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ABSTRACT 

 

We examine the impacts of futures price changes on commercial traders’ aggregate net 

positioning in grains and oilseeds markets during the pre-harvest period from 2007-2019. We 

proceed in two steps. First,  we modify and extend the analysis of optimal hedging proposed by 

Jacobs, Li, and Hayes (AJAE 2018) to: (i) confirm its applicability for the two largest agricultural 

markets (soybeans and corn) over a longer period of time than previously tested (13-year period 

vs. 5); (ii) provide evidence regarding the relevance of the Chicago Board Options Exchange 

(CBOE) Volatility Index-VIX in determining commercial hedging decisions; (iii) provide 

evidence that the Disaggregated Commitment of Traders Reports (DCOT) data can be used as a 

benchmark for examining hedging behavior. Second, we develop a Structural Vector Auto-

Regressive Model (SVAR) to account for endogeneity issues in the analysis of the effects of 

futures prices and of the VIX on commercial positioning in grains and oilseeds markets. The 

results from Impulse Response Functions (IRFs) retrieved from the SVAR confirm the role of 

futures price changes in driving position changes, shedding new light on whether commercial 

traders hedge or instead speculate.  
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CHAPTER 1: INTRODUCTION 
 

Whether commodity prices drive commercial traders’ hedging decisions is an important 

topic that has drawn the attention of many researchers. There exist many studies documenting a 

high correlation between futures prices and producers’ positions in the agricultural futures 

markets. In particular, commodity producers will go short more often when the futures prices are 

trending up (Wang, 2003; Cheng and Xiong, 2014; Fishe, Janzen, and Smith, 2014; Bessec, Le 

Pen, and Sevi, 2017; Jacobs, Li and Hayes, 2018). Noticeably, in a 2018 American Journal of 

Agricultural Economics article (“the 2018 AJAE paper”), Jacobs, Li and Hayes for the first time 

introduced a theoretical model to explore the role of price history (“reference-dependence”) in 

Iowan farmers’ pre-harvest hedging of corn crops. Their empirical results show that, during pre-

harvest time in the examined period of  2009-2013, Iowan corn producers sell more forward 

when the current futures prices are trending above the reference prices, and that the changes in 

futures prices have statistically significant impacts on the change in producers’ hedge ratios. 

Being interested in further investigating whether commodity prices drive commercial 

trades’ aggregated net short positions in grains and oilseeds markets, and inspired by the optimal 

hedging model proposed by Jacobs, Li, and Hayes (AJAE 2018), we modify and extend their 

study for the following purposes. First, we extend the empirical analysis to a longer period of 

time, and to other commodities. Because Jacobs et al. (2018) examine the 5-year period of 2009-

2013 in the corn market alone, which covers the financial crisis during 2009-2011, and then the 

2011-2012 drought, it is not obvious that the results remain valid once generalized to a longer 

period and to other commodities. By applying the model not only for corn, but also for soybeans 
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over a much longer testing window with better proxies for market fundamentals, our results 

show that the theoretical model of optimal hedging does survive.  

Second, we provide evidence that the VIX index can be a good alternative to the 

commodity option-implied volatility in analyzing the effects of forward-looking market 

uncertainty on commercial hedging decisions. There are two reasons why we change the price 

uncertainty measure used in Jacobs et al. First, because volatility expectations should matter to 

hedging decisions, the statistical insignificance of the corn implied volatility in the 2018 AJAE 

paper is puzzling. Second, because the near-dated commodity implied volatility is influenced by 

seasonality and USDA announcements (Cao and Robe, AAEA 2020), it may not be the best 

choice for an uncertainty indicator. For those reasons, we investigate the VIX as a possibly better 

proxy for market uncertainty. The VIX has three advantages: (i) it captures both heightened 

uncertainty about global macroeconomic conditions and risk aversion among investors  (Bekaert 

et al., JME 2013); (ii) it is not affected by agricultural seasonality or USDA news events; (iii) it 

has a close relationship with commodity option-implied volatilities (Adjemian et al., AAEA 

2017). The empirical analysis in this thesis shows mixed results for the VIX: in the OLS 

regression inspired by the 2018 AJAE model, while the VIX does not show any significant effect 

on commercial traders’ aggregated net short positions during the sample period of 2009-2013, it 

is significant during a longer period of 2007-2019; however, the impulse response functions 

(IRF) from the SVAR suggest that the VIX changes do not have significantly affect hedging 

decisions in 2007-2019, except indirectly through short-term impacts on soybeans futures prices. 

Third, we confirm the usefulness of the U.S. Commodity Futures Trading Commission’s 

(CFTC) disaggregated Commitments of Traders Reports (DCOT) data as a benchmark for 

hedging behavior after (i) using DCOT data to replicate Jacobs et al. (2018) results, and (ii) 
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extending the investigation with longer DCOT data series and with other commodities. Jacobs et 

al. (2018) use proprietary over-the-counter (OTC) farm level data to calculate a “producers’ 

hedge ratio” for their empirical analysis. However, they also suggest calculating “commercials’ 

hedge ratio” instead using producers’ aggregate short position in new-crop futures contracts from 

the DCOT as a numerator, and the annual expected crop production from the USDA as 

denominator. They show graphically that “producers’ hedge ratio” and “commercials’ hedge 

ratio” exhibit similar patterns over time, and they argue (using correlation coefficients between 

the two series in levels and differences) that DCOT data is representative of producers hedging 

behavior in the corn futures market. We verify their conclusion by using “commercials’ hedge 

ratio” calculated by their suggested formula to analyze the optimal hedging model in corn and 

soybeans markets during the sample period of 2009-2013, and in a longer period of 2007-2019. 

The results show that DCOT data can be used as a benchmark for examining commercial traders’ 

hedging behavior in the agricultural futures market. Furthermore, we propose an alternative 

measure of hedging intensity. Particularly, instead of using the expected crop size (which is a 

physical variable measured in bushels), we use the open interest (which is a financial variable, 

measured in contracts) from DCOT data as a scaling factor. The results from the newly proposed 

hedge ratio calculation method are qualitatively the same with those estimated by using the “old” 

hedge ratio calculation method, suggesting the ability of using this measure for all commodities 

for which DCOT data exist but expected production figures do not—not just grains and oilseeds. 

Our final contribution to the literature is the methodological improvement by using the 

structural VAR to account for possible endogeneity issues in the analysis of the effects of futures 

prices and of the VIX on commercial positioning in grains and oilseeds markets. Precisely, we 

ask whether (during pre-harvest period from January 2007 to August 2019 for corn, and to July 
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2019 for soybeans) the changes in commercial traders’ aggregate net short positions are affected 

by changes in futures prices and/or changes in the macroeconomic uncertainty (captured by the 

VIX) after accounting for exogenous factors that capture seasonality and crop insurance 

protection. The SVAR results indicate that, although a VIX increase boosts producers’ net short 

position in both grains and oilseeds markets (which matches the intuition that hedging increases 

as uncertainty increases), the relation is not statistically significant at the 95% confidence level. 

The changes in futures prices, in contrast, have highly statistically significant impacts on the 

changes in commercial traders’ aggregated short positions in grains and oilseeds markets. The 

findings therefore suggest that commercial producers not only hedge but also speculate, in the 

sense that their aggregate net short futures position increases when futures prices rise.  

 The thesis proceeds as follows. Chapter 2 reviews the literature and covers the most 

recent and the most related-to-our-research papers. Chapter 3 shows a quasi-replication study of 

Jacobs et al.’s 2018 AJAE paper. Chapter 4 provides the details of our replication modifications, 

followed by a replication-extension study in Chapter 5. Chapter 6 describes the SVAR model. 

Chapter 7 summarizes the results of our SVAR analysis from the impulse-response functions, 

and results from robustness tests. Chapter 8 concludes. Appendix A and Appendix B include 

figures and tables, respectively, for the replication modifications and extensions, as well as the 

robustness analyses. 

  

 

  



 

 

 
5 

CHAPTER 2: LITERATURE REVIEW 
 

Being an independent agency of the U.S. government regulating the U.S. derivatives 

markets, the CFTC records all positions held by large derivative market participants. The CFTC 

publishes a summary in the weekly Commitment of Traders (COT) reports, which contain 

aggregate information on open trading position, net long positions, net short positions, and 

spread positions for several types of traders.  

In the historical COT reports, commodity market participants are categorized into two 

main groups: commercial traders and noncommercial traders. Beginning in June 2009, and 

retroactively back to June 2006, the CFTC has released weekly Disaggregated Commitment of 

Traders Reports (DCOT), which are a more-detailed version of COTs in terms of categorizing 

market participants: commercial traders are separated into two sub-groups ( 

“Producers/Merchant/Processor/User” and “Swap Dealers”) and noncommercial traders are 

divided into two subgroups (“Managed Money” traders and “Other Reportable” traders).  

The DCOT data have been used by many researchers to examine the relationship between 

price changes and position changes among market participants in the commodity futures market. 

Fishe, Janzen, and Smith (AJAE 2014) use DCOT data for six high-volume agricultural 

commodities: corn, cotton, lean hogs, live cattle, soybeans, and wheat to regress position change 

on prices change for all subgroups in DCOT data from June 2006 to March 2012. Cheng and 

Xiong (JLS 2014) employ DCOT data from June 2006 until December 2012 to investigate the 

correlation between the change in prices and the change in producers’ short positions in wheat, 

corn, soybeans, and cotton. Bessec, Le Pen, and Sevi (IAEE 2017) get DCOT data from June 

2006 until February 2015 for weekly change in the aggregate long and short positions of 

producers and money managers in four energy markets (crude oil, gas, gasoline, and heating oil) 
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and four non-energy commodity market (copper, wheat, coffee, and live cattle) to study the 

explanatory power of prices to model positions. Most recently, Jacobs, Li and Haynes (AJAE 

2018) propose to use the DCOT to examine the relationship between producers’ position change 

and price changes in the context of a reference-price model of hedging, but they do not test it. 

Many past studies find a high degree of correlation between producers’ position changes 

and price changes . When examining the behavior and performance of speculators and hedgers in 

15 U.S. futures markets (including financial markets, agricultural markets, other commodity 

markets, and foreign currency markets), Wang (JFutM 2003) finds that hedgers increase 

(decrease) net short positions when the market has turned bullish (bearish). Fishe, Janzen, and 

Smith (AJAE 2014) show that producers short more when prices increase in the corn, cotton, lean 

hogs, live cattle, soybeans, and wheat markets. Cheng and Xiong (JLS 2014) also find a high 

correlation between futures price change and hedgers’ short position changes in wheat, corn, 

soybeans, and cotton. While Bessec, Le Pen, and Sevi (IAEE 2017) do not find evidence that 

price changes impact hedgers’ behavior in the energy market, they argue that prices help predict 

aggregate commercial positions in non-energy commodity futures markets (copper, wheat, coffee 

and live cattle). Using daily OTC forward-contract data from a large gain merchandiser in Iowa, 

Jacobs et al. (AJAE 2018) document that corn producers short more when futures prices are 

trending up. 

A highly positive correlation between changes in the magnitude of commercial traders’ 

net short futures position and futures price changes raises the question of whether hedgers also 

speculate. On the one hand, abstracting away from crop insurance, agricultural commodity 

producers are exposed to changes in the price of the output in their fields. To protect their crops 

from price drops in the physical market, they must short their positions in the commodity futures 
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market (Keynes, 1923; Hicks, 1939; Hirshleifer, 1988, 1990). Therefore, commercial hedgers’ 

activities in the commodity futures market are conventionally classified as risk hedging1. On the 

other hand, in the report of Farm Services of American in 2017, most producers view themselves 

as being risk tolerant than risk averse. In the same vein, given substantial weekly fluctuations in 

commercial traders’ positions and the highly positive correlation between their net short position 

and futures prices changes, one may question the real motive of commercial traders – whether 

they purely hedge their business risks or they also speculate (Cheng and Xiong, JLS 2014). 

Cheng and Xiong (JLS 2014) claim some form of speculating from commercial producers in the 

wheat, corn, soybeans, and cotton as hedgers short more futures contracts when the futures price 

rises and reduce their short positions as the futures price falls. In the fixed income space, Fishe, 

Robe, and Smith (JFutM 2016) argue that, even though central banks are “commercial traders” 

(and as such they ought to be “hedging” their books), the evidence is that they react strongly to 

interest rate changes in 2009-2012. Raman, Fernando, and Hoelscher (JBF 2020) also conclude, 

from an analysis of corporate announcements regarding changes in firms’ hedging policies, that 

“hedgers” in fact speculate. By confirming commercial traders’ aggregate positions react to price 

changes, our thesis further supports the notion that commercial traders also speculate. 

