CarSar. This 

is somewhat consistent with Finney et al. (2017) that found higher non-AMF fungi abundance 

under either hairy vetch or cereal rye CC than bare fallow. These four fungal species may be 

copiotrophic species adapted to easily degradable nutrient sources, and responded positively to 

the nutrient influx from CC residues. Likewise, the two fungal species in Chaetomiaceae and 

Agaricomycetes in PC3 increased under both bare fallow and no-till, much like the oligotrophic 

bacteria in PC1 (Figure 2.1 and 2.2). Indeed oligotrophic fungi are not rare in the kingdom 

(Wainwright et al., 1993), and Agaricomycetes is known saprotrophic fungal group with ability 

to degrade complex lignin, which is a characteristic of an oligotrophic microbe (Fester et al., 

2014). Therefore, this contrast between potential copiotrophic and oligotrophic fungal groups to 

CC and tillage supports sensitivity to soil nutrient as a possible explanation for fungal responses 

to the treatments.  

Overall, this study’s analysis demonstrated that the responses of the fungal species to CC 

and tillage could be affected by two factors: fungal morphology and soil nutrient. Unfortunately, 

the data of this study alone were not enough to confirm the contributions of these factors, 

especially because of the vague identities of some of the selected fungal species. Nonetheless, 

this study present these fungal species as potential fungal indicators and encourage revealing 

their identities and characteristics with further studies.  

 

2.4.3. Cover crop and tillage shifted β- but not α-diversity 

In light of the significant CC and tillage effects on the abundances of the microbial 

groups and bacterial phyla, α- and β-diversity responded contrastingly to the treatments (Table 

2.2 and 2.3). As for β-diversity, bacterial community composition differed significantly by tillage 

treatments only (Table 2.3). This might be reflecting how only tillage had the significant impact 

on the relative abundances of bacterial phyla (Figure 2.1). Past works also have shown 

significant tillage (Wang et al., 2020; Xia et al., 2019) and CC (Frasier et al., 2016) effects on 

bacterial β-diversity. Meanwhile, fungal β-diversity differed significantly between both tillage 

and CC treatments. Indeed, studies like Schmidt et al. (2019), Detheridge et al. (2016), and 
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Piazza et al. (2019) found that fungal community shifted significantly with both CC and tillage. 

Unlike bacteria, fungal β-diversity may have responded to both tillage and CC because the 

number of fungal OTUs was only a sixth of that of bacteria, therefore each fungal species has 

more statistical impact on the β-diversity and responses of indicator fungi selected in this study 

to treatments were enough to be reflected on the β-diversity. Contrarily, bacterial β-diversity was 

not consistent with the responses of selected indicator bacteria because the overall bacterial 

richness was too great for their behaviors to shift the bacterial composition. Likewise, archaeal β-

diversity only differed significantly between bare fallow and both CC treatments, comparable to 

the response of the indicator archaeon SCA1173 to CC treatments. With only 19 archaeal OTUs 

identified, perhaps one influential OTU was enough to shift the archaeal β-diversity. These 

results strongly suggest that indicator OTUs’ influence on β-diversity is biased by the microbial 

richness of the samples, which is determined by a study’s capability to detect microbial OTUs. 

Therefore, like bacteria, significant responses of indicator microbes may not reflect β-diversity in 

reality, and more complete detection of the fungal and archaeal OTUs may change β-diversity 

results. Nonetheless, the β-diversity results confirmed that the CC and tillage effects, described 

in the discussion of each microbial PCs, can shift the soil microbial community composition. 

Contrary to β-diversity, α-diversity indices did not respond to any of the treatments. This 

can be interpreted that CC and tillage changed the composition of the microbial community but 

not necessarily the richness and evenness of the microbiome. Meta-analysis by Kim et al. (2020) 

that compiled traditional α-diversity indices reported that CC effect sizes on these measures were 

statistically positive, but very small (average 2.5% increase) compared to those of microbial 

abundance (27%) and activity (22%). Considering this small global effect size, the present 

study’s result is not as surprising as an individual study. Moreover, this meta-analysis also found 

that CC effect size on H’ was not significant under chemical CC termination, which is consistent 

with no difference in α-diversity between CC treatments in the present study’s results that also 

chemically terminated the CC (Kim et al., 2020). Unlike CC effects, there has not been a 

research synthesis effort for tillage effects on the soil microbial diversity, but individual studies 

showed that diversity was higher under no-till or reduced tillage (Dorr de Quadros et al., 2012; 

Legrand et al., 2018; Schmidt et al., 2018). However, the increases in these studies were also 

small, for example 2.2% in H’ by Legrand et al. (2018) and 12% in Schmidt et al. (2018). 

Overall, the results of α- and β-diversities indicate that certain changes made by CC and tillage 
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like soil nutrient and aeration may shift the soil microbial composition, but the shift may not 

affect the community’s diversity and richness. 

 

2.4.4. Limitation and future direction 

This study’s results provided an account of CC and tillage effects on the taxonomic 

compositions of the soil microbiome. This means that this study only tells half the story which 

needs to be complemented by functionality data. Therefore, further research is needed to assess 

the changes in various functional genes or enzymes to confirm that the community compositional 

changes indeed translate into soil microbial ecological services. Moreover, this study analyzed 

the absolute abundances of the microbes, which is still valid (Props et al. 2017; Tang 2019), but 

analyzing the relative abundances may reveal different microbial indicators. Another 

shortcoming of this study is that many of the microbial indicators were unidentified at lower 

taxonomic ranks, which obscures their roles and characteristics in the microbiome. This study, 

however, identified potentially important microbial groups so that future research effort can be 

directed to them. On that note, this study should also be reproduced to confirm whether this 

study’s indicator microbes and their sensitivities are consistently found in different times or 

regions.  

 

2.4.5. Implications on nutrient loss reduction 

Overall, the soil microbial responses and soil properties results suggest that grass CC 

have better potential to reduce nutrient loss than legume CC. This study found compelling 

evidence that legume cover cropping and tillage favor the copiotrophic microbial guilds that are 

at the first line of decomposition that targets easily degradable parts of the crop residues. This is 

likely achieved by the legume CC fixing N for themselves and leaving more soil inorganic N for 

the microbial demands while tillage incorporates and breaks the residues for better microbial 

access. With the extra N, these microbial groups will rapidly decompose CC and even high C:N 

cash crop residues. This pushes the soil N cycle towards N mineralization because CC residues 

suppressed at vegetative state have lower C:N, thereby increasing the soil inorganic N (Sainju et 

al., 2005). This was evident in this study’s results where soil NO3-N was similar between 

CcrShv and bare fallow, but significantly lower for CarSar with grass-only CC (Table 2.1). 

While this abundance of soil inorganic N may benefit subsequent cash crop yield (Marcillo and 
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Miguez, 2017), it also means more soil N subject to loss via nitrification and denitrification, 

which again is supported by the higher NO3-N under CcrShv (Hirsch and Mauchline, 2015). 

This sensitivity of microbial decomposers to the synergy between legume CC and tillage tells the 

microbial side of the story of why grass CC have been found to be more effective in reducing 

soil nutrient loss (Daryanto et al., 2017; Gonzalez, 2018; Thapa et al., 2018). Considering that 

CcrShv in this study was a rotation of grass and legume CC, the potential soil N loss under 

legume-only CC system could be even greater than what is found in this study. Therefore, this 

study proposes that combining no-till with grass CC is the best cover cropping system for 

reducing the soil N loss; likewise, legume CC need to be managed with no-till to minimize 

nutrient loss.  

 

2.5. CONCLUSION 

Understanding CC and tillage impact on the soil microbiome and ultimately soil nutrient 

loss requires unraveling how the complex soil microbiome respond to these practices. This 

metagenomics study is a part of this effort which sought to identify indicator microbes that can 

represent important microbial guilds responsible for the soil nutrient dynamics. This study used 

statistical approaches including bootstrap forest partitioning and PCA to select the sensitive 

microbes, and used generalized mixed effects model to quantify their responses to CC and 

tillage. This resulted to identifying 18 bacterial, 12 fungal, and an archaeal indicator OTUs that 

represented microbial guilds that each responded differently to changes in the soil environment 

by CC and tillage. These responses translated into shifts in the soil microbial composition but not 

the community richness and diversity. This study also found evidence that tillage is detrimental 

for hyphal fungi, and that bare fallow favors nitrifying ammonia-oxidizing archaea. The increase 

of copiotrophic decomposers under legume-grass rotation CC coincided with higher soil NO3-N 

than grass-only CC. This may be a combined result of increased soil inorganic N from N-fixation 

by legume CC and the increased copiotrophic decomposers compelled to mineralize N from CC 

residues with low C:N ratio. The greater soil inorganic N increases the risk of soil nutrient loss. 

Therefore, while this study’s results need to be confirmed by soil microbial biomass and 

functionality data, they strongly suggest grass CC and no-till as better option for soil nutrient loss 

reduction.  
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TABLES AND FIGURES 

Table 2.1. Means and standard errors of the mean (in parentheses) of the six soil properties and four cover crop biomass properties by 

tillage and cover crop rotation treatment in 2017 sampling. Six soil properties were soil cation exchange capacity (CEC, cmol kg-1), 

soil pH (pH), soil organic matter content (SOM, %), soil nitrate content (NO3-N, mg kg-1), soil ammonium content (NH4-N, mg kg-

1), and soil phosphorus content (P, mg kg-1). The four cover crop biomass properties are biomass carbon (C, %) and nitrogen (N, %) 

contents, their ratio (C:N), and biomass dry weight per hectare (Dry Weight, Mg ha-1). Factors in bold indicate significant treatments 

effect (p<0.1) and those within the same row with same letters indicate are not statistically different (α=0.05).  

 

 

Tillagea 

 
Cover cropb 

  

Soil properties NT T p-value CT CarSar CcrShv p-value 

CEC (cmol/kg) 21.78 (2.49) 24.04 (2.49) 0.43 24.07 (2.57) 21.59 (2.57) 23.06 (2.57) 0.63 

pH 5.95 (0.16) 5.90 (0.16) 0.72 5.96 (0.16) 5.94 (0.16) 5.88 (0.16) 0.74 

SOM (%) 3.76 (0.15) 3.83 (0.15) 0.34 3.73 (0.15) 3.81 (0.15) 3.85 (0.15) 0.38 

NO3-N (mg/kg) 1.52 (0.23) 1.47 (0.23) 0.85 1.83 (0.33)  a 0.85 (0.33)  b 1.80 (0.33)  a 0.07 

NH4-N (mg/kg) 12.62 (0.81) 11.90 (0.81) 0.50 11.84 (1.06) 12.68 (1.06) 12.27 (1.06) 0.85 

P (mg/kg) 5.42 (1.51) 5.79 (1.51) 0.74 6.38 (1.56) 4.31 (1.56) 6.13 (1.56) 0.18 

Cover crop biomass               

C (%) 42.77 (0.50)  a 41.46 (0.47)  b 0.04 

 

41.38 (0.53)  b 42.85 (0.59)  a 0.08 

N (%) 2.93 (0.16) 2.65 (0.15) 0.14 

 

2.79 (0.16) 2.79 (0.17) 1 

C:N 15.43 (0.71) 15.91 (0.66) 0.58 

 

15.24 (0.69) 16.10 (0.78) 0.41 

Dry Weight (Mg/ha) 1.80 (0.10) 1.93 (0.09) 0.27   1.81 (0.09) 1.92 (0.10) 0.33 
aNT, no-till; T, chisel tillage. 
bCT, bare fallow control; CarSar, annual ryegrass following both corn and soybean; CcrShv, cereal rye following corn, hairy vetch 

following soybean. 
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Table 2.2. Means and standard errors of the mean (SEM) of the three α-diversity parameters of taxa bacteria, fungi, and archaea by 

tillage and cover crop rotation treatment from soil DNA sampling. The α-diversity measures were number of observed OTUs (OTUs), 

Chao 1 Richness Index (Chao1), and Shannon’s Diversity Index (H’). Factors in bold indicate significant treatments effect (p<0.1) and 

those within the same row with same letters indicate are not statistically different (α=0.05). 

    OTUs Chao1 H' 

Taxa Treatmenta Mean SEM p-value Mean SEM p-value Mean SEM p-value 

Bacteria 

T 206.04 
10.14 0.54 

206.35 
10.19 0.54 

7.30 
0.07 0.57 

NT 210.11 210.47 7.33 

CarSar 202.46 

10.62 0.38 

202.72 

10.68 0.37 

7.27 

0.08 0.27 CcrShv 213.62 214.20 7.37 

CT 208.15 208.31 7.32 

Fungi 

T 32.94 
1.52 0.26 

32.97 
1.55 0.28 

4.19 
0.08 0.11 

NT 30.37 30.45 4.01 

CarSar 31.95 

1.56 0.89 

31.97 

1.58 0.90 

4.26 

0.12 0.30 CcrShv 31.90 31.96 4.02 

CT 31.11 31.20 4.03 

Archaea 

T 11.60 
0.65 0.58 

11.60 
0.65 0.58 

3.24 
0.08 0.73 

NT 11.16 11.16 3.20 

CarSar 11.45 

0.72 0.98 

11.45 

0.73 0.97 

3.24 

0.09 0.76 CcrShv 11.41 11.43 3.24 

CT 11.29 11.26 3.17 
aNT, no-till; T, chisel tillage; CT, bare fallow control; CarSar, annual ryegrass following both corn and soybean; 

CcrShv, cereal rye following corn, hairy vetch following soybean. 
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Table 2.3. The β-diversity of each taxa by tillage and cover crop treatments based on pariwise PERMANOVA on weighted UniFrac 

distance. Column “Levels” indicates the two treatment levels being compared, and the column “Sample size” indicates the sample size 

for the particular comparison. The pseudo-F measures the significance of the UniFrac distance between the two treatment levels. The 

p-value measures the probability of Type I error and the q-value measures the Type II error. Comparisons with significant pseudo-F 

values (p-value & q-value < 0.10) are in bold.   

Taxa Treatment Levelsa Sample size pseudo-F p-value q-value 

Bacteria Tillage NT-T 142 4.33 0.001** 0.001** 

Cover 
crop 

CT-CarSar 95 1.08 0.296 0.444 

CT-CcrShv 94 1.30 0.192 0.444 

CarSar-
CcrShv 

95 0.77 0.774 0.774 

Fungi Tillage NT-T 129 2.78 0.019** 0.019** 

Cover 
crop 

CT-CarSar 83 5.42 0.002** 0.003** 

CT-CcrShv 87 3.14 0.013** 0.013** 

CarSar-
CcrShv 

88 4.11 0.001** 0.003** 

Archaea Tillage NT-T 130 1.12 0.272 0.272 

Cover 
crop 

CT-CarSar 86 2.90 0.054* 0.081* 

CT-CcrShv 87 3.98 0.010** 0.030** 

CarSar-
CcrShv 

87 0.80 0.437 0.437 

aNT, no-till; T, chisel tillage; CT, bare fallow control; CarSar, annual ryegrass following both corn and soybean; 

CcrShv, cereal rye following corn, hairy vetch following soybean. 

