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Abstract

This thesis presents a data-driven approach to improving predictions of crit-

ical infrastructure behaviors. In our first approach, we explore novel data

sources and time series modeling techniques to model disaster impacts on

power systems through the case study of Hurricane Sandy as it impacted

the state of New York. We find a correlation between Twitter data and

load forecast errors, suggesting that Twitter data may provide value towards

predicting impacts of disasters on infrastructure systems. Based on these

findings, we then develop time series forecasting methods to predict the NY-

ISO power system behaviors at the zonal level, utilizing Twitter and load

forecast data as model inputs.

In our second approach, we develop a novel, graph-based formulation of the

British rail network to model the nonlinear cascading delays on the rail net-

work. Using this formulation, we then develop machine learning approaches

to predict delays in the rail network. Through experiments on real-world

rail data, we find that the selected architecture provides more accurate pre-

dictions than other models due to its ability to capture both spatial and

temporal dimensions of the data.
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Chapter 1 : Introduction

1.1 Motivation

Critical Infrastructures (CIs) form the foundation upon which modern soci-

eties and economies are built. Due to their ubiquity, disruption of normal

operation of CIs can have severe primary effects, such as loss of life, property

damage, and economic losses, as well as secondary effects, such as mass dis-

placement of residents, widespread health consequences, and decreased qual-

ity of life for those affected. Throughout history, both human-made incidents

and natural disasters have caused disruptions to CIs, and in some instances,

CI disruptions could be described as “disasters” in their own right1. For

example, the Flint water crisis (2014-present) is a disruption of the city’s

water infrastructure which has directly been linked with increased death

rates among children and other vulnerable groups due to brain and nervous

system damage from lead in the water supply [2]. The 2001 World Trade

Center attacks caused disruptions to the transportation infrastructure and

power systems, among other CIs, in New York City, some of which were ob-

served to last several months following the attacks [3]. Other disruptions or

events causing disruptions to CIs include the 2003 Northeast Blackout [4],

Hurricanes Sandy, Harvey, and Irene, among many others.

Due to threats from state- and non-state actors, as well as the increased

severity and frequency of severe weather events, developing CI resilience is a

issue of utmost importance for ensuring both national security and the com-

mon good [5]. The need for CI resilience has become more widely recognized

in recent years, and improving CI resilience is a key strategy toward reducing

the overall impact of CI disruptions. It is not a question of “if” CI disrup-

1While the term “disruption” is the standard term used in the CI literature, this term
does not effectively communicate the severity of CI disruptions. To get a better feel for the
severity of these events, please feel free to replace “disruption” with “disaster”, “calamity”,
or “crisis” at any point during the reading of this thesis.
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tions will occur in the future, but of “when” they will occur, “how severe”

the disruptions will be, and “how many” lives will be forever changed.

One promising approach to improving CI resilience is the development

of models to quantify the behaviors of CIs. Models can facilitate under-

standing and predictions of the future behaviors of CIs, which can increase

information available to first responders and CI operators, and reduce the

overall impact of CI disruptions. However, increased connectivity and in-

terdependency within and between CIs can lead to complicated interactions

between CI elements. Some previous efforts to model CI resilience rely on

manual analysis of post-disaster data sources [3], [6], [7]. However, these

approaches do not develop models to predict CI behaviors during future

disruptions. Other approaches use statistical models [8] or network-based

models [9] to gain insight into CI behaviours, but lack validation on real-

world data sources. These works suggest that novel approaches need to be

developed and validated on real-world data sources in order to effectively

provide real-time insights into, and predictions of, the behaviors of CIs.

Data-driven approaches have lead to unprecedented advances in areas such

as computer vision and natural language processing. Innovations in machine

learning, particularly in deep learning, have facilitated the development of

predictive models that outperform traditional statistical approaches by lever-

aging large datasets. At the same time, increased integration of sensors into

infrastructure systems provides an opportunity collect large-scale data on the

daily operation of CIs. Combining these, we can develop novel data-driven

methods for improving CI resilience. In our approach, we leverage recent

advances in the availability of large datasets as well as deep learning models

to develop real-time models for prediction of CI performance toward the goal

of improving CI resilience.

1.2 Contribution

In this thesis, we approach the problem of improving CI resilience by exam-

ining methods that improve predictions of CI behavior. We accomplish this

via two primary approaches. Firstly, we approach this problem by leveraging

new data sources. We explore the feasibility of using social media data to im-

prove predictions of the disruptions of power infrastructure as it is affected by

2
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Figure 1.1: An overview of the approaches used in this thesis. (Left) In
Chapter 3 we discuss the use of social media, statistical models, and
operational power data toward the goal of improving power infrastructure
resilience. (Right) In Chapter 4 we discuss the use of machine learning
models and operational rail data toward the goal of improving rail
infrastructure resilience.

extreme weather. In particular, we develop predictive models that leverage

social media data to predict the behavior of the power infrastructure of New

York state before and during Hurricane Sandy. We find that the inclusion

of social media data improves the prediction accuracy of an optimized time

series model, supporting future investigations into the use of social media as

a sensor for CI resilience. Secondly, we approach this problem by developing

models to predict the behaviors if CIs. We explore a class of predictive mod-

els known as graph neural networks (GNNs) for the problem of predicting

delays in rail traffic infrastructure. Through novel graph-based formulations,

we use data-driven models to capture interconnections and network effects

in this CI toward the goal of predicting delays. We find GNN methods give

more accurate predictions than classical statistical models for delays in the

rail transportation context. We visualize the general approaches of each

chapter of this thesis in Figure 1.1.
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1.3 Outline

In Chapter 2, we begin with a background of the relevant infrastructure as

well as methods applied to study these infrastructure. In Chapter 3, we

explore and develop social media as a novel source of data for improving

predictions in the power infrastructure context. In Chapter 4, we present

a novel graph-based formulation of the delay prediction problem in the rail

context which we use to develop statistical and machine learning models to

improve delay predictions. Finally in Chapter 5 we summarize our findings

and detail future extensions of this work.

4



Chapter 2 : Background

2.1 Critical Infrastructure Resilience

A 1997 report by the President’s Commission on Critical Infrastructure Pro-

tection identifies the following systems as critical infrastructures: transporta-

tion, electric power, water supply systems, information and communications

services, banking and finance, government services, and oil production and

storage [5]. The partial or complete disruption of any one of these systems

can lead to disastrous outcomes, and the threat of disruption has led to re-

search into how to define, measure, and improve resilience in infrastructure

systems. Most definitions of resilience share common themes with the def-

inition provided by the National Academy of Sciences [10], which defines

resilience as follows:

Resilience is the ability to prepare and plan for, absorb, recover

from, and more successfully adapt to adverse events.

Based on this definition and others like it, researchers have developed meth-

ods for measuring resilience, many of which are discussed in recent surveys

[11, 12, 13, 14, 15]. While these metrics are valuable tools for understanding

the high-level resilience of a given system, they often provide little guidance

for real-time decision support in the time immediately preceding, during, and

after a disaster. This limitation in the field of CI resilience has been cap-

tured by a recent push for “resilience analytics” [16] which aims to develop

data-driven methods for enabling descriptive, predictive, and prescriptive

modeling of infrastructures to enhance their resilience. In this thesis, we

focus on power and rail infrastructures to develop and validate new models

for predicting CI behaviors toward the goal of improving CI resilience to

disruptive events.

5
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Figure 2.1: The timeline of CI functionality during a disruption event. t1
marks the beginning of an event which causes a CI disruption, t2 marks the
end of the disruptive event, t3 marks the beginning of the recovery efforts,
and t4 marks the full recovery. A highly resilient CI would not experience
disruption in functionality during the event which would reduce the
functionality of a less-resilient CI.

2.1.1 Power Infrastructure

Several surveys [15, 17, 18] have identified key strategies for improving re-

silience in power grids. One key strategy identified is the development of

models to predict power outages and other abnormal behaviors in the power

grid. [19] compares several regression methods to predict outages during

Hurricane Ivan, and validates their method on two other hurricanes. [20]

develops a set of statistical models to both preallocate resources before hurri-

canes and manage resources after hurricanes to improve restoration of power

infrastructure. [8] utilizes Monte-Carlo simulations to produce models of

power infrastructure damage due to tornadoes. Finally, [21] uses SVM to

model the state of power grid components to predict outages under extreme

weather.

