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Abstract

Comparisons of drop size distributions (DSD) properties and rainfall modes among three deep convective

regions (the U.S. Southern Great Plains, in Córdoba Province in subtropical South America, and Manacapuru

in central Amazonia) where heavy rain-producing systems contribute the majority of rainfall in the largest

river basins of the Americas, are conducted. Measurements from two types of disdrometers sampled at

two of the three sites were considered, and subsequently separated into a light precipitation mode and a

precipitation mode using a cutoff at 0.5 mm hr−1. The distributions of physical parameters (such as rain

rate R, mass-weighted mean diameter Dm, and normalized droplet concentration Nw) for the raindrop

spectra without classification appear to be similar amongst the sites, except for much broader distributions

of Nw at the Córdoba site. In the light precipitation and precipitation modes, the dominant higher observed

frequency of Nw in both types of disdrometers, as well as the identification of shallow, light precipitation

in vertically-pointing cloud radar data represent a unique characteristic of the Córdoba site relative to the

other sites. As a result, the co-variability between DSD physical parameters indicates that the precipitation

observed at Córdoba may confound existing drop size distribution methods of determining rain type.
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video disdrometer; COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru. 27

3.24 Correlation between the rain rate R as log10 R and the mean mass diameter as Dm, in the
light precipitation-precipitation mode (Lpm−Pm for each 1-min DSD with at least 50 drops
in 5-min consecutive R > 0.10 mm h−1, 0.30 < D0 < 4.75 mm and Z > 10 dBZ) at (a)
COR, (b) SGP, and (c) MAN, and in the precipitation mode (Pm for each 1-min DSD with
at least 50 drops in 5-min consecutive R > 0.50 mm h−1, 0.50 < D0 < 9.50 mm and Z >
10 dBZ) at (d) COR, (e) SGP, and (f) MAN sites. DSDs indicated by color contours for
the PARS and color-dashed contours for the 2DVD. Solid lines from WL14 (green), PARS
(red), and 2DVD (cyan) are the R vs. Dm power-law correlation curves. DSDs = raindrop
size distributions; PARS = second generation parsivel disdrometer, 2DVD = two-dimensional
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Chapter 1

Introduction

More than 50 years of satellite observations have revealed that 67% of the earth’s surface exhibits cloud

cover, and those clouds play a dominant role in the global radiation balance. Clouds drive the atmospheric

circulation from the global to convective scales through diabatic heat release. Besides the heating and

cooling due to radiative effects, turbulence, and the phase changes of water, clouds also moderate the global

hydrological cycle through precipitation processes and by transporting water vertically (Baker, 1997; Jakob

and Miller, 2003; Paukert et al., 2019).

The microphysical processes that modify the cloud structure and lifetime, as well as control the redis-

tribution of heat and moisture generated by cloud systems, are linked to the underlying thermodynamic

conditions arising largely from vertical air motions within and outside the cloud system (Lloyd et al., 2014;

Sui et al., 2007; Williams, 1995). Understanding the connections between the kinematic and thermody-

namic conditions that influence the microphysical processes in clouds and attendant rainfall production is

important from a hydrometeorological perspective, but these intertwined processes that operate from micro-

physical to mesoscales can be difficult to represent with fidelity in multi-scale atmospheric models (Emanuel,

1994; Jakob and Miller, 2003; Jakob, 2003; Paukert et al., 2019).

Liquid precipitation can be characterized by its drop size distribution (DSD) and DSD observations

are of interest in applications beyond understanding the roles of microphysical processes in clouds. For

example, for rainfall estimation satellite-based or ground-based retrieval algorithms, DSDs are critical for

determining reflectivity-rain rate relations (Chandrasekar and Bringi, 1987; Atlas and Ulbrich, 1990; Joss

et al., 1990; Uijlenhoet and Pomeroy, 2001; Rosenfeld and Ulbrich, 2003) or improving dual-polarization

rainfall retrievals (Bringi and Chandrasekar, 2001; Krajewski and Smith, 2002; Berne and Krajewski, 2013;

Rauber and Nesbitt, 2018). Additionally, the characterization of DSDs in multi-scale models is important in

the representation of dynamic processes and rainfall prediction in model simulations and forecasts, impacting

hydrometeorological predictions, as well as for studies of soil erosion by rainfall and irrigation systems in the

agronomic sciences and in agricultural engineering (Rosewell, 1986; Caracciolo et al., 2012; Williams et al.,

2014; Gong et al., 2014; Vaughan et al., 2015; Duan et al., 2019).
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Various mathematical models have been formulated to quantify the raindrop size distribution shape

characteristics, such as the exponential distribution N(D) = N0 exp(−λD), where N(D) is the raindrop

concentration per droplet diameter D (mm) interval per unit of volume (m−3 mm−1); N0 (m−3 mm−1) is the

intercept parameter; λ (mm−1) is the slope parameter, as first formulated by Marshall and Palmer (Marshall

and Palmer, 1948). Moreover, the three-parameter gamma distribution N(D) = N0D
µ exp(−λD), where N0

(m−3 mm−1−µ); µ (unitless), and λ (mm−1), as introduced by Ulbrich (Ulbrich, 1983) and Willis (Willis,

1984), but with a disadvantage that the three parameters are mathematical and not easily interpretable

physical quantities.

To overcome this disadvantage, Testud et al. (Testud et al., 2001) proposed the normalization of raindrop

distribution without a priori assumption about the DSD shape and finding a normalized intercept parameter

N∗
0 (or Nw) proportional to LWC and (D−4

m ), where LWC is the liquid precipitation water content (g m−3)

and Dm is the equivalent spherical diameter (mm). So, these three quantities in the normalized Gamma

DSD are more physical quantities: Nw, Dm, and µ, representing the intercept parameter of an exponential

distribution with same LWC and Dm, median mass diameter, and shape parameter of 0.

Radar hydrometeorology is dependent on the estimation of raindrop size distribution (DSD) as a function

of rain physics parameters through the Z = aRb relationships, where Z is the radar reflectivity factor

(typically expressed in dBZ units, where dBZ = 10 log10 Z); R is the rain rate (mm h−1), a and b are

empirical quantities dependent on the DSD variability for different rain types and regimes due to differences

in their dominant microphysical processes (Seliga and Bringi, 1976; Ulbrich and Atlas, 1978; Wilson and

Brandes, 1979; Ulbrich, 1983; Bringi et al., 2003; Deo and Walsh, 2016).

Apart from Z, other radar parameters for which the DSD is relevant, are the differential reflectivity factor

Zdr associated with the reflectivity-weighted mean diameter (Dz), where Dz is defined as the ratio of the 7th

and 6th moments of the DSD (Thurai and Bringi, 2008). The linear depolarization ratio LDR is proportional

to (D2
z), while the co-polar correlation coefficient (ρco) related to Dz and Dz’s variance, all three of these

polarimetric quantities defined by (Bringi and Chandrasekar, 2001). Also, the specific differential phase Kdp

is proportional to LWC and N0, and is a polarimetric quantity less sensitive to Dm and variations in the

large drop end of the DSD (Bringi and Chandrasekar, 2001). For more details of these radar parameters

and others, see subsection 7.1.4 in (Bringi and Chandrasekar, 2001).