*, p-value<0.1; **, p-value<0.05 
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Table 2.4. The results of analysis of variance (ANOVA) for the effects of cover cropping (CC), tillage (Till), and their interaction (CC 

x Till) on top contributing Principal Components (PCs) comprised of bacterial and fungal indicator OTUs selected by JMP®. The 

provability values for the ANOVA for the effects of treatments and the degrees of freedom (df) are shown on the top rows. The results 

of mean (lsmeans) separation for CC, Till, and CC x Till and their standard errors of the mean (SEM) are presented at the bottom. 

Relationships that had both significant ANOVA results (α=0.1) and mean separation results (α=0.05) are bolded. Separated means for 

in a column with like letters are not significantly different. 

    Bacteria   Fungi 

    PC1 PC2 PC3 PC4 PC5 PC6   PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Treatments df p-value   p-value 

Tillage 1 0.046 0.724 0.232 0.849 0.120 0.922 

 

0.660 0.001 0.008 0.635 0.024 0.778 0.582 

Cover crop 2 0.012 0.378 <0.001 0.053 0.137 0.214 

 
0.029 0.771 0.078 0.005 0.248 0.739 0.564 

CC x Till 2 0.900 0.277 0.026 0.053 0.504 0.006 

 

0.220 0.681 0.623 0.041 0.238 0.081 0.060 

                                

Mean separationa                             

 

NT -0.303 b 0.050 -0.139 -0.030 -0.233 -0.014 

 

0.085 -0.463 b 0.366 a 0.054 -0.351 b -0.040 -0.074 

 

T 0.303 a -0.050 0.139 0.030 0.233 0.014   -0.085 0.463 a -0.366 b -0.054 0.351 a 0.040 0.074 

 

SEM 0.192 0.306 0.240 0.215 0.241 0.213 

 

0.300 0.188 0.187 0.190 0.236 0.202 0.224 

                

 

CT -0.526 b -0.183 0.59 a -0.440 b 0.312 -0.090 

 
-0.111 ab 0.149 0.430 a -0.528 b 0.280 -0.131 0.130 

 

CarSar -0.013 ab 0.024 0.093 b 0.328 a 0.101 0.346 

 
-0.306 b -0.052 -0.273 b 0.727 a -0.178 -0.012 0.070 

 

CcrShv 0.539 a 0.160 -0.683 c 0.112 ab -0.413 -0.256   0.417 a -0.097 -0.157 ab -0.200 b -0.102 0.142 -0.200 

 

SEM 0.225 0.308 0.248 0.235 0.284 0.255 

 

0.276 0.255 0.229 0.252 0.261 0.247 0.260 

                

 

NT x CT -0.759 -0.190 0.788 a -0.013 ab -0.062 -0.543 bc 

 

0.001 -0.452 0.753 -0.798 c -0.105 -0.323 0.224 ab 

 

NT x CarSar -0.317 0.295 -0.329 b 0.073 ab 0.013 0.214 ab 

 

-0.058 -0.488 0.269 1.095 a -0.265 -0.359 -0.463 b 

 

NT x CcrShv 0.167 0.044 -0.878 b -0.149 ab -0.650 0.287 ab 

 

0.313 -0.448 0.077 -0.136 bc -0.684 0.560 0.016 ab 

 

T x CT -0.292 -0.177 0.392 a -0.866 b 0.685 0.362 a 

 

-0.223 0.750 0.108 -0.257 bc 0.665 0.062 0.035 ab 

 

T x CarSar 0.291 -0.248 0.514 a 0.582 a 0.190 0.479 a 

 

-0.553 0.384 -0.815 0.359 b -0.091 0.336 0.603 a 

 

T x CcrShv 0.912 0.275 -0.488 b 0.373 a -0.176 -0.799 c   0.520 0.254 -0.392 -0.264 bc 0.480 -0.276 -0.416 b 

  SEM 0.315 0.365 0.298 0.332 0.342 0.327   0.350 0.326 0.324 0.302 0.333 0.350 0.348 
aNT, no-till; T, chisel tillage; CT, bare fallow control; CarSar, annual ryegrass following both corn and soybean; CcrShv, cereal rye following corn, hairy vetch following soybean. 
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Table 2.5. The results of analysis of variance (ANOVA) for the effects of cover cropping (CC), tillage (Till), and their interaction (CC 

x Till) on the absolute abundances of top contributing archaeal indicator OTUs selected by JMP®. The provability values for the 

ANOVA for the effects of treatments and the degrees of freedom (df) are shown on the top rows. The results of mean (lsmeans) 

separation for CC, Till, and CC x Till and their standard errors of the mean (SEM) are presented at the bottom. Relationships that had 

both significant ANOVA results (α=0.1) and mean separation results (α=0.05) are bolded. Separated means for in a column with like 

letters are not significantly different. 

    Archaea 

    Ca. Nitrososphaera SCA1154 SCA1158 SCA1166 SCA1173 

Factors df p-value 

Tillage 1 0.675 0.461 0.221 0.258 0.188 

Cover crop 2 0.237 0.290 0.620 0.315 <0.001 

CC x Till 2 0.391 0.164 0.240 0.470 0.949 

              

Mean separationa           

 

NT 9.110 7.972 6.000 33.583 19.264 

 

T 11.030 5.653 11.861 25.375 26.958 

 

SEM 3.096 2.439 3.456 6.551 4.975 

       

 

CT 4.670 5.792 11.792 34.813 42.521 a 

 

CarSar 13.810 4.063 6.604 30.458 9.771 b 

 

CcrShv 11.730 10.583 8.396 23.167 17.042 b 

 

SEM 3.792 3.058 4.068 7.086 5.740 

       

 

NT x CT 4.417 3.292 4.542 44.125 38.042 

 

NT x CarSar 16.250 5.292 4.750 30.667 5.250 

 

NT x CcrShv 6.667 15.333 8.708 25.958 14.500 

 

T x CT 4.917 8.292 19.042 25.500 47.000 

 

T x CarSar 11.375 2.833 8.458 30.250 14.292 

 

T x CcrShv 16.792 5.833 8.083 20.375 19.583 

  SEM 5.362 3.977 5.261 8.927 7.585 
aNT, no-till; T, chisel tillage; CT, bare fallow control; CarSar, annual ryegrass following both corn and soybean; CcrShv, cereal rye following corn, hairy vetch following soybean. 
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Figure 2.1. Visual representation of the PCA and mean separation on PC scores of the relative 

abundance of bacterial phyla whose PC scores differed significantly by tillage treatment: no-till 

(NT) and chisel tillage (T). Filled squares represent the mean of PC score of chisel tillage 

multiplied by PC loading of each phylum; crossed squares represent those of no-till. Within each 

phylum, square of higher Y-axis value indicates that the relative abundance of the phylum was 

larger with the corresponding tillage treatment.  
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Figure 2.2. Visual representation of the PCA and mean separation on PC scores of the absolute 

abundance of the indicator bacterial and fungal species by tillage treatment: no-till (NT) and 

chisel tillage (T). Gray boxes at the top indicates the principal component (PC) that the species 

are grouped into. Each squares represent the mean of PC score of the corresponding treatment 

level for that PC multiplied by PC loading of each species; filled square for T, and crossed 

squares for NT. Within each species, square of higher Y-axis value indicates that the absolute 

abundance of the species was larger with the corresponding tillage treatment. The taxonomy of 

the species in X-axis is indicated as the three-letter acronym of the phylum of the species, 

followed by the name its lowest identified taxonomic rank, and the letter in parentheses indicates 

that rank. Act, Actinobacteria; Bac, Bacteroidetes; Chl, Chloroflexi; Gem, Gemmatimonadetes; 

Pro, Proteobacteria; A, Ascomycota; B, Basidiomycota; C, Class; O, Order; F, Family; G, 

Genus; S, Species. 
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Figure 2.3. Visual representation of the PCA and mean separation on PC scores of the absolute 

abundance of the indicator bacterial and fungal species by cover crop treatment: bare fallow 

control (CT), annual ryegrass following both corn and soybean (CarSar), and cereal rye 

following corn, hairy vetch following soybean (CcrShv). Gray boxes at the top indicates the 

principal component (PC) that the species are grouped into. Each dots represent the mean of PC 

score of the corresponding treatment level for that PC multiplied by PC loading of each species; 

red for CarSar, blue for CcrShv, and yellow for CT. Within each species, dots of higher Y-axis 

value indicate that the absolute abundance of the species was larger with the corresponding 

tillage treatment. The taxonomy of the species in X-axis is indicated as the three-letter acronym 

of the phylum of the species, followed by the name its lowest identified taxonomic rank, and the 

letter in parentheses indicates that rank. Act, Actinobacteria; Bac, Bacteroidetes; Chl, 

Chloroflexi; Gem, Gemmatimonadetes; Pro, Proteobacteria; Pla, Planctomycetes; A, 

Ascomycota; B, Basidiomycota; C, Class; O, Order; F, Family; G, Genus; S, Species. 
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Figure 2.4. Visual representation of the PCA and mean separation on PC scores of the absolute 

abundance of the indicator bacterial and fungal species by interaction of cover crop and tillage 

treatments: no-till (NT), chisel tillage (T) interacting (x) with bare fallow control (CT), annual 

ryegrass following both corn and soybean (CarSar), or cereal rye following corn, hairy vetch 

following soybean (CcrShv). Gray boxes at the top indicates the principal component (PC) that 

the species are grouped into. Each squares represent the mean of PC score of interaction level for 

that PC multiplied by PC loading of each species; crossed box for NT, filled box for T, red for 

CarSar, blue for CcrShv, and yellow for CT. Within each species, squares of higher Y-axis value 

indicate that the absolute abundance of the species was larger with the corresponding tillage 

treatment. The taxonomy of the species in X-axis is indicated as the three-letter acronym of the 

phylum of the species, followed by the name its lowest identified taxonomic rank, and the letter 

in parentheses indicates that rank. Act, Actinobacteria; Bac, Bacteroidetes; Chl, Chloroflexi; 

Gem, Gemmatimonadetes; Pro, Proteobacteria; Pla, Planctomycetes; Lat, Latescibacteria; A, 

Ascomycota; B, Basidiomycota; C, Class; O, Order; F, Family; G, Genus; S, Species. 



67 

 

REFERENCES 

Abdollahi, L., & Munkholm, L. J. (2014). Tillage System and Cover Crop Effects on Soil Quality:I. 

Chemical, Mechanical, and Biological Properties. Soil Science Society of America Journal, 78(1), 

262-270. doi: 10.2136/sssaj2013.07.0301 

Abdollahi, L., Munkholm, L. J., & Garbout, A. (2014). Tillage System and Cover Crop Effects on Soil 

Quality: II. Pore Characteristics. Soil Science Society of America Journal, 78(1), 271-279. doi: 

10.2136/sssaj2013.07.0302 

Acosta-Martínez, V., Lascano, R., Calderón, F., Booker, J. D., Zobeck, T. M., & Upchurch, D. R. (2011). 

Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid 

sandy soil. Biology and Fertility of Soils, 47(6), 655-667. doi: 10.1007/s00374-011-0565-1 

Acuña, J. C. M., & Villamil, M. B. (2014). Short-term effects of cover crops and compaction on soil 

properties and soybean production in Illinois. Agronomy Journal, 106, 860-870. doi: 

10.2134/agronj13.0370. 

Alahmad, A., Decocq, G., Spicher, F., Kheirbeik, L., Kobaissi, A., Tetu, T., . . . Duclercq, J. (2019). 

Cover crops in arable lands increase functional complementarity and redundancy of bacterial 

communities. Journal of Applied Ecology, 56(3), 651-664. doi: 10.1111/1365-2664.13307 

Alexandratos, N., & Bruinsma, J. (2012). World Agriculture towards 2030/2050: the 2012 revision. 12(3), 

154.  

Aliyu, H., Gorte, O., Neumann, A., & Ochsenreither, K. (2019). Draft Genome Sequence of the 

Oleaginous Yeast Saitozyma podzolica (syn. Cryptococcus podzolicus) DSM 27192. 

Microbiology Resource Announcements, 8(8). doi: 10.1128/MRA.01676-18 

Almeida, D. S., Menezes-Blackburn, D., Rocha, K. F., de Souza, M., Zhang, H., Haygarth, P. M., & 

Rosolem, C. A. (2018). Can tropical grasses grown as cover crops improve soil phosphorus 

availability? Soil Use and Management, 34(3), 316-325. doi: 10.1111/sum.12439 

Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). In N. 

Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri & J. L. Teugels (Eds.), Wiley 

StatsRef: Statistics Reference Online (pp. 1-15). 

Arnfield, J. (2019, 2019/04/11/2019/04/21/19:08:51). Koppen climate classification. Encyclopedia 

Britannica. from https://www.britannica.com/science/Koppen-climate-classification 

Babin, D., Deubel, A., Jacquiod, S., Sørensen, S. J., Geistlinger, J., Grosch, R., & Smalla, K. (2019). 

Impact of long-term agricultural management practices on soil prokaryotic communities. Soil 

Biology and Biochemistry, 129, 17-28. doi: https://doi.org/10.1016/j.soilbio.2018.11.002 

Baiyee, B., Pornsuriya, C., Ito, S.-i., & Sunpapao, A. (2019). Trichoderma spirale T76-1 displays 

biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora 

cassiicola or Curvularia aeria. Biological Control, 129, 195-200. doi: 

10.1016/j.biocontrol.2018.10.018 

Balota, E. L., Calegari, A., Nakatani, A. S., & Coyne, M. S. (2014). Benefits of winter cover crops and 

no-tillage for microbial parameters in a Brazilian Oxisol: A long-term study. Agriculture, 

Ecosystems & Environment, 197, 31-40. doi: https://doi.org/10.1016/j.agee.2014.07.010 

Basche, A. D., Miguez, F. E., Kaspar, T. C., & Castellano, M. J. (2014). Do cover crops increase or 

decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 

69(6), 471-482. doi: 10.2489/jswc.69.6.471 

Bashyal, M., Ferguson, J. C., Perez-Hernandez, O., & Hoilett, N. (2019). Effect of Cereal Rye and Hairy 

Vetch on Pest Suppression and Corn Yield. Communications in Soil Science and Plant Analysis, 

50(9), 1093-1105. doi: 10.1080/00103624.2019.1603309 

Behnke, G. D., Kim, N., & Villamil, M. B. (2020). Agronomic assessment of cover cropping and tillage 

practices across environments. Agronomy Journal, n/a(n/a). doi: 10.1002/agj2.20337 

Behnke, G. D., & Villamil, M. B. (2019). Cover crop rotations affect greenhouse gas emissions and crop 

production in Illinois, USA. Field Crops Research, 241. doi: 10.1016/j.fcr.2019.107580 

http://www.britannica.com/science/Koppen-climate-classification


68 

 

Bengtsson, J., Ahnström, J., & Weibull, A.-C. (2005). The effects of organic agriculture on biodiversity 

and abundance: a meta-analysis. Journal of Applied Ecology, 42(2), 261-269. doi: 

10.1111/j.1365-2664.2005.01005.x 

Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164-

200. doi: 10.1016/j.geoderma.2018.03.011 

Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., & Abebe, E. (2005). Defining 

operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal 

Society B: Biological Sciences, 360(1462), 1935-1943. doi: 10.1098/rstb.2005.1725 

Blevins, R. L., Thomas, G. W., Smith, M. S., Frye, W. W., & Cornelius, P. L. (1983). Changes in soil 

properties after 10 years continuous non-tilled and conventionally tilled corn. Soil and Tillage 

Research, 3(2), 135-146. doi: https://doi.org/10.1016/0167-1987(83)90004-1 

Bolyen, E., Rideout, J., Dillon, M., Bokulich, N., Abnet, C., Al-Ghalith, G., . . . Caporaso, J. (2019). 

Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. 

Nature Biotechnology, 37, 852-857. doi: https://doi.org/10.1038/s41587-019-0209-9 

Bowles, T. M., Jackson, L. E., Loeher, M., & Cavagnaro, T. R. (2017). Ecological intensification and 

arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. Journal of Applied 

Ecology, 54(6), 1785-1793. doi: 10.1111/1365-2664.12815 

Burns, R. G. (1982). Enzyme activity in soil: Location and a possible role in microbial ecology. Soil 

Biology and Biochemistry, 14(5), 423-427. doi: 10.1016/0038-0717(82)90099-2 

Buyer, J. S., Baligar, V. C., He, Z., & Arevalo-Gardini, E. (2017). Soil microbial communities under 

cacao agroforestry and cover crop systems in Peru. Applied Soil Ecology, 120, 273-280. doi: 

10.1016/j.apsoil.2017.09.009 

Buyer, J. S., & Sasser, M. (2012). High throughput phospholipid fatty acid analysis of soils. Applied Soil 

Ecology, 61, 127-130. doi: 10.1016/j.apsoil.2012.06.005 

Buyer, J. S., Teasdale, J. R., Roberts, D. P., Zasada, I. A., & Maul, J. E. (2010). Factors affecting soil 

microbial community structure in tomato cropping systems. Soil Biology & Biochemistry, 42(5), 

831-841. doi: 10.1016/j.soilbio.2010.01.020 

Calderon, F. J., Nielsen, D., Acosta-Martinez, V., Vigil, M. F., & Lyons, D. (2016). Cover Crop and 

Irrigation Effects on Soil Microbial Communities and Enzymes in Semiarid Agroecosystems of 

the Central Great Plains of North America. Pedosphere, 26(2), 192-205. doi: 10.1016/S1002-

0160(15)60034-0 

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). 

DADA2: High-resolution sample inference from Illumina amplicon data. Nature Mthods, 13, 

581-583. doi: doi: 10.1038/nmeth.3869. 

Chamberlain, L. A., Bolton, M. L., Cox, M. S., Suen, G., Conley, S. P., & Ané, J.-M. (2020). Crop 

rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean 

system in southern Wisconsin. Applied Soil Ecology, 154, 103603. doi: 

https://doi.org/10.1016/j.apsoil.2020.103603 

Chen, W.-M., Xie, P.-B., Young, C.-C., & Sheu, S.-Y. (2017). Formosimonas limnophila gen. nov., sp. 

nov., a new member of the family Burkholderiaceae isolated from a freshwater lake. International 

Journal of Systematic and Evolutionary Microbiology, 67(1), 17-24. doi: 

https://doi.org/10.1099/ijsem.0.001561 

Colman, D. R., Thomas, R., Maas, K. R., & Takacs-Vesbach, C. D. (2015). Detection and analysis of 

elusive members of a novel and diverse archaeal community within a thermal spring streamer 

consortium. Extremophiles, 19(2), 307-313. doi: 10.1007/s00792-014-0715-0 

Conacher, A. (2009). Land degradation: A global perspective. New Zealand Geographer, 65(2), 91-94. 

doi: 10.1111/j.1745-7939.2009.01151.x 

Coskun, D., Britto, D. T., Shi, W., & Kronzucker, H. J. (2017). How Plant Root Exudates Shape the 

Nitrogen Cycle. Trends in Plant Science, 22(8), 661-673. doi: 

https://doi.org/10.1016/j.tplants.2017.05.004 



69 

 

Crawford, J. W., Deacon, L., Grinev, D., Harris, J. A., Ritz, K., Singh, B. K., & Young, I. (2012). 

Microbial diversity affects self-organization of the soil microbe system with consequences for 

function. Journal of The Royal Society Interface, 9(71), 1302-1310. doi: 

doi:10.1098/rsif.2011.0679 

Damin, V., Franco, H. C. J., Moraes, M. F., Franco, A., & Trivelin, P. C. O. (2008). Nitrogen loss in 

Brachiaria decumbens after application of glyphosate or glufosinate-ammonium. Scientia 

Agricola, 65(4), 402-407. doi: 10.1590/S0103-90162008000400012 

Damin, V., Trivelin, P. C. O., Carvalho, S. J. P., Moraes, M. F., & Barbosa, T. G. (2010). Herbicide 

application increases nitrogen (15N) exudation and root detachment of Brachiaria decumbens 

Stapf. Plant and Soil, 334(1), 511-519. doi: 10.1007/s11104-010-0402-6 

Daryanto, S., Fu, B., Wang, L., Jacinthe, P.-A., & Zhao, W. (2018). Quantitative synthesis on the 

ecosystem services of cover crops. Earth-Science Reviews, 185, 357-373. doi: 

10.1016/j.earscirev.2018.06.013 

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2017). Impacts of no-tillage management on nitrate loss from 

corn, soybean and wheat cultivation: A meta-analysis. Scientific Reports, 7(1), 12117. doi: 

10.1038/s41598-017-12383-7 

DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., & Radosevich, M. (2011). Global 

Biogeography and Quantitative Seasonal Dynamics of &lt;span class=&quot;named-content 

genus-species&quot; id=&quot;named-content-1&quot;&gt;Gemmatimonadetes&lt;/span&gt; in 

Soil. Applied and Environmental Microbiology, 77(17), 6295. doi: 10.1128/AEM.05005-11 

Degrune, F., Theodorakopoulos, N., Colinet, G., Hiel, M.-P., Bodson, B., Taminiau, B., . . . Hartmann, M. 

(2017). Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two 

Contrasting Tillage Regimes. Frontiers in Microbiology, 8. doi: 10.3389/fmicb.2017.01127 

Demir, Z., & Isik, D. a. (2019). Effects of cover crops on soil hydraulic properties and yield in a 

persimmon orchard. Bragantia, 78, 596-605.  

Detheridge, A. P., Brand, G., Fychan, R., Crotty, F. V., Sanderson, R., Griffith, G. W., & Marley, C. L. 

(2016). The legacy effect of cover crops on soil fungal populations in a cereal rotation. 

Agriculture, Ecosystems & Environment, 228, 49-61. doi: 

https://doi.org/10.1016/j.agee.2016.04.022 

Dorr de Quadros, P., Zhalnina, K., Davis-Richardson, A., Fagen, J. R., Drew, J., Bayer, C., . . . Triplett, E. 

W. (2012). The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and 

Composition in a Subtropical Acrisol. Diversity, 4(4), 375-395.  

Dozier, I. A., Behnke, G. D., Davis, A. S., Nafziger, E. D., & Villamil, M. B. (2017). Tillage and Cover 

Cropping Effects on Soil Properties and Crop Production in Illinois. Agronomy Journal, 109(4), 

1261-1270. doi: 10.2134/agronj2016.10.0613 

Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and 

Biochemistry, 20(5), 601-606. doi: 10.1016/0038-0717(88)90141-1 

Endale, D. M., Schomberg, H. H., Truman, C. C., Franklin, D. H., Tazisong, I. A., Jenkins, M. B., & 

Fisher, D. S. (2019). Runoff and nutrient losses from conventional and conservation tillage 

systems during fixed and variable rate rainfall simulation. Journal of Soil and Water 

Conservation, 74(6), 594. doi: 10.2489/jswc.74.6.594 

FAO. (2015). Status of the World's Soil Resources (SWSR) - Main Report. Food and Agriculture 

Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, 

650.  

Fawaz, M. (2013). Revealing the Ecological Role of Gemmatimonadetes Through Cultivation and 

Molecular Analysis of Agricultural Soils. Masters Theses.  

Feng, X., Hao, Y., Latifmanesh, H., Lal, R., Cao, T., Guo, J., . . . Zhang, W. (2018). Effects of Subsoiling 

Tillage on Soil Properties, Maize Root Distribution, and Grain Yield on Mollisols of Northeastern 

China. Agronomy Journal, 110(4), 1607-1615. doi: 10.2134/agronj2018.01.0027 

Fernandez, A. L., Sheaffer, C. C., Wyse, D. L., Staley, C., Gould, T. J., & Sadowsky, M. J. (2016). 

Associations between soil bacterial community structure and nutrient cycling functions in long-



70 

 

term organic farm soils following cover crop and organic fertilizer amendment. Science of The 

Total Environment, 566-567, 949-959. doi: https://doi.org/10.1016/j.scitotenv.2016.05.073 

Fester, T., Giebler, J., Wick, L. Y., Schlosser, D., & Kästner, M. (2014). Plant–microbe interactions as 

drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Current 

Opinion in Biotechnology, 27, 168-175. doi: https://doi.org/10.1016/j.copbio.2014.01.017 

Fierer, N., Jackson, J. A., Vilgalys, R., & Jackson, R. B. (2005). Assessment of Soil Microbial 

Community Structure by Use of Taxon-Specific Quantitative PCR Assays. Applied and 

Environmental Microbiology, 71(7), 4117-4120. doi: 10.1128/aem.71.7.4117-4120.2005 

Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. 

Proceedings of the National Academy of Sciences, 103(3), 626-631. doi: 

10.1073/pnas.0507535103 

Finney, D. M., Buyer, J. S., & Kaye, J. P. (2017). Living cover crops have immediate impacts on soil 

microbial community structure and function. Journal of Soil and Water Conservation, 72(4), 361. 

doi: 10.2489/jswc.72.4.361 

Fowler, D., Coyle, M., Skiba, U., Sutton, M., Cape, N., Ries, S., . . . Voss, M. (2013). The global nitrogen 

cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 368(1621), 20130164. doi: 10.1098/rstb.2013.0164 

Frasier, I., Noellemeyer, E., Figuerola, E., Erijman, L., Permingeat, H., & Quiroga, A. (2016). High 

quality residues from cover crops favor changes in microbial community and enhance C and N 

sequestration. Global Ecology and Conservation, 6, 242-256. doi: 

https://doi.org/10.1016/j.gecco.2016.03.009 

Frostegård, Å., Tunlid, A., & Bååth, E. (2011). Use and misuse of PLFA measurements in soils. Soil 

Biology and Biochemistry, 43(8), 1621-1625. doi: 10.1016/j.soilbio.2010.11.021 

Gao, D., Zhou, X., Duan, Y., Fu, X., & Wu, F. (2017). Wheat cover crop promoted cucumber seedling 

growth through regulating soil nutrient resources or soil microbial communities? Plant and Soil, 

418(1), 459-475. doi: 10.1007/s11104-017-3307-9 

García-González, I., Hontoria, C., Gabriel, J. L., Alonso-Ayuso, M., & Quemada, M. (2018). Cover crops 

to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma, 322, 81-

88. doi: https://doi.org/10.1016/j.geoderma.2018.02.024 

Garrity, G. M., Bell, J. A., & Lilburn, T. (2015). Burkholderiaceae fam. nov. In W. B. Whitman, F. 

Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund & S. Dedysh (Eds.), Bergey's 

Manual of Systematics of Archaea and Bacteria (pp. 1-1). 

Gonzalez, J. M. (2018). Runoff and losses of nutrients and herbicides under long-term conservation 

practices (no-till and crop rotation) in the U.S. Midwest: A variable intensity simulated rainfall 

approach. International Soil and Water Conservation Research, 6(4), 265-274. doi: 

https://doi.org/10.1016/j.iswcr.2018.07.005 

Google Earth. (2019/04/21/19:17:03).   Retrieved 2019/04/21, 2019, from https://earth.google.com/web 

Hai, B., Diallo, N. H., Sall, S., Haesler, F., Schauss, K., Bonzi, M., . . . Schloter, M. (2009). 

Quantification of Key Genes Steering the Microbial Nitrogen Cycle in the Rhizosphere of 

Sorghum Cultivars in Tropical Agroecosystems. Appl. Environ. Microbiol., 75(15), 4993-5000. 

doi: 10.1128/AEM.02917-08 

Hall, M., & Beiko, R. G. (2018). 16S rRNA Gene Analysis with QIIME2. In Beiko R., Hsiao W. & P. J. 

(Eds.), Microbiome Analysis (Vol. 1849, pp. 113-129). New York, NY: Humana Press. 

Hallama, M., Pekrun, C., Lambers, H., & Kandeler, E. (2019a). Hidden miners - the roles of cover crops 

and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 434(1-

2), 7-45. doi: 10.1007/s11104-018-3810-7 

Hallama, M., Pekrun, C., Lambers, H., & Kandeler, E. (2019b). Hidden miners – the roles of cover crops 

and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 434(1), 

7-45. doi: 10.1007/s11104-018-3810-7 

Haramoto, E. R. (2019). Species, Seeding Rate, and Planting Method Influence Cover Crop Services 

Prior To Soybean. Agronomy Journal, 111(3), 1068-1078. doi: 10.2134/agronj2018.09.0560 



71 

 

Haruna, S. I., & Nkongolo, N. V. (2019). Tillage, Cover Crop and Crop Rotation Effects on Selected Soil 

Chemical Properties. Sustainability, 11(10). doi: doi.org/10.3390/su11102770 

He, J.-Z., Hu, H.-W., & Zhang, L.-M. (2012). Current insights into the autotrophic thaumarchaeal 

ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 55, 146-154. doi: 

https://doi.org/10.1016/j.soilbio.2012.06.006 

Hibbett, D. S., Bauer, R., Binder, M., Giachini, A. J., Hosaka, K., Justo, A., . . . Thorn, R. G. (2014). 14 

Agaricomycetes. In D. J. McLaughlin & J. W. Spatafora (Eds.), Systematics and Evolution: Part 

A (pp. 373-429). Berlin, Heidelberg: Springer. 