Another key strategy to improving power grid resilience is increasing situ-

ational awareness of grid operators [22], which can be accomplished through

increasing the capabilities of grid sensors. Working toward this goal, several

papers have examined novel sources of data, namely social media as a dis-
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tributed sensor for improving operator situational awareness. [23] develops

a metric to better-understand the connection between the number of social

media posts in an geographic area during a disaster and the disruptions

caused by the disaster. [24] proposes the use of Twitter data as a distributed

sensor to improve predictions of power use, and compares a topic modeling

approach to predicting power outages to a weather-based model of power

outage prediction. [25] performs a correlation analysis of Twitter activity

around the time of Hurricane Sandy to estimate economic damage caused

by the hurricane. Finally, [26] proposes the use of Twitter as a distributed

sensor to improve predictions of power outages during Hurricane Sandy.

One drawback of these methods is that the models don’t explicitly take into

account the time series nature of data, and may have difficulty adapting to

quickly-evolving situations as is often the case with disasters. The modeling

techniques also only model outages, while modeling more specific aspects of

data could provide more specific predictions and better-inform operational

decisions. Finally, while the social media-focused papers demonstrate the

feasibility of utilizing Twitter data for improved power grid predictions, they

fail to provide robustly validated models that could provide real-time insights

to grid operators.

2.1.2 Transportation Infrastructure

In the context of transportation infrastructure, one measure of resilience is

the deviation from the day’s schedule. Resilient transportation infrastructure

will experience fewer overall deviations from the day’s schedule compared to

less resilient transportation infrastructure. By determining the overall delay

state of a particular hub of transportation, such as a rail station, we may draw

conclusions about the overall resilience of the transportation infrastructure.

Rail Transportation

Many mathematical and statistical models have been established in the liter-

ature to predict delays and understand its propagation throughout a railway

network. [27] proposed the modeling of a railway system as a linear system

in max-plus algebra with zero-order dynamics that represent delay propaga-

7



tion. [28] proposed different distributions for eleven delay types ranging from

bad weather to fault in tracks and utilized maximum likelihood estimation

(MLE) and the Kolmogorov-Smirnov test (K-S) to evaluate each proposed

distribution. [29] developed an algorithm that analyzes real-world data to

identify delays and cascading delays defined according to various conditions,

returning a network of dynamic delay propagation. [30] utilized the closed

episode algorithm to mine cascading delays through a Belgian railway net-

work focusing on specific reference points throughout the network. Finally,

[31] developed three regression models to predict the delay of trains at sta-

tions, each of which introduced different assumptions about the current delay

and previous delays.

With recent advancements in the field of machine learning, many have ex-

plored the use of machine learning models to predict delays and understand

the mechanism of delay propagation. [32] proposed several regression models

including random forests and feed-forward neural networks toward the prob-

lem of estimating time of arrival in United States rail networks. [33] proposed

the adoption of recurrent neural networks (RNNs) alongside Irish Rail System

data with labeled delay types to perform a one station step delay forecast.

[34] produced a train delay prediction system, forecasting the time taken for

the train to reach its next checkpoint considering its scheduled journey up

to terminal station. [35] utilized weather records, historical delays, and train

schedules to identify delay-inducing factors, and utilized gradient-boosted re-

gression trees to predict delays along the Beijing Guanzhou line. Finally, [36]

explored weather data for delay prediction in rail networks through the use

of kernel-based methods, extreme learning machines, and ensemble methods.

While these efforts demonstrate the value of machine learning for predict-

ing delays in railway systems, previous approaches have typically focused on

small or single-line railways, and have not yet been validated on larger or

more complex rail networks. At the same time, previous approaches have

not explicitly considered the connections between elements in the rail net-

work, limiting their capabilities in capturing the delay-propagation dynamics

in the railway network.
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2.2 Modeling Methods

There are many approaches to predicting the future, and both statistical

and machine learning approaches give mathematically-grounded methods for

making predictions. Both approaches seek to develop a generalized predictive

model for some dataset. This model is typically denoted f(x; θ), where x is

the input data and θ is the set of model parameters. In this thesis, we utilize

both statistical and machine learning approaches to developing predictive

models.

2.2.1 Statistical Models

Statistical methods allow us to draw conclusions from data in a principled

manner. In our analysis, we use basic but powerful statistical techniques to

support the use of social media as a distributed sensor to improve predictions

of CI behaviors.

Correlation Analysis

In a basic statistical setting, correlation and covariance are two common mea-

sures used to describe the relationship between sets of data. Correlation is

used to measure the linear relationship between between two variables. Sim-

ilarly, covariance is used to measure the strength of the correlation between

two sets of data. These measures of relationship have analogues in a time

series setting, namely cross-correlation and cross-covariance, which are used

to measure the similarity between two series of data. Using cross-correlation

and cross-covariance, a straightforward correlation analysis can be used to

identify the predictive power of one variable as it relates to another variable.

Establishing Causality

While correlation analysis can establish a relationship between features of the

time series, it does not establish a causal relationship. A causal relationship

between two variables can typically only be established in highly controlled

settings where individual factors are varied to test a given hypothesis. Since

our data were generated and collected under uncontrolled conditions, we

9



cannot directly establish a strong causal relationship between our variables.

However, for the purposes of improving predictions, there is another type

of causality we consider, namely Granger Causality. Granger Causality is

a concept based on prediction and according to the definition, is useful for

establishing whether one variable will improve predictions of future values of

another variable in a multi-regression setting.

Time Series Models

While many statistical methods work well in non-time series settings, time

series settings require a different set of methods. For the time series predic-

tion problem, we consider the input to our prediction model as T realiza-

tions of a time series random variable, X. One naive approach to predicting

the future value of this variable is to simply predict the next value to be

the present value of the variable, that is xt+1 = xt. Another approach in-

volves taking the average over input time steps as the prediction, such that

xt+1 =
1

T
(xt−T + xt−T+1 + ... + xt−1 + xt). These are just a few of the sim-

plest approaches to time series forecasting, and more sophisticated models

exist to capture temporal relationships between linear and nonlinear tem-

poral random variables, as well as including exogenous variables to improve

predictions.

2.2.2 Machine Learning Models

Machine learning is the study of algorithms that automatically optimize

themselves through exposure to data. Due to the generalized approach, ma-

chine learning methods have seen success in many different fields includ-

ing computer vision and natural language processing. There are several

paradigms of machine learning, including unsupervised, supervised, and re-

inforcement learning. In this thesis, we primarily utilize supervised learning,

which involves the development of predictive models which are optimized

using labelled, input-output pairs of data. We use the supervised learning

approach as a contrast to more-typically utilized statistical models.

10



Figure 2.2: Artificial neural network architecture with an input layer, a
single fully-connected hidden layer with four nodes, and an output layer.
The activation functions between layers of the network are not shown.

Artificial Neural Networks

Artificial neural networks (ANNs) are a connectionist model of human cog-

nition that are often used in supervised learning contexts. These models

and their extensions have been the subject of intensive research in recent

years. ANNs are optimized, or trained, through process known as backprop-

agation. This process calculates some measure of error, or loss, between the

model prediction f(x; θ) ≡ ŷ and the ground truth y with respect to some

loss function. As an example, the mean-squared error loss function Equa-

tion (2.1) is commonly used for regression tasks, or prediction of a continuous

value. Please see Figure 2.2 for a visual depiction of an ANN model.

L(ŷ; θ) =
1

N

N∑
i=1

||f(xi; θ)− yi||2 (2.1)

One reason for the increase in research interest in this class of models is

due to advances in specialized computational capabilities, such as improved

graphical processing units (GPUs) and the development of tensor processing

units (TPUs), which have facilitated the training of these models. These

models are universal function approximators [37, 38], meaning they can the-

oretically approximate any function. In practice, these models typically re-
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Figure 2.3: A basic convolutional neural network designed to extract
features from image data. The convolution operation captures local spatial
dependencies between pixels in the image and extracts embedded features.
These models also maintain a relatively low number of model parameters.

quire large amounts of data to perform well.

The input and output of an ANN are typically denoted as X ∈ RFin and

Y ∈ RFout respectively. One may notice that the input to an ANN is a vector

of features, which limits their use in domains with spatial or temporal di-

mensions of data. To overcome this limitation, convolutional neural networks

(CNNs) [39, 40] have been developed to capture spatial aspects of data, such

as the local connections found in images. See Figure 2.3 for a visualization of

a basic CNN architecture. Similarly, methods such as recurrent neural net-

works (RNNs) [41, 42] and temporal convolutions [43] have been developed

for time series data. Both CNNs and RNNs have been shown to be univer-

sal function approximators [44, 45], which means they retain many desirable

theoretical properties of standard ANNs.

