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Abstract

For a pseudo-Anosov homeomorphism f on a closed surface of genus g ≥ 2, for which the entropy is on the

order 1
g (the lowest possible order), Farb-Leininger-Margalit showed that the volume of the mapping torus

is bounded, independent of g. We show that the analogous result fails for a surface of fixed genus g with

n punctures, by constructing pseudo-Anosov homeomorphism with entropy of the minimal order logn
n , and

volume tending to infinity.
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Chapter 1

Introduction

In this thesis we consider pseudo-Anosov homeomorphims f :S → S of a surface S = Sg,n of genus g with n

punctures; see section 2.1 for definitions. The dilatation λ(f) measures the growth rate for lengths of curves

on S under iteration of f . Let lg,n = min{log(λ(f))|f : Sg,n → Sg,n} denote the logarithm of the minimal

dilatation of a pseudo-Anosov f on an orientable surface Sg,n with genus g and n punctures, that is, the

minimal topological entropy. The value of l(g, n) is known in a few cases.

l1,1 = l0,4 = log(
3 +
√

5

2
).

l2,0 = l0,6 = the largest root of x4 − x3 − x2 − x+ 1.

See [HS07].

l1,2 = largest root of x4 − 2x3 − 2x+ 1.

See [CH08].

When n = 0, Penner gives both upper bounds and lower bounds for lg,0.

Theorem 1 (Penner). For any g ≥ 2,

log 2

12g − 12
< lg,0 <

log 11

g
.

See [Pen91]. These bounds have been improved since Penner’s original work. The upper bound is

improved by Bauer [Bau92] to log 6
g , by Hironaka and Kin [HK06a] to log(2+

√
3)

g . See also [Min06]. Aaber,

Dunfield, Hironaka, Kin and Takasawa [AD10, KT13, Hir10] also improved the upper bound.

Theorem 2 (Aaber-Dunfield, Hironaka, Kin-Takasawa).

lim sup
g→∞

glg,0 ≤ log(
3 +
√

5

2
)

To better understand where minimal dilatation pseudo-Anosov homeomorphism come from, in [FLM11],
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the authors consider the set

ΨL = {f : Sg,0 → Sg,0|f is pseudo-Anosov, log(λ(f)) ≤ L

g
}.

They show that for any L > 0 there exists finite number of hyperbolic 3-manifolds M1, . . . ,Mn, such that for

each f ∈ ΨL, the mapping torus Mf of f is obtained by Dehn fillings on some Mi. See [FLM11, Corollary

1.4]. As a consequence, the volume of Mf is bounded by a constant depending only on L; see [FLM11,

Corollary 1.5]. See also [Ago11, KM18, BB16].

In [FLM11], for any P ≥ 1, the set of small dilatation pseudo-Anosov homeomorphisms is defined as:

ΨP = {f : S → S|χ(S) < 0, f is pseudo-Anosov, λ(f) ≤ P
1

|χ(S)| }.

Let S◦ ⊂ S be the surface obtained by removing all the singularities. Then let Ψ◦P be the set

Ψ◦P = {f |S◦ : S◦ → S◦|(f : S → S) ∈ ΨP }.

Theorem 3 (Farb-Leininger-Margalit). The set of homeomorphism classes of mapping tori of elements of

Ψ◦P is finite.

Corollary 1 (Farb-Leininger-Margalit). For any P > 1 there exists finite number of hyperbolic 3-manifolds

M1, . . . ,Mn, such that for each f ∈ ΨP , the mapping torus Mf of f is obtained by Dehn fillings on some

Mi.

For punctured surfaces of a fixed genus, Tsai [Tsa09] proved that lg,n has a different asymptotic behavior.

Theorem 4 (Tsai). For any fixed g ≥ 2, for all n ≥ 3, there is a constant cg ≥ 1 depending on g such that

log n

cgn
< lg,n <

cg log n

n
.

Yazdi [Yaz18a, Yaz18b] improved the lower bound to C(α)
g2+α

logn
n for any positive real number α, where

C(α) is a positive constant. Valdivia [Val12] showed that given any rational number r, the asymptotic

behavior of lg,n along the ray defined by g = rn is

log(lg,n) � 1

|χ(Sg,n)|
,

where χ(Sg,n) is the Euler characteristic of Sg,n.
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.

For fixed g ≥ 2, n ≥ 0, let

Ψg,L = {f : Sg,n → Sg,n|f is pseudo-Anosov, log(λ(f)) ≤ L log n

n
}.

We show that the analogue of the results of [FLM11] fail for Ψg,L. Specifically, we prove the following.

Main Theorem. For any fixed g ≥ 2, and L ≥ 162g, there exists a sequence {Mfi}∞i=1, with fi ∈ Ψg,L, so

that lim
n→∞

Vol(Mfi)→∞.

As a consequence, we have the following.

Corollary 2. For any g ≥ 2, there exists L such that there is no finite set Ω of 3-manifolds so that for all

Mf , f ∈ Ψg,L are obtained by Dehn filling on some M ∈ Ω.