The diverse Z − R relationships found in the literature also imply different values of Nw depending on

the microphysical processes occurring in rainfall in varying climate regimes (Ulbrich, 1983; Testud et al.,

2001; Bringi et al., 2003; Dolan et al., 2018). In an attempt to classify surface rainfall using the DSD

into convective and stratiform rainfall modes (which are produced by different microphysical processes and
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thermodynamic conditions), Bringi et al. (Bringi et al., 2003, 2009) analyzed the linear relation between

Nw (or log10 Nw) and median raindrop diameter (D0), revealing microphysical differences in the stratiform

and convective rain attributed to its formation processes, and introduced a convective-stratiform segregation

criterion based on these two parameters for ten maritime and continental geographical locations.

Thompson et al. (Thompson et al., 2015) examined DSD observations in stratiform tropical oceanic rain

at two locations and showed similar DSD characteristics for stratiform tropical oceanic rain as Bringi et al.,

except finding a larger Nw (log10 Nw = 4.0−4.1) at smaller D0 (0.7−1.1 mm) in convective rain, contradicting

previous studies up to that point for continental locations where the convective clusters presented smaller

Nw (log10 Nw = 3.0−3.5) at smaller D0 (2.0−2.75 mm). Bringi et al. (2003, 2009), (Thurai et al., 2010;

Penide et al., 2013; Dolan et al., 2018). Together, two convective-stratiform rainfall separator lines will be

examined in this study: log10 Nw = 1.6D0 + 6.3 and log10 Nw = 3.85, determined by Bringi et al. (Bringi

et al., 2009) and Thompson et al.(Thompson et al., 2015), respectively, however in different climate regimes

that may cause these classifications to vary in their ability to describe these to describe these important

rainfall modes.

In a global approach, Dolan et al. (Dolan et al., 2018) used the statistical technique of principal component

analysis to examine the spatial-temporal variability in DSD datasets in twelve geographical locations from

high latitudes to the tropics and present a conceptual model of the variability between Nw and D0 based on

clustering dominant microphysical processes that modify the DSD shape for different modes of rainfall. All

sites reported larger Nw (log10 Nw = 3.8−4.0) in the high latitudes and smaller Nw (log10 Nw = 3.0−3.5)

in the mid-latitudes. The two sites examined therein in the tropics reported a bimodality of Nw (maximum

log10 Nw at 3.4 and 4.0) for convective and stratiform rain clusters, and larger Nw(log10 Nw = 4.0−4.5) at

smaller D0 (1.5 mm).

Another global examination of DSD properties from Gatlin et al. (Gatlin et al., 2015) analyzed samples of

large drops from eighteen geographical sites in a variety of rainfall conditions, reporting raindrop maximum

diameter values (Dmax) up to 9.0−9.7 mm for validation of Dmax assumptions in remote sensing retrieval

algorithms. Furthermore, Thurai et al. (Thurai et al., 2017) examined the effects of small drops from a

two-instrument combined raindrop size spectrum at two sites in the U.S., showing evidence of a lower Dm,

higher width mass spectrum (σM ), and higher ratio σM/Dm that is another shape parameter (Bringi and

Chandrasekar, 2001; Thurai and Bringi, 2008). A drizzle and precipitation modes were also observed in the

combined spectra, along with higher values of Nw due to raindrop minimum diameters values (Dmin < 0.7

mm) that are generally undercounted by commonly-used disdrometers.

Despite all disdrometer-based efforts to measure surface precipitation and improve the precipitation rep-
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resentation around the world, a search throughout the broad DSD literature indicates that there is still a

lack of disdrometer measurements globally (Chase et al., 2020) and in particular, in South America. How-

ever, some important DSD observations have been collected in Brazil’s Amazon Basin, from campaigns

by the NASA Tropical Rainfall Measuring Mission-Large Scale Biosphere-Atmosphere (TRMM-LBA) ex-

periment conducted in southwestern Amazonia (1999) Tokay et al. (2002, 2013), (Martins et al., 2010;

Gatlin et al., 2015), and the Department of Energy (DOE) Atmospheric Radiation (ARM) Green Ocean

Amazon (GoAmazon) field campaign conducted in central Amazonia (during the two wet seasons of 2014

and 2015) (Giangrande et al., 2016; Martin et al., 2016b; Wang et al., 2018). Moreover, the DOE ARM

Clouds, Aerosols, and Complex Terrain Interactions (CACTI) and the Remote sensing of Electrification,

Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field

campaigns (conducted during the warm season of 2018-9) collected novel disdrometer observations in west

central Argentina, near the Sierras de Córdoba (a north-south oriented mountain range east of the Andes

known to frequently initiate deep convection) (Nesbitt and coauthors, 2016; Mulholland et al., 2018, 2019;

Varble et al., 2019b; Cancelada et al., 2020).

Precipitation processes in subtropical South America may be unique to those collected in other climate

regimes: observations from the Precipitation Radar (PR) aboard the TRMM satellite have shown that

the deep convective regions in subtropical South America produce among the most intense and organized

convective systems on Earth (Zipser et al., 2006; Nesbitt et al., 2006). Previous studies have compared the

vertical and horizontal radar reflectivity echo structures of three deep convection regions in the Americas

including the Amazon and west central Argentina, by examining an 11-year record of storms from the

TRMM PR dataset (Romatschke and Houze Jr, 2010; Rasmussen and Houze Jr, 2011; Rasmussen et al.,

2014, 2016; Mulholland et al., 2018). For example, Rasmussen et al. (Rasmussen and Houze Jr, 2011)

suggested that organized convective systems bearing wide convective cores are more frequent near the Sierras

de Córdoba (SDC) in west central Argentina, where the RELAMPAGO-CACTI field campaign took place.

Also, that this frequent organized convection presents similarities with the mesoscale convective system

(MCS) structure of a leading line of cells followed by a stratiform rain region observed in Central Oklahoma

in the United States (Rutledge et al., 1988), however storms in the Great Plains do not interact significantly

with topography in contrast with storms near the SDC. In the Amazon, Romatschke and Houze Jr (2010)

and Rasmussen and Houze Jr (2011), indicated that deep convective cores are relatively infrequent over

the Amazon region compared with the warm season storms in subtropical South America and the Great

Plains, thus, they have classified convective systems more commonly in a broad stratiform category during

the Amazonian wet season.
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The purpose of this thesis is to leverage these recent data collection efforts and examine the compilation of

disdrometer datasets for comparisons of DSDs and the DSD parameters among three deep convective regions

in the Americas: west central Argentina during the RELAMPAGO-CACTI field campaign, from the U.S.

Southern Great Plains site, both in the American midlatitudes, and central Amazonia during the GoAmazon

field campaign, in the American tropics. Therefore, it is intended to answer from these comparisons, the

following specific questions:

1. How do DSD observations and the relationships between the DSD parameters compare among these 3

sites in the Americas?

2. What can the inferences of rain formation processes and vertical radar echoes contribute to enhance

our analysis of the precipitation observed at Córdoba site in Argentina?

3. How do the raindrop distribution shape parameters within this data compilation compare with others

observed in previous studies?

The results obtained from this comparison are summarized in two parts: Questions 1-2 in Sections 3.1-

3.2 (also available in Rivelli Zea and Nesbitt 2020, in review), and Question 3 in Section 3.3. The results

altogether are discussed in Section 4. The data and methods are outlined in Section 2, and the overall

conclusions are presented in Section 5.
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Chapter 2

Data and Methods

2.1 Location of sites

The three sites in the Americas here considered are spread across different climate regimes: humid subtropical

grasslands for the U.S. Southern Great Plains, and complex terrain with humid subtropical climate for

Córdoba, Argentina, to an equatorial rainforest in Manacapuru, Brazil. For these sites, the ground-based

measurements compiled from the ARM user facility corresponds to the following field experiments (Fig. 2.1):

1. The Southern Great Plains (SGP) atmospheric observatory is the largest field with extensive instru-

mentation deployed in the U.S. by the ARM Program (operating since 1992); located in north-central

Oklahoma, on the southwest part of the Mississippi Basin. This is the second largest basin in the

Americas after the Amazon, where extreme flood events during the spring-summer seasons of 1993

(Karl and Knight, 1998; Wolf et al., 1999; Barraqué, 2017). Houze et al. (Houze Jr et al., 1990) stud-

ied spring storm events in central Oklahoma from a six-year dataset, primary classifying them as MCSs

producing significant rainfall, and showing the classical MCS structure of a leading line of convective

cells trailed by stratiform rain.