Graph Neural Networks

Graph neural networks (GNNs) are an extension of ANNs which operate on

irregularly-structured or non-Euclidean data which may be represented as a

graph. A graph G(V,E) is uniquely defined by the set of nodes, or vertices,
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Input
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ReLU

Output

Figure 2.4: A generic GNN architecture implementing repeated layers of
graph convolutions and ReLU activations. Red lines are used to denote
information propagation between nodes. The graph convolution creates a
set of embedded node-wise features used for prediction.

and edges. The edges between nodes are typically defined by an adjacency

matrix A ∈ R|V |×|V |, where |V | is the number of nodes. We may also consider

node-wise features to get an attributed graph G(V, E, X) where X ∈ R|V |×F

is a matrix of node-wise features, where F is the number of features per

node. Note that we may also consider edge-wise features, but they are not

considered as part of this work.

GNN methods typically leverage convolution, or aggregation, operations

to capture spatial relationships within the data. GNNs extend methods de-

veloped for CNNs to be applicable for graph-structured data by specifically

leveraging graph convolutions to propagate information between neighboring

nodes and embed provided graph features into a latent space. This embed-

ding provides a high-level representation of the data, which is then typically

combined with a multi-layer perceptron or softmax output layer to provide

node-level predictions. A generic GNN model is shown in Figure 2.4. For

surveys of specific GNN architectures and their applications, please see [46]

and [47].

While the case of proving or disproving the universal function approxima-

tor property for ANNs was fairly straightforward, it is not as straightforward

with GNNs. Recent papers such as [48, 49] have discussed how the power of a

GNN architecture, or the ability of a GNN to distinguish between graphs with
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TimeTime

Figure 2.5: (Left) The spatial convolution operation for a single node
visualized on a spatio-temporal graph. This operation is used to aggregate
information between nodes along a single time step of the graph. (Right)
The 1-dimensional temporal convolution operation for a single node is
visualized on a spatio-temporal graph. This operation is used aggregate
information across multiple time steps of a node’s history. In this image,
the same node is depicted as the same color across multiple time steps.

different structure, depends on the choice of graph convolution. Additionally,

GNN properties such as invariance and equivariance become important for

characterizing the properties of GNNs. Proving or disproving the power of

GNNs is central to characterizing the properties of specific GNN architec-

tures and determining whether they are an appropriate choice for a given

task. This topic is very much a new area of research, and for a survey of

work in this area please see [50].

Spatio-Temporal Graph Neural Networks

Spatio-temporal GNNs (STGNNs) extend standard GNNs to domains where

data has both spatial and temporal aspects. Real-world phenomena often ex-

hibit both spatial connections, which are well-modeled by GNNs, and tempo-

ral aspects, and STGNNs provide a novel method for modeling such phenom-

ena. In the context of STGNNs, the input values for each node are allowed

to vary over time such that the input tensor X ∈ R|V |×X×t, where t is the

14



number of time steps given as input, and t ≤ T where T is the total number

of time steps in the dataset. As discussed in Section 2.2.2, there are sev-

eral methods to extend neural network architectures to a temporal domain

including RNNs and temporal convolutions. RNN approaches suffer from

issues such as vanishing gradient and computationally expensive backprop-

agation. Meanwhile, convolution-based approaches have advantages such as

stable gradients and fast backpropagation facilitated by parallel computa-

tions, and are the operation of choice for modern STGNN architectures.

There have been several innovations in STGNNs in recent years. [51]

proposed one of the first STGNN architectures with Graph Convolutional

Recurrent Network (GCRN), which utilized a ChebNet [52] to capture spa-

tial dependencies in conjunction with LSTM to capture temporal aspects of

data. [53] extended this work to a ground-traffic prediction setting with a

diffusion convolutions operation as well as a GRU. [1] further extended their

architecture this work to include temporal convolutions, and [54] further built

off of this by introducing an attention-based spatial convolution as part of

their architecture.

Current STGNN architectures yield high performance on certain tasks, but

there is still room for improvement. In particular, current architectures have

not thoroughly explored the effectiveness of different spatial aggregation op-

erations. An exploration of different spatial aggregation schemes could lead

to reduced the number of model parameters and computational requirements,

as well as improved theoretical guarantees of performance. Additionally, the

set of tasks that STGNNs are evaluated on is fairly limited at this point in

time. Current architectures are typically evaluated on ground-traffic predic-

tion problems, but comparing results across architectures is not always simple

since different papers tend to use different datasets. At the same time, it is

not clear that an architecture which performs well on one tasks will perform

well on another task with different parameters, such as a smaller number of

nodes. As a result, a set of benchmarks for STGNNS should be developed to

foster easier comparisons of models across different valuable data settings.
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Chapter 3 : Power Infrastructure and Social
Sensing

3.1 Introduction

Toward the goal of improving situational awareness of CI operators, we focus

on potential benefits of social media as a distributed sensor of CI behaviors,

which we refer to as social sensing. When geocoded and timestamped to an

appropriate resolution, social media has the potential to supplement existing

data sources available to authorities and provide increased levels of situa-

tional awareness. Realizing the full potential of this data source may save on

costs of physical sensors, provide coverage in areas difficult to reach with ex-

isting sensors, provide backup sensing, and provide cross-validation of other

data sources. To demonstrate the feasibility social sensing, we develop social

media data as a feature for statistical models to provide real-time predictions

of CI behaviors.

Given the widespread of Hurricane Sandy on New York’s power system,

we focus on the time period immediately before, during, and after Hurri-

cane Sandy as a case study for this study. Hurricane Sandy travelled from

the Caribbean Sea to the Northeastern US along the Atlantic Ocean from

October 24th to October 30th in 2012. Sandy made landfall in New Jersey

sometime in the early morning of October 30th. The hurricane is estimated

to have caused over 200 fatalities along its path and economic losses of be-

tween 78 and 97 billion US dollars in the US [55]. Estimated losses from

impacts to power systems alone are on the order of 16.3 billion dollars. Over

20 million people are estimated to have been affected by power outages, in-

cluding those in highly populated areas like Manhattan in New York City.

Recovery of these power services significantly varied from region to region,

with only 84% of the system restored one week after landfall.

16



3.2 Methods

3.2.1 Power Infrastructure Data

The dataset we use to study power infrastructure is publicly available through

The New York Independent System Operator (NYISO), the primary operator

of the electrical grid in New York. For our study, we consider the integrated

load and load forecast data, which are both provided hourly across the 11

NYISO load zones. These zones are are visualized in Figure 3.6. We consider

data for October and November 2012 for this study, focusing on the “day of

load forecast” and “integrated load” fields to characterize the behaviors of

the New York power system.

We focus on analyzing abnormality in infrastructure behaviors to capture

impacts of disasters on CIs. We characterize abnormality in power systems

by calculating the forecast load error, εi(t), for load zone i during hour t as,

εi(t) =
L̂i(t)− Li(t)

Li(t)
(3.1)

where L̂i(t) and Li(t) are the day of load forecast and actual integrated load

for load zone i during hour t, respectively.

3.2.2 Social Media Data

As part of our exploration of novel data sources, we examine the use of

social media, particularly Twitter, to serve as a distributed sensor. We fo-

cus on collecting and preprocessing Twitter data to enable n-gram analysis

of tweets. Three methods for collecting Twitter data include paid services,

open source data sets, and use of an API for collecting a live stream of tweets.

For our study of power infrastructure, we use an open-source data set of

6.5 million geotagged tweets from Washington DC, Connecticut, Delaware,

Maine, Maryland, New Jersey, New York, North Carolina, Ohio, Pennsyl-

vania, Rhode Island, South Carolina, Virginia, and West Virginia, posted

between October 22 and November 02 of 2012 [56]. We only consider geo-

tagged tweets due to our desire to enable high-resolution spatiotemporal

modeling. Due to data restrictions in Twitter’s Terms of Service, the data

set only contains tweet ID numbers, not the tweets themselves. Therefore,
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we hydrated the data set using Hydrator (a publicly available tweet hydra-

tion tool) on March 14, 2018 to extract 4.8 million of the original tweets in

full JSON format. We store these tweets in a MongoDB database. Missing

tweets were likely deleted between posting of the original tweet ID data set

and our date of hydration.

We perform the following steps to preprocess a tweet string for n-gram

analysis. We first tokenize the “full text” or “text” field to identify contigu-

ous sequences of n words within the tweet. We then convert all words to be

lowercase due to inconsistent capitalization within Twitter data, and remove

common words (i.e., stopwords such as “the”) and punctuation to reduce

noise in the data. The hashtag symbol “#” is removed as punctuation, and

thus unigram tokens from a tweet’s string and its hashtags are not differenti-

ated from each other. We apply stemming to map words to their word stem.

For example, words like “damage”, “damaging”, and “damaged” that have

the same stem but different suffixes are mapped to the same stem “damag.”