The construction in the proof of the Main Theorem is based on the example in [Tsa09] of fg,n : Sg,n → Sg,n

with

log(λ(fg,n)) <
cg log n

n
.

But for each g, one can show that {Mfg,n}∞n=1 are all obtained by Dehn fillings on a finite number of 3-

manifolds, so we have to modify this construction. See also examples constructed by Kin-Takasawa [KT13].

The idea is to compose fg,n with homeomorphisms supported in a subsurface of Sg,n that become more and

more complicated as n gets larger. This has to be balanced with keeping the stretch factor bounded by a

fixed multiple of logn
n .

In Section 2 we recall some of the background we will need on fibered 3-manifold, hyperbolic geometry

and Dehn surgery. In Section 3 we state Theorem 13, which is a version of the Main Theorem for punctured

spheres based on a construction of [HK06b], then prove the Main Theorem based on that. In Section 4

we give the complete proof of Theorem 13 by giving the construction of the sequence {Mfi}∞i=1, which are

obtained by cutting open and gluing in an increasing numbers of copies of a certain manifold with totally

geodesic boundary, then applying Dehn fillings.

The motivation is to try to prove analogue of Theorem 3. According to Theorem 1, the set ΨL contains

pseudo-Anosov on all closed surfaces of genus at least 2 when L is big enough. In particular, this set gives all

the minimizers. Then Theorem 3 tells us the set is determined by a finite list of 3-manifolds. In particular,

the minimizers are determined by the finite list. We hope the minimizers for punctured surfaces are also

determined by a finite list of 3-manifolds, but Main Theorem says the direct analogue of Theorem 3 does

not hold. We might hope that restricting to a smaller set might get rid of the problem. This lead us to the
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following question.

Question. If we only consider the minimizers of the entropy, is the set determined by a finite list of 3-

manifolds?
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Chapter 2

Background

2.1 Pseudo-Anosov homeomorphisms

A measured foliation on a closed surface Sc is a foliation F with singularities, together with a transverse

measure that is invariant under holonomy. In the neighborhood of a nonsingular point, there exist a chart

u : U → R2
x,y, such that u−1(y = constant) consists of the leaves of F|U . If Ui ∩Uj is nonempty, there exist

transition funtions uij of the form

uij(x, y) = (hij(x, y), cij ± y)

where cij is a constant. In these charts, the transverse measure is given by |dy|.

Let S be a closed surface Sc minus a finite number of points. We sometimes consider S as a compact

surface with boundary components, and will confuse punctures with boundary components when convenient

(the former obtained from the latter by removing the boundary). The following theorem is from [FLP12].

Theorem 5 (Thurston). Any diffeomorphism f on S is isotopic to a map f ′ satisfying one of the following

conditions:

(i) f ′ has finite order.

(ii) f ′ preserves a disjoint union of essential simple curves.

(iii) There exists λ > 1 and two transverse measured foliations Fs and Fu, called the stable and unstable

foliations, respectively, such that

f ′(Fs) = (1/λ)Fs, f ′(Fu) = λFu.

The three cases are called periodic, reducible and pseudo-Anosov respectively. The number λ = λ(f)

in case (iii) is called the stretch factor of f . The topological entropy of pseudo-Anosov homeomorphism

f : S → S is log(λ(f))
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2.2 Fibered 3-manifolds

Let S be a compact surface properly embedded in a compact 3-manifold M . For any disk D embedded in M

such that D ∩ S = ∂D and the intersection is transverse, if ∂D bounds a disk in S and S is not a 2-sphere,

then S is incompressible. A 3-manifold M is atoroidal if it does not contain an embedded, non-boundary

parallel, incompressible torus.

Let M be the interior of a compact, connected, orientable, irreducible, atoroidal 3-manifold that fibers

over S1 with fiber S ⊂M and monodromy f . That is, M is the mapping torus of f :

M = Mf = S × [0, 1]/(x, 1) ∼ (f(x), 0).

Then S is a closed orientable surface with a finite number of punctures and negative Euler characteristic,

and f is pseudo-Anosov with a unique expanding invariant foliation up to isotopy. Associated to (M,S) we

also have

(i) F ⊂ H1(M,R), the open face of the unit ball in Thurston norm with [S] ∈ (F · R+). See [Thu86].

(ii) A suspension flow ψ on M , and a 2-dimensional foliation obtained by suspending the stable and

unstable foliation of f . See [Fri79].

F is called a fibred face of the Thurston norm ball. The segments

x× [0, 1] ⊂ S × [0, 1]

glued together in Mf are leaves of the 1-dimensional foliation Ψ of M, the flow lines of ψ.