2. The DOE ARM Green Ocean Amazon (GoAmazon) field campaign took place in the environmental

conditions of Manaus, Brazil, in the central part of the Amazon Basin during the wet season of 2014-

2015. The Amazon is the largest and broadly studied basin in the Americas (Nobre, 1984; Gat and

Matsui, 1991; Wolf et al., 1999; Valverde and Marengo, 2014), considered an important convective

area in the tropics where moderately intense to weak convective systems are the cause of major rainfall

throughout the austral summer (Nesbitt et al., 2000; Zipser et al., 2006; Nesbitt et al., 2006; Nunes

et al., 2016a; Marengo et al., 2017; Braga et al., 2017). The ARM Mobile Facility (AMF1) and Mobile

Aerosol Observing System (MAOS) were in a site near Manacapuru (“T3”), on the Amazon River,

located 80 km west from Manaus airport (Martin et al., 2016a,b; Giangrande et al., 2016; Wang et al.,

2018).
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3. The DOE ARM CACTI field campaign in conjunction with the National Science Foundation (NSF)-led

RELAMPAGO field campaign, collected disdrometer observations from a number of sites across central

Argentina. Both experiments took place in the environmental conditions of Córdoba, Argentina, near

the Sierras de Córdoba (SDC) during the wet season of 2018-2019. Watercourses that have origin in

the SDC form the Carcarañá River Basin that contributes its riverine water to the Paraná River, which

is a major river in the La Plata Basin, the third largest basin in the Americas (Wolf et al., 1999; Collins

et al., 2011; Chug and Dominguez, 2019). These rivers are a vital for different socioeconomic activities

in the region, but also highly influenced by frequent intense, organized convection and consequent

severe weather impacts including costly flooding disasters (Rasmussen et al., 2014; Lozada et al., 2015;

Stenta et al., 2016; Bazán et al., 2018; Pal et al., 2019). The ARM Mobile Facility-1 (AMF1) site was

located in Villa Yacanto de Calamuchita, located about 20 km to the east of the highest terrain of the

SDC, also 100 km southwest from the major city of Córdoba (Varble et al., 2019a,b; Hardin et al.,

2020).

2.2 Disdrometer instrumentation

Since 2006, the ARM Program has been collecting disdrometer-based measurements of the rainfall and

corresponding DSDs towards a better understanding of the processes resulting in precipitation (Bartholomew,

2014, 2017). For the observation periods and experiments selected here, that is, between 2014 and 2019,

and, for the SGP, GoAmazon, and CACTI-RELAMPAGO field campaigns, the ARM Program deployed two

types of disdrometers for long-term measurements of DSDs. These are a particle size velocity (Parsivel2)

laser optical disdrometer, and a two-dimensional video disdrometer (Schumacher, 2016; Dolan et al., 2018;

Varble et al., 2019b).

The Parsivel2 disdrometer, henceforth PARS, provides measurements of the particle size distribution and

fall speed distribution, from which surface precipitation as rainfall rate (R), liquid water content (LWC),

number concentration, and raindrop characteristic size such as median volume diameter (D0), and fall speed

distribution can be derived (Löffler-Mang and Joss, 2000; Tokay et al., 2013; Bartholomew, 2014). The

PARS is known for its robustness and low maintenance requirement in the field (Bartholomew, 2014), but

also may have a tendency to overestimate the concentration of smaller raindrops in light rain and larger

raindrops in heavy rain (Dolan et al., 2018; Giangrande et al., 2019). Further information about the PARS

and its deployment can be found in the ARM Parsivel2 Handbook (Bartholomew, 2014), the reports from

GoAmazon and CACTI field campaigns (Schumacher, 2016; Varble et al., 2019b), and recent studies using
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ARM data (Dolan et al., 2018; Giangrande et al., 2019).

The two-dimensional video disdrometer, hereafter 2DVD, measures raindrop size, raindrop shape and fall

speed (Tokay et al., 2013; Gatlin et al., 2015; Bartholomew, 2017). The 2DVD requires frequent calibration

and tends to underestimate small droplet concentration (Gatlin et al., 2015; Thurai et al., 2017; Dolan

et al., 2018). However, it provides the most accurate concentration of large raindrops and characterization

of raindrop shape (Thurai et al., 2011; Tokay et al., 2013; Gatlin et al., 2015; Thurai et al., 2017; Rauber and

Nesbitt, 2018). More details on the 2DVD and its deployment can be found in the ARM VDIS Instrument

Handbook (Bartholomew, 2017), the CACTI field campaign report (Varble et al., 2019b), and previous

studies using ARM datasets (Thompson et al., 2015; Dolan et al., 2018; Giangrande et al., 2019).

Table 2.1 presents an overview of the disdrometer datasets compiled during the wet season, and details

about each deployment. For the DSDs comparisons, all instruments have recorded 1-min DSDs and 0.2-

mm-width diameter bins spacing was also considered. DSD parameters have been calculated, including

liquid water content LWC (g m−3), the normalized gamma function parameters as the normalized intercept

parameter Nw (m−3 mm−1), the mass-weighted mean diameter Dm (mm), and the mass standard deviation

σm (mm) (Testud et al., 2001; Williams et al., 2014).

Following the corrections applied in similar DSD studies (Tokay et al., 2013, 2014; Gatlin et al., 2015;

Giangrande et al., 2019), the dataset processing have considered for each 1-min raindrop spectra, no drop

sizes D0 smaller than 0.3 mm diameter (Tokay et al., 2013, 2014) and rain rates R no lower than 0.1 mm h−1

in at least 5-min of consecutive rain, following (Giangrande et al., 2019). Previous studies found the above

data processing to be more accurate for moderate to larger raindrops due to the disdrometers resolution

(∼ 0.2 mm) and attendant tendency to underestimate the small raindrop concentration (Tokay et al., 2013;

Giangrande et al., 2019; Thurai et al., 2017).

A second stage of the data quality control have included a subset of 1-min observations with at least 100

drops (Thompson et al., 2015; Dolan et al., 2018; Giangrande et al., 2019). Rain rates R lower than 0.5 mm

h−1, and median raindrop diameters D0 no less than 0.3 and no greater than 4.75 mm were considered for

what is defined as “light precipitation mode” (Lpm) following (Thurai et al., 2017). Rain rates R greater

than 0.5 mm h−1, and raindrops D0 no smaller than 0.5 and no greater than 9.5 mm were the considerations

for what is defined as “precipitation mode” (Pm) (Caracciolo et al., 2008; Gatlin et al., 2015; Thurai et al.,

2017). Additionally, time-height scans of reflectivity (dBZ) from the Ka-band ARM Zenith Radar (KAZR)

zenith-pointing Doppler cloud radar deployed for CACTI were used to investigate Lpm and Pm cases over

the disdrometers’ site at COR.

