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Abstract

Nanoconfined fluids are ubiquitous and play a prominent role in nature and technological applications.

Understanding the physics of the confined fluids and obtaining atomic-level insights into their unusual

properties is essential to develop and design novel nanofluidic applications related to energy, water, and

health. For systems involving multiple length and time scales, atomistic simulations become forbiddingly

expensive. On the other hand, classical continuum theories fails to accurately describe the fluid properties at

atomic level. Thus, there is a need for a multiscale frame work to maintain the balance between accuracy and

rigor of atomistic simulations and e�ciency of continuum frameworks. In this work, we present an empirical

potential-based quasi-continuum theory (EQT) that provides a framework to seamlessly integrate atomistic

details into a continuum-based models. The main idea in EQT is to bridge the gap between atomistic and

continuum models by incorporating molecular correlations, interatomic interactions, and anisotropic e↵ects

at a continuum level. We show that EQT can be used in classical density functional theory to predict

the thermodynamic properties for confined fluids. Moreover, we present a hierarchical coarse-grain (CG)

approach in which we coarse grain the degrees of freedom of polar liquids from the detailed all-atom (AA)

level to the cheaper particle-based CG level, and to the continuum-based level. Our goal is to devise CG

interaction potentials for polar liquids that reproduces not only the structure but also accurately describe

the dielectric permittivity and its anisotropic nature in the confinement. Using the CG potentials in EQT we

show that neglecting the tensorial form of the dielectric permittivity in the Poisson equation leads to incorrect

screening and orientational polarization profiles near interfaces. Thus, using extensive molecular dynamics

simulations, statistical-mechanical theories and multiscale methods, we study the out-of-plane (z-axis) and

in-plane (x-y) dielectric response of protic and aprotic fluids confined inside slit-like graphene channels. We

find a universal reduction in perpendicular permittivity for all the fluids. Whereas, the parallel dielectric

response of polar liquids is enhanced and is proportional to dipolar correlations and density oscillation next

to the interface. The perpendicular reduction and in-plane enhancement of the dielectric permittivity is

attributed to the favorable in-plane (x-y plane) dipole-dipole electrostatic interactions of the interfacial fluid

layer. These findings have important consequences in, developing accurate coarse-grained force fields and
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improving the solvent-implicit approaches often used in biology and continuum theories such as the Poisson-

Boltzmann (PB) equation for accurate prediction of capacitance in the electric double-layer capacitors.
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Chapter 1

Introduction

1.1 Background and motivation

The physics and properties of confined fluids and their mixtures at length scales ranging from a few angstroms

to micrometers are quite di↵erent than those in the macroscopic scale (bulk) [2–4]. The major reason for

this is the inhomogeneity imposed by the confined environment. The interplay between the wall-fluid and

the fluid-fluid interactions significantly alters the molecular configuration, structural correlations, dielectric

properties, thermodynamic, and dynamical properties of a confined fluid in comparison to its bulk phase.

Density oscillations [5], unusually high pressure regions [6, 7], existence of di↵erent phases [8, 9], anomalous

dielectric properties [10], dynamical anomalies [11, 12], and wetting and capillary phenomena [13] are few

examples of how the presence of an interface can alter the behavior of the fluid at sub-micrometer scales.

Therefore, confined fluids have many applications such as nanofiltration [14–17], drug delivery [18, 19],

enhanced oil recovery [20, 21], nano super-compressors [22], lubrication [23], and geophysical applications [24],

CO2 reduction [25], and energy storage devices [26]. Therefore, to be able to design a novel nanofluidic device,

the foremost step is to study and understand the physics of the confined fluid and obtain atomic-level insights

into their unusual properties. To explain the molecular origin of the various phenomena occurring in the

confinement, in addition to the experiments, both theory and computer simulations are of critical importance.

Moreover, in some cases obtaining a molecular insight from experiments may not be accessible or hindered

by high noise to signal ratio for nanoscale devices [27, 28]; thus, theory and computer simulations become

viable tools to understand the underlying physics.

Over the past years, density functional theory (DFT) and high resolution atomistic simulations such

molecular dynamics (MD) and Monte Carlo (MC) have been used to study interfacial fluids for a variety of

applications in biology, physics, and material science. From these methods one can obtain molecular insights

into the nature of di↵erent interactions and interpret the physical phenomena based on the knowledge of

statistical mechanics. However, in many practical systems the time- and length-scales that need to be studied

typically prohibits the use of fully atomistic simulations. For example in biological systems, the number of

1



water molecules is of the order of several thousands to millions [29], making these methods forbiddingly

expensive to simulate systems involving multiple length scales and timescales ranging from the quantum

to atomic to continuum scales. On the other hand, although classical continuum theories, such as Navier-

Stokes equations, are computationally e�cient, they fail to accurately predict the properties of the atomically

confined systems [30]. Therefore, there is a need to develop a multiscale method that is as fast as classical

continuum methods, and as accurate as atomistic simulations.

In this thesis, we introduce the empirical potential-based quasi-continuum theory (EQT) which is a

multiscale approach that provides a framework to seamlessly integrate atomistic details into a continuum-

based model such as the Nernst-Planck (NP) equation. The main idea in EQT is to calculate the potential

energies in a continuum approximation that involves information developed at the molecular level. For

simple liquids such as Lennard-Jones (LJ), the atomistic information, can be directly incorporated into NP.

On the other hand, for charged or dipolar systems, where electrostatic interaction plays an important role,

bridging the gap between atomistic to the continuum models becomes more complicated. For such systems,

in EQT we adopt a hierarchical coarse-graining approach. The objective of any CG simulation is to lower the

atomistic resolution by representing the system with fewer degrees of freedom, while retaining the necessary

details to capture the quantity of interest. Therefore, using the CG approach, we can bridge the gap between

atomistic and continuum models within the EQT framework.

EQT was developed to predict structure and potential of mean force profiles of Lennard-Jones fluids,

carbon dioxide and water in slit-like channels ranging from few Angstroms to hundreds of nano-meters

width [31–35]. In order to predict properties other than the structure EQT has to be coupled continuum

frameworks other than NP equation. For example, EQT can be coupled with classical function theory (cDFT)

to predict various thermodynamic properties such as adsorption, local pressure tensor, surface tension, and

solvation force of confined fluids [36]. Coupled with Poisson equation, EQT can predict electrolyte density

distributions and electrostatic potential in electric double layers (EDL) [37, 38]. However, recently it has

been shown that accurate representation of electrostatic interactions in EDLs, especially solvent screening

e↵ects, requires a careful evaluation of solvent dielectric permittivity.

Similar to the structural and dynamical changes that a fluid undergoes in the vicinity of an interface,

the dielectric response of the confined fluid is no longer a scalar quantity (as is the case in the bulk) and is

a second ranked tensor exhibiting an anisotropic behavior in di↵erent spatial directions (e.g. perpendicular,

"?, or parallel, "k, to a flat interface) [39, 40]. Such an anisotropic behavior implies a strong preferred

directionality for electrostatic interactions [41] and can be very important in understanding dissociation in

nanoconfinement [42, 43], dielectrophoretic deposition of carbon nanotubes (CNTs) [44], developing accurate
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coarse-grained force fields and improving the solvent-implicit approaches often used in biology and continuum

theories such as the Poisson-Boltzmann (PB) equation [45] for accurate prediction of capacitance in the

electric double-layer capacitors [46].

Therefore, in this thesis, we systematically develop an extended CG dipole model for polar liquids to

capture not only RDF but also di↵usion and bulk dielectric permittivity. We used our model in the EQT-

Poisson framework to predict structure, parallel dielectric permittivity and polarization of water confined in

slit-like channels. Furthermore, using extensive MD simulations we investigate the perpendicular response

of polar liquids under the confinement. We develop a multiscale parallel-plate capacitor model to predict the

perpendicular permittivity of polar liquids for confinement ranging from only few angstrom to micrometer

in width. Finally, we generalize the EQT framework for mixture of confined fluids.

1.2 Thesis overview

The thesis is organized as follows. Chapter 2 describes the fundamentals on the EQT for mixtures. We

introduce EQT as a multiscale method that seamlessly integrate atomistic details into a continuum-based

model such as Nernst-Planck equation. We demonstrate the ability of EQT to accurately predict density

and potential of mean force of confined fluid mixtures by simulating LJ fluid mixtures confined inside slit-like

channels.

In chapter 3, the EQT potentials are used within the classical density functional theory (cDFT) in

order to obtain thermodynamic properties other than the fluid structure. In this chapter, brief overview

of the cDFT frame work is presented. Furthermore, necessary thermodynamic relations are derived and

discussed. Various thermodynamic properties such as density profiles, adsorption, local pressure tensor,

surface tension, and solvation force are predicted for system of confined LJ mixtures by the EQT-cDFT

approach and compared with the MD simulation results.

In chapter 4, we report a multiscale investigation of water inside graphene slit-like channels that extends

from the detailed all-atom level (AA) to the cheaper particle-based coarse-grained (CG) level, and to the

continuum-based level. We have systematically developed an extended dipole-based CG model to reproduce

the RDF, di↵usion coe�cient, and bulk dielectric permittivity of the underlying all-atom(AA) reference

model. Furthermore, we use the empirical EQT framework to predict the density and polarization of water

molecules inside nanoslit channels of various widths. Finally, by using coarse-grained molecular dynamics

(CGMD) and EQT simulations, we comment on the applicability of dipolar-based CG models in reproducing

the structure of water near charged interfaces.
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In chapter 5, using extensive MD simulations, statistical-mechanical theories and multiscale methods,

we study the out-of-plane (z-axis) dielectric response of protic and aprotic fluids confined inside slit-like

graphene channels. We develop a multiscale parallel-plate capacitor model to predict the perpendicular

permittivity of polar liquids for confinement ranging from only few angstrom to micrometer in width.

In chapter 6, we study the parallel (x-y) component of dielectric permittivity. Using statistical-mechanical

theories and MD simulations, we show an explicit relation between the parallel dielectric permittivity, density

variations, and dipolar correlations for protic and aprotic fluids confined in slit-like channels. We analyze

the importance of dipolar correlations on the parallel dielectric permittivity inside large and extreme con-

finements. Finally, the concluding remarks of this thesis work are presented in Chapter 7.
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Chapter 2

Empirical potential-based
quasi-continuum theory (EQT)

2.1 EQT framework

Density is one of the most fundamental variables of confined fluid systems. Unlike the bulk system, the

density of a confined fluid is inhomogeneous. For example, as shown in Fig. 2.1, for a slit-like geometry the

inhomogeniety only exists in the z direction, and thus, the equilibrium particle density distribution can be

obtained via solving the 1-D steady state Nernst-Planck (NP) equation,

d

dz

✓
d⇢

dz
+

⇢

k
B

T

dU

dz

◆
= 0 (2.1)

with boundary conditions

⇢(0) = 0 (2.2a)

⇢(H) = 0 (2.2b)

1

H

Z L

0

⇢(z) dz = ⇢
avg

(2.2c)

where, ⇢(z) and U(z) are the density and total potential of the fluid at location z, respectively, T is the fluid

temperature, k
B

is the Boltzmann constant, H is the channel width, ⇢
avg

is the average density of the fluid

inside the channel, and z-axis is normal to the wall. The solution of Eqs. 2.1 and 2.2 obeys the Boltzmann

distribution,

⇢(z) = ⇢
ref

exp

✓
�U(z)� U

ref

k
B

T

◆
, (2.3)

where ⇢
ref

and U
ref

are the reference density and potential of the fluid, respectively. Due to the fact that

the channel is in equilibrium with a bulk reservoir, the reference point can be taken to be the bulk, where

the fluid thermodynamic properties are known a priori.

Eq. (2.1) relates density to the potential energy. To solve for density, one requires an expression for the

total potential energy. In general, for a confined fluid mixture the total potential per particle at a given
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Figure 2.1: Atomistic (orange color) and continuum (red color) representation of confined fluid. The walls
are represented in green color separated by a distance H and U(z) is the total potential at location z.

location r, is the sum of the wall-fluid and the fluid-fluid potentials (see Fig. 2.2):

Ui(r) = Uwf

i (r) + U↵

i (r) (2.4)

where i = 1, 2, · · · ,m is the label of a fluid component, m is the number of fluid species in the mixture , Uwf

i

and U↵

i are the wall-fluid and fluid-fluid potential of component i, respectively.

!

Wall-Fluid

Fluid-Fluid

"#$%

&(!)

Figure 2.2: Schematic illustration of the total potential U(r) as the sum of the wall-fluid and fluid-fluid
potentials. The red and black colors represent a binary fluid mixture confined in slit-like channel.

The main idea of EQT is to incorporate atomistic details into Ui by using empirical pair potentials, and

continuum representation of the wall and fluid atoms, i.e, their local densities.

2.1.1 Wall-fluid potential

In the continuum approximation, the wall structure is locally modeled as a continuous medium with a

particle density, ⇢
wall

(r) (see Fig. 2.3). Hence, the wall-fluid potential of the ith component is expressed as,

Uwf

i (r) =

Z
⇢
wall

(r0)uwf

i (r)dr0, (2.5)
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where uwf

i (r) is the e↵ective pair potential between the ith fluid component and the wall atom, r and r0 are

the position vectors, and r = |r� r0|. Note that in Eq. 2.5, r = xi+ yj + zk is a general position vector. In

the case of a 1-D slit channel, the system is periodic in x and y dimensions and therefore, we consider only

the z-variations of the properties, i.e., Uwf

i (r) = Uwf

i (x, y, z) = Uwf

i (z) 8x, y.

!

"
#

Fluid “2”

Fluid “1”Wall Atoms

$

!′
&

'()**(!′)

Figure 2.3: Illustration of wall-fluid potential calculation for mixture of confined fluid and the continuum
approximation of wall in the EQT framework

2.1.2 Fluid-fluid potential

Calculating the fluid-fluid interactions is a non-trivial task. In a continuum frame work such as Navier-Stokes

equations, the inter-atomic interactions between the fluid particles are neglected. However, the fluid-fluid

interactions give rise to the finite size, i.e., excluded volume e↵ects, dispersion attraction, and particle-

particle correlations in the fluid medium [47]. Thus, Unlike the wall-fluid potential, a complete description

of an inhomogeneous fluid requires the knowledge of density and pair correlation function, g(2)(r, r0), that

contains the information of particle-particle spatial correlations between the points r and r0. Hence, the

fluid-fluid potential can be expressed as,

U↵

i (r) =
mX

j=1

Z
⇢(r0)u↵

ij(r)g
(2)

ij (r, r0)dr0, (2.6)

where u↵

ij(r) is the e↵ective pair potential between components i and j. For example, in the case of the

binary mixture of fluids (see Fig. 2.4), the total fluid potential at location r for the fluid component ”1” can

be written as follows,

U↵

1

(r) =

Z
⇢
1

(r0)u↵

11

(r)g(2)
11

(r, r0)dr0 +

Z
⇢
2

(r0)u↵

12

(r)g(2)
12

(r, r0)dr0. (2.7)
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Figure 2.4: Illustration of fluid-fluid potential calculation for mixture of confined fluid.

The challenging term in Eq. (2.7) is the pair correlation function, as its inhomogeneity makes the cal-

culations intractable [48]. Thus, in order to proceed further, we need to make an approximation for the

pair correlation function. There are several approximations regarding the pair correlation which can classi-

fied into three categories: Mean field approximation (MFA), fundamental measure theory, and correlation

correction potentials.

Mean field approximation

Mean field approximation has been widely used in the literature due to its simplicity and convenience. Basi-

cally in MFA, the structural correlations are neglected and thus, g(2)(r, r0) is approximated by 1. Therefore,

the fluid-fluid potential, U↵

i (r) is given by

U↵

i (r) =
mX

j=1

Z
⇢(r0)u↵

ij(r)dr
0. (2.8)

Despite its convenience, MFA can be quantitatively problematic and even sometimes qualitatively incor-

rect [49, 50]. In addition, in Eq. 2.8, as r ! 0, the u↵(r) ! 1. Consequently, this causes a numerical

divergence in Eq. 2.8. To address these issues, one can approximate the hard repulsion core of the fluid-fluid

pair potential by a softer function [31–34]. Choosing the soft core is not a trivial task and is numerically

very sensitive to the choice of the excluded volume.

Correlation correction approach

To circumvent the aforementioned problems with MFA and soft core approach, the inhomogeneous pair

correlation function can be approximated by the bulk radial distribution function (RDF), g(r) [51–53].

Except for the system of hard spheres, estimating the bulk RDF for even simple LJ system is not straight
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forward, unless one resort to newly emerging solutions via machine learning [54]. On the other hand, there

exist analytically expressions to obtain the bulk RDF of hard sphere system. A hard sphere fluid is an

important reference system to model the short-range steep repulsion part of the fluid-fluid inter-particle

interactions. One can imagine the system of hard sphere fluid as a pack of billiard balls, impenetrable for

r < d
hs

, where d
hs

is the diameter of the hard sphere, and zero attraction elsewhere, i.e.,

u
hs

(r) =

8
>><

>>:

1, r  d
hs

0, elsewhere

. (2.9)

Although there are no attractive forces between the hardsphere particles, the repulsive forces and thus ex-

cluded volume e↵ects a↵ect the arrangement of the particles. Therefore, we approximate the inhomogeneous

pair correlation function by the RDF of uniform hard spheres at the bulk density, ⇢
b

, i.e,

g(2)(r, r0) ⇡ g
hs

(r). (2.10)

Similar approach to approximate the fluid-fluid correlations has been used by Tang and Wu [55]. To fully

determine the hard sphere radial distribution function, we need to know the packing fraction ⌘ =
⇡⇢

b

d3
hs

6
.

The hard sphere diameter for each fluid component can be calculated based on the relation proposed by

Barker and Henderson [56],

d
hs

(T ) =

Z �

0

(1� exp[�u↵(r)

kBT
]). (2.11)

where � is the length-scale parameter for LJ interaction. The RDFs are obtained using existing analytical

expressions for additive hard sphere mixtures based on Percus-Yevick approximation [57, 58]. However,

the hard sphere RDF approximation may not accurately reproduce the properties of a real fluid and can

be problematic for inhomogenous systems [59]. Therefore, to account for these shortcomings, we add a

correlation-correction potential (CCP), u↵

ccp

, and reformulate Eq. 2.8 as,

U↵

i (r) =
mX

j=1

Z
⇢(r0)

�
u↵

ij(r)g
hs

ij (r) + u↵

ccp,ij(r)
�
dr0. (2.12)
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In EQT, u↵

ccp

is modeled using uniform cubic B-splines as

u↵

ccp

(r) =


1 t t2 t3

�
1

6

2

66666664

1 4 1 0

�3 0 3 0

3 �6 3 0

�1 3 �3 1

3

77777775

2

66666664

cj

cj+1

cj+2

cj+3

3

77777775

, (2.13)

where the separation interval from 0 to the cut-o↵, R↵

cut

, is discretized into n�1 segments, {r
0

, r
1

, r
2

, ..., rn�1

},

of equal size �r = R↵

cut

/(n � 1) such that ri = i ⇥ �r (i 2 (0...n � 1)), {c
0

, c
1

, c
2

, ..., cn+1

} are the spline

knots, the index j satisfies the condition rj  r < rj+1

, and t = r�rj
�r .

Hard sphere functional approach

A hard sphere fluid is an important reference system to model the short-range steep repulsion part of the

fluid-fluid inter-particle interactions. Due to the short-range repulsion each fluid molecule has a volume which

is not accessible to other molecules. This e↵ect is known as the excluded volume e↵ect. The short-range

repulsion plays a dominant role in determining the structure of fluids especially at high densities [60].

Rosenfeld’s fundamental measure theory (FMT) [61] provides a framework to model the excess (over the

ideal gas) free energy of inhomogeneous fluids due to the short-range steep repulsive part of inter-particle

interactions. It accounts for both the excluded volume e↵ects and pair correlations in an inhomogeneous fluid

due to the hard repulsive part of pair interactions. In FMT, the excess hard sphere free energy, F ex

hs

[⇢i(r)],

is calculated using [61–63],

F ex

hs

[⇢i(r)] = k
B

T

Z
� [n↵ (r)] dr, (2.14)

where � is the reduced free energy density, and n↵ are the set of weighted densities that come in the scalar

and the vector forms, and are defined as,

n↵ (r) =
mX

j=1

Z
dr0⇢j (r

0)!j,↵ (r � r0), (2.15)

In Eq. 2.15, !j,↵ are the weight functions for each fluid component that are related to the geometrical

measures (center of mass, surface area, and volume) of a spherical particle of radius R
hs

. The detailed

implementation of the above functionals and the weight functions in a slit channel are given in the appendix

of Ref [37]. Therefore, in the FMT, the repulsive part of the fluid-fluid potential, U↵

hs

(r), can be obtained
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by taking functional derivative of F ex

hs

(Eq. 2.14):

U↵

i,hs(r) = k
B

T

Z
dr0

@� ({n↵})
@n↵

�n↵ (r0)

�⇢i (r)
, (2.16)

and the attractive (dispersion) part is treat via MFA:

U↵

i (r) =
mX

j=1

Z Rff

cut

Rff

min

⇢j(r
0)u↵

ij(r)dr
0, (2.17)

where R↵

min

and R↵

cut

are the inner and outer cut-o↵s for the dispersion part of the pair potential, respectively.