The Thurston norm measures the minimal complexity of an embedded surface in a given cohomology

class. For an integral cohomology class ξ, the norm is given by:

||ξ||T= inf{χ(S0) : (S, ∂S) ⊂ (S, ∂M) is dual to ξ}

where S0 ⊂ S excludes any S2 or D2 components of S. The unit ball of the Thurston norm is a polyhedron

with rational vertices. Any fiber minimizes |χ(S)| in its cohomology class. Moreover, [S] belongs to the cone

F · R over an open fibered face F of the unit ball in the Thurston norm.

The following theorem is from [Fri79] and [Fri82].

Theorem 6 (Fried). Let (M,S), F and Ψ be as above. Then any integral class in F · R+ is represented

by a fiber S′ of a fibration of M over the circle which can be isotoped to be transverse to Ψ, and the first
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return map of ψ coincides with the pseudo-Anosov monodromy f ′, up to isotopy. Moreover, if S′ ⊂ M is

any orientable surface with S′ t Ψ, then [S′] ∈ F · R+.

If f : S → S is pseudo-Anosov on a surface with punctures, and G ⊂ S is a spine, then we can homotope

f to a map g : S → G so that g|G: G → G a graph map; that is, g sends vertices to vertices and edges to

edge paths. The growth rate of g|G is the largest absolute value of any eigenvalue of the Perron-Frobenious

block of the transition matrix T induced by g, and is an upper bound for λ(f), see [BH95].

The Perron-Frobenius Theorem tells that largest eigenvalue of a Perron-Frobenius matrix is bounded

above by the largest row sum of the matrix. Recall that associated to a non-negative integral matrix

T = {eij}, 1 ≤ i, j ≤ n is a directed graph Γ, where {V1, V2, . . . , Vn} is the vertex set of Γ corresponding

to the columns/rows of T , and eij represents the number of edges pointing from Vi to Vj . We have the

following proposition. See [Gan59].

Proposition 1. Let Γ be the directed graph of an integral Perron-Frobenius matrix T with eigenvalue λ.

Let N(Vi, l) be the number of length-l paths emanating from vertex Vi in Γ. Then λl ≤ maxiN(Vi, l).

The case when f : Sg,0 → Sg,0 is mentioned in introduction.

2.3 Hyperbolic geometry

Hyperbolic n-space is the maximally symmetric, simply connected, n-dimensional Riemannian manifold with

a constant negative sectional curvature. A hyperbolic 3–manifold is a 3-manifold equipped with a hyperbolic

metric, that is a Riemannian metric which has all its sectional curvatures equal to -1.

Theorem 7 (Thurston). The mapping torus of a surface automoprhism f : S → S is a hyperbolic 3-manifold

if and only if f is isotopic to a pseudo-Anosov homeomorphism.

A

B

C

D

A

B

C

D
← →

Figure 2.1: Left: A0. Right: an ideal hyperbolic octahedron.
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δ0

δ1

Figure 2.2: Left: Σ4. Middle: A0. Right: A.

δ1

δ0

Figure 2.3: Left: Σ4. Middle: A0. Right: A.

The following construction is given by Agol in [Ago03]. Let Σ4 denote the 4-puntured sphere, and let

δ0, δ1 ⊂ Σ4 be two circles on Σ4 shown in Figure 2.2. Let A0 be Σ4 × [0, 1]\(δ0 × {0} ∪ δ1 × {1}). Let V8

denote the volume of a regular, ideal, hyperbolic octahedron.

As shown in Figure 2.1, A0 can be obtained by doubling the middle figure across the four faces A, B, C,

and D, and removing the marked edges. If we crush all the marked edges in the middle figure, we get an

octahedron on the right of Figure 2.1. Removing the vertices of the octahedron is the same as removing the

marked edges, so we can obtain A0 by doubling an ideal octahedron over the four faces A, B, C, and D. We

view the octahedron as a regular ideal octahedron. Note that a regular ideal octahedron is an octahedron in

H3
with vertices at infinity, and the intersection with H3 is a convex polyhedron. All its dihedral angles are

π/2. When we glue the corresponding 4 faces, the rest 4 faces, which are not glued, will be formed in the

way that the diheral angle is π. Thus, the faces which are not identified form a totally geodesic boundary

of A0, which is a union of thrice-punctured spheres.

Proposition 2 (Agol). A0 has complete hyperbolic metric with totally geodesic boundary, with Vol(A0) =

2V8.
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For our purpose, it is more useful to draw the 4-punctured sphere as a 3-punctured disk, then A and A0

are manifolds shown in Figure 2.2. Let A denote the manifold obtained by isometrically gluing two copies

of A0 along Σ4 × {0}\(δ0 × {0}), then we have

A ∼= Σ4 × [0, 1]\(δ1 × {0, 1} ∪ δ0 × {1/2})

and A is a hyperbolic 3-manifold with totally geodesic boundary and

Vol(A) = 4V8

.

We will also need the following theorem, due to Adams [Ada85].

Theorem 8 (Adams). Any properly embedded incompressible thrice-punctured sphere in a hyperbolic 3-

manifold M is isotopic to a totally geodesic properly embedded thrice-punctured sphere in M .

From this theorem one easily obtains the following.