Furthermore, polarimetric radar parameters were computed using the T-matrix numerical method for
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the 1-min DSDs from each site. Polarimetric quantities such as the reflectivity factor (Z, dBZ), differential

reflectivity (Zdr, dB), linear depolarization ratio (LDR, dB), the specific differential phase (Kdp, deg km−1)

and others, were calculated. The T-matrix simulations at C-band (5.5 GHz) set water temperature of 20◦

C (Bringi and Chandrasekar, 2001; Thurai and Bringi, 2008), maximum diameter at 9.5 mm, a droplet

Gaussian canting angle with 0◦ mean and 7◦ standard deviation (Rauber and Nesbitt, 2018), and a drop

size-shape model e.g. Thurai et al. (2007, 2009).

Alternatively, to analize the correlation of the reflectivity factor (Z, dBZ), rain rate (log10 R, dBR), and

the width mass spectrum (σM , mm) as function of the mass spectrum mean diameter (Dm, mm) using the

method described in (Williams et al., 2014), a third filtering was applied to our disdrometer observations

compilation. First, this filtering classified each 1-min DSD in the light precipitation-precipitation mode

(Lpm− Pm), corresponding to the part of the spectrum with at least 50 drops in 5-min of consecutive rain

greater than 0.10 mm h−1, median raindrop diameters D0 no less than 0.30 and no greater than 4.75 mm,

and reflectivity factor Z greater than 10 dBZ. Second, this alternative filtering classified the DSDs in the

precipitation mode (Pm), for the part of the spectrum with at least 50 drops in 5-min of consecutive rain

greater than 0.50 mm h−1, median raindrop diameters D0 no less than 0.50 and no greater than 9.50 mm,

and reflectivity factor Z greater than 10 dBZ.

Table 2.1: Summary of the disdrometer datasets compiled for this study.

Site
ID

Field cam-
paign

City, State
/ Province,
Country

Latitude,
Longi-
tude,
Altitude
(m)

Instrument Rainy
min-
utes

Data period selected

SGP Southern
Great
Plains

Lamont,
Oklahoma,
United
States

36.666
-97.624
311.50

PARS 22521 15 Apr – 30 Sep 2017
15 Apr – 30 Sep 2018
15 Apr – 11 Sep 2019

36.605
-97.485
318.0

2DVD 21374 15 Apr – 30 Sep 2017
15 Apr – 30 Sep 2018
15 Apr – 11 Sep 2019

MAN GoAmazon Manacapuru,
Amazonia,
Brazil

-3.213
-60.698
50.0

PARS 21141 15 Oct 2014 – 30 Apr
2015
15 Oct – 01 Dec 2015

COR CACTI-
Relámpago

Villa Ya-
canto,
Córdoba,
Argentina

-32.126
-64.728
1141.0

PARS 24985 15 Oct 2018 – 30 Apr
2019

-32.126
-64.728
1141.0

2DVD 18600 15 Oct 2018 – 30 Apr
2019

The data are free access and available in ARM website at https://www.arm.gov
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Figure 2.1: Three sites in the largest basins of the Americas with ARM observation available at SGP
represents the Southern Great Plains site in Central Oklahoma, U.S. (2017-2019); MAN is the site of
the GoAmazon experiment in Manacapuru, Brazil (2014-2015), and COR depicts the site of the CACTI
experiment in Villa Yacanto, Argentina (2018-2019). SGP is in a grassland region in the mid latitudes
within the Mississippi Basin (red region); MAN is in a region of tropical rain forest or the in tropics within
the Amazon Basin (green region), and COR is in a region of complex terrain near the Sierras de Córdoba
(SDC) in the mid latitudes within the La Plata Basin (cyan region).
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Chapter 3

Results

3.1 DSD parameter statistical comparisons

To examine the site-to-site variability of selected DSD parameters, we present the probability density func-

tions (pdfs) of rain rate, mass-weighted mean diameter as Dm (mm), maximum diameter as (Dmax), and

normalized intercept parameter as log10 Nw (Nw units m−3 mm−1). In Figures 3.1-3.16, the disdrometer

datasets (PARS/2DVD) are indicated by light blue/blue lines at COR, dark red/orange lines at SGP, and

by green lines at MAN. The figures 3.9-3.12 show pdfs with histograms of Dmax indicated by light blue at

COR, dark red at SGP, and by green lines at MAN.

Figure 3.1 shows the pdf of rain rate at the 3 sites from the two disdrometers, where available (displayed

as 10 log10 R in dBR, with R in mm hr−1). When all rain observations are considered together, the rain

rate pdfs appear quite similar, particularly at the midlatitude sites (COR and SGP), while at MAN, it was

measured lower (higher) frequency of observed values between 0-5 (10-15) dBR corresponding with the rain

rate range of 1-3 (10-30) mm h−1. Despite general agreement, slight differences exist between COR and

SGP in that COR site has slightly higher (lower) rain rate frequencies at 1(30) mm h−1

Figures 3.2-3.4 examine 10 log10 R rain rate pdfs at each site, separated by rainfall modes as described

in section 2.

Overall, when separated between modes, the rain rate pdfs at each site appear to show distributions in

the light precipitation mode (Lpm) right-skewed with a heavy right tail near the maximum rain rate cutoff,

indicating a higher observed frequency of heavier rain in this mode, while distributions in the precipitation

mode (Pm) left-skewed towards the minimum rain rate cutoff, indicating more frequent light rainfall in this

mode.

At COR and SGP, the pdfs of R are quite similar between the PARS and 2DVD in both the Lpm and

Pm. Also, the Lpm and Pm R distributions at SGP (Fig. 3.3) are remarkably similar to the Lpm and Pm

R distributions at COR (Fig. 3.2). At MAN (Fig. 3.4), observations of R in the Lpm reveal higher rain rate

frequencies, and in the Pm, a heavier tail of larger values of R than at SGP and COR, with an inflection

11



Figure 3.1: Rain rate (R) as 10 log10 R pdfs for DSDs without classification at COR (PARS/2DVD in light
blue/blue lines); SGP (PARS/2DVD in dark red/orange lines), and MAN (PARS in green lines). DSDs
= raindrop size distributions; PARS = second generation parsivel disdrometer, 2DVD = two-dimensional
video disdrometer; COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.

Figure 3.2: Rain rate (R) as 10 log10 R pdfs for DSDs classified into the light precipitation mode (Lpm :
R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid lines; at COR
(PARS/2DVD in light blue/blue lines). DSDs = raindrop size distributions; PARS = second generation
parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and COR = Córdoba.
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Figure 3.3: Rain rate (R) as 10 log10 R pdfs for DSDs classified into the light precipitation mode (Lpm :
R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid lines; at SGP
(PARS/2DVD in dark red/orange lines). DSDs = raindrop size distributions; PARS = second generation
parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and SGP = Southern Great Plains.

Figure 3.4: Rain rate (R) as 10 log10 R pdfs for DSDs classified into the light precipitation mode (Lpm :
R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid lines; at SGP
(PARS/2DVD in dark red/orange lines). DSDs = raindrop size distributions; PARS = second generation
parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and and MAN = Manacapuru.

13



Figure 3.5: Mass-weighted mean diameter (Dm) pdfs for DSDs without classification at COR (PARS/2DVD
in light blue/blue lines); SGP (PARS/2DVD in dark red/orange lines), and MAN (PARS in green lines).
DSDs = raindrop size distributions; PARS = second generation parsivel disdrometer, 2DVD = two-
dimensional video disdrometer; COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.

point in the R distribution near 10 dBR (10 mm h−1) and higher relative frequencies of R at 15 dBR (30

mm h−1)than the other two sites.

