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ABSTRACT 

 

 Women with the highest mammographic density have a four to six-fold increased risk of 

breast cancer when compared to the ones with the least dense breasts. Mammographic breast 

density has also been associated with a wide array of factors related to the risk of breast cancer 

including age, menopausal status, age at first live birth, parity, body mass index, physical activity, 

alcohol consumption, hormone replacement therapy, endogenous levels of IGF-I and prolactin, 

family history of breast cancer, tamoxifen use and others. A question of interest is whether 

mammographic density is in the pathway by which these factors are related to breast cancer. To 

address this question, we conducted causal mediation analyses on two datasets using a newly 

developed statistical approach based on the counterfactual framework to examine the extent to 

which mammographic density acts as a mediator. The first dataset is pooled from four case-control 

studies performed in the western Washington state, contains 547 breast cancer cases (ascertained 

from a local Surveillance, Epidemiology, and End Results Program registry) and 472 controls 

(ascertained by random digit dialing) who had screening mammograms under age 50. The second 

dataset is from the Mayo Mammography Health Study (MMHS), which is a prospective cohort, 

comprised of 19,924 women (51.2% adjusted response rate) ages 35 and over, residing in the tri-

state region (Minnesota, Iowa, and Wisconsin) surrounding the Mayo Clinic in Rochester, MN, 

without a history of breast cancer, who were scheduled for a screening mammogram at the Mayo 

Clinic between October 2003 and September 2006. Previous analyses from these two datasets have 

shown associations between some breast cancer risk factors and mammographic density. Results 

showed that mammographic density partially mediated the associations for some breast cancer risk 

factors such as breast calcifications, being parous, history of breast biopsy/aspiration/lumpectomy, 

and current use of hormone replacement therapy (HRT), but not factors such as a first-degree 
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family history of breast cancer and age at first live birth, history of smoking, age at menopause. 

These results help us better understand the pathways and mechanisms whereby a risk factor may 

cause breast cancer. It also helps inform and refine clinical and public health interventions for 

breast cancer by assessing the relative importance of different pathways.  
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CHAPTER 1: INTRODUCTION 

 

High breast density is a strong and well-established risk factor for breast cancer [1, 2]. 

Currently, the best way to detect breast density is through a mammogram. Fatty tissue in the breast 

is relatively transparent to x-rays and appears dark on mammograms. Fibroglandular tissue, which 

consists of epithelial cells that line the ducts and their supporting fibrous connective tissue, is more 

radiologically dense and appears light on mammograms. The proportion of a mammogram that is 

dense is thus an indirect measure of the amount of epithelial tissue in the breast. Since, biologically, 

this is the tissue from which mammary carcinomas arise, the greater the percent mammographic 

density, the greater the number of cells available for malignant transformation. Percent dense 

volume is the proportion of fibroglandular (dense) tissue in the breast. Percent mammographic 

density (PMD), or the proportion of the breast with densities in the breast, is the ratio of the dense 

area to the total breast area that sums the dense and nondense area. Women with the densest 

mammographic patterns were estimated to have a four to six-fold increased risk of breast cancer 

when compared to women with the least dense ones [3]. PMD has been suggested to be a stronger 

risk factor than absolute dense area [4, 5], which indicates that the ratio between the two tissues is 

important, or that the nondense area, which is part of the denominator of percent density, is a 

protective factor for breast cancer risk. Although dense breast tissue may mask tumors on a 

mammogram, such a strong positive relationship between breast density and risk of breast cancer 

is regarded as causal rather than correlational [6], which has been consistently observed among 

studies after controlling for various confounding factors. 

 

 Mammographic breast density has been shown to be associated with a wide array of risk 

factors for breast cancer [1]. Higher density was found in women who were premenopausal, 

nulliparous, of low BMI (body mass index), low WHR (waist to hip ratio), greater height, had a 

late age at first birth, younger age, high alcohol consumption, taking combination postmenopausal 

hormone or with a family history of breast cancer [7-9]. Breast density tends to decrease with older 

age. Smoking and education were inversely associated with percent density among premenopausal 

but not postmenopausal women [8]. An inverse association between tissue-based assessment of 

lobular involution and breast density was also reported [10]. Although, without replication by other 

studies, some studies observed an association of dietary intake (isoflavones, fat, vitamins, etc.) and 
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physical activity with breast density [11]. Mammographic breast density can be changed by several 

exposures that are also known to influence breast cancer risk [9]. For example, tamoxifen, an anti-

estrogen, was reported to reduce mammographic breast density as well as the risk of breast cancer 

[12-15]. Current users of postmenopausal hormone replacement therapy (HRT), especially 

combined formulations, were found to have higher percent mammographic density and breast 

cancer risk [16].  

 

These observations suggest that breast density is not only an independent risk factor for 

breast cancer; it may also be on the causal pathway for many of the established breast cancer risk 

factors. That is, mammographic breast density has the potential to act as a mediating variable or 

mediator for breast cancer risk. A mediator differs from confounder in the direction of causality: 

while mediators lie on the causal pathway between exposure and outcome, confounders influence 

both the exposure of interest and the outcome [17, 18]. Thus, a mediator occurs temporally after 

the exposure — it is both caused by the exposure variable and is a cause of the outcome.  

 

Mediation can exist in both nonrandomized and randomized studies. In randomized 

controlled trials, the treatments/interventions might influence breast cancer risk through their 

effects on the intermediate marker, mammographic density. In this case, mammographic density 

as a mediator can be used as a potential surrogate endpoint. According to the National Institutes 

of Health (NIH), a surrogate endpoint is "a biomarker intended to substitute for a clinical endpoint" 

that is undesired [19]. Therefore, when the effect of an intervention on the mediator predicts the 

effect on the clinical outcome, the mediator can be used as a surrogate endpoint. A surrogate 

marker is used when the primary clinical endpoint is undesired (e.g., death), or when the number 

of events is small. Clinical trials to assess the effects of interventions on cancer risk often need to 

be large and prolonged, and as a result, are expensive. For example, the occurrence of breast cancer 

is a relatively infrequent event. When breast cancer is the primary endpoint, it is hard to measure 

and it could take a long time to occur. So it is impractical to conduct a clinical trial to gather a 

statistically significant number of breast cancer case endpoints in a short time. If mammographic 

density can serve as a surrogate marker for breast cancer as a measure of the effect of a specific 

treatment that affects the real clinical endpoint, breast cancer, then clinical trials of breast cancer 
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prevention could be smaller, shorter, and more cost-effective by just focusing on altering breast 

density.  

 

A mediator is an intermediate marker that helps explain how or why an independent factor 

influences an outcome. Several requirements, which were first laid out by Baron and Kenny [20], 

must be met for a variable to be considered as a mediator: i) the exposure variable should be 

associated with the mediator, (ii) in the model for the outcome that includes the exposure and 

mediator, the mediator should be associated with the outcome, (iii) in the model for the outcome 

that includes only the exposure, the exposure should be associated with the outcome, and (iv) when 

controlling for the mediator, the association between the exposure and outcome should be reduced, 

with the strongest demonstration of mediation occurring when the path from the exposure to the 

outcome variable, when controlling for the mediator, is zero. While requirements (iii) and (iv) have 

been criticized and challenged by many scholars, the first two requirements have generally been 

accepted as important for establishing a true mediation relationship. In the context of breast density 

and breast cancer, these two requirements are: the exposure should be associated with breast 

density and breast density should predict the risk of breast cancer.  

 

When the exposure is a treatment or intervention in a randomized controlled trial, these 

two requirements for mediation are also two of the three criteria that need to be met for a marker 

accepted as a suitable surrogate (substitute for breast cancer), proposed by Prentice [21], and 

further elaborated by Schatzkin and Gail [22], Freedman, Graubard, and Schatzkin [23], and 

others. Generally speaking, most good surrogates are expected to be on the pathway from the 

treatment to the outcome[24]. This means that most good surrogates come from mediators and 

they need to satisfy the requirements as a mediator. For PMD to be a mediator or a surrogate 

marker, an exposure or treatment should be associated with PMD and PMD should predict the risk 

of breast cancer. Boyd and colleagues [25] pointed out the third criterion that if PMD is to serve 

as a surrogate for breast cancer prevention in intervention trials, then most of the effect of such 

interventions on breast cancer risk should be mediated by PMD. This means that PMD must be a 

strong mediator in order to qualify for a good surrogate endpoint for breast cancer. are conceptually 

distinct, they share considerable statistical similarities. 
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Mediation analysis can formally assess whether a hypothesized factor mediates the effect 

of an exposure on an outcome. Mediation analyses are often employed to explore the hypothetical 

causal mechanisms by which a predictor affects an outcome through a mediator variable. In a 

mediation analysis, a mediator can be identified by decomposing the total effect of an exposure or 

treatment on an outcome into two components: an indirect effect operating through a mediator of 

interest and a direct effect operating through alternative pathways that are independent of the 

mediator. Traditional mediation analysis often applies the structural equation modeling (SEM) 

approach, first proposed by Baron and Kenny [20], to estimate the direct and indirect effects. SEM 

is a general multivariate technique widely used in the social sciences. It uses a conceptual model, 

path diagram, and a system of linked structural regression-style equations to capture complex and 

dynamic relationships within a network of observed and unobserved (latent) variables. SEM is 

fundamentally different from a regression-based approach to mediation. In a regression model, 

there exists a clear distinction between dependent and independent variables. However, these 

variables in SEM are a relative concept because a dependent variable in one model equation can 

become an independent variable in other components of the SEM system. SEM provides a more 

flexible modeling and attractive graphical modeling interface, and can easily extend to handle 

multi-level data, repeated measures data, and incomplete data. It was considered superior when 

there are latent variables and moderated mediation. However, SEMs tend to estimate more types 

of effects at the price of making additional assumptions. Many of these assumptions have often 

been ignored so they should be used principally for the purpose of exploratory analysis and 

hypothesis generation when a broad range of effects are of interest. Furthermore, SEMs generally 

make assumptions of linearity and normality. 

 

The most common regression-based approach for mediation analysis is to use the 

traditional “difference method” to estimate the “proportion mediated (PM)” as a measure of the 

mediated or indirect effect. This is based on the change in the coefficients of exposure on the risk 

of breast cancer from two regression models with and without adjustment for the mediator. This 

PM measure is equivalent to the “proportion explained (PE)” index, which was proposed by 

Freedman et al. [23] and further described by others [26, 27]. Similarly, the PE index can be 

estimated from the difference in the coefficients of treatment from two regression models with or 

without adjusting for the mediator.  
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However, structural equation models and the traditional “difference method” are often 

criticized for neither adequately accounting for the strong assumptions that need to be met nor 

addressing issues of confounding in inferring causal relationships [28-31]. The two regression 

models may not be valid simultaneously and the PM or PE index estimate can often lie outside the 

probability interval between 0 and 1. There are a few situations when using the “difference 

method” may lead to biased estimators of indirect effects and thus incorrect conclusions regarding 

mediation, especially for logistic regressions. These include when there is confounding, when a 

binary outcome is not rare, or when there is exposure-mediator interaction [24]. 

 

In the last few years, new approaches for mediation analysis have been proposed to address 

some of these limitations by using the counterfactual framework [29, 32-36]. The counterfactual 

approach emphasizes the identifiability assumptions and conceptual definitions of causal effects, 

which allows for the decomposition of a total effect into direct and indirect effects, even in models 

with interactions and nonlinearities. The mediation analysis based on the counterfactual 

framework specifies a model for the outcome and a model for the mediator and then combining 

the results of these models to obtain direct and indirect effects. A new approach has recently been 

developed to statistically assess mediation for a case-control study with a rare outcome [36, 37]. 

With some modifications, this method can also apply to other study designs. It allows us to identify 

and separate out the direct and indirect mechanisms of breast cancer development that are acting 

through or not through mammographic density. A recent study compared the traditional 

“difference method” and the natural indirect effect (NIE) based on the counterfactual framework 

and concluded that the “difference method” is always conservative for binary outcomes [38]. This 

suggests that the “difference method” could only be used to provide evidence for the presence of 

mediation but not for the absence of mediation. 

 

Increasing evidence suggests that mammographic breast density may be a potential 

mediator for breast cancer risk. Therefore, it is of interest to find out whether the effects of various 

risk factors on breast cancer are mediated by breast density. If true, then how much does breast 

density mediate the effects of these risk factors? Currently, very few studies have attempted to 

address these questions. The potential mediation role of mammographic density for breast cancer 



6 

 

has not yet been thoroughly examined. It is still uncertain whether any of the risk factors influence 

breast cancer risk through their associations with mammographic density. In this project, we aim 

to address these questions and to assess the extent to which the observed association between 

various known risk factors and breast cancer risk is mediated through mammographic density. It 

is important to utilize newly developed statistical methods to examine what role mammographic 

density may play as an intermediate marker, if any, for the association between various risk factors 

and breast cancer incidence. 

 

The results of this work would provide insights into the pathways and mechanisms involved 

in the etiology of breast cancer. It may help inform and refine clinical and public health 

interventions for breast cancer by assessing the relative importance of different pathways. This 

also adds to the current knowledge of how various factors affect breast cancer risk by applying 

new statistical methods in order to quantify mediating effects through mammographic density. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 INTRODUCTION 

 

Mammographic breast density is a strong independent risk factor for breast cancer [1-4]. 

Breast density can be influenced by several risk factors that are known to predict breast cancer risk 

[1]. These observations have led to the hypothesis that breast density may be on the causal pathway 

for breast cancer for some of the known risk factors for breast cancer. In recent years, there has 

been an increasing interest in the potential of percent mammographic density (PMD) serving as a 

mediator or intermediate biomarker for breast cancer risk. Understanding the role of PMD in the 

pathway linking these risk factors (i.e., exposures) to breast cancer may help inform breast cancer 

screening and other prevention practices. It is essential to understand the mechanisms underlying 

the etiology of breast cancer and thus to effective prevention strategies. 

 

In order for mammographic density to be a mediator, an exposure should be associated 

with mammographic density and mammographic density should predict the risk of breast cancer 

[5]. While breast density is a well-established risk factor for breast cancer, not all breast cancer 

risk factors were found to be related to mammographic density. For example, Raloxifene, a drug 

that reduces the risk of breast cancer in postmenopausal women, appeared to neither increase nor 

decrease mammographic density [6]. This suggests that Raloxifene may affect breast cancer risk 

through alternative pathways that are independent of mammographic density. For some risk 

factors, there is no consistent evidence that the change in breast density results in a change in the 

breast cancer risk. For example, breast density generally declines as women age. However, 

Maskarinec et al. [7] found that women who developed breast cancer had 10.2% higher 

mammographic densities than controls, but the rate of change in density over a period of more than 

20 years was not significantly related to case status. These observations suggest that different risk 

factors may operate through different pathways for breast cancer development and mammographic 

density may be an intermediate mediator for some but not all of the known breast cancer risk 

factors. Today, it is not yet known whether mammographic density can serve as a mediator for 

breast cancer. 
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Mediation analysis is often used to assess the relative magnitude of different pathways and 

mechanisms by which an exposure may affect an outcome, either through a mediator or 

independent of it. The traditional approach to mediation that is commonly used is the “difference 

method”, which estimates the “proportion mediated (PM)” as a measure of mediated or indirect 

effect based on the difference in coefficients of the exposure on the outcome from two regression 

models with and without adjustment for the mediator [5]. However, the traditional approach is 

often criticized for neither adequately accounting for the strong assumptions that need to be met 

nor addressing issues of confounding in inferring causal relationships [8-11]. The two regression 

models may not be valid simultaneously and the estimate can often lie outside the proportion 

interval (not between 0 and 1).  It may lead to biased estimators of indirect effects and incorrect 

conclusions regarding mediation, especially for logistic regression. These include when there is 

confounding, when a binary outcome is not rare, or when there is an exposure-mediator interaction 

[12]. In the last few years, more advance, new approaches for mediation analysis have been 

developed to address some of these limitations by using the counterfactual framework [9, 13-17]. 

The causal inference methods for mediation analysis (“causal mediation”) emphasizes the 

identifiability assumptions and conceptual definitions of causal effects, which allows for the 

decomposition of a total effect into direct and indirect effects, even in models with interactions 

and nonlinearities. Under the counterfactual framework, the mediated effect is called natural 

indirect effect (NIE) that compares average outcomes that would be observed if we were to set the 

exposure as present and change the mediator for each individual from the level it would have been 

at in the absence of exposure to the level it would have been at in the presence of exposure. 

Therefore, the NIE captures the effect of exposure on the outcome operating through the mediator. 

A new approach has recently been developed to statistically assess mediation for a case-control 

study with a rare outcome [17, 18]. With some modifications, this method can also apply to other 

study designs. It allows us to identify and separate out the direct and indirect mechanisms of breast 

cancer development that are acting through or not through mammographic density. A recent study 

compared the traditional “difference method” and the NIE based on the counterfactual framework 

and concluded that the “difference method” is always conservative for binary outcomes [19]. It 

suggested that the “difference method” could be used to provide evidence for the presence of 

mediation but not for the absence of mediation. 
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No systematic review has yet been conducted to assess the potential role of mammographic 

density as a mediator in research on the etiology and prevention of breast cancer for the effects of 

various exposures on the risk of breast cancer. In this review, we aim to summarize existing 

scientific evidence on the relevance of mammographic density as a mediator and surrogate marker 

for breast cancer, with a focus on the statistical approaches and measures for effects of mediation 

and surrogacy. We examine the extent to which, if any, risk factors for breast cancer influence 

breast cancer risk through their effects on mammographic density and the extent to which 

mammographic density can be used as a surrogate endpoint for breast cancer in interventional 

trials. The summary of evidence helps us outline a picture of potential networks connecting various 

risk factors to the breast cancer outcome, either through or not through breast density. The results 

provide insight into the pathways through which various risk factors may affect breast cancer risk, 

and thereby draws attention to potential paths of intervention. 

 

2.2 METHODS 

2.2.1 Search Strategy 

 

A search was conducted using PubMed, Scopus, Web of Knowledge, Google Scholar, and 

ProQuest Dissertations & Theses (PQDT) from the earliest date available in each database. The 

search algorithm included all possible combinations of keywords from the following three groups: 

(i) ‘breast cancer’, ‘breast neoplasm’; (ii) ‘mediator’, ‘mediation’, ‘biomarker’; (iii) ‘breast 

density’, ‘mammographic density’. Table 2.1. lists the search terms. We restricted to studies with 

an English abstract. The most recent search was run on May 15, 2020. We also manually checked 

the bibliography of relevant articles to identify any articles not found using the above online 

databases. 

 

2.2.2 Inclusion Criteria and Data Extraction 

 

Studies that met all the following criteria were included in the review: 1) consider at least 

one potential risk factor for breast cancer; 2) examined breast density measures as a mediator for 

breast cancer risk; 3) used statistical approaches and/or measures for mediation. All relevant 

studies had their titles and abstracts screened for eligibility. The selected studies were grouped 
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according to categories of risk/protection factors, and data were extracted into a spreadsheet, which 

collected data on study characteristics (i.e., reference, program, design, subjects, measure of 

mammographic density, exposure, key results, and conclusions). Statistics including unadjusted 

odds ratio, adjusted odds ratio, measures of mediation/surrogacy, and their 95% confidence 

intervals were exacted if available.  

 

2.2.3 Data Synthesis 

 

Due to the limited number of studies selected and the heterogeneity of the exposures 

evaluated, undertaking a meta-analysis was deemed to be not appropriate. The analysis is 

descriptive. In order to evaluate the direction of mediation, the sign of the NIE for each level of 

exposure was presented based on the rule by Jiang et al. [19]. In order to quantify the mediating 

effects of breast density, we calculated the proportion explained (PE) index following the 

Freedman method [20]. Let F denotes a traditional risk factor, M mammographic density, B breast 

cancer risk, and C a set of baseline covariates. We could fit two logistic regression models for 

breast cancer on the risk factor, with or without the percentage density, and the baseline covariates: 

 

logit[𝑃(𝐵 = 1|𝐹, 𝐶)] = 𝛽0 + 𝛽1𝐹 + 𝛽2𝐶 

logit[𝑃(𝐵 = 1|𝐹,𝑀, 𝐶)] = 𝜃0 + 𝜃1𝐹 + 𝜃2𝑀 + 𝜃3𝐶 

If the coefficients β1 and θ1 differ, then some of the effects are considered to be mediated 

and the proportion explained by the mediation is calculated as using the following formula: 

𝑃𝐸 =
𝛽1 − 𝜃1
𝛽1

=
log𝑂𝑅𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 − log𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

log𝑂𝑅𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
 

PE index is a measure of the proportion of the association of the exposure with breast cancer 

risk that is explained by mammographic density. The PE index finds the difference between the 

logarithms of the odds ratios of a risk factor in a model that does not adjust for mammographic 

density and one that does. This difference is then divided by the log of the odds ratio in the model 

that does not adjust for mammographic density. In this way, a PE index of 1 implies perfect 

mediation in that the effect of a risk factor entirely disappears after adjusting for density, and a PE 

of 0 implies the effect is the same whether adjusting or not, indicating no mediation. Ideally, the 
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associated 95% confidence intervals (95% CI) for PE should be estimated using the Freedman [20, 

21] and the Bootstrap method. However, it is not possible to conduct such statistical tests with data 

reported in the literature. However, the statistical test results will be extracted if available in the 

article.  

 

2.3 RESULTS 

 

Characteristics of the selected studies 

A total of 895 potential references were screened and 22 studies finally met the selection 

criteria. The studies covered a wide variety of risk/protective factors for the risk of breast cancer. 

Most studies did not use a formal statistical mediation analysis. Instead, they only checked two 

important requirements for a variable to be considered as a mediator to determine the possibility 

of mammography density acting as a mediator. These two criteria, first laid out by Baron and 

Kenny [5], suggest that an exposure must be associated with both breast density and breast cancer. 

Because these studies did not take further statistical mediation analysis, they were not included in 

the current review. Finally, a total of 22 studies were selected. Among these, 20 studies were based 

on the traditional “difference method”, comparing the estimated coefficients of exposure on the 

risk of breast cancer in linear regressions before and after adjustment for mammographic density. 

Out of these, only three studies calculated the percent change in the ORs and/or estimated a 

measure of mediation [22-24], the proportion explained (PE), which is estimated from the 

difference in coefficients of an exposure from two logistic regression models with or without 

adjusting for mammographic density, as described by Freedman et al. [20]. Of these three studies, 

the 95% confidence interval for the PE was available in only one study [22]. Only two studies have 

used the counterfactual approach for analysis of mediation [25, 26], one of which was conducted 

as a secondary analysis [25]. 

 

Results based on risk factors 

Table 2.2 lists the studies examining the risk of breast cancer according to various genetic 

factors, including a family history of breast cancer in first-degree relatives [22, 25, 27, 28], genetic 

variants of single nucleotide polymorphisms (SNPs) [23, 29], and race/ethnicity [23]. A family 
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history of breast cancer is an established risk factor for breast cancer, which was confirmed in four 

of the included studies [22, 25, 27, 28]. All these studies observed attenuation of the association 

between a family history of breast cancer and the risk of breast cancer after adjusting for 

mammographic density. However, the estimated PE indexes were relatively small. The highest PE 

was reported in a study with about 75% of the women being postmenopausal, which showed that 

14% (95% CI, 4-39%) of the association of a first-degree family history of breast cancer with 

breast cancer risk was explained by PMD [22]. The upper and lower limits of the confidence 

interval for this PE were estimated by the Bootstrap method using 1,000 samples (95% CI, 4-35%). 

However, the other three studies [25, 27, 28] showed no more than 11% of the association was 

mediated by PMD. This indicates that PMD might not be in the pathway for the association 

between a family history of breast cancer and the risk of breast cancer and if yes, the mediation 

effect is likely small. Two selected studies identified genetic variants that had a reduced risk from 

breast cancer, which were also associated with lower mammographic density [30, 31]. After 

adjusting for mammographic density, the magnitude of the log ORs for the SNPs on breast cancer 

risk was reduced by 15% and 35% respectively (Table 2.2). The sign of NIE was consistently 

negative in both studies, suggesting that these two genetic variants display a negative relationship 

with breast cancer when it acts through mammographic density. That is, they might reduce breast 

cancer risk partially by decreasing breast density. However, it is unknown if these PE indexes are 

statistically significant.  