2.2 Results

To demonstrate the EQT approach, we consider a binary mixture of methane and hydrogen molecules

confined in graphene slit channels with varying bulk compositions (see Fig. 2.2). The bulk compositions

considered in this study are 30:70 and 70:30 CH
4

/H
2

– the first is a hydrogen-rich bulk reservoir (xm = 0.3)

and the second is a methane-rich mixture (xm = 0.7) with total bulk density of 17.73 atoms/nm3. Methane

and hydrogen molecules along with graphene carbon atoms are modelled as spherical LJ particles, interacting

via standard 12-6 LJ potential,

u(r) =
C

12

r12
� C

6

r6
, (2.18)

where C
12

and C
6

, are the usual LJ parameters to be specified for each interaction. Table 2.1 summarizes

the LJ parameters used in the MD simulations [64]. MD simulations are performed in canonical ensemble

(NVT) using GROMACS [65] software. A cut-o↵ of 1.524 nm(=4�m, where �m is the length-scale parameter

for LJ interaction between methane molecules) is used for all the interactions. To maintain the temperature

at 300 K, Nosé-Hoover thermostat [66] is used with a time constant of 0.2 ps. All systems are equilibrated

for 2 ns, following a production run of 8 ns with 1 fs time step.

Table 2.1: LJ interaction parameters for methane (CH4) and Hydrogen (H2) molecules and graphene carbon
(C) atom pairs.

C
12

(kJ/mol) C
6

(kJ/mol) � (nm)
C-C 0.22222E-05 0.14385E-02 0.34000
C-H2 0.10652E-05 0.10749E-02 0.31575
C-CH4 0.10318E-04 0.47009E-02 0.36050
H2-H2 0.47563E-06 0.77525E-03 0.29150
H2-CH4 0.52117E-05 0.36058E-02 0.33625
CH4-CH4 0.46085E-04 0.15066E-01 0.38100
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Nano-channels considered in this study, consist of two graphene layers extended in the x � y plane and

separated by a distance H in the z-direction. The lateral dimensions of the sheets are 3.834⇥3.689 nm2 and

the channel width is varied from 2�m to 15�m with an increment of 0.25�m. Periodic boundary condition is

applied in all the directions with an extra vacuum of 20�m in the z direction (perpendicular to the graphene

layers) to avoid slab-slab interactions between periodic images. During the simulation, carbon atoms are

kept frozen, i.e., their positions are not updated; thus, thermal vibrations of graphene layers are suppressed.

Linear superposition approximation (LSA) [67] method is adopted to estimate the number of molecules

inside the channels of width larger than 1.524 nm (=4�m). It has been shown that LSA results in constant

chemical potential except at very small separations (about two molecular diameters) [68]. Hence, for pores

smaller than =4�m, the number of molecules obtained from NVT simulation of slit channels in contact with

bulk mixture [69].

In the EQT simulations, for fluid-fluid and wall-fluid Lennard-Jones potentials the same interaction pa-

rameters as in MD simulations are used. Modeling correlation-correction potential using B-splines (Eq. 2.13)

gives flexibility to the correction function and provides a numerically robust way of obtaining accurate den-

sity profiles. The B-splines knot values for the correlation-correction potentials are optimized based on the

potential of mean force (PMF) matching technique [34], in which the mean-square error in density is min-

imized such that it reproduces the target potential of mean force within the specified tolerance. In PMF

matching, for a slit-like system, where the fluid inhomogeneity is in one direction (z), optimization function

for each fluid component is defined as,

✏i =
1

2H

Z H

0

✓
⇢i,b exp

✓
� Ūi(z)

k
B

T

◆
� ⇢tgti (z)

◆
2

dz (2.19)

where ⇢tgti is the target density of component i, obtained from the reference all-atom MD simulations

and Ūi(z) is defined as

Ūi(z) = Uwf

i (z) + U↵

i (z)� U↵

i,b(z) (2.20)

To obtain the optimal knot values in correction-correlation function, Eq. 2.19 is minimized using the

Newton-Raphson optimization technique. Further details on PMF matching technique and Newton-Raphson

optimization procedure can be found in [34]. There is no limitation to EQT in terms of system complexity. It

has been shown that, EQT can also capture density variation of polar molecules such as water in nanoconfined

channels [34]. In fact, EQT framework provides a tool to use particle-based coarse-grained potentials for

which the electrostatic e↵ects are already embedded.
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In this work, we used the correlation correction potential approach. We optimize methane-methane,

methane-hydrogen, hydrogen-hydrogen, and hydrogen-methane correlation-correction potentials for each

bulk mixture composition. For each bulk mixture composition, PMF-matching-based optimization is per-

formed using the methane and hydrogen density profiles in 6.34 nm channel, which are obtained from the

reference MD simulations. We choose 6.34 nm channel for optimization because it is large enough that the

layered structure and bulk region are well formed for both hydrogen and methane. Fig. 2.5 shows the opti-

mized
�
u↵

ccp

�⇤
for di↵erent fluid-fluid interactions. Although, correlation-correction potentials are optimized

for a reference channel of 6.34 nm width, we find that they are transferable across di↵erent pores at the

same thermodynamic state.

a) b) 

Figure 2.5: Correlation-correction potentials for xm= 0.3 (a) and xm= 0.7 (b) bulk compositions. Solid
lines represent same component interactions: CH

4

�CH
4

(black), H
2

�H
2

(red); Dashed lines stand for cross
interactions: CH

4

� H
2

(black), H
2

� CH
4

(red). The distance between walls, and correlation-correction
potentials are made dimensionless based on hydrogen LJ parameters (�H , ✏H) and represented by z⇤ = z/�H ,
and

�
u↵

ccp,ij

�⇤
= u↵

ccp,ij/✏H , respectively.

Fig. 2.6 depict that the density profiles from the quasi-continuum framework agree well with the MD

simulations. In all cases, the EQT predictions are almost as accurate as MD. Both methane and hydrogen

molecules arrange in layers and exhibit an oscillatory structural behavior due to the interplay of wall-

fluid and fluid-fluid interactions. Well-formed layered structure and a plateau bulk region are observed

for both hydrogen and methane in 6.34 nm channel, which is the largest channel considered in this study

(see Figs. 2.6(a) and 2.6(d)). Layering is enhanced as the bulk composition increases from 0.3 to 0.7 (see

Figs. 2.6(d-f) and 2.6(a-c)). This fact is more evident by comparing number of distinct density layers for

methane and hydrogen in slits of width 3.21nm. For a bulk composition of 0.3, the number of distinct layers

for methane and hydrogen is 6 (see Fig. 2.6(e)) whereas for a bulk mixture of 0.7, methane and hydrogen
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molecules are arranged in 8 layers (see Fig. 2.6(b)). Thus, increasing methane mole fraction enhances the

structural order for both methane and hydrogen. Finally, by comparing the magnitude of the first peak for

methane and hydrogen densities, it is evident that methane molecules are more concentrated in the vicinity

of the wall. We have also tested the accuracy of the EQT at lower temperatures of 200 K and 250 K. We

found that the density profiles from EQT approach are in good agreement with MD simulations.

(H2)
(CH4)

Figure 2.6: Comparison of density profiles of methane and hydrogen from EQT and MD simulations for
di↵erent channel widths in equilibrium with hydrogen-rich (a-c) and methane-rich (d-f) bulk mixtures.

The essential new feature for mixtures is the change in composition due to confinement. Depending on

the width, structure and material, nanopore may become selective towards a certain fluid component in the

mixture. For a binary system, the selectivity (S) is often expressed as [24, 70–72]

S =
xi,p/ (1� xi,p)

xi,b/ (1� xi,b)
(2.21)
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where xi,p and xi,b represent the mole fraction of fluid component i in the pore and the coexisting bulk

phase, respectively. For a slit channel of width H, the average mole fraction for a fluid component i inside

the pore can be calculated from the following equation:

xi,p =

RH

0

⇢i(z)dz
P

2

i=1

RH

0

⇢i(z)dz
(2.22)

Fig. 2.7 shows the selectivity of methane relative to hydrogen at T= 300 K as a function of pore width, for

channels in equilibrium with the hydrogen-rich bulk reservoir (xm = 0.3). It can be seen that the agreement

between the MD and EQT results is good. In Fig. 2.7, S values greater than unity represent that the channel

is completely selective toward methane. It can be seen that methane shows a higher adsorption a�nity than

hydrogen, especially in the smaller pores. This is due to the larger interaction energy between methane and

graphene than hydrogen. The same line of reasoning has also been used in other literature [73, 74] in which

they have shown that the molar fraction of the component having the strongest interaction with the channel

is increased compared to the bulk.

!"

Figure 2.7: Selectivity of methane over hydrogen as a function of channel width.

2.3 Summary

In this chapter, we presented the EQT approach and compared it to the atomistic MD simulations. EQT

is a practical, fast and easy approach to bridge the gap between atomistic and continuum methods by
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constructing potentials from atomistic interactions. Using correlation correction approach, we approximate

the fluid-fluid correlations by the bulk hard-sphere radial distribution function (RDF) and add correlation

correction potentials. These potentials can be used in a continuum framework such as the Nernst-Planck

equation. We demonstrated the EQT for mixtures by predicting density distributions of methane and

hydrogen mixtures confined in graphitic nanopores of various widths. We considered two extreme cases,

where channels are in equilibrium with methane-rich and hydrogen-rich bulk mixtures. In both cases,

theoretical results compare well with the MD simulations. We also used EQT results to calculate adsorption

selectivity of the mixture rich in hydrogen. It is found that, though the bulk composition favors hydrogen,

graphene slit channels exhibit selectivity for methane molecule. This finding can be attributed to the larger

energy interaction of methane and graphene wall. EQT is a promising multiscale framework that can

accurately predict structure of not only single component but also the mixture of confined fluids.
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Chapter 3

An EQT-cDFT approach for
thermodynamic properties of confined
fluid mixtures
In this chapter, we integrate EQT frame work with classical density functional theory (cDFT), i.e., EQT-

cDFT approach, in order to determine thermodynamic properties of confined fluids. The combination of

EQT and cDFT provides a simple and fast approach that not only predicts the equilibrium structure, but

also other thermodynamic properties, such as the local pressure profile, adsorption, solvation force, surface

tension, etc. [36].

The relevant thermodynamic potential for an open system that is in equilibrium with a bulk phase (i.e.,

the system can exchange heat and particle with the bulk phase) is the grand potential, ⌦.

⌦ = �PdV � SdT �
mX

i=1

Nidµi, (3.1)

where S is the entropy, T is the temperature, P is the pressure, V is the volume, Ni is the number of the

fluid particles of component i, µi is the chemical potential of the fluid particles of component i. When a

fluid is narrowly confined between to parallel plates of area A, additional control variables comes into play.

These new variables are the surface area of the plates, A and the spacing between them, H. Thus, for

a fluid mixture confined between two flat surfaces of area A, the change in grand potential caused by an

infinitesimal change of thermodynamic state is given by,

d⌦ = �SdT � PdV �
mX

i=1

Nidµi + 2�dA� f
S

AdH, (3.2)

where � is the wall-fluid surface tension, and f
S

is the solvation force. Knowing the grand potential, we can

obtain any thermodynamic property by taking the appropriate derivatives of ⌦ according to Eq. 3.2. For

this purpose we are going to use the cDFT theory which gives an expression for the grand potential as a

function of the confined fluid density.
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3.1 cDFT

cDFT is a continuum-based technique that describes the properties of inhomogeneous fluids from a micro-

scopic level. It is based on the theorem that, for a fluid in an external field, the Helmholtz free energy, F ,

is a unique functional of the average molecular density profile, ⇢(r), independent of the external potential,

V
ext

(r) [47, 75, 76]. Thus, ⌦ can be written as

⌦ [{⇢i(r)}] = F [{⇢i(r)}] +
mX

i=1

Z �
V ext

i (r)� µi

�
⇢i(r)dr, (3.3)

where F denotes the intrinsic Helmholtz free energy and V ext

i is the external potential acting on fluid

component i. The Helmholtz free energy has contributions from ideal and excess part:

F [{⇢i(r)}] = F id [{⇢i(r)}] + F ex [{⇢i(r)}] , (3.4)

where the ideal part is exactly known, and it is given by

F id [{⇢i(r)}] = k
B

T

mX

i=1

Z
⇢i(r)

�
ln

�
⇢i(r)⇤

3

i

�
� 1

�
dr, (3.5)

where k
B

is the Boltzmann constant, ⇤i =
⇣

2⇡h̄2

mikB

T

⌘ 1

2

is the thermal de-Broglie wavelength, h̄ is the reduced

Planck’s constant, and mi is the mass of the ith atom. Unlike the ideal part, the excess part of the Helmholtz

free energy accounts for non-ideality due to the existing inter-molecular interactions. The treatment of this

part is rather intractable, since it contains the information about correlations between the particles [13,

77, 78]. Thus far, the exact expression for F ex is unknown and dealing with this part of the Helmholtz

free energy is the most challenging task in the cDFT. There are approaches that provide functional forms

for F ex based on the fundamental-measure theory (FMT) [62, 63], modified FMT (MFMT) [79, 80], first-

order mean-spherical approximation (FMSA) [81], accurate empirical equation of state [82], and statistical

associating fluid theory (SAFT) [53, 83–86]. In this work, we use EQT to formulate F ex as explained in

Section 3.2.
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3.2 EQT-cDFT

In the EQT-cDFT approach, the fluid-fluid EQT potential model (Eq. 2.12) is used to construct the excess

part of the intrinsic Helmholtz energy functional:

F ex,EQT [{⇢i(r)}] =
1

2

mX

i=1

Z
⇢i(r

0)U↵

i (r
0)dr0. (3.6)

Due to the chemical equilibrium condition between a confined fluid system and a bulk reservoir, the

chemical potential of each fluid component in Eq. 3.3 is same as fluid components of the homogeneous

phase, i.e, µi = µi,b. Furthermore, we can split the bulk chemical potential into the ideal and the excess

part, i.e,

µi,b = µid

i,b + µex

i,b, (3.7)

where the ideal part can be written as,

µid

i,b = k
B

T ln
�
⇢i,b⇤3

i

�
. (3.8)

From the definition of the chemical potential, µex

i,b =
⇣

@F ex

b

@⇢i,b

⌘

T
, and applying Eq. 3.6 in the bulk phase,

it is easy to show that the excess part of the bulk chemical potential is equal to the EQT bulk fluid-fluid

potential, U
b

, i.e.,

µex

i,b = Ui,b, (3.9)

where Ui,b is obtained by applying Eq. 2.12 in the bulk phase:

Ui,b = 4⇡
mX

j=1

⇢j,b

Z Rff

cut

0

r2
�
u↵

ij(r)g
hs

ij (r) + u↵

ccp,ij(r)
�
dr. (3.10)

For the slit-channel geometry the only external potential acting on the fluid mixture is the wall-fluid

interaction, i.e, V ext

i (r) = Uwf

i (r). Hence, using Eqs. 3.3-3.9, the grand potential in the EQT-cDFT formalism

can be written as,

⌦EQT [{⇢i(r)}] =
mX

i=1

✓
k
B

T

Z
⇢i(r)


ln

⇢i(r)

⇢i,b
� 1

�
dr

+
1

2

Z
⇢i(r)U

↵

i (r)dr

+

Z
⇢i(r)

�
Uwf

i (r)� Ui,b

�
dr

◆
. (3.11)
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At equilibrium, the grand potential is minimum with respect to the density distributions; thus, from the

variational principle given as,
@⌦EQT [{⇢i(r)}]

@⇢i

����
eq

= 0, (3.12)

the equilibrium density profile of each species satisfies

⇢i(r) = ⇢i,b exp

✓
� 1

k
B

T

�
U↵

i (r) + Uwf

i (r)� Ui,b

�◆
. (3.13)

Using an iterative method such as Picard iteration, Eq. 3.13, Eq. 2.12 and Eq. 2.5 can be solved self-

consistently to obtain the equilibrium density profiles of the confined fluid mixture.

3.3 Thermodynamic properties

As mentioned in Section 2.2, the inhomogenous fluid mixture we consider in this study, is confined in slit

pores made up of two graphene sheets infinitely long in the xy plane, located at z = 0 and z = H. Due to

the planar geometry, we will assume that all the mean quantities vary only in the z direction. In this work,

we compute thermodynamic quantities such as average densities, local pressure tensor, surface tension, and

solvation force for di↵erent bulk mixture compositions.

Studying the local pressure tensor profiles in an inhomogenous fluid system is important from both

industrial and scientific point of view. For homogeneous fluids, the pressure tensor is isotropic (i.e, P
xx

=

P
yy

= P
zz

), whereas in a confined fluid, it is anisotropic and varies spatially. For slit channels, due to the

symmetry in the lateral dimensions, the o↵-diagonal terms in the local pressure tensor are zero, and the

relevant quantities are the normal, P
n

(z), and lateral, Pl(z), pressure profiles. Moreover, the condition of

mechanical equilibrium, requires that the normal pressure be constant across the channel [87], and be equal

to the average force per unit area exerted by the fluid molecules on the wall.

To obtain P
n

, one can use the central di↵erence method to calculate the derivative of the grand potential

with respect to the channel width [36]. This method is also analogous to the volume perturbation expressions

proposed by de Miguel and Jackson [88] in the context of vapor-liquid interfaces. Alternatively, from the

balance of the forces in the confined direction, the normal pressure can be calculated based on the average

density and the wall-fluid potential [89], i.e,

P
n

(H) = �
mX

i=1

Z H

0

✓
⇢i(z)

dUwf

i (z)

dz

◆
dz. (3.14)

Unlike the normal pressure, the lateral pressure is not constant across the channel and varies in the z
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direction. For a planar system, it is possible to define the lateral pressure as the negative of the grand

potential density, !(z) [90–92]; thus from Eq. 3.11, Pl can be calculated as,

Pl(z) = �
mX

i=1

✓
k
B

T⇢i(z)


ln

⇢i(z)

⇢i,b
� 1

�

+
1

2
⇢i(z)U

↵

i (z) + ⇢i(z)
�
Uwf

i (z)� Ui,b

�◆
. (3.15)

We can further simplify Eq. 3.15, by substituting the density profile from Eq. 3.13 and reformulate the

lateral pressure in the EQT-cDFT framework as,

Pl(z) =
mX

i=1

✓
k
B

T⇢i(z) +
1

2
⇢i(z)U

↵

i (z)

◆
. (3.16)

The surface tension, �, can be calculated using the thermodynamic or the mechanical route. The ther-

modynamic definition is based on the amount of isothermal work required to increase the interface by unit

area, i.e., � = 1

2

�
@⌦
@A

�
T,µ,L

for a slit-channel system. According to the mechanical definition, for planar

systems, the surface tension can be calculated based on the integral di↵erence of the tangential and normal

components of the pressure tensor profiles along the confined direction [90, 93], i.e.,

�(H) =
1

2

Z H

0

(P
n

� Pl(z)) dz. (3.17)

Finally, the quantity f
S

, which is commonly referred to as solvation force, is actually the average force

per unit area exerted by the fluid molecules normal to the surface [94]. Hence, the solvation force has a unit

of pressure and can be calculated as,

f
S

(H) = P
n

(H)� P
b

, (3.18)

where P
b

is the fluid mixture bulk pressure.

3.4 Results

One of the advantages of the EQT-cDFT approach over the Nernst-Planck approach (Eq. 2.1), is that a

solution of the EQT-cDFT approach does not require ⇢
avg

as an input; instead, ⇢
avg

can be computed as

an output of the EQT-cDFT simulation from the equilibrium density profile. The average density of each
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species inside the channel can be obtained from the EQT-cDFT approach

⇢i,avg =
Ni

A⇥H
, (3.19)

The average densities for methane and hydrogen molecules in various size channels are given in Table 3.1.

Table 3.1: Average fluid densities (nm�3) in MD simulations of various size channels for di↵erent bulk molar
compositions.

⇢avg 15�m 10�m 9�m 8�m 7�m 6�m 5�m 4�m 3�m 2�m

H2(xm = 0.3) 11.02 10.33 10.10 9.81 9.46 8.97 8.27 7.24 5.38 2.23
H2(xm = 0.7) 4.72 4.42 4.33 4.20 4.03 3.83 3.52 3.01 2.10 0.74
CH4(xm = 0.3) 5.60 5.75 5.79 5.84 5.94 6.03 6.16 6.35 6.68 6.96
CH4(xm = 0.7) 11.86 11.60 11.50 11.39 11.24 11.04 10.76 10.34 9.65 8.07

To calculate the MD local stress tensor, we use GROMACS-LS code by Vanegas et al. [95], which is

based on Hardy-Mudroch procedure. As mentioned in Section 3.3, due to the mechanical equilibrium, Pn

is constant across the nanopore. Therefore, for a large enough channel (e.g. 15�m) with a well-formed

bulk region in the middle, Pn should be equal to the mixture bulk pressure. We use this fact to verify the

GROMACS-LS code for our simulation purposes. We observe that the normal pressure obtained from the

code is constant along z direction and it is equal to the mixture normal pressure calculated from the total

force perpendicular to the wall [96],

Pn =
|
PNf

i=1

Fwf
z,i |

A
, (3.20)

where Nf is the total number of fluid molecules (hydrogen and methane) and Fwf
z,i is the z component of

the force produced by molecule i on the wall. Other thermodynamic properties such as surface tension and

solvation force can be calculated from Eqs. 3.17 and 3.18 using the values in the local pressure tensor.