Figure 3.5 shows that pdfs of Dm at the 3 sites are similar, however, the COR Dm distributions are

slightly left-skewed towards sizes of raindrop less than 1 mm, different from SGP and MAN that evidence

higher Dm frequencies around 1 mm. Separating the Dm statistics into Lpm and Pm, Figures 3.6-3.8 reveal

similar shapes of the Pm distributions of Dm across the three sites, with the 2DVD and PARS distributions

having very similar shapes at COR and SGP. The PARS distributions in the Pm are nearly identical amongst

the three sites. In the Lpm, more significant differences are apparent among the sites. Both the PARS and

2DVD at COR peak at the Dm bin centered at 0.50 mm, although the distribution magnitude are different in

this bin, while at SGP and MAN PARS distributions peak in the Lpm at the bin located near 0.85 mm (with

the SGP 2DVD distribution mode located at even higher values near 1 mm, with much of the distribution

occurring at higher values of Dm than the COR Lpm Dm distribution).

The COR site also presented a higher density of raindrops with Dmax between 0.3 and 1.0 mm for both

PARS and 2DVD in the light precipitation mode, compared to MAN and SGP (Figs.3.9 and 3.10). These

observations do not include light precipitation that may be missed by the PARS/2DVD (Thurai et al., 2017).

Nevertheless, the presence of large drops was not accurately depicted due to some instrument discrepancies

evidenced in the tail of the DSDs at this site (Figs.3.11 and 3.12).
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Figure 3.6: Mass-weighted mean diameter (Dm) pdfs for DSDs classified into the light precipitation mode
(Lpm : R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid lines; at
COR (PARS/2DVD in light blue/blue lines). DSDs = raindrop size distributions; PARS = second generation
parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and COR = Córdoba.

Figure 3.7: Mass-weighted mean diameter (Dm) pdfs for DSDs classified into the light precipitation mode
(Lpm : R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid lines;
at SGP (PARS/2DVD in dark red/orange lines). DSDs = raindrop size distributions; PARS = second
generation parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and SGP = Southern Great
Plains.
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Figure 3.8: Rain rate (R) as 10 log10 R pdfs for DSDs classified into the light precipitation mode (Lpm :
R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid lines; at SGP
(PARS/2DVD in dark red/orange lines). DSDs = raindrop size distributions; PARS = second generation
parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and and MAN = Manacapuru.

Figure 3.9: Density curves with histograms of the maximum diameter (Dmax): DSDs in the light precipi-
tation mode (Lpm : R < 0.5 mm h−1) for the PARS at (a) COR, SGP, and MAN sites. DSDs = raindrop
size distributions; PARS = second generation disdrometer; COR = Córdoba; SGP = Southern Great Plains,
and MAN = Manacapuru.
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Figure 3.10: Density curves with histograms of the maximum diameter (Dmax): DSDs in the light precipi-
tation mode (Lpm : R < 0.5 mm h−1) for the 2DVD at (a) COR, SGP, and MAN sites. DSDs = raindrop
size distributions; 2DVD = two-dimensional video disdrometer; COR = Córdoba; SGP = Southern Great
Plains, and MAN = Manacapuru.

Figure 3.11: Density curves with histograms of the maximum diameter (Dmax): DSDs in the precipitation
mode (Pm : R > 0.5 mm h−1) for the PARS at (a) COR, SGP, and MAN sites. DSDs = raindrop size
distributions; PARS = second generation disdrometer; COR = Córdoba; SGP = Southern Great Plains, and
MAN = Manacapuru.
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Figure 3.12: Density curves with histograms of the maximum diameter (Dmax): DSDs in the precipitation
mode (Pm : R > 0.5 mm h−1) for the PARS at (a) COR, SGP, and MAN sites. DSDs = raindrop size
distributions; 2DVD = two-dimensional video disdrometer; COR = Córdoba; SGP = Southern Great Plains,
and MAN = Manacapuru.

To investigate the variability of normalized droplet concentration log10Nw, Figure ?? displays pdfs of

this quantity using the same color convention as above. Here, large differences are present in the pdfs of Nw

among all the sites (Fig. 3.13), and in terms of the the modes of Nw (Figs. 3.14-3.16), as well as the breadth

of the Nw distributions. At SGP (Fig. 3.15), both the PARS and 2DVD observations show a relatively

confined distribution of Nw centered near log10Nw = 3.2. At MAN (Fig. 3.16), the distribution is slightly

more broad, with a mode of Nw that is slightly more peaked than at SGP (near log10Nw = 3.60). Distinct

behavior in Nw from the two other sites is observed at COR (Fig. 3.14), with a much broader distribution

of Nw seen in both the PARS and 2DVD observations. The 2DVD observations in the Pm have a higher

frequency of large values of Nw (∼ log10Nw = 4.4) than the PARS (∼ 3.70 log10Nw), while in the Lpm, the

PARS observed larger frequencies of log10Nw near 4.6 compared with the 2DVD, which observed a broader

distribution of Nw.

3.2 DSDs comparisons in terms of joint 2D-histograms

To analyze the site-to-site co-variability of PSD parameters, Figures 3.17-3.20 present joint two-dimensional

histograms of the normalized number of concentration as log10 Nw versus mean raindrop diameter as D0
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Figure 3.13: Normalized droplet concentration (Nw) as log10 Nw pdfs for DSDs without classification at
COR (PARS/2DVD in light blue/blue lines); SGP (PARS/2DVD in dark red/orange lines), and MAN
(PARS in green lines). DSDs = raindrop size distributions; PARS = second generation parsivel disdrometer,
2DVD = two-dimensional video disdrometer; COR = Córdoba; SGP = Southern Great Plains, and MAN
= Manacapuru.

Figure 3.14: Normalized droplet concentration (Nw) as log10 Nw pdfs for DSDs classified into the light
precipitation mode (Lpm : R ¡ 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1)
in solid lines; at COR (PARS/2DVD in light blue/blue lines). DSDs = raindrop size distributions; PARS =
second generation parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and COR = Córdoba.
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Figure 3.15: Normalized droplet concentration (Nw) as log10 Nw pdfs for DSDs classified into the light
precipitation mode (Lpm : R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm
h−1) in solid lines; at SGP (PARS/2DVD in dark red/orange lines). DSDs = raindrop size distributions;
PARS = second generation parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and SGP =
Southern Great Plains.

Figure 3.16: Normalized droplet concentration (Nw) as log10 Nw pdfs classified into the light precipitation
mode (Lpm : R < 0.5 mm h−1) in dashed lines, and precipitation mode (Pm : R > 0.5 mm h−1) in solid
lines; at SGP (PARS/2DVD in dark red/orange lines). DSDs = raindrop size distributions; PARS = second
generation parsivel disdrometer, 2DVD = two-dimensional video disdrometer, and and MAN = Manacapuru.
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(mm), and the two-dimensional histograms of the liquid water content (presented as log10 LWC in g m−3)

versus median raindrop diameter as log10 D0 (with D0 in mm), separated by rainfall mode. The PARS data

is indicated by color contours and the 2DVD data is indicated by color-dashed contours.