We use these tokens to create filtered data sets that only include tweets

containing keywords or hashtags related to the disaster or infrastructures

of interest. We geolocate tweets to map to geographic regions of interest,

at relevant spatial resolutions. We preprocess the Twitter data used in our

case study with Python’s Natural Language Toolkit [57], using the “english”

stopword corpus and Porter stemming [58].

Tweets are geolocated to identify which infrastructure geographic region

they were tweeted from within. We use New York Independent System Oper-

ator (NYISO) load zones as regions for this study, with load zone geotagging

performed using NYISO geojson files available from ArcGIS Online. Two

keyword and hashtag searches are then performed to create tweet data sets

focused on Hurricane Sandy or power systems. The sets of keywords and

hashtags for each search are shown in Table 3.1, along with the resulting

count of related tweets. Keywords and hashtags for Sandy-related tweets are

based on those used in [23]. Keywords and hashtags for power-related tweets

were selected by the authors.

We focus on analyzing normalized tweet counts to track changes in social

media networks during disaster events. We calculate normalized Sandy- and

power-related tweet counts as the number of related tweets posted within

a NYISO load zone during a given hour, relative to the total number of

posted tweets within that same spatiotemporal grouping. For example, the
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Table 3.1: Keywords and Hashtags for Twitter Searches.

Keywords and Hashtags Count

Sandy-related tweets hurricane, sandy, storm, #sandy, #hurri-
canesandy, #njsandy, #masandy, #stormde,
#sandydc, #rigov

30,290

Power-related tweets blackout, electricity, grid, light, nyiso, outage,
power, service, #blackout, #electricity, #out-
age, #power, #poweroutage

12,129

normalized count of Sandy-related tweets, Si(t), for load zone i during hour

t is calculated as,

Si(t) =
si(t)

ni(t)
(3.2)

where si(t) is the number of Sandy-related tweets posted within load zone

i during hour t, and ni(t) is the total number of tweets posted within load

zone i during hour t. A similar ratio is calculated for the normalized count

of power-related tweets, Pi(t).

3.2.3 Proposed Models

We utilize several statistical methods and models to investigate the viability

of social media data to act as a feature to augment predictions of CI behav-

iors. We formulate the problem as a time series prediction problem where

features are sampled on an hourly basis. We use these features to first es-

tablish a correlative relationship between the CI behavior and social media

data. Once this relationship is identified, we establish weak causality using a

Granger Causality test. Finally, we develop a predictive model for CI behav-

ior using the ARMA-family of statistical models, which are standard time

series modeling methods. We depict this modeling approach in Figure 3.1.

Correlation Analysis

We analyze time series representations of the data to understand temporal

trends, relationships among features, and the potential predictive power of

various features for CI behaviors. We use sample auto-correlations and the
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Figure 3.1: We use three primary steps in our analysis to establish social
media as a viable distributed sensor. First, we find optimal time lags using
correlation analysis, next we show weak causality using Granger Causality,
and finally we predict the CI behavior using time series modeling
techniques.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to assess stationarity of the

processes generating our time series, and apply transformations or differenc-

ing as needed to approximate weak-stationarity [59]. Once we have achieved

(or nearly achieved) weak-stationarity in our time series, we calculate sample

cross-correlations among the series to assess their potential predictive power

for one another.

Based on [60], we calculate the sample auto-correlation function, ρ̂(h), and

sample auto-covariance function, γ̂(h), for time series x as

ρ̂(h) =
γ̂(h)

γ̂(0)
(3.3)

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x̄)(xt − x̄) (3.4)

where h = 0, 1, . . . , n− 1 is the lag, n is the length of the full time series, xt

is the time series value at time t, and x̄ = n−1
∑

t x is the sample mean of

the time series. We calculate the sample cross-correlation function, ρ̂xy(h),
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and sample cross-covariance function, γ̂xy(h), between series x and y as

ρ̂xy(h) =
γ̂xy(h)√
γ̂x(0)γ̂y(0)

(3.5)

γ̂xy(h) =
1

n

n−h∑
t=1

(xt+h − x̄)(yt − ȳ) (3.6)

We then identify the optimal time lag, h∗, on Twitter data that maximizes

sample cross-correlation with load forecast error. We use these optimal time

tags as potential lags to apply to Twitter data for forecasting impacts to

infrastructure systems.

Granger Causality

While sample cross-correlation is useful for understanding correlative rela-

tionships, we ideally aim to understand causative relationships. However,

our data were collected through uncontrolled methods, resulting in poten-

tially many external, unobserved variables that affect the data. We therefore

cannot show strong causality between our modeled processes. Instead, we

aim for Granger causality, a weaker version of causality. Granger causality

develops two auto-correlative models on an observed variable y, defined as,

yt = β0 + β1yt−1 + β2yt−2 + ...+ βTyt−T (3.7)

yt = β0 + β1yt−1 + β2yt−2 + ...+ βTyt−T + βT+1xi,t−1 + ...+ β2Txi,t−T (3.8)

where T is the maximum lag included in the auto-correlative model and xi

is the tested exogenous variable. To determine Granger Causality, an F -test

is then performed on both of the model errors. If Equation (3.8) performs

better than Equation (3.7), then the inclusion of lagged values of exogenous

variable xi provides information that is useful in predicting endogenous vari-

able y. In our case, the endogenous variable is load forecast error, while

the exogenous variable is Twitter data. In our study of the power infras-

tructure, we analyzed Granger Causality for maximum lags within the set

T ∈ {1, 2, 3, . . . , 30}; we chose T = 30 as the largest maximum lag because we
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did not observe Granger causality above this lag for our data. We note that

while Granger causality can help identify the value of one time series towards

modeling another, it does not establish strong causality or the direction of

causality.

Time Series Models

There are several classes of models typically used for time series data, rang-

ing from statistical models such as naive, moving average (MA), and autore-

gressive (AR) models, to deep learning approaches such as recurrent neural

networks (RNNs). We focus on the class of autoregressive moving average

(ARMA) models for our analysis because, unlike deep learning models, they

do not require large amounts of data to give accurate, short-term forecasts.

ARMA models are also more sophisticated than naive or average forecast

models, and work well in situations where the data may be noisy.

An ARMA model is represented as a sum of an MA(q) model and an AR(p)

model. An MA model of order q is defined as,

yt = µ+ δt + θ1δt−1 + ...+ θqδq (3.9)

where µ is the expected value of the available time series data points at the

time of forecast, δt is the value of a white-noise random variable at time

t, and θt are model parameters typically chosen using maximum likelihood

estimation (MLE). An AR model of order p is defined as,

yt = µ+ εt + φ1yt−1 + φ2yt−2 + ...+ φpyt−p (3.10)

where µ is the expected value of the available time series data points at the

time of forecast, εt is the value of a white-noise random variable at time t, φt

are model parameters typically chosen using MLE, and yt−n are past values

of the time series.

There are also several variations of ARMA models, including autoregressive

integrated moving average (ARIMA) and autoregressive integrated moving

average with exogenous variable (ARIMAX) models. ARIMA models build

on ARMA by forecasting on differenced time series data. The order of differ-

encing is treated as a parameter of the model, and the forecast is integrated

in discrete-time to yield forecasts on the non-differenced time series. The
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integration is performed as,

ŷt = ŷ
(d)
t + yt−d (3.11)

where ŷ
(d)
t is the forecast on the differenced time series at time t, d is the order

of differencing, and ŷt is the forecast on the time series at time t. ARIMAX

builds further on ARIMA by performing regression on both endogenous and

exogenous variables. We focus on ARIMA and ARIMAX models for our

study of power infrastructure and the effects of social media as a distributed

sensor for improving predictions of CI behaviors.

3.3 Results

3.3.1 Data Exploration

Our presented results focus on analyzing and modeling relationships between

normalized counts of Sandy-related tweets, normalized counts of power-related

tweets, and load forecast errors for NYISO load zones (see Figure 3.6 for a

visualization of the zones). We consider data from the beginning of October

28th through the end of November 1st to focus on the time period surround-

ing landfall of Hurricane Sandy in the US.

Figure 3.2 shows how our Twitter and load forecast error features vary

during this time period. Most NYISO zones show a peak in Sandy- and

power-related tweets during the day before and day of landfall. The N.Y.C.

zone shows the most gradual increase and decrease in Sandy-related tweets,

as it extends to two days before and after landfall. The increased Twitter

activity in this zone is likely due to a combination of N.Y.C.’s coastal loca-

tion, its large population, and its active Twitter userbase. We also see that

peaks in Sandy-related tweets tend to precede those in load forecast errors

by several hours, suggesting these tweets may have value towards forecasting

future impacts on power systems. Peaks in power-related tweets appear to

be closer (temporally) to those in load forecast errors, which is expected as

people are most likely to post power-related tweets after their power supply

has actually been impacted.