Fig. 3.1 shows the variation of the average density of each species with the channel width and the bulk

composition. For channels in equilibrium with the methane-rich bulk mixture, both methane and hydrogen

average densities monotonically decrease (slight undulations) until H = 6�m. As the channel width further

decreases, we observe noticeable undulations in the average densities versus H. These oscillations in ⇢
avg

for smaller channels follow the formation of adsorbed layers with increasing H. A similar trend has been

observed for hydrogen average density for channels in equilibrium with the hydrogen-rich bulk mixture.

However, the onset of undulations has been observed for 4�m channel width. Moreover, unlike the xm = 0.7

case, the methane average density in the channel is higher than its bulk density and grows monotonically

until H = 4�m. For the 15�m channel, the hydrogen average density is higher than that of methane. As the

channel width gets smaller, hydrogen molecules get depleted from the channel and are replaced by methane

22



molecules. This trend continues, until the number of methane molecules surpasses the hydrogen molecules in

the channel of 3.25�m width. Further decrease in the channel width, results in adsorption of more methane

molecules in comparison to hydrogen, despite the fact that the bulk mixture is rich in hydrogen content.

Therefore, we can clearly see how graphene is selective towards methane. In fact, the origin of this behavior

is rooted in the higher interaction energy between carbon-methane compared to carbon-hydrogen.

Figure 3.1: EQT-cDFT predictions for average densities of methane and hydrogen molecules as a function
of channel width.

Fig. 3.2 shows the variation of the lateral pressure tensor profiles in the channels corresponding to

the methane and hydrogen-rich bulk mixtures. It can be seen that the EQT-cDFT predictions are in good

agreement with the MD simulations. As it is evident from Eq. 3.16, due to the layering in the density profiles,

an oscillatory behavior is also observed in the lateral pressure profiles. We observe that in confinement, the

lateral pressure is significantly enhanced compared to its bulk value. This e↵ect is more pronounced in the

vicinity of the walls, where the value of the pressure is approximately 5 times higher than bulk value for

15�m channel (see Fig. 3.2b). Such high values of pressure can enhance chemical reactions, and give rise to

high pressure solid phases in nanoconfinements [6, 97–100].

From Figs. 3.2 and 2.6, we observe that the high lateral pressure regions correspond to the locations

where the methane density profile exhibits peaks. Eventhough hydrogen molecules also contribute to the

pressure, due to their smaller diameter and interaction energy compared to methane, the lateral pressure

profiles follow closely the methane density profiles, irrespective of the bulk mixture composition. This fact is

more evident as the channel width gets smaller. The higher adsorption a�nity of methane in the narrower

channels makes it the dominant contributor to lateral pressure in these channels.

By comparing Figs. 3.2(a) and 3.2(b), we find that the channels in equilibrium with methane-rich bulk

mixture exhibit higher pressure. In addition, by looking at the 15�m channels, it is clear that by increasing
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Figure 3.2: Comparison of lateral pressure profiles of methane-rich mixture (a) and hydrogen-rich mixture
(b) from EQT-cDFT and MD simulations for various channel widths.

the methane content of the bulk, the oscillations in the lateral pressure profile become more pronounced

and decay slower than the hydrogen-rich bulk mixture to the bulk value. The origin of this behavior lies in

the tendency of graphene for attracting methane molecules over hydrogen, and the ordering enhancement

caused by the methane molecules (compare Figs. 2.6(b) and 2.6(e)) in confinement.

In Fig. 3.3, we show the variation of the normal pressure, solvation force and surface tension as a function

of the channel width for both methane and hydrogen-rich bulk mixtures. We observe that the theoretical

predictions by EQT-cDFT approach compare well with MD simulations. As mentioned in Section 3.3, due

to the mechanical equilibrium, for a slit channel, normal pressure is constant across the channel width (i.e.

independent of z). However, it shows an oscillatory behavior as a function of the channel width. These

oscillations are well-known and relate to the number of adsorbate layers, the interlayer spacing [101], and

the behavior of the average density [97, 102], which depends on the channel width. As a corollary, solvation

force and surface tension also exhibit an oscillatory behavior with decaying amplitude as the channel width

gets larger. For larger channels, the wall e↵ects become weaker and hence Pn converges to the bulk value,

and fs and � approach zero.

To investigate the e↵ect of mixture composition and its constituents, we focus our attention on Figs. 3.3(a)-
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Figure 3.3: Variation of normal pressure (Pn), solvation force (fs) and surface tension (�) with channel
width corresponding to the methane-rich (a-c) and hydrogen-rich (d-f) bulk mixture compositions.

3.3(c) and 3.3(d)-3.3(f). It can be seen that for xm = 0.7 bulk composition, the maximum value of the normal

pressure is about 3 times higher than that of for channels in equilibrium with xm = 0.3 bulk mixture. More-

over, we observe that the oscillations in the fs (Fig. 3.3(e)) disappear at 4.25�m for xm = 0.3, whereas for

the channels in equilibrium with methane-rich bulk mixture, the oscillations persist until 6.6�m. Again,

this confirms the observations that for the channels in equilibrium with methane-rich mixture, the extent

of oscillatory behavior observed in thermodynamic properties is larger compared to the bulk composition of

xm = 0.3.

3.5 Summary

In this chapter, we showed that using the EQT-based potentials, we can construct an expression for the

excess free energy functional in the cDFT frame work to obtain various thermodynamic properties, such

as density, local pressure tensor, solvation force and surface tension. We demonstrated the EQT-cDFT

approach for a binary mixture of methane and hydrogen molecules confined in slit nano channels of various
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widths and two di↵erent bulk compositions. We found that our theoretical predictions compare well with the

MD simulations, showing that the EQT-cDFT is a promising approach to obtain thermodynamic properties

of confined fluid mixtures.
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Chapter 4

Multiscale dipolar model for confined
polar liquids

In this chapter we introduce a multiscale investigation of water inside graphene slitlike channels that extends

from the detailed all-atom level (AA) to the cheaper particle-based coarse-grained (CG) level, and to the

continuum-based level using EQT. Since water is a highly polar solvent, the detailed description of its

structural and dielectric properties close to the interfaces is of paramount importance in many applications.

For this purpose, we will systematically develop an extended dipole-based CG model that can accurately

reproduce the radial distribution function (RDF), di↵usion coe�cient, and bulk dielectric permittivity of the

underlying AA reference model. The CG representation model is simple yet complex enough to shed light

on the role of dipolar interactions in polar liquids such as water. Using the CG potentials, we will asses the

structure, parallel dielectric permittivity, and polarization profiles compared to all-atom molecular dynamics

simulations. Furthermore, we show that EQT framework can also be used for complex molecules such as

water to predict the density and polarization of water molecules inside nanoslit channels of various widths.

Finally, by using coarse-grained molecular dynamics and EQT simulations, we comment on the applicability

of dipolar-based CG models in reproducing the structure of water near charged interfaces.

4.1 Water coarse grain models

Water is one of the most abundant molecules on the Earth. Even though it is a chemically “simple”

molecule, water has posed a great challenge to the scientific community in terms of describing its behavior

at interfaces and in aqueous solutions. Due to its geometry and distinct charge distribution, water is a highly

polar molecule with a relatively high dielectric constant. The dielectric permittivity is directly related to

the ability of the fluid in screening charges. Thus, the electrostatic interactions of water in the presence

of an external field or with charged objects such as charged colloidal particles, ions, proteins, and lipid

membranes are profoundly a↵ected by its very existence [103, 104]. Thus, an in-depth understanding of

these interactions and accurate representation of water screening e↵ects are essential to many applications

such as water desalination [105, 106], protein folding [107, 108], peptides self-assembly [109], double-layer
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capacitance [110], and electrochemical applications of ionic liquids [111].

Due to its computational cost, many theoretical models treat water as a background solvent with a

constant dielectric permittivity [30, 112–114]. Although it is true in the case of bulk water, near interfaces the

dielectric permittivity varies significantly. Therefore, considering a uniform permittivity may not accurately

reflect the underlying physics of charge screening. In fact, capturing the anisotropic nature of dielectric

variations, which are reminiscent of the well-known spatially varying density oscillations at an interface, is

of paramount importance to many biological and industrial applications [115, 116].

Over the past years, density functional theory (DFT) and high resolution atomistic simulations such

as, molecular dynamics and Monte Carlo simulations have been adopted to study water for a variety of

applications in biology, physics and material science. From these methods one can obtain molecular insights

into the nature of di↵erent interactions and interpret the physical phenomena based on the knowledge of

statistical mechanics. However, for many practical systems the number of water molecules is of the order

of several thousands to millions [29], making these methods forbiddingly expensive to simulate systems

involving multiple length and time scales ranging from the quantum to atomic to continuum scales. Thus,

developing multiscale methods that are accurate, fast and rooted in statistical mechanics can be of high

value.

In order to reduce the computational cost, CGMD simulations can be used to access larger length and time

scales. The objective of any CG simulation is to lower the resolution by representing the system with fewer

degrees of freedom, while retaining the necessary details to capture the quantity of interest. For any polar

molecule, the dipole-dipole interactions and fluctuations are mainly responsible for the dielectric response

of the fluid. These interactions are ubiquitous in nature, and they exist in many systems, such as colloids,

ferro and electro-rheological fluids [117]. Moreover, in addition to the spherically symmetric short-range

interactions, dipolar molecules bring in anisotropic forces due to their long-range dipole-dipole interactions,

and thus, can serve as a simple model to understand the structure, dynamics and thermodynamic properties

of polar fluids or dipolar colloidal systems [117, 118].

Recently, there have been e↵orts to develop CG models that include and optimize charges/dipole moments

to reproduce various properties of the reference system. The reason behind such e↵orts is two-fold. First,

due to the existence of dipole fluctuations, one can calculate the dielectric constant of the fluid. Since the

dielectric permittivity incorporates both short- and long-ranged correlations, it can serve as a good test for

the accuracy of an inter-molecular potential [119]. On the other hand, the implicit treatment of electrostatic

interactions for polar molecules, in particular water, fails to capture their dielectric screening e↵ect [120]. One

of the earliest studies is based on the well-known Stockmayer potential [121] (a single-site interaction with an
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associated orientation), which models water as a hard sphere with a point dipole and is referred to as Bratko,

Blum, and Luzar (BBL) model [122]. A soft sticky dipole potential is also developed for liquid water, which

is the same as the BBL model, except that the hard-sphere interaction is replaced by the softer Lennard-

Jones potential [29]. More generally, the generalized Stockmayer (GSM) potential is developed for polar

liquids that consists of a spherical Kernel with dipole-dipole interaction [123] and has been recently applied

for water [124]. There are also e↵orts to match properties of water to experiments (top-down CG methods).

One of the top-down CG approaches that maps water into a single-site CG bead with an embedded point

dipole is the electrostatic based (ELBA) model. The model was originally developed for a lipid membrane.

The parameters are tuned such that with a loss of local structure, it reproduces the bulk water density, and

di↵usion at room temperature in a good agreement with experiments [125, 126]. In a more systematic way,

the force matching technique is used with the Drude-like model, to reproduce the radial distribution functions

(RDFs) and the dielectric permittivity of some amines and alchohols such as methanol [127]. In this study,

we systematically develop an extended dipole-based model for polar fluids that can accurately predict the

radial distribution function (RDF), di↵usion coe�cient, and the bulk permittivity of the reference all-atom

model. We apply our model to reproduce water RDF, di↵usion coe�cient, and dielectric permittivity in the

bulk. For this purpose, we model water molecules into extended dipoles, and optimize the dipole moment

within the relative entropy framework. However, as we show later in Section 4.6.1, the dipole optimization

alone does not guarantee that the water dipolar properties, in particular the dielectric permittivity, are

reproduced by the CG model. Thus, we employ the constrained relative entropy (CRE) method [128] to

reproduce the all-atom bulk permittivity in the CG model.

The remainder of this chapter is organized as follows. In Section 4.2, we provide details on the extended

dipole-based CG model and apply it to water molecules. In Section 4.3.1, we first describe the details of

systematic charge optimization within the relative entropy frame work for dipole-based CG models and

then in Section 4.3.2, we describe the CRE method in order to reproduce the bulk water permittivity of an

all-atom reference model. In Section 4.3.3, we discuss how to match di↵usion through modifying the inertia

features of our model. In Section 4.3.4, we discuss systematic coarse-graining in inhomogenous environment

by optimizing the wall-fluid interaction energy. In Section 4.4, we describe the theory of the EQT framework.

In Section 4.5, we first provide the necessary details of the MD, CG, and EQT simulations. Second we provide

the CG potentials obtained via charge and dielectric permittivity optimization. We then demonstrate the

ability of our CG models in reproducing density and parallel permittivity profiles of water molecules inside

neutral graphene channels of various widths. In addition, using the EQT framework, we investigate the

applicability of the MFA for capturing the dipolar interactions inside the slit-like graphene channels.
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4.2 Extended dipole model

In this study, we consider a CG model consisting of extended dipolar molecules [37, 129], in which two

opposite charges, ±q, are located at a distance d from each other, thereby creating a dipole moment of

µ = qd. The topology of the extended dipole molecule is shown in Fig. 4.1(a). It can be seen that the

molecule has an e↵ective diameter of � and a van der Waals (vdW) interaction site that is located at the

center, d/2 distance away from either of the charges. Thus, the interaction energy between the extended

dipolar molecules consists of four Coulombic interactions due to the positive and negative charges, and

a vdW pair potential between the molecules center. Compared to the point dipole spherical models, the

extended dipole model provides a more realistic picture of highly polar fluids [129]. In addition, it has been

shown that for d/�  0.25, the extended dipole and point dipole models are similar. In this study, we

assumed that the distance d is fixed, so the CG model is not polarizable. Although the distance between

the charges can be considered as an optimization parameter, for simplicity we only consider optimizing the

charges on the molecule as well as the vDW interaction.

In order to optimize the charges and the vdW interaction, we follow a systematic bottom-up coarse-

graining approach to reproduce the properties of the underlying all-atom reference model. To demonstrate

our model, we coarse-grain the all-atom SPC/E water into the extended dipolar molecules with d = 0.058 nm,

which represents the distance between the oxygen and the center of the line intersecting the hydrogen atoms

in the SPC/E AA water model.

4.3 CG optimization

Our objective is to reproduce the RDF, di↵usion coe�cient, and the dielectric permittivity in the bulk

CG system. There are various systematic CG methods such as iterative Boltzmann inversion (IBI) [130],

inverse Monte-Carlo (IMC) [131], and relative entropy (RE) minimization [132, 133] that can accurately

reproduce the AA target RDFs. When RDF is the only target of interest, the choice of center-of-mass

(COM) mapping of atoms/molecules into spherical beads is a common choice. However, to reproduce the

dielectric permittivity, one needs to take into account the dipolar fluctuations. So for a CG system to be able

to predict the dielectric constant, dipole-dipole interactions have to be explicitly considered in the model.

Here, we use the RE framework to systematically optimize the vdW and electrostatic interactions between

the extended dipolar molecules to reproduce the RDF and dielectric constant of the SPC/E water at the

temperature of 298 K and density of 1.0 g/cm3.
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Figure 4.1: (a) Topology of the extended dipole water molecule. (b) Coordinate system: dipoles are denoted
by their dipole vector µ and their corresponding angles, (✓,�). r
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is the separation distance vector between
dipoles µ
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and µ
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.
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4.3.1 Charge optimization

Relative entropy quantifies to what extent the configurational probability distributions vary from one another

between the CG and AA model. Therefore, minimizing the relative entropy with respect to the potential

parameters results in the CG energy landscape that reproduces as best as possible the underlying AA

probability distribution function in the CG degrees of freedom. It has been shown that in the canonical

ensemble the RE can be written as [132],

Srel = � hU
CG

� U
AA

i
AA

� � (F
CG

� F
AA

) + hSmapi
AA

, (4.1)

where U is the total energy, F is the configurational part of the Helmholtz free energy, h. . . i represents the

Boltzmann weighted average in the corresponding ensemble, Smap is the mapping degeneracy in the AA

model, and � = 1/kBT with kB as the Boltzmann constant and T as the temperature. As mentioned earlier,

the interaction energy for a system of the extended dipolar molecules consists of the vdW and Coulombic

part. We assume that the total CG interaction energy is pairwise additive, and we model it as

U
CG

=
NX

i=1

NX

j>i

u
dd,CG (rij) , (4.2)

where the summations are over all the distinct dipole molecules, N is the number of dipolar molecules, rij

is the center-to-center distance between i and j dipoles, and u
dd,CG

is the CG pair potential between two

extended dipole molecules, which is defined as,

u
dd,CG

(rij) = u↵

vdW,CG

(rij) + u↵

elec,CG

(rij) , (4.3)

where u↵

vdW,CG

is the coarse-grained fluid-fluid vdW potential and u↵

elec,CG

represents the fluid-fluid elec-

trostatic interaction between two extended dipole molecules. In order to determine the u↵

vdW,CG

in Eq. 4.3,

we model it by uniform cubic-B splines, due to their flexibility and robustness. Hence, u↵

vdW,CG

can be

expressed as,

u↵

vdW,CG

(r) =


1 t t2 t3

�
1

6

2

66666664

1 4 1 0

�3 0 3 0

3 �6 3 0

�1 3 �3 1

3

77777775

2

66666664

cj

cj+1

cj+2

cj+3

3

77777775

, (4.4)

where the separation interval from 0 to the cut-o↵, R↵

cut

, is discretized into n�1 segments, {r
0

, r
1

, r
2

, ..., rn�1

},

of equal size �r = R↵

cut

/(n�1) such that ri = i⇥�r (i 2 (0...n�1)), {c
0

, c
1

, c
2

, ..., cn+1

} are the spline knots,
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the index j satisfies the condition rj  r < rj+1

, and t = r�rj
�r . According to Fig. 4.1(a), the electrostatic

part of the pair potential in Eq. 4.3 can be written as,

u↵

elec,CG

(rij) = Ac

2X

l=1

2X

k=1

qilqjk
4⇡"

0

|ril � rjk|
, (4.5)

where qil and qjk are the point charges of dipole molecules i and j, respectively, qi1 = qj1 = �q and

qi2 = qj2 = +q, in which q is set to the charge of the oxygen atom in the SPC/E water model, i.e., q = 0.8476,

"
0

is the vaccum dielectric permittivity, and ril and rjk are the positions of qil and qjk, respectively. In

Eq. 4.5, Ac is the charge scalar factor to be optimized within the relative entropy framework.

Given the definitions of the pair potentials in Eqs. 4.4 and 4.5, the optimization parameters consist

of a set of knot values and a scalar charge factor, i.e, � = {c
0

, c
1

, . . . , cn+1

, Ac}. Since all the adjustable

parameters are linear coe�cients in the potential, there exists a single global minimum for the relative

entropy function [133]. To obtain these parameters, we use the Newton-Raphson optimization technique. In

each iteration the parameters are obtained from the following relation,

�(k+1) = �(k) + !d�, (4.6)

where ! is the relaxation factor and d� is the change in the parameters at each iteration, and is given by

d� = �H�1

Srel
·r�Srel, (4.7)

where HSrel is the Hessian matrix. For more information regarding the expressions in Eq. 4.7 as well as the

implementation, see Ref [134].

Although optimizing the CG pair potential (u↵

vdW,CG

) indirectly a↵ects the dipolar orientations due to

the change in the molecular packing, the electrostatic interaction plays an influential role on the dipole-dipole

distribution, thereby directly a↵ecting the dielectric permittivity of the fluid. In this study, we optimize the

electrostatic interaction through the scalar charge factor, Ac. To gain more insight into what optimizing

the parameter Ac means, we take a look at the first derivative of the relative entropy. To minimize the RE

function, the optimality condition requires that the first derivative of Srel w.r.t any parameter be zero, i.e.,

@Srel

@�
= �

✓⌧
@U

CG

@�

�

AA

�
⌧
@U

CG

@�

�

CG

◆
= 0. (4.8)
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Thus, by using Eqs. 4.2 and 4.8, and choosing � to be Ac, we arrive at:

*
NX

i,j=1,j>i

2X

l,m=1

qilqjm
4⇡"

0

rij

+

AA

=

*
NX

i,j=1,j>i

u↵

elec,CG

(rij)

Ac

+

CG

. (4.9)

The right hand-side of Eq. 4.9 is equal to the average CG electrostatic potential divided by the factor Ac.

Thus, by optimizing Ac, one can obtain the full average electrostatic potential (both short and long range)

energy in the mapped all-atom ensemble. In other words,

⌦
Udd

elec,AA

↵
=

1

Ac
hU

elec,CG

i , (4.10)

where U
elec,CG

is the total electrostatic potential energy of the CG system and Udd

elec,AA

represents the dipolar

part of electrostatic potential in the all-atom reference simulation.