Another factor that should matter to hedging decisions is the expectation of volatility. 

Jacobs, Li, and Hayes (AJAE 2018) use option-implied volatility (IV) for corn as a measure for  

price uncertainty in that market. Contrary to what intuition would suggest, however, they do not 

find a statistically significant impact of implied volatility on hedging decision. One possible 

explanation is that grain and oilseed implied volatilities are affected by crop seasonality 

(Adjemian, Bruno, Robe, and Wallen, AAEA 2016)and by USDA scheduled releases (Cao and 

Robe, AAEA 2020), which might hide the effects of price uncertainty on commercial positioning. 

 
1 For more details, please see “Traders in Financial Futures Explanatory Notes” from CFTC 



 

 

 
8 

A good candidate for the replacement of IV is the VIX, which is a proxy for global 

macroeconomic uncertainty (Bekaert et al., JME 2013) that is not affected by agricultural 

seasonality and USDA news. In addition, its close relationship with the option-implied volatility 

is documented in many papers.4 Regarding the role of VIX on commercial hedging decisions in 

the agricultural space, Cheng, Kirilenko, and Xiong (RoF 2015) find that, during the pre-

financial crisis period (January 2001 to September 2008), the VIX did not significantly impact 

futures prices and commercial hedgers’ positions in grains, livestock, and softs markets. Post-

financial crisis (September 2009 to June 2011), however, its effects on prices is statistically 

significant. In addition, its effects on commercial hedgers’ positions are statistically significant in 

some futures markets (but not corn, lean hogs, and cocoa futures markets). In our thesis, we use 

two statistical methods to examine the role of the VIX on commercial positioning in grains and 

oilseeds markets: (i) OLS regression analyses inspired by the optimal hedging model of Jacobs et 

al. (AJAE 2018); (ii) IRFs from a structural VAR model.  

The SVAR approach has been employed before to tease out the relationship between 

market fundamentals and commodity markets. McPhail, Du, and Muhammad (EnJ 2012) apply 

SVAR to measure the contribution of global demand, speculation, and energy prices/policy in 

explaining corn price variations. Janzen et al. (AJAE 2014) use SVAR to identify the influences 

of key drivers on wheat prices. Kilian and Murphy (IER 2014) and Kilian and Lee (EnJ 2014) 

employ SVAR to examine the impacts of speculative on crude oil prices. Janzen, Smith, and 

Carter (AJAE 2018) use SVAR to identify main factors that affect cotton prices. Bruno, 

 
4 In the equity space, the VIX index is considered as a good proxy for explaining the dynamics of single-stock 

implied volatilities and correlations among them (Engle and Figlewski’s, RF 2015). In the commodity market, Robe 

and Wallen (JFutM 2016) report the close relationship between the VIX and the IV in the crude oil market; 

Adjemian, Bruno, Robe, and Wallen (AAEA 2016) find that the VIX is a key driver of implied volatility in three big 

US agricultural markets: corn, soybeans, and wheat; Covindassamy, Robe and Wallen (JFutM 2017) contribute to 

the literature the statistically and economically significant impacts of the VIX on the IV in sugar and coffee markets. 
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Büyüksahin, and Robe (AJAE 2017) use SVAR to document the influence of speculative activity 

on the strength of co-movements between equity, grains, and livestock markets. SVAR is 

employed to explore the impacts of the VIX on implied volatility in grain and oilseeds markets 

(Adjemian et al., AAEA 2017). Our thesis also employs SVAR to deal with endogeneity issues in 

the analysis of the effects of futures prices and of the VIX on commercial positioning in grains 

and oilseeds markets.. 

 

 

  



 

 

 
10 

CHAPTER 3: QUASI-REPLICATION STUDY 
 

In a paper published by the American Journal of Agricultural Economics in 2018, 

“Reference-Dependent Hedging: Theory and Evidence from Iowa Corn Producers”, Jacobs et al. 

propose a theoretical model of optimal hedging and apply it to identify corn producers’ optimal 

hedging behavior with and without reference-price dependence as follows: 

Δht= α0 + α1 1{Ft-Rt<0} + β1 time + β2ΔVolt + β3ΔFt + β4ΔFt1{Ft-Rt<0} +β5ΔFt
2+ εt                   (1) 

where: Δht is the proportion of total harvest hedged in week t. The variable time measures the 

number of weeks left till harvest. ΔVolt is the weekly change in the annualized implied volatility 

in the December corn futures contract. The price change, ΔFt is the weekly difference in the 

logged price of the December corn futures contracts. The quadratic price term, β5ΔFt
2, is 

intended to capture potential nonlinearities in hedging that may result from belief changes. 

The fourth term (with coefficient β4) is meant to capture reference-price dependence, i.e., 

the possibility that corn producers change their hedge based on whether the current price of corn 

exceeds a given past reference level. The authors consider three candidate reference dependence 

prices: the previous year’s average marketing price, the Risk Management Agency’s (RMA) 

projected harvest price, and the past-30-day moving average of the December corn futures price. 

Hedgers’ aggregate hedging decisions are quantified by a weekly hedge ratio5, in which 

the numerator is total bushels contracted from January through week t for delivery in the period 

September 1 to August 31 of the following year, and the denominator is the total annual receipts 

of corn (in bushels)6. Some of their findings relating to this thesis are that (i) uncertainty does not 

matter to the hedging decisions due to statistically insignificant coefficients of corn option-

 
5 The weekly hedge ratio is constructed on every Tuesday, which is the CFTC’s COT report day.  
6 Corn receipts are the bushels hauled to the firm from producers during the marketing year, which is used as a 

proxy for new grain production that producers intend to market. 
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implied volatility, and suggestion of using another price volatility measure; (ii) corn futures 

prices are key drivers of commercial hedging behavior because corn producers sell more forward 

when prices increase, especially when the current futures price is higher than the reference price; 

(iii) suggestion of using the CFTC’s “DCOT data” as an alternative measure for commercial 

hedging behavior. 

Being inspired by the optimal hedging model of Jacobs et al. (AJAE 2018), we employ 

that model to replicate the results8 in exploring possible references prices to (i) confirm the value 

of DCOT data for analyzing commercial hedging behavior;  (ii) examine the impacts of futures 

prices and implied volatility on commercial traders’ decisions in the 2009-2013 period. 

Jacobs et al. use their confidential database to calculate hedge ratios, which we are not 

able to obtain. Hence, we use the alternative candidates suggested by Jacobs et al. (AJAE 2018) 

to calculate hedge ratios. Specifically, short producers’ open positions for new crops obtained 

from DCOT report replace the total bushels contracted in the paper as the hedge-ratio  

numerator, while the annual crop production estimates obtained from USDA reports (from Quick 

Stats-USDA NASS) replace the annual total corn received to be the denominator 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠′ℎ𝑒𝑑𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠′𝑠ℎ𝑜𝑟𝑡 𝑜𝑝𝑒𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑛𝑒𝑤 𝑐𝑟𝑜𝑝

𝐴𝑛𝑛𝑢𝑎𝑙 𝑐𝑟𝑜𝑝 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 

 

The replication period follows the same period as Jacobs et al. (AJAE 2018): the pre-

harvest period from January to August each year, from 01/2009 to 08/2013. To identify and 

reconfirm the pre-harvest time, the weekly hedge ratio is plotted over years (See Appendix A, 

Figure 8a). The pre-harvest period for corn is confirmed as the hedge ratio, as calculated above, 

 
8 Particularly, results from Table 2, which uses equation 10 in the 2018 AJAE paper are replicated 
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drops tremendously in September each year (because of the start of a new crop cycle in futures 

data).  

 We replicate Table 2 in Jacobs et al. (AJAE 2018), using this alternative hedge ratio 

computation method, using the equation as follows: 

DHRNt=α0+α11{Ft-Rt<0}+μDHRN{1}+β1time+β2DVOLt+β3DFPt + β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt                   (2) 

In which, the dependent variable DHRNt is the weekly change of hedge ratio, in which the hedge 

ratio is calculated by using annual crop production as a denominator. DHRN{1} is the first lag of 

DHRNt. The binary variable 1{Ft-Rt<0} has the value of 1 when the reference price candidate is 

higher than the current December futures price, and zero otherwise. The exogenous variable time 

again is the number of weeks remaining until harvest. The independent variable DVOLt is the 

weekly change in the annualized option-implied volatility of December corn futures contracts 

and captures the impact of price uncertainty on commercial traders’ behavior. The price change 

DFPt is the weekly change in the logged price of the December corn futures prices9, which 

measures the impact of futures price movements on commercial traders’ behavior. The 

interaction term DFPt*1{Ft-Rt<0} captures possible asymmetries in hedge ratio responses to the 

changes of price. The quadratic price term DFPt
2 captures potential hedging’s nonlinearities 

when there is a change in producers’ belief.  

The intercept α0 estimates the proportion of crop hedged each week when the current 

December futures price is above the reference price, and α1 is the difference in the proportion of 

crop hedged per week when the current December futures price is below the reference price. One 

 
9 December is considered as the biggest month for corn futures contracts 
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autoregressive lag for dependence variable is recommended by BIC criterion for eliminating 

serial correlation10.  

The error term εt is typically assumed to be an identically, independently, and normally 

distributed (i.i.d.) shock, with mean zero and variance, σ2. Still, we use the Newey-West (1987) 

construction of the variance-covariance matrix in computing our standard errors to tackle serial 

correlation and heteroskedasticity in the error terms. Robust standard errors are estimated 

because the assumption of homoskedasticity of the residuals is rejected at 5% significant level 

for all candidate references. A general Breusch-Godfrey LM test is used to check for serial 

correlation in residuals11. Candidates for reference dependence prices are compared based on a 

goodness-of-fit estimate- the adjusted R2. 

Table 1 presents our replication results. The coefficient for futures prices is statistically 

significant across all base cases. The coefficient for corn implied volatility is never statistically 

significant. In the replication, α0 is statistically significant with positive side, and α1 is 

statistically significant in some base cases with a negative sign showing the high correlation 

between futures prices and hedging behavior: producers short more when the current futures 

price is above the reference prices    

  

 
10 Jacobs et al. (AJAE 2018) do not discuss the number of lags in their OLS regression. Without including lag, our 

results have serial correlation in residuals. To eliminate serial correlation issues, we perform lag selection for the 

model, and one autoregressive lag is suggested by BIC criterion.  
11 Jacobs et al. (AJAE 2018) use Durbin-Watson tests for serial correlation. However, the Durbin-Watson test “is 

biased towards a finding of no serial correlation when the model contains a lagged dependent variable” (RATS 

Version 9.0 User Guide).  

https://en.wikipedia.org/wiki/Heteroskedasticity
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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Table 1. Replication Result: OLS Estimates, Corn, Pre-harvest Weekly of Producers' Short Position, 2009 - 2013 

Equation 1: DHRNt= α0 + α1 1{Ft-Rt<0} +μDHRN{1}+ β1 time + β2DVOlt + β3DFPt + β4DFPt*1{Ft-Rt<0} +β5 DFPt
2+ εt 

  

No  

Reference 

Price 

Nonlinear   

Price 

Response 

Last Year's  

Avg Price 

RMA  

Forecast Price 

30-day Moving Average 

(1) (2) (3) (4) 

α0    0.005***     0.006***     0.007***     0.006***     0.006***    0.006***     0.006***  0.004** 

  (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) 

α1  
   -0.002** -0.001* -0.001 -0.001 -0.001 -0.001* 

  
  

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

μ     0.591*** 0.588*** 0.525*** 0.552***     0.573*** 0.561*** 0.551*** 0.464*** 

  (0.061) (0.061) (0.065) (0.061) (0.060) (0.061) (0.063) (0.073) 

β1       -0.0002***   -0.0002***   -0.0002***       -0.0002***      -0.0002***      -0.0002***      -0.0002*** -0.0001 

      (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

β2 0.027 0.028 0.033 0.032 0.024 0.029 0.028 0.023 

  (0.032) (0.032) (0.031) (0.031) (0.032) (0.032) (0.032) (0.027) 

β3 
     0.041***     0.041*** 

  0.045**     0.052***    0.043***     0.080***     0.077*** 

   

0.073*** 

  (0.009) (0.010) (0.019) (0.014) (0.015) (0.020) (0.020) (0.022) 

β4 
 

 -0.013 -0.028 -0.018     -0.088***    -0.084**   -0.087** 

  
 

 (0.022) (0.018) (0.023) (0.033) (0.033) (0.037) 

β5  -0.078      -0.542**   -0.508** -0.519* 

  
 

(0.157)    (0.239) (0.251) (0.281) 

α0  + α1  
     0.005***    0.005***    0.005***     0.005***     0.005*** 0.003 

  
 

 (0.000) (0.000) (0.001) (0.000) (0.001) (0.298) 

β3 + β4 
 

     0.032***  0.024** 0.025 -0.008 -0.007 -0.014 

  
 

 (0.003) (0.047)  (0.117)  (0.718)   (0.701)  (0.492) 

Year*Time  
     Yes Yes 

Year Fixed effects 
 

      Yes 

BP test 0.0005 0.0004 0.0003 0.0009 0.0003 0.0003 0.0003 0.0000 

BGSC test 0.431 0.484 0.866 0.467 0.420 0.703 0.647 0.515 

Adj-R2 0.57 0.57 0.58 0.58 0.57 0.58 0.57 0.58 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in the parentheses.  P-values reported for the Wald 

Test of joint 'significance, Breusch-Pagan test, and Breusch-Godfrey SC Test (BGSC). Standard errors reported in brackets are computed using the 

Newey-West (1987) construction of the covariance matrix with three lags. 
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CHAPTER 4: REPLICATION MODIFICATIONS 
 

In this section, we modify the model of Jacobs et al. (AJAE 2018) to enhance its practical 

application to a larger market (e.g. soybeans, non-agricultural commodity markets).  