 

Table 2.3 listed studies considering a variety of clinical features of the breast as risk factors 

for breast cancer, including computerized mammographic parenchymal pattern (MPP) measure 

[32], mammographic texture resemblance (MTR) [33], breast tissue stiffness [34], history of 

benign breast disease (BBD)[25, 35], and history of previous biopsy [27, 28]. Adjustment for 

mammographic density in general attenuated the association of these risk factors with breast cancer 

(Table 2.3). However, there is a great variation on the estimated proportion explained with most 

of the PE indexes for history BBD and biopsy ranging from 12% to 73%.  

 

Among postmenopausal women, breast cancer risk increased with increasing BMI (Table 

2.4a). Adjusting for mammographic density did not attenuate the association between adult BMI 

and postmenopausal breast cancer risk. Rather, it substantially strengthened the association by at 
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least 43% using the log OR scale (Table 2.4a). Similar results were observed for body weight 

(Table 2.4b). Among premenopausal women, however, the association of anthropometric 

measures (BMI and weight) with the risk of breast cancer was not consistent, although the overall 

total effect is largely negative or insignificant (Table 2.4a-2.4b). Adjusting for mammographic 

density increased the ORs for all the selected studies. A negative association was moved toward 

the null or even become positive while a positive association was moved further away from the 

null after further adjustment for mammographic density. Results among all subjects are mixed but 

the association of anthropometric measures (BMI, weight, and height) with the risk of breast 

cancer was mostly insignificant or marginally negative before adjustment for density. The 

magnitude of the ORs generally increased after controlling for mammographic density. Regardless 

of menopausal status, adjustment for mammographic density consistently moved the odds ratios 

for the association between these anthropometric measures (BMI, weight, height) and breast 

cancer in a positive direction. Although the virtual direction of NIE is inconclusive, adding 

mammographic density to the regression with BMI or weight as a predictor for breast cancer 

yielded a large PE index. A majority of the PE indexes were much higher than zero and quite a 

few exceeded 1. Interestingly, two studies have used a 9-figure body size scale to assess body 

fatness at ages 5, 7, 10, and 20 years [36, 37] and found that greater body fatness in childhood and 

adolescence was associated with decreased risk of breast cancer (Table 2.4c). Unlike adult BMI, 

weight, and height, the inverse association between average childhood and adolescent body fatness 

and breast cancer risk was generally attenuated after adjustment for mammographic density, 

indicating a potential consistent mediation (Table 2.4c). The sign of NIE is largely negative with 

a few inconclusive and the magnitude of the PE index could be as low as 3% [36] and as high as 

41% [37].  

 

Few studies have investigated the relationship between reproductive factors (parity, age at 

first live birth, and age at menarche) with breast cancer, with and without adjustment for 

mammographic density (Table 2.5). Ever parous was associated with a lower risk of breast cancer 

and adjusting for mammographic density attenuated the association by about 14-52%, indicating 

a partial mediation. However, the results for parity were largely inconclusive because the total 

effect was not significant for some of the included studies. Age at first live birth was found in three 

studies to be a significant risk factor for breast cancer [25, 27, 28], while it is not significant in a 
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study among subjects from different ethnic groups [24]. Nevertheless, adjusting for 

mammographic density slightly attenuated the association in the three studies with significant total 

effects, yielding results of either no mediation or a PE index ranging from 13% to 17%.  

 

Whether mammographic density can serve as a mediator for the association of 

postmenopausal hormone use and breast cancer was examined by 4 studies [25-27, 38] (Table 2.6). 

Current use of hormone replacement therapy (HRT) was associated with an increased risk of breast 

cancer and the association was consistently attenuated after adjustment for breast density. The sign 

of NIE is generally positive and the PE indexes range from 10% to 37%. In two of these studies, 

combined use of estrogen and progesterone was found to have a greater association with the risk 

of breast cancer than estrogen alone [26, 27]. Further adjustment for mammographic density 

attenuated the association by 10-26%. Two studies attempted to examine the impact of adjustment 

for mammographic density on the association of circulating levels of sex hormones with breast 

cancer risk [39, 40]. In both studies, circulating levels of estradiol and testosterone and 

mammographic density were both found to be statistically significantly and independently 

associated with postmenopausal breast cancer risk. However, additional adjustment for 

mammographic density either strengthened or did not affect the association between these 

circulating sex hormones and the increased risk of breast cancer, except that in one of the two 

studies, the association was slightly attenuated for total estradiol and testosterone [39, 40]. Only 

one study examined sex hormone-binding globulin (SHBG), which was negatively associated with 

breast cancer risk and this inverse association was strengthened after adjustment for percentage 

density [40]. The effect of plasma carotenoids on breast cancer risk and its relationship with 

mammographic density were evaluated in one study [41]. Adjusting for mammographic density 

altered the association in different directions and the results are largely inconclusive about 

mediation (Table 2.6).  

 

2.4 DISCUSSION  

 

This review systematically reviewed existing evidence on the potential role of 

mammographic density plays as a mediator for the risk of breast cancer. The results of this analysis 

suggest that mammographic density might partially mediate the association between some of the 
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known risk factors and breast cancer risk. The increase in breast cancer risk due to certain 

exposures may at least in part be attributed to increases in breast density.  

 

Genetic Factors 

Breast density is a highly heritable trait while genetic and family history factors are long-

established risk factors for breast cancer. Twin studies have shown that additive genetic factors 

(heritability) were estimated to account for 53% to 63% of the variation in mammographic density 

in the population, after adjustment for other factors [42]. Results in our review suggest that breast 

density may partially mediate the genetic associations with breast cancer. All studies consistently 

observed attenuation of the association between genetic factors and the risk of breast cancer after 

adjusting for mammographic density. One of the selected studies statistically confirmed the 

presence of mediation and showed that percent mammographic density explained 14% of the 

association of family history (at least one affected first-degree relative) with breast cancer risk 

[43]. Women with a family history of breast cancer have been shown to have higher 

mammographic density than women without a family history [44, 45], as have women of 

Ashkenazi Jewish descent [46]. Although nongenetic components shared by relatives may also 

play a role, the impact of a family history on the risk of breast cancer is primarily attributed to the 

inheritance of genes. Therefore, efforts have attempted to identify common genetic variants that 

predict both breast cancer risk and breast density. Two protective genetic variants satisfying these 

criteria were found to affect breast cancer risk partially by influencing the proportion of dense 

tissue in the breast [30, 31]. These results agree with a study that suggested that the genetic 

components that determine breast density overlapped with the genetic components that influence 

other breast cancer risk factors [47]. These findings provide insights into the mechanisms 

underlying the observed gene-disease association and highlight a potential biological pathway 

involving breast density to the genetic etiology of breast cancer.  

 

Breast Characteristics 

All risk factors for breast cancer must ultimately exert their influence by an effect upon 

breast tissue [48]. Mammographic density, expressed as the percentage of the breast showing 

densities, reflects variations and changes in the tissue composition of the breast. Fat is 
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radiologically lucent and appears dark on a mammogram. Dense areas, occupied by epithelial and 

stromal tissue, are radiologically dense and appear light. Histological assessment of the dense and 

non-dense areas of the breast revealed that the dense tissue has a greater amount of epithelium and 

stroma, particularly collagen, increased nuclear occupation, lesser fat, and a higher proportion of 

proliferative disease without atypia than the non-dense breast tissue [49-51]. Breast cancer most 

commonly develops in the epithelial cells that line the milk ducts and the lobules that supply these 

ducts with milk. Therefore, the greater the percent mammographic density, the greater the number 

of cells available for cancer transformation. Mammographic density is also linked to a higher 

number of cells and an increased amount of collagen, which may exacerbate breast tissue stiffness 

[34]. Women at higher risk of breast cancer were found to have dense breasts and their 

mammographic parenchymal patterns tend to be coarser, and lower in contrast than those of the 

low-risk group [52-54]. 

 

The present review found that the association of some histology and properties of the breast 

tissue and risk of breast cancer were in general attenuated after adjustment for mammographic 

density, indicating that their effect on breast cancer risk might be partially mediated through 

mammographic density. Pathological changes in the breast, reflected by histology abnormality and 

alterations in parenmychal pattern, texture, and stiffness, are phenomena closely related to breast 

density. Simply having a history of breast biopsy examination was found to be associated with 

increased breast density [55]. Women with a previous breast biopsy had an average of 6.5% more 

density than those who had not had a biopsy, likely due to a greater area of dense tissue and smaller 

nondense area [56]. Previous studies have described a strong association between benign breast 

disease histology and mammographic density. Women with density in more than 75% of the 

mammogram, as compared to women with no density, had a 12.2-fold increased risk of hyperplasia 

without atypia and 9.7-fold increased risk of atypical hyperplasia and/or breast carcinoma in situ 

[57, 58]. Compared to women with <25% fibroglandular breast tissue density, the relative risk of 

benign proliferative breast disease for women with ≥25% density was about doubled [59]. A 

number of recent studies have identified measures of mammographic parenchymal patterns based 

on various computer-extracted texture features on mammograms as independent predictors of 

breast cancer risk [60]. Some of these computerized parenchymal pattern measures, focusing on 

characteristics of fibroglandular densities seen without taking into account the extent of densities, 
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still demonstrated a moderate correlation with mammographic density [32, 61-63]. Breast tissue 

stiffness is an important characteristic that was found to be significantly associated with breast 

cancer [34]. Greater extracellular matrix (ECM) stiffness was observed in the breast tissue of 

higher mammographic density [64, 65].  

 

These findings suggest that the association between benign breast diseases, abnormal 

parenmychal pattern, and greater stiffness and breast cancer risk may, at least in part, be 

attributable to the biological processes in the breast that give rise to elevated breast density that is 

known to be related to breast cancer risk. For example, women with benign breast disease are at 

very high risk for future breast cancer if they also have dense breast tissue than if they have less 

dense breast tissue [35, 66]. Conversely, women found on breast biopsy to have the lowest category 

of breast density, whose breast tissue is almost entirely fat, were at low risk for future breast cancer 

even with proliferative benign pathologic diagnosis [66]. This suggests the important role of breast 

density plays in the increased risk of breast cancer associated with pathological changes in the 

breast. However, the estimated PE indexes for these risk factors are mostly no more than 25%, 

indicating that a relatively small proportion was mediated. The wide range of PE may be explained 

by the fact that the risk factors covered in this category are highly heterogeneous. Nevertheless, 

since the PE measure is based on the difference method, which is conservative, we cannot rule out 

the possibility with the presence of mediation. More study is needed to evaluate this category of 

risk factors by focusing on the extent of mediation, ideally with a statistical test and alternative 

mediation analysis such as the counterfactual approach.  

 

Anthropometric Measurements 

Non-genetic factors, including environmental, lifestyle, and behavioral exposures that are 

modifiable, have been much studied in relation to breast cancer risk. Several of these are 

anthropometric measurements such as body weight, height, and adiposity. BMI in childhood and 

adolescence was inversely associated with the breast cancer risk, possibly via a mechanism 

partially mediated by mammographic density, as suggested by the consistent attenuation of the 

association after adjustment for mammographic density. Adult BMI and body weight, on the other 

hand, appear to affect the risk of breast cancer for pre- and postmenopausal women differentially. 



20 

 

Before menopause, being overweight or obese is associated with a modestly reduced risk of breast 

cancer [67-71], whereas after menopause, it increases breast cancer risk [68, 69, 72].  

 

Studies summarized in this review showed that adjustment for mammographic density 

consistently moved the odds ratio for the association between these anthropometric measures 

(BMI, weight, height) and breast cancer in a positive direction (increased the ORs). The impact of 

adding mammographic density to the regression is so strong that the overall negative association 

among premenopausal women was moved close to the null or even become positive. However, the 

overall positive association between BMI and breast cancer among postmenopausal women was 

not attenuated after controlling for mammographic density. Rather, it was substantially 

strengthened. This is in agreement with another study on postmenopausal women, which found 

that adjusting for breast density either did not change or strengthened the association of BMI with 

breast cancer overall and of large, advanced-stage, high nuclear grade, estrogen receptor (ER)-

positive and -negative invasive breast cancer [73]. This observation indicates the presence of 

suppression or inconsistent mediation. In epidemiological studies, this is called negative 

confounding [3, 74]. It was argued that the negative confounding of percent density with BMI was 

because of a strong positive correlation of BMI with absolute non-dense (fatty) area on the 

mammogram [75]. This strong correlation may cause multicollinearity but it was found that this 

was not an issue [76]. Nevertheless, although mediation, confounding, and suppression are 

conceptually distinct, they share considerable statistical similarities (statistically equivalent) [77]. 

Therefore, it is reasonable to hypothesize that the mediated effect via density and the direct effect 

have opposite signs. That is, BMI may have a negative relationship with breast cancer when it acts 

through mammographic density (the sign of NIE is generally negative), while the effect not acting 

through (independent of) mammographic density is positive. This hypothesis suggests that the 

observed negative association between adult BMI and breast cancer among premenopausal 

women, along with body fatness in childhood and adolescence and breast cancer in all women, 

may occur because BMI is acting predominantly through its negative indirect effect through breast 

density. Overweight or obese women tend to have less dense breasts and, because of this, lower 

risk or no association with premenopausal breast cancer. The mechanism by which breast density 

is associated with risk is unknown but might be explained by the combined effects of mitogens in 

younger women such as insulin-like growth factor 1 (IGF1), which leads to cell proliferation in 
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the breast and increased amounts of fibroglandular tissue where most breast cancers arise. In 

postmenopausal women, who tend to have less dense breasts than premenopausal women, BMI 

may have a more direct positive association with breast cancer. 

 

Several possible biologic mechanisms exist by which women with greater adiposity may 

have additional risk for breast tumor development in postmenopausal women [78]. One of the 

possible mechanisms through which excess adiposity is thought to favor breast tumor development 

is a change in endogenous sex hormone metabolism. The elevated breast cancer risk associated 

with adiposity (BMI, waist and hip circumferences) in postmenopausal women was substantially 

and moderately reduced by adjusting for concentrations of serum estrogen (fT, E1, E2, fE2, ) and 

sex hormone-binding globulin, respectively, especially for free estradiol [79-81]. However, 

adjustment for androgen only slightly reduced the BMI-risk relationship, except for free 

testosterone which led to a modest attenuation in excess risk with adiposity in one study [79-81]. 

These observations support the hypothesis that the increased risk of breast cancer associated with 

greater adiposity in postmenopausal women is largely mediated through estrogen levels, 

particularly bioavailable estradiol, and to a lesser extent free testosterone, but not total androgens. 

After menopause, adipose tissue becomes the main site of estrogen production by aromatization 

of androgens [82, 83]. Furthermore, increased adiposity would cause insulin resistance, which in 

turn lowers the hepatic synthesis and blood levels of SHBG, a protein that effectively binds both 

estradiol and testosterone, thereby resulting in an increased concentration of bioavailable sex 

steroid hormone in circulation [84]. This may explain why women with increased adiposity tend 

to have higher circulating levels of estrogens [85], whereas overweight and obese postmenopausal 

women with sustained weight loss showed decreases in estrogen concentrations may reduce the 

peripheral synthesis and circulating levels of estrogens but not of total androgens [80, 86, 

87].  BMI was found to be inversely associated with ER+PR+ breast cancer among premenopausal 

women but positively associated with risk among postmenopausal women, while no association 

was observed for risk of ER-PR- breast tumors [73, 88, 89]. This suggests that the effect of 

adiposity on breast cancer risk may be via an estrogen dependent pathway [90]. 
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Reproductive Factors 

 

Breast density is known to decline during a woman’s lifetime, particularly in response to 

menstrual and reproductive events [91]. Women who were nulliparous or had only one child, with 

an age at first live birth after age 30 tended to exhibit a slower rate of decline in percent 

mammographic density in comparison with those having more than one child with the first live 

birth before age 30 [7]. Percent mammographic density dropped by 2.4% (1.4–3.4) on menopausal 

transition and increased by 2.4% (1.4–3.5) with the use of hormone replacement therapy [92]. 

Studies showed that nulliparity, late age at first birth, and premenopausal status were associated 

with increased percent mammographic density [93-97]. However, there were inconsistent findings 

for age at menarche and duration of breast-feeding. While some studies found a positive 

association between mammographic density and age at menarche [97] or duration of breastfeeding 

[96, 98-100], some studies observed no significant associations [7, 94, 98].  Studies summarized 

in this review showed that the association between reproductive factors (parity, age at firth birth, 

and breast-feeding) and breast cancer was reduced (by about 12-17%, 16-37%, and 5% 

respectively) after adjustment for breast density, indicating that mammographic density might 

mediate, likely in part, the protective effects of greater parity, younger age at first birth, and a 

longer period of breastfeeding against breast cancer. This is may explain why the higher risk 

associated with low parity appeared to be stronger among women with high breast density [101]. 

The protective effect of parity from breast cancer risk was not wholly mediated by a reduction in 

mammographic density, which is in agreement with the observation that mammographic density 

was associated with the risk of both steroid receptor-positive and negative subtypes of breast 

cancer [102, 103], while parity was found to influence the risk of receptor-positive cancer only 

[104, 105]. Since no formal statistical test of the mediation effect is available, it is inconclusive 

whether the proportion mediated estimated above is significant or not. Future studies are needed 

to further address this issue.  

 

Exogenous Hormone Use 

Clinical trials have demonstrated that postmenopausal treatment with hormone 

replacement therapy (HRT), especially combined formulations of estrogen and progestin, is 

associated with increases in mammographic density and risk of breast cancer [106], whereas 
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tamoxifen, a selective anti-estrogen drug, has been shown to reduce mammographic density and 

breast cancer risk [107]. Although the mechanism of action of these exogenous hormones in 

influencing the risk of breast cancer remains to be determined, it has been hypothesized that 

circulating levels of hormones are associated with breast density and that mammographic density 

represents at least, in part, cumulative exposure to estrogens [108]. The overall effect of HRT in 

these women was found to delay breast involution and prevent loss of breast parenchyma and 

epithelial cells that typically occurs around the menopause, thus increasing the breast density in a 

proportion of the treated patients [109, 110]. Women on a combined estrogen-progestin HRT had 

2.5- and 3.7-fold higher serum estradiol and estrone levels than nonuser, while the estradiol 

concentration in nipple aspirate fluid (NAF) was estimated to 18 times higher than that in nonusers 

and seven times higher than that in premenopausal women [111]. This indicates that exogenous 

hormone use may have direct influence on local breast tissue.  

 

Published literature on the effects of using exogenous hormones on mammographic density 

and the risk of breast cancer suggests that mammographic density might be a potential surrogate 

marker for breast cancer [106, 108]. Only one study by Boyd et al. [38] directly addressed this 

question using data from three nested case-control studies and found no support for this hypothesis. 

The results showed that estimates of the risk of breast cancer associated with hormone replacement 

therapy were either unchanged or slightly reduced, by adjustment for percent density. Thus, the 

authors concluded that there was no evidence that the increased risk of breast cancer associated 

with hormone replacement therapy is a consequence of the effect of this therapy on the risk factor 

of mammographic density. In other words, the pathways that are responsible for the increase in 

mammographic density following exposure to exogenous hormones, and those that increase the 

risk of breast cancer independent of mammographic density, are separate and not related causally. 

However, this conclusion regarding mediation may be worth further consideration for several 

reasons. First, the third condition proposed in that study requires the potential surrogate marker to 

mediate the entire relation of the intervention to the disease. That means it does not allow for 

partial mediation, instead, it requires the exposure and disease to be statistically unrelated once the 

surrogate is taken into account, which is a very strong criterion. Second, that study did not formally 

use any measure of mediation to quantify the extent to which mammographic density influences 

the association between hormone replacement therapy and breast cancer. We estimated the percent 
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change in the log ORs with adjustment for mammographic density and found that the PE is about 

25% for current HRT users when data on all three nested case-control studies were combined 

(Table 2.5). This suggests the potential presence of partial mediation, although relatively small. 

Third, the study used the difference method, which is always conservative for binary outcomes 

hence the results can be used to provide evidence for the presence of mediation but not for the 

absence of mediation [19]. 

 

Endogenous Hormone 

Higher circulating levels of both estrogen and androgen are known to increase the risk of 

breast cancer in both premenopausal [112-115] and postmenopausal women [40, 80, 116-119], 

whereas SHBG, which binds estradiol and testosterone with high affinity, is associated with a 

reduced risk of breast cancer by effectively limiting their bioavailability [120, 121]. The biologic 

mechanism by which estrogens and androgens are associated with increased breast cancer risk 

remains unclear, although they are closely related. Androgens may act directly, promoting breast 

cell growth via binding to the androgen receptor, or indirectly, via conversion to estrogens in 

adipose tissue, either peripherally or locally in the breast [122, 123]. It was argued that the 

contribution of androgens to breast cancer risk might be largely through their role as estrogen 

precursors. This is because the association between androgen (testosterone) levels and breast 

cancer risk decreased substantially after adjusting for estrone sulfate and slightly after adjusting 

for total estradiol [80, 116, 124-126]. On the other hand, adjustment for androgen levels only 

mildly attenuated the relative risk of breast cancer associated with estrogens [80, 116]. Since the 

risk remained significant after adjustment, it indicates that androgens may also act through an 

independent mechanism in addition to increasing estrogen levels. 

 

The observed associations of mammographic density with menstrual and reproductive 

factors, along with exogenous sex hormone use, support that endogenous sex steroids may also 

increase breast cancer risk through their effect on breast density. However, it is unclear to what 

extent their effects on breast cancer risk are independent of the effect of mammographic density 

or to what extent density is a reflection of underlying hormone levels. In the current review, we 

identified two studies that attempted to address this question but the results were largely 

inconclusive about mediation. Adjustment for mammographic density mostly either strengthened 
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or did not affect the association between these circulating sex hormones and increased risk of 

breast cancer. On the other hand, both studies showed that the elevated risk of postmenopausal 

breast cancer associated with increased mammographic density became stronger after adjustment 

for sex hormones or SHBG, more so for those in the free available form [39, 40]. It is possible that 

endogenous hormones in the free form are acting differently or with greater bioactivity than those 

in bounded form. These observations suggest that the possible mechanism underlying the 

association between endogenous sex hormones and postmenopausal breast cancer risk is complex 

and not well understood. One potential explanation for this might be the presence of inconsistent 

mediation or suppression. This suggests that if the indirect pathway through breast density exists, 

then such intermediate partly counters the positive associations of free estradiol and testosterone, 

and the adverse association of SHBG with breast cancer risk. That is, free estradiol and testosterone 

are likely to be negatively and SHBG positively associated with mammographic density.  

 

However, previous studies on the association between sex hormone levels and breast 

density have been largely inconsistent. While some studies reported that levels of estradiol, 

prolactin, progesterone, testosterone, premenarchal DHEAS (dehydroepiandrosterone 

sulfate), and SHBG were positively associated with mammographic density among 

premenopausal women [127-131], others found either no association of plasma estradiol, 

progesterone, non-SHBG-bound testosterone, and SHBG, or negative association of androgens 

testosterone, androstenedione, and dehydroepiandrosterone sulfate with premenopausal breast 

density [127, 129, 132, 133]. Among postmenopausal women, higher blood levels of endogenous 

estrogens and androgens (estrone, estradiol, bioavailable estradiol, prolactin, and progesterone) 

were shown to be related to greater mammographic density, even after adjustment for BMI [132, 

134-138]. But in other studies, circulating levels of estrone, estradiol, free estradiol, testosterone, 

free testosterone, androstenedione, and dehydroepiandrosterone were found to be negatively [40, 

132, 135, 139-141] and sex SHBG [135, 136, 138, 142] to be positively associated with percentage 

density. In a recent study on postmenopausal women, the ratio of urinary parent estrogens (estrone 

and estradiol) to all their metabolites (methylated catechols, 2-methoxyestrone, and 4-

methoxyestrone) was found to be positively associated with percent mammographic density and 

dense area, which did not differ markedly by 2-, 4-, and 16-hydroxylation metabolic pathways. 

This suggests that increased hydroxylation of parent estrogens may protect against breast cancer 
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through a pathway involving breast density [143]. However, this association of estrogens and MD 

is maintained only among postmenopausal women with recent or sustained exposure to higher 

levels of circulating estrogens (such as occurs close to the time of menopause or among obese 

women [143]. 

 

Nevertheless, the association between sex hormone levels and mammographic density is 

strongly influenced by BMI. Most of these hormone-density associations (total/free/bioavailable 

estradiol, estrone, estrone sulfate, total/free/bioavailable testosterone, or SHBG levels, prolactin) 

were substantially weakened or eliminated with further adjustment for BMI in both premenopausal 

[127] and postmenopausal women [40, 108, 135, 138, 140, 144]. These results suggest that if the 

effect of circulating sex hormone levels to breast cancer is mediated by mammographic density, 

then they act through a pathway involving obesity. This agrees with a study that used statistical 

mediation analysis based on the difference method, which found that bodyweight mediated over 

50% of the association of progesterone, SHBG, and E2 with percent mammographic density in 

premenopausal women [131]. Meantime, this study found no support for the hypothesis that any 

of the hormones mediated the association of weight with percentage density [131]. 