4.3.2 Dielectric permittivity optimization

For a homogeneous system (bulk) of polar molecules with periodic boundary conditions, the bulk dielectric

permittivity is related to the fluctuation of the dipole moment and can be calculated from the following

relation [135, 136]:

"r = 1 +

⌦
M2

↵

3"
0

V kBT
, (4.11)

where "r is the bulk dielectric permittivity, V is the volume of the system, and M is the total dipole moment

of the liquid defined as,

M =
NX

i=1

µi. (4.12)

Certainly, scaling the charges through parameter Ac a↵ects the value of the dielectric permittivity. However,

for a highly polar molecule such as water, where hydrogen bonding plays an important role, the RE mini-

mization alone does not guarantee that the bulk dielectric permittivity is reproduced. Hence, to reproduce

"r for water, we enforce it as a constraint in the RE minimization. For this purpose, we use the constraint

relative entropy (CRE) minimization method proposed in Ref [128]. In general, the CRE has the form,

Screl = Srel + �C (�) , (4.13)
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where � is the Lagrange multiplier, and C (�) is the imposed constraint. To obtain the optimal parameters

we use Eq. 4.6 with d� replaced by d�c, which is given by,

d�c = d�+H�1

Srel
JT ·

�
J ·H�1

Srel
JT

��1

(C (�) + J · d�) . (4.14)

where J is the constraint Jacobian matrix . For the detailed derivation of the CRE method, see the

supplementary information of Ref. [128]. In this study, we define C as,

C =
1

2

✓
"r,CG

� "r,AA

"r,AA

◆
2

, (4.15)

and the corresponding Jacobian matrix has only a nonzero value w.r.t the parameter Ac. Thus, it can be

written as,

J =

✓
"r,CG

� "r,AA

"r,AA

◆
d"r,CG

dAc
, (4.16)

where the first derivative of "r w.r.t. Ac can be written as,

d"r,CG

dAc
=

"r,CG

� 1

Ac
. (4.17)

For details on the derivation of Eq. 4.17, see Appendix A.

4.3.3 Matching di↵usion coe�cient

In this study, we have also examined the di↵usion coe�cient of the extended dipole model. As it’s the case

for any CG model, the consequence of removing degrees of freedom is lower friction which results in faster

dynamics for the CG models compared to the all-atom counterparts. Thus, the di↵usion coe�cient obtained

from the CGMD simulations is typically an order of magnitude higher than the AAMD simulations [137].

One way to match the di↵usion coe�cient is to modify the equations of motion via a thermostat that alters

the viscous frictional forces on the particles [138]. The other way is to modulate the di↵usion coe�cient

through particles’ inertia features [125]. Since the distance within the extended dipole molecule is fixed, we

optimize the moment of inertia via changing the mass of the molecule. To match the di↵usion coe�cient,

we used the downhill simplex algorithm with the following objective (or penalty) function,

y = |Dtgt �DCG|, (4.18)
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where Dtgt and DCG are the di↵usion coe�cients of the AA reference and CG simulations, respectively,

which can be calculated from the Einstein relation,

D = lim
t!1

1

6tN

NX

i=1

h[ri(t)� ri(0)]
2i. (4.19)

4.3.4 Wall-fluid potential for confinement

It is known that the bottom-up systematic CG potentials developed for bulk systems may not be transferable

in the presence of an external potential. For instance, it has been shown that the bulk-based CG potential

may not adequately represent the water structure close to the planar graphene sheets [34]. Recently, there

have been e↵orts to develop systematic ways of coarse-graining for inhomogenous systems. Mashayak and

Aluru [35] employed the RE method to coarse-grain both fluid-fluid and wall-fluid interactions inside the

slit-like graphene channels. They have shown that by coarse-graining the wall-fluid interaction, the water

density profile can be predicted reasonably well when compared to the reference AA simulations. Sanyal and

Shell [139] have developed a local density-based approach that modifies the fluid-fluid interactions through

a local density potential function. Wagner et al. [140] proposed an order-parameter dependent potentials, in

which they have used the multiscale coarse-graining (MS-CG) approach [141, 142] where the order parameter

can be local, such as local density at a CG site, or global, such as the distance from a wall. In this study,

we use the approach of Mashayak et al. [35], except that we use the bulk-based CG pair potential for the

fluid-fluid interaction and optimize the wall-fluid interaction within the RE framework. Thus, compared to

Eq. 4.2 the total potential of a confined CG system will have an additional contribution from the wall that

depends on the separation distance between the wall and the fluid, and it can be written as,

Uwf

CG

=
NwX

i=1

NfX

j=1

uwf

CG

(rij) , (4.20)

where Nw and Nf are the number of wall atoms and confined fluid atoms, respectively, and uwf

CG

is the CG

wall-fluid pair potential that is optimized to account for the missing structure nearby the wall-fluid interface.

Similar to the bulk fluid-fluid potential, u↵

vdW,CG

, we use Eq. 4.4 to model the wall-fluid pair interaction in

our simulations. Therefore, for the confined system of extended dipole molecules we perform an additional

optimization to determine the CG wall-fluid interaction.
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4.4 EQT-cDFT for polar liquids

As mentioned in Section 3.2, upon minimizing the grand potential of a confined fluid in contact with a bulk

reservoir, the equilibrium density profile satisfies the Boltzmann relation,

⇢(r) = ⇢
b

exp

✓
� 1

k
B

T

✓
Uwf(r) +

�F ex[⇢(r)]

�⇢(r)
� U

b

◆◆
. (4.21)

In the case of a neutral wall, the total wall-fluid potential can be obtained from Eq. 2.5. For a simple LJ

fluid (Chapter 2) the wall-fluid pair potential is taken from the reference all-atom simulations, whereas in a

system for which the wall-fluid interaction is coarse-grained, the wall-fluid potential is taken from the CG

system, i.e, uwf(r) = uwf

CG

(r). In this way, we systematically incorporate the information at the finer level

into the continuum representation. To model the excess free energy we use the FMT approach. The excess

free energy functional is split into hard sphere and dispersion parts as:

F ex[⇢(r)] = F ex

hs

[⇢(r)] + F ex

disp

[⇢(r)]. (4.22)

We note that this is similar to what Mashayak et al. have used in the Langevin-Poisson-EQT method [37].

The first and second terms in Eq. 4.22 can be obtained from Eq.2.14 and using the MFA, the second term

can be modeled as,

F ex

disp

[⇢(r)] =

Z Z
⇢(r)⇢(r0)u↵(r)drdr0, (4.23)

where u↵(r) is the e↵ective fluid-fluid potential, and r is bounded between the inner and outer cuto↵s, R
min

and R
cut

, respectively. Similar to the treatment of the wall-fluid potential, the e↵ective fluid-fluid interaction

is taken from the CG model, i.e, u↵(r) = u↵

vdW,CG

(r). We note that due to the mean-field approximation

in FMT and absence of an external electric field, all the dipole orientations are equally likely [143]. Hence,

there would be no electrostatic contribution to the excess free energy functional (Eq. 4.22). Once the excess

free energy functional is determined, using Eqs. 4.22, 2.14,and 2.17, Eq. 4.21 can be rewritten as,

⇢(r) = ⇢
b

exp

✓
� 1

k
B

T

�
Uwf(r) + U↵

hs

(r) + U↵

CG

(r)� U
b

�◆
, (4.24)

where U↵

hs

is obtained from Eq. 2.16: and the CG fluid-fluid potential energy is given by

U↵

CG

(r) =

Z r=R
cut

r=R
min

⇢(r0)u↵

vdW,CG

(r)dr0. (4.25)
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4.5 Simulation Details

4.5.1 MD simulations

In general, for any bottom-up coarse graining method, a set of reference trajectories are required to obtain the

corresponding CG potentials. As mentioned in Section 4.2, we parametrized the CG potentials to reproduce

RDF and dielectric constant of the bulk SPC/E water. All the simulations were performed in the canonical

ensemble (NV T ) using the GROMACS [144] software. Equations of motion are integrated with the leap-frog

algorithm with a time step of 1 fs. During the simulations the temperature is kept constant at 298K using

the Nosé-Hoover thermostat with a 0.2 ps time constant. For the bulk simulations, all systems were initially

equilibrated for 2 ns, following a 10 ns of production run. The SHAKE algorithm [145] was used to keep

water molecules rigid. For the short-ranged interactions, the cuto↵ radius was set to 1.2 nm. Both energy

and pressure tail corrections [146] have been applied to the standard 12-6 LJ potential for the bulk MD

simulations. The long range electrostatic interactions were calculated using the particle mesh Ewald (PME)

summation [147] with the tinfoil boundary condition (infinite dielectric) and a FFT grid spacing of 0.12 nm.

Periodic boundary conditions were applied in all the directions. In order to obtain enough statistics to

calculate the bulk dielectric permittivity, trajectories of atoms were collected every 0.1 ps. For the confined

water simulations, our system consists of two parallel graphene sheets separated at a distance of H in the z

direction. The lateral dimensions lie in xy plane with an area of 3.834⇥ 3.68927 nm2. A periodic boundary

condition was applied in all the directions with an extra vacuum of 30� (where � is the diameter of the water

oxygen atom, and is equal to 0.317 nm) in the z direction to avoid slab-slab interactions between periodic

images. The LJ length and energy scale parameters for carbon-water interaction (�cw, "cw) are 0.32777 nm

and 0.38959 kJ/mol, respectively. The cut-o↵ radius for the short-ranged interactions, was set to 0.9 nm.

During the simulation, the graphene sheets were frozen, i.e., their positions were not updated. In this study,

we have considered simulating water in neutral channels of width 10�, 7�, and 4�. The number of water

molecules in these channels and the interaction parameters are adopted from reference [34]. Additionally,

we have simulated water in a capacitor channel of width 12�, where a uniform partial charge was assigned

to the wall atoms to achieve the surface charge density of �0.061C/m2 and +0.061C/m2 for the left (z = 0)

and right (z = H) walls, respectively. The number of water molecules inside the channel were tuned such

that the water bulk density is recovered in the middle of the channel. In order to obtain reliable results,

especially in calculating the dielectric permittivity, the equilibrium properties are averaged over a set of 7

MD simulations of length 8 ns, in which the first 2 nanoseconds were discarded.
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4.5.2 CG simulations

For all the CGMD simulations, we follow the same procedure as in AAMD simulations (see Section 4.5.1).

To obtain the CG potentials and parameters, we used and modified the VOTCA software [134] to perform

RE and CRE minimization. To obtain the CG potentials, PME is used for long-ranged electrostatic interac-

tions. Nevertheless, we have also examined using the reaction field to incorporate the water screening e↵ects

through a constant dielectric permittivity of 71.89, in accordance with the SPC/E water model dielectric

constant. The cut-o↵ used for the short-ranged Coulomb interactions with reaction field was chosen based

on the correlation length of the dipole-dipole pair correlation function, which is chosen as 1.2 nm. Beyond

this distance the dipole-dipole pair correlation function decays to zero. Therefore, based on this criterion we

treat water as a continuum dielectric media beyond 1.2 nm. Furthermore, to verify 1.2 nm is an appropriate

cut-o↵ for the reaction field, we performed another simulation with a cut-o↵ of 1.5 nm and found no changes

in the results. Once the optimal CG potentials are obtained, we perform the downhill simplex algorithm

implemented in VOTCA package [134] to reproduce the di↵usion coe�cient of SPC/E water at the tem-

perature of 298 K and density of 1.0 g/cm3. We verified that the water structure, permittivity, and all the

correlation functions remained unchanged upon matching di↵usion or using reaction field for electrostatic

interactions. Finally with the aid of the softer CG potentials, we can increase the integration time step to

speed up and run longer simulations. For this purpose, we setup the CGMD simualtion with the time step of

6fs, and we observed that the results were unchanged. Therefore, on four cores of Intel Xenon CPU ES-1607

3.00GHz processor compared to the AAMD simualtions, the CGq" model is about an order of magnitude

faster. In addition, using the reaction field instead of PME, gives an extra speed up factor of ⇠1.5 in the

CGMD simulations. The potential parameters and tables along with the running files for CGMD simulations

are publicly available on GitHub [148].

4.5.3 EQT simulations

To obtain density and potential profiles in the EQT simulations, we self-consistently solve Eqs. 2.5 and (4.24)-

(4.25). To obtain the bulk potential in Eq. 4.24, we use Eqs. 2.16(check) and 4.25 with the corresponding

bulk density. For all the pair interactions the cut-o↵ radius is set to 0.9 nm consistent with the confined

AAMD and CGMD simulations. The R↵

min

and the hard sphere diameter, d
hs

, are set to 0.26 nm and

0.27 nm, respectively. These values are chosen such that the density profiles from the EQT simulations

compare well with the AAMD simulations. As mentioned in Section 4.4 all the vdW pair interactions are

adopted from the CGMD simulations. By incorporating the interaction information at a finer level, EQT

bridges the gap between the atomistic and the continuum representations. In EQT, we approximate the wall
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by a continuum media with a uniform density. In the case of a graphene interface, the wall density, ⇢
wall

,

is set to 38.18 atoms/nm3. Given the set of parameters and potentials, we start with the bulk density as

our initial guess and iteratively solve the aforementioned equations using the Picard iteration method with

a relaxation factor of 0.02.

In order to obtain the density, orientation and polarization profiles for the capacitor wall, EQT is coupled

with the Poisson equation to account for the electrostatic interactions between the wall and dipoles through

the mean field approximation and the Langevin dipole (LD) model [37]. Unlike the neutral wall case, oppo-

sitely charged walls generate an external electric field that directly a↵ects the molecule dipole orientation.

In this case, in addition to the vdW interactions, the total potential energy has a non-zero electrostatic part

which can be written as,

U
elec

(z) = µ hcos ✓(z)i d�(z)
dz

, (4.26)

where � is the electrostatic potential, cos ✓(z) is the average cosine of dipole orientation, and ✓ is defined as

an angle between the positive z axis and the dipole moment vector. In Eq. 4.26, the electrostatic potential

can be obtained from the Poisson equation. For the case of ion-free water confined in a capacitor wall, the

Poisson equation reads,
d2�

dz2
=

1

✏
0

dP?(z)

dz
, (4.27)

with the following boundary conditions

d�

dz

����
z=0

= ��
wall-L

"
0

, (4.28a)

d�

dz

����
z=H

=
�
wall-R

"
0

, (4.28b)

� (z = H/2) = 0, (4.28c)

where �
wall-L

and �
wall-R

are the surface charge densities of the left (z = 0) and right (z = H) walls,

respectively. Furthermore, in Eq. 4.27, P?(z) is the perpendicular orientation polarization which can be

expressed as,

P?(z) = ⇢(z)µ hcos ✓(z)i . (4.29)

In order to avoid the divergence of Picard iteration, we start with the neutral wall solution (density) and

increase the surface charge density in a step by step manner using an increment of 0.0122C/m2. In each

step, we determine the density profile and use it as an initial guess for the next surface charge density. We

repeated this process until we reach the target surface charge density of 0.061C/m2 on the walls. For a
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Figure 4.2: (a) Dipole-dipole CG potentials obtained by CGq and CGq" methods. (b) Comparison of the
center-of-mass radial distribution functions from AAMD and CGMD simulations.

detailed derivation and numerical implementation of the Langevin-Poisson-EQT method, see Ref. [37].

4.6 Results

4.6.1 Bulk

As mentioned in Section. 4.2, we adopt two approaches to obtain the fluid-fluid CG potentials for the

extended dipole molecules. The potentials obtained via the charge optimization method are referred to as

CGq, and those obtained by the dielectric permittivity optimization are denoted by CGq". Fig. 4.2 shows

the vdW CG potentials and RDF profiles from the CGq and CGq" method.

As illustrated in Fig. 4.2(b), both methods are able to match the water RDF from the reference AA

simulations. Since we are using the relative entropy method, which is a structure-based CG method, it

is guaranteed that upon a finely discretized grid space in the pairwise distances, the CG potential can

reproduce the target RDF [132, 133]. It is interesting to observe that even though our CG model explicitly

considers the electrostatic interactions (through a dipole moment), the CG potentials still exhibit a well-

known double-well-type shape similar to what has been observed for single site spherical water CG models.
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Table 4.1: Charge, dipole moment and dielectric permittivity values for SPC/E, CGq, and CGq" water
models.

Model Ac q (e) µ (D) "
r

CGq 0.3544 0.5046 1.399 21.45
CGq" 0.6555 0.6862 1.903 72.92
SPC/E 1.0 0.8476 2.350 71.89

The double-well-type shape potential has been shown to be important to represent the tetrahedral packing

of water [137]. A simple Stockmayer fluid [121] (point dipole + LJ interaction site), which does not have

a double-well-type shape potential, may not be able to fully represent the tetrahedral packing of the water

molecules [124]. Therefore, it is essential to have a double-well shape potential between the dipoles in order

to reproduce the water structure. Table. 4.1 summarizes the values of Ac, charge, dipole moments and

bulk permittivity for SPC/E, CGq, and CGq" water models. The results show that charge optimization

alone cannot reproduce the dielectric permittivity of the SPC/E water model. Despite taking into account

the dipolar fluctuations in the CG model, relative entropy minimization fails to reproduce the dielectric

permittivity of water.

Thus, it is necessary to look at correlation functions, other than the RDF, to investigate why the CGq"

method is capable of reproducing the dielectric constant of water. Since the dielectric permittivity is directly

related to the electrostatic interactions, we investigate the orientational correlation functions in bulk water.

For a system of water molecules, complete information regarding the correlations between the molecules (spa-

tially and orientationally) is given by the molecular pair distribution function, g (1, 2) = g (r
1

, r
2

,⌦
1

,⌦
2

),

which depends on the positions (r) and angles (⌦ = (✓,�)) of molecules 1 and 2 [149] (see Fig. 4.1(b)).

The orientational part of g(1, 2) can be expanded into an infinite basis set of angular functions using gen-

eralized spherical harmonics. However, not all terms in the expansion are necessary to obtain insights into

the long-range orientational ordering in water. Since the dipole-dipole interaction is the dominant term in

the multipole expansion of the long-ranged part of the molecular pair potential, we restrict our attention

to the minimal basis set for dipolar molecules first introduced by Wertheim [150]. Thus, g(1, 2) can be

approximated by,

g(1, 2) ⇡ g(r)S + 3h
�

(r)�(1, 2) +
3

2
hD(r)D(1, 2), (4.30)

where g(r) is the radial distribution function, h
�

(r) is the dipole-dipole pair correlation function, and hD(r)

represents the angular dependence of the dipole-dipole interaction energy. S, �(1, 2), and D(1, 2) are the

basis sets and are defined as,

S = 1, (4.31a)
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�(1, 2) = µ̂
1

· µ̂
2

, (4.31b)

D(1, 2) = 3 (µ̂
1

· r̂
12

) (µ̂
2

· r̂
12

)� µ̂
1

· µ̂
2

, (4.31c)

where µ̂ is the unit vector in the direction of µ and r̂
12

is the unit vector in the direction of r
12

= r
2

� r
1

.

Note that these basis sets are orthogonal but not orthonormal. For more information regarding these basis

sets and their properties see Refs. [149–151].

Using the definition of �(1, 2) given by Eq. 4.31b, we can calculate h
�

(r) from MD simulation as,

h
�

(r) =
1

N⇢b
h

NX

i=1

NX

j 6=i

µ̂i · µ̂j� (r � rij)i. (4.32)

Furthermore, by looking at the definition of the total dipole moment vector (Eq. 4.12), we can write,

hM2i =
NX

i=1

NX

j=1

hµi · µji = Nhµ2i+ hµ2i
NX

i=1

NX

j 6=i

hµ̂i · µ̂ji. (4.33)

Using Eqs. 4.32 and 4.33, we arrive at,

hM2i = Nhµ2i
✓
1 +

Z
⇢bh�

(r)dr

◆
, (4.34)

where the term in the parenthesis is the well-known Kirkwood g-factor, Gk, which is obtained as the asymp-

totic value of the r-dependent Kirkwood g-factor,

Gk (r) = 1 +

Z r

0

⇢bh�

(r)dr. (4.35)

It can be seen that for uncorrelated dipoles, the value of Gk is equal to 1.

Fig. 4.3(a) shows the comparison of dipole-dipole pair correlation function from AAMD, CGq, and CGq".

We observe that h
�

is longer-ranged than the radial distribution function and decays in an oscillatory manner

consistent with the recent second-harmonic light scattering experiments [152, 153]. This long-range behavior

has also been observed by previous studies from molecular dynamic simulations [149, 154–157]. From AAMD

simulations, we observe that there is a strong short-ranged correlation between dipoles of water molecules in

the first solvation shell (⇠3Å). This is due to the fact that the hydrogen bonding imposes a strict restriction

on the molecular orientations, thus, adjacent water molecules tend to align via H-bond network [136]. In

fact, such a strong positive dipole-dipole correlation can partly explain the high dielectric permittivity of

hydrogen-bonded fluids such as water [136, 158]. It can be seen that the CGq" method captures this feature
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Figure 4.3: Orientational correlation functions from AAMD and CGMD simulations: (a) dipole-dipole pair
correlation function (b) angular dependent part of the dipole-dipole interaction energy.

to a good extent, whereas the CGq method underestimates the first peak in the dipole-dipole pair correlation

function. Interestingly, as we move away from the first peak, the CGq method closely follows the AAMD

dipole-dipole pair correlation function. This indicates that at longer distances a dipolar representation of

water with the CG potentials obtained from the charge optimization is able to reproduce the dipole-dipole

pair correlation function. However, according to the definition of the bulk permittivity, Eq. 4.11, and

Eq. 4.34, we see that the bulk dielectric permittivity depends not only on the Gk (integral of h
�

) but also

on the magnitude of the dipole moment (µ2). Therefore, solely optimizing the charges does not guarantee

that the water dielectric permittivity is reproduced.