Corollary 3. A disjoint union of pairwise non-isotopic properly embedded thrice-punctured spheres in a

hyperbolic 3-manifold M are simultaneously isotopic to pairwise disjoint totally geodesic thrice-punctured

spheres in M .

2.4 Dehn surgery

Let M be a compact 3-manifold with boundary ∂M = ∂1Mt. . .t∂kM so that the interior of M is a complete

hyperbolic manifold, where ∂iM is a torus for any 1 ≤ i ≤ k. Choose a basis µi, νi for H1(∂iM) = π1(∂iM).

Then the isotopy class of any essential simple closed curve βi on ∂iM , called a slope, is represented by

piµi + qiνi in H1(∂iM) for coprime integer pi, qi. Since we do not care about orientation of βi, we use the

notation βi = pi
qi
∈ Q ∪ {∞}. Given β = (β1, . . . , βk), where each βi is a slope, let Mβ denote the manifold

obtained by gluing a solid torus to each ∂iM , where βi is the slope ∂iM identified with the meridian of the

corresponding solid torus. We call β = {β1, . . . , βk} the Dehn surgery coefficients.

The following is from [Thu78, NZ85].

Theorem 9 (Thurston). If the interior of M is a complete hyperbolic 3-manifold of finite volume and

β = {β1, . . . , βk} are the Dehn surgery coefficients, then for all but finitely many slopes βi, for each i, Mβ
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is hyperbolic and Vol(Mβ) < Vol(M). If βn = (βn1 , . . . , β
n
k ), with {βni }∞n=1 an infinite sequence of distinct

slopes on ∂iM for each 1 ≤ i ≤ n, then lim
n→∞

Vol(Mβn)→ Vol(M).

Theorem 10 (Thurston). If M is a compact irreducible atoroidal Haken manifold whose boundary has zero

Euler characteristic, then the interior of M has a complete hyperbolic structure of finite volume.

If a ∈ Hk(M ;R) is any homology class, then the Gromov norm of a is defined to be the infimum of the

L1-norms of cycles representing a.

||a||= inf{||z|| | z is a singular cycle representing a}

There’s a natural extension of the norm on the chain group to the relative chain group. So there’s a natual

extension of the Gromov norm to the relative homology class for some a ∈ Hk(M ;A), where A ⊂ M a

submanifold.

||a||= inf{||z|| | z is a relative cycle representing a}

Let ||[M ]|| denote the Gromov norm of the fundamental class [M ] ∈ H3(M ; ∂M). Then we have the following

two theorems. See [Thu78, Theorem 6.2, Proposition 6.5.2, Lemma 6.5.4]

Theorem 11 (Gromov). If the interior of M admits a complete hyperbolic metric of finite volume, then

||[M ]||= Vol(M)

v3
.

Theorem 12 (Thurston). For any Dehn fillings with Dehn surgery coefficients β = {β1, . . . , βk},

||[Mβ ]||≤ ||[M ]||.

We will be interested in a special case of Dehn surgery in which M is obtained from a mapping torus

Mf = S × [0, 1]/(x, 1) ∼ (f(x), 0)

by removing neighborhoods of disjoint curves α1, α2, . . . , αk, αi ⊂ S × {ti}, for some

0 < t1 < t2 < · · · < tk < 1.

10



Then we can choose basis µi, νi of H1(∂iM), so that if βi = 1
ri

, then

Mβ = M
T
rk
αk
T
rk−1
αk−1

...T
r1
α1
f
,

where Tαi denotes the Dehn twist along αi in S. See, for example, [Sta78].
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Chapter 3

Reduction

Consider the sphere with n+m+ 2 puntures S0,n+m+2. We can distribute the punctures as shown in Figure

3.1. Let x, y and z be the three of the punctures as shown. Let X,Y ⊂ S0,n+m+2 be two embedded punctured

disks centered at x and y as shown in Figure 3.1. There are n punctures in X arranged around x, m punctures

in Y arranged around y, with one puncture shared in X and Y . Let pn denote the homeomorphism which is

supported inside X, fixes x and rotates the punctures around x by one counterclockwise. Let qm denote the

homeomorphism which is supported inside Y , fixes y and rotates the punctures around y by one clockwise.

For any n,m > 6, let fn,m : S0,n+m+2 → S0,n+m+2 be fn,m = qmpn. These homeomorphisms fn,m were

constructed by Hironaka and Kin in [HK06b] and were shown to be pseudo-Anosov.

Let V1, V2, . . . , Vn be the punctures in X, starting with V1 in X ∩Y , ordered counter-clockwise, as shown

in Figure 3.1. Let Σ0 ⊂ S0,n+m+2 be the subsurface containing 3 consecutive punctures {Vi, Vi+1, Vi+2},

with ∂Σ0 = β as shown in Figure 3.1. Let α, γ ⊂ Σ0 be the two essential closed curves shown.