 

Even if BMI mediated a large part of the association between circulating hormones with 

breast density, it is likely to mediate only a small proportion of the effect of circulating hormone 

on breast cancer risk because only part of this association is acting through breast density. 

Adjustment for BMI resulted in little change in the risk estimates of breast cancer for different 

levels of androgens, estrogens, or SHBG in postmenopausal women, suggesting a possible causal 

role of sex steroids in breast cancer is independent of postmenopausal obesity [40, 79-81, 118]. 

This is consistent with the finding that the reduced risk of breast cancer associated with greater 

hydroxylation of parent estrogens did not vary by >10% with and without adjustment for BMI, 

suggesting that adiposity is neither a confounder of the association nor is it on the causal pathway 

of estrogen metabolism to mammographic density [143]. Adjusting for both BMI and height 

simultaneously was found to reduce the ORs for postmenopausal breast cancer associated with top 

quintile of oestradiol, oestrone, and androgens by 17%, 18%, and 7–13% respectively [124].  
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While mammographic density affected risks of both estrogen- and progesterone-receptor 

positive (ER+/ PR+) and negative (ER-/PR-) breast cancers [102, 103], hormone replacement 

therapy (HRT) use and circulating levels of sex steroid hormones tended to be more strongly 

associated with risk of receptor-positive (ER+/PR+) breast tumors [88, 108, 114, 117, 119]. 

Furthermore, clinical trials showed that treatment with tamoxifen [145] or raloxifene [146] 

appeared to be effective in reducing the risk of estrogen-receptor–positive (ER+), but not receptor-

negative (ER-) breast tumors. Therefore, it was hypothesized that circulating sex hormone levels 

and mammographic density are independent risk factors for postmenopausal breast cancer and that 

they may increase breast cancer risk through different mechanisms. 

 

Limitations 

There are several limitations to the current review. First, this review is limited by the 

relatively small number of studies that have evaluated the potential role of mammographic density 

as a mediator. The risk factors for breast cancer covered were of such a great variety that it is 

impossible to conduct a meta-analysis. Therefore, the results must be interpreted with caution. 

Second, although the studies encompass a wide range of risk factors, it should be noted that the 

studies examined in this review were rarely designed to directly address the specific mediation 

question being investigated here. Third, all except two studies used the “difference method”, which 

has been criticized for lacking a causal interpretation and being conservative regarding mediation 

for binary outcomes. The proportion mediated tends to be underestimated. It can be used to provide 

evidence for the presence of mediation but not for the absence of mediation. While the “difference 

method” is commonly used, the question remains whether density mediates the effects of risk 

factors for breast cancer. Given that there are only two studies that have conducted causal 

mediation analysis, the role of mammographic density linking a risk factor and breast cancer risk 

remains unclear. 

 

Despite these limitations, the data summarized in this review do provide insights for us to 

generate important hypotheses regarding the potential mediation role of mammographic density in 

a wide range of factors known to be related to breast cancer risk. Therefore, further studies are 

needed to test the hypothesis that some risk factors may affect breast cancer risk through a pathway 
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via mammographic density. The findings can help us to better understand the biological 

mechanisms involving mammographic density to the etiology of breast cancer.  

 

2.5 CONCLUSIONS 

 

In conclusion, some evidence supported the hypothesis of mediating pathways from a risk 

factor such as HRT to breast cancer through mammographic density measures. Very few studies 

have used statistical mediation analyses to examine the effect of known risk factors on breast 

cancer risk through breast density. The available evidence is not enough to make a conclusion 

about the potential mediation effect of breast density. Despite a lack of sufficient evidence, 

available data based on the “difference method” implies that mammographic density may play a 

role in the effects of some breast cancer risk factors. The association between many of the known 

risk factors on breast cancer is likely in part, although not wholly, mediated by mammographic 

density. This is especially true for the effect of adiposity since adjustment for mammographic 

density substantially altered its association with the risk of breast cancer. Further research is 

needed to address the hypothesis generated in this review and to statistically examine the potential 

role of mammographic density as a mediator in the etiology of breast cancer, not only based on 

the traditional “difference method” but also based on the newly developed techniques such as the 

counterfactual approach. 
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TABLES 

 

Table 2.1. Search strategies 

 

Search # Search using title, abstract, and keywords 

#1 (((mammography OR mammographic) AND (density OR densities)) OR 

"breast density" OR "breast densities" OR "percent density" OR "percent 

densities”) AND (mediat* OR surrogat*) 

#2 (((mammography OR mammographic) AND (density OR densities)) OR 

"breast density" OR "breast densities" OR "percent density" OR "percent 

densities”) AND (“adjusted for" OR "adjust for" OR "adjusts for" OR 

"adjusting for" OR "adjustment for" OR "controlled for" OR "controlling for" 

OR “accounting for”) 

#3 #1 OR #2 
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Table 2.2. Changes in the OR/RRs of genetic factors by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE/ 

PM 

2011 Lindström 806/784 NHS rs10995190 in ZNF365 0.88 (0.72-1.07) 0.93 (0.76-1.14) negative 0.43 

2011 Lindström 518/742 SASBAC rs10995190 in ZNF365 0.91 (0.73-1.14) 0.93 (0.75-1.17) negative 0.23 

2011 Lindström 783/907 MCBCS rs10995190 in ZNF365 0.78 (0.65-0.95) 0.85 (0.69-1.03) negative 0.35 

2011 Lindström 2107/2433 Combined rs10995190 in ZNF365 0.85 (0.76-0.96) 0.90 (0.80-1.01) negative 0.35 

2014 Fejerman 304/809 Mexican rs140068132 0.73 (0.55-0.98) 0.77 (0.58-1.03) negative 0.15 

2014 Fejerman 304/809 Mexican Indigenous American Ancestry 0.34 (0.16-0.73) 0.34 (0.16-0.74) negative 0.01 

2014 Fejerman 304/809 Mexican African Ancestry 1.03 (0.08-13.11) 0.81 (0.06-10.59) inconclusive 8.61 

2010 Martin 926/978 ~75% 

postmenopausal 

# of 1st° relatives n=0 1.00 Referent 1.00 Referent ~ ~ 

2010 Martin 207/165 ~75% 

postmenopausal 

# of 1st° relatives n=1 1.37 (1.10-1.72) 1.31 (1.04-1.65) positive 0.14 

2010 Martin 31/15 ~75% 

postmenopausal 

# of 1st° relatives n≥2 2.45 (1.30-4.62) 2.25 (1.19-4.27) positive 0.10 

2016 Rice 559/1727 NHS/NHSII, 

premenopausal at 
mammogram 

Family history of breast cancer: Yes 

vs no 

1.47 (1.07,2.01) 1.46 (1.06,2.00) positive 2% 

2016 Rice 731/1695 NHS/NHSII, 

postmenopausal 
at mammogram 

Family history of breast cancer: Yes 

vs no 

1.45 (1.15,1.85) 1.45 (1.14,1.84) positive 1% 

2018 Rice 1083/3190 NHS/NHSII, 

premenopausal at 
mammogram 

Family history of breast cancer: Yes 

vs no 

1.59 (1.30,1.94) 1.55 (1.27,1.90) positive 5% 

2018 Rice 2188/5669 NHS/NHSII, 

postmenopausal 
at mammogram 

Family history of breast cancer: Yes 

vs no 

1.58 (1.39,1.80) 1.58 (1.39,1.80) positive 1% 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

<20 yrs, n=0 

1.00 Referent 1.00 Referent ~ ~ 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

<20 yrs, n=1 

2.89 (1.82-4.57) 2.80 (1.77-4.43) positive 0.03 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

<20 yrs, n=2+ 

8.33 (3.32-20.90) 7.83 (3.13-19.60) positive 0.03 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

20-24 yrs, n=0 

1.27 (1.09-1.48) 1.22 (1.05-1.42) positive 0.17 
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(cont.) Table 2.2. Changes in the OR/RRs of genetic factors by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE/ 

PM 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

20-24 yrs, n=1 

2.98 (2.11-4.21) 2.80 (1.98-3.95) positive 0.06 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

20-24 yrs, n=2+ 

6.99 (3.86-12.70) 6.40 (3.54-11.60) positive 0.05 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

25-29 yrs, n=0 

1.62 (1.20-2.18) 1.50 (1.10-2.03) positive 0.16 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

25-29 yrs, n=1 

3.08 (2.18-4.36) 2.80 (1.97-3.98) positive 0.08 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

25-29 yrs, n=2+ 

5.87 (3.60-9.57) 5.24 (3.21-8.56) positive 0.06 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

30+ yrs, n=0 

2.05 (1.31-3.22) 1.83 (1.16-2.89) positive 0.16 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

30+ yrs, n=1 

3.18 (2.00-5.07) 2.80 (1.75-4.49) positive 0.11 

2005 Tice 81,777 diverse racial 

groups 

Age at 1st birth, # of 1st° relatives: 

30+ yrs, n=2+ 

4.93 (2.43-9.99) 4.28 (2.10-8.74) positive 0.09 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the paper, denoted as a percentage.  
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Table 2.3. Changes in the OR/RRs of clinical features of the breast by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE / 

PM 

2011 Wei 41/174 Training and test set MPP C1 1.00 Referent 1.00 Referent ~ ~ 

2011 Wei 28/50 Training and test set MPP C2 2.62 NA 2.40 (1.28-4.45) positive 0.09 

2011 Wei 67/22 Training and test set MPP C3 13.91 NA 13.38 (7.12-25.15) positive 0.01 

2011 Wei 21/87 Training set MPP C1 1.00 Referent 1.00 Referent ~ ~ 

2011 Wei 19/35 Training set MPP C2 2.65 NA 2.37 (1.04-5.36) positive 0.11 

2011 Wei 41/14 Training set MPP C3 13.91 NA 13.95 (5.93-32.85) inconclusive 0.00 

2011 Wei 20/87 Test set C3 MPP C1 1.00 Referent 1.00 Referent ~ ~ 

2011 Wei 9/15 Test set C4 MPP C2 2.87 NA 2.82 (1.04-7.64) positive 0.02 

2011 Wei 26/8 Test set C5 MPP C3 14.00 NA 13.89 (6.53-49.05) positive 0.00 

2014 Nielsen 226/442 Study S2 trained on S1 MTR T1 quartiles Q1 1.00 Referent 1.00 Referent ~ ~ 

2014 Nielsen 226/443 Study S2 trained on S1 MTR T1 quartiles Q2 1.40 (0.80-2.30) 1.04 (0.59-1.81) positive 0.88 

2014 Nielsen 226/444 Study S2 trained on S1 MTR T1 quartiles Q3 1.30 (0.70-2.20) 0.95 (0.52-1.74) inconclusive 1.20 

2014 Nielsen 226/445 Study S2 trained on S1 MTR T1 quartiles Q4 2.20 (1.40-3.60) 1.84 (1.10-3.07) positive 0.23 

2014 Nielsen 226/446 Study S2 trained on S1 MTR T1 (OR per one 

SD) 

1.39 (1.17-1.66) 1.36 (1.13-1.62) positive 0.07 

2014 Boyd 362/656 most postmenopausal Stiffness IQR 

(interquartile range) 

1.24 (1.05-1.46) 1.21 (1.03-1.43) positive 0.11 

2001 Byrne 62/94 ~85% postmenopausal Nonproliferative benign 

disease 

1.00 Referent 1.00 Referent ~ ~ 

2001 Byrne 198/223 ~85% postmenopausal Proliferative disease 

without atypia 

1.30 (0.90-1.90) 1.30 (0.90-1.90) positive 0.00 

2001 Byrne 58/41 ~85% postmenopausal Atypical hyperplasia 2.20 (1.30-3.60) 2.10 (1.30-3.60) positive 0.06 

2001 Byrne 29/52 ~85% postmenopausal Benign histology, Other 0.80 (0.50-1.40) 0.90 (0.50-1.70) negative 0.53 

2016 Rice 559/1727 NHS/NHSII, premenopausal at 
mammogram 

History of biopsy-

confirmed BBD 

Yes vs no 

2.04 (1.59,2.62) 1.81 (1.40,2.32) positive 17%** 

2016 Rice 731/1695 NHS/NHSII, postmenopausal at 
mammogram 

History of biopsy-

confirmed BBD 

Yes vs no 

1.29 (1.04,1.61) 1.19 (0.95,1.48) positive 33%* 

2016 Rice 559/1727 NHS/NHSII, premenopausal at 
mammogram 

History of unconfirmed 

BBD 

1.12 (0.89,1.41) 1.03 (0.82,1.30) positive 73% 
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(cont.) Table 2.3. Changes in the OR/RRs of clinical features of the breast by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE / 

PM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal at 
mammogram 

History of unconfirmed 

BBD 

1.19 (0.95,1.48) 1.13 (0.90,1.41) positive 29% 

2018 Rice 1098/3183 NHS/NHSII, premenopausal at 
mammogram 

Previous breast biopsy 

yes versus no 

1.76 (1.48,2.10) 1.60 (1.34,1.91) positive 17%** 

2018 Rice 2202/5546 NHS/NHSII, postmenopausal at 
mammogram 

Previous breast biopsy 

yes versus no 

1.50 (1.34,1.69) 1.36 (1.21,1.53) positive 24%** 

2005 Tice 81,777 diverse racial groups Age<50 years, No 

previous biopsy 

1.00 Referent 1.00 Referent ~ ~ 

2005 Tice 81,777 diverse racial groups Age<50 years, Previous 

biopsy 

1.22 (0.82-1.82) 1.19 (0.80-1.78) positive 0.13 

2005 Tice 81,777 diverse racial groups Age<50 years, >1 

previous biopsy 

1.49 (0.67-3.31) 1.42 (0.64-3.16) positive 0.12 

2005 Tice 81,777 diverse racial groups Age≥50 years, No 

previous biopsy 

1.00 Referent 1.00 Referent ~ ~ 

2005 Tice 81,777 diverse racial groups Age≥50 years, Previous 

biopsy 

1.24 (0.99-1.56) 1.19 (0.94-1.50) positive 0.19 

2005 Tice 81,777 diverse racial groups Age≥50 years, >1 

previous biopsy 

1.54 (0.97-2.45) 1.41 (0.88-2.24) positive 0.20 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated; NA: not 

available; MPP: mammographic parenchymal pattern; MTR: mammographic texture resemblance; BBD: benign breast disease 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the selected studies, denoted as a percentage 

* p < 0.05, ** p < 0.01 
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Table 2.4a. Changes in the OR/RRs of BMI by adjustment for mammographic density  

Year First 

Author 

No. 

subjects 

Subjects Exposure 

BMI (kg/m2) 

Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

/PM 

2004 Vacek 24006 Premenopausal <22.0 1.00 Referent 1.00 Referent ~ ~ 

2004 Vacek 24006 Premenopausal 22.0-24.9 0.66 (0.50-0.88) 0.71 (0.53-0.94) negative 0.18 

2004 Vacek 24006 Premenopausal 25.0–27.4 0.68 (0.48-0.95) 0.77 (0.55-1.09) negative 0.32 

2004 Vacek 24006 Premenopausal 27.5–29.9 0.66 (0.44-0.99) 0.79 (0.53-1.20) negative 0.43 

2004 Vacek 24006 Premenopausal ≥ 30.0 0.64 (0.47-0.88) 0.85 (0.61-1.20) negative 0.64 

2006 Boyld 86/64 Premenopausal ≤21.79 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 54/59 Premenopausal (21.79-23.30) 0.69 (0.40-1.10) 0.88 (0.5-1.5) negative 0.66 

2006 Boyld 49/46 Premenopausal (23.30-25.02) 0.79 (0.50-1.30) 1.13 (0.60-2.00) inconclusive 1.52 

2006 Boyld 42/46 Premenopausal (25.02-27.64) 0.68 (0.40-1.20) 1.06 (0.60-1.90) inconclusive 1.15 

2006 Boyld 51/52 Premenopausal >27.64 0.76 (0.50-1.30) 1.47 (0.80-2.70) inconclusive 2.40 

2006 Boyld 162 pairs  Premenopausal BMI (continuous) 0.96 (0.91-1.02) 1.01 (0.95-1.07) inconclusive 1.14 

2011 Harris 19/46 Premenopausal  <20b 0.86 (0.47-1.58) 0.75 (0.40-1.38) inconclusive -0.91 

2011 Harris 77/151 Premenopausal 20–22.4b 1.00 Referent 1.00 Referent ~ ~ 

2011 Harris 60/146 Premenopausal 22.5–24.9b 0.85 (0.56-1.28) 1.04 (0.68-1.60) inconclusive 1.24 

2011 Harris 48/23 Premenopausal 25–27.4b 1.08 (0.68-1.71) 1.59 (0.97-2.59) inconclusive -5.03 

2011 Harris 23/26 Premenopausal 27.5–29.9b 1.75 (0.92-3.33) 2.86 (1.44-5.68) inconclusive -0.88 

2011 Harris 31/100 Premenopausal ≥30b 0.64 (0.38-1.06) 1.28 (0.72-2.30) inconclusive 1.55 

2000 Lam 298/1241 Postmenopausal <22.0 1.00 Referent 1.00 Referent ~ ~ 

2000 Lam 298/1241 Postmenopausal 22.0-24.9 1.20 (0.80-2.00) 1.40 (0.90-2.30) inconclusive -0.85 

2000 Lam 298/1241 Postmenopausal 25.0–27.4 1.30 (0.80-2.20) 1.60 (0.90-2.70) inconclusive -0.79 

2000 Lam 298/1241 Postmenopausal 27.5–29.9 1.30 (0.70-2.10) 1.60 (0.90-2.70) inconclusive -0.79 

2000 Lam 298/1241 Postmenopausal ≥ 30.0 1.90 (1.20-3.00) 2.50 (1.60-4.10) inconclusive -0.43 

2004 Vacek 36867 Postmenopausal  <22.0 1.00 Referent 1.00 Referent ~ ~ 

2004 Vacek 36867 Postmenopausal 22.0-24.9 1.09 (0.87-1.37) 1.17 (0.94-1.45) inconclusive -0.82 

2004 Vacek 36867 Postmenopausal 25.0–27.4 1.07 (0.84-1.37) 1.25 (0.99-1.57) inconclusive -2.30 

2004 Vacek 36867 Postmenopausal 27.5–29.9 1.18 (0.91-1.53) 1.43 (1.12-1.83) inconclusive -1.16 
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(cont.) Table 2.4a. Changes in the OR/RRs of BMI by adjustment for mammographic density  

Year First 

Author 

No. 

subjects 

Subjects Exposure 

BMI (kg/m2) 

Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

/PM 

2004 Vacek 36867 Postmenopausal ≥ 30.0 1.19 (0.95-1.50) 1.54 (1.23-1.93) inconclusive -1.48 

2006 Boyld 159/168 Postmenopausal  ≤21.79 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 164/158 Postmenopausal (21.79-23.30) 1.05 (0.80-1.40) 1.16 (0.80-1.60) inconclusive -2.04 

2006 Boyld 159/174 Postmenopausal (23.30-25.02) 0.95 (0.70-1.30) 1.13 (0.80-1.60) inconclusive 3.38 

2006 Boyld 170/178 Postmenopausal (25.02-27.64) 1.02 (0.80-1.40) 1.28 (0.90-1.80) inconclusive -11.47 

2006 Boyld 180/169 Postmenopausal >27.64 1.17 (0.90-1.60) 1.67 (1.20-2.30) inconclusive -2.27 

2006 Boyld 727 pairs  Postmenopausal BMI (continuous) 1.02 (0.99-1.04) 1.05 (1.02-1.03) inconclusive -1.81 

2006 Boyld 245/232 All subjects ≤21.79 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 218/217 All subjects (21.79-23.30) 0.93 (0.70-1.20) 1.07 (0.80-1.40) inconclusive 1.93 

2006 Boyld 208/220 All subjects (23.30-25.02) 0.89 (0.70-1.20) 1.12 (0.80-1.50) inconclusive 1.97 

2006 Boyld 212/224 All subjects (25.02-27.64) 0.91 (0.70-1.20) 1.21 (0.90-1.60) inconclusive 3.02 

2006 Boyld 231/221 All subjects >27.64 1.04 (0.80-1.40) 1.60 (1.20-2.20) inconclusive -10.98 

2006 Boyld 1,114 pairs  All subjects BMI (continuous) 1.01 (0.99-1.03) 1.04 (1.02-1.06) inconclusive -3.90 

2011 Harris 185/339 All subjects BMI at Age 18: <18.5 0.97 (0.79-1.20) 0.92 (0.75-1.14) inconclusive -1.74 

2011 Harris 314/559 All subjects BMI at Age 18: 18.5–19.9 1.03 (0.87-1.23) 0.96 (0.81-1.14) inconclusive 2.38 

2011 Harris 616/1124 All subjects BMI at Age 18: 20–22.4 1.00 Referent 1.00 Referent ~ ~ 

2011 Harris 238/449 All subjects BMI at Age 18: 22.5–24.9 0.96 (0.80-1.16) 1.07 (0.89-1.30) inconclusive 2.66 

2011 Harris 99/260 All subjects BMI at Age 18: ≥25 0.68 (0.52-0.87) 0.84 (0.65-1.09) negative 0.55 

2016 Rice 559/1727 NHS/NHSII, 

premenopausal at 
mammogram 

BMI, Per 5-unit increase 1.03 (0.92,1.16) 1.22 (1.07,1.39) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, 

postmenopausal at 
mammogram 

BMI, Per 5-unit increase 1.05 (0.95,1.16) 1.17 (1.05,1.30) inconclusive NM 

2016 Rice 559/1727 NHS/NHSII, 

premenopausal at 
mammogram 

BMI at Age 18, 
Per 5-unit increase 

0.80  (0.65, 0.97) 0.96 (0.78,1.19) negative 82%* 
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(cont.) Table 2.4a. Changes in the OR/RRs of BMI by adjustment for mammographic density  

Year First 

Author 

No. 

subjects 

Subjects Exposure 

BMI (kg/m2) 

Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

/PM 

2016 Rice 731/1695 NHS/NHSII, 

postmenopausal at 
mammogram 

BMI at Age 18, 
Per 5-unit increase 

0.88 (0.74,1.05) 1.00 (0.83,1.19) negative 98% 

2018 Rice 1105/3192 NHS/NHSII, 

premenopausal at 
mammogram 

BMI, Per 5-unit increase 0.98 (0.92,1.05) 1.20 (1.10,1.29) inconclusive NM 

2018 Rice 2287/5690 NHS/NHSII, 

postmenopausal at 
mammogram 

BMI, Per 5-unit increase 1.14 (1.09,1.19) 1.33 (1.26,1.40) inconclusive NM 

2014 Andersen 12640 All subjects BMI at age 7 0.91 (0.83-0.99) 0.97 (0.88-1.06) negative 0.68 

2014 Andersen 12887 All subjects BMI at age 8 0.94 (0.86-1.02) 1.01 (0.92-1.11) inconclusive 1.16 

2014 Andersen 12968 All subjects BMI at age 9 0.91 (0.83-1.00) 0.99 (0.90-1.09) negative 0.89 

2014 Andersen 13014 All subjects BMI at age 10 0.92 (0.83-1.01) 1.01 (0.92-1.10) inconclusive 1.12 

2014 Andersen 13045 All subjects BMI at age 11 0.95 (0.87-1.04) 1.05 (0.95-1.14) inconclusive 1.95 

2014 Andersen 13050 All subjects BMI at age 12 0.92 (0.85-1.01) 1.02 (0.93-1.12) inconclusive 1.24 

2014 Andersen 13002 All subjects BMI at age 13 0.92 (0.84-1.00) 1.01 (0.93-1.11) inconclusive 1.12 

2014 Fejerman 304/809 All subjects 

(Mexican) 

BMI (continuous) 0.95 (0.93-0.98) 0.97 (0.94-1.00) negative 0.40 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated; NA: not 

available; NM: not mediated 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the selected studies, denoted as a percentage 

* p < 0.05, ** p < 0.01 
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Table 2.4b. Changes in the OR/RRs of weight/height by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure 