Regarding load forecast errors, we see that LONGIL, MILLWD, HUD VL,
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Figure 3.2: Heat maps of Sandy-related tweets (Si(t)), power-related tweets
(Pi(t)), and load forecast errors (log[εi(t) + 1]) during Hurricane Sandy for
NYISO zones. Load forecast errors are log transformed to better visualize
scale differences in the data (with one added to ensure positive values).
Data for zone four is not shown due to a lack of relevant tweets.

DUNWOD, and N.Y.C. show the most notable errors, likely due to their

proximity to the coast. These results also show that the impact of Sandy on

forecast errors for these zones primarily spans the 48-hour period after land-

fall, suggesting most power systems were recovered within 48 hours of being

impacted. Note that forecast errors were defined such that positive errors

indicate an over-prediction of load; this situation may occur, for example,

when power is unavailable due to damaged infrastructure.
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3.3.2 Correlation Analysis

Having identified some general trends in our data, we more formally analyze

relationships within the data using time series methods. We only analyze

time series that have at least 20 data points; this filter removes Twitter data

for the NORTH zone from our analysis. Figure 3.3 provides a detailed visual-

ization of Twitter data and load forecast errors for the N.Y.C. and LONGIL

zones. We see similar trends among the three series for both zones, again

seeing that peaks in Sandy-related tweets appear to precede peaks in power-

related tweets and load forecast errors. The data also suggest that, within

our time period of interest, the underlying processes generating these series

are non-stationary, as the data show a clear trend and some cyclic behaviors.

This non-stationarity is problematic for our analysis, as many time series

methods assume stationarity in the processes being modeled. Most other

zones, particularly those showing the largest increases in load forecast error

during Sandy, show similar trends in their time series data and are therefore

not shown here.

We address the issue of non-stationarity by applying transformations and

differencing to our data. We find that first-differencing with no transfor-

mations best approximates weak stationarity in our data, based on visual

analysis of sample auto-correlations and KPSS tests. Figure 3.4 shows sam-

ple auto-correlations for N.Y.C. after first-differencing. The data are not

still not truly stationary, as there are still visually apparent cycles and lags

producing auto-correlations of statistical significance. However, application

of the KPSS test suggests that all of our considered time series are station-

ary after first-differencing; i.e., the test finds sufficient evidence to reject the

null hypothesis of stationarity (for both trended and constant models). We

therefore focus on first-differenced data for our models, being careful to note

that the underlying processes are only approximately weakly stationary.

Based on these results, we analyze sample cross-correlations for first-differenced

data to further understand relationships between our Twitter features and

load forecast errors. Figure 3.5 shows these results for the N.Y.C. zone. Here,

we see a large spike in sample cross-correlation between Sandy-related tweets

and load forecast error at a lag of h = −24 hours (with the lag being applied

to Sandy-related tweets). This result provides quantitative evidence for the

visual trend of Sandy-related tweets preceding load forecast errors seen in
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Figure 3.3: Visualization of (a) Sandy-related tweets (SN.Y.C.(t)),
power-related tweets (SN.Y.C.(t)), and load forecast errors (εN.Y.C.(t)) during
Hurricane Sandy for N.Y.C.. (b) shows the same data, but with Twitter
data lagged to maximize sample cross-correlation with load forecast error.
Sandy-related tweets are lagged by h∗ = −24 hours, power-related tweets
are lagged by h∗ = −1 hour, and all three series are first-differenced. (c)
and (d) show analogous data for LONGIL.

Figure 3.2. We also see a large spike in sample cross-correlation between

power-related tweets and load forecast errors at a lag of h = −1 hours, which

again corresponds to the visual trends seen in Figure 3.2. We see similar
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Figure 3.4: Sample auto-correlation function results for first-differenced (a)
Sandy-related tweets, (b) power-related tweets, and (c) load forecast error
during Hurricane Sandy for N.Y.C.. Dashed lines indicate 95% significance
levels, calculated as ±2/

√
(n) where n is the length of the series.

−30 −20 −10 0 10 20 30

Lag

−0.6

−0.3

0.0

0.3

0.6

C
C
F
(S

′ ,
ǫ′
)

−30 −20 −10 0 10 20 30

Lag

−0.4

−0.2

0.0

0.2

0.4

C
C
F
(P

′ ,
ǫ′
)

a) b)

Figure 3.5: Sample cross-correlation function results between (a)
Sandy-related tweets and load forecast error and (b) power-related tweets
and load forecast error during Hurricane Sandy for N.Y.C.. Sample
cross-correlations are calculated using first-differenced data. Dashed lines
indicate 95% significance levels, calculated as ±2/

√
(n) where n is the

length of the shorter series.

trends for other zones (not pictured here), though the lags at which spikes

in cross-correlations occur vary among zones.

Figure 3.6 shows maximum sample cross-correlations for all zones (except

for NORTH). We see weak to moderate maximum cross-correlations between

Sandy-related tweets and load forecast error for most zones, including the

coastal ones that were most strongly impacted by the hurricane. We see
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Figure 3.6: Maximum sample cross-correlations between (a) Sandy-related
tweets and load forecast error and (b) power-related tweets and load
forecast error during Hurricane Sandy for NYISO zones. Sample
cross-correlations are calculated using first-differenced data with lags
ranging from -30 to 30 hours. Note that data for NORTH is not plotted
due to its small sample size.

similar trends in max cross-correlation between power-related tweets and

load forecast error. MILLWD in particular shows high max cross-correlations

between Twitter data and load forecast errors. Though cross-correlations

are weak to moderate, we note that every max cross-correlation value is

statistically significant at the 95% level. This result suggests that, given

appropriate feature engineering and model development, Twitter data may

provide value towards predictive modeling of power systems and other CIs.

3.3.3 Granger Causality

To further understand the potential predictive power of Twitter data for load

forecast error, we also assess Granger causality for our time series. Apply-

ing the method as described in Section 3.3.2 to first-differenced data, we find

that data for some zones show Sandy- and power-related tweets to be Granger

causal for load forecast errors at a 95% significance level. More specifically,

Sandy-related tweets are determined to be Granger causal for all zones except

HUD VL, MILLWD, and DUNWOD. Power-related tweets are determined

to be Granger causal for all zones except CENTRL, MILLWD, DUNOWD,

and LONGIL. Sandy-related tweets tend to show Granger causality around

the lags for which the cross-correlation was maximized, but this trend was

not observed for the power-related tweets. This result partially supports the
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conclusion drawn from general correlation analyses that Twitter data may

improve our ability to model infrastructure impacts during disaster events.

The inconclusiveness also motivates further research into actual model com-

parisons with and without Twitter data (as seen in Section 3.3.4), as well

research on the topic of feature engineering for social media data in the con-

text of CI forecasting.

3.3.4 Modeling

Given the potential value of Twitter data towards modeling load forecast

errors, we now describe results implementing such forecast models. We de-

velop models for all zones, but focus our presented results on N.Y.C.. We

focus on N.Y.C. because it is densely populated and shows the most Twitter

activity among NYISO zones, while also showing impacts to load forecast

error during Sandy.

Model Comparisons

We first train and compare the accuracies of ARIMA and ARIMAX models

for forecasting load errors, to understand effect of including Twitter data

as a model feature. We train our ARIMA and ARIMAX models on first-

differenced data, using load errors as the endogenous variable with Sandy-

related tweets or power-related tweets as the exogenous variable. We lag

Sandy-related and power-related tweets by the lag that maximizes sample

cross-correlation between those tweets and load errors, based on results de-

scribed in Section 3.3.2. For example, Sandy-related tweets for N.Y.C. are

lagged by −24 hours, with power-related tweets for N.Y.C. lagged by −1

hour. We use lagged tweets as model features to prevent the need to include

a significant amount of previous hourly data. We select p and q parameters

to minimize the Akaike information criterion (AIC), and therefore refer to

these models as being AIC-optimal. We consider forecasts every three hours

during the hurricane, forecasting the load error up to three hours in advance

of each of these forecast times. For each forecast time, we retrain ARIMA

and ARIMAX models using data from the last 24 hours. We use this con-

tinuous retraining approach to utilize the most recent data that would have
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Figure 3.7: Median forecast errors for over all NYISO zones. We omit
NYISO zone 4 from the analysis due to insufficient Twitter data.

been available at the time of forecast. We then integrate and back-difference

our forecasts to transform them back to their original units, and use these

forecasts to calculate model forecast errors relative to the actual observed

load errors at our considered forecast times.