The first modification is the replacement of time variable. In the AJAE paper, the time 

variable measures the number of weeks left to harvest. However, that variable is not ideal 

because the crop progress differs from year to year, as shown in Figures 1.1 to 1.5).  

Figure 1a to 1d illustrate the relationship between hedge ratio and crop progress during 

the corn pre-harvest period from 2009 to 2013. The crop progress information is released weekly 

by the United States Department of Agriculture (USDA) during the planting, growing, and 

harvest season for major crops. It provides market participants critical information about the 

status of the crop13 (USDA Surveys/Crop Progress and Condition). Clearly, the percentage 

planted varies substantially from year to year, making the time variable unsuitable14.  

 

 
13 See USDA Surveys/Crop Progress and Condition: 

https://www.nass.usda.gov/Publications/National_Crop_Progress/Terms_and_Definitions/index.php 
14 The crop progress patterns also differ from year to year for soybeans market (not displayed) 
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Figure 1a. Corn Hedge ratio and Weekly Crop Progress during Pre-

Harvest Time in 2009. Data Source: Bloomberg

HR Percentage Planted

https://www.nass.usda.gov/Publications/National_Crop_Progress/Terms_and_Definitions/index.php
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Figure 1b. Corn Hedge ratio and Weekly Crop Progress during Pre-

Harvest Time in 2010. Data Source: Bloomberg

HR Percentage Planted
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Figure 1c. Corn Hedge ratio and Weekly Crop Progress during Pre-

Harvest Time in 2011. Data Source: Bloomberg

HR Percentage Planted
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As an alternative, we divide the pre-harvest period into three periods: the first period 

(January to February) is when planting has not started yet, and crop insurance parameters have 

not yet been set up; the second period (March to May) is when the crop is being planted; and the 
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Figure 1d. Corn Hedge ratio and Weekly Crop Progress during 

Pre-Harvest Time in 2012. Data Source: Bloomberg
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0

20

40

60

80

100

120

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
ro

p
 P

ro
g
re

ss
 (

p
er

ce
n

ta
g
e 

p
la

n
te

d
)

H
ed

g
e 

ra
ti

o
 (

in
 l

ev
el

)

Figure 1e. Corn Hedge ratio and Weekly Crop Progress during 

Pre-Harvest Time in 2013. Data Source: Bloomberg

HR Percentage Planted
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last period (June to August) is when the corn has all been planted and the growing season is fully 

underway. Our seasonal dummies are: dummy 1 is for the first period, and dummy 2 is for the 

second period. Those seasonal dummies capture planting periods and the crop insurance 

schedule, as alternatives to the time variable.  

DHRNt= α0+ α11{Ft-Rt<0} + μDHRN{1}+ β0dummy1+ β1dummy2+ β2DVOLt + β3DFPt + 

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt                                                                              (2a) 

in which, dummy1 has value of 1 from January to February, 0 otherwise. Dummy2 has a value of 

1 from March to May, 0 otherwise. 

β0 and β1, coefficients of seasonal dummy 1 and seasonal dummy2, respectively, are 

expected to be statistically significant with negative signs because producers will increase their 

hedge ratio as yield uncertainty diminishes towards harvest.  
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Table 2. OLS Estimates, Time Variable is Replaced by Seasonal Dummies, Corn, 2009-2013 

Equation 2a: DHRNt= α0+ α11{Ft-Rt<0} +μDHRN{1}+ β0dummy1+ β1dummy2+ β2DVOLt + β3DFPt + 

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt  

  No  

reference Price 

Nonlinear  

Price Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.004***     0.004***     0.006***    0.005***     0.004***     0.004*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

α1        -0.002** -0.001 -0.001 -0.001 

      (0.001) (0.001) (0.001) (0.001) 

μ     0.622***    0.619***    0.564***    0.590***    0.607***     0.592*** 

  (0.059) (0.058) (0.061) (0.057) (0.059) (0.060) 

β0     -0.003***    -0.003***    -0.003***    -0.003***     -0.003***    -0.003*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β1    -0.003***    -0.003***    -0.003***    -0.003***     -0.003***    -0.003*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β2 0.030 0.032 0.035 0.035 0.028 0.034 

  (0.033) (0.033) (0.031) (0.032) (0.033) (0.032) 

β3     0.041***      0.041***  0.045**    0.052***     0.044***    0.087*** 

  (0.009) (0.009) (0.018) (0.014) (0.015) (0.021) 

β4     -0.012 -0.027 -0.019    -0.097*** 

      (0.022) (0.018) (0.023) (0.033) 

β5   -0.099        -0.613** 

    (0.155)       (0.243) 

α0  + α1        0.004***    0.004***    0.003***    0.003*** 

      (0.000) (0.000) (0.004) (0.001) 

β3 + β4         0.033***    0.025** 0.025 -0.010 

      (0.003) (0.036) (0.115) (0.592) 

BP test 0.0009 0.0006 0.0006 0.0015 0.0005 0.0004 

BGSC Test 0.327 0.374 0.734 0.347 0.314 0.602 

Adj R2 0.56 0.56 0.57 0.57 0.56 0.57 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags 
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  Table 2 shows our OLS estimates results, in which the time variable is replaced by two 

seasonal dummies. As expected, the coefficients of both seasonal dummies are statistically 

significantly negative. The adjusted R2, a goodness of fit measure, in Table 2 is similar to the 

adjusted R2 in Table 1 across all base cases, showing that the seasonal dummies are good 

alternatives. 

 Our second modification is to change the hedge ratio calculation. Jacobs et al. (AJAE 

2018) suggest using hedge ratio calculated by using annual crop forecasts (HRN) of the United 

States Department of Agriculture’s National Agricultural Statistics Service (USDA NASS) as a 

denominator. Since USDA NASS only gives annual production estimates for agricultural 

commodities, using HRN limits the application of the optimal hedging model to other (non-

agricultural) commodities. We propose replacing annual crop production by the Open Interest 

from the CFTC’s DCOT (HR) so that the scaling factor would be reproducible for commodities 

other than grains and oilseeds. Figure 2 and Figure 3 show the correlations of hedge ratios for 

corn in levels and in first differences, respectively, with two different scaling factors during pre-

harvest period from 2009-2013. The correlation coefficients between two different calculation 

methods of hedge ratio in levels and in first differences for corn are 0.93 and 0.87, respectively, 

providing evidence that our proposed hedge ratio calculation method is a good alternative15.   

DHRt
*= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVOLt + β3DFPt +  

              β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt            (2b) 

in which, DHRt is the weekly change of hedge ratio where the hedge ratio is calculated using 

Open Interest from DCOT as a denominator. 

 
15 Correlation coefficients between two different calculation methods of hedge ratio in levels and in first differences 

for soybeans are 0.90 and 0.82, respectively. 
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Figure 2. Coefficient Correlations of Hedge Ratios Calculated by Using Annual Crop 

Production as Denominator (HRN) and by Using Open Interest as Denominator (HR), 

Corn, Pre-harvest period 2009-2013 

 

 

Figure 3. Coefficient Correlations of the Change in Hedge Ratio, in which Hedge Ratio is 

Calculated by Using Annual Crop Production as Denominator (HRN) and by Using Open 

Interest as Denominator (HR), Corn, Pre-harvest period 2009-2013 
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Table 3. OLS Estimates, Hedge Ratio calculated by Open Interest as a Denominator, Corn, 2009-

2013 

Equation 2b: DHRt= α0+ α11{Ft-Rt<0} +μDHR{1}+ β0dummy1+ β1dummy2+ β2DVOLt + β3DFPt + 

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt  

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.011***     0.011***    0.016***    0.013***     0.012***     0.012*** 

  (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) 

α1        -0.005*** -0.003 -0.002 -0.002 

      (0.002) (0.002) (0.002) (0.002) 

μ     0.466*** 0.467***    0.420***    0.442***     0.448***   0.445*** 

  (0.081) (0.081) (0.079) (0.078) (0.083) (0.082) 

β0     -0.009***     -0.009***    -0.010***    -0.010***     -0.009***    -0.009*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β1    -0.008***    -0.008***    -0.008***    -0.008***     -0.007***    -0.008*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β2 -0.027 -0.026 -0.027 -0.015 -0.032 -0.028 

  (0.069) (0.070) (0.064) (0.068) (0.070) (0.070) 

β3     0.077***     0.077*** 0.010 0.057     0.073**    0.106** 

  (0.023) (0.023) (0.031) (0.038) (0.035) (0.052) 

β4     0.087** 0.017 -0.020 -0.080 

      (0.041) (0.049) (0.051) (0.078) 

β5   -0.068       -0.478 

    (0.362)       (0.561) 

α0  + α1        0.011***    0.010***    0.010***  0.003*** 

      (0.000) (0.000) (0.000) (0.001) 

β3 + β4         0.077***    0.074** 0.053 -0.010 

      (0.000) (0.012) (0.110) (0.594) 

BP Test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 

BGSC Test 0.148 0.152 0.432 0.161 0.118 0.602 

Adj R2 0.41 0.41 0.44 0.41 0.41 0.41 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags 
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As shown in Table 3, changing the scaling factor for hedge ratio does not change the 

OLS estimates results qualitatively. Seasonal dummies still have statistically significant negative 

coefficients across all base cases. The coefficient of corn implied volatility remains statistically 

insignificant (though it is now negative). The futures prices’ coefficient is positive and 

statistically significant for all four base cases.  

One change for the worse is the drop of the adjusted R2 compared to Table 2. This 

downside is a trade-off, considering the potential benefit of applying the model to a broader set 

of commodity markets (beyond the agricultural sector). 

Our final modification of the empirical model is to replace the commodity implied 

volatility by the CBOE Volatility Index, the VIX, as a proxy for market uncertainty and 

sentiment. As noted earlier, the commodity option-implied volatility used in Jacobs et al. (AJAE 

2018) is statistically insignificant, which is puzzling because the expected future price volatility 

should affect hedging decisions. One possible reason could be that commodity grain and oilseed 

option-implied volatilities drop about 10% for up to a week after scheduled USDA releases (Cao 

and Robe, AAEA 2020), which might affect significance tests. As well, seasonal variations might 

be an issue. The VIX does not suffer from those drawbacks and has a close relationship with the 

commodity option-implied volatility (Robe and Wallen, JFutM 2016; Adjemian et al., AAEA 

2016; Covindassamy et al., JFutM  2017), because it reflects of the market sentiment and macro-

economic uncertainty that simultaneously permeate both equity (Bekaert et al., JME 2013) and 

commodity markets. 