Somatotype 

Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

1984 Brisson 23/63 Premenopausal Body weight (kg) <55 1.00 Referent 1.00 Referent ~ ~ 

1984 Brisson 39/113 Premenopausal Body weight (kg) 55-64 0.90 (0.50-1.70) 1.10 (0.60-2.20) inconclusive 1.90 

1984 Brisson 28/49 Premenopausal Body weight (kg) 65-74 1.50 (0.70-3.10) 2.60 (1.20-5.90) inconclusive -1.36 

1984 Brisson 14/31 Premenopausal Body weight (kg) ≥75 1.20 (0.50-2.80) 2.70 (1.00-7.20) inconclusive -4.45 

2006 Boyld 162 pairs Premenopausal Weight (kg) 0.99 (0.97-1.01) 1.00 (0.98-1.03) inconclusive 1.30 

1984 Brisson 46/96 Postmenopausal Body weight (kg) <55 1.00 Referent 1.00 Referent ~ ~ 

1984 Brisson 90/172 Postmenopausal Body weight (kg) 55-64 1.10 (0.70-1.80) 1.30 (0.80-2.10) inconclusive -1.75 

1984 Brisson 64/88 Postmenopausal Body weight (kg) 65-74 1.50 (0.90-2.60) 2.10 (1.20-3.70) inconclusive -0.83 

1984 Brisson 55/73 Postmenopausal Body weight (kg) ≥75 1.60 (1.00-2.70) 2.60 (1.40-4.60) inconclusive -1.03 

2000 Lam 298/1241 Postmenopausal weight ≤63 kg 1.00 Referent 1.00 Referent ~ ~ 

2000 Lam 298/1241 Postmenopausal 63.1–70.0 kg 1.50 (1.00-2.30) 1.60 (1.10-2.50) inconclusive -0.16 

2000 Lam 298/1241 Postmenopausal 70.1–81 kg 1.60 (1.10-2.40) 1.90 (1.20-2.80) inconclusive -0.37 

2000 Lam 298/1241 Postmenopausal weight >81 kg 1.70 (1.20-2.60) 2.10 (1.30-3.20) inconclusive -0.40 

2006 Boyld 727 pairs Postmenopausal Weight (kg) 1.01 (1.00-1.02) 1.02 (1.01-1.03) inconclusive -1.20 

1984 Brisson 69/160 All subjects Body weight (kg) <55 1.00 Referent 1.00 Referent ~ ~ 

1984 Brisson 129/285 All subjects Body weight (kg) 55-64 1.10 (0.70-1.50) 1.30 (0.90-1.80) inconclusive -1.75 

1984 Brisson 94/137 All subjects Body weight (kg) 65-74 1.60 (1.10-2.40) 2.30 (1.50-3.70) inconclusive -0.77 

1984 Brisson 70/104 All subjects Body weight (kg) ≥75 1.50 (1.00-2.40) 2.70 (1.60-4.40) inconclusive -1.45 

2006 Boyld 1,114 pairs All subjects Weight (kg) 1.00 (1.00-1.01) 1.01 (1.01-1.02) inconclusive -3.34 

2014 Andersen 8,271 All subjects Birth weight (g) 0.89 (0.75-1.06) 0.88 (0.74-1.05) inconclusive -0.10 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Weight change since 18, 

Per 20-lb increase 

1.03 (0.96,1.12) 1.16 (1.06,1.26) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Weight change since 18, 

Per 20-lb increase 

1.03 (0.96,1.10) 1.11 (1.03,1.19) inconclusive NM 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Height 

Per 3-inch increase 

1.14 (1.01,1.28) 1.14 (1.01,1.29) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Height 

Per 3-inch increase 

0.95 (0.85,1.06) 0.96 (0.86,1.07) negative 22% 
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(cont.) Table 2.4b. Changes in the OR/RRs of weight/height by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure 

Somatotype 

Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

2018 Rice 1060/3018 NHS/NHSII, premenopausal 
at mammogram 

Height 

Per 3-inch increase 

1.02 (0.94,1.11) 1.04 (0.96,1.13) inconclusive NM 

2018 Rice 2114/4938 NHS/NHSII, postmenopausal 
at mammogram 

Height 

Per 3-inch increase 

1.06 (0.99,1.12) 1.08 (1.02,1.15) inconclusive NM 

1984 Brisson 69/94 All subjects Body height (cm) <155 1.00 Referent 1.00 Referent ~ ~ 

1984 Brisson 99/208 All subjects Body height (cm) 155-159 0.60 (0.40-0.90) 0.60 (0.40-0.90) inconclusive 0.00 

1984 Brisson 90/197 All subjects Body height (cm) 160-164 0.60 (0.40-0.90) 0.50 (0.30-0.80) inconclusive -0.36 

1984 Brisson 104/187 All subjects Body height (cm) ≥165 0.80 (0.50-1.20) 0.70 (0.40-0.90) inconclusive -0.60 

2014 Fejerman 304/809 All subjects (Mexican) Height (cm)  1.03 (1.00-1.05) 1.02 (1.00-1.05) positive 0.12 

2014 Andersen 12,636 All subjects Height (cm) age 7 1.06 (0.98-1.14) 1.06 (0.99-1.15) inconclusive 0.00 

2014 Andersen 12,882 All subjects Height (cm) age 8 1.05 (0.98-1.14) 1.06 (0.98-1.14) inconclusive -0.19 

2014 Andersen 12,963 All subjects Height (cm) age 9 1.05 (0.97-1.13) 1.06 (0.98-1.14) inconclusive -0.19 

2014 Andersen 13,011 All subjects Height (cm) age 10 1.05 (0.97-1.13) 1.06 (0.98-1.14) inconclusive -0.19 

2014 Andersen 13,039 All subjects Height (cm) age 11 1.05 (0.98-1.14) 1.07 (0.99-1.15) inconclusive -0.39 

2014 Andersen 13,044 All subjects Height (cm) age 12 1.07 (0.99-1.15) 1.08 (1.01-1.16) inconclusive -0.14 

2014 Andersen 12,991 All subjects Height (cm) age 13 1.08 (1.00-1.16) 1.09 (1.01-1.17) inconclusive -0.12 

2006 Boyld 1,114 pairs All subjects Height (cm) 1.00 (0.99-1.01) 1.00 (0.99-1.01) positive 0.14 

2006 Boyld 162 pairs Premenopausal Height (cm) 1.00 (0.97-1.03) 1.01 (0.97-1.04) inconclusive -21.00 

2006 Boyld 727 pairs Postmenopausal Height (cm) 1.01 (0.99-1.03) 1.01 (0.99-1.03) positive 0.12 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated; NM: not 

mediated 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the paper, denoted as a percentage.  
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Table 2.4c. Changes in the OR/RRs of childhood and adolescent body fatness by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

2010 Jingmei 

Li 

902/862 postmenopausal, 

all 

Somatotype at age 7 Lean (1-2) 1.00 Referent 1.00 Referent ~ ~ 

2010 Jingmei 

Li 

353/428 postmenopausal, 

all 

Somatotype at age 7 Medium (3-4) 0.79 (0.66-0.94) 0.79 (0.66-0.94) inconclusive 0.00 

2010 Jingmei 

Li 

79/108 postmenopausal, 

all 

Somatotype at age 7 Large (5-9) 0.66 (0.48-0.90) 0.67 (0.49-0.92) negative 0.04 

2010 Jingmei 

Li 

510/862 postmenopausal, 

ER-positive 

Somatotype at age 7 Lean (1-2) 1.00 Referent 1.00 Referent ~ ~ 

2010 Jingmei 

Li 

200/428 postmenopausal, 

ER-positive 

Somatotype at age 7 Medium (3-4) 0.79 (0.65-0.98) 0.80 (0.65-0.98) negative 0.05 

2010 Jingmei 

Li 

49/108 postmenopausal, 

ER-positive 

Somatotype at age 7 Large (5-9) 0.73 (0.50-1.04) 0.75 (0.52-1.08) negative 0.09 

2010 Jingmei 

Li 

100/862 postmenopausal, 

ER-negative 

Somatotype at age 7 Lean (1-2) 1.00 Referent 1.00 Referent ~ ~ 

2010 Jingmei 

Li 

34/428 postmenopausal, 

ER-negative 

Somatotype at age 7 Medium (3-4) 0.66 (0.43-0.99) 0.66 (0.44-1.01) inconclusive 0.00 

2010 Jingmei 

Li 

5/108 postmenopausal, 

ER-negative 

Somatotype at age 7 Large (5-9) 0.34 (0.14-0.87) 0.36 (0.14-0.90) negative 0.05 

2010 Jingmei 

Li 

445/862 postmenopausal, 

PR-positive 

Somatotype at age 7 Lean (1-2) 1.00 Referent 1.00 Referent ~ ~ 

2010 Jingmei 

Li 

170/428 postmenopausal, 

PR-positive 

Somatotype at age 7 Medium (3-4) 0.77 (0.62-0.95) 0.77 (0.62-0.96) inconclusive 0.00 

2010 Jingmei 

Li 

44/108 postmenopausal, 

PR-positive 

Somatotype at age 7 Large (5-9) 0.73 (0.50-1.07) 0.76 (0.52-1.12) negative 0.13 

2010 Jingmei 

Li 

155/862 postmenopausal, 

PR-negative 

Somatotype at age 7 Lean (1-2) 1.00 Referent 1.00 Referent ~ ~ 

2010 Jingmei 

Li 

59/428 postmenopausal, 

PR-negative 

Somatotype at age 7 Medium (3-4) 0.77 (0.55-1.06) 0.77 (0.56-1.07) inconclusive 0.00 

2010 Jingmei 

Li 

9/108 postmenopausal, 

PR-negative 

Somatotype at age 7 Large (5-9) 0.43 (0.21-0.87) 0.44 (0.21-0.89) negative 0.03 

2016 Rice 559/1727 NHS/NHSII, 

premenopausal 
at mammogram 

Childhood somatotype Per 1-unit 

increase 

0.93 (0.86,1.01) 0.98 (0.90,1.07) negative 71 % 

2016 Rice 731/1695 NHS/NHSII, 

postmenopausal 
at mammogram 

Childhood somatotype Per 1-unit 

increase 

0.89 (0.83,0.96) 0.92 (0.85,0.99) negative 26 %** 
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(cont.) Table 2.4c. Changes in the OR/RRs of childhood and adolescent body fatness by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

2016 Rice 559/1727 NHS/NHSII, 

premenopausal 
at mammogram 

Adolescent somatotype Per 1-unit 

increase 

0.90 (0.82,0.99) 0.97  0.88,1.07) negative 73 %* 

2016 Rice 731/1695 NHS/NHSII, 

postmenopausal 
at mammogram 

Adolescent somatotype Per 1-unit 

increase 

0.86 (0.80,0.93) 0.90 (0.83,0.97) negative 26 %** 

2011 Harris 456/725 All subjects Body Fatness (ages 5–10) 1 1.00 Referent 1.00 Referent ~ ~ 

2011 Harris 433/758 All subjects Body Fatness (ages 5–10) 1.5–2 0.92 (0.77-1.09) 0.91 (0.77-1.08) inconclusive -0.13 

2011 Harris 294/564 All subjects Body Fatness (ages 5–10) 2.5–3 0.85 (0.70-1.02) 0.89 (0.74-1.08) negative 0.28 

2011 Harris 183/416 All subjects Body Fatness (ages 5–10) 3.5–4 0.73 (0.59-0.90) 0.83 (0.66-1.03) negative 0.41 

2011 Harris 119/290 All subjects Body Fatness (ages 5–10) ≥4.5 0.67 (0.52-0.86) 0.77 (0.60-0.99) negative 0.35 

2011 Harris 456/725 All subjects Body Fatness (ages 11–20) 1 1.00 Referent 1.00 Referent ~ ~ 

2011 Harris 433/758 All subjects Body Fatness (ages 11–20) 1.5–2 0.85 (0.67-1.07) 0.84 (0.66-1.06) inconclusive -0.07 

2011 Harris 294/564 All subjects Body Fatness (ages 11–20) 2.5–3 0.79 (0.62-0.99) 0.82 (0.64-1.03) negative 0.16 

2011 Harris 183/416 All subjects Body Fatness (ages 11–20) 3.5–4 0.73 (0.57-0.94) 0.82 (0.64-1.06) negative 0.37 

2011 Harris 119/290 All subjects Body Fatness (ages 11–20) ≥4.5 0.58 (0.44-0.78) 0.71 (0.53-0.95) negative 0.37 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated; 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the paper, denoted as a percentage.  

* p < 0.05, ** p < 0.01 

 

 

  



41 

 

Table 2.5. Changes in the OR/RRs of reproductive factors by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at menarche, ≥14 1.00 Referent 1.00 Referent ~ ~ 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at menarche, 12-13 0.98 (0.83-1.15) 1.01 (0.86-1.19) inconclusive 1.49 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at menarche, <12 0.96 (0.69-1.33) 1.02 (0.73-1.41) inconclusive 1.49 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Age at menarche 

Per 2-year increase 

0.85 (0.74-0.98) 0.83 (0.72-0.96) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Age at menarche 

Per 2-year increase 

0.92 (0.80,1.05) 0.93 (0.81,1.06) negative 11 % 

2018 Rice 573/2018 NHS/NHSII, premenopausal 
at mammogram 

Age at menarche 

Per 2-year increase 

0.86 (0.75,1.00) 0.84 (0.73,0.98) inconclusive NM 

2018 Rice 1197/3002 NHS/NHSII, postmenopausal 
at mammogram 

Age at menarche 

Per 2-year increase 

0.96 (0.87,1.07) 0.95 (0.85,1.06) inconclusive NM 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Nulliparous vs parous 1.15 (0.86,1.52) 1.07 (0.80,1.42) positive 52 % 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Nulliparous vs parous 1.22 (0.88,1.69) 1.12 (0.80,1.56) positive 43 % 

2018 Rice 1095/3180 NHS/NHSII, premenopausal 
at mammogram 

Nulliparous vs parous 1.14 (0.96,1.35) 1.08 (0.91,1.29) positive 40 % 

2018 Rice 2158/5575 NHS/NHSII, postmenopausal 
at mammogram 

Nulliparous vs parous 1.23 (1.07,1.41) 1.13 (0.98,1.29) positive 43 %** 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Parity (among parous) 

Per one-child increase 

1.00 (0.90,1.12) 1.03 (0.92,1.16) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Parity (among parous) 

Per one-child increase 

1.02 (0.95,1.09) 1.03 (0.96,1.11) inconclusive NM 

2018 Rice 499/1697 NHS/NHSII, premenopausal 
at mammogram 

Parity (among parous) 

Per one-child increase 

0.98 (0.87,1.09) 1.00 (0.89,1.12) inconclusive NM 

2018 Rice 1028/2713 NHS/NHSII, postmenopausal 
at mammogram 

Parity (among parous) 

Per one-child increase 

0.99 (0.93,1.06) 1.01 (0.95,1.08) inconclusive NM 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Age at first birth (among 

parous) 

Per 5-year increase 

1.18 (1.03,1.36) 1.18 (1.02,1.36) positive 3% 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Age at first birth (among 

parous) 

1.23 (1.07,1.41) 1.19 (1.04,1.38) positive 13%* 
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(cont.) Table 2.5. Changes in the OR/RRs of reproductive factors by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

Per 5-year increase 

2018 Rice 802/2480 NHS/NHSII, premenopausal 
at mammogram 

Age at first birth ≥ 30 versus 

< 30 

1.32 (1.09,1.60) 1.30 (1.08,1.58) positive 5% 

2018 Rice 1727/4619 NHS/NHSII, postmenopausal 
at mammogram 

Age at first birth ≥ 30 versus 

< 30 

1.26 (1.08,1.47) 1.21 (1.03,1.42) positive 16% 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Breastfeeding (among 

parous) 

Ever vs never 

0.99 (0.76,1.28) 1.00 (0.77,1.30) negative 89% 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Breastfeeding (among 

parous) 

Ever vs never 

0.96 (0.79,1.16) 0.97 (0.80,1.17) negative 22% 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Breastfeeding (among 

parous who ever breastfed) 

Per 12-month increase 

0.95 (0.81,1.11) 0.93 (0.80,1.08) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Breastfeeding (among 

parous who ever breastfed) 

Per 12-month increase 

1.25 (1.06,1.46) 1.25 (1.06,1.47) inconclusive NM 

2016 Rice 559/1727 NHS/NHSII, premenopausal 
at mammogram 

Birth index 

Per 102-unit increase 

0.66 (0.43,1.01) 0.77 (0.50,1.19) negative 38% 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Birth index 

Per 102-unit increase 

0.96 (0.73,1.25) 1.04 (0.79,1.36) inconclusive NM 

2016 Rice 731/1695 NHS/NHSII, postmenopausal 
at mammogram 

Age at menopause 

Per 4-year increase 

1.12 (1.05,1.20) 1.12 (1.04,1.19) positive 5% 

2018 Rice 1948/4646 NHS/NHSII, postmenopausal 
at mammogram 

Age at menopause 

Per category increase 

1.07 (1.02,1.13) 1.07 (1.02,1.13) positive 1% 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at 1st birth, # of 1st 

degree relatives: <20 yrs, 

n=0 

1.00 Referent 1.00 Referent ~ ~ 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at 1st birth, # of 1st 

degree relatives: 20-24 yrs, 

n=0  

1.27 (1.09-1.48) 1.22 (1.05-1.42) positive 0.17 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at 1st birth, # of 1st 

degree relatives: 25-29 yrs, 

n=0 

1.62 (1.20-2.18) 1.50 (1.10-2.03) positive 0.16 

2005 Tice 81,777 All subjects, diverse 

racial/ethnic groups 

Age at 1st birth, # of 1st 

degree relatives: 30+ yrs, 

n=0 

2.05 (1.31-3.22) 1.83 (1.16-2.89) positive 0.16 
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(cont.) Table 2.5. Changes in the OR/RRs of reproductive factors by adjustment for mammographic density 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE 

Index 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

Age at first birth (parous), 

<26 years 

1.00 Referent 1.00 Referent ~ ~ 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

Age at first birth (parous), ≥ 

26 

1.08 (0.93-1.26) 1.05 NA positive 0.37 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

No. of children, 0 1.00 Referent 1.00 Referent ~ ~ 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

No. of children, 1–2 0.76 (0.62–

0.93) 

0.79 NA negative 0.14 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

No. of children, ≥ 3 0.65 (0.53–

0.80) 

0.70 NA negative 0.17 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

No. of children, age at first 

birth, Nulliparous 

1.00 Referent 1.00 Referent ~ ~ 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

1–2 children, AFB < 26 yr 0.74 (0.59-0.93) 0.78 NA negative 0.17 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

1–2 children, AFB ≥ 26 yr 0.77 (0.62-0.97) 0.80 NA negative 0.15 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

≥ 3 children, AFB < 26 yr 0.66 (0.53-0.81) 0.71 NA negative 0.18 

2012  Woolcott 1699/2422 All subjects, 74% 

postmenopausal, pooled 

Ethnic groups 

≥ 3 children, AFB ≥ 26 yr 0.64 (0.48-0.85) 0.69 NA negative 0.17 

2014 Fejerman 304/809 All subjects (Mexican) Parity 0.87 (0.81-0.93) 0.88 (0.82-0.95) negative 0.12 

2014 Fejerman 304/809 All subjects (Mexican) Breast feeding 0.76 (0.53-1.12) 0.77 (0.53-1.13) negative 0.04 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated; NA: not 

available; NM: not mediated 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the paper, denoted as a percentage.  

* p < 0.05, ** p < 0.01  
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Table 2.6. Changes in the OR/RRs of exogenous hormone use and circulating sex hormone or antioxidants by adjustment for 

mammographic density 
 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE Index 

2006 Boyld 107/112 NBSS (n = 416) Hormone use, Never 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 52/59 NBSS (n = 416) Hormone use, Past 0.99 (0.61-1.61) 1.04 (0.64-1.69) inconclusive 4.90 

2006 Boyld 45/41 NBSS (n = 416) Hormone use, Current 1.13 (0.68-1.88) 1.12 (0.66-1.87) positive 0.07 

2006 Boyld 190/215 OBSP (n = 708) Hormone use, Never 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 57/44 OBSP (n = 708) Hormone use, Past 1.48 (0.95-2.32) 1.47 (0.93-2.32) positive 0.02 

2006 Boyld 103/99 OBSP (n = 708) Hormone use, Current 1.20 (0.85-1.71) 1.12 (0.78-1.60) positive 0.38 

2006 Boyld 171/191 SMPBC (n = 617) Hormone use, Never 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 65/52 SMPBC (n = 617) Hormone use, Past 1.43 (0.93-2.22) 1.39 (0.90-2.16) positive 0.08 

2006 Boyld 75/63 SMPBC (n = 617) Hormone use, Current 1.50 (0.99-2.27) 1.44 (0.95-2.18) positive 0.10 

2006 Boyld 468/518 Combined (n = 1,741) Hormone use, Never 1.00 Referent 1.00 Referent ~ ~ 

2006 Boyld 174/155 Combined (n = 1,741) Hormone use, Past 1.27 (0.98-1.64) 1.27 (0.98-1.65) inconclusive 0.00 

2006 Boyld 223/203 Combined (n = 1,741) Hormone use, Current 1.26 (1.00-1.59) 1.19 (0.94-1.51) positive 0.25 

2016 Rice 731/1695 NHS/NHSII,  

postmenopausal at mammogram 

Hormone replacement therapy 

use 
Past vs never 

1.18 (0.91,1.53) 1.12 (0.86,1.46) positive 31% 

2016 Rice 731/1695 NHS/NHSII,  

postmenopausal at mammogram 

Hormone replacement therapy 

use 
Current vs never 

1.71 (1.37,2.13) 1.52 (1.22,1.90) positive 22%** 

2018 Rice 1993/5083 NHS/NHSII,  

postmenopausal at mammogram 

Hormone replacement therapy 

use 
Current vs never/former 

1.39 (1.24,1.55) 1.23 (1.10,1.37) positive 37% ** 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Hormone use, Never 1.00 Referent 1.00 Referent ~ ~ 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Hormone use, Ever 1.56 (1.19-2.04) 1.49 (1.13-1.95) positive 11% (4–30%) 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Hormone use, Current 1.87 (1.40-2.48) 1.76 (1.32-2.34) positive 10% (4-22%)* 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Hormone use, Never 1.00 Referent 1.00 Referent ~ ~ 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Estrogen 0.99 (0.59-1.65) 0.94 (0.56-1.57) inconclusive -5.16 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Sequential estrogen/progestin 2.09 (1.48-2.97) 1.94 (1.37-2.69) positive 0.10 

2018 Azam 299/4272 DCH (n = 4501), postmenopausal Continuous estrogen/progestin 3.39 (2.20-5.22) 3.21 (2.08-4.94) positive 0.04 
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(cont.) 
Table 2.6. Changes in the OR/RRs of exogenous hormone use and circulating sex hormone or antioxidants by adjustment for 

mammographic density 
 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE Index 