Hirsch, P. R., & Mauchline, T. H. (2015). Chapter Two - The Importance of the Microbial N Cycle in 

Soil for Crop Plant Nutrition. In S. Sariaslani & G. M. Gadd (Eds.), Advances in Applied 

Microbiology (Vol. 93, pp. 45-71): Academic Press. 

Hubbard, R. K., Strickland, T. C., & Phatak, S. (2013). Effects of cover crop systems on soil physical 

properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil and 

Tillage Research, 126, 276-283. doi: https://doi.org/10.1016/j.still.2012.07.009 

Huntley, S., Hamann, N., Wegener-Feldbrügge, S., Treuner-Lange, A., Kube, M., Reinhardt, R., . . . 

Søgaard-Andersen, L. (2010). Comparative Genomic Analysis of Fruiting Body Formation in 

Myxococcales. Molecular Biology and Evolution, 28(2), 1083-1097. doi: 

10.1093/molbev/msq292 

Hussain, I., Olson, K. R., & Ebelhar, S. A. (1999). Long-Term Tillage Effects on Soil Chemical 

Properties and Organic Matter Fractions. Soil Science Society of America Journal, 63(5), 1335-

1341. doi: 10.2136/sssaj1999.6351335x 

IL-EPA, IL-DOA, & Extension, U. (2015). Illinois Nutrient Loss Reduction Strategy (INLRS).  Retrieved 

from https://www2.illinois.gov/epa/Documents/iepa/water-quality/watershed-

management/nlrs/nlrs-final-revised-083115.pdf. 

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The Role of Soil 

Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers 

in plant science, 8, 1617-1617. doi: 10.3389/fpls.2017.01617 

Jenkinson, D. S., Brookes, P. C., & Powlson, D. S. (2004). Measuring soil microbial biomass. Soil 

Biology & Biochemistry, 36(1), 5-7. doi: 10.1016/j.soilbio.2003.10.002 

Jin, X., Zhang, J., Shi, Y., Wu, F., & Zhou, X. (2019). Green manures of Indian mustard and wild rocket 

enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial 

community composition. Plant and Soil, 441(1), 283-300. doi: 10.1007/s11104-019-04118-6 

Kaspar, T. C., Jaynes, D. B., Parkin, T. B., Moorman, T. B., & Singer, J. W. (2012). Effectiveness of oat 

and rye cover crops in reducing nitrate losses in drainage water. Agricultural Water Management, 

110, 25-33. doi: https://doi.org/10.1016/j.agwat.2012.03.010 

Kaye, J. P., & Quemada, M. (2017). Using cover crops to mitigate and adapt to climate change. A review. 

Agronomy for Sustainable Development, 37(1), 4. doi: 10.1007/s13593-016-0410-x 

Kerou, M., & Schleper, C. (2016). Nitrososphaera. Bergey's Manual of Systematics of Archaea and 

Bacteria, 1-10. doi: 10.1002/9781118960608.gbm01294 

Kessel, C. v., Venterea, R., Six, J., Adviento‐Borbe, M. A., Linquist, B., & Groenigen, K. J. v. (2013). 

Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-

analysis. Global Change Biology, 19(1), 33-44. doi: 10.1111/j.1365-2486.2012.02779.x 

Khan, A. R. (1996). Influence Of Tillage On Soil Aeration. Journal of Agronomy and Crop Science, 

177(4), 253-259. doi: 10.1111/j.1439-037X.1996.tb00243.x 

Kibet, L. C., Blanco-Canqui, H., & Jasa, P. (2016). Long-term tillage impacts on soil organic matter 

components and related properties on a Typic Argiudoll. Soil and Tillage Research, 155, 78-84. 

doi: https://doi.org/10.1016/j.still.2015.05.006 

Kim, M. K., Na, J.-R., Lee, T.-H., Im, W.-T., Soung, N.-K., & Yang, D.-C. (2007). Solirubrobacter soli 

sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and 

Evolutionary Microbiology, 57(7), 1453-1455. doi: https://doi.org/10.1099/ijs.0.64715-0 



72 

 

Kim, N., Zabaloy, M. C., Guan, K. Y., & Villamil, M. B. (2020). Do cover crops benefit soil 

microbiome? A meta-analysis of current research. Soil Biology & Biochemistry, 142. doi: ARTN 

10770110.1016/j.soilbio.2019.107701 

Kim, W., Peever, T. L., Park, J.-J., Park, C.-M., Gang, D. R., Xian, M., . . . Chen, W. (2016). Use of 

metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera. 

Scientific Reports, 6(1), 20192. doi: 10.1038/srep20192 

Klaubauf, S., Inselsbacher, E., Zechmeister-Boltenstern, S., Wanek, W., Gottsberger, R., Strauss, J., & 

Gorfer, M. (2010). Molecular diversity of fungal communities in agricultural soils from Lower 

Austria. Fungal Diversity, 44(1), 65-75. doi: 10.1007/s13225-010-0053-1 

Konopka, A., Oliver, L., & Turco, J. R. F. (1998). The Use of Carbon Substrate Utilization Patterns in 

Environmental and Ecological Microbiology. Microbial Ecology, 35(2), 103-115. doi: 

10.1007/s002489900065 

Köppen climate classification. (2019, 2019/03/24/T16:37:55Z). Wikipedia, the free encyclopedia. from 

https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classificationhttps://en.wikipedia.org/w/in

dex.php?title=Main_Page&oldid=889268954 

Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of Meta-analysis in Ecology and 

Evolution: Princeton University Press. 

Kulichevskaya, I. S., Ivanova, A. A., Baulina, O. I., Rijpstra, W. I. C., Sinninghe Damsté, J. S., & 

Dedysh, S. N. (2017). Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like planctomycete 

from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. International Journal of 

Systematic and Evolutionary Microbiology, 67(2), 218-224. doi: 10.1099/ijsem.0.001598 

Lang, E., Schumann, P., Tindall, B. J., Mohr, K. I., & Spröer, C. (2015). Reclassification of Angiococcus 

disciformis, Cystobacter minus and Cystobacter violaceus as Archangium disciforme comb. nov., 

Archangium minus comb. nov. and Archangium violaceum comb. nov., unification of the 

families Archangiaceae and Cystobacteraceae, and emended descriptions of the families 

Myxococcaceae and Archangiaceae. International Journal of Systematic and Evolutionary 

Microbiology, 65(Pt_11), 4032-4042. doi: https://doi.org/10.1099/ijsem.0.000533 

Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-Based Assessment of Soil 

pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and 

Environmental Microbiology, 75(15), 5111-5120. doi: 10.1128/AEM.00335-09 

Legrand, F., Picot, A., Cobo-Díaz, J. F., Carof, M., Chen, W., & Le Floch, G. (2018). Effect of tillage and 

static abiotic soil properties on microbial diversity. Applied Soil Ecology, 132, 135-145. doi: 

https://doi.org/10.1016/j.apsoil.2018.08.016 

Li, J. H., Jiao, S. M., Gao, R. Q., & Bardgett, R. D. (2012). Differential Effects of Legume Species on the 

Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned 

Fields of the Loess Plateau, China. Environmental Management, 50(6), 1193-1203. doi: 

10.1007/s00267-012-9958-7 

Li, X., Nair, A., Wang, S., & Wang, L. (2015). Quality Control of RNA-Seq Experiments. In P. E. (Ed.), 

RNA Bioinformatics (Vol. 1269, pp. 137-146). New York, NY: Humana Press. 

Li, X., Rui, J., Mao, Y., Yannarell, A., & Mackie, R. (2014). Dynamics of the bacterial community 

structure in the rhizosphere of a maize cultivar. Soil Biology and Biochemistry, 68, 392-401. doi: 

https://doi.org/10.1016/j.soilbio.2013.10.017 

Li, Y., Li, Z., Cui, S., & Zhang, Q. (2020). Trade-off between soil pH, bulk density and other soil 

physical properties under global no-tillage agriculture. Geoderma, 361, 114099. doi: 

https://doi.org/10.1016/j.geoderma.2019.114099 

Lienhard, P., Terrat, S., Prévost-Bouré, N. C., Nowak, V., Régnier, T., Sayphoummie, S., . . . Levêque, J. 

(2014). Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in 

Laos tropical grassland. Agronomy for Sustainable Development, 34(2), 525-533.  



73 

 

Linn, D. M., & Doran, J. W. (1984). Aerobic and Anaerobic Microbial Populations in No-till and Plowed 

Soils. Soil Science Society of America Journal, 48(4), 794-799. doi: 

10.2136/sssaj1984.03615995004800040019x 

Lumbanraja, J., & Evangelou, V. P. (1991). Acidification and Liming Influence on Surface Charge 

Behavior of Kentucky Subsoils. Soil Science Society of America Journal, 55(1), 26-34. doi: 

10.2136/sssaj1991.03615995005500010005x 

Lupwayi, N. Z., Clayton, G. W., O’Donovan, J. T., Harker, K. N., Turkington, T. K., & Rice, W. A. 

(2004). Decomposition of crop residues under conventional and zero tillage. Canadian Journal of 

Soil Science, 84(4), 403-410. doi: 10.4141/S03-082 

Lupwayi, N. Z., Rice, W. A., & Clayton, G. W. (1998). Soil microbial diversity and community structure 

under wheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry, 30(13), 

1733-1741. doi: 10.1016/S0038-0717(98)00025-X 

Lynch, M. J., Mulvaney, M. J., Hodges, S. C., Thompson, T. L., & Thomason, W. E. (2016). 

Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the 

central plateau of Haiti. SpringerPlus, 5(1), 973. doi: 10.1186/s40064-016-2651-1 

Marcillo, G. S., & Miguez, F. E. (2017). Corn yield response to winter cover crops: An updated meta-

analysis. Journal of Soil and Water Conservation, 72(3), 226-239. doi: 10.2489/jswc.72.3.226 

Marshall, M. W., Williams, P., Nafchi, A. M., Maja, J. M., Payero, J., Mueller, J., & Khalilian, A. (2016). 

Influence of Tillage and Deep Rooted Cool Season Cover Crops on Soil Properties, Pests, and 

Yield Responses in Cotton. Open Journal of Soil Science, 06(10), 149-158. doi: 

10.4236/ojss.2016.610015 

Martínez, I., Chervet, A., Weisskopf, P., Sturny, W. G., Rek, J., & Keller, T. (2016). Two decades of no-

till in the Oberacker long-term field experiment: Part II. Soil porosity and gas transport 

parameters. Soil and Tillage Research, 163, 130-140. doi: 

https://doi.org/10.1016/j.still.2016.05.020 

McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil 

microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 

24(3), 560-570. doi: 10.1890/13-0616.1 

McIlroy, S. J., Awata, T., Nierychlo, M., Albertsen, M., Kindaichi, T., & Nielsen, P. H. (2015). 

Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal 

Activated Sludge Treatment Plants. PLoS ONE, 10(9), e0136424-e0136424. doi: 

10.1371/journal.pone.0136424 

Medeiros, J. C., Jaqueline, D. R., Mafra, A. L., & de Sousa Mendes, W. (2017). Chemical attributes of 

agricultural soil after the cultivation of cover crops. Australian Journal of Crop Science, 11(11), 

1497-1503.  

Mijangos, I., Albizu, I., & Garbisu, C. (2010). Beneficial effects of organic fertilization and no-tillage on 

fine-textured soil properties under two different forage crop rotations. Soil Science, 175(4), 173-

185. doi: 10.1097/SS.0b013e3181dd51ba 

Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of Phosphatase Enzymes in Soil. In E. 

Bünemann, A. Oberson & E. Frossard (Eds.), Phosphorus in Action: Biological Processes in Soil 

Phosphorus Cycling (pp. 215-243). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Nguyen, D. B., Rose, M. T., Rose, T. J., Morris, S. G., & van Zwieten, L. (2016). Impact of glyphosate on 

soil microbial biomass and respiration: A meta-analysis. Soil Biology and Biochemistry, 92, 50-

57. doi: 10.1016/j.soilbio.2015.09.014 

NRCS. (2005, 2005/09//2019/04/08/16:27:08). Distribution Maps of Dominant Soil Orders | NRCS Soils. 

from 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/maps/?cid=nrcs142p2_05358

9 

NRCS. (2018). Recommended soil health indicators and associated laboratory procedures: USDA. 

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/maps/?cid=nrcs142p2_053589
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/maps/?cid=nrcs142p2_053589


74 

 

Nyerges, G., Han, S.-K., & Stein, L. Y. (2010). Effects of Ammonium and Nitrite on Growth and 

Competitive Fitness of Cultivated Methanotrophic Bacteria. Appl. Environ. Microbiol., 76(16), 

5648-5651. doi: 10.1128/AEM.00747-10 

Osipitan, O. A., Dille, J. A., Assefa, Y., & Knezevic, S. Z. (2018). Cover Crop for Early Season Weed 

Suppression in Crops: Systematic Review and Meta-Analysis. Agronomy Journal, 110(6), 2211-

2221. doi: 10.2134/agronj2017.12.0752 

Osono, T. (2003). Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate 

utilization by fungal decomposers. Mycoscience, 44(1), 0041-0045. doi: 10.1007/s10267-002-

0078-8 

Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., . . . Maron, P.-A. (2013). 

Stimulation of Different Functional Groups of Bacteria by Various Plant Residues as a Driver of 

Soil Priming Effect. Ecosystems, 16(5), 810-822. doi: 10.1007/s10021-013-9650-7 

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. 

Nature, 532(7597), 49-57. doi: 10.1038/nature17174 

Peet, R. K. (1974). The Measurement of Species Diversity. Annual Review of Ecology and Systematics, 

5(1), 285-307. doi: 10.1146/annurev.es.05.110174.001441 

Pennino, M. J., Compton, J. E., & Leibowitz, S. G. (2017). Trends in Drinking Water Nitrate Violations 

Across the United States. Environmental Science & Technology, 51(22), 13450-13460. doi: 

10.1021/acs.est.7b04269 

Perrone, S., Grossman, J., Liebman, A., Sooksa-nguan, T., & Gutknecht, J. (2020). Nitrogen fixation and 

productivity of winter annual legume cover crops in Upper Midwest organic cropping systems. 

Nutrient Cycling in Agroecosystems, 1-16.  

Piazza, G., Ercoli, L., Nuti, M., & Pellegrino, E. (2019). Interaction Between Conservation Tillage and 

Nitrogen Fertilization Shapes Prokaryotic and Fungal Diversity at Different Soil Depths: 

Evidence From a 23-Year Field Experiment in the Mediterranean Area. Frontiers in 

Microbiology, 10(2047). doi: 10.3389/fmicb.2019.02047 

Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of 

Theoretical Biology, 13, 131-144. doi: 10.1016/0022-5193(66)90013-0 

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops – 

A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41. doi: 

10.1016/j.agee.2014.10.024 

Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional 

diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiology Ecology, 

42(1), 1-14. doi: 10.1111/j.1574-6941.2002.tb00990.x 

Proença, D. N., Whitman, W. B., Varghese, N., Shapiro, N., Woyke, T., Kyrpides, N. C., & Morais, P. V. 