We will consider the composition hf3
n,m, where h : S0,n+m+2 → S0,n+m+2 is a homeomorphism supported

in Σ0. Note that if we replace h by pknhp
−k
n for 1 ≤ k ≤ n− (i+ 3), which is supported on pkn(Σ0), then qm

commutes with pjnhp
−j
n for 1 ≤ j ≤ k. So we have

fkn,mhf
3
n,mf

−k
n,m = fk−1

n,m qm(pnhp
−1
n )pnf

−k+3
n,m

= fk−1
n,m (pnhp

−1
n )qmpnf

−k+3
n,m

= fk−1
n,m (pnhp

−1
n )f−k+4

n,m

= fk−2
n,m qm(p2

nhp
−2
n )pnf

−k+4
n,m

= . . .

= qm(pknhp
−k
n )pnf

2
n,m

= (pknhp
−k
n )f3

n,m

That is, hf3
n,m is conjugate to pknhp

−k
n f3

n,m. In particular, we can assume Σ0 surrounds Vi, Vi+1, Vi+2 for
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any 2 ≤ i ≤ n− 5 at the expense of conjugation which does not affect stretch factor or the homeomorphism

type of mapping torus. For this reason, in the following statements, Σ0 is allowed to surround the punctures

Vi, Vi+1, Vi+2 for any 2 ≤ i ≤ n− 5.

x y

z

pn qm

Σ1

X Y

Σ0

τ1

τ2

β

α

γ

V1

V2

V3
V4

V5
V6

V7

V8 V9

V10
V11

V12

Figure 3.1: S0,n+m+2 for n = m = 12

Theorem 13. For any k = 1, 2, 3, . . . , there exists Bk such that if

hk = Tu1
α T v1γ . . . Tuk−1

α T vk−1
γ Tukα T vkβ

where ui, vi ≥ Bk for all i, then for hkfn,m : S0,n+m+2 → S0,n+m+2, we have

(1) hkf
3
n,m is pseudo-Anosov.

(2) Vol(Mhkf3
n,m

) ≥ 3kV8.

(3) there exists N = Nk, such that if n = m > N , then

log λ(hkf
3
n,n) ≤ 54

log(2n+ 2)

2n+ 2
.
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Assuming this theorem, we prove the Main Theorem from the introduction.

Main Theorem. For any fixed g ≥ 2, and L ≥ 162g, there exists a sequence {Mfi}∞i=1, with fi ∈ Ψg,L, so

that lim
n→∞

Vol(Mfi)→∞.

Proof. For any g ≥ 2, [Tsa09] gives a construction of an appropriate cover π : Sg,s → S0,n+m+2 such that

s = (2g + 1)(n+m+ 1) + 1 and

fn,m : S0,n+m+2 → S0,n+m+2,

lifts to Sg,s. Moreover, the construction of the cover is the cover corresponding to the kernel of a homomor-

phism from π1(S0,n+m+2) to a finite group so that all the peripheral loops around all punctures, except x,

y and z, are trivial. Thus, each of α, β, γ lifts to Sg,s, so hk lifts.

Let f̃k : Sg,s → Sg,s be the lift of hk ◦ f3
n,m. Then log(λ(f̃k)) = log(λ(hkf

3
n,m)). Also by Theorem 13, for

n = m > Nk,

log(λ(f̃k)) ≤ 54
log(n+m+ 2)

n+m+ 2
< 54

log(s)
s−1
2g+1 + 1

< 162g
log s

s
.

The first inequality comes from Theorem 13. The second and third hold for all g ≥ 2 since s > n + m + 2

and s−1
2g+1 + 1 > s

3g . Furthermore, Vol(M
f̃k

) = deg(π)Vol(Mhkf3
n,m

) ≥ 3kV8deg(π). Therefore, {M
f̃k
}∞k=1 is

contained in the set for the theorem and Vol(M
f̃k

)→∞.

Corollary 1. For any g ≥ 2, there exists L such that there is no finite set Ω of 3-manifolds so that all Mf ,

f ∈ Ψg,L, are obtained by Dehn filling on some M ∈ Ω.

Proof. Let L ≥ 162g. If the finite set Ω exist, then by Theorems 11 and 12,

Vol(Mf ) ≤ v3 max
M∈Ω
{||[M ]||} <∞,

which contradicts the Main Theorem.
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Chapter 4

Proof of Theorem 13

Now fix some n,m > 6, let f = f3
n,m. Let Mf be the mapping torus.

The proof of the following lemma is almost identical to the proof of [LM86, Theorem B].

Lemma 1. Mf\((α ∪ β)× {1/2}) is hyperbolic.

Proof. Let

Σ = S0,n+m+2 × {1/2},Σ′ = Σ\((α ∪ β)× {1/2}) ⊂Mf .