Figure 3.7 shows the median forecast errors from this study. We see that er-

rors for ARIMAX models using power-related tweets are lower than ARIMA

model errors for several zones, including HUD VL, DUNWOD, N.Y.C., and

LONGIL. That is, most of the zones whose load errors were strongly im-

pacted by Sandy, other than MILLWD, showed improved forecasting with

power-related tweets used as an exogenous variable. These results demon-

strate that including Twitter data as a model feature can, in fact, improve

our ability to forecast the impacts of Sandy on the power system within the

state of New York. However, we also see that errors for ARIMAX models us-

ing Sandy-related tweets are higher than ARIMA models for all zones except

CENTRL, MILLWD, and LONGIL. Thus, while Twitter data can improve

forecasting errors for power system impacts, one must be careful to ensure

relevant features are derived from the data.

Training Data Optimization

We also examine the effect of varying the amount of training data, n, on

the performance of ARIMAX models. We use load forecast error as the en-

dogenous variable and lagged power-related tweets as the exogenous variable

in these models, with all data being first-differenced. We aim to understand

this effect for two primary reasons. One, available data may be sparse for dis-
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Figure 3.8: The forecast error for each AIC-optimal model generated during
the training-data optimization process.

aster events, requiring an understanding of model sensitivity to the amount

of available training data. Two, disaster events themselves are highly non-

stationary processes, which may result in data becoming less representative

of the current process as the disaster unfolds. In this case, only including

recent data may be more beneficial than including all available data, even

at the cost of training data size. We therefore implement a training scheme

that identifies (in hindsight) the optimal training data size n∗ with respect to

forecast error, and explore how n∗ varies over the course of Hurricane Sandy.

Figure 3.8 shows the results of this study. We see that the optimal amount

of training data, n∗, varies over the course of the hurricane. However, we see

no clear relationship between n∗ and the point in time at which the forecast is

being performed. Furthermore, overall error rates do not significantly change

with respect to n, suggesting these models are relatively insensitive to the

amount of training data provided.

Using the training method described above, we then evaluate ARIMAX

models that are continuously retrained at each forecast time. We again allow

the model to select the optimal p and q parameters based on AIC; however,

we also allow the model to select the optimal amount of training data, n∗,

to be used at each forecast time. We refer to these models as being AIC

and forecast error optimal. This continuous re-training approach is one pos-

sible method for deployment of ARIMAX models during a disaster event,

as the method incorporates only the most relevant amount of recent obser-

vations into model training data as it becomes available. Figure 3.9 shows

forecasts at various times during the hurricane using these continuously re-
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Figure 3.9: Forecasts (FN.Y.C.) of a continuously-retrained set of ARIMAX
models for N.Y.C. during Hurricane Sandy, compared to actual observed
load errors (εN.Y.C.). Each vertical, dotted line represents a new model that
is optimized for both AIC and forecast-error at the time of forecast. The
prediction intervals shown are calculated at the 95% significance level.

trained ARIMAX models. These models visually perform well in forecasting

the load error, with 95% prediction intervals typically containing the actual

observed load error.

3.4 Discussion

The main goal of social sensing is to provide spatially and temporally local-

ized predictions of the effects of disasters as they relate to CIs. We demon-

strate the feasibility of this approach through processing and statistical anal-

ysis of real-time social media data, followed by development of time series

forecasting models using this data. While physical sensors are often available

for measuring electrical grid response, our approach may supplement physi-

cal sensors by providing additional coverage for locations that lack funding,

or where physical sensors are not as prevalent. Additionally, physical sen-

sors may fail in disaster events, e.g., due to flooding, structural damage, or

failures in communication infrastructure. In this case, social sensing would

improve the robustness of power systems by providing supplementary infor-

mation and redundancy to the existing suite of physical sensors. While social

sensing may take on a supplementary role for power systems, the lack of real-

time physical sensor data for other CIs (e.g., road transportation) means that

social sensing could act as the primary sensor for determining the real-time

effects of disasters on these CIs. Social sensing may also capture information

that physical sensors may not, such as damages to CIs and adjacent areas.
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Whether acting in a primary or supplementary role, social sensing methods

have the potential to improve our understanding of the effects of disasters as

they relate to CIs.
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Chapter 4 : Rail Infrastructure Delay
Prediction

4.1 Introduction

Toward the goal of improving situational awareness of CI operators, we focus

on the potential benefits of a graph-based formulation of the rail infrastruc-

ture for predictive models. When applied at a global level, a graph-based

formulation allows us to explicitly model the interactions between every el-

ement of the rail network simultaneously. Through the use of a machine

learning model, which optimizes itself based on real-world operational data,

we are able to implicitly model interactions on the rail network which are not

easily captured with other modeling techniques. To demonstrate the feasi-

bility of this approach, we consider a subset of the British rail network from

2016-2017 a case study to provide real-time predictions of CI behaviors.

The British rail industry is currently experiencing a stagnation in perfor-

mance affecting a rapidly growing commuter population. The Rail Research

UK Association [61] predicts the increase of cascading delays, delays that are

a result of its prior delays or the propagation of delay from any other train,

from 600,000 minutes annually to 800,000 minutes annually in the last five

years. With the number of passengers travelling on British train networks

almost doubling from 1 billion to 1.7 billion in the past two decades [62], this

trend will continue unless appropriate measures are put into place. How-

ever one major roadblock to reducing overall delays on the rail network is in

understanding and modeling the propagation of delays on the rail network.

These delays exhibit complex nonlinear spatio-temporal behaviors, and are

inherently difficult to predict.
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Figure 4.1: The subset of the British rail network with Didcot Parkway and
London Paddington as the gateway stations.

4.2 Methods

4.2.1 Problem Formulation

We formulate the prediction of delays on the rail network as a time series

regression problem in which observed delays on links, or connections between

stations, at the previous Npast time steps are used to predict the most likely

delay at the t+Nfuture time step. We use the following definition for links of

the rail network:

Definition 1. Rail Link: A rail link AB exists between Station A and Station

B if a train on the rail network does not pass through any other station on

the network in between Station A and Station B.

Based on this definition, we formally state the regression problem on the rail

network as,

ŷt+Nfuture
=

argmax
vt+Nfuture

logP (vt+Nfuture
|vt−Npast , ..., vt)

(4.1)

where vt ∈ RN×F is a tensor of F delay features on N links of the rail network

at time t, and ŷt ∈ RN×F is a tensor of model predictions at time t. Note
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that we only consider one feature, link delay, for this study (i.e., F = 1).

We then represent the rail network as an undirected and attributed graph

G(V,E,X(t)), defined by nodes V , edges E, and time-varying node features

X ∈ RN×F×T , where N = |V | is the number of nodes in the graph, and T is

the total number of time steps in the dataset. This graph may be represented

by its adjacency matrix AG, defined as,

AG(i, j) = 1 if stations i and j share a link,

= 0 otherwise. (4.2)

Note that while the node features are time-dependent, the underlying graph

structure remains static throughout the data period.

This graph formulation considers the delays of links in the rail network as

edge-wise features of G. While recent work has explored the use of edge-wise

features for graph prediction, these architectures often do so in an effort to

simultaneously leverage node- and edge-wise features. Since we only consider

one set of features (i.e., link delays) we do not require such an architecture.

We therefore invert the nodes and edges of G to produce a line graph of

the rail network L to enable the use of architectures with only node-wise

features. This line graph then has an adjacency matrix AL, defined as,

AL(i, j) = 1 if links i and j are connected by a station,

= 0 otherwise. (4.3)

We use this line graph to capture spatial relationships within the data in our

proposed model architectures.

Machine learning methods have shown promise for predicting delays in

transportation systems. These methods typically leverage convolution opera-

tions to capture spatial relationships within the data. Graph neural networks

(GNNs) extend these methods to be applicable for graph-structured data by

specifically leveraging graph convolutions to propagate information between

neighboring nodes and embed provided graph features into a latent space.

This embedding provides a high-level representation of the data, which is

then typically combined with a multi-layer perceptron or softmax output
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Table 4.1: Service metrics provided by Darwin’s HSP

Key Description
Origin Location Computer Reservation System (CRS) code of ori-

gin
Destination Location CRS code of destination
gbtt ptd Public departure time at departure station
gbtt pta Public arrival time at destination station
TOC code Code of train operating company
RIDs Train ID
Matched services List of all train RIDs
Tolerance Value Tolerance for difference between actual and public

arrival time
Num not tolerance Number of trains outside the tolerance
Num tolerance Number of trains within the tolerance

layer to provide node-level predictions. In this work, we compare a GNN

model against two other common models to better-understand the benefits

and drawbacks of each model. For surveys of GNNs and their applications,

see [46] and [47].