(2018). Arboriscoccus pini gen. nov., sp. nov., an endophyte from a pine tree of the class 

Alphaproteobacteria, emended description of Geminicoccus roseus, and proposal of 

Geminicoccaceae fam. nov. Systematic and Applied Microbiology, 41(2), 94-100. doi: 

10.1016/j.syapm.2017.11.006 

Props, R., Kerckhof, F.-M., Rubbens, P., De Vrieze, J., Hernandez Sanabria, E., Waegeman, W., . . . 

Boon, N. (2017). Absolute quantification of microbial taxon abundances. The ISME Journal, 

11(2), 584-587. doi: 10.1038/ismej.2016.117 

Prosser, J. I., & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: the quest for 

niche specialisation and differentiation. Trends in Microbiology, 20(11), 523-531. doi: 

https://doi.org/10.1016/j.tim.2012.08.001 

Qi, G., Chen, S., Ke, L., Ma, G., & Zhao, X. (2020). Cover crops restore declining soil properties and 

suppress bacterial wilt by regulating rhizosphere bacterial communities and improving soil 

nutrient contents. Microbiological Research, 238, 126505. doi: 

https://doi.org/10.1016/j.micres.2020.126505 



75 

 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., . . . Glöckner, F. O. (2013). The 

SILVA ribosomal RNA gene database project: improved data processing and web-based tools. 

Mucleic Acids Research, 41(D1), D590-D596.  

Quemada, M., Baranski, M., Nobel-de Lange, M. N. J., Vallejo, A., & Cooper, J. M. (2013). Meta-

analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects 

on crop yield. Agriculture, Ecosystems & Environment, 174, 1-10. doi: 

https://doi.org/10.1016/j.agee.2013.04.018 

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing.  

Reicosky, D. C., & Forcella, F. (1998). Cover crop and soil quality interactions in agroecosystems. 

Journal of Soil and Water Conservation, 53(3), 224-229.  

Rohatgi, A. (2015). WebPlotDigitizer. 

Romdhane, S., Spor, A., Busset, H., Falchetto, L., Martin, J., Bizouard, F., . . . Cordeau, S. (2019). Cover 

Crop Management Practices Rather Than Composition of Cover Crop Mixtures Affect Bacterial 

Communities in No-Till Agroecosystems. Frontiers in Microbiology, 10, 11. doi: 

10.3389/fmicb.2019.01618 

Sainju, U. M., Whitehead, W. F., & Singh, B. P. (2005). Biculture Legume–Cereal Cover Crops for 

Enhanced Biomass Yield and Carbon and Nitrogen. Agronomy Journal, 97(5), 1403-1412. doi: 

10.2134/agronj2004.0274 

SAS Institute Inc. (2019). JMP® (Version 15.0). Cary, NC: SAS Institute Inc.  

Schloter, M., Nannipieri, P., Sørensen, S. J., & van Elsas, J. D. (2018). Microbial indicators for soil 

quality. Biology and Fertility of Soils, 54(1), 1-10. doi: 10.1007/s00374-017-1248-3 

Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J., & Scow, K. (2018). Long-term use of cover crops 

and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE, 13(2), 

e0192953-e0192953. doi: 10.1371/journal.pone.0192953 

Schmidt, R., Mitchell, J., & Scow, K. (2019). Cover cropping and no-till increase diversity and 

symbiotroph:saprotroph ratios of soil fungal communities. Soil Biology & Biochemistry, 129, 99-

109. doi: 10.1016/j.soilbio.2018.11.010 

Segal, L. M., Miller, D. N., McGhee, R. P., Loecke, T. D., Cook, K. L., Shapiro, C. A., & Drijber, R. A. 

(2017). Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and 

fertilizer management at a continuous maize site. Soil and Tillage Research, 168, 110-117. doi: 

https://doi.org/10.1016/j.still.2016.12.014 

Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S., & Paulitz, T. (2017). Long-term no-till: A major 

driver of fungal communities in dryland wheat cropping systems. PLoS ONE, 12(9), e0184611-

e0184611. doi: 10.1371/journal.pone.0184611 

Sharma, K. L., SrinivasaRao, C., Chandrika, D. S., Lal, M., Indoria, A. K., Reddy, K. S., . . . Srinivas, D. 

K. (2018). Effect of Predominant Integrated Nutrient Management Practices on Soil Quality 

Indicators and Soil Quality Indices under Post Monsoon (Rabi) Sorghum (Sorghum Bicolor) in 

Rainfed Black Soils (Vertisols) of Western India. Communications in Soil Science and Plant 

Analysis, 49(13), 1629-1637. doi: 10.1080/00103624.2018.1474901 

Sharma, V., Irmak, S., & Padhi, J. (2018a). Effects of cover crops on soil quality: Part I. Soil chemical 

properties—organic carbon, total nitrogen, pH, electrical conductivity, organic matter content, 

nitrate-nitrogen, and phosphorus. Journal of Soil and Water Conservation, 73(6), 637. doi: 

10.2489/jswc.73.6.637 

Sharma, V., Irmak, S., & Padhi, J. (2018b). Effects of cover crops on soil quality: Part II. Soil 

exchangeable bases (potassium, magnesium, sodium, and calcium), cation exchange capacity, and 

soil micronutrients (zinc, manganese, iron, copper, and boron). Journal of Soil and Water 

Conservation, 73(6), 652. doi: 10.2489/jswc.73.6.652 

Shewale, J. G. (1982). β-Glucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. 

International Journal of Biochemistry, 14(6), 435-443. doi: 10.1016/0020-711X(82)90109-4 



76 

 

Siddig, A. A. H., Ellison, A. M., Ochs, A., Villar-Leeman, C., & Lau, M. K. (2016). How do ecologists 

select and use indicator species to monitor ecological change? Insights from 14 years of 

publication in Ecological Indicators. Ecological Indicators, 60, 223-230. doi: 

https://doi.org/10.1016/j.ecolind.2015.06.036 

Singh, G., Williard, K. W. J., & Schoonover, J. E. (2018). Cover Crops and Tillage Influence on Nitrogen 

Dynamics in Plant-Soil-Water Pools. Soil Science Society of America Journal, 82(6), 1572-1582. 

doi: 10.2136/sssaj2018.03.0111 

Smith, G. J., Liew, E. C., & Hyde, K. D. (2003). The Xylariales: a monophyletic order containing 7 

families. Fungal Diversity.  

Snapp, S. S., Swinton, S. M., Labarta, R., Mutch, D., Black, J. R., Leep, R., . . . O'Neil, K. (2005). 

Evaluating cover crops for benefits, costs and performance within cropping system niches. 

Agronomy Journal, 97(1), 322-332.  

Soil Survey Staff. (2019/04/21/19:23:56). Soil Taxonomy | NRCS Soils. 2019, from 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/ 

Soil Survey staff. (1992). Key to soil taxonomy. AID. USDA. SMSS. Technical Monograph, 19.  

Soil Survey Staff. (2019). Official Soil Series Descriptions.   Retrieved 06/19, 2020, from 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053587 

Somenahally, A., DuPont, J. I., Brady, J., McLawrence, J., Northup, B., & Gowda, P. (2018). Microbial 

communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations 

than tillage systems. Soil Biology and Biochemistry, 123, 126-135. doi: 

https://doi.org/10.1016/j.soilbio.2018.04.025 

Stavi, I., & Lal, R. (2015). Achieving Zero Net Land Degradation: Challenges and opportunities. Journal 

of Arid Environments, 112, 44-51. doi: 10.1016/j.jaridenv.2014.01.016 

Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q -value. Ann. 

Statist., 31(6), 2013-2035. doi: 10.1214/aos/1074290335 

Sturm, D. J., Peteinatos, G., & Gerhards, R. (2018). Contribution of allelopathic effects to the overall 

weed suppression by different cover crops. Weed Research, 58(5), 331-337. doi: 

10.1111/wre.12316 

Surucu, A., Ozyazici, M. A., Bayrakli, B., & Kizilkaya, R. (2014). Effects of Green Manuring on Soil 

Enzyme Activity. Fresenius Environmental Bulletin, 23(9), 2126-2132.  

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5): Pearson 

Boston, MA. 

Tabatabai, M. A. (2003). Soil Enzymes Encyclopedia of Agrochemicals: American Cancer Society. 

Tang, L. (2019). More than microbial relative abundances. Nature Methods, 16(8), 678-678. doi: 

10.1038/s41592-019-0527-3 

Tarafdar, J. C., & Claassen, N. (1988). Organic phosphorus compounds as a phosphorus source for higher 

plants through the activity of phosphatases produced by plant roots and microorganisms. Biology 

and Fertility of Soils, 5(4), 308-312. doi: 10.1007/BF00262137 

Taylor, A. E., Zeglin, L. H., Dooley, S., Myrold, D. D., & Bottomley, P. J. (2010). Evidence for Different 

Contributions of Archaea and Bacteria to the Ammonia-Oxidizing Potential of Diverse Oregon 

Soils. Applied and Environmental Microbiology, 76(23), 7691-7698. doi: 10.1128/aem.01324-10 

Team, R. C. (2019). R: A language and environment for statistical computing (Version 3. 5. 3): R 

Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-

project.org/. 

Tenuta, M., & Beauchamp, E. (1996, 1996, 2018/12/09/23:11:35). Denitrification following herbicide 

application to a grass sward - Canadian Journal of Soil Science. from 

http://www.nrcresearchpress.com/doi/abs/10.4141/cjss96-003#.XA2hJnRKi70 

Thapa, R., Mirsky, S. B., & Tully, K. L. (2018). Cover Crops Reduce Nitrate Leaching in 

Agroecosystems: A Global Meta-Analysis. Journal of Environmental Quality, 47(6), 1400-1411. 

doi: 10.2134/jeq2018.03.0107 

http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053587
http://www.r-project.org/
http://www.r-project.org/
http://www.nrcresearchpress.com/doi/abs/10.4141/cjss96-003#.XA2hJnRKi70


77 

 

Thomas, B. W., Hao, X., Larney, F. J., Goyer, C., Chantigny, M. H., & Charles, A. (2017). Non-Legume 

Cover Crops Can Increase Non-Growing Season Nitrous Oxide Emissions. Soil Science Society 

of America Journal, 81(1), 189-199. doi: 10.2136/sssaj2016.08.0269 

Tiecher, T., Calegari, A., Caner, L., & Rheinheimer, D. d. S. (2017). Soil fertility and nutrient budget 

after 23-years of different soil tillage systems and winter cover crops in a subtropical Oxisol. 

Geoderma, 308, 78-85. doi: https://doi.org/10.1016/j.geoderma.2017.08.028 

Tonitto, C., David, M. B., & Drinkwater, L. E. (2006). Replacing bare fallows with cover crops in 

fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agriculture, 

Ecosystems & Environment, 112(1), 58-72. doi: https://doi.org/10.1016/j.agee.2005.07.003 

Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., Ruiter, P. C. d., Putten, W. H. v. d., Birkhofer, K., . . . 

Hedlund, K. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global Change 

Biology, 21(2), 973-985. doi: 10.1111/gcb.12752 

US-EPA. (2013). Working in Partnership with States to Address Phosphorus and Nitrogen Pollution 

through Use of a Framework for State Nutrient Reductions (2011). 

US-EPA. (2017). Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2017 Report to 

Congress. 127.  

USDA NRCS National Plant Data Team. (2020/06/30/04:52:22). Data Source and References for Lolium 

perenne ssp. multiflorum (Italian ryegrass) | USDA PLANTS. 2020, from 

https://plants.usda.gov/java/reference?symbol=LOPEM2 

Valentine, D. L. (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. 

Nature Reviews Microbiology, 5(4), 316-323. doi: 10.1038/nrmicro1619 

Venter, Z. S., Jacobs, K., & Hawkins, H.-J. (2016). The impact of crop rotation on soil microbial 

diversity: A meta-analysis. Pedobiologia, 59(4), 215-223. doi: 10.1016/j.pedobi.2016.04.001 

Verzeaux, J., Alahmad, A., Habbib, H., Nivelle, E., Roger, D., Lacoux, J., . . . Tetu, T. (2016). Cover 

crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining 

the carbon content of ploughed soil. Geoderma, 281, 49-57. doi: 10.1016/j.geoderma.2016.06.035 

Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical 

Software, 36(1), 1-48. doi: 10.18637/jss.v036.i03 

Villamil, M., & Nafziger, E. (2019). Agronomic and Environmental Assessment of Cover Crops Project 

Data. Retrieved from: http://dx.doi.org/10.17632/7rn62y2cps.1 

Villamil, M. B., Bollero, G. A., Darmody, R. G., Simmons, F. W., & Bullock, D. G. (2006). No-Till 

Corn/Soybean Systems Including Winter Cover Crops. Soil Science Society of America Journal, 

70(6), 1936-1944. doi: 10.2136/sssaj2005.0350 

Villamil, M. B., Miguez, F. E., & Bollero, G. A. (2008). Multivariate Analysis and Visualization of Soil 

Quality Data for No-Till Systems. Journal of Environmental Quality, 37(6), 2063-2069. doi: 

10.2134/jeq2007.0349 

Vukicevich, E., Lowery, T., Bowen, P., Urbez-Torres, J. R., & Hart, M. (2016). Cover crops to increase 

soil microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for 

Sustainable Development, 36(3), 48. doi: 10.1007/s13593-016-0385-7 

Wainwright, M., Ali, T. A., & Barakah, F. (1993). A review of the role of oligotrophic micro-organisms 

in biodeterioration. International Biodeterioration & Biodegradation, 31(1), 1-13. doi: 

https://doi.org/10.1016/0964-8305(93)90010-Y 

Wallenstein, M. D., & Weintraub, M. N. (2008). Emerging tools for measuring and modeling the in situ 

activity of soil extracellular enzymes. Soil Biology and Biochemistry, 40(9), 2098-2106. doi: 

10.1016/j.soilbio.2008.01.024 

Walther, G., Garnica, S., & Weiß, M. (2005). The systematic relevance of conidiogenesis modes in the 

gilled Agaricales. Mycological Research, 109(5), 525-544.  

Wang, H., Hwang, S. F., Chang, K. F., Turnbull, G. D., & Howard, R. J. (2000). Characterization of 

Ascochyta isolates and susceptibility of pea cultivars to the ascochyta disease complex in Alberta. 