Let T0 ⊂Mf be an embedded incompressible torus. By applying some isotopy, we can make every component

of T0\Σ′ be an annulus. Any annulus component should either miss no fiber or have boundary components

parallel to α or β, and on opposite sides of some small neighborhood of α or β. Since α and β bound different

number of punctures, a component parallel to α can never connect to a component parallel to β. Also, fk1(α)

will never close up with fk2(α) if k1 6= k2 since f is pseudo-Anosov. By Thurston’s hyperbolization theorem

(see [Thu82, Mor84, Ota96]), Mf\((α ∪ β)× {1/2}) is hyperbolic.

For any k, let Lk ⊂Mf be

Lk = α×
{

2

4k
,

4

4k
, . . . ,

2k + 2

4k

}
∪ γ ×

{
3

4k
,

5

4k
, . . . ,

2k + 1

4k

}
∪ β ×

{
1

4k

}
.

Let N(Lk) denote an tubular neighborhood of Lk and Mk = Mf\N(Lk). We can order the boundary

components of Mk as

∂Mk = ∂1Mk t . . . t ∂2k+2Mk,

where 
∂2iMk = α× { 2i

4k} for any 1 ≤ i ≤ k + 1

∂2i+1Mk = γ × { 2i+1
4k } for any 1 ≤ i ≤ k − 1

∂1Mk = β × { 1
4k}.
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Lemma 2. The interior of Mf\N(Lk) is hyperbolic and

Vol(int(Mf\N(Lk))) ≥ 4kV8.

Proof. Glue k copies of A, top to bottom, to get

Ak ∼= (S0,4 × [0, 1])\
(
α×

{
0

2k
,

2

2k
, . . . ,

2k

2k

}
∪ γ ×

{
1

2k
,

3

2k
, . . . ,

2k − 1

2k

})
,

with the i-th copy identifying with

(
S0,4 ×

[
2i− 2

2k
,

2i

2k

])
\
(
α×

{
2i− 2

2k
,

2i

2k

}
∪ γ ×

{
2i− 1

2k

})
.

By Theorem 8, Ak has four totally geodesic thrice-punctured sphere boundary components, and Vol(Ak) =

4kV8.

Cut Mf\((α ∪ β)× {1/2}) along the two thrice-punctured spheres, i.e. the two regions shown in Figure

4.1. The two thrice-punctured spheres can be assumed to be totally geodesic by Corollary 2. So the cut-

open manifold has four totally geodesic thrice-punctured sphere boundary components. Now glue the top

boundary of Ak to the top of the cut by an isometry, with the marked curves and colored faces glued

correspondingly. Then apply the same to the bottom boundary. After applying an isotopy to adjust the

height, we see that the result is homeomorphic to Mf\N(Lk). Moreover, Ak is isometrically embedded in

Mf\N(Lk). Since Vol(Ak) ≥ 4kV8, we have Vol(Mf\N(Lk)) ≥ 4kV8.

α β

α× {0}

α×
{

2
6

}

α×
{

4
6

}

γ ×
{

1
6

}

γ ×
{

3
6

}

γ ×
{

5
6

}
α× {1}

Figure 4.1: Cut and glue Ak to Mf\((α ∪ β)× {1/2}) when k = 3
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Proposition 3. Given k, there exists Bk, such that if ui, vi > Bk, then hkf is pseudo-Anosov and

Vol(Mhkf ) ≥ 3kV8.

Proof. Let M = Mf\N(Lk). Let β = { 1
vk
, 1
uk
, . . . , 1

v1
, 1
u1
}, then by Theorem 9, Mhkf = Mβ , and when

ui, vi are big enough, the volume is approximatly equal to Vol(Mf\N(Lk)). In particular, if ui, vi are large

enough,

Vol(int(Mhkf )) ≥ Vol(int(Mf\N(Lk)))− kV8 ≥ 3kV8

by Lemma 2.

Lemma 3. For n,m > 3, Mhkf3
n,m

∼= Mhkf3
n+3,m

∼= Mhkf3
n,m+3

.

Proof. By Proposition 1, Mo = Mhkf = Mhkf3
n,m

is hyperbolic. Let Σ1 be the subsurface in S0,n+m+2 shown

in Figure 3.1 containing 3 punctures, and let τ1 and τ2 denote the two components of ∂Σ1, where τ1 and τ2

are two arcs connecting x and z, with τ2 = f3
n,m(τ1).

Construct a surface Σ2 ⊂M as follows. First, define a map

η = (η1, η2) : Σ1 → S × [0, 1]

so that η(Σ1) ∩ S × {0} = τ2 × {0}, η(Σ1) ∩ S × {1} = τ1 × {1} and η1 is the inclusion of Σ1 into S. Since

f(τ1) = τ2, if we project p : S × [0, 1] → Mf , η defines an embedding of Σ1/(τ1 ∼
f
τ2), that is, Σ1 with τ1

glued to τ2 by f . Since η1 is the inclusion, Σ2 = p ◦ η(Σ1/τ1 ∼
f
τ2) is transverse to the suspension flow. By

Theorem 6, [Σ2] ∈ F · R+.