In Figure 3.18, the DSD parameter interrelationships are shown for each site in the precipitation mode

(Pm). Each of the sites show a general inverse relationship between log10 Nw and D0 as shown by previous

studies, as would be expected given the location of the sites being located in regions containing deep convec-

tive precipitation. The regions of highest observed probability of Nw and D0 are close to each other at SGP

and MAN (near a D0 of 1.1 mm and log10 Nw near 3.5, but higher at COR (near 0.9 mm and log10 Nw 4.1

for D0 and Nw, respectively). Beyond the overall shape of the distributions, there are key differences among

these sites in the Nw–D0 parameter space. Consistent with the results presented above, in the Pm, values

of D0 occupy ranges that are consistent amongst the sites in the Pm, but vary more in Nw. Two primary

differences among the sites stand out in the Pm. The first is the large variability of Nw at COR compared

with the other sites, which extends the distribution of observations in the Nw-D0 space. In particular, the

frequency of Nw observations above 105 mm−1 m−3 in both the PARS and 2DVD distribution at COR is

unique relative to the other sites.

In terms of the relationship between LWC and D0 in the Pm (Figure 3.20), the COR and SGP sites

have very similar distributions, which holds true in both instruments (PARS and 2DVD). At MAN, the

distribution of observations extends to both higher values of D0 and LWC, which has been noted in tropical

sites (Tokay and Short, 1996; Yuter and Houze Jr, 1997; Thompson et al., 2015; Dolan et al., 2018), however

it is not as clearly defined as in the multi-site DSD composites shown in Dolan et al.(Dolan et al., 2018),

possibly indicating the at-times continental nature of the convection observed in the Amazon Basin (Nunes

et al., 2016b), despite its moniker as the “Green Ocean” yielding a reputation of having maritime-like

convective intensity characteristics (Williams et al., 2002).

To further depict what types of precipitating systems are contributing to the relatively high observed

droplet number concentrations at COR, cases of high Nw were manually examined and two representative

cases are presented here. Figures 3.21 and 3.22 provide ARM Ka-band vertically-pointing radar scans

collected over the COR site to show the vertical structure of radar echoes as well as the corresponding DSD

parameters shown by the PARS disdrometer. Figure 3.21 shows a case of the light rain mode, where shallow

precipitating clouds exist mostly below 1000 m above the site. These clouds, likely containing drizzle, do

not precipitate at a detectable level of the PARS disdrometer until more than 4 hours after 1800 UTC

(1500 local Argentine time), and during the time when precipitation is detectable, some weak convective

generating cells appear present in these warm clouds (also in Doppler velocity, not shown). Values of log10
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Figure 3.17: Two-dimensional frequency histograms for the normalized droplet concentration (log10 Nw)
and mean raindrop diameter (D0) in the light precipitation mode (Lpm) R ¡ 0.5 mm h−1 at (a) COR, (b)
SGP, and (c) MAN sites. DSDs indicated by color contours for the PARS and color-dashed contours for the
2DVD. Lines from BR09 (solid green) and TH15 (dashed red) for convective-stratiform segregation.

Figure 3.18: Two-dimensional frequency histograms for the normalized droplet concentration (log10 Nw)
versus mean raindrop diameter (D0) in the precipitation mode (Pm) R > 0.5 mm h−1 at (a) COR, (b)
SGP, and (c) MAN sites. DSDs indicated by color contours for the PARS and color-dashed contours for the
2DVD. Lines from BR09 (solid green) and TH15 (dashed red) for convective-stratiform segregation.

Figure 3.19: Two-dimensional frequency histograms for the liquid water content (LWC) as log10 LWC
versus mean raindrop diameter as log10 D0 in the light precipitation mode (Lpm) R < 0.5 mm h−1 at
(a) COR, (b) SGP, and (c) MAN sites. DSDs indicated by color contours for the PARS and color-dashed
contours for the 2DVD. Lines from TH15 (dashed gray) for convective-stratiform segregation.
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Nw in m−3 mm−1 exceed 5 throughout much of the event, and though R varies from the Lpm into the Pm

shortly before and after 0000 UTC (2100 local time). In another case that contained Lpm-classified time

periods, Figure 3.22 presents a case where shallow Lpm exists between two deep convective core events. The

first convective event occurred overnight near 0500 UTC or 0100 local time, with anvil clouds existing above

6 km for several hours above ground level above rain rates < 2 mm hr−1, including some periods of Lpm

near-surface precipitation). The next day, another afternoon convective event occurred near 1900 UTC or

1700 local time. Between these events, clouds, drizzle, and light precipitation with high log10 Nw and low

D0 occurred for more than 12 hours, and these clouds appear less obviously convective in reflectivity and

Doppler velocity observations than the 28 Nov 2018 case. These unique DSD structures presented alongside

their radar-determined vertical structure help to support the uniqueness of the COR observations especially

in terms of the shallow vertical structures and high Nw values seen in both the Pm and Lpm rainfall modes

in such cases. Future work will examine such cases in more detail.

3.3 Comparisons in terms of the DSD shape parameters

Without a priori assumption about the DSD shape, we analyze the site-to-site correlation of three DSD

shape parameters described in (Williams et al., 2014). Figures 3.23-3.25 present the density of occurrence of

these parameters. The reflectivity factor (Z, dBZ), rain rate (log10 R, dBR), and the width mass spectrum

(σM , mm) as function of the mass spectrum mean diameter (Dm, mm) are DSD shape attributes considered

in the Lpm − Pm and Pm modes (i.e. for each 1-min DSD with at least 50 drops, Lpm − Pm : R > 0.10

mm h−1) and 0.3 < D0 < 4.75 mm, and Pm : for R > 0.50 mm h−1 and 0.5 < D0 < 9.50 mm). Correlations

are shown in tables 3.1-3.3 for discrepancies based on both Williams et. al (Williams et al., 2014) and the

PARS/2DVD observations at the 3 sites. Greater divergence was found in rain rate at each location in both

modes. More similar power law relations were obtained in σM at each location in Lpm− Pm and Pm.

Moreover, for each 1-min DSD with at least 100 drops in the Lpm and Pm (i.e., Lpm : R < 0.5 mm

h−1 and 0.3 < D0 < 4.75 mm, and Pm : R > 0.5 mm h−1 and 0.5 < D0 < 9.50 mm), and used to examine

the relationship between Dmax and Dm (Figs. 3.26-3.27). The Dm was calculated as the ratio of the fourth

and third moments of the DSD. The raindrop maximum diameter (Dmax) values were extracted from the

disdrometer observations. Variations in the median values of the Dmax/Dm ratio were found between 1.50

and 1.64 in the Lpm and, 1.7 and 1.9 in the Pm similar to 1.8 reported by Gatlin et al. (Gatlin et al., 2015).

Through figures 3.28-3.29 is possible to examine the reflectivity factor Z (i.e., sixth moment of the DSD

in dBZ) for these 1-min DSDs with at least 100 drops in the Lpm and Pm (i.e., Lpm : R < 0.5 mm h−1, 0.3
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Figure 3.20: Two-dimensional frequency histograms for the liquid water content (LWC) as log10 LWC
versus mean raindrop diameter as log10 D0 in the precipitation mode (Pm) R > 0.5 mm h−1 at (a) COR,
(b) SGP, and (c) MAN sites. DSDs indicated by color contours for the PARS and color-dashed contours for
the 2DVD. Lines from TH15 (dashed gray) for convective-stratiform segregation.

Figure 3.21: (a) ARM KAZR cloud radar radar reflectivity time-height scans over the COR site during
CACTI, collocated with (b) DSD parameter calculations using PARS disdrometer data from 1800 UTC 27
Nov to 0600 UTC 28 Nov 2018.
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< D0 < 4.75 mm, and Pm : R > 0.5 mm h−1, 0.5 < D0 < 9.50 mm). The median of Z was found between

14 and 16.5 in the Lpm and, 26 and 32 dBZ in the Pm, different from the geometric median of 20.8 dBZ

reported by Gatlin et al. (Gatlin et al., 2015).