Plant Pathology, 49(5), 540-545. doi: 10.1046/j.1365-3059.2000.00489.x 

http://dx.doi.org/10.17632/7rn62y2cps.1


78 

 

Wang, H., Li, X., Li, X., Li, X., Wang, J., & Zhang, H. (2017). Changes of microbial population and N-

cycling function genes with depth in three Chinese paddy soils. PLoS ONE, 12(12). doi: 

10.1371/journal.pone.0189506 

Wang, W., Luo, X., Ye, X., Chen, Y., Wang, H., Wang, L., . . . Cui, Z. (2020). Predatory Myxococcales 

are widely distributed in and closely correlated with the bacterial community structure of 

agricultural land. Applied Soil Ecology, 146, 103365. doi: 

https://doi.org/10.1016/j.apsoil.2019.103365 

Wang, X. W., Yang, F. Y., Meijer, M., Kraak, B., Sun, B. D., Jiang, Y. L., . . . Houbraken, J. (2019). 

Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Studies in Mycology, 

93, 65-153. doi: https://doi.org/10.1016/j.simyco.2018.07.001 

Wang, Z., Chen, Q., Liu, L., Wen, X., & Liao, Y. (2016). Responses of soil fungi to 5-year conservation 

tillage treatments in the drylands of northern China. Applied Soil Ecology, 101, 132-140. doi: 

https://doi.org/10.1016/j.apsoil.2016.02.002 

Wang, Z., Huang, F., Mei, X., Wang, Q., Song, H., Zhu, C., & Wu, Z. (2014). Long-term operation of an 

MBR in the presence of zinc oxide nanoparticles reveals no significant adverse effects on its 

performance. Journal of Membrane Science, 471, 258-264. doi: 

https://doi.org/10.1016/j.memsci.2014.08.024 

Wayman, S., Cogger, C., Benedict, C., Burke, I., Collins, D., & Bary, A. (2014). The influence of cover 

crop variety, termination timing and termination method on mulch, weed cover and soil nitrate in 

reduced-tillage organic systems. Renew Agr Food Syst, 30, 450-460.  

Weber, K. P., Grove, J. A., Gehder, M., Anderson, W. A., & Legge, R. L. (2007). Data transformations in 

the analysis of community-level substrate utilization data from microplates. Journal of 

Microbiological Methods, 69(3), 461-469. doi: 10.1016/j.mimet.2007.02.013 

White, C. M., DuPont, S. T., Hautau, M., Hartman, D., Finney, D. M., Bradley, B., . . . Kaye, J. P. (2017). 

Managing the trade off between nitrogen supply and retention with cover crop mixtures. 

Agriculture, Ecosystems & Environment, 237, 121-133. doi: 

https://doi.org/10.1016/j.agee.2016.12.016 

Whitman, W. B. (2015). Solirubrobacter Bergey's Manual of Systematics of Archaea and Bacteria (pp. 1-

5): American Cancer Society. 

Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis: Springer.  

Wittwer, R. A., & van der Heijden, M. G. A. (2020). Cover crops as a tool to reduce reliance on intensive 

tillage and nitrogen fertilization in conventional arable cropping systems. Field Crops Research, 

249, 107736. doi: https://doi.org/10.1016/j.fcr.2020.107736 

Wolińska, A., Kuźniar, A., Zielenkiewicz, U., Banach, A., & Błaszczyk, M. (2018). Indicators of arable 

soils fatigue – Bacterial families and genera: A metagenomic approach. Ecological Indicators, 

93, 490-500. doi: 10.1016/j.ecolind.2018.05.033 

Xia, X., Zhang, P., He, L., Gao, X., Li, W., Zhou, Y., . . . Yang, L. (2019). Effects of tillage managements 

and maize straw returning on soil microbiome using 16S rDNA sequencing. Journal of 

Integrative Plant Biology, 61(6), 765-777. doi: 10.1111/jipb.12802 

Xu, Z., Zhang, T., Wang, S., & Wang, Z. (2020). Soil pH and C/N ratio determines spatial variations in 

soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast 

China: Jilin Province case. Applied Soil Ecology, 155, 103629. doi: 

https://doi.org/10.1016/j.apsoil.2020.103629 

Yadav, A. N., Verma, P., Kumar, V., Sangwan, P., Mishra, S., Panjiar, N., . . . Saxena, A. K. (2018). 

Chapter 1 - Biodiversity of the Genus Penicillium in Different Habitats. In V. K. Gupta & S. 

Rodriguez-Couto (Eds.), New and Future Developments in Microbial Biotechnology and 

Bioengineering (pp. 3-18). Amsterdam: Elsevier. 

Yamada, T., Sekiguchi, Y., Hanada, S., Imachi, H., Ohashi, A., Harada, H., & Kamagata, Y. (2006). 

Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea 

tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes 

Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. 



79 

 

International Journal of Systematic and Evolutionary Microbiology, 56(6), 1331-1340. doi: 

https://doi.org/10.1099/ijs.0.64169-0 

Yan, L., Xu, X., & Xia, J. (2019). Different impacts of external ammonium and nitrate addition on plant 

growth in terrestrial ecosystems: A meta-analysis. Science of The Total Environment, 686, 1010-

1018. doi: https://doi.org/10.1016/j.scitotenv.2019.05.448 

Yang, W., Cai, A., Wang, J., Luo, Y., Cheng, X., & An, S. (2020). Exotic Spartina alterniflora Loisel. 

Invasion significantly shifts soil bacterial communities with the successional gradient of 

saltmarsh in eastern China. Plant and Soil, 449(1), 97-115. doi: 10.1007/s11104-020-04470-y 

Yuan, N., Zeng, Y., Feng, H., Yu, Z., & Huang, Y. (2017). Altererythrobacter xixiisoli sp. nov., isolated 

from wetland soil. International Journal of Systematic and Evolutionary Microbiology, 67(9), 

3655-3659. doi: 10.1099/ijsem.0.002198 

Zabaloy, M. C., Allegrini, M., Tebbe, D. A., Schuster, K., & Gomez, E. d. V. (2017). Nitrifying bacteria 

and archaea withstanding glyphosate in fertilized soil microcosms. Applied Soil Ecology, 117-

118, 88-95. doi: https://doi.org/10.1016/j.apsoil.2017.04.012 

Zang, X., Liu, M., Fan, Y., Xu, J., Xu, X., & Li, H. (2018). The structural and functional contributions of 

β-glucosidase-producing microbial communities to cellulose degradation in composting. 

Biotechnology for Biofuels, 11. doi: 10.1186/s13068-018-1045-8 

Zeng, Y., Selyanin, V., Lukeš, M., Dean, J., Kaftan, D., Feng, F., & Koblížek, M. (2015). 

Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium 

Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas 

and Gemmatimonas aurantiaca. International Journal of Systematic and Evolutionary 

Microbiology, 65(8), 2410-2419. doi: 10.1099/ijs.0.000272 

Zhalnina, K., de Quadros, P., Gano, K., Davis-Richardson, A., Fagen, J., Brown, C., . . . Triplett, E. 

(2013). Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to 

agricultural practices in long-term field experiments. Frontiers in Microbiology, 4(104). doi: 

10.3389/fmicb.2013.00104 

Zheng, W., Zhao, Z., Gong, Q., Zhai, B., & Li, Z. (2018). Responses of fungal–bacterial community and 

network to organic inputs vary among different spatial habitats in soil. Soil Biology and 

Biochemistry, 125, 54-63. doi: 10.1016/j.soilbio.2018.06.029 

Zuber, S. M., & Villamil, M. B. (2016). Meta-analysis approach to assess effect of tillage on microbial 

biomass and enzyme activities. Soil Biology and Biochemistry, 97, 176-187. doi: 

10.1016/j.soilbio.2016.03.011 

 



80 

 

APPENDIX A: META-ANALYSIS DATABASE REFERENCES 

Acosta-Martínez, V., Dowd, S.E., Bell, C.W., Lascano, R., Booker, J.D., Zobeck, T.M., 

Upchurch, D.R., 2010. Microbial community composition as affected by dryland 

cropping systems and tillage in a semiarid sandy soil. Diversity 2, 910-931. 

Barel, J.M., Kuyper, T.W., Paul, J., de Boer, W., Cornelissen, J.H.C., De Deyn, G.B., 2019. 

Winter cover crop legacy effects on litter decomposition act through litter quality and 

microbial community changes. Journal of Applied Ecology 56, 132-143. 

Berthrong, S.T., Buckley, D.H., Drinkwater, L.E., 2013. Agricultural management and labile 

carbon additions affect soil microbial community structure and interact with carbon and 

nitrogen cycling. Microbial Ecology 66, 158-170. 

Bini, D., Santos, C.A.D., Bernal, L.P.T., Andrade, G., Nogueira, M.A., 2014. Identifying 

indicators of C and N cycling in a clayey Ultisol under different tillage and uses in 

winter. Applied Soil Ecology 76, 95-101. 

Brooks, J.P., Tewolde, H., Adeli, A., Shankle, M.W., Way, T.R., Smith, R.K., Pepper, I.L., 2018. 

Effects of Subsurface Banding and Broadcast of Poultry Litter and Cover Crop on Soil 

Microbial Populations. Journal of Environmental Quality 47, 427-435. 

Buyer, J.S., Baligar, V.C., He, Z., Arevalo-Gardini, E., 2017. Soil microbial communities under 

cacao agroforestry and cover crop systems in Peru. Applied Soil Ecology 120, 273-280. 

Buyer, J.S., Teasdale, J.R., Roberts, D.P., Zasada, I.A., Maul, J.E., 2010. Factors affecting soil 

microbial community structure in tomato cropping systems. Soil Biology and 

Biochemistry 42, 831-841. 

Chavarria, D.N., Pérez-Brandan, C., Serri, D.L., Meriles, J.M., Restovich, S.B., Andriulo, A.E., 

Jacquelin, L., Vargas-Gil, S., 2018. Response of soil microbial communities to 

agroecological versus conventional systems of extensive agriculture. Agriculture, 

Ecosystems and Environment 264, 1-8. 

Chavarría, D.N., Verdenelli, R.A., Muñoz, E.J., Conforto, C., Restovich, S.B., Andriulo, A.E., 

Meriles, J.M., Vargas-Gil, S., 2016. Soil microbial functionality in response to the 

inclusion of cover crop mixtures in agricultural systems. Spanish Journal of Agricultural 

Research 14. 

Chen, S., Xu, C., Yan, J., Zhang, X., Zhang, X., Wang, D., 2016. The influence of the type of 

crop residue on soil organic carbon fractions: An 11-year field study of rice-based 

cropping systems in southeast China. Agriculture, Ecosystems and Environment 223, 

261-269. 

Chirinda, N., Olesen, J.E., Porter, J.R., Schjønning, P., 2010. Soil properties, crop production 

and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping 

systems. Agriculture, Ecosystems and Environment 139, 584-594. 

de Queiroz Cunha, E., Stone, L.F., de Brito Ferreira, E.P., Didonet, A.D., Moreira, J.A.A., 

Leandro, W.M., 2011. Soil tillage systems and cover crops in organic production of 

common bean and corn. II-soil biological properties. Revista Brasileira de Ciencia do 

Solo 35, 603-611. 

Dinesh, R., 2004. Long-term effects of leguminous cover crops on microbial indices and their 

relationships in soils of a coconut plantation of a humid tropical region. Journal of Plant 

Nutrition and Soil Science 167, 189-195. 

Fernandez, A.L., Sheaffer, C.C., Wyse, D.L., Staley, C., Gould, T.J., Sadowsky, M.J., 2016. 

Associations between soil bacterial community structure and nutrient cycling functions in 



81 

 

long-term organic farm soils following cover crop and organic fertilizer amendment. 

Science of The Total Environment 566-567, 949-959. 

Fernandez, A.L., Sheaffer, C.C., Wyse, D.L., Staley, C., Gould, T.J., Sadowsky, M.J., 2016. 

Structure of bacterial communities in soil following cover crop and organic fertilizer 

incorporation. Applied Microbiology and Biotechnology 100, 9331-9341. 

Finney, D.M., Buyer, J.S., Kaye, J.P., 2017. Living cover crops have immediate impacts on soil 

microbial community structure and function. Journal of Soil and Water Conservation 72, 

361-373. 

Frasier, I., Noellemeyer, E., Figuerola, E., Erijman, L., Permingeat, H., Quiroga, A., 2016. High 

quality residues from cover crops favor changes in microbial community and enhance C 

and N sequestration. Global Ecology and Conservation 6, 242-256. 

Frasier, I., Quiroga, A., Noellemeyer, E., 2016. Effect of different cover crops on C and N 

cycling in sorghum NT systems. Science of The Total Environment 562, 628-639. 

Gao, S., Cao, W., Zou, C., Gao, J., Huang, J., Bai, J., Zeng, N., Shimizu, K.Y., Wright, A., Dou, 

F., 2018. Ammonia-oxidizing archaea are more sensitive than ammonia-oxidizing 

bacteria to long-term application of green manure in red paddy soil. Applied Soil Ecology 

124, 185-193. 

Gao, S.J., Chang, D.N., Zou, C.Q., Cao, W.D., Gao, J.S., Huang, J., Bai, J.S., Zeng, N.H., Rees, 

R.M., Thorup-Kristensen, K., 2018. Archaea are the predominant and responsive 

ammonia oxidizing prokaryotes in a red paddy soil receiving green manures. European 

Journal of Soil Biology 88, 27-35. 

Grantina, L., Kenigsvalde, K., Eze, D., Petrina, Z., Skrabule, I., Rostoks, N., Nikolajeva, V., 

2011. Impact of six-year-long organic cropping on soil microorganisms and crop disease 

suppressiveness. Zemdirbyste 98, 399-408. 

Higo, M., Takahashi, Y., Gunji, K., Isobe, K., 2018. How are arbuscular mycorrhizal 

associations related to maize growth performance during short-term cover crop rotation? 

Journal of the Science of Food and Agriculture 98, 1388-1396. 

Hontoria, C., García-González, I., Quemada, M., Roldán, A., Alguacil, M.M., 2019. The cover 

crop determines the AMF community composition in soil and in roots of maize after a 

ten-year continuous crop rotation. Science of The Total Environment 660, 913-922. 

Jackson, L.E., Ramirez, I., Yokota, R., Fennimore, S.A., Koike, S.T., Henderson, D.M., Chaney, 

W.E., Calderón, F.J., Klonsky, K., 2004. On-farm assessment of organic matter and 

tillage management on vegetable yield, soil, weeds, pests, and economics in California. 

Agriculture, Ecosystems and Environment 103, 443-463. 

Khan, M.I., Hwang, H.Y., Kim, G.W., Kim, P.J., Das, S., 2018. Microbial responses to 

temperature sensitivity of soil respiration in a dry fallow cover cropping and submerged 

rice mono-cropping system. Applied Soil Ecology 128, 98-108. 

King, A.E., Hofmockel, K.S., 2017. Diversified cropping systems support greater microbial 

cycling and retention of carbon and nitrogen. Agriculture, Ecosystems and Environment 

240, 66-76. 