We will define a surface S′ such that [S′] = [S] + [Σ2] in H1(Mf ) as follows. Let Sτ2 denote the surface

obtained by cutting S along τ2. Then Sτ2 has two boundary components, denote τ+
2 , τ

−
2 . Since τ2 = p◦η(Σ1),

and p ◦ η(τ1) = p ◦ η(τ2) = τ2 ⊂ S ⊂Mf , we can construct S′ in Mf by gluing τ+
2 to η(τ2) and τ−2 to η(τ1),

perturbed slightly to be embedded. Then [S′] = [S] + [Σ2] and S′ t Ψ. So S′ is a fiber representing a class

in F ·R+ ⊂ H1(M). By Theorem 6, the first return map of ψ is the monodromy f ′ : S′→ S′. This is given

by

f ′(x) =


η(x) if x ∈ Σ1

f ◦ η−1(x) if x ∈ η(Σ1)

f(x) otherwise

See Figure 4.2. As indicated by Figure 4.3, S′ ∼= S0,n+m+5, and up to conjugation, f ′ = f3
n+3,m. Therefore,
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Mhkf3
n,m

∼= Mhkf3
n+3,m

. Similarly, if we pick another subsurface in Y homeomorphic to Σ0, one can show

Mhkf3
n,m

∼= Mhkf3
n,m+3

.

x y

z

x y

z

τ1

τ2

f(τ1) = τ2

τ−2 τ
+
2 = τ ′2τ1 Σ1

η(Σ1) = Σ2

S × {0}

S × {1}

Σ2

η

η(τ1)

Figure 4.2: Obtain Σ2 from η : Σ1 → S × [0, 1] and S′ from S and Σ2 as shown.

x y

z

Σ1
τ1

τ2

x y

z
τ1

τ2
Σ1

Σ2

Figure 4.3: Left: S. Right: S′

Lemma 4. For fixed k, and fixed ui, vi ≥ Bk (the constant from Proposition 3), there exists R > 0 so that

if n = m ≥ R, then hkf
3
n,n : S0,2n+2 → S0,2n+2 has log λ(hkf

3
n,n) ≤ 54 log 2n+2

2n+2 .

Proof. We can get the spine G as in Figure 4.4 on S0,n+m+2. This is in fact a train track for fn,m, as

described in [HK06b], and hence also f . Then f induces a map g : G→ G.

The graph G contains the loop edges a1, a2, . . . , an, and a′2, a′3, . . . , a′m, which g acts on as a permutation,

and “peripheral” edges b1, b2, . . . , bn, and b′1, b′2, . . . , b′m, which g also acts on them as a permutation. The
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e1

e2
e3

e8

e7

e′1

e′2
e′3

e′7
e′8

a1

a2

a3

a7

a8

b1
b2

b8
b7

a′2

a′3

a′8
a′7

x
yb′1

b′2

b′8
b′7

z

e′4

b′4
b′3

a′4

a′5

a′6

b′5
b′6

e′5

e′6

a6

a5

e6

e5

b6
b5

b4

b3

e4

a4

Figure 4.4: Spine of S0,n+m+2 when n = m = 8

transition matrix has the following form:

T =

 A ∗

0 P


where P corresponds to e1, e2, . . . , en, e′1, e′2, . . . , e′m. The matrix A is a permutation matrix corresponds

to a1, a2, . . . , an, a′1, a′2, . . . , a′m, b1, b2, . . . , bn, b′1, b′2, . . . , b′m. So the largest eigenvalue of T (in absolute

value) will be the largest eigenvalue of P . If we remove all the non-contributing edges, we have

ei → ei+3 for 1 ≤ i ≤ n− 3

e′i → e′i+3 for 1 < i ≤ m− 2

e′1 → e′4e′4e′3e′3e′2e′2e′1e1e2e2e3e3e4

en → e3e3e2e2e1e′1e′2e′2e′3e′3e′4

e′m → e′3e′3e′2e′2e′1e1e2e2e3

en−1 → e2e2e1e′1e′2e′2e′3

e′m−1 → e′2e′2e′1e1e2

en−2 → e1e′1e′2

Assume n = m, we get the directed graph Γ associated to f (or g) and T (with only the contributing

edges) as shown in Figure 4.5. The graph is made of 6 big “loops” going clockwise, together with a subgraph

D. The subgraph D is given by the relations determined by g above, as shown in Figure 4.6, containing one

loop at e′1. For simplicity, the graph of D in Figure 4.6 omits the arrows in between. All edges with omitted

arrows implicitly point from left to right. The edges marked thick mean there are two edges connecting

those vertices. Thus, a path with given length passing through D once will either
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D

e′m−2
e′m−5

e′m−3
e′m−6

e′m−7

e′m−4

en−3
en−6

en−7

en−4

en−5

en−8

. . .

. . .

. . .

. . .

. . .

. . .

e′7
e′10

e′6
e′9e′5
e′8e6

e9e5

e8e7

e10

. . .
. . .
. . .
. . .
. . .

. . .