Table 3.1: Overview of the correlation between the radar reflectivity factor Z and the mean mass diameter
Dm observed in Lpm − Pm and Pm. Power-law curves give by equations from WL14 = Williams et
al. (Williams et al., 2014); PARS = parsivel disdrometer data, and the 2DVD = two-dimensional video
disdrometer data.

Site Mode Correlation from: Z vs. Dm power law curve equation

WL4 57.10 log10 Dm + 22.88
COR Lpm− Pm PARS 41.28 log10 Dm + 25.03

2DVD 34.85 log10 Dm + 25.83
SGP Lpm− Pm PARS 53.19 log10 Dm + 21.85

2DVD 50.77 log10 Dm + 22.07
MAN Lpm− Pm PARS 59.37 log10 Dm + 22.53
COR Pm PARS 43.54 log10 Dm + 25.41

2DVD 39.22 log10 Dm + 26.77
SGP Pm PARS 52.36 log10 Dm + 22.61

2DVD 48.09 log10 Dm + 23.66
MAN Pm PARS 5.75 log10 Dm + 23.54

Table 3.2: Overview of the correlation between the rain rate (R) as 10 log10 R and the mean mass diameter
as Dm, observed in Lpm− Pm and Pm. Power-law curves give by equations from WL14 = Williams et al.
(2014); PARS = parsivel disdrometer data, and the 2DVD = two-dimensional video disdrometer data.

Site Mode Correlation from: R vs. Dm power law curve equation

WL4 10 log10 D
3.14
m + 0.061

COR Lpm− Pm PARS 10 log10 D
1.59
m

2DVD 34.85 log10 Dm
1.07

SGP Lpm− Pm PARS 10 log10 Dm
2.13

2DVD 10 log10 Dm
1.92

MAN Lpm− Pm PARS 10 log10 Dm
3.12

COR Pm PARS 10 log10 Dm
2.12

2DVD 10 log10 Dm
1.93

SGP Pm PARS 10 log10 Dm
2.20

2DVD 10 log10 Dm
2.14

MAN Pm PARS 10 log10 Dm
3.16
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Figure 3.22: As in Figure 3.21, but for the period 0000 UTC 23 Feb - 0000 UTC 24 Feb 2019.

Table 3.3: Overview of the correlation between the width mass spectrum σM and the mean mass diameter
Dm observed in Lpm − Pm and Pm. Power-law curves give by equations from WL14 = Williams et
al. (Williams et al., 2014); PARS = parsivel disdrometer data, and the 2DVD = two-dimensional video
disdrometer data.

Site Mode Correlation from: σM vs. Dm power law curve equation

WL4 0.30 Dm
1.36

COR Lpm− Pm PARS 0.33 Dm
1.25

2DVD 0.32 Dm
1.40

SGP Lpm− Pm PARS 0.32 Dm
1.33

2DVD 0.33 Dm
1.27

MAN Lpm− Pm PARS 0.30 Dm
1.33

COR Pm PARS 0.35 Dm
1.15

2DVD 0.35 Dm
1.27

SGP Pm PARS 0.33 Dm
1.28

2DVD 0.35 Dm
1.20

MAN Pm PARS 0.32 Dm
1.28
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Figure 3.23: Correlation between the radar reflectivity factor Z and the mean mass diameter Dm, in the light
precipitation-precipitation mode (Lpm−Pm for each 1-min DSD with at least 50 drops in 5-min consecutive
R ¿ 0.10 mm h−1, 0.30 < D0 < 4.75 mm and Z > 10 dBZ) at (a) COR, (b) SGP, and (c) MAN, and in
the precipitation mode (Pm for each 1-min DSD with at least 50 drops in 5-min consecutive R > 0.50 mm
h−1, 0.50 < D0 < 9.50 mm and Z > 10 dBZ) at (d) COR, (e) SGP, and (f) MAN sites. DSDs indicated
by color contours for the PARS and color-dashed contours for the 2DVD. Solid lines from WL14 (green),
PARS (red), and 2DVD (cyan) are the Z vs. Dm power-law correlation curves. DSDs = raindrop size
distributions; PARS = second generation parsivel disdrometer, 2DVD = two-dimensional video disdrometer;
COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.
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Figure 3.24: Correlation between the rain rate R as log10 R and the mean mass diameter as Dm, in the light
precipitation-precipitation mode (Lpm−Pm for each 1-min DSD with at least 50 drops in 5-min consecutive
R > 0.10 mm h−1, 0.30 < D0 < 4.75 mm and Z > 10 dBZ) at (a) COR, (b) SGP, and (c) MAN, and in
the precipitation mode (Pm for each 1-min DSD with at least 50 drops in 5-min consecutive R > 0.50 mm
h−1, 0.50 < D0 < 9.50 mm and Z > 10 dBZ) at (d) COR, (e) SGP, and (f) MAN sites. DSDs indicated
by color contours for the PARS and color-dashed contours for the 2DVD. Solid lines from WL14 (green),
PARS (red), and 2DVD (cyan) are the R vs. Dm power-law correlation curves. DSDs = raindrop size
distributions; PARS = second generation parsivel disdrometer, 2DVD = two-dimensional video disdrometer;
COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.
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Figure 3.25: Correlation between the width mass spectrum σM and the mean mass diameter as Dm, in
the light precipitation-precipitation mode (Lpm− Pm for each 1-min DSD with at least 50 drops in 5-min
consecutive R > 0.10 mm h−1, 0.30 < D0 < 4.75 mm and Z > 10 dBZ at (a) COR, (b) SGP, and (c)
MAN, and in the precipitation mode (Pm for each 1-min DSD with at least 50 drops in 5-min consecutive
R > 0.50 mm h−1, 0.50 < D0 < 9.50 mm and Z > 10 dBZ) at (d) COR, (e) SGP, and (f) MAN sites.
DSDs indicated by color contours for the PARS and color-dashed contours for the 2DVD. Solid lines from
WL14 (green), PARS (red), and 2DVD (cyan) are the σM vs. Dm power-law correlation curves. DSDs
= raindrop size distributions; PARS = second generation parsivel disdrometer, 2DVD = two-dimensional
video disdrometer; COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.
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Figure 3.26: Box-and-whisker plots for the ratio of maximum raindrop diameter (Dmax) and mass-weighted
mean diameter (Dm): DSDs in the light precipitation mode (Lpm : R < 0.5 mm h−1) for the PARS and
2DVD at COR, SGP, and MAN sites. Tops and bottoms of boxes in blue solid line represent the 75th and
25th quartiles, respectively, and the horizontal red solid lines inside the boxes represent the median. PARS
= second generation disdrometer, 2DVD = two-dimensional video disdrometer, COR = Córdoba; SGP =
Southern Great Plains, and MAN = Manacapuru.

Figure 3.27: Box-and-whisker plots for the ratio of maximum raindrop diameter (Dmax) and mass-weighted
mean diameter (Dm): DSDs in the light precipitation mode (Pm : R > 0.5 mm h−1) for the PARS and
2DVD at COR, SGP, and MAN sites. Tops and bottoms of boxes in blue solid line represent the 75th and
25th quartiles, respectively, and the horizontal red solid lines inside the boxes represent the median. PARS
= second generation disdrometer, 2DVD = two-dimensional video disdrometer, COR = Córdoba; SGP =
Southern Great Plains, and MAN = Manacapuru.
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Figure 3.28: Box-and-whisker plots for the reflectivity factor (Z) in the light precipitation mode (Lpm : R
< 0.5 mm h−1) for the PARS and 2DVD at COR, SGP, and MAN sites. Tops and bottoms of boxes in
blue solid line represent the 75th and 25th quartiles, respectively, and the horizontal red solid lines inside
the boxes represent the median. PARS = second generation disdrometer, 2DVD = two-dimensional video
disdrometer, COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.