Kravchenko, A.N., Negassa, W.C., Guber, A.K., Hildebrandt, B., Marsh, T.L., Rivers, M.L., 

2014. Intra-aggregate pore structure influences phylogenetic composition of bacterial 

community in macroaggregates. Soil Science Society of America Journal 78, 1924-1939. 

Li, L.N., Xi, Y.G., Chen, E., He, L.P., Wang, L., Xiao, X.J., Tian, W., 2018. Effects of tillage 

and green manure crop on composition and diversity of soil microbial community. 

Journal of Ecology and Rural Environment 34, 342-348. 



82 

 

Longa, C.M.O., Nicola, L., Antonielli, L., Mescalchin, E., Zanzotti, R., Turco, E., Pertot, I., 

2017. Soil microbiota respond to green manure in organic vineyards. Journal of Applied 

Microbiology 123, 1547-1560. 

Lupwayi, N.Z., Larney, F.J., Blackshaw, R.E., Kanashiro, D.A., Pearson, D.C., 2017. 

Phospholipid fatty acid biomarkers show positive soil microbial community responses to 

conservation soil management of irrigated crop rotations. Soil and Tillage Research 168, 

1-10. 

Lupwayi, N.Z., Larney, F.J., Blackshaw, R.E., Kanashiro, D.A., Pearson, D.C., Petri, R.M., 

2017. Pyrosequencing reveals profiles of soil bacterial communities after 12 years of 

conservation management on irrigated crop rotations. Applied Soil Ecology 121, 65-73. 

Lupwayi, N.Z., May, W.E., Kanashiro, D.A., Petri, R.M., 2018. Soil bacterial community 

responses to black medic cover crop and fertilizer N under no-till. Applied Soil Ecology 

124, 95-103. 

Lupwayi, N.Z., Rice, W.A., Clayton, G.W., 1998. Soil microbial diversity and community 

structure under wheat as influenced by tillage and crop rotation. Soil Biology and 

Biochemistry 30, 1733-1741. 

Lupwayi, N.Z., Soon, Y.K., 2016. Soil microbial properties during decomposition of pulse crop 

and legume green manure residues in three consecutive subsequent crops. Canadian 

journal of soil science 96, 413-426. 

Mancinelli, R., Campiglia, E., Di Tizio, A., Marinari, S., 2010. Soil carbon dioxide emission and 

carbon content as affected by conventional and organic cropping systems in 

Mediterranean environment. Applied Soil Ecology 46, 64-72. 

Marinari, S., Mancinelli, R., Brunetti, P., Campiglia, E., 2015. Soil quality, microbial functions 

and tomato yield under cover crop mulching in the Mediterranean environment. Soil and 

Tillage Research 145, 20-28. 

Mbuthia, L.W., Acosta-Martinez, V., DeBruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, 

M., Walker, F., Eash, N., 2015. Long term tillage, cover crop, and fertilization effects on 

microbial community structure, activity: Implications for soil quality. Soil Biology & 

Biochemistry 89, 24-34. 

McDaniel, M.D., Grandy, A.S., Tiemann, L.K., Weintraub, M.N., 2014. Crop rotation 

complexity regulates the decomposition of high and low quality residues. Soil Biology 

and Biochemistry 78, 243-254. 

Nevins, C.J., Nakatsu, C., Armstrong, S., 2018. Characterization of microbial community 

response to cover crop residue decomposition. Soil Biology and Biochemistry 127, 39-

49. 

Nivelle, E., Verzeaux, J., Habbib, H., Kuzyakov, Y., Decocq, G., Roger, D., Lacoux, J., 

Duclercq, J., Spicher, F., Nava-Saucedo, J.-E., Catterou, M., Dubois, F., Tetu, T., 2016. 

Functional response of soil microbial communities to tillage, cover crops and nitrogen 

fertilization. Applied Soil Ecology 108, 147-155. 

Peregrina, F., Pilar Perez-Alvarez, E., Garcia-Escudero, E., 2014. Soil microbiological properties 

and its stratification ratios for soil quality assessment under different cover crop 

management systems in a semiarid vineyard. Journal of Plant Nutrition and Soil Science 

177, 548-559. 

Perez Brandan, C., Chavarria, D., Huidobro, J., Meriles, J.M., Perez Brandan, C., Vargas Gil, S., 

2017. Influence of a tropical grass (Brachiaria brizantha cv. Mulato) as cover crop on soil 



83 

 

biochemical properties in a degraded agricultural soil. European Journal of Soil Biology 

83, 84-90. 

Petersen, S.O., Schjonning, P., Olesen, J.E., Christensen, S., Christensen, B.T., 2013. Sources of 

nitrogen for winter wheat in organic cropping systems. Soil Science Society of America 

Journal 77, 155-165. 

Pooniya, V., Shivay, Y.S., Rana, A., Nain, L., Prasanna, R., 2012. Enhancing soil nutrient 

dynamics and productivity of Basmati rice through residue incorporation and zinc 

fertilization. European Journal of Agronomy 41, 28-37. 

Qian, X., Gu, J., Pan, H.-j., Zhang, K.-y., Sun, W., Wang, X.-j., Gao, H., 2015. Effects of living 

mulches on the soil nutrient contents, enzyme activities, and bacterial community 

diversities of apple orchard soils. European Journal of Soil Biology 70, 23-30. 

Reddy, K.N., Zablotowicz, R.M., Locke, M.A., Koger, C.H., 2003. Cover crop, tillage, and 

herbicide effects on weeds, soil properties, microbial populations, and soybean yield. 

Weed Science 51, 987-994. 

Reilly, K., Cullen, E., Lola-Luz, T., Stone, D., Valverde, J., Gaffney, M., Brunton, N., Grant, J., 

Griffiths, B.S., 2013. Effect of organic, conventional and mixed cultivation practices on 

soil microbial community structure and nematode abundance in a cultivated onion crop. 

Journal of the Science of Food and Agriculture 93, 3700-3709. 

Romaniuk, R., Beltran, M., Brutti, L., Costantini, A., Bacigaluppo, S., Sainz-Rozas, H., 

Salvagiotti, F., 2018. Soil organic carbon, macro-and micronutrient changes in soil 

fractions with different lability in response to crop intensification. Soil & Tillage 

Research 181, 136-143. 

Sánchez de Cima, D., Tein, B., Eremeev, V., Luik, A., Kauer, K., Reintam, E., Kahu, G., 2016. 

Winter cover crop effects on soil structural stability and microbiological activity in 

organic farming. Biological Agriculture and Horticulture 32, 170-181. 

Somenahally, A., DuPont, J.I., Brady, J., McLawrence, J., Northup, B., Gowda, P., 2018. 

Microbial communities in soil profile are more responsive to legacy effects of wheat-

cover crop rotations than tillage systems. Soil Biology and Biochemistry 123, 126-135. 

Thomazini, A., Mendonça, E.S., Souza, J.L., Cardoso, I.M., Garbin, M.L., 2015. Impact of 

organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome. 

Scientia Horticulturae 182, 145-155. 

Tiemann, L.K., Grandy, A.S., Atkinson, E.E., Marin‐Spiotta, E., McDaniel, M.D., 2015. Crop 

rotational diversity enhances belowground communities and functions in an 

agroecosystem. Ecology Letters 18, 761-771. 

Venkateswarlu, B., Srinivasarao, C., Ramesh, G., Venkateswarlu, S., Katyal, J.C., 2007. Effects 

of long-term legume cover crop incorporation on soil organic carbon, microbial biomass, 

nutrient build-up and grain yields of sorghum/sunflower under rain-fed conditions. Soil 

Use and Management 23, 100-107. 

Verzeaux, J., Alahmad, A., Habbib, H., Nivelle, E., Roger, D., Lacoux, J., Decocq, G., Hirel, B., 

Catterou, M., Spicher, F., 2016. Cover crops prevent the deleterious effect of nitrogen 

fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. 

Geoderma 281, 49-57. 

Wortman, S.E., 2012. Diversification of organic cropping systems with cover crop mixtures: 

influence on weed communities, soil microbial community structure, soil moisture and 

nitrogen, and crop yield. 



84 

 

Wortman, S.E., Drijber, R.A., Francis, C.A., Lindquist, J.L., 2013. Arable weeds, cover crops, 

and tillage drive soil microbial community composition in organic cropping systems. 

Applied Soil Ecology 72, 232-241. 

Wright, P.J., Falloon, R.E., Hedderley, D., 2017. A long-term vegetable crop rotation study to 

determine effects on soil microbial communities and soilborne diseases of potato and 

onion. New Zealand Journal of Crop and Horticultural Science 45, 29-54. 

Wu, T., Chellemi, D.O., Graham, J.H., Martin, K.J., Rosskopf, E.N., 2008. Comparison of soil 

bacterial communities under diverse agricultural land management and crop production 

practices. Microbial Ecology 55, 293-310. 

Xue, K., Wu, L., Deng, Y., He, Z., Van Nostrand, J., Robertson, P.G., Schmidt, T.M., Zhou, J., 

2013. Functional gene differences in soil microbial communities from conventional, low-

input, and organic farmlands. Appl. Environ. Microbiol. 79, 1284-1292. 

Zhang, J., Zhang, Y., Zheng, L., Shi, Y., Kong, F., Ma, X., Tian, L., Zhang, Z., 2017. Effects of 

tobacco planting systems on rates of soil N transformation and soil microbial community. 

International Journal of Agriculture and Biology 19, 992-998. 

 



85 

 

APPENDIX B: SUPPLEMENTARY TABLES AND FIGURES 

Table B.1. Lists of terms used to search for relevant primary literature. For each CC species, 

each column were combined with “AND”, and all the terms within each Response Variables, 

Methods, and Condition were combined with “OR”. 

Cover Crop Species Response 

Variables 

Methods Conditions 

("avena sativa" OR oat) Shannon qPCR soil 

("brassica juncea" OR "forage turnip" 

OR "oriental mustard" OR "brown 

mustard") 

CFU or "colony 

forming unit" 

"community level 

physiological 

profile*" 

microbi* 

("brassica napus" OR rape) Chao1 metabarcoding  

("brassica oleracea" OR kale) "relative 

abundance" 

DGGE  

("brassica rapa" OR turnip) OTU or 

"operational 

taxonomic unit" 

"16S rRNA"  

("Kummerowia striata" OR "common 

lespedeza") 

qCO2 or 

"metabolic 

quotient" 

16S  

("Lolium multiflorum" OR ryegrass) MBN rRNA  

("lotus corniculatus" OR "birdsfoot 

trefoil") 

"substrate 

untilization" 

"internal transcribed 

spacer" OR ITS 

 

("medicago sativa" OR alfalfa) NLFA ESV  

("melilotus albus" OR "white 

sweetclover") 

"soil enzyme 

activity" 

ASV  

("Melilotus officinalis" OR "yellow 

sweetclover") 

FDA OR 

"fluorescein 

diacetate" 

"enzyme assay"  

("phleum pratense" OR timothy) Simpson pyrosequencing  

("secale cereale" OR rye) MBC CLPP  

("securigera varia" OR crownvetch) PLFA   

("trifolium ambiguum" OR "kura 

clover") 

   

("Trifolium hybridum" OR "alsike 

clover") 

   

("Trifolium incarnatum" OR "crimson 

clover") 

   

("trifolium pratense" OR "red clover")    

("trifolium repens" OR "white clover")    

("Trifolium vesiculosum" OR 

"arrowleaf clover") 

   

("triticum aestivum" OR wheat)    
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Table B.1. (cont.) 
 

("vicia sativa" OR "common vetch"  

OR vetch) 

   

("vicia villosa" OR "hairy vetch")    

Medicago    

Sorghum    

"cover crop*" OR "green manure*" 

OR "living mulch*" 
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Table B.2. Lists of SM parameters reported by the database and their brief description. The 13 

parameters with at least 30 observations are in bold.  

SM Parameter Description 

FDA Fluorescein diacetate (FDA)  

CFU number of Colony Forming Units (CFU) (count/g soil) 

MBC Microbial Biomass Carbon (microgram/g) 

MBN Microbial Biomass Nitrogen (microgram/g) 

amoA number of ammonia-oxidizing organism amoA gene (counts/g soil) 

Chao1 Chao 1 = number of species + (number of singletons)2/2(number of 

doubletons) 

H’ Shannon diversity index H’ =  (pi = relative abundance of 

species i) 

ACE ACE diversity index 

OTU Operational Taxonomic Unit (counts) 

S Genetic richness based on number of unique amplicons identified (S) 

(counts) 

J Pielou's eveness index ( ) 

1-D Simpson's diversity index =  where N is total number of 

organisms, ni is the number of organisms of species i, and k is the 

number of species 

Shannon’s H for 

functional 

diversity 

functional Shannon's index from community level physiological profiling 

(CLPP) or other measure of diversity based on functional diversity 

AWCD Average Well Color Development 

cis11 number of AMF biomarker cis11 

FAME number of fatty acid methylated esters  

NAGase Activity of enzyme NAGase  

β-glucosidase Activity of enzyme β-glucosidase (BG) (nmol/g/hr; microgram/g/hr) 

β-

glucosaminidase 

Activity of enzyme β-glucosaminidase 
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Table B.2. (cont.) 

α-galactosidase Activity of enzyme α-galactosidase 

Phosphatase Activity of enzyme phosphatase (Phos) (nmol/g/hr; microgram/g/hr) 

CBH Activity of B-D-1,4-glucosidase 

TAP Activity of tyrosine aminopeptidase 

PO Activity of phenol oxidase 

PER Activity of peroxidase 

CO2-C soil respiration measured by nanogram of CO2 produced in an hour 

from gram of soil 

Urease activity of enzyme Urease 

Dehydrogenase activity of enzyme Dehydogenase 

Celullase activity of enzyme Celullase 

Glutaminase activity of enzyme glutaminase 

Arylsulfatase activity of enzyme arylsurfatase 

L-asparaginase activity of enzyme L-Asparaginase 

Invertase activity of enzyme Invertase 

LPS Labile polysaccharide, measure for activity 

TPS total polysaccharide, measure for activity 

EE-GSRP easily extractable glomalin-related soil protein, AMF activity 

T-GRSP total glomalin-related soil protein, AMF activity 

Ala Activity of enzyme aminolevulinic acid 

protease activity of protease 

LAP activity of leucyl aminopeptidase 

AAP activity of alanine aminopeptidase 

BX activity of b-xylosidase 

CB  activity of cellobiohydrolase 

NEEA N acquisition extracellular enzyme activity 

PLFA Phospholipid Fatty Acid (PLFA) abundance of taxa (microgram PLFA/ g soil?) 