Figure 4.5: The directed graph Γ associated to f .

e′1 e′4

e′m e′3

e′2e′m−1

en

en−1

en−2

e3

e2

e4

e1

Figure 4.6: D: edges marked thick denote two directed edges between corresponding vertices

• directly go from left to right with length 1.

• go from left to e′1, then wrap around the loop at e′1 some number of times, then go to the right.

• pass e1 and go to e4.

Given two vertices, the number of paths of length n
13 between them which passes through D is therefore at
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most 2.

Now we let Σ0 surround Vbn2 c−1, Vbn2 c, Vb
n
2 c+1, fix hk and consider a graph map gk ' hkf and its

matrix Tk. Note that hk is supported in a neighborhood of Σ0. Let aj , aj+1, aj+2 denote the three loops

wrapping around the three punctures in Σ0. If we remove all the non-contributing edges, after homotopy, hk

sends ej , ej+1, ej+2 to a combination of ej , ej+1, ej+2 without acting on other edges. Thus gk ' hkf sends

ej−3, ej−2, ej−1 to a combination of ej , ej+1, ej+2 and acts on the rest of the edges as g ' f does.

Then we get the directed graph Γk associated to Tk and gk as shown in Figure 4.7. The graph Γk is the

same as Γ away from ej−3, ej−2, ej−1, ej , ej+1, ej+2, and has a subgraph Dk given by hk. The subgraph Dk

is a bipartite graph with 3 vertices in each set, {ej , ej+1, ej+2} and {ej−3, ej−2, ej−1}. All edges of Dk point

from right to left, from {ej−3, ej−2, ej−1} to {ej , ej+1, ej+2}. The number of edges between any two vertices

in different sets is bounded above by some Ek > 0 depending on hk. See Figure 4.8.

Note that the distance between D and Dk is greater than n/6 − 2. Thus, when n = m ≥ 13 any path

of length n
13 can’t intersect D and Dk simultaneously. Thus given any two vertices, the number of paths

of length n
13 between those vertices is bounded above by Nk = max{2, Ek}. Note that the total number of

vertices in Γk is 2n. Thus, the number of paths of length n
13 emanating from a given vertex is thus at most

2nNk. Then for λ0, the leading eigenvalue of Tk, by Proposition 1, we have

log λ0 ≤
log 2nNk

n
13

.

When n > Nk is big enough, we have

log λ0 ≤
log 2nNk

n
13

<
2 log(2n+ 2)

2n
26

<
2 log(2n+ 2)

2n+2
27

= 54
log(2n+ 2)

2n+ 2
.

The third inequality holds when n > 26. Then the result follows since λ(hkf) ≤ λ0.
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D

Dk

e′m−2
e′m−5

e′m−3
e′m−6

e′m−7

e′m−4

en−3
en−6

en−7

en−4

en−5

en−8

. . .

. . .

. . .

. . .

. . .

. . .

e′7
e′10

e′6
e′9e′5
e′8e6

e9e5

e8e7

e10

. . .
. . .
. . .
. . .
. . .

. . .

Figure 4.7: The directed graph Γk associated to hkf .

ej+2

ej+1

ej

ej−1

ej−2

ej−3

Figure 4.8: Dk: each directed edge in between represent ≤ Ek directed edge.

Now we finish Theorem 13. Part (1) is given by Lemma 2. Part (2) is given by Proposition 3. Part (3)

is given by Lemma 4.
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266 (en).

[Fri82] , The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353–371. MR 670741

[Gan59] F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Pub-
lishing Co., New York, 1959. MR 0107649

[Hir10] Eriko Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr.
Geom. Topol. 10 (2010), no. 4, 2041–2060. MR 2728483

[HK06a] Eriko Hironaka and Eiko Kin, A family of pseudo-Anosov braids with small dilatation, Algebr.
Geom. Topol. 6 (2006), 699–738. MR 2240913

[HK06b] , A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006),
699–738. MR 2240913

23



[HS07] Ji-Young Ham and Won Taek Song, The minimum dilatation of pseudo-Anosov 5-braids, Experi-
ment. Math. 16 (2007), no. 2, 167–179. MR 2339273

[KM18] Sadayoshi Kojima and Greg McShane, Normalized entropy versus volume for pseudo-Anosovs,
Geom. Topol. 22 (2018), no. 4, 2403–2426. MR 3784525

[KT13] Eiko Kin and Mitsuhiko Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and
the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2013), no. 2, 411–446. MR 3055592

[LM86] D. D. Long and H. R. Morton, Hyperbolic 3-manifolds and surface automorphisms, Topology 25
(1986), no. 4, 575–583. MR 862441

[Min06] Hiroyuki Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math.
Sci. Univ. Tokyo 13 (2006), no. 2, 95–111. MR 2277516

[Mor84] John W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, The
Smith conjecture (New York, 1979), Pure Appl. Math., vol. 112, Academic Press, Orlando, FL,
1984, pp. 37–125. MR 758464

[NZ85] Walter D. Neumann and Don Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985),
no. 3, 307–332. MR 815482
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