Therefore, the above modification changes Equation 2b as follows: 

DHRt= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt+ β3DFPt+ 

β4DFPt*1{Ft-Rt<0} + β5DFPt
2+ εt                                                     (3)                                                          
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The coefficient of the VIX, β2, is expected to be statistically significant with positive sign 

because the higher the price volatility, the more hedging should take place. 

Table 4 represents the OLS estimates for corn during pre-harvest period from 2009-2013 

using the VIX as an alternative for implied volatility. Compared to the coefficients’ estimates 

displayed in Table 3, coefficients’ estimates of seasonal dummies variables and futures prices’ 

variable are qualitatively the same. Although the VIX is not statistically significant, its sign is 

now positive as expected. In addition, the replacement of IV with the VIX helps slightly increase 

the performance of the RMA reference price model, with the increased adjusted R2 from 0.41 in 

Table 3 to 0.42 in Table 4 (the adjusted R2 for the three other cases are the same as in Table 3).  
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Table 4. OLS Estimates using VIX as an Alternative for IV, Corn, 2009-2013 

Equation 3: DHRt= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt + β3DFPt +     

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt  

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.011***     0.012***    0.016***    0.014***     0.012***     0.013*** 

  (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) 

α1        -0.005** -0.003 -0.002 -0.002 

      (0.002) (0.002) (0.002) (0.002) 

μ     0.457***     0.459***    0.412***     0.431***    0.438***     0.434*** 

  (0.081) (0.081) (0.079) (0.079) (0.083) (0.082) 

β0     -0.009***     -0.009***    -0.010***    -0.010***     -0.009***    -0.009*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β1    -0.008***    -0.008***    -0.008***    -0.008***     -0.008***    -0.008*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β2 0.027 0.027 0.023 0.031 0.029 0.031 

  (0.029) (0.028) (0.027) (0.029) (0.027) (0.026) 

β3     0.079***     0.079*** 0.012 0.057     0.076**    0.117** 

  (0.024) (0.024) (0.034) (0.038) (0.034) (0.049) 

β4     0.084** 0.022 -0.023 -0.097 

      (0.041) (0.051) (0.051) (0.074) 

β5   -0.082       -0.577 

    (0.368)       (0.560) 

α0  + α1        0.011***    0.011***    0.010***    0.003*** 

      (0.000) (0.000) (0.000) (0.000) 

β3 + β4         0.096***    0.079** 0.053 -0.010 

      (0.000) (0.012) (0.145) (0.612) 

BP test  

 

0.0000 

 

0.0000 0.0000 0.0000 0.0000 0.0000 

 

BGSC 

Test 

 

0.137 

 

0.145 
0.390 0.158 0.109 0.149 

 

Adj R2 

 

0.41 0.41 0.44 0.42 0.41 0.41 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags 
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Finally, we broaden the study by applying Equation 3 to the soybeans market. There are 

two changes in the case of soybeans. First, November is the most active month of soybeans 

futures contract. Hence, we use November futures prices as benchmarks. Second, since hedge 

ratio drops like a stone in August for soybeans (See Appendix A, Figure 8b), rather than 

September for corn, its pre-harvest period is determined from January to July.  

Table 5 presents our OLS estimates for  the soybeans market during a sample period of 

2009-2013, in which the implied volatility is replaced by the VIX instrument, the time variable is 

replaced by seasonal dummies, and the hedge ratio is calculated by using open interest as a 

denominator. The results indicate that the optimal hedging model with these modifications is 

appropriate for soybeans. The two seasonal dummies’ coefficients are statistically significant 

with expected negative sides. Futures prices are statistically significant with positive signs. And, 

while the VIX coefficient has an unexpected negative sign, it is not statistically significant.  

In this section, the theoretical model proposed by Jacobs et al. (AJAE 2018) is 

generalized to a broader set of commodities with the following modifications.   

First, the time variable (weeks to harvest) was replaced by two seasonal dummies that 

capture planting periods and the crop insurance schedule. This replacement did not change the 

performance of each base case as the adjusted R2 in the new equation is only one percentage 

point lower than that in the equation using time variable. Other than that, the coefficients of two 

seasonal dummies are statistically significant with the expected negative signs; the coefficient of 

futures prices is statistically significant with the expected positive side, and the coefficient of 

corn implied volatility is statistically insignificant with the expected positive sign. 
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Table 5. OLS Estimates, Soybeans, Pre-harvest Weekly of Producers' Short Position for New Crop, 

2009-2013 

Equation 3: DHRt= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt + β3DFPt + 

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt  

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.014***     0.014***     0.015***    0.016***     0.018***     0.018*** 

  (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

α1     -0.002 -0.006**     -0.008***    -0.008*** 

      (0.003) (0.002) (0.003) (0.003) 

μ     0.421*** 0.425***     0.400***     0.381***     0.356***    0.353*** 

  (0.101) (0.100) (0.106) (0.110) (0.101) (0.100) 

β0     -0.010***     -0.010***    -0.010***    -0.010***    -0.012***    -0.012*** 

  (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

β1    -0.008**    -0.008**    -0.008**    -0.008**    -0.009**    -0.009** 

  (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

β2 -0.011 -0.012 -0.015 -0.027 -0.011 -0.011 

  (0.041)   (0.041) (0.040) (0.042)  (0.037) (0.037) 

β3     0.150***     0.153*** 0.205*     0.190***  0.168*    0.204** 

  (0.051) (0.052) (0.109) (0.057) (0.088) (0.092) 

β4     -0.098 -0.151* -0.168* -0.238** 

      (0.120) (0.078)  (0.094) (0.113) 

β5   0.483       -0.864 

    (0.627)       (0.696) 

α0  + α1        0.013***    0.010***    0.010***  0.010*** 

      (0.000) (0.001) (0.001) (0.001) 

β3 + β4      0.107** 0.039 0.000 -0.034 

      (0.038) (0.484) (0.998) (0.486) 

BP test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 

BGSC 

Test 
0.389 0.455 

0.609 0.446 0.578 0.504 

Adj R2 0.36 0.36 0.37 0.39 0.41 0.40 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags 
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Second, a different method of calculating hedge ratio (using open interest from DCOT 

data as a denominator, and scaling the numerator accordingly) provides results that are 

qualitatively similar to those estimated using the original hedge ratio calculation method (based 

on harvest-size expectations). Particularly, the coefficients of two seasonal dummies retain their 

statistical significance. The coefficient of the corn implied volatility remains statistically 

insignificant. And, the coefficient on futures prices is statistically significant with the expected 

positive sign in most base cases.. Although the value of adjusted R2 in this model is smaller than 

that in the previous model, we propose that it be used due to its benefits of having potentially 

broader uses (in that it can be applied for both agricultural and non-agricultural commodity 

markets). 

Lastly, we submit that the commodity implied volatility may usefully be replaced by the 

VIX. Jacobs et al. (AJAE 2018) suggest using another price volatility measure because they find 

that corn implied volatility does not have a statistically significant impact on hedging decision. 

We argue that a possible reason is that, in agricultural markets, the commodity implied volatility 

is affected by seasonality and USDA releases. Due to the close relation with implied volatility, 

and the reflection of financial sentiment and macro uncertainty, we propose to use the VIX 

instead. Comparing to a corn model which uses implied volatility, the VIX plays a better role 

with the expected positive side in its coefficient, and the improvement in the goodness of fit 

measure.  
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CHAPTER 5: REPLICATION EXTENSION STUDY 
   

 In this section, we extend the examined from 2009-2013 to 2007-2019 using the modified 

optimal hedging model. Figure 6 and Figure 7 plot the weekly changes in hedge ratio, futures 

prices, and VIX during pre-harvest period from 2007-2019 in the corn, and soybeans markets, 

respectively. 

 

Figure 4. Weekly Changes in Hedge Ratio, Futures Prices, and VIX in Corn Futures Market, Pre-

harvest period from 01/2007-08/2019 

 
Figure 5. Weekly Changes in Hedge Ratio, Futures Prices, and VIX in Soybeans Futures Market, 

Pre-harvest period from 01/2007-07/2019 
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 The year 2007 is chosen as the starting point because the data used for calculating hedge 

ratio is from the DCOT data, which is only available from June 2006 on.  

 Tables 4 and 5 report our OLS estimates for the optimal hedging model in the corn and 

soybeans markets, respectively, during pre-harvest time from 2007-2019. In these models, the 

hedge ratio change uses open interest as a scaling factor to compute the hedge ratio; two seasonal 

dummies are used; the VIX acts as a proxy for demand-side uncertainty and market sentiment.  

 Tables 4 and 5 show that prolonging the examined period does not change the OLS 

estimates qualitatively. The two seasonal dummies are statistically significant with expected 

negative signs; and the futures prices’ coefficient maintains its statistically significant with 

positive side in both corn and soybeans markets.  

 Noticeably, there is a change in significance level of the VIX’s coefficient. In the corn 

market, the VIX’s coefficient turns statistically significant in 5 base cases, except for the model 

using last year’s average price as reference. In the soybeans market, the VIX is only statistically 

significant in the base case of 30-day moving average reference price (the last two columns in 

Table 7), however, it keeps the expected positive sign.  
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Table 6. OLS Estimates, Corn, Pre-harvest Weekly of Producers' Short Position for New Crop, 

2007-2019 

Equation 3: DHRt= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt + β3DFPt + 

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt  

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.011***   0.010***    0.013***     0.013***    0.012***     0.012*** 

  (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

α1     -0.002** -0.003**    -0.003***     -0.003*** 

      (0.001) (0.001) (0.001) (0.001) 

μ     0.417***  0.416***     0.397***   0.390***    0.385***     0.385*** 

  (0.054) (0.054) (0.055) (0.054) (0.055) (0.055) 

β0 -0.008***  -0.008***    -0.009***   -0.009***    -0.009***     -0.009*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β1 -0.007***   -0.006***    -0.007***   -0.007***     -0.007***      -0.007*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β2 0.037* 0.038* 0.037 0.042* 0.042* 0.042* 

  (0.022) (0.022) (0.022) (0.023) (0.022) (0.022) 

β3    0.084***    0.085***   0.053**     0.073***     0.081***    0.075** 

  (0.017) (0.017) (0.023) (0.027) (0.030) (0.033) 

β4   0.232 0.055* 0.003 -0.037 -0.025 

    (0.270) (0.032) (0.035) (0.038) (0.052) 

β5           0.097 

            (0.380) 

α0  + α1        0.011***    0.010***    0.009***    0.009*** 

      (0.000) (0.000) (0.000) (0.000) 

β3 + β4         0.108***    0.076*** 0.044** 0.050 

      (0.000) (0.002) (0.048) (0.103) 

BP test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

BGSC Test 0.000 0.000 0.000 0.000 0.000 0.000 

Adj R2 0.35 0.35 0.36 0.36 0.36 0.36 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses. P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags 
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Table 7. OLS Estimates, Soybeans, Pre-harvest Weekly of Producers' Short Position for New 

Crop, 2007-2019 

Equation 3: DHRt= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt + β3DFPt + 

β4DFPt*1{Ft-Rt<0} +β5DFPt
2+ εt  

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.021***    0.020***     0.023*** 0.022*** 0.022*** 0.022*** 

  (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 

α1     -0.002  -0.003** -0.004**   -0.004** 

      (0.002) (0.001) (0.002) (0.002) 

μ    0.331***    0.327*** 0.325*** 0.317*** 0.311*** 0.317*** 

  (0.050) (0.049) (0.053) (0.051) (0.053) (0.053) 

β0     -0.017***     -0.017***     -0.018***     -0.018***    -0.018***    -0.018*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β1     -0.015***    -0.014***     -0.015***     -0.015***     -0.015***    -0.015*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β2 0.067 0.066 0.066 0.061 0.068* 0.069* 

  (0.043) -0.042 (0.044) (0.040) (0.041) (0.041) 

β3    0.138***      0.137***    0.104**   0.196*** 0.165**     0.187*** 

  (0.041) (0.038) (0.045) (0.058) (0.068) (0.061) 

β4     0.065 -0.136** -0.140*     -0.185*** 

      (0.081) (0.059) (0.072) (0.067) 

β5   0.528       -0.569 

    (0.654)       (0.618) 

α0  + α1        0.021***     0.020***     0.018***      0.018*** 

      (0.000) (0.000) (0.000)  (0.000) 

β3 + β4       0.169** 0.060 0.025 0.002 

      (0.014) (0.101) (0.470)  (0.961) 

BP test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

BGSC 

Test 

 

0.181 

 

0.193 0.228 0.269 0.109 0.290 

Adj R2 0.42 0.42 0.42 0.43 0.43 0.43 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported 

in the parentheses. P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) matrix with three lags 
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 During the 13-year period, there are two effects that should be controlled for. First, we 

note different initial patterns in hedge ratios in both corn and soybeans markets for some specific 

years (Appendix A, Figure 9a, and Figure 9b). In 2007-2008, the hedge ratios start from a higher 

level compared to all the other years. This might be explained by the commodity price boom 

during 2006-2008 period (Janzen, Smith, and Carter, AJAE 2018) causing hedgers to sell more in 

the futures market. To control for the high stating level in the hedge ratio during these years is 

specified in the model, we create a year dummy (dummy 3) for the 2007-2008 period. Second, 

the financial crisis period happens from September 2008 until September 2011 should be 

controlled by using another year dummy (dummy 4) for the 2009-2011 pre-harvest periods. 