2018 Rice 1447/4077 NHS/NHSII,  

postmenopausal at mammogram 

Hormone replacement therapy 

use 

Current E vs never/former 

1.16 (1.00,1.34) 1.05 (0.90,1.22) positive 69% 

2018 Rice 1628/4076 NHS/NHSII,  

postmenopausal at mammogram 

Hormone replacement therapy 

use 

Current E+P vs never/former 

1.66 (1.45,1.90) 1.46 (1.27,1.67) positive 26%** 

2014 Schoemaker 265/343 postmenopausal Oestradiol Q1 1.00 Referent 1.00 Referent ~ ~ 

2014 Schoemaker 265/343 postmenopausal Oestradiol Q2 1.18 (0.67-2.09) 1.21 (0.68-2.16) inconclusive -0.15 

2014 Schoemaker 265/343 postmenopausal Oestradiol Q3 1.51 (0.83-2.75) 1.49 (0.81-2.75) positive 0.03 

2014 Schoemaker 265/343 postmenopausal Oestradiol Q4 2.07 (1.11-3.84) 2.03 (1.08-3.81) positive 0.03 

2014 Schoemaker 265/343 postmenopausal Free oestradiol Q1 1.00 Referent 1.00 Referent ~ ~ 

2014 Schoemaker 265/343 postmenopausal Free oestradiol Q2 1.32 (0.74-2.36) 1.46 (0.81-2.63) inconclusive -0.36 

2014 Schoemaker 265/343 postmenopausal Free oestradiol Q3 1.72 (0.95-3.13) 1.78 (0.97-3.27) inconclusive -0.06 

2014 Schoemaker 265/343 postmenopausal Free oestradiol Q4 2.42 (1.27-4.61) 2.48 (1.29-4.78) inconclusive -0.03 

2014 Schoemaker 265/343 postmenopausal Testosterone Q1 1.00 Referent 1.00 Referent ~ ~ 

2014 Schoemaker 265/343 postmenopausal Testosterone Q2 1.34 (0.75-2.37) 1.21 (0.67-2.18) positive 0.35 

2014 Schoemaker 265/343 postmenopausal Testosterone Q3 1.42 (0.79-2.52) 1.36 (0.76-2.44) positive 0.12 

2014 Schoemaker 265/343 postmenopausal Testosterone Q4 2.11 (1.20-3.70) 2.01 (1.14-3.54) positive 0.07 

2014 Schoemaker 265/343 postmenopausal Free testosterone Q1 1.00 Referent 1.00 Referent ~ ~ 

2014 Schoemaker 265/343 postmenopausal Free testosterone Q2 1.47 (0.82-2.64) 1.53 (0.85-2.76) inconclusive -0.10 

2014 Schoemaker 265/343 postmenopausal Free testosterone Q3 1.82 (1.01-3.28) 1.87 (1.03-3.40) inconclusive -0.05 

2014 Schoemaker 265/343 postmenopausal Free testosterone Q4 2.07 (1.15-3.74) 2.15 (1.18-3.91) inconclusive -0.05 

2014 Schoemaker 265/343 postmenopausal SHBG Q1 1.00 Referent 1.00 Referent ~ ~ 

2014 Schoemaker 265/343 postmenopausal SHBG Q2 1.10 (0.63-1.90) 1.11 (0.63-1.95) inconclusive -0.09 

2014 Schoemaker 265/343 postmenopausal SHBG Q3 0.86 (0.48-1.56) 0.74 (0.40-1.37) inconclusive -1.00 

2014 Schoemaker 265/343 postmenopausal SHBG Q4 0.64 (0.35-1.20) 0.58 (0.31-1.10) inconclusive -0.22 

2007 Tamimi 253/520 postmenopausal Plasma Estradiol Q1 1.00 Referent 1.00 Referent ~ ~ 
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(cont.) 
Table 2.6. Changes in the OR/RRs of exogenous hormone use and circulating sex hormone or antioxidants by adjustment for 

mammographic density 
 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE Index 

2007 Tamimi 253/520 postmenopausal Plasma Estradiol Q2 1.20 (0.80-2.00) 1.20 (0.80-2.00) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Plasma Estradiol Q3 1.20 (0.80-2.00) 1.30 (0.80-2.10) inconclusive -0.44 

2007 Tamimi 253/520 postmenopausal Plasma Estradiol Q4 adj. for 
Current BMI 

2.40 (1.40-3.90) 2.40 (1.40-4.00) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Plasma Estradiol Q4 adj. for BMI 

at age 18 

2.40 (1.50-3.80) 2.90 (1.80-4.60) inconclusive -0.22 

2007 Tamimi 253/520 postmenopausal Free Estradiol Q1 1.00 Referent 1.00 Referent ~ ~ 

2007 Tamimi 253/520 postmenopausal Free Estradiol Q2 1.10 (0.60-1.70) 1.10 (0.70-1.90) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Free Estradiol Q3 1.30 (0.70-2.10) 1.40 (0.80-2.40) inconclusive -0.28 

2007 Tamimi 253/520 postmenopausal Free Estradiol Q4 2.20 (1.30-3.70) 2.30 (1.30-4.00) inconclusive -0.06 

2007 Tamimi 253/520 postmenopausal Testosterone Q1 1.00 Referent 1.00 Referent ~ ~ 

2007 Tamimi 253/520 postmenopausal Testosterone Q2 0.80 (0.50-1.30) 0.80 (0.50-1.40) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Testosterone Q3 1.40 (0.90-2.20) 1.40 (0.90-2.30) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Testosterone Q4 1.80 (1.20-2.90) 2.00 (1.20-3.10) inconclusive -0.18 

2007 Tamimi 253/520 postmenopausal Free testosterone Q1 1.00 Referent 1.00 Referent ~ ~ 

2007 Tamimi 253/520 postmenopausal Free testosterone Q2 1.50 (0.90-2.50) 1.50 (0.90-2.50) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Free testosterone Q3 1.70 (1.00-2.80) 1.70 (1.00-2.80) inconclusive 0.00 

2007 Tamimi 253/520 postmenopausal Free testosterone Q4 2.20 (1.30-3.60) 2.20 (1.30-3.80) inconclusive 0.00 

2009 Tamimi 604/626 postmenopausal α-Carotene Quin1 1.00 Referent 1.00 Referent ~ ~ 

2009 Tamimi 604/626 postmenopausal α-Carotene Quin2 1.10 (0.80-1.60) 1.10 (0.70-1.60) inconclusive 0.00 

2009 Tamimi 604/626 postmenopausal α-Carotene Quin3 1.10 (0.80-1.60) 1.00 (0.70-1.50) positive 1.00 

2009 Tamimi 604/626 postmenopausal α-Carotene Quin4 0.80 (0.60-1.20) 0.70 (0.50-1.10) inconclusive -0.60 

2009 Tamimi 604/626 postmenopausal α-Carotene Quin5 0.70 (0.40-1.00) 0.60 (0.40-0.90) inconclusive -0.43 

2009 Tamimi 604/626 postmenopausal β-Carotene Quin1 1.00 Referent 1.00 Referent ~ ~ 

2009 Tamimi 604/626 postmenopausal β-Carotene Quin2 1.30 (0.90-1.80) 1.30 (0.90-1.80) inconclusive 0.00 

2009 Tamimi 604/626 postmenopausal β-Carotene Quin3 1.40 (1.00-2.10) 1.30 (0.90-2.00) positive 0.22 
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(cont.) 

Table 2.6. Changes in the OR/RRs of exogenous hormone use and circulating sex hormone or antioxidants by adjustment for 

mammographic density 
 

Year First 

Author 

No. 

subjects 

Subjects Exposure Unadj. 

OR/RR 

95% CI Adj. 

OR/RR 

95% CI Sign of NIE PE Index 

2009 Tamimi 604/626 postmenopausal β-Carotene Quin4 0.90 (0.60-1.40) 0.90 (0.60-1.30) inconclusive 0.00 

2009 Tamimi 604/626 postmenopausal β-Carotene Quin5 0.60 (0.40-1.00) 0.60 (0.40-0.90) inconclusive 0.00 

2009 Tamimi 604/626 postmenopausal Total carotenoids Quin1 1.00 Referent 1.00 Referent ~ ~ 

2009 Tamimi 604/626 postmenopausal Total carotenoids Quin2 1.10 (0.80-1.50) 1.00 (0.70-1.50) positive 1.00 

2009 Tamimi 604/626 postmenopausal Total carotenoids Quin3 1.20 (0.80-1.70) 1.10 (0.70-1.60) positive 0.48 

2009 Tamimi 604/626 postmenopausal Total carotenoids Quin4 0.80 (0.50-1.10) 0.70 (0.50-1.00) inconclusive -0.60 

2009 Tamimi 604/626 postmenopausal Total carotenoids Quin5 0.70 (0.50-1.00) 0.60 (0.40-0.90) inconclusive -0.43 

Unadj.: Unadjusted; Adj.: adjusted; NIE (natural indirect effect); PE: proportion explained; PM: proportion mediated; NA: not 

available; CMSP: Copenhagen mammography screening program; Q1: the first quartile; Quin1: the first quintile 

PE was estimated using the following formula: PE = [β(unadjusted)-β(adjusted)]/β(unadjusted) 

PM was reported in the paper, denoted as a percentage.  

* p < 0.05, ** p < 0.01 

 

 



48 

 

REFERENCES 

 
1. Boyd, N.F., et al., Mammographic breast density as an intermediate phenotype for breast cancer. 

The Lancet Oncology, 2005. 6(10): p. 798-808. 
2. Assi, V., et al., Clinical and epidemiological issues in mammographic density. Nature Reviews 

Clinical Oncology, 2011. 9(1): p. 33-40. 
3. McCormack, V.A. and I. dos Santos Silva, Breast density and parenchymal patterns as markers of 

breast cancer risk: A meta-analysis. Cancer Epidemiology, Biomarkers & Prevention: A publication 
of the American Association for Cancer Research, cosponsored by the American Society of 
Preventive Oncology, 2006. 15(6): p. 1159-1169. 

4. van Gils, C.H., et al., Changes in mammographic breast density and concomitant changes in breast 
cancer risk. European Journal of Cancer Prevention: The official journal of the European Cancer 
Prevention Organisation (ECP), 1999. 8(6): p. 509-515. 

5. Baron, R.M. and D.A. Kenny, The moderator-mediator variable distinction in social psychological 
Research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social 
Psychology, 1986. 51(6): p. 1173-1182. 

6. Pearman, L., et al., The effects of raloxifene on mammographic breast density: A review of Clinical 
Trials. Menopause (New York, N.Y.), 2010. 17(3): p. 654-659. 

7. Maskarinec, G., et al., A longitudinal investigation of mammographic density: The multiethnic 
cohort. Cancer Epidemiology, Biomarkers & prevention: A publication of the American Association 
for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2006. 15(4): 
p. 732-739. 

8. Richiardi, L., R. Bellocco, and D. Zugna, Mediation analysis in epidemiology: Methods, 
interpretation and bias. International Journal of Epidemiology, 2013. 42(5): p. 1511-1519. 

9. Robins, J.M. and S. Greenland, Identifiability and exchangeability for direct and indirect effects. 
Epidemiology (Cambridge, Mass.), 1992. 3(2): p. 143-155. 

10. Valeri, L. and T.J. Vanderweele, Mediation analysis allowing for exposure-mediator interactions 
and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. 
Psychological Methods, 2013. 18(2): p. 137-150. 

11. VanderWeele, T.J., Invited commentary: Structural equation models and epidemiologic analysis. 
American Journal of Epidemiology, 2012. 176(7): p. 608-612. 

12. VanderWeele, T., Explanation in causal inference: Methods for mediation and interaction. 2015: 
Oxford University Press. 

13. Imai, K., L. Keele, and D. Tingley, A general approach to causal mediation analysis. Psychological 
Methods, 2010. 15(4): p. 309-334. 

14. Imai, K., et al., Causal mediation analysis using R, in Advances in social science research using R. 
2010, Springer. p. 129-154. 

15. Pearl, J. Direct and indirect effects. in Proceedings of the seventeenth conference on uncertainty 
in artificial intelligence. 2001. Morgan Kaufmann Publishers Inc. 

16. VanderWeele, T. and S. Vansteelandt, Conceptual issues concerning mediation, interventions and 
composition. Statistics and its Interface, 2009. 2: p. 457-468. 

17. Vanderweele, T.J. and S. Vansteelandt, Odds ratios for mediation analysis for a dichotomous 
outcome. American Journal of Epidemiology, 2010. 172(12): p. 1339-1348. 

18. VanderWeele, T.J., H.O. Adami, and R.M. Tamimi, Mammographic density as a mediator for breast 
cancer risk: Analytic approaches. Breast Cancer Research: BCR, 2012. 14(4): p. 317. 

19. Jiang, Z. and T.J. VanderWeele, When Is the Difference Method Conservative for Assessing 
Mediation? American Journal of Epidemiology, 2015. 182(2): p. 105-108. 



49 

 

20. Freedman, L.S., B.I. Graubard, and A. Schatzkin, Statistical validation of intermediate endpoints 
for chronic diseases. Statistics in Medicine, 1992. 11(2): p. 167-178. 

21. Buyse, M. and G. Molenberghs, Criteria for the validation of surrogate endpoints in randomized 
experiments. Biometrics, 1998. 54(3): p. 1014-1029. 

22. Martin, L.J., et al., Family history, mammographic density, and risk of breast cancer. Cancer 
Epidemiol Biomarkers Prev, 2010. 19(2): p. 456-63. 

23. Fejerman, L., et al., Genome-wide association study of breast cancer in Latinas identifies novel 
protective variants on 6q25. Nat Commun, 2014. 5: p. 5260. 

24. Woolcott, C.G., et al., Mammographic density, parity and age at first birth, and risk of breast 
cancer:An analysis of four case-control studies. Breast Cancer Res Treat, 2012. 132(3): p. 1163-71. 

25. Rice, M.S., et al., Mammographic density and breast cancer risk: A mediation analysis. Breast 
Cancer Res, 2016. 18(1): p. 94. 

26. Azam, S., et al., Hormone replacement therapy, mammographic density, and breast cancer risk: A 
cohort study. Cancer Causes Control, 2018. 29(6): p. 495-505. 

27. Rice, M.S., et al., Does mammographic density mediate risk factor associations with breast cancer? 
An analysis by tumor characteristics. Breast Cancer Res Treat, 2018. 170(1): p. 129-141. 

28. Tice, J.A., et al., Mammographic breast density and the Gail model for breast cancer risk prediction 
in a screening population. Breast Cancer Res Treat, 2005. 94(2): p. 115-22. 

29. Lindstrom, S., et al., Common variants in ZNF365 are associated with both mammographic density 
and breast cancer risk. Nat Genet, 2011. 43(3): p. 185-7. 

30. Lindstrom, S., et al., Common variants in ZNF365 are associated with both mammographic density 
and breast cancer risk. Nature Genetics, 2011. 43(3): p. 185-187. 

31. Fejerman, L., et al., Genome-wide association study of breast cancer in Latinas identifies novel 
protective variants on 6q25. Nature Communications, 2014. 5: p. 5260. 

32. Wei, J., et al., Association of computerized mammographic parenchymal pattern measure with 
breast cancer risk: A pilot case-control study. Radiology, 2011. 260(1): p. 42-49. 

33. Nielsen, M., et al., Mammographic texture resemblance generalizes as an independent risk factor 
for breast cancer. Breast Cancer Res, 2014. 16(2): p. R37. 

34. Boyd, N.F., et al., Evidence that breast tissue stiffness is associated with risk of breast cancer. PloS 
One, 2014. 9(7): p. e100937. 

35. Byrne, C., et al., Effects of mammographic density and benign breast disease on breast cancer risk 
(United States). Cancer Causes & Control: CCC, 2001. 12(2): p. 103-110. 

36. Li, J., et al., Effects of childhood body size on breast cancer tumour characteristics. Breast Cancer 
Res, 2010. 12(2): p. R23. 

37. Harris, H.R., et al., Body size across the life course, mammographic density, and risk of breast 
cancer. Am J Epidemiol, 2011. 174(8): p. 909-18. 

38. Boyd, N.F., et al., Mammographic density as a surrogate marker for the effects of hormone therapy 
on risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 2006. 15(5): p. 961-6. 

39. Tamimi, R.M., et al., Endogenous hormone levels, mammographic density, and subsequent risk of 
breast cancer in postmenopausal women. Journal of the National Cancer Institute, 2007. 99(15): 
p. 1178-1187. 

40. Schoemaker, M.J., et al., Combined effects of endogenous sex hormone levels and mammographic 
density on postmenopausal breast cancer risk: Results from the Breakthrough Generations Study. 
British Journal of Cancer, 2014. 110(7): p. 1898-1907. 

41. Tamimi, R.M., G.A. Colditz, and S.E. Hankinson, Circulating carotenoids, mammographic density, 
and subsequent risk of breast cancer. Cancer Res, 2009. 69(24): p. 9323-9. 

42. Boyd, N.F., et al., Heritability of mammographic density, a risk factor for breast cancer. The New 
England Journal of Medicine, 2002. 347(12): p. 886-894. 



50 

 

43. Martin, L.J., et al., Family history, mammographic density, and risk of breast cancer. Cancer 
Epidemiology, Biomarkers & Prevention: A publication of the American Association for Cancer 
Research, cosponsored by the American Society of Preventive Oncology, 2010. 19(2): p. 456-463. 

44. Ziv, E., et al., Mammographic breast density and family history of breast cancer. Journal of the 
National Cancer Institute, 2003. 95(7): p. 556-558. 

45. Crest, A.B., et al., Varying levels of family history of breast cancer in relation to mammographic 
breast density (United States). Cancer Causes & Control: CCC, 2006. 17(6): p. 843-850. 

46. Caswell, J.L., et al., High mammographic density in women of Ashkenazi Jewish descent. Breast 
Cancer Research: BCR, 2013. 15(3): p. R40. 

47. Douglas, J.A., et al., Mammographic breast density--evidence for genetic correlations with 
established breast cancer risk factors. Cancer Epidemiology, Biomarkers & Prevention: A 
publication of the American Association for Cancer Research, cosponsored by the American 
Society of Preventive Oncology, 2008. 17(12): p. 3509-3516. 

48. Li, T., et al., The association of measured breast tissue characteristics with mammographic density 
and other risk factors for breast cancer. Cancer Epidemiology, Biomarkers & Prevention: A 
publication of the American Association for Cancer Research, cosponsored by the American 
Society of Preventive Oncology, 2005. 14(2): p. 343-349. 

49. Ghosh, K., et al., Tissue composition of mammographically dense and non-dense breast tissue. 
Breast Cancer Research and Treatment, 2012. 131(1): p. 267-275. 

50. Boyd, N.F., et al., Breast tissue composition and susceptibility to breast cancer. Journal of the 
National Cancer Institute, 2010. 102(16): p. 1224-1237. 

51. Huo, C.W., et al., High mammographic density is associated with an increase in stromal collagen 
and immune cells within the mammary epithelium. Breast Cancer Research: BCR, 2015. 17(1): p. 
79. 

52. Huo, Z., et al., Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene 
mutation carriers. Radiology, 2002. 225(2): p. 519-526. 

53. Li, H., et al., Computerized texture analysis of mammographic parenchymal patterns of digitized 
mammograms. Academic Radiology, 2005. 12(7): p. 863-873. 

54. Manduca, A., et al., Texture features from mammographic images and risk of breast cancer. 
Cancer Epidemiology, Biomarkers & Prevention: A publication of the American Association for 
Cancer Research, cosponsored by the American Society of Preventive Oncology, 2009. 18(3): p. 
837-845. 

55. Cuzick, J., et al., Tamoxifen and breast density in women at increased risk of breast cancer. Journal 
of the National Cancer Institute, 2004. 96(8): p. 621-628. 

56. Heng, D., et al., Risk factors for breast cancer associated with mammographic features in 
Singaporean chinese women. Cancer Epidemiology, Biomarkers & Prevention: A publication of the 
American Association for Cancer Research, cosponsored by the American Society of Preventive 
Oncology, 2004. 13(11 Pt 1): p. 1751-1758. 

57. Boyd, N.F., et al., Relationship between mammographic and histological risk factors for breast 
cancer. Journal of the National Cancer Institute, 1992. 84(15): p. 1170-1179. 

58. Boyd, N.F., et al., Mammographic densities and the prevalence and incidence of histological types 
of benign breast disease. Reference Pathologists of the Canadian National Breast Screening Study. 
European Journal of Cancer Prevention: The official journal of the European Cancer Prevention 
Organisation (ECP), 2000. 9(1): p. 15-24. 

59. Friedenreich, C., et al., Risk Jactors for benign proliferative breast disease. International Journal of 
Epidemiology, 2000. 29(4): p. 637-644. 

60. He, W., et al., A Review on Automatic Mammographic Density and Parenchymal Segmentation. 
International Journal of Breast Cancer, 2015. p. 276217. 



51 

 

61. Daye, D., et al., Mammographic parenchymal patterns as an imaging marker of endogenous 
hormonal exposure: A preliminary study in a high-risk population. Academic Radiology, 2013. 
20(5): p. 635-646. 

62. Kontos, D., et al., Parenchymal texture analysis in digital breast tomosynthesis for breast cancer 
risk estimation: A preliminary study. Academic Radiology, 2009. 16(3): p. 283-298. 

63. Gierach, G.L., et al., Relationships between computer-extracted mammographic texture pattern 
features and BRCA1/2 mutation status: A cross-sectional study. Breast Cancer Research: BCR, 
2014. 16(4): p. 424-1744229618121391. Epub 2014 Aug 23. 

64. Acerbi, I., et al., P2-10-01: Extracellular Matrix Stiffness and Mammographic Density in the Human 
Breast. Cancer Research, 2011. 71(24 Supplement): p. P2-10-01. 

65. Keely, P.J., Mechanisms by which the extracellular matrix and integrin signaling act to regulate 
the switch between tumor suppression and tumor promotion. Journal of Mammary Gland Biology 
and Neoplasia, 2011. 16(3): p. 205-219. 

66. Tice, J.A., et al., Benign breast disease, mammographic breast density, and the risk of breast cancer. 
Journal of the National Cancer Institute, 2013. 105(14): p. 1043-1049. 

67. Cleary, M.P. and N.J. Maihle, The role of body mass index in the relative risk of developing 
premenopausal versus postmenopausal breast cancer. Proceedings of the Society for 
Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, 
N.Y.), 1997. 216(1): p. 28-43. 

68. Cold, S., et al., A woman's build and the risk of breast cancer. European Journal of Cancer (Oxford, 
England: 1990), 1998. 34(8): p. 1163-1174. 

69. Sonnenschein, E., et al., Body fat distribution and obesity in pre- and postmenopausal breast 
cancer. International Journal of Epidemiology, 1999. 28(6): p. 1026-1031. 

70. van den Brandt, P.A., et al., Pooled analysis of prospective cohort studies on height, weight, and 
breast cancer risk. American Journal of Epidemiology, 2000. 152(6): p. 514-527. 

71. Nelson, H.D., et al., Risk factors for breast cancer for women aged 40 to 49 years: A systematic 
review and meta-analysis. Annals of Internal Medicine, 2012. 156(9): p. 635-648. 

72. Keum, N., et al., Adult weight gain and adiposity-related cancers: A dose-response meta-analysis 
of prospective observational studies. Journal of the National Cancer Institute, 2015. 107(2): p. 
10.1093/jnci/djv088. Print 2015 Feb. 

73. Kerlikowske, K., et al., Obesity, mammography use and accuracy, and advanced breast cancer risk. 
Journal of the National Cancer Institute, 2008. 100(23): p. 1724-1733. 

74. Boyd, N.F., et al., Body size, mammographic density, and breast cancer risk. Cancer Epidemiology, 
Biomarkers & Prevention: A publication of the American Association for Cancer Research, 
cosponsored by the American Society of Preventive Oncology, 2006. 15(11): p. 2086-2092. 

75. Haars, G., et al., Measurements of breast density: No ratio for a ratio. Cancer Epidemiology, 
Biomarkers & Prevention: A publication of the American Association for Cancer Research, 
cosponsored by the American Society of Preventive Oncology, 2005. 14(11 Pt 1): p. 2634-2640. 

76. Lokate, M., et al., Mammographic density and breast cancer risk: The role of the fat surrounding 
the fibroglandular tissue. Breast Cancer Research: BCR, 2011. 13(5): p. R103. 

77. MacKinnon, D.P., J.L. Krull, and C.M. Lockwood, Equivalence of the mediation, confounding and 
suppression effect. Prevention science: The official journal of the Society for Prevention Research, 
2000. 1(4): p. 173-181. 

78. Maccio, A. and C. Madeddu, Obesity, inflammation, and postmenopausal breast cancer: 
Therapeutic implications. The Scientific World Journal, 2011. 11: p. 2020-2036. 

79. Key, T.J., et al., Body mass index, serum sex hormones, and breast cancer risk in postmenopausal 
women. Journal of the National Cancer Institute, 2003. 95(16): p. 1218-1226. 



52 

 

80. Kaaks, R., et al., Postmenopausal serum androgens, oestrogens and breast cancer risk: the 
European prospective investigation into cancer and nutrition. Endocrine-related cancer, 2005. 
12(4): p. 1071-1082. 

81. Rinaldi, S., et al., Anthropometric measures, endogenous sex steroids and breast cancer risk in 
postmenopausal women: A study within the EPIC cohort. International Journal of Cancer. Journal 
international du cancer, 2006. 118(11): p. 2832-2839. 

82. Folkerd, E.J., et al., The relationship between factors affecting endogenous oestradiol levels in 
postmenopausal women and breast cancer. The Journal of Steroid Biochemistry and Molecular 
Biology, 2006. 102(1-5): p. 250-255. 

83. Yaghjyan, L. and G.A. Colditz, Estrogens in the breast tissue: A systematic review. Cancer Causes 
& Control: CCC, 2011. 22(4): p. 529-540. 

84. Nagata, C., et al., Relations of insulin resistance and serum concentrations of estradiol and sex 
hormone-binding globulin to potential breast cancer risk factors. Japanese Journal of Cancer 
Research: Gann, 2000. 91(9): p. 948-953. 