4.2.2 Data Description

The dataset we use to study rail infrastructure is provided through Darwin,

Great Britain’s official railway information engine [63]. Specifically, the ap-

plication programming interface (API) we utilize is the Historical Service

Performance (HSP) API [64]. This API provides two datasets through two

separate calls in Javascript Object Notation (JSON) Format, which are used

in conjunction with each other. The first call, Service Metrics, requires the

origin and destination stations, first departure and final arrival times, and

start and end dates to be defined as inputs. The second call, Service Details,

requires train IDs provided by the Service Metrics API as input. The data

received through the Service Metrics call is outlined in Table 4.1 and data

received through the Service Details call is outlined in Table 4.2.

All time values provided by the Service Details API are accurate to the

nearest minute and include all origin-destination trips that pass through the

gateway origin and destination stations. For our study of rail infrastructure,
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Table 4.2: Service details provided by Darwin’s HSP

Key Description
Date of service Date of service of the specified train RID
TOC Code Code of train operating company
RID Inputted RID
Location CRS code of train location
gbtt ptd Public departure time
gbtt pta Public arrival time
Actual td Actual departure time
Actual ta Actual arrival time
Late canc reason Code that specifies late or cancellation reason

we select Didcot Parkway and London Paddington as the gateway stations;

i.e., all train journeys that include both these stations in their schedule in

both inbound and outbound directions are included in the dataset. Journeys

between these stations were chosen due to their notoriety in providing preva-

lent delayed services [65]. Figure 4.1 shows the rail network stations included

for the gateway stations of Didcot Parkway and London Paddington. In the

inbound direction, Darwin provides 10,767 journeys in 2016 and 10,742 jour-

neys in 2017 initiating at various stations, passing through Didcot Parkway,

and terminating at London Paddington. In the outbound direction, Darwin

provides 9,069 journeys in 2016 and 8,969 journeys in 2017 initiating at Lon-

don Paddington and passing through Didcot Parkway on the way to their

respective destination stations.

4.2.3 Data Preprocessing

Given the raw data provided by Darwin, we include train journeys on non-

holiday weekdays starting between 5:30 AM and 12:00 PM from 2016 and

2017. This time range was selected to capture the mechanics of delay prop-

agation during peak usage of the rail network. We construct a line graph of

the rail network L by setting links between stations as nodes of the graph

and stations connecting links as edges. For consistency of the graph struc-

ture, we remove any links that are included in one year but not the other.

We also only consider inbound trips for this set of experiments; i.e., we only
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Figure 4.2: (a) The stations of the British rail network which form our rail
network graph G. (b) The links of the British rail network which form our
rail network line graph L, which is used in the STGCN model. (c) A
zoomed-in view of the highlighted links in (b). This inbound corridor of the
rail network terminates at the London Paddington station, making it one of
the busiest rail corridors in Britain.

include the trips beginning at some station, passing through Didcot Park-

way, and terminating at London Paddington. Finally, we remove stations

that serve an average of fewer than one train per day in order to reduce noise

in the graph signal. Our resulting graph G and line graph L are shown in

Figure 4.2. We use the NetworkX library to calculate the line graph from G.

The rail links included in this graph, and their usage during the considered

time period, are shown in Figure 4.4.

Our model uses the arrival delay of trains passing through links on the

rail network as its feature. This feature is used in order to measure the

congestion experienced on each link of the rail network. Arrival delay is

defined as darr = tarr, sched − tarr, actual, where tarr, sched and tarr, actual are the

scheduled and actual arrival time of the train, respectively. We attribute the

experienced arrival delay to each link traversed by the train in between its

origin and destination stations. The following definitions explain the delay

attribution process:

Definition 2. Route: A route is the set of rail links traversed by a train in

between stations at which it stops. We denote the number of links in a route
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as nlinks. Note that a train may traverse a link as part of a route without

stopping at either of the terminating stations on that link.

For example, consider rail network A → B → C → D and a train which

departs from A, does not stop at B or C, and stops at D. The train’s route

for this section of its trip would be (AB, BC, CD).

Definition 3. Links Traversed during Time Period (t0, t1): Consider rail

network A → B → C → D and a train which departs from A, does not stop

at B or C, and stops at D. Links AB, BC, and CD along route (AB, BC,

CD) are considered traversed during (t0, t1) if any of the following are true:

i) the time at which the train departed from Station A falls within (t0, t1),

ii) the time at which the train arrives at Station D falls within (t0, t1),

iii) the average time at which the train was traversing the route falls within

(t0, t1).

Definition 4. Link Attributed Arrival Delay: Denote Link Attributed Ar-

rival Delay as dL :=
darr
nlinks

. dL is a feature of the link AB during time period

(t0, t1) if and only if the link is part of a route that was traversed during

(t0, t1).

We consider a sequence of node features (vt−Npast , ..., vt) as our model input,

and a single interval vt+Nfuture
as the model output. Since the majority of

the routes traversed in the dataset last fewer than 15 minutes, we choose a

sampling time interval of 10 minutes. That is, we sample the delay along

each rail link at consecutive 10 minute intervals (e.g., [0900, 0910], [0910,

0920], ...). For numerical stability, all features are normalized and the z-score

of link attributed delay is used to train the model. Finally, we implement a

uniformly sampled 70 / 20 / 10% split of the data for the training, validation,

and testing datasets, respectively. All metrics presented in this work were

calculated on the test data which is not observed during model training.

4.2.4 Proposed Model

Network Architecture

As part of our explorations of GNN methods, we select an architecture that

leverages node-wise features for the graph prediction problem. We use the
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Figure 4.3: The resulting adjacency matrix for line graph L. We add
self-loops as part of the standard preprocessing for the STGCN
architecture. The matrix is highly sparse due to the relatively small number
of connections between links of rail.

STGCN model for this effort because it explicitly considers spatial and tem-

poral dimensions network data [1]. The model architecture is summarized in

Figure 4.5. The architecture contains two stacked spatio-temporal convolu-

tional blocks (ST-Conv blocks) followed by an output block, which is itself

composed of a temporal convolution followed by a fully-connected layer. We

use the L2 loss function to train this architecture, defined as,

L(ŷ; θ) =
∑
t

||f(vt−Npast , ..., vt; θ)− vt+Nfuture
||2 (4.4)

where θ are trainable model parameters, vt+Nfuture
is the ground truth, and

f(·) denotes the model’s prediction. The following sub-sections provide de-

tails of the model at the level of the individual spatial and temporal convo-

lutional blocks.

41



Figure 4.4: The set of links considered in the line graph L with the number
of times they were traversed during the 2016-2017 data period. Each link
name takes form AAA-BBB, where AAA / BBB are the station codes of
the originating / terminating stations of the link, respectively.

Convolution in the Spatial Dimension

The ST-Conv blocks of the STGCN architecture leverage graph convolu-

tions to capture spatial relationships in the data. Spectral graph theory

provides one method (i.e., the graph Fourier transform) for generalizing the

convolution operation for graph-structured data. The analysis focuses on the

eigenvalues of the normalized graph Laplacian matrix, given as,

L = IN −D−1/2AD−1/2 (4.5)

where IN ∈ RN×N is the N-dimensional identity matrix which adds self-loop
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Figure 4.5: The STGCN model as developed in [1]. The overall model
architecture is shown on the left, the ST-Conv block in the middle, and the
temporal gated convolution block on the right.

connectivity to the adjacency, A ∈ RN×N is the graph adjacency matrix, and

D ∈ RN×N is the diagonal degree matrix of A such that Dii :=
∑

j Aij.

The graph convolution “∗G” is defined as the multiplication of the graph

signal x ∈ RN with kernel Θ, such that,

Θ ∗G x = Θ(L)x = Θ(UΛUT )x = UΘ(Λ)UTx (4.6)

where the graph Fourier basis U ∈ RN×N is the matrix of eigenvectors of the

normalized graph Laplacian, Λ ∈ RN×N is the diagonal matrix of eigenvalues

of L, and kernel Θ(Λ) is a diagonal matrix. Note that we denote the convo-

lution operation on any generic graph G, which in our implementation is a

rail network line graph L.