 Equation 4 results from adding these two dummies to capture possible outliers in the 

hedge ratio and financial crisis period 

DHRt= α0+ α11{Ft-Rt<0}+ μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt+ β3DFPt + β4DFPt*1{Ft-

Rt<0} +β5DFPt
2+ β6 dummy3 + β7dummy4+ εt                          (4) 

 Table 8 and Table 9 display our OLS estimates of Equation 4 applied in the corn and 

soybeans futures markets. The results show that the additional year dummies (dummy3 and 

dummy4) are not statistically significant for either corn or soybeans. In the meanwhile, two 

seasonal dummies, the VIX and futures prices maintained their significant level compared to 

those in the Table 6 and Table 7. The goodness of fit does not show any improvement in model 

performance when using these year dummies. The results from Equation 4 control for the 

abnormal patterns in hedge ratio level, the commodity price spike during 2007-2008 period, and 

the financial crisis during 2009-2011 period. 
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Table 8. OLS Estimates with Year Dummies, Corn, Pre-harvest Weekly of Producers' Short 

Position for  New Crop, 2007-2019 

Equation 4: DHRt= α0 + α1 1{Ft-Rt<0} +μDHR{1}+ β0dummy1+  β1dummy2 + β2DVIXt + β3DFPt + 

β4DFPt1{Ft-Rt<0} +β5 DFPt
2

 + β6dummy3+         β7dummy4 + εt 

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0     0.011***    0.010***    0.014***    0.013***   0.012***    0.012*** 

  (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

α1     -0.003**  -0.003** -0.003***   -0.003*** 

      (0.001) (0.001) (0.001) (0.001) 

μ     0.416***    0.415***   0.384***    0.389*** 0.383***    0.383*** 

  (0.053) (0.053) (0.053) (0.053) (0.054) (0.054) 

β0    -0.008***     -0.008***    -0.009***   -0.009*** -0.009***    -0.008*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β1    -0.007***    -0.006***    -0.007***    -0.007*** -0.007***    -0.007*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β2 0.037* 0.038* 0.037 0.042* 0.043* 0.042* 

  (0.022) (0.022) (0.022) (0.023) (0.022) (0.022) 

β3     0.085***      0.085*** 0.050**    0.073***     0.082*** 0.071** 

  (0.017) (0.017) (0.021) (0.027) (0.030) (0.033) 

β4     0.059* 0.005 -0.039 -0.018 

      (0.031) (0.035) (0.039) (0.052) 

β5   0.261       0.172 

    (0.284)       (0.389) 

β6 -0.001 -0.001 -0.003** -0.001 -0.001 -0.002 

  (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 

β7 0.0003 0.0001 0.0001 -0.0002 -0.00002 -0.0001 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

α0  + α1        0.011***    0.010***    0.009***    0.009*** 

      (0.000) (0.000) (0.000) (0.000) 

β3 + β4         0.109***    0.078*** 0.043* 0.053* 

      (0.000) (0.000) (0.052) (0.076) 

BP test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

BGSC 

Test 
0.000 0.000 0.000 0.000 0.000 0.000 

Adj R2 0.35 0.35 0.36 0.35 0.36 0.36 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags. 
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Table 9. OLS Estimates with Year Dummies, Soybeans, Pre-harvest Weekly of Producers' Short 

Position for New Crop, 2007-2019 

Equation 4: DHRt= α0 + α1 1{Ft-Rt<0} + μDHR{1}+ β0dummy1+  β1dummy2 + β2DVIXt + β3DFPt + 

β4DFPt1{Ft-Rt<0} +β5 DFPt
2

 + β6dummy3+  β7dummy4 + εt 

  No  

reference Price 

Nonlinear  

Price 

Response 

Last Year's 

 Avg Price 

RMA  

Forecast 

Price 

30-day Moving 

Average 

  (1) (2) 

α0 0.021*** 0.020*** 0.024*** 0.022*** 0.022*** 0.023*** 

  (0.002) (0.002) (0.003) (0.002) (0.003) (0.003) 

α1 
 

 -0.004** -0.003** -0.004*** -0.004** 

  
  (0.002) (0.001) (0.002) (0.002) 

μ 0.330*** 0.326*** 0.318*** 0.317*** 0.309*** 0.313*** 

  (0.051) (0.050) (0.055) (0.051) (0.054) (0.054) 

β0 -0.017*** -0.017*** -0.018*** -0.018*** -0.018*** -0.018*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β1 -0.015*** -0.014*** -0.015*** -0.015*** -0.015*** -0.015*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β2 0.067 0.067 0.067 0.062 0.070* 0.070* 

  (0.042) (0.042) (0.044) (0.040) (0.041) (0.041) 

β3 0.138*** 0.138*** 0.102** 0.196*** 0.167** 0.184*** 

  (0.039) (0.038) (0.043) (0.058) (0.069) (0.061) 

β4   0.067 -0.135** -0.145* -0.180*** 

    (0.080) (0.059) (0.074) (0.068) 

β5  0.615    -0.459 

  
 

(0.731)    (0.725) 

β6 -0.001 -0.002 -0.004 -0.001 -0.002 -0.002 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β7 0.001 0.001 0.001 0.001 0.001 0.001 

  (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) 

α0  + α1 
  0.020*** 0.019*** 0.018*** 0.019*** 

  
  (0.000) (0.000) (0.000) (0.000) 

β3 + β4 
  0.169** 0.061 0.022 0.004 

  
 

 (0.016) (0.102) (0.510) (0.920) 

BP test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

BGSC Test 0.164 0.169 0.248 0.252 0.082 0.070 

Adj R2 0.42 0.42 0.42 0.43 0.43 0.43 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags. 
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 In additional robustness checks, we add an interaction term with the VIX. The VIX’s 

coefficient is not statistically significant during the short 2009-2013 replication period for both 

corn and soybeans markets. Meanwhile, it shows the inconsistent impacts on hedge ratio during 

longer time for corn and soybeans markets. This issue might come from the decoupling of the 

VIX and the corn/soybeans IV during financial crisis. Particularly, when looking at the 

movements of VIX and option-implied volatility during 2007-2019 period (Appendix A, Figure 

10a, and Figure 10b), we note that (i) the VIX has two big jumps: one is in fall 2008 to summer 

2009, and the other one is during summer and fall 2012; (ii) although commodity implied 

volatilities also show concomitant spikes during the financial crisis, their spikes are not very 

large compared to the spikes of VIX. Therefore, an interaction term between the VIX and the 

VIX dummy is used to capture the decoupling of the VIX and corn/soybeans IV during the 

financial crisis period. Equation 5 is developed from equation 3 by adding a newly proposed 

variable as follows: 

 DHRt= α0+ α11{Ft-Rt<0} + μDHR{1}+ β0dummy1+ β1dummy2+ β2DVIXt + β3DFPt +  

β4DFPt*1{Ft-Rt<0} + β5DFPt
2+ β6ΔVIXt *DummyVIX+ εt            (5) 

in which β6 is the coefficient of the interaction term between the VIX and DummyVIX. 

DummyVIX has a value of 1 when the VIX is above 30, and 0 otherwise. With this new variable, 

the VIX is expected to turn statistically significant in both corn and soybeans markets, and the 

interaction term’s coefficient β6 is expected to be significant with a negative sign (because the 

VIX exceeds the IV substantially during those periods, and so the exact VIX value is less 

“accurate” during those periods than during other periods). 

 The results in Table 10 and Table 11 show that adding the interaction term of the VIX 

and its dummy does not provide the expected results. It does not improve the goodness of fit 
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since the adjusted R2 is the same with that from using Equation 3 in Tables 6 and 7. While the 

futures prices’ coefficient continues showing its significantly strong effects on hedgers’ positions 

for both two markets, the VIX’s coefficient has some changes in the sign and significance level. 

In the corn market, the VIX now becomes insignificant. In addition, the interaction term does not 

play well due to its insignificance with positive sign, showing that models work best for the VIX 

in the corn market should not have the interaction term. Meanwhile, in the soybeans market, the 

VIX turns significant across all base cases; the interaction term has the expected negative side 

although it is only significant for cases using 30-day moving average as reference dependence. 
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Table 10. OLS Estimates With The Interaction Term of VIX, Corn, 2007-2019 

Equation 5: DHRt= α0 + α1 1{Ft-Rt<0} + μDHR{1}+β0 dummy1+ β1dummy2 + β2DVIXt + β3DFPt + 

β4DFPt1{Ft-Rt<0} +β5DFPt
2+ β6DVIXt *DummyVIX+ εt 

  No  

reference 

Price 

Nonlinear  

Price 

Response 

Last Year's  

Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0    0.011***    0.010***    0.013***     0.013***    0.012***    0.012*** 

  (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

α1     -0.002** -0.003** -0.003** -0.003** 

      (0.001) (0.001) (0.001) (0.001) 

μ    0.416***    0.414***    0.395***    0.388***   0.383***   0.383*** 

  (0.054) (0.054) (0.054) (0.053) (0.055) (0.054) 

β0   -0.008***   -0.008***    -0.009***     -0.009***    -0.009***   -0.009*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β1   -0.007***   -0.006***    -0.007***      -0.007***   -0.007***    -0.007*** 

  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

β2 0.030 0.031 0.029 0.035 0.034 0.035 

  (0.024) (0.024) (0.024) (0.025) (0.024) (0.024) 

β3    0.085*** 0.085*** 0.053**     0.074***     0.083***   0.079** 

  (0.017) (0.017) (0.023) (0.027) (0.031) (0.035) 

β4     0.055* 0.003 -0.038 -0.031 

      (0.032) (0.035) (0.039) (0.055) 

β5   0.226       0.063 

    (0.272)       (0.398) 

β6 0.019 0.017 0.022 0.018 0.021 0.019 

  (0.045) (0.046) (0.046) (0.046) (0.046) (0.048) 

α0  + α1     0.010*** 0.010*** 0.009*** 0.009*** 

      (0.000) (0.000) (0.000) (0.000) 

β3 + β4     0.108*** 0.075*** 0.045** 0.048 

      (0.000) (0.000) (0.039) (0.122) 

BP test  

 

0.000 

 

0.000 0.000 0.000 0.000 0.000 

 

BGSC 

Test 

 

0.000 

 

0.000 
0.003 0.002 0.000 0.000 

Adj R2 

 

0.35 0.35 0.36 0.36 0.36 0.36 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags
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Table 11. OLS Estimates With The Interaction Term of VIX, Soybeans, 2007-2019 

Equation 5: DHRt= α0 + α1 1{Ft-Rt<0} + μDHR{1}+β0 dummy1+ β1dummy2 + β2DVIXt + β3DFPt + 

β4DFPt1{Ft-Rt<0} +β5DFPt
2+ β6DVIXt *DummyVIX+ εt  

  No  

reference 

Price 

Nonlinear  

Price Response 

Last Year's  

Avg Price 

RMA  

Forecast 

Price 

30-day Moving Average 

  (1) (2) 

α0    0.021***     0.020***     0.023***  0.022***    0.023***    0.023*** 

  (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 

α1 
  

  -0.002 -0.003** 

  -

0.004***    -0.004*** 

      (0.002) (0.001) (0.002) (0.002) 

μ     0.332***     0.328***    0.326***   0.319***    0.312***   0.317*** 

  (0.050) (0.049) (0.053) (0.052) (0.053) (0.053) 

β0 
    -0.017***     -0.017***    -0.018***   -0.018*** 

  -

0.018*** 
 -0.018*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β1 
-0.015    -0.015***    -0.015***    -0.015*** 