85. Endogenous, H., et al., Circulating sex hormones and breast cancer risk factors in postmenopausal 
women: Reanalysis of 13 studies. British Journal of Cancer, 2011. 105(5): p. 709-722. 

86. Stolzenberg-Solomon, R.Z., et al., Sex hormone changes during weight loss and maintenance in 
overweight and obese postmenopausal African-American and non-African-American women. 
Breast Cancer Research: BCR, 2012. 14(5): p. R141. 

87. Campbell, K.L., et al., Reduced-calorie dietary weight loss, exercise, and sex hormones in 
postmenopausal women: Randomized controlled trial. Journal of Clinical Oncology: Official journal 
of the American Society of Clinical Oncology, 2012. 30(19): p. 2314-2326. 

88. Ritte, R., et al., Adiposity, hormone replacement therapy use and breast cancer risk by age and 
hormone receptor status: A large prospective cohort study. Breast Cancer Research: BCR, 2012. 
14(3): p. R76. 

89. Munsell, M.F., et al., Body mass index and breast cancer risk according to postmenopausal 
estrogen-progestin use and hormone receptor status. Epidemiologic Reviews, 2014. 36: p. 114-
136. 

90. Cleary, M.P. and M.E. Grossmann, Minireview: Obesity and breast cancer: The estrogen 
connection. Endocrinology, 2009. 150(6): p. 2537-2542. 

91. Kelemen, L.E., et al., Age-specific trends in mammographic density: the Minnesota Breast Cancer 
Family Study. American Journal of Epidemiology, 2008. 167(9): p. 1027-1036. 

92. McCormack, V.A., et al., Changes and tracking of mammographic density in relation to Pike's 
model of breast tissue aging: A UK longitudinal study. International Journal of Cancer. Journal 
international du cancer, 2010. 127(2): p. 452-461. 

93. Vachon, C.M., et al., Association of mammographically defined percent breast density with 
epidemiologic risk factors for breast cancer (United States). Cancer Causes & Control: CCC, 2000. 
11(7): p. 653-662. 

94. Alipour, S.H.L.B.L.S.A.A.A., Association of Reproductive and Menstrual Characteristics with 
Mammographic Density. Archives of Breast Cancer, 2014. 1(1). 

95. Titus-Ernstoff, L., et al., Breast cancer risk factors in relation to breast density (United States). 
Cancer Causes & Control: CCC, 2006. 17(10): p. 1281-1290. 

96. Mockus, M., et al., First pregnancy characteristics, postmenopausal breast density, and salivary 
sex hormone levels in a population at high risk for breast cancer. BBA Clinical, 2015. 3: p. 189-195. 

97. Butler, L.M., et al., Menstrual and reproductive factors in relation to mammographic density: The 
Study of Women's Health Across the Nation (SWAN). Breast Cancer Res Treat, 2008. 112(1): p. 
165-74. 



53 

 

98. Sung, J., et al., Reproductive factors associated with mammographic density: A Korean co-twin 
control study. Breast Cancer Research and Treatment, 2011. 128(2): p. 567-572. 

99. Prebil, L.A., et al., First pregnancy events and future breast density: Modification by age at first 
pregnancy and specific VEGF and IGF1R gene variants. Cancer Causes & Control: CCC, 2014. 25(7): 
p. 859-868. 

100. Lope, V., et al., Obstetric history and mammographic density: A population-based cross-sectional 
study in Spain (DDM-Spain). Breast Cancer Research and Treatment, 2012. 132(3): p. 1137-1146. 

101. van Gils, C.H., et al., Parity and mammographic breast density in relation to breast cancer risk: 
Indication of interaction. European Journal of Cancer Prevention: The official journal of the 
European Cancer Prevention Organisation (ECP), 2000. 9(2): p. 105-111. 

102. Ziv, E., et al., Mammographic density and estrogen receptor status of breast cancer. Cancer 
Epidemiol Biomarkers Prev, 2004. 13(12): p. 2090-5. 

103. Ma, H., et al., Is there a difference in the association between percent mammographic density and 
subtypes of breast cancer? Luminal A and triple-negative breast cancer. Cancer Epidemiology, 
Biomarkers & Prevention: A publication of the American Association for Cancer Research, 
cosponsored by the American Society of Preventive Oncology, 2009. 18(2): p. 479-485. 

104. Ma, H., et al., Reproductive factors and breast cancer risk according to joint estrogen and 
progesterone receptor status: A meta-analysis of epidemiological studies. Breast Cancer Research: 
BCR, 2006. 8(4): p. R43. 

105. Yang, X.R., et al., Associations of breast cancer risk factors with tumor subtypes: A pooled analysis 
from the Breast Cancer Association Consortium studies. Journal of the National Cancer Institute, 
2011. 103(3): p. 250-263. 

106. Martin, L.J., S. Minkin, and N.F. Boyd, Hormone therapy, mammographic density, and breast 
cancer risk. Maturitas, 2009. 64(1): p. 20-26. 

107. Cuzick, J., et al., Tamoxifen-induced reduction in mammographic density and breast cancer risk 
reduction: A nested case-control study. J Natl Cancer Inst, 2011. 103(9): p. 744-52. 

108. Becker, S. and R. Kaaks, Exogenous and endogenous hormones, mammographic density and breast 
cancer risk: Can mammographic density be considered an intermediate marker of risk? Recent 
results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le 
cancer, 2009. 181: p. 135-157. 

109. Christodoulakos, G.E., et al., The effect of various regimens of hormone replacement therapy on 
mammographic breast density. Maturitas, 2003. 45(2): p. 109-118. 

110. Maskarinec, G., et al., Involution of breast tissue and mammographic density. Breast Cancer 
Research, 2016. 18(1): p. 128. 

111. Chatterton, R.T., Jr., et al., Comparison of hormone levels in nipple aspirate fluid of pre- and 
postmenopausal women: Effect of oral contraceptives and hormone replacement. The Journal of 
Clinical Endocrinology and Metabolism, 2005. 90(3): p. 1686-1691. 

112. Zeleniuch-Jacquotte, A., et al., Premenopausal serum androgens and breast cancer risk: A nested 
case-control study. Breast Cancer Research : BCR, 2012. 14(1): p. R32. 

113. Endogenous, H., et al., Sex hormones and risk of breast cancer in premenopausal women: A 
collaborative reanalysis of individual participant data from seven prospective studies. The Lancet 
Oncology, 2013. 14(10): p. 1009-1019. 

114. Fortner, R.T., et al., Premenopausal endogenous steroid hormones and breast cancer risk: Results 
from the Nurses' Health Study II. Breast Cancer Research: BCR, 2013. 15(2): p. R19. 

115. Kaaks, R., et al., Premenopausal serum sex hormone levels in relation to breast cancer risk, overall 
and by hormone receptor status - results from the EPIC cohort. International Journal of Cancer. 
Journal international du cancer, 2014. 134(8): p. 1947-1957. 



54 

 

116. Key, T., et al., Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis 
of nine prospective studies. Journal of the National Cancer Institute, 2002. 94(8): p. 606-616. 

117. Missmer, S.A., et al., Endogenous estrogen, androgen, and progesterone concentrations and 
breast cancer risk among postmenopausal women. Journal of the National Cancer Institute, 2004. 
96(24): p. 1856-1865. 

118. Sieri, S., et al., Sex hormone levels, breast cancer risk, and cancer receptor status in 
postmenopausal women: The ORDET cohort. Cancer Epidemiology, Biomarkers & Prevention: A 
publication of the American Association for Cancer Research, cosponsored by the American 
Society of Preventive Oncology, 2009. 18(1): p. 169-176. 

119. James, R.E., et al., Postmenopausal serum sex steroids and risk of hormone receptor-positive and 
-negative breast cancer: A nested case-control study. Cancer Prevention Research (Philadelphia, 
Pa.), 2011. 4(10): p. 1626-1635. 

120. Fortunati, N., et al., Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Molecular 
and Cellular Endocrinology, 2010. 316(1): p. 86-92. 

121. He, X.Y., et al., Sex hormone binding globulin and risk of breast cancer in postmenopausal women: 
a meta-analysis of prospective studies. Hormone and Metabolic Research, 2015. 47(7): p. 485-490. 

122. Liao, D.J. and R.B. Dickson, Roles of androgens in the development, growth, and carcinogenesis of 
the mammary gland. The Journal of Steroid Biochemistry and Molecular Biology, 2002. 80(2): p. 
175-189. 

123. Neilson, H.K., et al., Physical activity and postmenopausal breast cancer: Proposed biologic 
mechanisms and areas for future research. Cancer Epidemiology, Biomarkers & Prevention : A 
publication of the American Association for Cancer Research, cosponsored by the American 
Society of Preventive Oncology, 2009. 18(1): p. 11-27. 

124. Zeleniuch-Jacquotte, A., et al., Postmenopausal levels of oestrogen, androgen, and SHBG and 
breast cancer: Long-term results of a prospective study. British Journal of Cancer, 2004. 90(1): p. 
153-159. 

125. Baglietto, L., et al., Circulating steroid hormone levels and risk of breast cancer for postmenopausal 
women. Cancer Epidemiology, Biomarkers & Prevention: A publication of the American 
Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 
2010. 19(2): p. 492-502. 

126. Eliassen, A.H., et al., Endogenous steroid hormone concentrations and risk of breast cancer among 
premenopausal women. Journal of the National Cancer Institute, 2006. 98(19): p. 1406-1415. 

127. Walker, K., et al., Premenopausal mammographic density in relation to cyclic variations in 
endogenous sex hormone levels, prolactin, and insulin-like growth factors. Cancer Research, 2009. 
69(16): p. 6490-6499. 

128. Iversen, A., et al., Cyclic endogenous estrogen and progesterone vary by mammographic density 
phenotypes in premenopausal women. European Journal of Cancer Prevention: The official journal 
of the European Cancer Prevention Organisation (ECP), 2015. 

129. Jung, S., et al., Endogenous sex hormones and breast density in young women. Cancer 
Epidemiology, Biomarkers & Prevention: A publication of the American Association for Cancer 
Research, cosponsored by the American Society of Preventive Oncology, 2015. 24(2): p. 369-378. 

130. Yong, M., et al., Associations between endogenous sex hormone levels and mammographic and 
bone densities in premenopausal women. Cancer Causes & Control: CCC, 2009. 20(7): p. 1039-
1053. 

131. Noh, J.J., et al., Mammographic densities and circulating hormones: A cross-sectional study in 
premenopausal women. Breast (Edinburgh, Scotland), 2006. 15(1): p. 20-28. 

132. Boyd, N.F., et al., The association of breast mitogens with mammographic densities. British Journal 
of Cancer, 2002. 87(8): p. 876-882. 



55 

 

133. Jung, S., et al., Adolescent endogenous sex hormones and breast density in early adulthood. Breast 
Cancer Research: BCR, 2015. 17(1): p. 77-015-0581-4. 

134. Greendale, G.A., et al., The association of endogenous sex steroids and sex steroid binding proteins 
with mammographic density: Results from the Postmenopausal Estrogen/Progestin Interventions 
Mammographic Density Study. American Journal of Epidemiology, 2005. 162(9): p. 826-834. 

135. Tamimi, R.M., et al., Endogenous sex hormone levels and mammographic density among 
postmenopausal women. Cancer Epidemiology, Biomarkers & Prevention: A publication of the 
American Association for Cancer Research, cosponsored by the American Society of Preventive 
Oncology, 2005. 14(11 Pt 1): p. 2641-2647. 

136. Bremnes, Y., et al., Endogenous sex hormones, prolactin and mammographic density in 
postmenopausal Norwegian women. International Journal of Cancer. Journal international du 
cancer, 2007. 121(11): p. 2506-2511. 

137. Johansson, H., et al., Relationships between circulating hormone levels, mammographic percent 
density and breast cancer risk factors in postmenopausal women. Breast Cancer Research and 
Treatment, 2008. 108(1): p. 57-67. 

138. Sprague, B.L., et al., Circulating sex hormones and mammographic breast density among 
postmenopausal women. Hormones & Cancer, 2011. 2(1): p. 62-72. 

139. McCormack, V.A., et al., Sex steroids, growth factors and mammographic density: A cross-
sectional study of UK postmenopausal Caucasian and Afro-Caribbean women. Breast Cancer 
Research: BCR, 2009. 11(3): p. R38. 

140. Verheus, M., et al., No relationship between circulating levels of sex steroids and mammographic 
breast density: The Prospect-EPIC cohort. Breast Cancer Research: BCR, 2007. 9(4): p. R53. 

141. Aiello, E.J., et al., Associations among circulating sex hormones, insulin-like growth factor, lipids, 
and mammographic density in postmenopausal women. Cancer Epidemiology, Biomarkers & 
Prevention: A publication of the American Association for Cancer Research, cosponsored by the 
American Society of Preventive Oncology, 2005. 14(6): p. 1411-1417. 

142. Borugian, M.J., et al., Fasting insulin and endogenous hormones in relation to premenopausal 
breast density (Canada). Cancer Causes & Control: CCC, 2014. 25(3): p. 385-394. 

143. Fuhrman, B.J., et al., Estrogen metabolism and mammographic density in postmenopausal women: 
A cross-sectional study. Cancer Epidemiology, Biomarkers & Prevention: A publication of the 
American Association for Cancer Research, cosponsored by the American Society of Preventive 
Oncology, 2012. 21(9): p. 1582-1591. 

144. Varghese, J.S., et al., The heritability of mammographic breast density and circulating sex-
hormone levels: Two independent breast cancer risk factors. Cancer Epidemiology, Biomarkers & 
Prevention: A publication of the American Association for Cancer Research, cosponsored by the 
American Society of Preventive Oncology, 2012. 21(12): p. 2167-2175. 

145. Cuzick, J., et al., Tamoxifen for prevention of breast cancer: Extended long-term follow-up of the 
IBIS-I breast cancer prevention trial. The Lancet Oncology, 2015. 16(1): p. 67-75. 

146. Martino, S., et al., Continuing outcomes relevant to Evista: Breast cancer incidence in 
postmenopausal osteoporotic women in a randomized trial of raloxifene. Journal of the National 
Cancer Institute, 2004. 96(23): p. 1751-1761. 

 

 

 

  



56 

 

CHAPTER 3: DATA AND METHODOLOGY 

 

3.1 DATASETS AND VARIABLES 

3.1.1 Seattle Data 

 

The first data is from a combined breast cancer case-control study in which information on 

the extent of mammographic density and mammographic density patterns were ascertained from 

the results of previous mammograms. Additional details about the data set used are described in 

Thomas et al. [1].   

 

Cases (n=547) and controls (n=472) were recruited from women who had participated in 

four previous population-based case-control studies of breast cancer in the Seattle area: BCYW 

[2]; WISH [3]; HORMONE [4]; and EMF [5]. Cases from all four studies were identified through 

the Cancer Surveillance System, a population-based cancer registry sponsored by the Surveillance, 

Epidemiology, and End Results program of the National Cancer Institute that covers 13 counties 

of Western Washington State [6]. Women with an initial diagnosis of either in situ or invasive 

disease were included in all four studies.   

 

Cases eligible for the BCYW study were female residents of King, Pierce, on Snohomish 

counties who were born after 1944 and who developed breast cancer from January 1983 through 

April 1990. Cases eligible for the WISH study were those from the same three counties <45 years 

of age who were diagnosed from May 1990 through December 1992. The HORMONE study 

included the cases 50-64 years of age residing in King County, diagnosed from January 1988 to 

June 1990. Cases eligible for the EMF study were female residents of King and Snohomish 

counties diagnosed from January 1993 to June 1995. To eliminate women unlikely to have had 

access to mammographic screening before age 50 or to have had their mammograms in the too 

distant past for likely retrieval, cases diagnosed before 1985 in the BCYW studies, those >54 years 

of age in the HORMONE study, and those >59 years of age in the EMF study were not considered 

eligible for this investigation. Controls for all four studies were selected by random digit dialing, 

using a modification of the Waksberg method [7]. Controls were frequency matched to cases on 

age and county of residence.   

 



57 

 

Experienced interviewers had administered standardized questionnaires to all consenting 

study subjects after obtaining written informed consent. Although these questionnaires varied 

among the four prior studies, they were comparable on the standard risk factors for breast cancer 

which included information on marital, reproductive, menstrual and contraceptive history, use of 

exogenous hormones (oral contraceptives and estrogen hormone replacement therapy), lifestyle 

factors, prior breast biopsies, socioeconomic characteristics, and family history of breast cancer. 

Weight one year before the interview and the maximum height attained were also ascertained at 

the interview, except in the WISH study where height was measured; these data were used to 

calculate body mass index (weight in kilograms ÷ height in meters squared). Information on all 

potential breast cancer risk/protective factors from questionnaires and datasets of the different 

studies was combined in a systematic manner into the variables included in our dataset. 

 

A history of prior mammographic screening was also elicited from the women. The women, 

or their next of kin if the woman was deceased, were sent a questionnaire to ascertain information 

on the time and place each screening mammogram was taken and a consent form giving their 

permission for us to contact the radiologist and request a loan of the mammograms was signed.  

Telephone calls were made to women who did not respond, and in some instances, the 

questionnaire was administered during the call. 

 

The craniocaudal and mediolateral oblique or lateral radiographs were both used to classify 

each breast according to the parenchymal pattern classification of Wolfe [8, 9], including N1 

[mostly fat (radiolucent), few ducts], P1 [ductal (linear) patterns and nodular densities occupying 

>25% of the area], and DY (dense sheets, no ductal pattern discernable). The reference radiologist, 

who classified the mammograms, received training from a colleague of Wolfe (Martine Salane) to 

enhance compatibility with prior investigations.  In future analyses, women were categorized into 

having P2 and DY patterns (“high risk”) and N1 and P1 patterns (“lower risk”). 

 

The radiologist traced the outline of the dense areas on the craniocaudal view with a wax 

(China) marker. A single technician, who had also received training from Dr. Wolfe’s associate, 

then measured the areas of the breast and the dense area with a compensating polar planimeter 

(LASICO, Los Angeles, CA). In future analyses, women were categorized into the upper quartile 
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of percent breast density in controls (“high risk”: ≥70.3%) versus all other women (“lower risk”: 

≤70.2%). 

 

3.1.2 Mayo Data 

 

The second dataset is from the Mayo Mammography Health Study (MMHS), which is a 

prospective cohort, comprised of 19,924 women (51.2% adjusted response rate) ages 35 and over, 

residing in the tri-state region surrounding the Mayo Clinic in Rochester, MN. (Minnesota, Iowa, 

and Wisconsin), without a personal history of breast cancer, who were scheduled for a screening 

mammogram at the Mayo Clinic between October 2003 and September 2006 [10]. All women had 

a 4-view screening mammogram at the time of enrollment and completed a self-administered 

questionnaire. A total of 2,284 women in the cohort reported having had at least one form of cancer 

(other than breast cancer) prior to enrollment. The investigators defined a healthy cohort as the 

17,639 women who were free of a history of any cancer at baseline (excluding non-melanoma skin 

cancer). 

 

Follow-up for cancer occurrence was performed annually by linking to Mayo Clinic 

databases and the tri-state cancer registries. Active follow-up for cancer and vital status was 

conducted via mail and telephone from women who had not been back to the Mayo Clinic within 

12 months and either had moved out of the tri-state region or did not grant consent for registry 

linkage. Telephone follow-up was attempted on non-responders to the mailed contact. As of 

December 2013, the total number of incident cancers in the healthy cohort was 1601, of which 665 

were breast cancers.  

 

Percent mammographic density (dense area divided by total area, times 100%) was 

estimated using a computer-assisted thresholding program, Cumulus, on the enrollment screening 

mammogram from all participants in the case-cohort and nested case-control studies. Clinical BI-

RADS four-category tissue composition assessments corresponding to the enrollment 

mammogram were obtained from the Mayo Clinic electronic medical record. The BI-RADS tissue 

composition has been routinely estimated on all screening mammograms at the Mayo Clinic since 

mid-1996. Mayo Clinic attending radiologists classified each mammogram into one of four 
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categories as defined in the BI-RADS lexicon over this period (American College of Radiology, 

third edition): (a) the breast is almost entirely fat; (b) there are scattered fibroglandular densities; 

(c) the breast tissue is heterogeneously dense, which may lower the sensitivity of mammography; 

and (d) the breast is extremely dense, which could obscure a lesion on mammography. These 

ratings convey the relative possibility that a lesion may be obscured in mammography. All four 

mammogram views (craniocaudal and mediolateral oblique for ipsilateral and contralateral sides) 

contribute to the assessment of BI-RADS composition. In our study, we used the estimates that 

experienced radiologists assessed in the clinical setting. These radiologists did not systematically 

assess BI-RADS composition for this study, but this rating has shown adequate inter-observer 

reliability 

 

3.2 STUDY AIMS AND HYPOTHESIS 

 

Previous analyses from these two datasets have shown associations between some breast 

cancer risk factors and mammographic density. We proposed to extend the analysis of these two 

data sets for the following three specific aims:  

1) To identify the key risk/protection factors that meet the criteria 1 and 2 for a 

mediator/surrogate marker. That is, the exposures should be associated with 

mammographic density and mammographic density should predict the risk of breast 

cancer. 

2) To determine whether mammographic density accounted for any part of the association 

between any of the risk/protection factors and breast cancer risk. These would include 

a measure of direct and indirect effect as well as a formal statistical test of the 

significance of the mediation effect.  

3) To quantify the extent to which the observed association between the identified risk 

factors for breast cancer is mediated through mammographic density. These would 

include measures of mediation such as proportion mediated and test of significance as 

well as a 95% CI.  

 

The primary purpose of this project was to determine whether mammographic density was 

in the causal pathway by which traditional breast cancer risk/protective factors are related to breast 
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cancer. We hypothesized that mammographic density at least partially mediated some of the 

known factors and breast cancer associations. We further hypothesized that some risk factors may 

affect pre-menopausal and postmenopausal women differentially.  

 

3.3 METHODS 

3.3.1 Theoretical Framework 

 

The basic path diagram representation of the conceptual relationships between variables 

for the mediator analysis is illustrated in Figure 3.1 where: the coefficients represent the regression 

coefficients along the paths from the risk factors F to the mediator M (ex. BMI to mammographic 

density), b is the coefficient for the direct path from the mediator M to the outcome B (ex. 

mammographic density to breast cancer), the c coefficients represent the unmediated paths from 

the risk factors F to the outcome B (ex. BMI to cancer), and d represents the coefficient for different 

confounding covariates C in the model [11].  

 

3.3.2 Selection of Variables 

 

Two important criteria must be satisfied for a mediator: the exposures should be associated 

with breast density and breast density should predict the risk of breast cancer. Statistical analysis 

proceeded by first narrowing the set of risk factors to be those that were associated with breast 

density, using requirement 1 stated in the introduction, so as to identify which factors may act 

through breast density to increase or decrease the risk of breast cancer. Factors need not statistically 

predict the risk of breast cancer. But it would be good to check them for the direction of mediation.  

 

Variables were selected based on the literature and further confirmed by regression 

analysis. First, the relationships between potential breast cancer risk factors and the development 

of breast cancer and measures of mammographic density in the data set were examined to 

determine which variables should be included in the statistical models. Logistic regression was 

used for case-control study and Cox proportional hazards regression was used for the case-cohort 

design. Attempts were made to determine if there were additional variables that confounded the 

potential risk/protective factor – breast cancer relationship by successively adding all other non-
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identical potential confounders (other risk/protective factors) to the regression models and 

determining whether they changed the odds ratio by more than 10 percent. The same confounders 

were then added to the models investigating the relationship with these risk/protective factors with 

measures of mammographic density. We then selected variables to be used in future analyses if 

they had such a strong association with measures of mammographic density that they may indicate 

an important mediator effect in the path models. Preference was given if variables displayed a 

strong or significant relationship with breast cancer (or were a major confounder of such an 

association). Factors that did not predict breast cancer risk should also be considered because they 

may show inconsistent mediation. The Gail model and other risk assessment models incorporating 

breast density have been developed and could serve as references. The selection also depends on 

the availability of variables in the data set. Table 3.1 shows a list of potential risk factors of breast 

cancer that were likely to act through the breast density pathway. 