Figure 3.29: Box-and-whisker plots for the reflectivity factor (Z) in the light precipitation mode (Pm : R
< 0.5 mm h−1) for the PARS and 2DVD at COR, SGP, and MAN sites. Tops and bottoms of boxes in
solid blue line represent the 75th and 25th quartiles, respectively, and the horizontal red solid lines inside
the boxes represent the median. PARS = second generation disdrometer, 2DVD = two-dimensional video
disdrometer, COR = Córdoba; SGP = Southern Great Plains, and MAN = Manacapuru.
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Chapter 4

Discussion

The results presented in section 3 have evaluated a compilation of disdrometer datasets for comparisons of

DSDs and the DSD parameters among three sites in the Americas. Table 4.1 provides a summary of the

highest peak values in terms of pdf of the physical parameters, for DSDs classified in the light precipitation

mode (Lpm) and precipitation mode (Pm), as described in section 2.

Complementing the analysis done earlier for the 3 sites (Figure 3.17), the DSD parameters for the

light precipitation mode (Lpm) are restricted to log10 Nw values between 3.41 and 4.70 at SGP and COR

respectively and and 3.52 at MAN. The Dm values span from 0.45 and 0.90 mm in the mid-latitude sites

(COR and SGP) and 0.85 mm in the tropical site (MAN). All the Nw−D0 observations at the 3 sites in the

Lpm are below the Bringi et al. (2009) segregation line, and thus would be categorized as stratiform, even

though the radar observations we examined clearly show that this is likely precipitation formed by shallow

clouds and drizzle. In addition, considering the Thompson et al. (Thompson et al., 2015) convective-

stratiform segregation criteria, most of the Lpm observations would fall in the stratiform category, however

less than a quarter of the Nw-D0 observations would be classified as convective (or a region of observations

that is above the corresponding segregation line).

More specifically in Lpm (Figs. 3.17-3.19), COR observations exhibited similar log10 Nw high values (4.60

and 4.70 for PARS and 2DVD) to the group categorized as weak convection in Dolan et al. (2018) (4.71 for

midlatitudes). However, the observed relatively smaller mean raindrop sizes (D0 ∼ 0.45-0.51 mm for PARS

and 2DVD), along with relatively low rain rate and liquid water content placed some Lpm observations in

the group represented as vapor deposition in Dolan et al. (2018) (D0 ∼ 0.68 mm for midlatitudes). Our

investigation of these periods do not show ice processes being involved in the large majority of Lpm cases.

The COR site also presented a higher number of rainy minutes in all precipitation modes than the MAN

site for the PARS measurements. This does not include light precipitation that may be missed by these

disdrometers, including drizzle (Thurai et al., 2017). The findings of Marengo et al. (2017) showed that

GoAmazon was conducted during a relatively dry period using analyses of meteorological data and model

outputs for the integral observing period the campaign (from 1 January 2014 to 31 December 2015). However,
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despite the surprisingly high frequency of precipitation observed in Villa Yacanto during the CACTI field

campaign, it is left to future work to determine if the COR or MAN site has higher precipitation frequency

climatologically.

Table 4.1: Overview of the dataset characteristics and pdf peaks from the DSD parameters observed in Lpm
and Pm. Multiple peaks were determined subjectively.

Site Mode Instrument No. of rainy
minutes

Peaks in 10
log10 R

Peaks in Dm

(mm)
Peaks in
log10 Nw

COR Lpm PARS 20517 -5.76 0.45 4.00
4.60

2DVD 14295 -5.75 0.50 4.20
4.70

SGP Lpm PARS 8414 -5.75 0.51 3.60
0.81

2DVD 16409 -5.75 0.53 3.41
0.90

MAN Lpm PARS 16037 -5.77 0.85 3.52
COR Pm PARS 10833 5.25 1.11 3.15

3.70
2DVD 7231 4.25 0.85 3.55

4.20
4.40

SGP Pm PARS 12011 3.25 1.26 3.15
4.40

2DVD 10761 4.25 1.56 3.20
4.55

MAN Pm PARS 9821 2.75 1.25 3.60
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Chapter 5

Summary and Conclusions

This study presents a comparison of the raindrop size distribution parameters variability among three deep

convective regions in the Americas: the U.S. southern Great Plains and west central Argentina in the

midlatitudes, and central Amazon in the tropics. Considering the lack of drop size distribution studies

in South America, the ARM datasets for two types of disdrometers are analyzed here and may provide a

valid reference to characterize the raindrop size spectrum in these regions that are also part of 3 major

international river basins.

In order to analyze the variability of the DSD parameters at the 3 sites, the probability density functions

(pdfs) of rain rate R, mass-weighted mean diameter Dm, and normalized droplet concentration Nw were

presented in section 3. The DSD comparison in terms of pdfs showed that rain rates were similar between

COR and SGP mid-latitude sites, which were less frequent that heavy rains at the MAN tropical site. At

COR, more frequent precipitation was found with smaller median mass diameter and a broader range of

normalized number concentration. This variability observed at COR was present both precipitation modes

defined in this study: in a precipitation mode (R > 0.5 mm hr−1) and a light precipitation mode (R < 0.5

mm hr−1).

Furthermore, to examine the co-variability of the DSD parameters in each site, but also for a comparison

among sites and previous drop size distribution studies, section 3 provides two-dimensional histograms of

the normalized droplet concentration Nw, and the liquid water content LWC, respectively, each of these

parameters versus the mean raindrop diameter D0. Again, COR exhibits a larger variability of Nw values for

both rainfall modes in comparison to SGP and MAN that extends into analysis of the Nw −D0 parameter

space. However, the LWC-D0 co-variability appears to be quite similar for the sites examined in the midlat-

itudes (COR and SGP), contrary to the co-variability at MAN that appears to be extended towards higher

values of D0 and LWC which is a characteristic of tropical rainfall observed in previous studies, possibly

related to enhanced collision-coalescence processes there (Tokay and Short, 1996; Yuter and Houze Jr, 1997;

Thompson et al., 2015; Dolan et al., 2018).

The comparisons between arbitrarily-shaped DSD attributes allowed the verification of quite similar
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correlations of Dm with σM and the reflectivity factor Z, to the power-law correlation curves found by

Williams et al. (2014). Further comparison with a recent DSD global study (Gatlin et al., 2015), the median

values of the Dmax/Dm ratio are similar in the Pm, thus the Z median values are different in both modes

at the 3 sites.

Surprisingly, a higher observed frequency of high Nw values in both the PARS and 2DVD distribution

in Lpm and Pm, and the characteristics in Lpm appear to be a unique rain type (shallow clouds, drizzle,

and light rain) that confound past works that classify precipitation types based on surface disdrometers.

They resemble both the weak convection and vapor deposition features from Dolan et al. (2018) for in the

Nw − D0 phase space (section 4). This unique precipitation, possibly related to the location of the site

in flows affected by complex terrain, will be addressed in a future study, and show the novel precipitation

process observations that make the COR site unique relative to previously studied sites.

Additional analysis of aircraft-based imaging probes and the KAZR Doppler cloud radar measurements

to better characterize the microphysics of rain processes in Lpm at COR may also be considered for future

research.
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