  -

0.015*** 
  -0.015*** 

  (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

β2 0.091* 0.093* 0.089* 0.088* 0.097** 0.096** 

  (0.049) (0.048) (0.050) (0.046) (0.048) (0.048) 

β3    0.134***    0.133***    0.103**    0.194*** 0.162**   0.180*** 

  (0.039) (0.037) (0.044) (0.057) (0.067) (0.061) 

β4     0.059 -0.139**  -0.145**   -0.182*** 

      (0.080) (0.059) (0.073) (0.070) 

β5   0.611       -0.461 

    (0.652)       (0.624) 

β6 -0.094 -0.101 -0.087 -0.100 -0.108* -0.104* 

  (0.068) (0.067) (0.068) (0.062) (0.060) (0.061) 

α0  + α1         0.021***    0.019*** 0.019***    0.019*** 

      (0.000) (0.000) (0.000) (0.000) 

β3 + β4       0.162** 0.055 0.012 -0.002 

      (0.018) (0.143) (0.608) (0.977) 

BP test 0.000 0.000 0.000 0.000 0.000 0.000 

 

BGSC 

Test 

 

 

0.178 

 

 

0.197 0.231 0.256 0.104 0.082 

Adj R2 

 

0.42 0.42 0.42 0.43 0.43 0.43 

Noted: Significant levels indicated as: * p<0.1; ** p<0.05; *** p<0.01. Robust standard errors reported in 

the parentheses.  P-values reported for the Wald Test of joint 'significance, Breusch-Pagan test, and 

Breusch-Godfrey SC Test. Standard errors reported in brackets are computed using the Newey-West 

(1987) construction of the covariance matrix with three lags 
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In this Chapter, we extended the examined period from 5 years to 13 years, after adapting 

the same Equation 3 introduced in the previous Chapter (4). For this longer period, the high level 

of hedge ratio in corn and soybeans markets (perhaps due to the commodity price spike during 

2007-2008 period) and the financial crisis during 2009-2011 are controlled by the dummies in 

Equation 4. We also examine the relationship between the VIX and option-implied volatilities, 

and introduce an interaction term to capture the decoupling between those two series during two 

large jumps in the value of VIX (one is in fall 2008 to summer 2009, and the other one is during 

summer and fall 2012) presented in Equation 5.  

The results from Table 6 to Table 11 provide evidence that (i) the theoretical model 

proposed by Jacobs et al. (AJAE 2018), with adjusted proxies for market fundamentals, remains 

valid over the long run (13-year period vs. 5); (ii) the role of futures prices on hedging decisions 

is always statistically significant, across all base cases and in both the corn and soybeans 

markets; (iii) there is mixed statistical evidence that the VIX statistically significantly affects 

hedging behavior; (iv) the two seasonal dummies continue are statistically significant, showing 

that hedging picks up in the summer months.16  

  

 
16 We also extended the model by introducing year dummies and interaction term of the VIX*DummyVIX. Neither 

change improved the model performance as judged by the adjusted R2 compared to that in the model without having 

those proposed dummies. The extra variables do not show statistically significant impacts – cue the statistically 

insignificant level of year dummies’ coefficients (Equation 4) and the interaction term’s coefficient (Equation 5).  
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CHAPTER 6: THE STRUCTURAL VAR MODEL 
 

In the previous Chapters, we provide evidences that the 2018 AJAE optimal model with 

some modifications estimated by OLS regression can be generalized to a longer period and to 

other commodities. In this section, we use structural vector autoregression (SVAR) to account 

for possible endogeneity issues in the analysis of the effects of futures prices on commercial 

positioning in grains and oilseeds markets. 

Precisely, we propose a 3-variable ordered SVAR model to jointly explain and quantify 

the roles of global macroeconomic uncertainty using the VIX (specifically, the weekly change 

DVIX) and commodity price levels (precisely, the weekly futures prices changes DFP) in 

explaining changes in producers’ hedge ratio (DHR) for corn and soybeans futures markets 

during the pre-harvest period. The pre-harvest period is from January to August for corn, and 

from January to July for soybeans. It is determined based on the level of hedge ratio, which 

drops dramatically in September for corn and in August for soybeans (Appendix A, Figure 8a 

and Figure 8b). Also, two seasonal dummies are included in the SVAR model as exogenous 

variables to capture planting time and crop insurance seasons. Our sample runs from 2007 to 

2019. 

Choice of Variables 

Hedging behavior. Commercial traders’ behavior is reflected by their activities of selling 

or buying a commodity in the futures market. Because producers must short their futures 

positions to offset a price drop in the physical market, producers’ aggregated net short position 

captures producers’ hedging activities. In the ordered SVAR model, a change in hedge ratio, in 

which the hedge ratio is calculated by using producers’ short positions for new crops in the 
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futures markets scaled by the total futures open interest, is used for estimating commercial 

hedging decisions in the futures market.  

Futures Prices. The main question in this thesis is whether commodity price levels drive 

hedging decisions in grains and oilseeds futures markets. We use the change in the benchmark 

futures prices (DFP) as one of the endogenous variables in the ordered SVAR model. In the corn 

market, a change in December futures prices is the price measure because the December contract 

is the benchmark. In the meanwhile, in the soybeans market, the November contract plays the 

same role, so a change in November futures prices is used as the price variable. 

Price Uncertainty. The 2018 AJAE paper uses the weekly change in December corn 

implied volatility as a price volatility measure. However, the coefficient of implied volatility is 

found to be statistically insignificant. In addition, agricultural implied volatilities are affected by 

seasonality and by USDA releases (Cao and Robe, AAEA 2020). Due to the close relationship of 

the VIX – the CBOE Volatility Index and commodity implied volatilities (Robe and Wallen, 

JFutM 2016; Adjemian et al., AAEA 2016; Covindassamy et al., JFutM  2017),  and its reflection 

of financial sentiment and demand-side uncertainty (Bekaert et al., JME 2013), we use the 

change in VIX (DVIX) as a measure for price uncertainty in our ordered SVAR model. 

Ordering of Variables 

For each commodity futures market, we propose a 3-variable SVAR to investigate the 

respective contributions of the weekly change in macroeconomic uncertainty and sentiment 

(DVIX), and of the futures prices return (DFP), to the weekly change in hedgers’ net short 

positions (DHR). The reduced form of SVAR model for each commodity is presented by the 

vector yt as 

            A(L)yt = θzt +εt                   (6) 
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where A(L) is a matrix of polynomials in the lag operator L, {I-A1L
1-A2L

2-…ApL
p}, yt  is a (nx1) 

data vector, zt is the exogenous variables, and the prediction errors εt  are related to the structural 

shocks ut by 

             Aεt  = But                   (7) 

As in Büyüksahin, Bruno, and Robe (AJAE 2017), we “impose the standard conditions 

that A = I and that B is lower-triangular, so that a Cholesky decomposition of the variance-

covariance matrix fits a recursively just-identified model.” These structural restrictions help 

preserve the implication that VIX is not contemporaneously affected by futures prices (DFP) and 

hedgers’ short positions (DHR). In turn, futures prices (DFP) should be contemporaneously 

affected by the VIX, but not by hedgers’ positions (DHR). This ordering of prices and hedgers’ 

positions in effect assumes that changes in producers’ net short positions “generate signals that 

are not immediately incorporated into prices.” By ordering the hedge ratio last, we can ask 

whether the intensity of hedging is determined by macroeconomic uncertainty and/or by prices in 

corn and soybeans futures markets.  

 Therefore, equation 7 is specified as 

                       (

ε𝑡
𝐷𝑉𝐼𝑋

ε𝑡
𝐷𝐹𝑃

ε𝑡
𝐷𝐻𝑅

) =⌈

𝑏11 0 0
𝑏12 𝑏22 0
𝑏13 𝑏23 𝑏33

⌉ (

𝑢𝑡
𝐷𝑉𝐼𝑋

𝑢𝑡
𝐷𝐹𝑃

𝑢𝑡
𝐷𝐻𝑅

)                (8) 

Finally, we include seasonal dummies as exogenous variables in our ordered SVAR 

model. As before, dummy 1 covers the January to February period when the planting has not 

started yet, and the crop insurance price has not been established yet. Therefore, the dummy 1 

has value of 1 when it is January and February, and 0 otherwise.  The dummy 2 covers the 

planting time, which has a value of 1 when it is from March to May, and 0 otherwise.  
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CHAPTER 7: RESULTS 

 

We first estimate the reduced form SVAR of equation 6 using ordinary least squares with 

two lags. Next, we summarize the impulse response functions (IRFs). Finally, we discuss the 

results’ robustness to alternative specification of the SVAR variables.  

Reduced form of SVAR Estimates 

 In both commodity markets, we estimate the reduced-form SVAR using ordinary least 

squares with two lags. The number of lags is determined to help eliminate serial correlation in 

the residuals. We include two seasonal dummies which capture the planning period and the crop 

insurance schedule as exogenous variables in this SVAR specification. The two reduced-form 

SVAR models satisfy stability condition. The parameter estimates and their standard errors are 

presented in the Table 12 for corn and Table 13 for soybeans below 

Table 12. Reduced-form SVAR Regression Estimates, Corn, Pre-Harvest Period, 2007-

2019 

 Equation 

DVIX DFP DHR 

Intercept 0.003 

(0.003) 

-0.004 

(0.004) 

0.011*** 

(0.001) 

DVIX{1} -0.269*** 

(0.051) 

0.058 

(0.069) 

-0.010 

(0.020) 

DFP{1} -0.010 

(0.038) 

0.034 

(0.051) 

0.060*** 

(0.015) 

DHR{1} 0.191 

(0.135) 

0.104 

(0.182) 

0.325*** 

(0.054) 

DVIX{2} -0.094* 

(0.051) 

0.041 

(0.069) 

0.010 

(0.020) 

DFP{2} 0.073* 

(3.801) 

0.045 

(0.051) 

0.036** 

(0.015) 

DHR{2} -0.192 

(0.133) 

-0.123 

(0.180) 

0.081 

(0.053) 
Note: Heteroskedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies are not reported. AIC: -14.32, HQIC: -14.21,  

SBIC:-14.051 
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Table 13. Reduced-form SVAR Regression Estimates, Soybeans, Pre-Harvest Period, 2007-2019 

 Equation 

DVIX DFP DHR 

Intercept 0.0001 

(0.004) 

0.0004 

(0.004) 

0.022*** 

(0.002) 

DVIX{1} -0.301*** 

(0.051) 

-0.014 

(0.059) 

-0.029 

(0.030) 

DFP{1} 0.001 

(0.048) 

0.028 

(0.056) 

0.040 

(0.029) 

DHR{1} 0.026 

(0.094) 

-0.011 

(0.109) 

0.317*** 

(0.056) 

DVIX{2} -0.136*** 

(0.051) 

-0.063 

(0.060) 

0.069** 

(0.031) 

DFP{2} 0.053 

(0.048) 

0.007 

(0.056) 

0.066** 

(0.028) 

DHR{2} -0.094 

(0.093) 

-0.003 

(0.108) 

-0.048 

(0.055) 
Note: Heteroskedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies are not reported. AIC: -14.311, HQIC: -14.193, 

SBIC: -14.016 

 

Drivers of Hedging Behavior: IRF Analyses 

Impulse response functions are estimated for all model variables with respect to each 

structural shock and generate confidence interval using the wild bootstrap procedure of 

Goncalves and Kilian (JE, 2004). We use 1,000 replications and report the results with 95% 

confidence intervals. 