Fig. 4.4(a) shows the r-dependent Kirkwood factor for CG and AA models. It can be seen that Gk(r)

asymptotically reaches a plateau. We can also observe that the most important contribution for the SPC/E

model comes from the first shell of neighbors, which could be associated with the short-ranged H-bond

network in water [136]. It can be seen that the CGq" method follows the SPC/E curve reasonably well

up to first coordination shell. Indeed this is not surprising, as the first peak in the dipole-dipole pair

correlation function is better captured by the CGq" method. However, unlike in SPC/E, we observe another
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jump around 0.6 nm, which causes the curves to deviate from each other. The reason behind this can be

understood by looking at locally varying dielectric permittivity, which represents screening variations in the

neighborhood of an arbitrary molecule. By using Eqs. 4.11, 4.34, and 4.35, we arrive at,

"r(r) = 1 +
N

⌦
µ2

↵
Gk(r)

3"
0

V kBT
. (4.36)

We note that there exist other ways to calculate the local dielectric constant such as using a composite

r-dependent Kirkwood factor which combines the results of the constant electric field and constant electric

displacement simulations [159].

Fig. 4.4(b), shows the locally varying dielectric permittivity from AA SPC/E model, CGq and CGq"

methods. We observe that the local screening e↵ects are more prominent in the SPC/E model, whereas in

the CGq" method these e↵ects are underestimated. Thus, the dipoles are more correlated from the CGq"

method compared to the AA SPC/E model (see Figs. 4.3(a) and 4.4(a)). However, by construction, the

CGq" is able to converge to the SPC/E model beyond 2.5 nm, where dipoles are not correlated and the

value of the permittivity reaches its macroscopic value. On the other hand, although CGq method is able to

reproduce the AAMD dipole-dipole pair correlation function reasonably well (especially at longer distances)

due to its low dipole moment, it drastically underestimates the screening e↵ects; hence it fails to reproduce

the dielectric constant of water.

Another important quantity that can be studied is hD(r), which represents the angular dependence of

the dipole-dipole interaction energy, and can be defined as,

hD(r) =
1

N⇢b
h

NX

i=1

NX

j>i

[3 (µ̂i · r̂ij) (µ̂j · r̂ij)� µ̂i · µ̂j ] � (r � rij)i. (4.37)

Using Eq. 4.37 we can write the expression between hD(r) and average electrostatic dipolar energy as follows,

hUddi = �4⇡N⇢b

Z 1

0

µ2

hD(r)

r
dr. (4.38)

Note that in Eq. 4.38, we use the convention 4⇡"
0

= 1 for simplicity. Fig. 4.3(b) shows the comparison

of hD(r) from AAMD, CGq, and CGq". Unlike h
�

(r), the correlation function, hD(r) is almost positive

everywhere, suggesting that the preferable alignment of dipoles is to lower the dipole-dipole interaction

energy [149]. Moreover, by examining the inset of Fig. 4.3(b), we observe that hD(r) is much longer-ranged

than dipole-dipole pair correlation function, as hD(r) represents the angular dependent part of the dipole-

dipole interaction energy and decays as ⇠ r�3 at large distances. However, the results reported from MD
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Figure 4.4: (a) r-dependent Kirkwood factor. (b) The r-dependent local dielectric constant obtained from
Eq. 4.36.
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Table 4.2: Electrostatic potential energy for SPC/E, CGq, and CGq" water models.

Model Uelec (kJ/mol) Ac

SPC/E -121459.02 1.0
CGq -18848.88 0.3544
CGq" -42971.05 0.6555
SPC/E(dipole-dipole) -53175.6 1.0

Table 4.3: Mass and the di↵usion coe�cient values for the CGq" and SPC/E water models.

Model m (amu) D(10�5 cm2/s)
SPC/E 18.0154 2.5875 ± 0.1045
CGq" 18.0154 10.2096 ± 0.0052
CGq" 141.00 2.5606 ± 0.0298

simulations are somewhat inconclusive [155]. Although it seems that the hD correlation function decays to

zero beyond 25Å, recent large scale MD simulations have shown that it has a non vanishing tail even at

75Å [154, 160]. However, in order to have a one to one comparison with the experiment and to precisely

determine the range at which hD decays to zero, it requires a very large simulation box (at least 10 nm) [153],

which is computationally expensive from AAMD simulations. From the CGMD simulations, it can be seen

that the CGq method is able to capture the variation in hD correlation function to a good extent. This is

a promising result which can accelerate the simulations compared to AAMD and provide insights into long-

ranged behavior of dipolar alignment with respect to a vector along their separation distance, that can be a

subject of future studies. Table 4.2 summarizes the total dipole electrostatic energy from AAMD, CGq and

CGq" simulations. As mentioned in Section 4.3.1, scaling the CGq electrostatic potential by the factor A�1

c ,

recovers the all-atom dipole electrostatic potential. However, Eq. 4.38 cannot represent the full electrostatic

potential of the system of water molecules, as the higher dipole moment of water plays an important role in

the electrostatic potential of the system.

Finally, as mentioned in Section 4.3.3, to match the di↵usion coe�cient, we optimized the mass of the

molecule via simplex algorithm after obtaining the CG potential parameters via the CGq" method. Table 4.3

summarizes the results for optimal mass and the di↵usion coe�cient from the downhill simplex algorithm.

We observed that optimizing the mass did not a↵ect the structure and the dielectric permittivity value

obtained from the CGMD simulations.
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Figure 4.5: Carbon-water pair potentials used in AAMD and CGMD simulations. The red color (dashed
line) represents the 12-6 LJ potential between carbon and oxygen. The black color (solid line) is the coarse-
grained carbon-water interaction obtained by relative entropy minimization.

4.6.2 Confinement

Neutral Walls

Fig. 4.5 shows the pair potential between carbon and water from all-atom and coarse-grained representation.

We observe that upon coarse graining water into extended dipole molecules, the e↵ective wall-fluid pair

potential is no longer of the 12-6 LJ interaction form. In fact, the CG optimization yields a double-well-type

pair potential, suggesting that the energy and length scales have to be altered in order for the CG model to

reproduce water structure at the interface.

Fig. 4.6 shows the density profiles of water inside slit-like graphene channel of width 10� from both

AAMD and CGMD simulations. In this figure, “wflj” refers to the wall-fluid interaction used to perform the

confined AAMD simulations (i.e., standard 12-6 LJ interaction between carbon and oxygen). We observe

that the confined CG system ,in which a water molecule is coarse-grained into an uncharged spherically

symmetric bead (CG-wflj), overestimates the first density peak and exhibits a shoulder peak at about 2

molecular diameter away from the wall compared to the AA SPC/E water model. This clearly shows that

the bulk fluid-fluid potential optimized for the single-site CG water is not transferable to the non-bulk

(inhomogenous) environment [124]. In other words, the molecular packing of the water molecules close

to an interface is quite di↵erent than in bulk. Thus, it’s not surprising that an isotropic single-site CG

model of water fails to accurately predict the confined water density profile [34, 161]. On the other hand,

switching from the confined single-site representation to the extended dipole model (CGq"-wflj), improves

the water density distribution beyond the first valley (0.5 nm away from the wall), making the model more
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Figure 4.6: Comparison of the water density profiles from CGMD and AAMD simulations inside a 10�
channel with di↵erent fluid-fluid and wall-fluid pair potentials.

transferable and shows the role of the anisotropic forces in the fluid-fluid CG potential arising from the

explicit electrostatic interactions. However, the density near by the interface (where the wall-fluid interaction

is dominant) is not well-captured compared to the AA distribution, which indicates that the LJ wall-fluid

interaction is too attractive for the confined CG system. This fact is more evident by looking at Fig. 4.5,

where the energy scales associated with the CG wall-fluid potential are much less than the depth of the

carbon-water LJ potential well. Thus, by optimizing the wall-fluid interaction and using the bulk fluid-fluid

CG potential for the extended dipole model (CGq"-wfopt), the water structure can be predicted reasonably

well when compared to the AAMD simulation. From here on, unless otherwise noted, by CGMD simulation,

we refer to the confined extended dipole system with the CG wall-fluid potential (CGq"-wfopt).

It is well-known that the presence of a solid surface not only gives rise to density variations in the direction

perpendicular to the solid surface, but also a↵ects the molecular packing of the fluid parallel to the interface.

For this purpose, we have divided the density profile into three regions: I) interfacial region II) intermediate

and III) bulk-like region (see Fig. 4.7(a)). In each layer we have calculated the water center-of-mass in-plane

(lateral) RDF and compared that to the bulk radial distribution function. The RDFs are calculated in the

slabs centered at the location of the maximum density with a thickness of 1Å to avoid interference of atoms

from the adjacent layers [162]. The in-plane RDF provides information on how molecules arrange in the

plane parallel to the wall (here, x-y plane), hence, it can be used to identify ordering and possible phase

transition close to an interface [8, 9, 163]. A CG model that can capture structural variations both in the

parallel and perpendicular directions to an interface can be of high value. Figs. 4.7(b) and (c) show the

lateral RDFs for region I and II from both AAMD and CGMD simulations. Compared to the bulk, the radial

distribution of the contact layer (region I), is more structured and pronounced, showing a higher degree of
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Figure 4.7: (a) Snapshot of water confined in a 10� graphene channel. We define three di↵erent regions: an
interfacial region (I), an intermediate region (II), and a central region (III), where the in-plane RDF does not
show any significant deviation from the bulk RDF. Hydrogen atoms are depicted as white and oxygen atoms
are colored as red, green, and blue in regions I, II, and III, respectively. The in-plane RDFs from AAMD
and CGMD simulations correspond to regions I (b) and II (c). The dashed line in the figure represents the
in-plane RDF far from the surfaces (bulk).

ordering in the liquid. It can be seen that the results from the CGMD simulation are in good agreement

with that of AAMD simulations. Moving away from the wall, in region II, although we observe that the first

valley of the lateral RDF in AAMD is shallower than the bulk RDF, the location of the peaks and valleys

follow closely the bulk radial distribution function. This indicates that the in-plane water structure in region

II is similar to that of bulk with a slightly higher density. In this region the CG potentials result in an RDF

very similar to that of bulk and in good agreement with AAMD simulation results.

To further test the applicability of our CG potentials, we simulated water in narrower confinements such

as 7� and 4� channels. Fig. 4.8(a) shows the comparison of the density profiles from AAMD, CGMD, and

EQT simulations. Since all the channels are in chemical equilibrium with the same bulk reservoir, the CG

potentials are transferable across channels of di↵erent width. It can be seen that the results from CGMD

simulations are close to AA SPC/E water model. Thus, as far as the structural properties are concerned,

the physics near by the wall is captured well upon optimizing the wall-fluid interaction.
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Figure 4.8: Water density distributions (a) and parallel permittivity profiles (b) inside graphene slit-like
channels of various widths. In the figure, circles, solid line, and dashed line represent AAMD, CGMD, and
EQT results, respectively.

Furthermore, from a continuum perspective, the use of CG potentials together with mean-field approxi-

mation (MFA) and FMT functional provides a good description of water molecular arrangement inside the

neutral graphene slit channels. It is important to mention that for the neutral wall, the EQT formulation

does not explicitly take into account the dipole-dipole interactions, yet we observe that except for a very

narrow channel such as 4�, where it is likely that the fluid-fluid correlations play an important role, the

EQT predictions are in good agreement with AAMD and CGMD results.

One of the benefits of using the extended dipole CG model is that it retains the dipolar information

necessary for permittivity calculation. This is important, as it can explicitly account for the water screening

e↵ects in confinement. For many confined systems where properties vary spatially in the confined direction,

the dielectric permittivity has a tensorial form. For a slab geometry, the dielectric constant has two compo-

nents that vary with the z direction (inhomogenous axis): parallel ("r,||(z)) and perpendicular ("r,?(z)) to

the wall. To calculate each of the components we use the fluctuation formulas derived by Ballenegger and

Hansen [164]. Fig. 4.8(b) shows the variation of the normalized parallel permittivity for di↵erent channel

widths. The values are normalized by the bulk AA SPC/E dielectric constant value of 71.89. In the 10�
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channel, where both the layered structure and bulk region are well-formed, the dielectric permittivity is not

constant, but it exhibits an oscillatory behavior in an interfacial region of three to four molecular diameters.

For such a channel the water screening strength parallel to the wall is seen to be ⇠5 times higher than that of

bulk. This emphasizes the need of using a realistic CG model that can capture such pronounced oscillations

near an interface. As we move away from the wall, "r,||(z) decays until it reaches the bulk value at roughly

4 molecular diameters away from the surface. It can be seen that on average, "r,|| of water is higher than

its bulk value, indicating that the in-plane (xy) screening e↵ects are enhanced by the presence of a planar

interface. This is also in agreement with the results of previous studies for planar interfaces [129, 165]. It can

be seen that except for a very narrow confinement (4� channel) the extended dipole CG model does a rea-

sonable job in reproducing the parallel component of water dielectric permittivity compared to the AAMD

simulations. In the 4� channel, due to the extreme confinement e↵ect in the z direction, the molecules are

closely spaced and packed in the x� y plane, which results in an enhancement of dipole-dipole correlations

parallel to the surface [166]. Under these circumstances, we see that the CG model overestimates the par-

allel dielectric constant. This means that the dipoles are more strongly correlated in the CG representation

compared to their AA counterpart. This fact is more evident by looking at the in-plane RDF of the contact

layer (see Fig. 4.7(b)), where the CG model slightly overestimates the lateral RDF, which can be magnified

in the case of extreme confinement such as in the 4� channel. Furthermore, although optimizing the wall-

fluid potential improved the CG density profile significantly, uwf

CG

is isotropic and does not directly take into

account the orientational degrees of freedom.

Capacitor Walls

In this section, we comment on the applicability of the EQT and the CG model on reproducing the density,

polarization and dipolar angle profiles of water inside a capacitor-like channel (negative and positive walls).

For this purpose, we simulated water in the presence of an external electric field generated from the negative

and positive partial charges on the left and right graphene sheets. We calculated the density, dipolar angle,

and polarization profiles from both atomistic and continuum simulations. Due to the presence of the charges

on the wall, in addition to the vdW interactions, we have to consider the electrostatic interactions arising

from the charge-dipole and dipole-dipole interactions in the EQT framework. For this purpose, we use

the EQT-Langevin-Poisson framework, in which the e↵ective electrostatic potential is calculated through

the Poisson equation, and the water permittivity and polarization variations are modeled using the LD

approximation. Fig. 4.9(a) shows the result for water density profile in the charged 12� channel from

AAMD, CGMD and EQT simulations. We observe that the AA water density profile is asymmetric with
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respect to the middle of the channel, and exhibits more pronounced peaks next to the positively charged

interface. At the positively charged wall, due to the favorable electrostatic interactions between the wall

and water, more oxygen atoms are attracted to the surface creating a region of high density at the interface.

This causes the water dipole moments to point away from the wall, making more hydrogens available to

form H-bonds with the neighboring water molecules, and resulting in an increase in water density in the

preceding layer. As we move towards the middle of the channel the layering is suppressed and the bulk-like

region is recovered in the central region of the channel.
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Figure 4.9: Comparison of water density profile in a capacitor channel of width 12�.

From the CGMD simulations, the extended dipole model is able to predict the density of water molecules.

However, it fails to quantitatively capture the density close to the negatively and positively charged walls.

This is expected as, unlike the SPC/E AA water, the extended dipole model is incapable of forming H-bonds,

and the CG wall-fluid interaction has been optimized for the neutral walls, which may not be transferable

to the charged walls. The former is a limitation of the model, while the latter is the result of the well-known

transferability problem of the bottom-up coarse-graining approaches. Nevertheless, the CG model is able to

predict the perpendicular polarization (P?(z)) profile in a reasonable agreement with the AAMD simulation

(see Fig. 4.9(b)). This indicates that to a good extent the perpendicular permittivity variations are being

captured, as the P?(z) is proportional to the weak electric field in the cavity by "r,?, according to the linear

response theory [129].

The EQT results for density match with the CGMD simulation, which indicates that the hard sphere

approximation and the mean field treatment of the electrostatic interactions together with the use of CG

potentials, are capable of capturing the structural variations of the dipolar molecules inside the charged

confinement. However, by looking at Fig. 4.10 (b), we observe that the EQT-Langevin-Poisson approach

cannot capture the variations in the P?(z). Upon a closer inspection, we see that the bulk polarization value
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Figure 4.10: Water dipolar orientation and polarization profiles from CGMD and EQT simulations inside
a capacitor channel of width 12�.

is underestimated even though the same dipole moment as CGMD simulations is used. To understand this

better we examine the average cosine of dipole orientation profile since it directly a↵ects the polarization (see

Eq. 4.29). Fig. 4.10 (a) shows the average orientation profiles from both EQT and CGMD simulations. EQT

predicts a higher alignment of dipoles at the charged walls compared to the CGMD simulations, resulting

in an over-screening of the external electric field that leads to a lower (in magnitude) dipole orientation in

the middle of the channel. Nevertheless, EQT is able to qualitatively capture the oscillations in the average

orientation profile with an o↵set in the location of the peaks and valleys. This is important in computing

the perpendicular polarization. Since these structural variations occur over few nanometers in the vicinity

of the interface, even a few Angstroms o↵set in the dipole orientation can drastically a↵ect the polarization

profile.

Fig. 4.11 shows the permittivity predicted by the EQT-Langevin-Poisson approach with two di↵erent

dipole moments. It can be seen that when the CGMD dipole moment of 1.903 D is used, the bulk permit-

tivity is not recovered. Thus, the dipole moment is optimized such that the bulk permittivity is recovered.

With a dipole moment of 4.539 D, the polarization of water molecules in the bulk matches that of CGMD

simulation (see Fig. 4.10 (d)). However, the variations are still missing. This can be attributed to two
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Figure 4.11: Dielectric permittivity profiles of water from the Langevin dipole model inside a capacitor
channel of width 12� with di↵erent dipole moments.

factors: The oversimplifications made in the LD approximation, and the definition of the permittivity used

in the theory. In LD approximation, the molecules are treated as non-interacting dipoles, thus the dipole

correlations are completely neglected, whereas in the CGMD simulations the dipoles are interacting due to

the electrostatic interactions. Furthermore, in the Poisson equation, the dielectric permittivity has been

modeled via one of the following approaches: using a bulk-based relation that is applicable only in the bulk

or weakly inhomogenous systems, e.g. Clausius-Mossotti (CM) expression [167], phenomenological formulas

that express permittivity in terms of the local density variations [167, 168], or a uniform distribution approxi-

mation throughout the inhomogenous system. As mentioned in Section 4.6.2, for a confined system, however,

the dielectric permittivity has a tensorial form. Unlike the parallel permittivity that varies smoothly and

locally follows the density oscillations, the perpendicular component exhibits a non-local behavior [110] with

an average value as small as ⇠2 compared to the bulk [169], suggesting that using bulk-based relations

or local density approximations may not be an accurate way of modeling the permittivity in the Poisson

equation.

4.7 Summary

In this chpater, we intorduced an extended CG dipole model for water that reproduces RDF, di↵usion

coe�cient, and dielectric constant at room thermodynamic conditions. We showed that by merely minimizing

the RE, one cannot reproduce the dielectric permittivity of bulk water. Thus, we employed the CRE method

to optimize the charges and the pair potential such that the dielectric permittivity in the CG system matches

that of the SPC/E AA reference simulations. We calculated the dipolar correlations in the bulk system from
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both CGMD and AAMD simulations. We found that the CGq method is able to capture the AAMD dipole-

dipole pair correlation function. However, due to its lower screening and dipole moment, it fails to reproduce

the AA SPC/E water dielectric permittivity. On the other hand, the CGq" method results in dipole moment

and CG potential that reproduced water dielectric permittivity, although the local screening e↵ects are

slightly underestimated compared to that of AA SPC/E model. Furthermore, we matched the di↵usion

coe�cient by systematically optimizing the mass of the molecule via simplex algorithm. To test our model,

we demonstrated it by simulating water in slit-like graphene nano channels of various widths. We observed

that without any modification to the wall-fluid interactions, the density profiles were in a good agreement

with the AAMD simulations, emphasizing the role of anisotropic forces arising from the inclusion of the

electrostatic interactions in the CG model. In order to obtain a quantitative agreement, we coarse-grained

the wall-water interaction. Our results, revealed that the nature of the CG wall-water interaction is no longer

of the 12-6 LJ potential form, but a double-well type potential with a lower attractive potential well. We

showed that the agreement in density profiles from AAMD, CGMD and EQT is good. We further calculated

properties such as in-plane RDFs, and parallel dielectric permittivity, and showed that the CG model is

capable of reproducing these quantities in a good agreement with the AAMD simulations. Finally, to test

the applicability of our model in screening the charges perpendicular to an interface, we simulated water in a

capacitor wall and calculated the density, dipolar angle, and polarization profiles. Ignoring the dipole-dipole

interactions (LD approximation) and improper modeling of the perpendicular permittivity in the Poisson

equation, fails to capture the variations in the polarization profile, thereby providing an inaccurate picture of

charge screening in confinement. However, due to the presence of dipoles and systematic parameterization,

our CG model captures the polarization profile observed in AAMD simulations, suggesting that the water

screening e↵ects perpendicular to the wall have been captured to a good extent. We note that the method

developed in this paper is not limited to water and can be used to coarse grain other polar molecules.
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Chapter 5

A Universal Reduction in Dielectric
Response of Confined Fluids

5.1 Introduction

One of the important fundamental properties of any polar fluid is its dielectric constant. In simple terms,

it is the measure of the fluid’s ability to screen charges. The knowledge of dielectric permittivity and

its influence on electrostatic interactions are of great importance in science and technology. In energy

storage devices such as electric double-layer (EDL) capacitors, the amount of energy stored in the device

is directly proportional to the solvent dielectric constant, and thus, can be exploited to manipulate the

capacitance [170]. In the context of coordination chemistry, dielectric permittivity is an essential component

for reactions in the solution via changing the solvation free energy barriers [171]. Moreover, solubility and

solvation free energy [172], ion mobility [173], and molecular transport through nanopores [174], which are

relevant processes in biology [41, 175] and water desalination[176, 177] depend strongly on the dielectric

permittivity and its variation near interfaces.