AUC Area under the curve (AUC) of the C utilization profiles on BIOLOG 

Ecoplates 

Gene copies number of gene copies of sample microbes relative to the treatments 
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Table B.3. Lists of agricultural moderators, their brief descriptions, levels for discrete moderators, and their brief descriptions.  

Moderators Description Levels Description 

Climate Climate of the experimental site classified 

by Koppen Classification (Arnfield, 2019). 

Only the first classification was used 

because some levels had too few 

observations for valid comparisons when 

including secondary classification 

A Tropical 

B Arid/Semi-arid 

C Temperate 

D Continental 

Soil Order Classification of the soil of the 

experimental site in USDA Soil Taxonomy 

equivalents.  

Alfisols  

Entisols  

Inceptisols  

Mollisols  

Oxisols  

Ultisols  

CC 

Termination 

Spring cover crop suppression methods 

grouped into either mechanical or chemical 

termination methods 

mechanical cover crop is terminated with mechanical means like undercutting 

or mulching 

chemical cover crop is terminated with chemical means like glyphosate 

CC Type Type of cover crops largely grouped into 

four levels 

G grass cover crops including wheat, rye, and oat 

L  legume cover crops such as soybean and clovers 

M mixture of cover crops in G and L 

O  any other cover crops species not in G or L; includes 

Brassicaceae 

Tillage Type Type of tillage largely grouped into 

conservational and conventional 

CONS Study reports either no-till or reduced-tillage 

CONV Study reports any tillage methods other than no-till or reduced-tillage 
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Table B.3. (cont.) 
 

 

Sample Timing The timing of soil sampling characterized 

by which stage in rotation the samples were 

collected 

CC Soil samples taken during CC growth 

post-CC soil samples taken after CC termination but before half-way into 

cash crop plating 

pre-cash soil samples taken after half-way before planting cash crops but 

before planting cash crop 

cash soil samples taken during cash crop growth 

post-cash soil samples taken after cash crop harvest 

N Fertilizer Binary factor indicating whether N 

fertilizer was applied 

Yes N fertilizer was applied at some point of the rotation 

No no N fertilizer was applied at any point of the rotation 

N Fertilizer 

Rate 

Continuous factor with rate at which N fertilizer was applied in annual average 

of a rotation 

kg/ha/yr 

Soil pH Continuous factor of soil pH at the beginning of the experiment  

CC Duration Continuous factor of number of days between CC planting and termination days 

Sample Depth Continuous factor of the depth at which soil samples were taken in centimeter cm 
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Table B.4. Model coefficients (intercept: β0, slope: β1), p-values of the slope, and adjusted R2 of 

linear models between continuous moderators and SM parameters, calculated by rma function in 

metafor package. Significant p-value (<0.05) and R2 values (>0.10) are in bold. 

Factor Parameter β0 β1 p-value n R2 

N Fertilizer rate 

(kg/ha/yr) 

CFU 
0.041 0.006 0.000 22 

0.230 

 MBC 0.273 0.000 0.318 339 0.000 

 MBN 0.267 -0.002 0.051 174 0.014 

 PLFA 0.079 0.000 0.030 352 0.014 

 BG 0.095 0.002 0.001 128 0.105 

 Phos 0.079 -0.002 0.145 24 1.000 

 CO2-C 0.363 0.000 0.975 34 0.000 

 OTU 0.031 0.000 0.686 32 0.000 

 Chao 1 0.121 -0.001 0.010 49 0.357 

 H' 0.024 0.000 0.336 149 0.002 

 S 0.311 0.000 0.040 14 1.000 

 J 0.153 0.000 0.003 14 0.405 

 1-D 0.003 0.000 0.778 36 0.000 

Soil pH CFU -4.508 0.799 0.061 36 0.102 

 MBC 0.040 0.032 0.343 296 0.003 

 MBN 0.158 0.014 0.796 195 0.000 

 PLFA -0.050 0.022 0.761 78 0.000 

 BG -0.478 0.093 0.027 109 0.000 

 Phos -0.188 0.055 0.558 35 0.000 

 CO2-C 0.423 -0.027 0.894 16 0.000 

 OTU 0.350 -0.042 0.003 32 0.650 

 Chao 1 -0.001 0.008 0.652 77 0.000 

 H' 0.054 -0.004 0.635 139 0.000 

 1-D 0.045 -0.005 0.000 58 0.000 

CC Duration (days) CFU 1.999 -0.008 0.450 36 0.009 

 MBC 0.209 0.000 0.007 370 0.032 
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Table B.4. (cont.)       

 MBN 0.281 0.000 0.930 178 0.000 

 PLFA 0.320 -0.001 0.062 406 0.011 

 BG 0.079 0.000 0.001 155 0.063 

 Phos -0.048 0.001 0.240 53 0.015 

 CO2-C 0.304 0.001 0.116 28 0.512 

 OTU 0.136 0.000 0.001 30 NA 

 Chao 1 0.066 0.000 0.401 75 0.000 

 H' 0.020 0.000 0.831 137 0.000 

 1-D 0.000 0.000 0.755 56 NA 

Soil Sample Depth (cm) CFU 0.801 -0.047 0.000 54 0.348 

 MBC 0.147 0.004 0.000 408 0.128 

 MBN 0.223 0.001 0.509 197 0.000 

 PLFA 0.059 0.005 0.052 436 0.007 

 BG 0.095 0.005 0.331 155 0.008 

 Phos -0.117 0.029 0.122 60 0.021 

 CO2-C 0.368 -0.001 0.881 39 0.000 

 OTU 0.081 -0.003 0.021 32 0.374 

 Chao 1 0.081 -0.002 0.063 78 0.000 

 H' 0.016 0.001 0.388 199 0.001 

 S -0.003 0.003 0.249 57 0.000 

 J -0.001 0.001 0.372 50 0.000 

 1-D 0.001 0.000 0.630 61 0.306 
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Table B.5. Summary of field practices from Savoy, Illinois, throughout the duration of the experiment.  

Field Event Type 2012 2013 2014 2015 2016 2017 

Broadcast seeding date of cover crop 10/1/2012 9/16/2013 9/17/2014 9/17/2015 9/7/2016 N/A 

Biomass sampling N/A 5/6/2013 4/25/2014 4/27/2015 4/25/2016 4/11/2017 

Spring soil sampling N/A 6/21/2013 5/5/2014 4/30/2015 4/29/2016 4/21/2017 

Cover crop suppression N/A 5/7/2013 5/20/2014 4/29/2015 5/19/2016 4/12/2017 

Spring tillage of corn T plots1 N/A 6/5/2013 5/20/2014 5/21/2015 5/24/2016 5/17/2017 

Planting date of corn2 4/12/2012 6/6/2013 5/21/2014 5/22/2015 5/25/2016 5/18/2017 

Harvest of corn N/A 10/29/2013 11/3/2014 10/9/2015 10/28/2016 10/16/2017 

Spring tillage of soybean T plots1 N/A 6/5/2013 5/20/2014 5/21/2015 5/24/2016 5/17/2017 

Planting date of soybean2 4/12/2012 6/6/2013 5/21/2014 5/22/2015 5/25/2016 6/6/2017 

Harvest of soybean N/A 10/29/2013 10/29/2014 10/12/2015 10/31/2016 6/17/2017 

Fall soil sampling 11/16/2012 12/12/2013 12/15/2014 11/4/2015 11/16/2016 N/A 
1 Tillage was conducted with a chisel plow 20-25 cm deep in plots designated as tilled; no-till received zero tillage. 
2 Pre-plant N fertilizer was applied at a rate of 190 kg N ha-1. 
3 No fertilization 

N/A, not applicable. 
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Table B.6. List of bacterial principal components (PC) comprised by indicator species that contributed at least 5% of the variability in 

the data and with eigenvalue of at least 1.  
Principal 

Component 
Eigenvalue 

Proportion 

(%) 
Loadings Kingdom Phylum Class Order Family Genus Species 

PC1 5.90 13.40 0.77 Bacteria Actinobacteria Actinobacteria Micrococcales Cellulomonadaceae Cellulomonas - 

0.64  
Actinobacteria Thermoleophilia Solirubrobacterales Solirubrobacteraceae Solirubrobacter - 

0.58  
Bacteroidetes Bacteroidia Sphingobacteriales AKYH767 - - 

-0.59  
Chloroflexi Anaerolineae SBR1031 - - - 

-0.53  
Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae - - 

0.60  
Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Altererythrobacter - 

0.55  
Proteobacteria Deltaproteobacteria Myxococcales Archangiaceae - - 

-0.62  
Proteobacteria Gammaproteobacteria Betaproteobacteriales A21b - - 

0.66  
Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Massilia - 

0.56  
Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae - - 

PC2 4.48 10.20 0.53   Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides - 

0.70  
Chloroflexi Ktedonobacteria C0119 - - - 

0.56  
Chloroflexi TK10 - - - - 

0.54  
Proteobacteria Gammaproteobacteria Betaproteobacteriales SC-I-84 - - 

PC3 3.77 8.60 0.54   Chloroflexi Gitt-GS-136 - - - - 

0.51  
Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae - - 

0.64  
Proteobacteria Alphaproteobacteria Tistrellales Geminicoccaceae - - 

PC4 2.77 6.30 0.62   Chloroflexi Anaerolineae SBR1031 A4b - - 

0.52  
Planctomycetes Planctomycetacia Gemmatales Gemmataceae - - 

0.57  
Proteobacteria Deltaproteobacteria Myxococcales Haliangiaceae Haliangium - 

PC5 2.46 5.60 0.53   Proteobacteria Gammaproteobacteria Betaproteobacteriales SC-I-84 - - 

0.55   Verrucomicrobia Verrucomicrobiae Opitutales Opitutaceae - - 

PC6 2.34 5.30 -0.56  
Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae - - 

0.52   Latescibacteria - - - - - 
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Table B.7. List of fungal principal components (PC) comprised by indicator species that contributed at least 5% of the variability in 

the data and with eigenvalue of at least 1. The last row shows the list of archaeal indicator species.  
Principal 

Component 
Eigenvalue 

Proportion 

(%) 
Loadings Kingdom Phylum Class Order Family Genus Species 

PC1 3.28 9.10 0.61 Fungi Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium - 

0.60  
Ascomycota Leotiomycetes Helotiales Helotiaceae Tetracladium - 

PC2 2.90 8.10 -0.54   - - - - - - 

0.60  
Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma T. spirale 

0.58   Basidiomycota Tremellomycetes Tremellales Trimorphomycetaceae Saitozyma S. podzolica 

PC3 2.59 7.20 0.57  
Ascomycota Sordariomycetes Sordariales Chaetomiaceae - - 

0.80  
Basidiomycota Agaricomycetes - - - - 

PC4 2.46 6.80 0.58   Ascomycota Dothideomycetes Pleosporales Didymellaceae Ascochyta - 

0.57   Basidiomycota Agaricomycetes - - - - 

PC5 2.36 6.60 0.54  
Ascomycota Sordariomycetes Xylariales - - - 

-0.55  
Basidiomycota Agaricomycetes Agaricales - - - 

PC6 2.20 6.10 -0.54   Basidiomycota Agaricomycetes Cantharellales 
Cantharellales fam 

Incertae sedis 
Minimedusa M. polyspora 

PC7 1.88 5.20 0.59   Ascomycota Sordariomycetes Glomerellales Plectosphaerellaceae Plectosphaerella - 

    

Archaea Thaumarchaeota Nitrososphaeria Nitrososphaerales Nitrososphaeraceae 
Candidatus 

Nitrososphaera 

- 

    
SCA1154 

    
SCA1158 

    
SCA1166 

        SCA1173 
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Table B.8. The forward and reverse sequences of the primers used to amplify sequences.  

 

Gene Primer name Sequence (5’ to 3’) Length Reference 

Fungal ITS3-4 ITS3F GCATCGATGAAGAACGCAGC 462 
Crawford et al. 

(2011) 

 
ITS4R TCCTCCGCTTATTGATATGC 

  
Bacteria 16S 

(V4) 
V4-515F GTGYCAGCMGCCGCGGTAA 252 Fierer et al. (2005) 

 
V4-806R GGACTACVSGGGTWTCTAAT 

  
Archaea 16S Arch349F GTGCASCAGKCGMGAAW 528 Colman et al. (2015) 

  Arch806R GGACTACVSGGGTATCTAAT     
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Figure B.1. Forest plots of interactions between phospholipid fatty acid (PLFA) and β-

glucosidase activity (BG) and N fertilizer input. Number of observations per level is noted in 

parentheses. The CIs of two levels in both SM parameters slightly overlapped. Levels (y-axis) 

with means larger than zero indicate that CC increased the SM parameter at those levels, and 

decreased if the means smaller than zero.  
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Figure B.2. Scatter plots and linear regressions of CC effect sizes of colony forming unit (CFU; 

A) and operational taxonomic unit (OTU; B) on soil sample depth (cm) (CFU: n=54; OTU: 32). 

The linear coefficient of the model (slope), its p-value, and R2 are noted.   
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Figure B.3. Scatter plots and linear regressions of CC effect sizes of β-glucosidase (BG; A) and 

Chao 1 richness index (B) on annual N fertilizer rate (kg/ha/yr) (BG: n=128; Chao 1: n=49). The 

linear coefficient of the model (slope), its p-value, and R2 are noted.   
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Figure B.4. Funnel plots of SM abundance parameters in the order of colony forming unit (CFU; 

A), microbial biomass C (MBC; B) and N (MBN; C), and phospholipid fatty acid (PLFA; D). 

The studies for each SM parameter are homogeneous if most of the points are within the white 

triangle.  
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Figure B.5. Funnel plots of SM activity parameters in the order of β-glucosidase activity (BG; 

A), phosphatase activity (Phos; B), and respiration (CO2-C; C). The studies for each SM 

parameter are homogeneous if most of the points are within the white triangle.  
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Figure B.6. Funnel plots of SM diversity parameters in the order of operational taxonomic unit 

(OTU; A), Chao 1 richness index (B), Shannon’s diversity index (H’; C), genetic richness (S; D), 

Pielou’s evenness index (J; E), and Simpson’s diversity index (1-D; F). The studies for each SM 

parameter are homogeneous if most of the points are within the white triangle.  
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Figure B.7. Scatter plot, linear (A) and quadratic (B) regression of cover cropping effect sizes of 

microbial biomass C (MBC) and soil sample depth (cm) (n=408). The linear coefficient of the 

model (slope), its p-value, and R2 are noted. For quadratic model, p-values for both coefficients 

were <0.001. 
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Figure B.8. Scatter plot and linear regression of cover cropping effect sizes of operational 

taxonomic units (OTU) and soil pH (n=32). The linear coefficient of the model (slope), its p-

value, and R2 are noted. 
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Figure B.9. Rarefaction curves for bacteria (green), fungi (blue), and archaea (red) that show 

average number of observed OTUs at each sampling depths of sequences to be subsampled for 

each soil samples. 

 

 

 

  

 