Figures 6 and Figure 7 show the IRFs from the 3-variable SVAR with 95% confidence 

interval bands for, respectively, corn (Figure 6) and soybeans (Figure 7) based on the following 

ordering: DVIX, DFP, and DHR. As in Büyüksahin et al (AJAE 2017), each chart within these 

two Figures presents “the impulse responses over 10 weeks of the variable after the arrow to a 

one-standard deviation shock to the variable before the arrow. For instance,” the first row in 

Figure 8, from left to right, displays the impulses responses over 10 weeks of DVIX, DFP, and 

DHR to a one-standard deviation shock to DVIX. 
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Figure 6. Impulse Response Functions for corn- Structural VAR in first differences, 2007-2019 
Note: Figure 6 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied volatility 

representing for macroeconomic uncertainty, VIX; the change in corn futures prices, DFP; and the change in corn producers’ net 

short position, DHR. Confidence bands are plotted at 95% level of statistical significance level. The SVAR model is estimated 

using the change in weekly data during pre-harvest time period (from January to August) from 2007-2019 with variables ordered 

as follows: VIX, corn futures prices, and Hedge Ratio which is calculated by using open interest as a denominator  

 

Figure 7. Impulse Response Functions for soybeans- Structural VAR in first differences, 2007-2019 
Note: Figure 7 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied volatility 

representing for macroeconomic uncertainty, VIX; the change in soybeans futures prices, DFP; and the change in soybeans 

producers’ net short position, DHR. Confidence bands are plotted at 95% level of statistical significance level. The SVAR model 

is estimated using the change in weekly data during pre-harvest time period (from January to July) from 2007-2019 with 

variables ordered as follows: VIX, soybeans futures prices, and Hedge Ratio which is calculated by using open interest as a 

denominator  
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Futures Prices  

The question of whether prices drive commercial traders’ aggregated net short positions 

is answered by the IRFs results in Figure 6 and Figure 7. These figures show that a key driver of 

commercial traders’ hedging decisions is the commodity price. Particularly, the standard 

deviation of weekly returns (precisely, log price changes) is 3.76% in the corn space, and 2.96% 

in the soybeans space. A one-standard deviation positive shock to corn/soybeans prices leads to a 

statistically significant increase in the magnitude of commercial traders’ aggregated net short 

positions. The impact of a such futures price shock remains statistically significant 4 weeks in 

the corn market, and 3 weeks in the soybeans market.  

 During pre-harvest months from 2007-2019, in the corn market, the impact of DFP on 

DHR is immediate and strongest in week 1 at +0.0032. This magnitude is very substantial as it 

accounts for 31.37% of the 0.0102 average DHR value. Meanwhile, in the soybeans market, the 

point estimates of the DHR response to a DFP shock are largest at the current time (week 0): 

+0.0042, accounting for 28.77% of the 0.0146 average DHR value in magnitude.  

 In sum, the effects of futures prices on hedging decisions are statistically significant, and 

the responses of DHR to a one standard deviation shock to DFP are immediate, and strong with a 

large magnitude in both corn and soybeans markets. The effects of futures prices on hedging 

decisions in the corn market lasts longer than those in the soybeans market (4 weeks for corn vs. 

3 weeks for soybeans) and are stronger (with greater relative magnitude of 31.37% vs. 28.77%). 

The positive responses in the two markets show the positive correlations between futures prices 

and commercial traders’ short positions: the higher the futures prices are, the more hedging.  
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Global macroeconomic uncertainty (captured by the VIX).   

The OLS regression using Jacobs et al.’s (AJAE 2018) model shows that, during the pre-

harvest periods from 2007-2019, the VIX’s effects on commercial traders’ short positions are 

statistically significant at the 10% level for most model variations in the corn market, and for 30-

day moving average price reference case in the soybean market. Using the ordered SVAR, we re-

estimate the effects of VIX on producers’ short positions at 95% significant level. Intuitively, the 

higher the price volatility is, the more hedging should take place, and the lower agricultural 

commodity prices should be. Therefore, we expect to see the positive effects of the VIX on 

commercial traders’ short positions, and negative effects of the VIX on futures prices in both 

markets.  

Figure 6 and Figure 7 show that a VIX increase immediately boosts producers’ net short 

positions, which is consistent with the findings when employing the 2018 AJAE optimal hedging 

model. However, the VIX changes are not statistically significant in both corn and soybeans 

markets at 95% confidence level. The results are slightly different from the OLS regression 

findings in Table 6 and Table 7, in which the VIX’s coefficient is found to be statistically 

significant at low level in corn and soybeans markets with some base cases. 

 We see a negative response of futures prices changes to a one-standard deviation shock to 

the VIX’s change. However, the statistical significance of the VIX’s impact is mixed among the 

two markets. In the corn market, the impact of the change in VIX on the price levels is not 

statistically significant. Meanwhile, we find a statistically significantly negative impact of the 

VIX change on the futures return in the soybeans market. The impact is immediate but becomes 

statistically insignificant after week 1. 
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 In general, the results summarized in the Figure 8 and 9 establish a positive relationship 

between a change in futures prices and a change in commercial traders’ aggregated short 

positions. This sheds a new light on speculating purpose of commercial traders because,  when 

commercial traders’ aggregate positions react to price changes, that empirical fact is consistent 

with the notion that they are somehow speculating. The VIX, a global macroeconomic 

uncertainty, does not appear to significantly impact commercial traders’ aggregate net short 

positions in either corn or soybeans markets, but the VIX change has a short-lived impact on the 

futures prices changes in soybeans market. 

Robustness 

 In this section, the effects of DVIX and DFP on the change in commercial traders’ short 

positions are investigated using three different ordered SVAR models (given the ordering of 

variables are kept unchanged).  

The first SVAR model replaces DHR by DHRN. Particularly, the change in hedge ratio 

using annual crop as a scaling factor suggested by Jacobs et al. (AJAE 2018) is examined. 

Therefore, the first SVAR model has 3 endogenous variables: DVIX, DFP, DHRN and two 

exogenous variables: seasonal dummies.  

The second SVAR model controls for the outliers in hedge ratios in 2007-2008 and amid 

the financial crisis period in 2009-2011. Particularly, one added year dummy is to cover the 

outliers in hedge ratio in 2007-2008 with the value of 1 when it’s 2007 and 2008, and 0 

otherwise; another added year dummy is to cover the financial crisis period with the value of 1 

when it is 2009-2011, and 0 otherwise. Therefore, the second SVAR model has 3 endogenous 

variables: DVIX, DFP, and DHR, and 4 exogenous variables: two seasonal dummies, and two 

year-dummies.  
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The third SVAR model controls for the decoupling between the VIX and the 

corn/soybeans IV during financial crisis. Particularly, the financial crisis dummy, which has 

value of 1 when the VIX is bigger than 30, and 0 otherwise, is added to the model. Therefore, the 

third SVAR model has 3 endogenous variables: DVIX, DFP, and DHR, and 3 exogenous 

variables: two seasonal dummies and one financial crisis dummy.  

The robustness is evaluated based on the parameter estimates and IRFs between each of 

the three newly proposed SVAR model with the original model (the SVAR with DVIX, DFP, 

DHR, and two seasonal dummies as exogenous variables). In short: our results are qualitatively 

robust to using an alternative for measuring commercial hedging behavior, adding year dummies, 

and adding financial crisis dummy. 

 First, the results for parameter estimates (Appendix B, Table 16 to Table 21) show that 

there is no big difference in the significance level among parameters and their coefficients in the 

three new models compared to those in the original results. Using the AIC, HQIC, and SBIC 

criterion in comparing the goodness of fit, we see that the model using DHRN performs better 

than the original model, while the model adding year dummies and the model adding financial 

crisis dummy perform worse than the original models in corn and soybeans markets.  

 Second, the IRF results from the SVAR model with DHRN (Appendix A, Figure 11a and 

Figure 11b) show that: the statistically significant impact of DFP on DHRN lasts for 6 weeks 

compared to 4 weeks in the SVAR using DHR; and has the same duration in the soybeans 

market: lasting for 3 weeks in both SVAR with DHRN and SVAR with DHR. Specifically, 

during pre-harvest time from 2007-2019, in the corn market, the impact of DFP on DHRN 

(Appendix A, Figure 11a) is immediate and strongest in week 1 at +0.0020, accounting for 

40.82% of the 0.0049 average DHRN value (vs. 31.37% of the hedge ration in the SVAR with 
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DHR). In the soybeans market, the point estimates of the DHRN response to a DFP shock are 

largest at the current time (week 0): +0.0058, amounting to 47.93% of the 0.0121 average DHRN 

value in magnitude (Appendix A, Figure 11b). This magnitude is material, 1.67 times larger than 

that in SVAR model using DHN. In this SVAR model, we also do not find the statistically 

significant impact of the DVIX on DHRN. The sign of the VIX impact on DHRN turns negative 

in the corn market while it remains positive in the soybeans market. As discussed in the previous 

section, the higher the price volatility, the greater should be the hedging. Therefore, the negative 

impact of DVIX on the DHRN in the corn market does not follow the intuition, however, it is not 

statistically significant. 

 Lastly, the model with added year dummies and the model with added financial crisis 

dummy do not change the impulse responses of DHR to a one-standard deviation shock to the 

DFP regarding to the time length that the statistically significant impact lasts, and its magnitude 

(Appendix A, Figure 12a, Figure 12b, Figure 13a, and Figure 13b) compared to that in the 

model without adding them (Figure 6 and Figure 7). 

 In conclusion, the IRFs from the ordered SVAR model with (i) using an alternative for 

hedge ratio calculation, (ii) added year dummies, (iii) added financial crisis dummy are 

qualitatively robust. Comparing the goodness of fit among those models, the model using DHRN 

has the lowest AIC, HQIC, and SBIC, showing that it has the best performance: the statistically 

significant impact of DFP on DHRN lasts longer in the corn market, stronger in both corn and 

soybeans markets compared to the model with DHR. This result leads to the suggestion of using 

annual crop as a scaling factor for hedge ratio in agricultural commodity markets and using open 

interest as a denominator in calculating hedge ratio in non-agricultural markets. The dummies for 
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capturing the outliers in hedge ratio during 2007-2008 and financial crisis period are not 

necessary as those events are captured in the prices and hedge ratios already. 
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CHAPTER 8: CONCLUSIONS 
 

In this thesis, we examine the role of futures price changes on commercial traders’ 

aggregated net positioning in grains and oilseeds markets via two different approaches: OLS 

regression inspired by an optimal hedging models (Jacobs et al., 2018), and a structural VAR.  

By employing the optimal hedging model to analyze the impact of futures price on 

commercial traders’ aggregated net positioning, we contribute to the literature by assessing the 

usefulness of the DCOT data as a benchmark when examining hedging behavior. In addition, we 

improve the practical application of the theoretical model of optimal hedging to a longer period 

and to a larger commodity market by introducing better proxies for market fundamentals, and an 

alternative for calculating hedge ratio. Particularly, the modified optimal hedging model which 

uses the VIX as measure of price uncertainty eliminates possible issues due to the effects of 

seasonality and USDA announcements on commodity option-implied volatilities. In addition, 

two seasonal dummies that capture seasonalities in the yearly planting and crop insurance 

schedule enhance the timing measure in the model. Furthermore, the newly proposed hedge ratio 

using open interest from DCOT data as a scaling factor has a potential for broader use beyond 

agricultural markets. The SVAR model helps deal with endogeneity issue in investigating the 

effects of futures prices and of the VIX on commercial traders’ aggregate net short positions.  

Both the IRFs retrieved from the SVAR and the OLS regressions show similar results. 

First, The VIX’s effects on commercial hedging decisions need to be further investigated as it is 

seldom significant. Second, the price level is a key driver of commercial traders’ behavior in 

grains and oilseeds markets, shedding a light on possibly speculative behavior by commercial 

traders.  Both market participants and policy makers can benefit from our thesis’ findings. 
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Figure 8a. Weekly Hedge Ratio, Corn, 01/2007-12/2019, Hedge Ratio Calculated by 

Using USDA's Annual Crop (HRN) as a Denominator, and by Using Open Interest 

(HR) as a Denominator

Data source: Bloomberg
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Figure 8b. Weekly Hedge Ratio, Soybeans, 01/2007-12/2019, Hedge Ratio Calculated 

by Using USDA's Annual Crop (HRN) as a Denominator, and by Using Open Interest 

(HR) as a Denominator

Data source: Bloomberg
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Figure 9a. Hedge ratios (in level) of Corn Producers (Hedge Ratio is Calculated by 

Using Open Interest as a Denominator), Pre-harvest Time from 01/2007-08/2019. 

Data Source: Bloomberg
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Axis TitleFigure 9b. Hedge Ratios (in level) of Soybean Producers (Hedge Ratio is Calculated by 

Using Open Interest as a Denominator, Pre-harvest Time from 01/2007-07/2019. 

Data source: Bloomberg
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Figure 10a. Weekly VIX and December Corn IV, 01/2007-9/2019 

Data source: Blomberg
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Figure 10b. Weekly VIX and November Soy IV, 01/2007- 09/2019.  