 

3.3.3 Model Specification and Statistical Analysis  

 

VanderWeele and colleagues have outlined the analytic approaches that are available to 

conduct mediation analysis based on the counterfactual framework [12]. Let F denote a traditional 

risk factor, M the percentage mammographic density, B breast cancer, and C a set of baseline 

covariates. The F–B pathway is independent of breast density, whereas the F–M–B pathway 

describes that the effect of the risk factor is mediated through breast density. We could fit the 

following logistic regression models: 

 

logit[𝑃(𝐵 = 1|𝐹,𝑀, 𝐶)] = 𝜃0 + 𝜃1𝐹 + 𝜃2𝑀 + 𝜃3𝐹𝑀 + 𝜃4𝐶 

𝑀 = 𝛽0 + 𝛽1𝐹 + 𝛽2𝐶 + 𝜀 

SAS and SPSS macros are available to do the above mediation analysis automatically 

(reference). It fits two regression models simultaneously: one viewing breast cancer as the outcome 

variable with breast density as a covariate, and the other viewing upper-quartile of breast density 

as the outcome variable.  
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The use of mediator models allowed us to determine the extent to which breast cancer 

risk/protective factors acted through mammographic density (indirect effect) or around it (direct 

or unmediated effect) in increasing or decreasing the risk of breast cancer. However, it is very 

important to adequately control for covariates C, namely the exposure-outcome, mediator-

outcome, and exposure-mediator confounders. 

 

3.3.4 Sensitivity Analysis 

 

It is impossible to include all the variables to the model, especially when the sample size is 

not large enough. We can only choose the most significant ones. In this case, sensitivity analysis 

is important in assessing the extent to which uncontrolled confounding may or may not 

substantially influence estimates. 

 

3.3.5 Comparison of Methods 

 

Over the past decade, studies of causal mediation have grown rapidly in different fields. 

Several mediation analysis packages in different software (SAS, R, STATA, SPSS, etc.) have been 

developed. In our project, we focus on conducting causal mediation analysis following the 

approach outlined by VanderWeele and Vansteelandt [13], implemented using a SAS macro that 

can accommodate the case-control design [14]. For comparison purposes, we also conducted 

mediation analysis based on the “difference method” when the results with and without an 

exposure × PMD interaction were comparable. The mediation analysis using the “difference 

method” is outlined by Lin et al. [15], implemented using a SAS macro developed by Spiegelman 

and colleagues [16].  Other causal mediation analyses such as the R packages “mediation” and 

“medflex” are also considered. The latter is based on the class of natural effect models (NEMs) 

originally introduced by Lange et al. [11] and Vansterlandt et al. [12] and implemented in the R 

package medflex [2].  
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TABLE AND FIGURE 

 

Table 3.1. List of potential risk factors and covariates from literature 

 

 Risk factor (F) and Covariates (C) 

Factors associated with 

breast density 

 

Age and Menopause 

 

Reproductive Variables 

• Parity: nulliparous vs parous, later age at first birth, and 
fewer live births have been associated with greater risk 
of breast cancer and with a higher proportion of dense 
breast tissue. 

Bodyweight and height 

Nutrition, alcohol, and exercise 

Family history, race 

• Family history (breast, ovarian, endometrial, and colon) 
• Age, parity, age at first live birth, age at menarche 
• HRT, menopausal status,  
• BMI, height, waist-to-hip ratio, alcohol consumption, 

smoking, education 
• Tamoxifen 
• Breast characteristics (involution, presence of atypia on 

a breast biopsy) 

Factors that have not 

been shown to be 

associated with breast 

density 

• Oral contraceptive use, Estradiol, oophorectomy, 
• Diet (low fat, polyunsaturated fat, vitamin C, E, B12, D 

supplement, folate) and physical activity (no consensus)  
• Aromatase inhibitors, raloxifene, aspirin 
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Figure 3.1. Conceptual relationships between variables illustrating mediation. Conceptual 

relationships illustrating mediation between a traditional breast cancer risk factor (F), 

mammographic density (M), and breast cancer risk (B), along with baseline confounding 

covariates (C). 
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CHAPTER 4: STUDY 1 

A Mediation Analysis of the Pooled Data from Four Population-Based Case-Control 

Studies in the Seattle Region 

 

 

Abstract 

 

Purpose: We conducted a causal mediation to examine whether and to what extent percent 

mammographic density (PMD) is in the pathway by which various breast cancer risk factors 

influence the risk of breast cancer. 

 

Methods: Data were pooled from four population-based case-control studies conducted in the 

western Washington state, containing 547 breast cancer cases and 472 controls who had screening 

mammograms under age 50. We estimated the direct effects of various risk factors on risk of breast 

cancer and their indirect effects (i.e. effects mediated through PMD), as well as the proportion 

mediated by PMD. 

 

Results: The association between breast calcifications and risk of breast cancer was partially 

mediated by PMD (proportion mediated = 29.0%), with an indirect-effect odds ratio of 1.16 (95% 

CI: 1.04-1.30; P = 0.009). PMD mediated 48.6% of the reduced risk among parous versus 

nulliparous women, which yielded an indirect-effect odds ratio of 0.76 (95% CI: 0.65-0.90; P = 

0.001). No significant mediation by PMD was observed with respect to a first-degree family 

history of breast cancer, age at first live birth, and smoking. There was inconsistent mediation for 

the effect of adult body mass index. 

 

Conclusions: Densities in mammograms from women <50 years of age partially mediated the 

effects of breast calcifications and being parous on the risk of breast cancer but appeared not to 

mediate the influence of a first-degree family history of breast cancer or age at first live birth. 

Some risk factors for breast cancer may alter risk partially by increasing mammographic densities. 
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4.1 INTRODUCTION 

 

Several independent observations support the hypothesis that some established breast 

cancer risk factors may be mediated by their intermediate effects on the mammary tissue, which is 

evaluated by mammographic densities. First, mammographic breast density has been repeatedly 

shown to be one of the strongest independent risk factors for breast cancer [1-4]. Second, 

mammographic density has also been shown to be associated with a wide array of risk factors for 

breast cancer including age, menopausal status, age at first live birth, parity, body mass index 

(BMI), physical activity, alcohol consumption, hormone replacement therapy, endogenous levels 

of insulin-like growth factor 1 (IGF1) and prolactin, and family history of breast cancer [1]. 

Furthermore, breast density can even be changed by several exposures or interventions that are 

also known to influence breast cancer risk [5]. For example, tamoxifen, an anti-estrogen, was 

reported to reduce mammographic breast density as well as the risk of breast cancer [6-9].  

 

Biologically, mammographic breast density has the potential to act as a mediator for breast 

cancer risk. Fatty tissue in the breast is relatively transparent to x-rays and appears dark on 

mammograms. Fibroglandular tissue, which consists of epithelial cells that line the ducts and their 

supporting fibrous connective tissue, is more radiologically dense and appears light on 

mammograms. Histological assessment of the dense and non-dense areas of the breast revealed 

that the dense tissue has a greater amount of epithelium and stroma, particularly collagen, increased 

nuclear occupation, lesser fat, and a higher proportion of proliferative disease without atypia than 

the non-dense breast tissue [10-12]. The proportion of a mammogram that is dense is thus an 

indirect measure of the amount of epithelial tissue in the breast. Since this is the tissue from which 

mammary carcinomas arise, the greater the percent mammographic density (PMD), the greater the 

number of cells available for malignant transformation. The increase in PMD may also reflect 

alteration of the stromal architecture and composition of the extracellular matrix such as collagen, 

which is a well-recognized component of both benign and malignant breast pathologies [13-15], 

In addition, the epithelium and stromal tissues may be a site for local inflammation, which could 

increase the risk of breast cancer [15]. Breast dense tissue has showed decreased alternatively 

activated macrophages in the stroma [15]. Both case-control studies and prospective studies have 

shown an increased risk of subsequent cancer to be correlated with PMD [4, 16, 17]. A risk factor 

for breast cancer could theoretically increase risk by altering the number of epithelial cells at risk 
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of a  malignant transformation (as measured by the PMD), in which case we would observe that 

the risk factor appears to be mediated by its effect on the observed PMD [18]. Alternatively, a risk 

factor could be independent of any effect on the number of epithelial cells, and there would not be 

evidence for mediation by PMD.   

 

Few studies have attempted to assess the role of mammographic density as a mediator for 

breast cancer risk, and the extent of mediation is rarely quantified using statistical mediation 

analyses. Seven studies have calculated the percent change in the odds ratios (ORs) and/or the 

“proportion explained (PE)” index [19-25], a measure of mediation by the traditional “difference 

method” comparing regression coefficients between models with and without the mediator [26]. 

Of these, ninety-five percent confidence intervals or p-values for the PE were available in only 

four studies [19, 22-24]. The “difference method” has been criticized for lacking a causal 

interpretation [27] and may provide biased estimators regarding mediation, especially for binary 

outcomes [28]. To address some of these limitations, the counterfactual approach has been 

proposed [29-32]. This approach emphasizes assumptions regarding confounding required for 

causal interpretation, with a formal definition of direct and indirect effects in a counterfactual 

framework, which allows for the decomposition of a total effect into direct and indirect effects, 

even in models with interactions and nonlinearities. This approach has recently been modified for 

use in analyzing data from case-control studies [32]. To date, only one study has attempted to use 

causal mediation analysis to evaluate the effect of a number of known risk factors on breast cancer 

through mammographic density [22]. 

 

Thus, the main purpose of this study was to estimate, for each breast cancer risk factor of 

interest, how much of its effect on risk is due to its influence on mammographic densities (its 

indirect effect) and how much of its effect on risk is a direct effect (not mediated through 

mammographic density). To do this, we used the analytic approaches based on the counterfactual 

framework described by Vanderweele et. al. [33] using the combined data from four population-

based case-control studies [34].  

 

 



69 

 

4.2 METHODS 

 

Study Design and Participants 

The data source, study design, and participant characteristics have been described in detail 

previously [34]. Briefly, cases (n = 547) and controls (n = 472) were recruited from women who 

had participated in four previous population-based case-control studies of breast cancer in the 

Seattle area: BCYW (Breast Cancer in Young Women) [35], WISH (Women’s Interview Study of 

Health) [36], HORMONE (Hormone Replacement Therapy and Breast Cancer in Middle-Aged 

Women) [37], and EMF (Electric Power and Risk of Breast Cancer) [38]. Women with an initial 

diagnosis of either in situ or invasive disease were included in all four studies. Controls for all four 

studies were selected by random digit dialing, using a modification of the Waksberg method [39]. 

Controls were frequency matched to cases on age and county of residence. This study has been 

approved by the Institutional Review Boards of the University of Illinois at Urbana Champaign 

and the Fred Hutchinson Cancer Research Center. 

 

Measurement of Mammographic Density and Calcification 

The earliest mammogram available on each study participant was obtained from local 

mammography facilities.  Both craniocaudal and mediolateral oblique or lateral radiographs were 

used. A single reference radiologist traced the outline of the dense areas on the craniocaudal view 

with a wax (China) marker. A single technician then measured the areas of the breast and the dense 

area with a compensating polar planimeter (LASICO, Los Angeles, CA). PMD was calculated as 

the percentage of the area of the mammogram that was mammographically dense. The mean value 

of the percent density of both breasts was used. 

 

The two views were also used to record the morphological type and distribution of all 

calcifications. This information was subsequently used to classify all mammographic 

calcifications on a scale of 1–5 in descending order of suspicion for existing carcinoma. The system 

used combined entities in the Breast Imaging Reporting and Data System (BI-RADS) of the 

American College of Radiology [40]. The BI-RADS designation of amorphous calcifications was 

not used. 
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Breast cancer risk factors and confounders 

Experienced interviewers had administered standardized questionnaires to all consenting 

study subjects after obtaining written informed consent. Although these questionnaires varied 

among the four prior studies, they were comparable on the standard risk factors for breast cancer 

which included information on marital, reproductive, menstrual and contraceptive history, use of 

exogenous hormones (oral contraceptives and postmenopausal hormone replacement therapy), 

lifestyle factors, prior breast biopsies (including, but not distinguishing, needle aspiration, a biopsy 

of a lesion, and lumpectomy), socioeconomic characteristics, and family history of breast cancer. 

Weight at 1 year before the interview, weight at 18 years of age, and maximum height attained 

were also ascertained at the interview, except in the WISH study, in which height was measured; 

and these data were used to calculate the BMI. 

 

Statistical Methods 

We conducted a causal mediation analysis following the approach outlined by 

VanderWeele and Vansteelandt [32], implemented using a SAS macro that can accommodate the 

case-control design [41]. The analysis proceeded by first fitting an unconditional logistic 

regression model for breast cancer on the potential risk factor and PMD, adjusting for matching 

variables (study and age) and the baseline covariates. Second, a linear regression was fit for PMD 

on the potential risk factor and covariates using the controls. The regression for PMD and the 

regression for breast cancer risk were combined to obtain the ORs and 95% CIs for the following 

effects: (a) the natural direct effect (NDE) (i.e., the effect of the exposure on breast cancer risk not 

through PMD if PMD was fixed at the level that it would have been without the exposure), (b) the 

natural indirect effect (NIE) (i.e., the effect of the exposure on breast cancer risk through PMD), 

and (c) the total association between the exposure and breast cancer risk. Despite a lack of 

statistical significance on all exposure–PMD interaction terms, we compared the results with and 

without an exposure × PMD interaction term. We used both the delta method and bootstrap 

sampling (1000 samples) to obtain 95% confidence intervals (CIs). The proportion mediated was 

estimated by the equation of ORNDE × (ORNIE -1)/(ORNDE × ORNIE -1), where ORNDE is the direct-

effect odds ratio and ORNIE is the indirect-effect odds ratio [32]. All the p-values used were two-
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sided. Type I errors were set at 0.10. All statistical analyses were performed using SAS version 

9.3 (SAS Institute, Inc., Cary, North Carolina, USA). 

 

Sensitivity Analysis 

To assess the robustness of our results, we repeated the analyses by restricting the data to 

premenopausal women at mammography date. Analyses were also performed by excluding 

women who had stopped bleeding at least four years by mammography date and similar results 

were obtained (not shown). Since the results with and without an exposure × PMD interaction 

were comparable, we also conducted a mediation analysis using the “difference method” outlined 

by Lin et al. [42], implemented using the SAS macro developed by Spiegelman and colleagues 

[43]. To determine the causal direction of the relationship between mammographic density and the 

risk factors of calcification and breast biopsy history, we also conducted mediation analyses using 

these two risk factors as potential mediators for the effect of PMD by assuming the mediation path 

in a way that PMD preceded these two risk factors.  

 

4.3 RESULTS 

 

The characteristics of the study population and the set of potential risk factors and selected 

confounders are shown in Table 4.1. We identified a total of 547 cases and 472 controls who had 

a screening mammogram before 50 years of age and 1 year or more prior to the date of diagnosis 

(for the cases) or reference date (for the controls). The participants were largely white women 

(97%) and less than 5% were aged 55 or older. More than 70% of women had their screening 

mammograms between the age of 35 and 45 years old.  

 

Having had calcifications (OR = 1.263; 95% CI: 1.164, 1.371), first degree family history 

of breast cancer (OR = 2.066; 95% CI: 1.456, 2.960), ever having had a live birth (OR = 0.671; 

95% CI: 0.480, 0.935) and per year increase in age at first live birth among parous women (OR = 

1.042, 95% CI: 1.010, 1.075) were significantly associated with risk of breast cancer (Table 4.2). 

BMI at 1 year before the interview, BMI at 18 years old, history of breast 

biopsy/aspiration/lumpectomy, smoking, and the number of live births (among parous women) 
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were not significantly associated with breast cancer risk. Mediation analyses using the “difference 

method” showed that a first-degree family history of breast cancer, smoking, and age at the first 

live birth were not mediated by PMD, whereas having had calcifications and ever having had a 

live birth were partially mediated by PMD (PE = 16.5% and 42.5% respectively, p = 0.0001 for 

both).  

 

The results of the causal mediation analyses for the whole data set were shown in Table 4.3 

and Supplementary Table 4.1. Having had calcifications was directly associated with breast cancer 

risk (ORNDE, 1.66; 95% CI, 1.26-2.19; P < 0.001), but it was also indirectly associated with breast 

cancer risk through its effect on mammographic density (ORNIE, 1.16; 95% CI, 1.04-1.30; P = 

0.009), with a proportion of 29.0% mediated by PMD. Although a first-degree family history of 

breast cancer was a significant breast cancer risk factor (ORtotal effect, 1.893; 95% CI, 1.26858, 

2.82474; P = 0.002), no significant mediation by PMD was observed (ORNIE 0.891, 95% CI: 

0.75642, 1.04965; P = 0.168). Ever having had a live birth exhibited a significant negative 

association with breast cancer (ORtotal effect, 0.61; 95% CI, 0.42-0.89; P = 0.010), which was 

decomposed into a significant indirect-effect odds ratio of 0.76 (95% CI, 0.65-0.90; P = 0.001) 

through PMD and a direct-effect odds ratio of 0.80 (95% CI, 0.57-1.13; P = 0.207). Overall, 48.6% 

of the reduced risk of breast cancer related to being parous was attributable to lower PMD. Among 

parous women, per year increase in age at first live birth had a significant total effect (ORtotal effect, 

1.04; 95% CI, 1.00-1.07; P = 0.043) on the risk of breast cancer. However, the association was not 

mediated through PMD (ORNIE, 0.999; 95% CI, 95% CI, 0.98-1.01; P = 0.88). 

 

Although the BMI measures were not significantly associated with risk of breast cancer in 

our data, results from casual mediation analyses suggested the presence of inconsistent mediation 

or suppression, in which the direct and indirect effects had opposite directions while the total effect 

was not significant. BMI at 1 year before interview displayed a highly significant negative indirect 

association with breast cancer risk through PMD (ORNIE, 0.940; 95% CI, 0.92-0.96; P=0.000), 

while it displayed a significant positive relationship with breast cancer risk (ORNDE, 1.048; 95% 

CI, 1.02-1.08; P=0.003) independent of PMD. The opposing direct and indirect effects resulted in 

an overall non-significant total effect of BMI (ORtotal effect, 0.98; 95% CI, 0.96-1.01; P = 0.274). 

Similarly, BMI at 18 years old was not associated with the risk of breast cancer (ORtotal effect, 0.970; 
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95% CI, 0.92-1.02; P = 0.256). It had a significant negative indirect association with breast cancer 

risk through PMD (ORNIE, 0.931; 95% CI, 0.91-0.96; P = 0.000). However, the direct association 

acting independently of PMD was not significant, although positive (ORNDE, 1.04; 95% CI, 0.99-

1.10; P = 0.121). This indicates that BMI at a younger age might act predominantly through its 

negative association through breast density, whereas BMI at an older age may also act positively 

through pathways independent of breast density. 

 

At the 10% significance level, smoking (ORtotal effect, 1.28; 95% CI, 0.96-1.71; P = 0.092) 

and history of breast biopsy/aspiration/lumpectomy (ORtotal effect, 1.36; 95% CI, 0.96-1.93; P = 

0.083) were associated with increased risk of breast cancer. PMD mediated the association with 

history of breast biopsy/aspiration/lumpectomy (ORNIE, 1.28; 95% CI, 1.11-1.49; P = 0.001) but 

not smoking (ORNIE, 1.02; 95% CI, 0.92-1.14; P = 0.676). The proportion mediated was estimated 

to be 83.1%, which is higher than the PE index (64.4%) from the difference method. Note that the 

PE has a wide range of 95% CI, indicating that the PE estimate is very imprecise.   

 

Including versus excluding the exposure-mediator interaction terms did not change the 

estimates of the direct and indirect effects much (Table 4.3). When analyses were restricted to 

premenopausal women, results were similar to that seen for all women (Supplementary Table 4.2).  

 

4.4 DISCUSSION  
 

Our results showed that PMD partially mediated the association between breast 

calcifications and ever having had a live birth with the risk of breast cancer. The associations of 

other factors with breast cancer risk, including a family history of breast cancer, age at first live 

birth, and smoking, were not mediated by PMD. Furthermore, we observed the presence of 

inconsistent mediation for adult BMI.  

 

Calcifications are tiny mineral deposits within the breast tissue, which may show up as 

high-density white spots on a mammogram. It is well known that certain calcifications on a 

mammogram, particularly if small, multiple, and clustered, are predictive of a future diagnosis of 

breast tumors [44]. A third of breast cancers show calcifications as the only mammographically 
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suspicious feature [45]. Our results showed that about 29% of the increased risk of breast cancer 

in relation to having breast calcifications was mediated through PMD, while it also increased breast 

cancer risk through pathways independent of PMD. However, since calcifications and PMD were 

measured using the same mammogram, we cannot disentangle the direction of causality between 

calcifications and PMD. To further test our hypothesis, we conducted a sensitivity analysis by 

assuming the mediation path in a way that PMD precedes calcifications and that the effect of PMD 

on the risk of breast cancer is mediated by calcifications. Results showed that adjustment for 

calcifications led to only a minimal attenuation in the association between PMD and breast cancer 

risk, with less than 10% mediated by calcification (Supplementary Table 4.3). The results provided 

no support for the hypothesis that calcifications mediated the association of PMD with breast 

cancer risk even if we assume calcification precedes mammographic density. Therefore, it is more 

likely that PMD mediated the association between having breast calcifications and the risk of 

breast cancer. Biologically, microcalcification is an important feature in breast lesions and early 

signs of breast cancer. Of the breast cancers detected on mammography due to calcifications, about 

two-thirds represent ductal carcinoma in situ and the remainder are invasive ductal carcinoma [45]. 

It is thought to be a result of abnormal calcium deposition and mineralization of necrotic debris 

that is caused by rapidly proliferating tumor cells that use up the blood supply, resulting in cell 

death and subsequently increased acidosis in the microenvironment [46]. However, given that it is 

difficult to determine the temporality between these two breast cancer risk factors, this result 

should be interpreted cautiously. 

 

Our results showed that PMD mediated 48.6% of the association between ever having had 

a live birth and breast cancer risk, which is supported by two previous studies[22, 23]. Although 

the calculated proportion mediated by PMD in these studies was only significant among 

postmenopausal women [23], the estimates (40-52%) were very similar to our observation, 

regardless of menopausal status. A potential mechanism for this finding of mediation might be a 

reduction in mammographic density after pregnancy [47]. Studies have consistently shown that 

nulliparous women had a greater percent density than parous women [48-52], and there is a 

negative association between increasing parity and mammographic density [48-51, 53-55]. 
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A family history of breast cancer in first-degree relatives is an established risk factor for 

breast cancer. In our study, the increased risk of breast cancer in relation to a first-degree family 

history of breast cancer was found to be independent of PMD. This result of no mediation is 

consistent with two recent studies which showed that the association with a family history of breast 

cancer was not mediated by PMD in both premenopausal and postmenopausal women [22, 23]. 

However, in another study, PMD was found to explain 14% (95% CI, 4-39%) of the association 

of family history (at least one affected first-degree relative) with breast cancer risk [19]. Note that 

about 75% of the participants in that study were postmenopausal women, whereas most of our 

study population is premenopausal. This evidence suggests that a small portion of the association 

between family history of breast cancer and the risk of breast cancer is mediated by PMD, if any. 

 

In analyses restricted to parous women, later age at first live birth was found to be 

associated with a higher risk of breast cancer but there was no evidence of mediation by PMD. 

These results were in line with the findings in premenopausal women in two previous studies [22, 

23]. Although these two studies found significant mediation by PMD for the associations between 

later age at first birth and all invasive breast cancer among postmenopausal women, the proportion 

mediated (13-16%) is small. In another study by Tice et al. (2005), later age at first live birth was 

also found to be a significant breast cancer risk factor among women without a first-degree family 

history of breast cancer [56]. Adjusting for BI-RADS mammographic density categories 

attenuated the relative risk by about 16%. These results suggest that the association between age 

at first live birth and breast cancer risk is not likely to be mediated by PMD, at least among 

premenopausal women. The portion of mediation would be small if there is any. 

 

The presence of inconsistent mediation for adult BMI was also observed in several studies 

that compared the association between BMI and breast cancer risk before and after further 

adjustment for breast density [16, 22, 23, 57-61]. The overall association between BMI and breast 

cancer risk was not significant in all these studies except for one, which showed a significantly 

lower risk of breast cancer risk among premenopausal women with higher BMI [16]. Further 

adjustment for mammographic density consistently strengthened the overall positive associations, 

whereas the overall negative associations largely became positive. Our results showed that BMI at 

age 18 had a significant negative indirect association with breast cancer risk through PMD, 
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although the overall association was not significant. This finding is partially supported by Rice et 

al. (2016) [22], who found that PMD mediated a substantial portion of the significant association 

between BMI at age 18 and breast cancer risk among premenopausal women. While the overall 

association was significant among premenopausal women, the association in postmenopausal 

women was not significant. Similar results were found in another study that included both pre- and 

post-menopausal women, which showed that the association between BMI at age 18 and breast 

cancer risk was only significant when comparing overweight or obese women to those with a BMI 

between 20 and 22.4 [61]. This significant association was substantially attenuated after 

adjustment for mammographic density. These results suggest that BMI at a younger age might act 

predominantly through its negative association through breast density, whereas BMI at an older 

age may also act positively through pathways independent of breast density, resulting in an 

inconsistent mediation. 