Similar to the structural [178, 179] and dynamical changes that a fluid undergoes in the vicinity of

an interface, the dielectric response of the confined fluid is no longer a scalar quantity (as is the case in

the bulk) and is a second ranked tensor exhibiting an anisotropic behavior in di↵erent spatial directions

(e.g. perpendicular, "?, or parallel, "k, to a flat interface) [39, 40]. Such an anisotropic behavior implies a

strong preferred directionality for electrostatic interactions [41] and can be very important in understanding

dissociation in nanoconfinement [42, 43], dielectrophoretic deposition of carbon nanotubes (CNTs) [44],

developing accurate coarse-grained force fields [180] and improving the solvent-implicit approaches often

used in biology and continuum theories such as the Poisson-Boltzmann (PB) equation [45] for accurate

prediction of capacitance in the electric double-layer capacitors [46].

Direct measurement of the dielectric permittivity of the fluid under confinement is a very challeng-

ing task [10, 181]. Previous experiments primarily focused on water and employed di↵erent methods and

techniques to measure its dielectric response perpendicular to an interface. Thin film measurements have

reported a decrease in the perpendicular dielectric permittivity, "?, of water confined between mica plates
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as the water slab thickness is reduced from micrometer to nanometer [182]. For the same interface, atomic

force microscopy has revealed that water dielectric constant varies from 4 to its bulk value, "
b

=81, within

a distance of about 10 nm away from the surface [183]. On the other hand, using the streaming potential

method, it was found that the dielectric permittivity of water confined in extended nano spaces is reduced to

roughly 1/3 of its bulk value. Recently, capacitance microscopy analyses have revealed that water exhibits

an anomalously low out-of-plane dielectric constant of 2.1, when confined between sheets of graphene and

HBN. It was also found that the channel width where the water dielectric behavior converges to that of bulk

extends up to mesoscales [10].

Due to the challenges and discrepancies in measuring the dielectric constant from experiments, a number

of computational studies have been performed to study the dielectric permittivity of confined water at

various interfaces. As shown in many studies [181, 184], bulk-based relations such as the Kirkwood-Frohlich

relation [185, 186] should be avoided in calculating the interfacial dielectric permittivity. Using statistical

mechanics and linear response theory, fluctuation formulas have been derived to determine the dielectric

response of confined polar fluids [39, 40]. Using molecular dynamics (MD) simulations, an anomalous

dielectric response was found for water confined between ionic Newton black films [187]. Later, it was shown

that water exhibits a strong anisotropic dielectric relaxation when confined in graphene nanochannels [188].

This behavior led to an order of magnitude di↵erence in the parallel and perpendicular dipolar fluctuations

of water confined between graphene sheets, and was shown to persist even for a 100 nm wide channel [189].

Such anisotropic behavior has also been observed in cylindrical confinement such as in CNTs [190, 191], where

the water dielectric constant parallel to the axis of CNT is enhanced while the perpendicular component is

suppressed. This anomalous water dielectric behavior, particularly the reduction in perpendicular dielectric

constant of water has also been reported near hydrophobic spheres [192], soft polar surfaces [193], and protein

surfaces.

Albeit both computational and experimental studies have been performed on the dielectric permittivity

of confined water, there have been only a few studies on non-aqueous solvents. Understanding the dielec-

tric behavior of confined organic solvents is of paramount importance for the application of electrochemical

capacitors due to their higher operating voltage thresholds compared to water. In this chapter we per-

form extensive MD and multiscale simulations with cumulative simulation time of 10 µs, to determine the

dielectric constant as a function of channel width for water and several technologically relevant organic

solvents confined in graphene slit channels. In this chapter we provide fundamental insights into the e↵ect

of confinement on perpendicular dielectric permittivity of confined fluids in slit channels of various widths.

We observe universal scaling and reduction in the perpendicular dielectric permittivity as a function of the
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channel width. We demonstrate that the reduction in the out-of-plane dielectric permittivity exhibits a

Langevin-like behavior. The reason behind this reduction is attributed to the favorable in-plane dipole-

dipole interactions. Moreover, we find that the perpendicular dielectric permittivity is anomalously low in

sub-nanometer channels. Finally, we introduce a multiscale parallel-plate capacitor model to calculate the

perpendicular permittivity of the confined fluids. The model is more robust than the fluctuation formula

(requires only two short MD simulations of about 4 ns) and its prediction of the perpendicular dielectric

permittivity, in the limit of zero external electric field, agrees well with the result of the fluctuation formula.

5.2 Simulation Details

5.2.1 MD simulations

All the MD simulations were performed using the GROMACS software [194]. Equations of motion are

integrated with the leap-frog algorithm with a time step of 1 fs. During the simulations, temperature is kept

constant at 298 K using the Nosé-Hoover thermostat with a 0.2 ps time constant. For the bulk simulations, all

systems were initially equilibrated for 5 ns, followed by a 20 ns of production run in isothermal-isobaric (NPT)

ensemble with the pressure of 1 bar. For the short-ranged interactions, the cuto↵ radius was set to 1.2 nm.

Both energy and pressure tail corrections [195] have been applied to the standard 12-6 LJ potential for the

bulk MD simulations. For the bulk MD simulations, the long-range electrostatic interactions were calculated

using the particle mesh Ewald (PME) summation [196] with the tinfoil boundary condition (infinite dielectric)

and a fast Fourier transform (FFT) grid spacing of 0.12 nm. Periodic boundary conditions were applied in all

the directions. In order to obtain enough statistics to calculate the bulk dielectric permittivity, trajectories

of atoms were collected every 0.05 ps. For the confined fluid simulations, all simulations were performed in

the canonical ensemble (NVT). Our system consists of two parallel graphene sheets separated at a distance

of H in the z direction. The lateral dimensions lie in the x-y plane with an area of 4.17648 ⇥ 4.25420 nm2. A

periodic boundary condition was applied in all the directions with an extra vacuum of length at least 3H in the

z direction to avoid slab-slab interactions between periodic images. The long-range electrostatic interactions

are modeled employing the Ewald algorithm adapted for slab geometry [197]. The LJ length and energy scale

parameters for carbon atoms are 0.3390 nm and 0.2334 kJ/mol, respectively. During the simulation, the

graphene sheets were frozen, i.e., their positions were not updated. In this study, we have considered a total

of 4 fluids of various polarity and density such as water, methanol, acetonitrile, and dichloromethane. We

modelled water by the extended simple point charge model (SPC/E) and used the SHAKE algorithm [198] to

maintain the molecule rigidity. For acetonitrile we adopted the six-site model from Nikitin et al. [199], where
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the force field parameters were optimized to reproduce the dielectric permittivity close to the experimental

value. For the rest of the fluids, all parameters were adopted from the All-Atom Optimized Potential for

Liquid Simulations (OPLS-AA) forcefield [200] with the exception of dichloromethane charges, which were

modified for more accurate estimation of its dielectric constant [201]. Quantum, atomic and electronic

polarizability e↵ects are neglected, therefore, the fluid models are considered to be non-polarizable. In order

to determine the number of confined fluid particles, each channel was connected to a big reservoir equilibrated

at temperature of 298 K and the pressure of 1 bar, to allow for particle exchange in an NVT ensemble. To

obtain enough statistics especially for calculating the perpendicular dielectric permittivity, the equilibrium

properties are averaged over a set of 7 MD simulations each with di↵erent initial velocities and positions

for a total time of 20 ns, in which the first 5 ns were discarded. Additionally, we have simulated water in

capacitor channels, where uniform partial charges were assigned to the atoms of each wall to achieve external

electric fields of 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, and 1.5 VÅ
�1

.

5.2.2 Fluctuation formula for perpendicular permittivity

As mentioned before, unlike bulk, in confinement, the dielectric permittivity of a polar fluid takes a tensorial

form. For a slit-channel, where the inhomogeneity is only in one direction (perpendicular to the surface, z

axis), the component of the dielectric permittivity tensor spatially varies as a function of z. Using statistical

mechanics and the linear response theory, the locally varying inverse perpendicular permittivity is given via

the following fluctuation formula,

"�1

? (z) = 1� �"�1

0

[hp? (z)P?i
0

� hp? (z)i
0

hP?i
0

] , (5.1)

where � is the inverse of thermal energy, h· · · i
0

denotes the ensemble average in the absence of an external

electric field, p?(z) is the perpendicular fluid polarization density at position z, and P? is the perpendicular

component of the fluid total polarization and is given by,

P? = A

Z H

0

p? (z) dz. (5.2)

It has been shown that in addition to dipole moment, higher order multipole moments such as quadrupole

and octupole are non-negligible in calculating the perpendicular dielectric permittivity [40]. Therefore, to

account for higher order multipole moments the perpendicular polarization density at position z is calculated

as,

p? (z) =

Z z

0

⇢
e

(z0)dz0, (5.3)
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where ⇢
e

(z) is the fluid atomic charge density profile in the z direction, and is computed by the binning

method with 0.1 Å resolution. Integrating Eq. 5.1 over the entire channel, yields the average inverse per-

pendicular permittivity as,

"�1

? = 1�
⌦
P 2

?
↵
� hP?i2

"
0

V k
B

T
. (5.4)

5.2.3 Electrostatic potential calculations

To compute the electrostatic potential, �(z), of the confined fluid in a slit channel, the Poisson equation

reads as
d2�

dz2
= �⇢e(z)

"
0

, (5.5)

with the following boundary conditions:

d�

dz

����
z=0

= ��
c,left

"
0

, (5.6a)

d�

dz

����
z=H

= +
�
c,right

"
0

, (5.6b)

� (z = H/2) = 0, (5.6c)

where �
c,left = ��c and �

c,right = +�c are the surface charge densities on the left and right wall, respectively.

We note that, due to the last boundary condition (Eq. 5.6c, the electrostatic potential at any point is relative

with respect to the mid-point of the channel.

5.3 Results

5.3.1 Bulk dielectric permittivity and dipolar strength

In general, solvents can be classified into two categories: protic and aprotic. The former refers to the solvents

capable of forming H-bonds, whereas the latter refers to solvents which cannot accept or donate a hydrogen

bond. The set of fluids considered in this study have dielectric constant (calculated from MD simulations)

ranging from ⇠9 (non-polar aprotic fluid such as dichloromethane) to intermediate values of ⇠25 (polar

protic and aprotic fluids such as methanol and acetonitrile, respectively) and to the highly polar protic fluid

such as water (SPC/E) with the dielectric constant of ⇠71. In addition to their technological relevance and

wide range of dielectric permittivity, the selection of these solvents shows an interesting connection between
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bulk dielectric permittivity, proticity and dipolar strength. Assuming periodic tinfoil (conducting metal)

boundary conditions, the bulk dielectric permittivity can be expressed via the following relation [202]:

"
b

= 1 + 3C
d

G
k

. (5.7)

In eq Eq. 5.7 G
k

is the Kirkwood factor, representing the angular dipolar correlations among the dipoles

(e.g. for uncorrelated dipoles G
k

is equal to 1), and C
d

is the dipolar strength given by,

C
d

=
⇢
b

µ2

9"
0

k
B

T
, (5.8)

where µ, ⇢
b

, "
0

, k
B

, and T are the dipole moment, bulk density, vacuum permittivity, Boltzmann constant

and temperature, respectively. We observe that for a similar value of dipolar strength the hydrogen-bonded

liquids have a higher dielectric permittivity compared to the non-hydrogen-bonded liquids (See Appendix B,

Table. B.1). This suggests larger G
k

values, hence, stronger dipolar correlations and alignments in protic

liquids. Thus, we investigate the e↵ect of confinement on the dielectric response of both protic and aprotic

solvents with distinct dipolar strengths.

5.3.2 Perpendicular dielectric permittivity of confined liquids

A typical simulation box consists of fluid molecules sandwiched between two flat graphene sheets separated

by a distance, H (See Appendix B, Fig. B.1). For each channel width, we use the fluctuation formula (see

Eq. 5.1) to compute the spatially varying perpendicular dielectric permittivity and average it over the entire

channel width using Eq. 5.4, which makes it easier to compare with experiments and suitable for coarse-

grained modeling and analytical approaches. The size of the confinement (H) investigated ranges from large

channels with a well-formed bulk-like region away from the walls to smaller channels where no bulk-like region

can be identified and to extremely narrow channel widths of few Angstroms, where an accurate determination

of solvent dielectric constant requires high resolution experiments to reduce noise and error bar. Moreover,

such small-sized carbon slit-pores of width 0.6-1 nm (less than the size of solvated ions) have exhibited

anomalously high capacitance which contradicts the traditional understanding of supercapacitors [26, 203].

For all the channel widths and di↵erent fluids, we observe a reduction in perpendicular permittivity

compared to the bulk value (Fig. 5.1). The reduction in permittivity with size, however, varies for di↵erent

fluids. At large channel widths (with well-defined bulk-like region), the dielectric constant reduces in a

nonlinear fashion from the bulk value and continues to decrease in an almost linear fashion for narrower

channel widths (with no bulk-like region). For the confinement of width H
sl

(the smallest channel width
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Figure 5.1: Perpendicular dielectric permittivity of confined fluids. (a) Perpendicular dielectric permittivity
of di↵erent fluids confined in graphene slit-like channels of various widths. The bulk dielectric constant for
each fluid is shown by the dashed horizontal lines and the value is denoted by "b. (b) Perpendicular dielectric
permittivity normalized by the bulk dielectric constant of each fluid as a function of the channel width, i.e.,
"? (H) / "b. (c) Langevin-like behavior of the perpendicular dielectric permittivity as a function of the
channel width according to Eq. 5.9. (d) Using proper scaling, the data for the perpendicular dielectric
permittivity of confined fluids approximately collapses onto a single curve that can be described by the
Langevin function. In this subfigure, the scaled perpendicular permittivity is defined as e"?= "?�"sl

"b�"sl
, and the

scaled channel width is given by H̃= H�Hsl
�d("b�"sl)

.
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considered in our simulations), where only a single layer of fluid could fit inside the channel (See Appendix B,

Fig. B.2), the corresponding dielectric constant, "
sl

is exceptionally small. For some of the fluids such as

dichloromethane this value is close to 1. This indicates that at small separation distances, the ability of fluids

(both protic and aprotic) to screen charges normal to the surface is substantially inhibited. We note that

due to the lack of electronic degrees of freedom, the high limit frequency dielectric permittivity, "1, is equal

to unity for non-polarizable force fields [204]. Thus, the value of "
sl

for all the fluids lies above "1 =1. To the

best of our knowledge, with the exception of water, there are no relevant experimental studies on the variation

of dielectric permittivity of non-aqueous fluids as a function of the channel width. Nevertheless, our results

are in good agreement with recent experiments reported on the confined water dielectric permittivity [10].

For water, both simulations and experiments show a linear reduction in perpendicular permittivity for small

channels and a nonlinear reduction from the bulk value for larger channel widths. The smallest permittivity

found in experiment was ⇠2.1±0.2 for channel widths smaller than 2 nm. In our simulations, however, we

observe such a low value of perpendicular dielectric permittivity only in sub-nanometer channels.

Our results show that the reduction in the perpendicular dielectric permittivity is not exclusive to water,

rather it is a universal feature for the confined fluid systems. As a corollary, electrostatic interactions

perpendicular to an interface are enhanced under confinement. In other words, the electrostatic repulsion or

attraction becomes stronger between two similar or oppositely charged surfaces. This phenomenon can be

very important in biology due to the polar nature of protein surfaces and their interaction with water or in

energy storage applications as the dielectric permittivity of solvents can drastically impact the capacitance

of a device.

5.3.3 Langevin behavior of the perpendicular permittivity

As depicted in Fig. 5.1c , the behavior of the perpendicular permittivity as a function of the channel width

can be approximately modeled by a Langevin function as,

"? (H) = "
sl

+ �" L
✓
3
H �H

sl

�
d

�"

◆
, (5.9)

where �" = ("
b

� "
sl

), L (x) = coth (x) � 1

x is the Langevin function, and �
d

is an e↵ective length scale

which is determined from the slope at small channel widths.

In the context of dielectric theory, Langevin function has also been used to describe the orientational

polarization of the system of non-interacting dipoles, the dielectric saturation e↵ects due to the external

electric field [205–207], dielectric decrement as a function of ion concentration [208, 209], and to model an

e↵ective permittivity in classical theories such as the Poisson-Boltzmann theory [210].
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Table 5.1: Anomalously low perpendicular dielectric permittivity of di↵erent fluids in sub-nanometer slit
channels. �d is the fitting parameter in the Langevin equation, �b is the length scale to retrieve the bulk
dielectric behavior, and �a is the e↵ective molecular diameter from [1].

Fluid H
sl

(nm) "
sl

�
d

(nm) �a(nm) �
b

(nm)
Water 0.634 2.3146 0.3370 0.2922 1035.8
Methanol 0.700 1.5800 0.3870 0.3835 288.0
Acetonitrile 0.800 2.0900 0.5501 0.4244 344.5
Dichloromethane 0.700 1.0558 0.6318 0.5045 153.0

For small channels, especially in the limit of H ! H
sl

, the behavior of the perpendicular dielectric

permittivity is approximately linear as a function of the channel width with the slope directly related to

�
d

(See Appendix B, Fig. B.3). The resultant values for �
d

show a remarkable similarity to the e↵ective

molecular diameter of the fluids considered [1] (Table 5.1).

In addition, knowing �
d

for each fluid and using Eq. 5.9, we can predict the characteristic length scale,

�
b

, for which the bulk dielectric behavior is recovered (Table 5.2). The criterion used to calculate �
b

was

that the perpendicular dielectric permittivity at H = �
b

reaches 99% of "
b

. We found that �
b

ranges from

hundreds of nanometers for dichloromethane, methanol, and acetonitrile to micrometers for water. Our

results for water, agree well with the recent experiments [10] and previous MD simulations, showing that the

e↵ect of confinement on the dielectric response of water extends up to mesoscale dimensions.45 We emphasize

that these length scales are obtained for fluids confined in the graphene slit-pores and these length scales

can change as the substrate changes.

By rearranging Eq. 5.9 and plotting the scaled perpendicular dielectric permittivity, e"? = "?�"
sl

"
b

�"
sl

, against

the scaled channel width, H̃ = H�H
sl

�
d

("
b

�"
sl

)

, it is apparent that all the data for di↵erent fluids approximately

collapses onto a single curve including the experimental measurements reported in the literature for wa-

ter out-of-plane dielectric permittivity [10]. This relationship between the scaled perpendicular dielectric

permittivity and the scaled channel width can be modeled by the Langevin function, i.e., e"?
⇣
H̃
⌘
= L

⇣
3H̃

⌘
.

5.3.4 Multiscale parallel-plate capacitor model

A simple capacitor consists of a dielectric medium sandwiched between two electrodes of equal and opposite

charges (±Q) separated by a distance H. A capacitor can be characterized by its capacitance (C) which is

a measure of the amount of charge stored for a given potential di↵erence across its electrodes, i.e.,

C =
Q

��
=

�
c

A

��
, (5.10)
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where �
c

is the electrode surface charge density, A is the surface area of the electrode, and �� = �
anode

�

�
cathode

with anode and cathode referring to the positive and negative electrodes, respectively. On the other

hand, from a theoretical point of a view, the capacitance for a conventional parallel-plate capacitor can be

written in terms of the geometry of the capacitor and the dielectric permittivity of the confined medium as,

C =
A"

0

"
r

H
. (5.11)

Using Eqs. 5.10 and 5.11, the dielectric permittivity of the medium can be expressed as,

"
r

=
�
c

H

"
0

��
. (5.12)

Herein, in addition to the fluctuation formula to calculate the perpendicular permittivity, we have simulated

capacitor channels, where uniform partial charges, positive on the right wall (z = H) and negative on the left

wall (z = 0), were assigned to the wall atoms to achieve an external electric field of strength, E
ext

= �
c

/"
0

.

Thus, by knowing the electrostatic potential of the anode and cathode, the dielectric permittivity of the

confined medium, which coincides with the perpendicular dielectric permittivity (i.e., "
r

= "?), can be

obtained using Eq. 5.12. To find the electrostatic potential for a confined fluid system, we first calculated

the atomic charge density profile from MD simulations and used the Poisson equation with the proper

boundary conditions (Eq. 5.6) to obtain the electrostatic potential. The schematic of the entire procedure

for water is shown in Figure 2a.