Data source: Bloomberg

Nov Soy IV VIX



 

 

 
61 

 

Figure 11a. Impulse Response Functions for corn- Structural VAR in first differences with DHRN, 2007-2019 

Note: Figure 11.1 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied 

volatility representing for macroeconomic uncertainty, VIX; the change in corn futures prices, DFP; the change in corn 

producers’ net short position, DHRN. Confidence bands are plotted at 95% level of statistical significance level. The SVAR 

model is estimated using the change in weekly data during pre-harvest time period (from January to August) from 2007-2019 

with variables ordered as follows: VIX, corn futures prices, and Hedge Ratio which is calculated by using annual crop as a 

denominator  

 

 

Figure 11b. Impulse Response Functions for soybeans- Structural VAR in first differences with DHRN, 2007-2019 

Note: Figure 11.2 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied 

volatility representing for macroeconomic uncertainty, VIX; the change in soybeans futures prices, DFP; the change in soybeans 

producers’ net short position, DHRN. Confidence bands are plotted at 95% level of statistical significance level. The SVAR 

model is estimated using the change in weekly data during pre-harvest time period (from January to August) from 2007-2019 

with variables ordered as follows: VIX, soybeans futures prices, and Hedge Ratio which is calculated by using annual crop as a 

denominator  
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Figure 12a. Impulse Response Functions for corn- Structural VAR in First Differences Adding Year Dummies as 

Exogenous Variables, 2007-2019 

Note: Figure 12.1 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied 

volatility representing for macroeconomic uncertainty, VIX; the change in corn futures prices, DFP; and the change in corn 

producers’ net short position, DHR. Confidence bands are plotted at 95% level of statistical significance level. The SVAR model 

is estimated using the change in weekly data during pre-harvest time period (from January to August) from 2007-2019 with 

variables ordered as follows: VIX, corn futures prices, and Hedge Ratio which is calculated by using open interest as a 

denominator. This model includes 4 exogenous variables: two seasonal dummies, and two year-dummies 

 

 

Figure 12b. Impulse Response Functions for soybeans- Structural VAR in First Differences Adding Year Dummies as 

Exogenous Variables, 2007-2019 

Note: Figure 12.2 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied 

volatility representing for macroeconomic uncertainty, VIX; the change in soybeans futures prices, DFP; and the change in 

soybeans producers’ net short position, DHR. Confidence bands are plotted at 95% level of statistical significance level. The 

SVAR model is estimated using the change in weekly data during pre-harvest time period (from January to August) from 2007-

2019 with variables ordered as follows: VIX, soybeans futures prices, and Hedge Ratio which is calculated by using open interest 

as a denominator. This model includes 4 exogenous variables: two seasonal dummies, and two year-dummies 
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Figure 13a. Impulse Response Functions for corn- Structural VAR in First Differences Adding Financial Crisis Dummy 

as Exogenous Variable, 2007-2019 

Note: Figure 13.1 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied 

volatility representing for macroeconomic uncertainty, VIX; the change in corn futures prices, DFP; and the change in corn 

producers’ net short position, DHR. Confidence bands are plotted at 95% level of statistical significance level. The SVAR model 

is estimated using the change in weekly data during pre-harvest time period (from January to August) from 2007-2019 with 

variables ordered as follows: VIX, corn futures prices, and Hedge Ratio which is calculated by using open interest as a 

denominator. This model includes 3 exogenous variables: two seasonal dummies, and financial crisis dummy 

 

 

Figure 13b. Impulse Response Functions for soybeans- Structural VAR in First Differences Adding Financial Crisis 

Dummy as Exogenous Variable, 2007-2019 

Note: Figure 13.2 plots 10-week impulse responses of the SVAR model including the change in S&P 500 option-implied 

volatility representing for macroeconomic uncertainty, VIX; the change in soybeans futures prices, DFP; and the change in 

soybeans producers’ net short position, DHR. Confidence bands are plotted at 95% level of statistical significance level. The 

SVAR model is estimated using the change in weekly data during pre-harvest time period (from January to August) from 2007-

2019 with variables ordered as follows: VIX, soybeans futures prices, and Hedge Ratio which is calculated by using open interest 

as a denominator. This model includes 3 exogenous variables: two seasonal dummies, and a financial crisis dummy 
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APPENDIX B: TABLES 
 

Table 14. Summary Statistics, Corn, Pre-Harvest Period, 2007-2019 

SUMMARY STATISTICS_CORN 

  HR DHR HRN DHRN DVIX DFP 

Median 0.2041 0.0068 0.1011 0.0033 -0.0019 -0.0004 

Mean 0.2203 0.0102 0.1131 0.0049 0.0005 -0.0013 

Standard deviation 0.1139 0.0130 0.0626 0.0068 0.0289 0.0376 

Variance 0.0130 0.0002 0.0039 0.00005 0.0008 0.0014 

Min 0.0453 -0.0191 0.0208 -0.0104 -0.1440 -0.1466 

Max 0.5710 0.0707 0.3078 0.0446 0.2223 0.1238 
 

Table 15. Summary Statistics, Soybeans, Pre-Harvest Period, 2007-2019 

SUMMARY STATISTICS_SOYBEANS 

  HR DHR HRN DHRN DVIX DFP 

Median 0.1690 0.0095 0.1429 0.0079 -0.0022 0.0012 

Mean 0.2134 0.0146 0.1897 0.0121 -0.0006 0.0009 

Standard deviation 0.1405 0.0186 0.1387 0.0168 0.0272 0.0296 

Variance 0.0197 0.0003 0.0192 0.0003 0.0007 0.0009 

Min 0.0188 -0.0255 0.0181 -0.0263 -0.1440 -0.0961 

Max 0.5927 0.1314 0.7387 0.0975 0.1519 0.0852 
 

 

Table 16. Reduced-form VAR Regression Estimates, Corn, Pre-Harvest Period, 2007-2019, Using 

DHRN 

 Equation 

DVIX DFP DHRN 

Intercept 0.001 

(0.003) 

-0.006* 

(0.004) 

0.004*** 

(0.001) 

DVIX{1} -0.263*** 

(0.051) 

0.068 

(0.068) 

-0.009 

(0.010) 

DFP{1} -0.019 

(0.039) 

0.003 

(0.052) 

0.033*** 

(0.008) 

DHRN{1} 0.529* 

(0.272) 

0.901** 

(0.366) 

0.443*** 

(0.053) 

DVIX{2} -0.094* 

(0.051) 

0.049 

(0.068) 

-0.005 

(0.010) 

DFP{2} 0.060 

(0.039) 

0.027 

(0.052) 

0.012 

(0.008) 

DHRN{2} -0.329 

(0.268) 

-0.666* 

(0.360) 

0.107** 

(0.052) 
Note: Heteroscedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies are not reported. AIC: -15.81, HQIC: -15.70,  

SBIC: -15.54 
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Table 17. Reduced-form VAR Regression Estimates, Soybeans, Pre-Harvest Period, 2007-2019, 

Using DHRN 

 Equation 

DVIX DFP DHRN 

Intercept -0.004 

(0.004) 

-0.002 

(0.004) 

0.013*** 

(0.002) 

DVIX{1} -0.304*** 

(0.051) 

-0.018 

(0.059) 

0.002 

(0.028) 

DFP{1} -0.013 

(0.051) 

0.016 

(0.059) 

0.081*** 

(0.028) 

DHRN{1} 0.092 

(0.107) 

0.047 

(0.125) 

0.397*** 

(0.060) 

DVIX{2} -0.144*** 

(0.051) 

-0.066 

(0.060 

0.056** 

(0.029) 

DFP{2} 0.033 

(0.050) 

-0.005 

(0.058) 

0.048* 

(0.028) 

DHRN{2} -0.008 

(0.107) 

0.025 

(0.124) 

-0.004 

(0.059) 
Note: Heteroscedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies are not reported. AIC: -14.55, HQIC: -14.43,  

SBIC: -14.25 

 

 

Table 18. Reduced-form VAR Regression Estimates, Corn, Pre-Harvest Period, 2007-2019, Adding 

Year Dummies as Exogenous Variables 

 Equation 

DVIX DFP DHR 

Intercept 0.002 

(0.003) 

-0.005 

(0.004) 

0.011*** 

(0.001) 

DVIX{1}      -0.269*** 

(0.051) 

0.055 

(0.069) 

-0.009 

(0.020) 

DFP{1} -0.010 

(0.038) 

0.033 

(0.051) 

0.060*** 

(0.015) 

DHR{1} 0.193 

(0.135) 

0.103 

(0.182) 

0.324*** 

(0.054) 

DVIX{2} -0.095* 

(0.051) 

0.039 

(0.069) 

0.010 

(0.020) 

DFP{2} 0.072* 

(0.038) 

0.044 

(0.051) 

0.036** 

(0.015) 

DHR{2} -0.192 

(0.133) 

-0.125 

(0.180) 

0.081 

(0.053) 
Note: Heteroskedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies and year dummies are not reported. AIC: -14.29, 

HQIC: -14.16, SBIC:-13.97 
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Table 19. Reduced-form VAR Regression Estimates, Soybeans, Pre-Harvest Period, 2007-2019, 

Adding Year Dummies as Exogenous Variables 

 Equation 

DVIX DFP DHR 

Intercept -0.0002 

(0.004) 

-0.0004 

(0.004) 

0.022*** 

(0.002) 

DVIX{1} -0.303*** 

(0.051) 

-0.017 

(0.059) 

-0.028 

(0.030) 

DFP{1} -0.002 

(0.048) 

0.024 

(0.056) 

0.041 

(0.029) 

DHR{1} 0.030 

(0.094) 

-0.007 

(0.109) 

0.314*** 

(0.056) 

DVIX{2} -0.139*** 

(0.051) 

-0.067 

(0.060) 

0.070** 

(0.031) 

DFP{2} 0.048 

(0.048) 

0.002 

(0.056) 

0.069** 

(0.028) 

DHR{2} -0.094 

(0.093) 

-0.002 

(0.108) 

-0.048 

(0.055) 
Note: Heteroskedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies and year dummies are not reported. AIC: -14.29, 

HQIC: -14.15, SBIC: -13.93 

 

 

 

 

Table 20. Reduced-form VAR Regression Estimates, Corn, Pre-Harvest Period, 2007-2019, Adding 

Financial Crisis Dummy as an Exogenous Variable 

 Equation 

DVIX DFP DHR 

Intercept 0.002 

(0.003) 

-0.004 

(0.004) 

0.011*** 

(0.001) 

DVIX{1} -0.275*** 

(0.051) 

0.064 

(0.069) 

-0.010 

(0.020) 

DFP{1} -0.006 

(0.038) 

0.031 

(0.051) 

0.060*** 

(0.015) 

DHR{1} 0.183 

(0.134) 

0.111 

(0.182) 

0.324*** 

(0.054) 

DVIX{2} -0.101** 

(0.051) 

0.047 

(0.069) 

0.009 

(0.020) 

DFP{2} 0.071* 

(0.038) 

0.047 

(0.051) 

0.035** 

(0.015) 

DHR{2} -0.184 

(0.133) 

-0.130 

(0.180) 

0.082 

(0.053) 
Note: Heteroskedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies financial crisis dummy are not reported. AIC: -14.32, 

HQIC: -14.21, SBIC: -14.02 
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Table 21. Reduced-form VAR Regression Estimates, Soybeans, Pre-Harvest Period, 2007-2019, 

Adding Financial Crisis Dummy as an Exogenous Variable 

 Equation 

DVIX DFP DHR 

Intercept 0.0001 

(0.004) 

0.0005 

(0.004) 

0.022*** 

(0.002) 

DVIX{1} -0.301*** 

(0.051) 

-0.015 

(0.059) 

-0.029 

(0.030) 

DFP{1} 0.002 

(0.048) 

0.023 

(0.056) 

0.040 

(0.029) 

DHR{1} 0.026 

(0.094) 

-0.003 

(0.109) 

0.316*** 

(0.056) 

DVIX{2} -0.136*** 

(0.051) 

-0.065 

(0.060) 

0.069** 

(0.031) 

DFP{2} 0.053 

(0.048) 

0.0004 

(0.056) 

0.067** 

(0.028) 

DHR{2} -0.095 

(0.093) 

0.001 

(0.108) 

-0.048 

(0.055) 
Note: Heteroskedasticity-robust standard errors are in parentheses. *, **, and *** denote significance at the 10%, 

5% and 1% levels. Coefficient estimates for seasonal dummies are not reported. AIC: -14.30, HQIC: -14.17,  

SBIC: -13.97 