Computation of Θ requires O(n2) operations, making it computationally

inefficient for large-scale graphs. However [66] introduces an approximation

that restricts the graph kernel Θ to the set of Chebyshev Polynomials, and

[67] introduces as a first-order approximation for the graph kernel. Both

of these approximations are utilized in the STGCN architecture, after be-

ing generalized for use with multi-dimensional tensors. For brevity we do

not include the details of the approximations or the generalization of graph

convolution in this paper; however, more details may be found in [68, 52, 69].
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Convolution in the Temporal Dimension

The ST-Conv blocks also leverage a convolution to capture temporal rela-

tionships in the data. Recurrent Neural Networks (RNNs) are often used

for this purpose; however, these networks can be difficult to train due to

the “vanishing gradient” problem. Additionally, recent papers [70] [71] have

shown that a 1D convolution along the temporal dimension of data can be

more effective than an RNN on shorter sequences, while at the same time

being quicker to train. As shown in Figure 4.5 (right), the temporal convo-

lutional layer of each ST-Conv block contains a 1D causal convolution with

kernel of size kt and a gated-linear unit (GLU) nonlinear activation. Similar

to the gating present in RNN models, namely LSTM and GRU, the nonlinear

activation provides a gating which determines importance of past inputs on

future predictions. The resulting temporal convolution is defined as,

Γ ∗T Y = P � σ(Q) (4.7)

where P and Q result from splitting the input of the temporal block along the

“channels” dimension. Further details of the temporal convolution, including

generalization to 3D tensors, are provided in [1].

Spatio-Temporal Convolutional Block

The ST-Conv blocks are constructed by combining these graph and temporal

convolutions to capture spatio-temporal behaviors. The lth ST-Conv block

is then given as,

vl+1 = Γl
1 ∗T ReLU(Θl ∗G (Γl

0 ∗T vl)) (4.8)

where Γl
0 and Γl

1 are the temporal kernels within block l, Θl is the spectral

kernel of the graph convolution, and ReLU denotes a rectified linear unit

activation.

4.2.5 Model Implementation

For the STGCN model, we use a spatial kernel of size ks = 5 and a temporal

kernels of size kt = 3. We use the Chebyshev polynomial approximation of
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the graph Laplacian, and the channels within each ST-Conv block take a

bottleneck form such that the number of channels are given as Block 1 = (1,

32, 64), Block 2 = (64, 32, 128), and Output Block = (128, 1). We train

each model for 25 epochs with a batch size of 100 using the ADAM optimizer

and L2 loss with an initial learning rate R = 0.001. Finally, we implement a

learning rate decay of R← 0.1R every 10 epochs.

We also implement a multi-layer perceptron (MLP) model for comparison.

We use a 3-layer fully-connected model with a 1-node input, 100-node hidden

layer, and 1-node output. We use the RELU activation for the first two layers,

and a sigmoid activation on the model output. This model is trained for 25

epochs using the same optimizer and loss function as STGCN.

4.3 Results

We compare the STGCN model’s performance to two common statistical

methods: linear regression (LR) and MLP. Neither LR nor MLP explicitly

model the connections of graph-structured data, so for each node in the graph

we optimized a new model for delay prediction. Furthermore, neither LR nor

MLP are designed for time series prediction, so the features of each input

time step are appended to form a feature vector of size ((Npast ∗ F ) × 1).

We test each model under multiple (Npast, Nfuture) time step conditions to

understand the flexibility of the STGCN model its sensitivity to the input

sequence length. We use MAE and RMSE to evaluate our models. These

metrics are calculated by first averaging over the nodes of the graph, then

averaging over the number of sequences in the dataset, and finally averaging

over a set of 5 replicates per model. The results of our experiments are

presented in Table 4.3.

We find that STGCN outperforms the other considered models on all test

conditions. This result is likely due to the model’s ability to capture depen-

dencies between neighboring nodes in the graph via the graph convolution

operation, as well as its ability to capture temporal dependencies via the

temporal convolution operation. The combination of these operations im-

plicitly models nonlinear cascading delays in the rail network. Our results

show that this deep learning architecture can be readily applied to lever-

age available rail network data and provides more accurate predictions than
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Table 4.3: Accuracy Metrics on Rail Network Data

Model
Npast = 6 MAE (10 / 30 / 60 min) RMSE (10 / 30 / 60 min)
LR 0.304 / 0.365 / 0.36 0.69 / 0.834 / 0.847
MLP 0.341 / 0.362 / 0.364 0.966 / 0.915 / 1.096
STGCN 0.256 / 0.311 / 0.302 0.625 / 0.803 / 0.755
Npast = 12 MAE (10 / 30 / 60 min) RMSE (10 / 30 / 60 min)
LR 0.279 / 0.337 / 0.338 0.59 / 0.753 / 0.785
MLP 0.331 / 0.34 / 0.327 0.982 / 0.896 / 0.931
STGCN 0.25 / 0.282 / 0.27 0.539 / 0.713 / 0.669

classical statistical methods.

4.4 Discussion

While our results were calculated on a subset of the British rail network,

the STGCN model can easily scale to larger graphs while still capturing lo-

cal dependencies between nodes. This scalability is due to the use of graph

convolutions, which allow the model to output predictions for every node

simultaneously. In comparison, classical statistical models either require a

model to be trained for every node or implicitly assume full information prop-

agation amongst nodes in a multiple response formulation. We also found

that, while training the STGCN model took longer than the other meth-

ods, the STGCN model still trains relatively quickly, requiring on average

20 seconds per epoch for this dataset using a computer with an AMD Ryzen

Threadripper 2920X CPU and an NVIDIA RTX 2080 GPU.

This work presents a novel, graph-based formulation of the British rail

network. This formulation allows us to aggregate the experienced delay of

multiple trains into a single measure of delay, namely link attributed delay,

during a time period along each link of track in the train network. By

attributing delays to links of the rail network, we are able to globally model

the rail network instead of modeling individual trains or rail stations. The

utilization of global information allows the STGCN architecture to optimize

its predictions on real-world operational data to implicitly model nonlinear

cascading delays on the entire rail network simultaneously. We demonstrate

the feasibility of such a global formulation to predict expected delays that
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trains would experience traversing each link of the rail network. Experiments

on real-world rail data show that this architecture provides more accurate

predictions than classical statistical models due to its ability to capture both

spatial and temporal dimensions of the data.
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Chapter 5 : Conclusions

This thesis presents two primary approaches toward developing predictive

models of CI behaviors. In our first approach, we explore social sensing

methods to model disaster impacts on power systems through the case study

of Hurricane Sandy as it impacted the state of New York. We find weak to

moderate cross-correlations between Twitter data and load forecast errors,

along with statistical evidence for Granger causality in the data, suggesting

that Twitter data may provide value towards predicting impacts of disasters

on infrastructure systems. Based on these findings, we then develop time

series forecasting methods to predict future impacts on the NYISO power

system at the zonal level, utilizing Twitter and load forecast data as model

inputs. We find that forecast models for certain zones, particularly those

whose load forecast errors were most impacted by Sandy, can be improved

by including Twitter data.

In our second approach, we develop a novel, graph-based formulation of the

British rail network to model the nonlinear cascading delays on the rail net-

work. Using this formulation, we utilize several machine learning approaches,

namely the application of the STGCN architecture, to predict expected de-

lays that trains would experience traversing each link of the rail network.

Through experiments on real-world rail data, we find that this architecture

provides more accurate predictions than other models due to its ability to

capture both spatial and temporal dimensions of the data.

More broadly, our proposed methods can improve CI resilience by provid-

ing more insight into behaviors of CIs during disruption events. Recall that a

definition of resilience for CIs is “the ability to prepare and plan for, absorb,

recover from, and more successfully adapt to adverse events” [10]. Real-time

inference of CI impacts, provided by models such as ARMA or STGCN,

would increase the situational awareness of infrastructure operators and give

them high resolution awareness of disruptions to the infrastructure as they

unfold, allowing for faster actions to be taken to mitigate damages. Addition-
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ally, social sensing acts to augment statistical resilience frameworks by acting

as an additional source of information in the determination of CI network

functionality loss and CI adaptability [72, 73].

While we examined ARMA for power infrastructure and STGCN for rail

infrastructure, future work may include the exploration of models that offer

other desirable qualities not examined in this work, such as interpretabil-

ity and uncertainty quantification. For social sensing, future directions of

research include the use of natural language processing techniques for im-

proved feature engineering of social media data, as well as the investigation

of gazetteering approaches to infer geolocation from tweets. Geolocation in-

ference will enable collection of significantly more data, since only about one

percent of tweets are geotagged [74]. For rail infrastructure delay predic-

tion, future work includes a more thorough comparisons of GNNs with ex-

isting models in the railway literature and alternative problem formulations

to predict delays on specific routes and more explicitly consider inbound and

outbound traffic on the rail network. Further study of the causes and prop-

agation of delay in the rail network should also be included and develop of

our models for real-world deployment.
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