Compared to the fluctuation formula which is only applicable in the absence of an external electric

field and requires long and tedious equilibrium simulations, Eq. 5.12 is more robust and can be used to

calculate the electric-field-dependent perpendicular dielectric permittivity. However, one caveat is that it

cannot be used at zero external electric field. To address this limitation and to establish verification of the

results of Eq. 5.12 with the fluctuation formula, we investigated the variation of the perpendicular dielectric

permittivity as a function of the electric field (Fig. 5.2c). In general, as the electric field increases the

fluid dipoles get more aligned with the applied field, and thus, results in a lower dielectric permittivity. At

weaker electric fields, however, it is clear that the slope plateaus indicating an almost constant dielectric

permittivity. This is not surprising, as on the basis of the linear response theory, for weak enough electric

fields the response of the fluid total polarization density (p?) varies linearly with the local electric field

(E?), i.e., p? = "
0

("? � 1)E?. This is evident in the inset of Fig. 5.2b. It can be seen that for water, the

linear regime is observed for E
ext

 0.2 V�1, which is consistent with prior literature for water confined in

graphene channels [46]. To extract the zero field perpendicular dielectric permittivity, we used the Booth

67



Figure 5.2: Parallel-plate capacitor multiscale method. (a) Schematic procedure for calculating the per-
pendicular dielectric permittivity of confined fluids using Eq. 5.12. The procedure is illustrated for water,
where we first calculate the density of oxygen and hydrogen atoms. Multiplying by their atomic charges,
we obtain the charge density profile which can be used in the Poisson equation to obtain electric field and
thus the electrostatic potential required to calculate the perpendicular dielectric permittivity. (b) Total
perpendicular polarization density (p?=P?/V , where P? is calculated from Eq. 5.2) of water as a function
of the electric field for 3.17 nm wide channel. The inset shows the region, where the variation is almost
linear and the dielectric constant is nearly independent of the electric field inside the channel. The onset of
the nonlinear behavior occurs at the electric field ⇠0.02 V �1 (Eext= 0.2 V �1). (c) Electric-field dependent
perpendicular dielectric permittivity of water confined in 3.17 nm wide channel for various external electric
field strengths. As shown, the direction of the applied electric field is from right to left. Circles are cal-
culated from Eq. 5.12 and the line is the fitted curve using Eq. 5.13 with the following fitting parameters:
b= 1.78± 0.03 V �1, and "? (0)= 9.96± 0.02 (d) Comparison between the water perpendicular dielectric
permittivity obtained at the limit of zero electric field from the multiscale parallel-plate capacitor method
versus the results obtained from the fluctuation formula.
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relation [205, 206] for the electric field-dependent perpendicular dielectric permittivity,

"? (E
ext

) = n2 +
3
�
"? (0)� n2

�

bE
ext

L (bE
ext

) , (5.13)

where n is the refractive index, which is related to the infinite frequency dielectric constant by "1 =

n2. In Eq. 5.13, b and "? (0) are fitting parameters for our data and n = 1 due to the use of non-

polarizable SPC/E forcefield. We note that eq Eq. 5.13 has been originally derived in the bulk, however,

we show that (Fig. 5.2c) it can extract "? in the limit of the zero electric field. Therefore, for each channel

width, we only perform 2 non-equilibrium MD (NEMD) simulations at two distinct electric fields to obtain

perpendicular dielectric permittivity via Eq. 5.12, and subsequently use Eq. 5.13 to extract the zero electric

field perpendicular dielectric permittivity. The results are illustrated in Fig. 5.2d, which show a good

agreement with the perpendicular dielectric permittivity obtained from the fluctuation formula. Therefore,

the aforementioned multiscale method eliminates the need for long and tedious simulations required to

calculate the perpendicular dielectric permittivity from the fluctuation formula. It is worth mentioning that

we can further modify Eq. 5.13 to account for the dielectric saturation in the limit of very high external

electric fields and consequently obtain an accurate representation of the perpendicular dielectric permittivity

as a function the external electric field (See Appendix B, Fig. B.4).

5.3.5 Dipole correlations and reduced perpendicular permittivity

It is widely accepted that the low perpendicular dielectric permittivity is due to a dielectric dead layer

(low permittivity interfacial region) at the fluid-solid interface [211, 212]. However, the origin of such a low

dielectric layer is still debated as to whether it is intrinsic to the dielectric medium or due to the impurities

on the surface.48 In either case, the existence of a dead layer will lower the overall dielectric constant, thus,

having a huge impact on the capacitance of the medium [173, 213]. It has been shown for water that the

reduction in permittivity is attributed to the favorable in-plane hydrogen-bond network at the solid surface,

which makes it di�cult for molecules to re-orient in the perpendicular direction and respond to the external

field.49 However, our results indicate that not only protic fluids such as water or methanol (hydrogen bonding

fluids) but also aprotic fluids exhibit a low out-of-plane dielectric permittivity under confinement, suggesting

that the underlying mechanism for the reduction in permittivity is not just due to the hydrogen bond network

e↵ect in the interfacial layer (IFL). Since the main contribution to the static dielectric permittivity of polar

fluids is the orientational polarizability (compared to the electronic polarizability) [214], and the dominant

term is the dipole polarization, we investigate the in-plane dipole orientational correlations in the first fluid

density layer (interfacial layer) adjacent to the wall (See Appendix B, Fig. B.5). As depicted in Fig. 5.3a-d,
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Figure 5.3: Dipolar correlations for water (a,e), methanol (b,f), acetonitrile (c,g), and dichloromethane
(d,h). The top row shows the dipole-dipole pair correlation function and the bottom row shows the angular
dependence of the dipole-dipole interaction energy in bulk (red color) and in the interfacial layer next to
the graphene surface (black color) as a function of the separation distance r. It is important to note that in
IFL the distance between the dipoles lies in the xy plane (parallel to the surface). Therefore, the separation
distance is the in-plane radial distance, i.e., r|| = (x, y).

for all the fluids considered, compared to the bulk, the in-plane dipole-dipole correlation, h
�

(r) (Eq. 4.32)

is enhanced, showing the tendency of the dipoles to lay parallel to the graphene surface. Such a preferred

orientation was reported for polar liquids on graphene [214].

This preferred orientation can be understood by analyzing the in-plane dipole-dipole electrostatic energy

of the interfacial layer, which can be written as,

U
elec,dd = �

AL2

IFL

⇢
2

IFL

2"
0

µ2

Z 1

0

h
D

�
rk
�

r2k
drk, (5.14)

where h
D

represents the angular dependence of the dipole-dipole interaction energy (Eq. 4.37), rk is the
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Table 5.2: The dipole moment squared, bulk and the interfacial layer densities, and the in-plane dipole-dipole
electrostatic potential for various fluids.

Fluid µ2(D2) ⇢
b

(nm�3) ⇢
IFL

�
nm�3

�
U
dd,elec(kJ mol�1)

Water 5.5225 33.40 62.24 �1475.92
Methanol 5.4820 14.58 39.04 �281.09
Acetonitrile 15.1632 11.47 26.88 �316.04
Dichloromethane 4.9131 8.96 24.59 �52.53

in-plane separation distance between the dipoles, L
IFL

is the width of the interfacial layer, and ⇢
IFL

is

the density of the molecules in the interfacial layer. Fig. 5.3e-h shows the correlation function h
D

(r) for

di↵erent fluids. Similar to the in-plane dipole-dipole correlation, h
D

(r) is enhanced next to the interface

and it is dominantly positive, suggesting that the preferred alignment of dipoles is to lower the dipole-

dipole interaction energy. In addition to h
D

(r), we expect that the density and the dipole moment play

an important role as they explicitly enter Eq.5.14. Using all these parameters, we have calculated the in-

plane electrostatic energy for water, methanol, dichloromethane and acetonitrile (Table 5.2). We note that

water has the lowest energy followed by acetonitrile and methanol (similar values), and dichloromethane

has the highest in-plane dipole-dipole electrostatic energy. This explains the anomalous reduction in the

perpendicular permittivity and the order to which this reduction occurs relative to the bulk permittivity,

"? (H) /"
b

(Water > Methanol ⇡ Acetonitrile > Dichloromethane) (Fig. 5.1b). Overall, our results show

that the reduction in perpendicular dielectric permittivity ensues from the existence of confinement and the

tendency of the fluid molecules to align parallel to the graphene surface. The preferred in-plane alignment

of molecules lowers the dipole-dipole electrostatic interaction energy hindering the out-of-plane rotation and

thus reducing the tendency to align with an external electric field acting in the normal direction (z-axis).

5.4 Summary

Till date, most of the literature on perpendicular dielectric permittivity dealt with confined water and

less attention has been given to the response of other polar liquids. Many studies have shown that the

perpendicular dielectric response is significantly reduced as a result of confining water molecules. This

work goes further by demonstrating that the reduction in the perpendicular permittivity is a universal

feature for both protic and aprotic fluids. The physical origin of this reduction was attributed to the low

dielectric response of the interfacial layer due to the preferred in-plane alignment of the fluid molecules’

dipole moments. Such an alignment lowers the in-plane dipole-dipole electrostatic energy and therefore,

restricts the molecular rotations normal to the surface. Furthermore, our results reveal that for narrow

confinements with no bulk-like region in the middle of the channel, perpendicular permittivity scales linearly
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as a function of the channel width and the slope is proportional to an e↵ective length scale which is close to

the fluid’s molecular diameter. As the bulk-like region begins to form inside the channel, nonlinear e↵ects

are observed. We showed that such a behavior can be modeled by the Langevin function. Moreover, using

the Langevin function we predict the length scale beyond which the fluid can be treated as bulk in terms

of its dielectric properties. We found that depending on the fluid, the channel width that recovers the bulk

dielectric response varies from hundreds of nanometers for less polar molecules such as dichloromethane

to micrometers for fluids such as acetonitrile, methanol and water. Our results for water are in qualitative

agreement with the recent capacitance microscopy experiments in which the length scale to retrieve bulk-like

dielectric permittivity was estimated to be beyond 100 nm.

Under extreme confinement (sub nanometer channels), the perpendicular permittivity of the fluids is

anomalously suppressed to values as low as < 2.5. This indicates that the molecules primarily take a planar

orientation on the surface with very small out-of-plane dipolar components. For water the smallest value of

perpendicular permittivity was found to be ⇠2.3 in good agreement with the experimental value of ⇠2.1 [10].

Using the multiscale parallel-plate capacitor model, we have also studied the perpendicular response of

water dielectric permittivity as a function of the external electric field. In the limit of a vanishingly small

electric field, our results coincide with the perpendicular dielectric permittivity obtained from the statistical

mechanics approach (fluctuation formula). Furthermore, we observed a non-monotonic decrease in the out-

of-plane dielectric permittivity as a function of electric field. We showed that such a dielectric decrement

can be adequately modelled by the Booth relation.

We believe our findings will provide significant implications for theoretical assessment of both protic

and aprotic solvents next to an interface, understanding long-ranged electrostatic interactions in biological

systems, and understanding the solvation chemistry in polar fluids. Finally, our predictions for the reduction

in perpendicular permittivity of both protic and aprotic fluids in confined slit channels paves way for new

experimentation.
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Chapter 6

Confinement-induced enhancement of
dielectric permittivity

6.1 Introduction

As mentioned in Chapter 5, unlike the bulk, the dielectric response of fluids under confinement is neither

isotropic nor a scalar. It is a second rank tensor, whose components vary in di↵erent spatial directions and

exhibit an anisotropic behavior (e.g. perpendicular, "?, or parallel, "k, to a flat interface) [39, 40, 188, 191].

Understanding such an anisotropic behavior is very important since di↵erent applications requires the use

of specific component of dielectric permittivity tensor. For example, determining the capacitance of EDLCs

requires the knowledge of perpendicular dielectric permittivity [46], which was investigated in detail in

Chapter 5. Whereas, in applications such as nanofiltration and water desalination [176, 177], where the

transport of species are mainly parallel to the pore surface, the parallel component becomes the most relevant

quantity in the dielectric permittivity tensor. From both MD simulations and experiments, there has been

a surge of interest in studying the dielectric permittivity of confined fluids, in particular, water. Most of

these e↵orts have focused on the perpendicular dielectric permittivity. We showed that the perpendicular

dielectric permittivity is significantly reduced near the interface and the reduction is universal for both protic

and aprotic fluids. On the other hand, the parallel dielectric permittivity is enhanced near the interfaces and

shown to roughly follow the density variations inside the confinement [40]. The results reported from the

MD simulations are mostly exclusive to confined water and the relation between the parallel permittivity

and density profile is not unambiguous and rigorously derived [116, 166]. Moreover, the molecular origin of

the enhancement of parallel permittivity has been investigated for water and been associated with excluded

volume and hydrogen bonding network [166, 215]. However, this is an open question, when it comes to

aprotic fluid incapable of forming Hydrogen bonds.

In this chapter we use extensive MD simulations with cumulative time of 1 µs to study parallel permit-

tivity variations of both protic and aprotic fluids confined in 2D graphene slit-like channels. Starting from

the fluctuation formula and using statistical mechanics, we show that in addition to the density variations,

dipolar correlations at the interface plays an important role in enhancing the parallel dielectric permittivity

73



depending on the fluid polarity and degree of the confinement. We furthermore, investigate the molecular

origin for such enhancement. Finally, we study the parallel dielectric permittivity inside extreme confine-

ment, where only a single layer of fluid could fit inside the channel. We show that such confined geometries

can give rise to a colossal parallel dielectric permittivity, which could be serve as a probe to identify a

transition into a highly ordered structure.

6.2 Density and parallel permittivity relationship

For a slit-channel, where the inhomogeneity is only in one direction (perpendicular to the surface, z axis),

the parallel dielectric permittivity spatially varies as a function of z. Using statistical mechanics and the

linear response theory the locally varying parallel dielectric permittivity is given via the following fluctuation

formula [39],

"k (z) = 1 +
�"�1

0

2

hD
pk (z) ·P k

E
�
D
pk (z)

E
·
⌦
P k

↵i
, (6.1)

where pk = (px, py) is the in-plane fluid polarization density vector at position z, and P k is the parallel

component of the fluid total polarization vector. Unlike the perpendicular dielectric permittivity higher

order multipole moments such as quadrupole and octupole are negligible in calculating the parallel dielectric

permittivity [40]. Therefore, the total parallel polarization and the local parallel polarization density can be

calculated from MD using the dipole moments, respectively,

P k =
NX

j=1

µk,j (6.2)

pk (zi) =
1

A�z

N(zi)X

j=1

µk,j , (6.3)

where µk,j is the parallel component of the jth dipole, N is the total number of fluid molecules, N(zi)

represents the number of molecules located at z = zi, and zi is the location of the ith layer (bin) of thickness

�z inside the slit channel. Due to the homogeneity in the x-y plane, the contribution of the second term in

brackets in Eq. 6.1 is negligible. Therefore, using definitions provided in Eqs. 6.2 and 6.3, we arrive at,

"k (zi) = 1 +
�"�1

0

2A�z

2

4
N(zi)X

j=1

D
µ2

k,j

E
+

N(zi)X

j=1
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k 6=j

D
µk,j · µk,k

E
3

5 . (6.4)
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In equation Eq. 6.4 the first summation is the dipole-dipole self-correlation within a layer the and second

summation is the cross-correlation between dipoles of the ith layer and the entire system. We can further

rewrite equation Eq. 6.4 as

"k (zi) = 1 +
⇢ (zi)

D
µ2

k

E

2"
0

kBT

✓
1 +

Z
⇢ (zi)h�

(r, zi) dr

◆
, (6.5)

where ⇢ (zi) is the density at the location zi, r is the radial distance vector with the magnitude of r, and

h
�

(r, zi) is the z-dependent parallel dipole-dipole correlation function and is defined as,

h
�

(r, zi) =
1

N(zi)⇢(zi)

*
N(zi)X

j=1

NX

k 6=j

bµk,j · bµk,k � (r � rjk)

+
, (6.6)

where rjk = rj �rk is the center-to-center distance between i and j dipoles and bµk is the unit vector in the

direction of µk . The term in the parenthesis in Eq. 6.5 accounts for angular correlations among the dipoles

and is very similar to the definition of the well-known Kirkwood g factor in the bulk, i.e., Gk,b [136, 159].

Thus, we recast Eq. 6.5 in terms of the z-dependent Kirkwood g factor, Gk(z):

"k (z) = 1 +
⇢ (z)

D
µ2

k

E

2"
0

kBT
Gk(z). (6.7)

Eq. 6.7 explicitly shows the relation between the parallel dielectric permittivity, density variations, and

angular correlations inside slit-like confinement. On the other hand, for a homogeneous system (bulk) of

polar molecules with periodic boundary conditions, the bulk dielectric permittivity is calculated from the

following relation:

"b = 1 +
⇢b

⌦
µ2

↵
Gk,b

3"
0

kBT
, (6.8)

with ⇢b representing the bulk density. Combining Eqs. 6.7 and 6.8 yields,

"⇤k (z) =
3

2
⇢⇤ (z)

D
µ2

k

E
G

k
(z)

hµ2iGk,b
, (6.9)

where "⇤k is the normalized parallel permittivity,
"k(z)�1

"b�1

and ⇢⇤ = ⇢(z)
⇢b

is the normalized density.
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Figure 6.1: (a) Schematic illustration of the confined fluid between two graphene sheets separated by a
distance H in the z direction. Lateral dimensions in the x and y directions are denoted by Lx and Ly,
respectively. Oxygen (O, red), hydrogen (H, white), carbon (C, grey), and chloride (Cl, green) atoms are

shown. Normalized parallel dielectric permittivity ("⇤k(z) =
"k(z)�1

"b�1

) and density (⇢⇤ = ⇢(z)
⇢b

) of confined

fluids: (b) water (H = 3.17 nm), (c) methanol (H = 3.5 nm), and (d) dichloromethane (H = 3.15 nm). (d)
Protic (water and methanol) and aprotic (dichloromethane) fluids considered in this study.

6.3 Results

Fig. 6.1b-c compares the variation of the normalized parallel dielectric permittivity and density profile inside

the confined nano channels with a well-defined bulk region (large confinement). It can be seen that for all

fluids beyond the first fluid density layer (interfacial layer (IFL)) "⇤k closely follows the density variations

inside the channel. This indicates that except for the interfacial region, the angular correlations in the

confinement behaves similar to that of the bulk regardless of the proticity of the fluid (see Eq. 6.9). In the

interfacial region, however, depending on type of the fluid, the dipolar correlations deviates from the bulk

and contributes to the enhancement of the parallel dielectric permittivity.

Fig. 6.2a demonstrates the contributions of both density and dipolar correlations to the interfacial parallel

dielectric permittivity. For protic and more polar fluids such as water and methanol both density and dipolar

correlations are responsible for enhancing the parallel dielectric permittivity adjacent to the wall. Whereas,
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Figure 6.2: Histogram of maximum normalized density and parallel permittivity for water, methanol, and
dichloromethane: (a) Wide confinements with bulk-like region in the middle (b) Extreme confinement (single
layer density).

for dichloromethane, a less polar and aprotic fluid, the enhancement is due to high density region in the

interfacial region. Thus, for such a fluid, the parallel permittivity can be obtained from the density variations

inside the confinement (see Fig. 6.1d). We have also calculated the in-plane dipolar correlation in IFL (i.e.

h
�

�
rk
�
calculated from Eq. 6.6 with N replaced by N(zIFL) and rk = (x, y)) to investigate the e↵ect of

interface on the planar dipolar correlation.

Looking closely at Fig. 6.3b-c, one can see higher in-plane dipolar correlation in IFL for more protic

and polar fluids (water > methanol > dichloromethane). This not only corroborates the notion of hydrogen

bonding network increases the parallel dielectric permittivity [215, 216], but also reveals a more underlying

explanation for enhancement of parallel dielectric permittivity which is a preferred alignment of the dipoles

parallel to the graphene sheet (see the Appendix C, Figs. C.1-C.3).

As shown in Fig. 6.3a-c, we also study fluids under extreme confinement characterized by a single layer

density (SL). Due to the degree of the confinement, the fluid molecules arrange themselves in a condensed

single layer sheet creating a high density layer with more ordered in-plane structure compared to the bulk

(see the Appendix C, Fig. C.4). We observe huge enhancement factors of ⇠15, 16, and 85 in parallel dielectric

response of water, methanol, and dichloromethane, respectively, compared to their bulk dielectric constant.

Due to the single layer arrangement, the relevant angular correlation is the in-plane parallel dipole-dipole

correlation. Looking at Fig. 6.2b, it appears that the role of in-plane dipolar correlation becomes more

prominent when fluid molecules acquire single layer arrangement inside the confinement. Dipolar correlation

analysis show that the extreme confinement enhances the in-plane dipolar correlations (see Fig. 6.3d-f),

to the extent that an aprotic less polar molecule such as dichloromethane exhibit an abnormally colossal

parallel dielectric permittivity of 85 times higher than its bulk dielectric constant. According to Eq. 6.9
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Figure 6.3: (a-c) Normalized density and parallel permittivity distribution of water (a), methanol (b),
and dichloromethane (c) under an extreme confinement (single layer density). Dipole-dipole in-plane pair
correlation functions of bulk , IFL, and confined single layer water, methanol, and dichloromethane depicted
in subplots (d), (e), and (f), respectively. It is important to note that in extreme confinement the distance
between the dipoles lies in the xy plane (parallel to the surface). Therefore, the separation distance is the
in-plane radial distance, i.e., r|| = (x, y).

and Fig. 6.2b, the density enhancement over the bulk contributes only ⇠15% to the normalized parallel

dielectric permittivity of dichloromethane. Whereas for dichloromethane confined in the large slit channel

this contribution in the IFL is ⇠86%. The role of in-plane dipolar correlation is more evident in Fig. 6.3d-f,

where the correlations exhibit more oscillations and higher peaks compared to the bulk and IFL in-plane

angular correlations. It can be seen that, although the layer thickness is approximately the same, the

nature of the fluid in IFL inside large confinements is very di↵erent than the fluid layer in the extreme

confinement. Thus, the pre-alignment parallel to the surface and ordered structural arrangement result in

super permittivity inside extreme nanoconfinement (see Appendix C, Figs. C.5 and C.6). Such an abnormal

enhancement can be utilized to identify the onset of liquid transition into higher ordered structures. High

dielectric permittivity has also been found to significantly a↵ect water self-dissociation next to graphene

surfaces [42, 43]. Moreover, high values of permittivity can stabilize electrochemical reactions between

charge species [217]. Therefore, this opens a new research direction in science and chemistry by using

extreme confinement to e↵ectively host highly charged and polarized species.
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6.4 Summary

In summary, using statistical mechanics and MD simulations we show that both high density layer and dipolar

correlations are responsible for the enhancement of the parallel dielectric permittivity in the interfacial region.

Nonetheless, to what extent each a↵ects the permittivity depends on the fluid polarity, proticity, and degree

of the confinement. We show that beyond the interfacial region, protic and aprotic fluids exhibit bulk-like

dipolar correlations. Our results reveal that under the extreme confinement the dipole-dipole correlation

becomes stronger and via a single layer arrangement of molecules can lead to colossal values of parallel

dielectric permittivity in graphene slit-like channels. We believe that such high values of permittivity can be

utilized to identify the onset of liquid transition to higher ordered structures and possibly phase transition.

Moreover, such a super permittivity can facilitate hosting highly charged and polarized species.
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Chapter 7

Conclusions

In this thesis, we presented the EQT approach and extended it for confined fluid mixtures. We showed

that the fluid-fluid correlations can be approximated by the bulk hard sphere RDF and set of correlation

correction potentials. We demonstrated the EQT for mixture of hydrogen and methane atoms of di↵erent

bulk composition, and showed that atomic distributions are in very good agreement with all-atom MD

simulations. We further showed that using the EQT-based potentials, one can construct an expression

for the excess free energy functional in the cDFT framework to obtain various thermodynamic properties,

such as density, local pressure tensor, solvation force, and surface tension. We found that our theoretical

predictions compare well with the MD simulations, showing that the EQT-cDFT is a promising approach

to obtain thermodynamic properties of confined fluid mixtures.

To apply EQT for polar liquids, we used a hierarchical coarsening approach and obtained CG potentials

for polar liquids using an extended dipole model that reproduces RDF, di↵usion coe�cient and dielectric

permittivity in the bulk. Using the CG potentials, we showed that CGMD results are in good agreement

with the underlying all-atom MD simulations. Coupling EQT with Poisson equation, we showed that the

Langevin dipole approach used in Refs [37, 38] is not able to capture water orientation polarization inside

slit-like channels. The reason behind this is the incorrect dielectric permittivity obtained from the Langevin

dipole approximation. Therefore, we studied in detail the dielectric permittivity tensor of polar liquids under

confinement using extensive MD simulations. We found that the out-of-plane (perpendicular to the surface

of graphene) component of dielectric permittivity is suppressed significantly in the presence of an interface.

This feature is rather universal and observed for both protic and aprotic fluids. The physical origin of this

reduction was attributed to the low dielectric response of the interfacial layer due to the preferred in-plane

alignment of the fluid molecules’ dipole moments. Furthermore, our results reveal that in sub-nanometer

confinements the perpendicular permittivity of the fluids is anomalously suppressed to values as low as < 2.5.

Moreover, we develop a multiscale parallel-plate capacitor model to predict the perpendicular permittivity

of polar liquids for confinement ranging from only few angstrom to micrometer in width.

Finally, we studied the enhancement of parallel dielectric permittivity of polar liquids next to a graphene
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surface. Using statistical mechanics, we arrived at an expression that explicitly relates the parallel permit-

tivity to the dipolar correlations and density variations inside the confinement. We showed that both high

density layer and dipolar correlations are responsible for the enhancement of the parallel dielectric permit-

tivity in the interfacial region. Nonetheless, to what extent each a↵ects the permittivity depends on the

fluid polarity, proticity, and degree of the confinement. Our findings revealed that under the extreme con-

finement the dipole-dipole correlation becomes stronger and a single layer arrangement of molecules can lead

to colossal values of parallel dielectric permittivity in graphene slit-like channels. We believe that such high

values of permittivity can be utilized to identify the onset of liquid transition to higher ordered structures

and possibly phase transition.
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Appendix A

Derivative of dielectric permittivity
w.r.t Ac

For a bulk system with periodic boundary condition, the dielectric permittivity can be calculated as,

"r = 1 +

⌦
M2

↵

3"
0

V kBT
, (A.1)

where the total dipole moment squared can be expressed in terms of the Kirkwood correlation factor, Gk:

hM2i = Nµ2Gk. (A.2)

In the CG model, we scale the all-atom charges via a factor Ac. Thus, using Eq. A.2, the total dipole

moment square for the CG system can be written as,

hM2i = NAcq
2Gk. (A.3)

Hence, the derivative of the dielectric permittivity w.r.t. Ac can be written as,

"r
Ac

=
Nq2Gk

3"
0

V kBT
. (A.4)

Using Eqs. A.1, A.3, and A.4, we arrive at

d"r,CG

dAc
=

"r,CG � 1

Ac
. (A.5)
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Appendix B

A Universal Reduction in Dielectric
Response of Confined Fluids

Table B.1: Bulk dielectric permittivity, Kirkwood factor, and dipolar strength. For similar values of dipolar
strength (Cd) the aprotic fluids have higher bulk dielectric permittivity ("b). This indicates that the Hydrogen
bonding network in protic fluids enhances the orientational correlations in such fluids compared to the aprotic
fluids.

Fluid C
d

G
k

"
b

Water 6.259 3.917 71.200
Methanol 2.691 3.010 25.135
Acetonitrile 5.902 1.236 22.733
Dichloromethane 1.493 1.857 9.260
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Figure B.1: Molecular dynamics simulation setup and various fluids. Protic (water and methanol) and
aprotic (acetonitrile and dichloromethane) fluids considered in this study. Oxygen (O, red), hydrogen (H,
white), carbon (C, grey), nitrogen (N, blue), and chloride (Cl, green) atoms are shown. On the right is the
schematic illustration of the confined fluid between two graphene sheets separated by a distance H in the z
direction. Lateral dimensions in the x and y directions are denoted by Lx and Ly, respectively.
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Figure B.2: Center-of-mass (COM) density variation of confined fluids in slit-like graphene channels of
various widths. We have selected three slit channels for each fluid to demonstrate a large enough confinement
with a well-defined bulk density away from the graphene walls, a narrow confinement with no bulk-like region
in the center of the channel, and a sub-nanometer channel that only allows a single density layer formation
inside the channel. In the figure, labels (a), (b), (c) , and (d) correspond to water, methanol, acetonitrile,
and dichloromethane COM densities, respectively.
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Figure B.3: Linear variation of perpendicular dielectric permittivity as a function of the channel width.
As the channel width becomes smaller, approaching the limit where only a single layer of fluid can be fit
inside the channel (Hsl), the perpendicular dielectric permittivity decreases in a linear fashion to a limiting
value of "sl. Thus, for all the fluids considered in this study, we found a linear relationship between the
perpendicular dielectric permittivity and the channel width whose slope is proportional to the inverse of a
characteristic length scale, �d. We observe that the linear trend for extreme confinements, where no bulk-
like region is formed in the middle of the channel. The onset of the bulk-like region formation for water,
methanol, acetonitrile, and dichloromethane occurs in channel widths of ⇠ 3.17 nm, 3.804 nm, 3.5 nm, and
2.8 nm, respectively.
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Figure B.4: Electric field dependent perpendicular dielectric permittivity. Filled circles are results from
the parallel-plate capacitor model, Eq. 5.12. The red line is the modified Booth model, "? (E

ext

) = "?,st +
3("?(0)�"?,st)

bE
ext

L (bE
ext

) , fitted to the filled circle data. All the parameters in the modified Booth model are

the same as in Eq. 5.13 in the main text, except that n2 is not unity anymore and is replaced by a fitting
variable "?,st ,which represents the perpendicular dielectric permittivity in the limit of very high external
electric fields, i.e., E

ext

! 1. Therefore, using the modified Booth formula, we capture the trend of the
perpendicular dielectric permittivity for both low and high external electric fields. The data shown in the
figure is for water confined in the 3.17 nm wide channel, and the resultant fitting parameters of the modified
Booth model are: b = 2.55 V�1, "?,st = 6.52, and "? (0) = 10.076. The value of the perpendicular dielectric
permittivity is in a very good agreement with the prediction of Eq. 5.12 and the fluctuation formula.

Figure B.5: Density profile and the marked interfacial layer next to the graphene surface. The stars showing
the center of interfacial layer of width LIFL. The interfacial slabs are centered at the locations marked in
the figure with a thickness of LIFL = 1Å to avoid interference of atoms from the adjacent layers.
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Appendix C

Confinement-induced enhancement of
dielectric permittivity

C.1 Orientation Profiles and Angular Distributions

To assess the alignment and orientation of the molecules next to the graphene surface, we have plotted the

angular distribution of molecules in the IFL (Fig. C.1) and calculated the average cosine of dipole orientation

(Fig. C.2), cos✓ (z), where ✓ is defined as an angle between the positive z axis and the fluid dipole moment

vector as shown in Fig. C.2. By looking at Figs. C.1 and C.2, we observe that the majority of water and

methanol molecules tend to lie in the x-y plane next to the interface. In the case of dichloromethane, there

are two preferred alignments of dipoles in the IFL region. Adjacent to the wall (0 < z < 3.5 Å), the molecules

are aligned parallel to the surface, while the dipoles of the next layer are perpendicular to the wall. This

gives rise to the formation of to two sublayers within the first density layer of dichloromethane next to the

graphene (Fig. C.3).

C.2 In-plane Radial Distribution Function (RDF)

The in-plane RDF, g(rk), provides information on the planar (here, x-y plane) arrangement of molecules.

It can be considered as an order parameter to identify ordering and possible phase transition close to an

interface [163]. The RDFs are calculated in the slabs centered at the location of the maximum density with

a thickness of 1 Å to avoid interference of atoms from the adjacent layers [162]. Figs. C.4(a-c) compares the

in-plane RDFs in IFL and extreme confinement with the bulk radial distribution function. The IFL in-plane

RDFs shows more structure compared to the bulk indicating higher degree of ordering in the liquid. This

becomes more evident in the extreme confinement.
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C.3 Parallel permittivity as an order parameter for phase

transition

As illustrated in Fig. C.5, due to the degree of the confinement majority of the fluid molecules lie in the x-y

plane. Depending on the fluid chemistry this planar arrangement can induce transition into higher order

structures or even phase change. By looking at Figs. C.4(a) and C.4(b), we observe that both water and

methanol in-plane RDFs exhibit more pronounced peaks compared to the IFL indicating higher ordering

in the first, second and third coordination shells. In the case of dichloromethane (Fig. C.4(c)), we notice

the emergence of a new peak located at r = 4.4 , more peaks, and oscillations. To further analyze this,

we obtained a 2D XY contour plot of the center-of-mass (COM) of dichloromethane molecules illustrated

in Figs. C.6. It can be seen under extreme confinement dichloromethane forms pentagon-like structures

supporting the fact that extreme confinement can push liquid into higher ordered structures with properties

that are very di↵erent than not only bulk but also the interfacial region in the large confinements.
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Figure C.1: Histogram of the angle distribution of water, methanol, and dichloromethane molecules within
the first density layer next to the graphene interface inside the large confinement (well-defined bulk region
in the middle of the channel).

Figure C.2: Dipolar orientation profiles of water, methanol, and dichloromethane inside the 3.17 nm, 3.5
nm, and 3.15 nm channels, respectively. Oxygen (O, red), hydrogen (H, white), carbon (C, grey), and
chloride (Cl, green) atoms are shown.
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Figure C.3: Density profiles (left) and molecular arrangements (right) of water (a), methanol (b), and
dichloromethane (c) on the graphene surface. Oxygen (O, red), hydrogen (H, white), carbon (C, grey), and
chloride (Cl, green) atoms are shown.
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Figure C.4: (a) Water in-plane RDF (b) methanol in-plane RDF and (c) dichloromethane in-plane RDF in
the interfacial region, extreme confinement and bulk, respectively.

Figure C.5: Histogram of the angle distribution of water, methanol, and dichloromethane in 0.634 nm, 0.7
nm, 0.7 nm channels, respectively.
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Figure C.6: 2D XY contour plot of the COM of dichloromethane molecules inside a 0.7 nm slit-like graphene
channel. The inset is the zoomed-in 1⇥ 1 nm2 contour plot showing a pentagon-like structure emerging via
single layer arrangement of dichloromethane molecules.
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Erik Lindahl. Gromacs: High performance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX, 1:19–25, 2015.

[145] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. Numerical integration of the
cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal
of Computational Physics, 23(3):327–341, 1977.

[146] Ariel A Chialvo and Peter T Cummings. Molecular-based modeling of water and aqueous solutions at
supercritical conditions. Advances in Chemical Physics, 109:115–206, 1999.

[147] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh ewald: An n log (n) method for ewald
sums in large systems. The Journal of Chemical Physics, 98(12):10089–10092, 1993.

[148] Please see https://github.com/Hosseinmote/Extended-Dipole-Model-for-Polar-Liquids.

[149] Gerald Mathias and Paul Tavan. Angular resolution and range of dipole–dipole correlations in water.
The Journal of Chemical Physics, 120(9):4393–4403, 2004.

[150] MSt Wertheim. Exact solution of the mean spherical model for fluids of hard spheres with permanent
electric dipole moments. The Journal of Chemical Physics, 55(9):4291–4298, 1971.

[151] Jean-Pierre Hansen and Ian R McDonald. Theory of Simple Liquids. Elsevier, 1990.

[152] David P Shelton. Long-range orientation correlation in liquids. The Journal of Chemical Physics, 136
(4):044503, 2012.

[153] David P Shelton. Long-range orientation correlation in water. The Journal of Chemical Physics, 141
(22):224506, 2014.

[154] J Maruthi Pradeep Kanth, Satyavani Vemparala, and Ramesh Anishetty. Long-distance correlations
in molecular orientations of liquid water and shape-dependent hydrophobic force. Physical Review E,
81(2):021201, 2010.

[155] Yu Liu and Jianzhong Wu. Communication: Long-range angular correlations in liquid water. The
Journal of Chemical Physics, 139:041103, 2013.

[156] Cui Zhang and Giulia Galli. Dipolar correlations in liquid water. The Journal of Chemical Physics,
141(8):084504, 2014.

[157] Quinn Alexander Besford, Andrew Joseph Christo↵erson, Maoyuan Liu, and Irene Yarovsky. Long-
range dipolar order and dispersion forces in polar liquids. The Journal of Chemical Physics, 147(19):
194503, 2017.

[158] Saul Goldman and Chris Joslin. Why hydrogen-bonded liquids tend to have high static dielectric
constants. The Journal of Physical Chemistry, 97(47):12349–12355, 1993.

[159] Chao Zhang, Jurg Hutter, and Michiel Sprik. Computing the kirkwood g-factor by combining constant
maxwell electric field and electric displacement simulations: application to the dielectric constant of
liquid water. The Journal of Physical Chemistry Letters, 7(14):2696–2701, 2016.

102



[160] Upayan Baul, J Maruthi Pradeep Kanth, Ramesh Anishetty, and Satyavani Vemparala. E↵ect of
simple solutes on the long range dipolar correlations in liquid water. The Journal of Chemical Physics,
144(10):104502, 2016.

[161] Ateeque Malani, KG Ayappa, and Sohail Murad. Influence of hydrophilic surface specificity on the
structural properties of confined water. The Journal of Physical Chemistry B, 113(42):13825–13839,
2009.

[162] Dimitrios Argyris, Naga Rajesh Tummala, Alberto Striolo, and David R Cole. Molecular structure and
dynamics in thin water films at the silica and graphite surfaces. The Journal of Physical Chemistry
C, 112(35):13587–13599, 2008.

[163] Leandro B Krott and Marcia C Barbosa. Anomalies in a waterlike model confined between plates.
The Journal of Chemical Physics, 138(8):084505, 2013.

[164] V Ballenegger and J-P Hansen. Dielectric permittivity profiles of confined polar fluids. The Journal
of Chemical Physics, 122(11):114711, 2005.

[165] Cui Zhang, Francois Gygi, and Giulia Galli. Strongly anisotropic dielectric relaxation of water at the
nanoscale. The Journal of Physical Chemistry Letters, 4(15):2477–2481, 2013.

[166] Richard Renou, Anthony Szymczyk, Guillaume Maurin, Patrice Malfreyt, and Aziz Ghoufi. Superper-
mittivity of nanoconfined water. The Journal of Chemical Physics, 142(18):184706, 2015.

[167] Anna Oleksy and Jean-Pierre Hansen. Microscopic density functional theory of wetting and drying
of a solid substrate by an explicit solvent model of ionic solutions. Molecular Physics, 107(23-24):
2609–2624, 2009.

[168] Vadim Warshavsky and Marcelo Marucho. Polar-solvation classical density-functional theory for elec-
trolyte aqueous solutions near a wall. Physical Review E, 93(4):042607, 2016.

[169] L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha,
T. Taniguchi, K. Watanabe, G. Gomila, K. S. Novoselov, and A. K. Geim. Anomalously low dielectric
constant of confined water. Science, 360(6395):1339–1342, 2018.

[170] Akira Sugahara, Yasunobu Ando, Satoshi Kajiyama, Koji Yazawa, Kazuma Gotoh, Minoru Otani,
Masashi Okubo, and Atsuo Yamada. Negative dielectric constant of water confined in nanosheets.
Nature Communications, 10(1), 2019.

[171] Cheng-Peng Li and Miao Du. Role of solvents in coordination supramolecular systems. Chemical
Communications, 47(21):5958, 2011.

[172] Richard M. Noyes. Thermodynamics of ion hydration as a measure of e↵ective dielectric properties of
water. Journal of the American Chemical Society, 84(4):513–522, 1962.

[173] Yuki Uematsu, Roland R. Netz, and Douwe Jan Bonthuis. Analytical interfacial layer model for the
capacitance and electrokinetics of charged aqueous interfaces. Langmuir, 34(31):9097–9113, 2018.

[174] Samuel Faucher, Narayana Aluru, Martin Z. Bazant, Daniel Blankschtein, Alexandra H. Brozena, John
Cumings, J. Pedro de Souza, Menachem Elimelech, Razi Epsztein, John T. Fourkas, Ananth Govind
Rajan, Heather J. Kulik, Amir Levy, Arun Majumdar, Charles Martin, Michael McEldrew,
Rahul Prasanna Misra, Aleksandr Noy, Tuan Anh Pham, Mark Reed, Eric Schwegler, Zuzanna Siwy,
YuHuang Wang, and Michael Strano. Critical knowledge gaps in mass transport through single-digit
nanopores: A review and perspective. The Journal of Physical Chemistry C, 123(35):21309–21326,
2019.

[175] Marie-Claire Bellissent-Funel, Ali Hassanali, Martina Havenith, Richard Henchman, Peter Pohl, Fabio
Sterpone, David van der Spoel, Yao Xu, and Angel E Garcia. Water determines the structure and
dynamics of proteins. Chemical Reviews, 116(13):7673–7697, 2016.

103



[176] Mark A. Shannon, Paul W. Bohn, Menachem Elimelech, John G. Georgiadis, Benito J. Mariñas, and
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[203] C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, B. Da↵os, P. L. Taberna, P. Simon, and M. Salanne.
Highly confined ions store charge more e�ciently in supercapacitors. Nature Communications, 4(1),
2013.

[204] J. L. Aragones, L. G. MacDowell, and C. Vega. Dielectric constant of ices and water: A lesson about
water interactions. The Journal of Physical Chemistry A, 115(23):5745–5758, 2011.

[205] F. Booth. The dielectric constant of water and the saturation e↵ect. The Journal of Chemical Physics,
19(4):391–394, 1951.

[206] F. Booth. Errata: The dielectric constant of water and the saturation e↵ect. The Journal of Chemical
Physics, 19(10):1327–1328, 1951.

[207] Isaak N. Daniels, Zhenxing Wang, and Brian B. Laird. Dielectric properties of organic solvents in an
electric field. The Journal of Physical Chemistry C, 121(2):1025–1031, 2017.

[208] Nir Gavish and Keith Promislow. Dependence of the dielectric constant of electrolyte solutions on
ionic concentration: A microfield approach. Physical Review E, 94(1), 2016.
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