 

Our study has several limitations. In order to establish a causal interpretation of the direct 

and indirect effects, it is important to make the no-unmeasured-confounding assumptions. 

Although we have checked confounding for a large number of participant characteristics, there 

may be other unmeasured factors (such as physical activity) that were not ascertained in our study. 

Our study has a relatively small sample size (547 cases and 472 controls), which may be the reason 

why we did not have sufficient statistical power to detect a significant association for some risk 

factors such as a history of breast biopsy and number of live births.  

 

The temporal relationship, that the exposure preceded the mediator and that the mediator 

preceded the outcome, is also necessary. With a case-control design, our study was not able to 

make sure all the risk factors occurred before mammographic measurement, although screening 

mammograms were taken before the diagnosis of breast cancer. Since a majority of our study 

participants had their mammograms at age 35 years old or older, it is reasonable to assume that the 

reproductive factors and lifestyle habits considered in our study were established before the 

measurement of breast density. However, this assumption does not apply to the presence of 

calcifications and history of breast biopsy, because calcifications and mammographic density were 

measured using the same mammogram, while a biopsy may be performed after detecting a high-

density pattern in the mammogram. Therefore, we conducted a sensitivity analysis by assuming 
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the mediation path in a way that calcifications or breast biopsies were the potential mediators for 

the effect of PMD. The results provided no support for the hypothesis that calcifications or breast 

biopsies mediated the association of PMD with breast cancer risk (Supplementary Table 4.3). 

However, given that women with denser breasts are more likely to undergo breast biopsy and they 

likely had a high PMD at the time their calcification was detected, it is difficult to determine the 

temporality between these two breast cancer risk factors and PMD. Therefore, the results must be 

interpreted with caution. Further studies are warranted to determine the causal direction of the 

relationships. The assumption of temporality may have a better application to cohort studies or 

nested case-control studies, where risk factors are ascertained before the measurement of 

mammographic density, both of which may have occurred prior to the development of the disease. 

In addition, note that the mediator we studied is percent mammographic density. We did not use 

“Wolfe’s classification” because PMD was found to provide more information on breast cancer 

risk than Wolfe’s parenchymal patterns and the parenchymal patterns appeared to be redundant 

once PMD is taken into account [62]. However, it is possible that other aspects of mammographic 

patterns, such as texture, coarseness, stiffness, etc., could potentially be responsible for part of the 

effect of these different exposures on the risk of breast cancer. These characteristics may be 

important but would not be captured simply by a percent mammographic density measure.  

 

4.5 CONCLUSIONS 

 

In summary, using data from four population-based case-control studies of women having 

screening mammograms under age 50, we demonstrated that breast calcifications, being parous, 

and higher BMI affect the risk of breast cancer partially through their effect on PMD. On the other 

hand, first-degree family history of breast cancer, age at first live birth, and cigarette smoking 

affect breast cancer risk mainly through pathways independent of PMD. These findings may 

provide insights into the mechanisms involved in the development of breast cancer and highlight 

a potential biological pathway from breast density to the etiology of breast cancer. 
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TABLES 

 

Table 4.1. Characteristics of cases vs. controls by selected risk factors 

Variables 

Case 

(n=547) 

Control 

(n=472) 

STUDY     

    EMF 231 (42.2%) 213 (45.1%) 

    OB 37 (6.8%) 31 (6.6%) 

    BCIA 87 (15.9%) 77 (16.3%) 

    WISH 192 (35.1%) 151 (32.0%) 

Age at diagnosis or reference date (y)     

    <40 101 (18.5%) 73 (15.5%) 

    40-44 254 (46.4%) 222 (47.0%) 

    45-49 78 (14.3%) 72 (15.3%) 

    50-54 89 (16.3%) 90 (19.1%) 

    55-59 25 (4.6%) 15 (3.2%) 

Age at mammogram (y)     

    <35 75 (13.7%) 42 (8.9%) 

    35-39 215 (39.3%) 185 (39.2%) 

    40-44 166 (30.3%) 173 (36.7%) 

    45-49 91 (16.6%) 72 (15.3%) 

Age at menopause (y)     

    Pre-menopausal 453 (82.8%) 387 (82.0%) 

    <35 41 (7.5%) 43 (9.1%) 

    35+ 53 (9.7%) 42 (8.9%) 

Race: White 531 (97.4%) 458 (97.0%) 

Marital status     

    Single, never married 33 (6.2%) 19 (4.1%) 

    Married/living as married 428 (80.3%) 370 (79.9%) 

    Separated/Divorced/Widowed 72 (13.5%) 74 (16.0%) 

Education level     

    Attended or completed HS/GED or less 120 (22.0%) 127 (26.9%) 

    Technical school/2-year college 55 (10.1%) 48 (10.2%) 

    Attended or completed college 294 (53.8%) 243 (51.5%) 

    Attended or completed graduate school 77 (14.1%) 54 (11.4%) 

Income     

    Less than median income category 153 (28.3%) 149 (32.3%) 

    Median income category 146 (27.0%) 121 (26.2%) 

    Greater than median income category 241 (44.6%) 192 (41.6%) 

Drinks per week, 6 to 2 years before     

    No drinking 131 (23.9%) 131 (27.8%) 

    <1.0 drink per week 136 (24.9%) 104 (22.0%) 

    1.0-2.99 drinks per week 93 (17.0%) 74 (15.7%) 

    3.0-6.99 drinks per week 81 (14.8%) 62 (13.1%) 
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Table 4.1. Characteristics of cases vs. controls by selected risk factors 

Variables 

Case 

(n=547) 

Control 

(n=472) 

    7.0+ drinks per week 106 (19.4%) 101 (21.4%) 

Ever smoked cigarettes 296 (54.1%) 222 (47.0%) 

First degree family had BC 120 (21.9%) 60 (12.7%) 

Parity: Nulliparous 132 (24.1%) 82 (17.4%) 

Ever breastfed (among parous) 284 (68.6%) 268(68.7%) 

Total duration of BCPs (months)     

    Never used 50 (9.3%) 50 (10.6%) 

    >0 - 60 months 284 (52.9%) 239 (50.7%) 

    >60 months 203 (37.8%) 182 (38.6%) 

Estrogen use history     

    Never 486 (88.8%) 414 (87.7%) 

    Past 9 (1.6%) 13 (2.8%) 

    Current 52 (9.5%) 45 (9.5%) 

Progesterone ever     

    No 512 (93.6%) 431 (91.3%) 

    Yes 35 (6.4%) 41 (8.7%) 

Wolfe classification     

    N1 2 (0.4%) 11 (2.3%) 

    P1 62 (11.3%) 135 (28.6%) 

    P2 420 (76.8%) 302 (64.0%) 

    DY 63 (11.5%) 24 (5.1%) 

Calcification class     

    No calcifications 192 (35.1%) 229 (48.5%) 

    Lowest (non-epithelial) 6 (1.1%) 11 (2.3%) 

    Low suspicion 138 (25.2%) 109 (23.1%) 

    Intermediate 77 (14.1%) 63 (13.3%) 

    High 100 (18.3%) 52 (11.0%) 

    Highest 34 (6.2%) 8 (1.7%) 

Breast biopsy/aspiration/lumpectomy ever 142 (26.0%) 101 (21.4%) 

Type of mammogram film     

    X-ray 485 (88.7%) 429 (90.9%) 

    Xeroradiograph 62 (11.3%) 43 (9.1%) 

Age at menarche (y)  12.49 (1.5) 12.45 (1.4)  

Age at first live birth (y) (among parous)  24.4 (5.2)  23.8 (5.1) 

Number of live births (among parous) 2.2 (0.9) 2.2 (1.0) 

Months breastfed (among parous)  8.9 (13.9)  8.2 (11.6) 

Total duration of BCPs (months)  54.0 (50.2)  56.1 (53.7) 

Body Mass Index (kg/m2)  24.5 (5.0)  25.2 (5.8) 

BMI at age 18 (kg/m2) 20.5 (2.6)   20.6 (2.9) 

Percent mammographic density (%) 61.3 (21.2)   48.6 (25.1) 

Time since mammogram (y) 4.8 (3.1)  4.5 (3.2)  

(cont.) 
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Table 4.2. Odds ratios (ORs) and 95% CI for risk of breast cancer, adjusted or not adjusted for percent mammographic 

density (PMD), the difference method 
 

  Unadjusted for PMD Adjusted for PMD Proportion Explained§ 

  OR* 95%CI p-value ORadj† 95%CI p-value PE (95%CI) 
p-

value 

Full dataset         
 BMI (continuous, kg/m2) 0.98 0.96, 1.00 0.090 1.04 1.01, 1.07 0.015 ~ ~ 
 Normal/Underweight (BMI <25) 1.00 Reference  1.00 Reference  Reference  
 Overweight/obese (BMI 25+ vs <25) 0.92 0.70, 1.20 0.530 1.57 1.15, 2.16 0.005 ~ ~ 
 BMI at age 18 (continuous, kg/m2) 0.98 0.93, 1.03 0.350 1.03 0.98, 1.09 0.196 ~ ~ 
 Normal/Underweight (BMI at age 18y <25) 1.00 Reference  1.00 Reference  Reference  
 Overweight/obese at age 18 (BMI 25+ vs <25) 0.85 0.49, 1.45 0.540 1.29 0.73, 2.31 0.387 ~ ~ 
 Breast biopsy/aspiration/lumpectomy never 1.00 Reference  1.00 Reference  Reference  
 Breast biopsy/aspiration/lumpectomy ever 1.26 0.92, 1.72 0.152 1.06 0.77, 1.47 0.720 64.4% (3.9% - 98.8%) <.001 
 Calcification class (continuous score) 1.26 1.16, 1.37 <.001 1.22 1.12, 1.32 <.001 16.5% (8.7% - 29.0%) <.001 
 Calcification (no) 1.00 Reference  1.00 Reference  Reference  
 Calcification (yes vs no) 1.86 1.43, 2.43 <.001  1.66 1.26, 2.19 <.001 18.5% (8.5% - 35.7%) 0.001 
 First degree family history of BC no 1.00 Reference  1.00 Reference  Reference  
 First degree family history of BC yes 2.07 1.46, 2.96 <.001  2.12 1.48, 3.08 <.001 -3.8% (~) ~ 
 Nulliparous 1.00 Reference  1.00 Reference  Reference  

 Parous vs nulliparous 0.67 0.48, 0.94 0.019 0.80 0.57, 1.13 0.207 
42.5% (11.4% - 

81.0%) 
<.001 

 Smoking never 1.00 Reference  1.00 Reference  Reference  
 Smoking ever 1.26 0.97, 1.63 0.082 1.25 0.96, 1.63 0.099 2.4% (0.0% - 100.0%) 0.437 

Parous women only‡         
 Number of live births (continuous) 1.04 0.88, 1.23 0.636 1.12 0.94, 1.34 0.215 ~ ~ 
 Number of live births (1-2) 1.00 Reference  1.00 Reference  Reference  
 Number of live births (3+ vs 1-2) 1.08 0.77, 1.52 0.664 1.25 0.87, 1.80 0.220 ~ ~ 

 Age at first live birth (continuous) 1.04 1.01, 1.08 0.011 1.04 1.01, 1.07 0.023 11.0% (0.8% - 66.4%) 0.200 
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(cont.) 
Table 4.2. Odds ratios (ORs) and 95% CI for risk of breast cancer, adjusted or not adjusted for percent mammographic 

density (PMD), the difference method 
 

  Unadjusted for PMD Adjusted for PMD Proportion Explained§ 

  OR* 95%CI p-value ORadj† 95%CI p-value PE (95%CI) 
p-

value 

 Age at first live birth (15-29) 1.00 Reference  1.00 Reference  Reference  
 Age at first live birth (30+ vs <30) 1.36 0.90, 2.06 0.150 1.31 0.85, 2.03 0.216 15.0% (0.4% - 89.7%) 0.255 

*Multivariate analyses adjusted for study (EMF, OB, BCIA, WISH), age at mammogram (<35 y, 35-39 y, 40-44 y, 45-49 y), BMI (<20, 20 to <24, 24 to <28, 28 to 32 kg/m2), calcification (yes or no), first 
degree family history of breast cancer (yes or no), parity (yes or no), breast biopsy/aspiration/lumpectomy ever (yes or no), smoking (ever or never), mammogram film type (X-ray or Xeroradiograph); 
†In addition to risk factors listed in footnote *, odds ratios were further adjusted for continuous percent mammographic density; 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (1, 2, or 3+) for parity and further adjusted for age at first live birth (continuous, 
years); 
§Proportion Explained (PE) index, percent of the total association (on the log odds scale) between the exposure and breast cancer risk that was mediated by PMD, was calculated using the following 
equation: PE= 1 - (lnORadjusted/lnORunadjusted); It was not calculated (notated using symbol ~) if the absolute value of PE is outside the range of [0, 1].   
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Table 4.3. Total, direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic density 

(PMD), among all women or parous women* 

 Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 
Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

Without exposure × MD interaction           

 Full dataset†           

  BMI (continuous, kg/m2)** 1.05 1.02, 1.08 0.003 0.94 0.92, 0.96 <.001 0.98 0.96, 1.01 0.274 > 

  BMI (25+ vs <25) 1.57 1.15, 2.15 0.005 0.57 0.48, 0.69 <.001 0.90 0.66, 1.23 0.514 > 

  BMI at age 18 (continuous, kg/m2)** 1.04 0.99, 1.10 0.121 0.93 0.91, 0.96 <.001 0.97 0.92, 1.02 0.256 > 

  BMI at age 18 (25+ vs <25) 1.29 0.73, 2.29 0.386 0.60 0.47, 0.77 <.001 0.78 0.42, 1.42 0.413 > 

  Breast biopsy/aspiration/lumpectomy 1.06 0.77, 1.47 0.720 1.28 1.11, 1.49 0.001 1.36 0.96, 1.93 0.083 83.1% 

  Calcification (yes vs no) 1.66 1.26, 2.19 <.001 1.16 1.04, 1.30 0.009 1.93 1.44, 2.59 <.001 29.0% 

  Calcification class (continuous score) 1.22 1.12, 1.32 <.001 1.05 1.01, 1.08 0.015 1.27 1.16, 1.39 <.001 20.5% 

  First degree family history of BC 2.12 1.47, 3.07 <.001 0.89 0.76, 1.05 0.168 1.89 1.27, 2.82 0.002 Not mediated 

  Parous vs nulliparous 0.80 0.57, 1.13 0.207 0.76 0.65, 0.90 0.001 0.61 0.42, 0.89 0.010 48.6% 

  Smoking ever 1.25 0.96, 1.63 0.099 1.02 0.92, 1.14 0.676 1.28 0.96, 1.71 0.092 Not mediated 

 Parous women only‡           

  Number of live births (continuous) 1.12 0.94, 1.34 0.215 0.90 0.83, 0.97 0.007 1.01 0.83, 1.22 0.949 < 

  Age at first live birth (continuous) 1.04 1.01, 1.07 0.023 1.00 0.98, 1.01 0.876 1.04 1.00, 1.07 0.043 Not mediated 

With exposure × MD interaction           

 Full dataset†           

  Overweight/obese (BMI 25+) 1.54 1.04, 2.29 0.033 0.58 0.46, 0.73 <.001 0.90 0.65, 1.23 0.499 > 

  Overweight/obese at age 18 (BMI 25+) 1.70 0.70, 4.15 0.245 0.49 0.29, 0.85 0.011 0.84 0.42, 1.67 0.612 > 

  Breast biopsy/aspiration/lumpectomy 1.08 0.77, 1.49 0.665 1.20 1.02, 1.39 0.023 1.29 0.91, 1.81 0.152 73.6% 

  Calcification (yes vs no) 1.63 1.23, 2.16 0.001 1.15 1.03, 1.28 0.012 1.87 1.37, 2.54 <.001 28.0% 

  Calcification class (continuous score) 1.21 1.11, 1.32 <.001 1.05 1.01, 1.09 0.016 1.27 1.16, 1.39 <.001 21.3% 

  First degree family history of BC 2.46 1.56, 3.88 <.001 0.86 0.68, 1.08 0.181 2.10 1.31, 3.37 0.002 Not mediated 

  Parous vs nulliparous 0.87 0.60, 1.25 0.439 0.75 0.64, 0.89 0.001 0.65 0.45, 0.94 0.024 61.2% 

  Smoking ever 1.25 0.95, 1.65 0.114 1.02 0.92, 1.14 0.677 1.28 0.95, 1.72 0.106 Not mediated 
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(cont.) 

Table 4.3. Total, direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic density 

(PMD), among all women or parous women* 

 Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 
Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

 Parous women only‡           

  Number of live births (continuous) 1.17 0.95, 1.44 0.144 0.91 0.84, 0.98 0.014 1.06 0.85, 1.33 0.606 < 

  Age at first live birth (continuous) 1.04 1.01, 1.07 0.023 1.00 0.99, 1.01 0.876 1.04 1.00, 1.08 0.038 Not mediated 

*Mediation analysis using the SAS macro by Valeri, L., & VanderWeele, T. J. (2013) and the 95% CIs were estimated using the delta method; 
†Multivariate analyses adjusted for study (EMF, OB, BCIA, WISH), age at mammogram (<35 y, 35-39 y, 40-44 y, 45-49 y), percent mammographic density (continuous, %), BMI (<20, 20 to <24, 24 to <28, 28 to 32 kg/m2), 
calcification (yes or no), family history of breast cancer in a first-degree relative (yes or no), parity (yes or no), breast biopsy/aspiration/lumpectomy (ever or never), smoking (ever or never), mammogram film type (X-ray or 
Xeroradiograph); 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (1, 2, or 3+) for parity and further adjusted for age at first live birth (continuous, years);  
§Proportion mediated (PM) was calculated using the following formula if NIE is significant: PM = ORNDE (ORNIE - 1)/(ORNDE × ORNIE - 1); PM calculated to be < 0% and > 100% were denoted by “<” and “>” respectively; 
**Mediation analysis with exposure-mediator interaction for continuous BMI and BMI at age 18 was not reported due to high multicollinearity detected for the interaction term; 
Abbreviations: CI, confidence interval; OR, odds ratio; NDE, natural direct effect; NIE, natural indirect effect; PM, proportion mediated. 
  



84 

 

SUPPLEMENTAL MATERIAL 

 

Supplementary Table 4.1. Total, direct and indirect effects and their 95% CI (by bootstrapping) of exposure on risk of breast 

cancer, mediated by percent mammographic density (MD), among all women or parous women* 

  Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion  
Mediated§ 

  OR 95%CI OR 95%CI OR 95%CI   

Without exposure × MD interaction         

 Full dataset†        

  BMI (continuous, kg/m2)** 1.04 1.01, 1.08 0.94 0.93, 0.96 0.98 0.96, 1.01 > 

  Overweight/obese (BMI 25+) 1.60 1.14, 2.20 0.57 0.46, 0.67 0.91 0.67, 1.19 > 

  BMI at age 18 (continuous, kg/m2)** 1.04 0.99, 1.10 0.93 0.91, 0.95 0.97 0.92, 1.02 > 

  Overweight/obese at age 18 (BMI 25+) 1.38 0.73, 2.49 0.60 0.45, 0.78 0.82 0.43, 1.42 > 

  Breast biopsy/aspiration/lumpectomy 1.08 0.76, 1.50 1.29 1.12, 1.51 1.39 0.99, 1.91 80.1% 

  Calcification (yes vs no) 1.69 1.24, 2.22 1.17 1.05, 1.31 1.98 1.45, 2.62 29.7% 

  Calcification class (continuous score) 1.22 1.12, 1.33 1.05 1.01, 1.09 1.28 1.17, 1.40 20.3% 

  First degree family history of BC 2.18 1.51, 3.11 0.89 0.75, 1.03 1.94 1.32, 2.76 Not mediated 

  Parous vs nulliparous 0.81 0.55, 1.13 0.76 0.66, 0.88 0.62 0.41, 0.86 49.6% 

  Smoking ever 1.27 0.97, 1.64 1.02 0.91, 1.15 1.30 0.98, 1.68 Not mediated 

 Parous women only‡        

  Number of live births (3+ vs 1-2) 1.29 0.88, 1.89 0.80 0.68, 0.93 1.03 0.70, 1.50 < 

  Number of live births (continuous) 1.13 0.93, 1.38 0.90 0.82, 0.96 1.01 0.83, 1.21 < 

  Age at first live birth (30+ vs <30) 1.36 0.86, 2.09 1.01 0.84, 1.20 1.37 0.86, 2.11 Not mediated 

  Age at first live birth (continuous) 1.04 1.00, 1.08 1.00 0.99, 1.01 1.04 1.00, 1.08 Not mediated 

With exposure × MD interaction         

 Full dataset†        

  Overweight/obese (BMI 25+) 1.61 1.02, 2.49 0.58 0.42, 0.74 0.91 0.66, 1.22 > 

  Overweight/obese at age 18 (BMI 25+) 2.29 0.82, 6.27 0.48 0.17, 0.83 0.90 0.48, 1.58 < 

  Breast biopsy/aspiration/lumpectomy 1.10 0.80, 1.53 1.19 1.05, 1.36 1.31 0.94, 1.78 66.8% 

  Calcification (yes vs no) 1.65 1.22, 2.21 1.15 1.05, 1.27 1.89 1.42, 2.49 27.6% 

  Calcification class (continuous score) 1.22 1.12, 1.34 1.05 1.01, 1.09 1.28 1.17, 1.40 21.8% 

  First degree family history of BC 2.66 1.67, 4.17 0.84 0.60, 1.03 2.20 1.49, 3.20 Not mediated 
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(cont.) 

Supplementary Table 4.1. Total, direct and indirect effects and their 95% CI (by bootstrapping) of exposure on risk of breast 

cancer, mediated by percent mammographic density (MD), among all women or parous women* 

  Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion  
Mediated§ 

  OR 95%CI OR 95%CI OR 95%CI   

  Parous vs nulliparous 0.87 0.60, 1.26 0.75 0.61, 0.88 0.65 0.46, 0.89 63.0% 

  Smoking ever 1.27 0.94, 1.67 1.02 0.90, 1.13 1.29 0.97, 1.67 Not mediated 

 Parous women only‡        

  Number of live births (continuous) 1.18 0.92, 1.54 0.91 0.84, 0.97 1.07 0.85, 1.35 < 

  Number of live births (3+ vs 1-2) 1.44 0.92, 2.20 0.77 0.58, 0.93 1.09 0.75, 1.53 < 

  
Age at first live birth (continuous) 1.04 1.00, 1.08 1.00 0.99, 1.02 1.04 1.00, 1.08 Not mediated 

  Age at first live birth (30+ vs <30) 1.39 0.87, 2.14 0.99 0.81, 1.15 1.37 0.85, 2.10 Not mediated 

*Mediation analysis using the SAS macro by Valeri, L., & VanderWeele, T. J. (2013) and the 95% CIs were estimated using 1000 bootstrapping; 
†Multivariate analyses adjusted for study (EMF, OB, BCIA, WISH), age at mammogram (<35 y, 35-39 y, 40-44 y, 45-49 y), percent mammographic density (continuous, %), BMI (<20, 20 to <24, 24 to <28, 28 to 32 kg/m2), 
calcification (yes or no), family history of breast cancer in a first-degree relative (yes or no), parity (yes or no), breast biopsy/aspiration/lumpectomy (ever or never), smoking (ever or never), mammogram film type (X-ray or 
Xeroradiograph); 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (1, 2, or 3+) for parity and further adjusted for age at first live birth (continuous, years);  
§Proportion mediated (PM) was calculated using the following formula if NIE is significant: PM = ORNDE (ORNIE - 1)/(ORNDE × ORNIE - 1); PM calculated to be < 0% and > 100% were denoted by “<” and “>” respectively; 
**Mediation analysis with exposure-mediator interaction for continuous BMI and BMI at age 18 was not reported due to high multicollinearity detected for the interaction term; 
Abbreviations: CI, confidence interval; OR, odds ratio; NDE, natural direct effect; NIE, natural indirect effect; PM, proportion mediated. 
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Supplementary Table 4.2. Direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic 

density (MD), excluding postmenopausal women at mammogram date* 

  Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 
Mediated§ 

  OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val   

Without exposure × MD interaction            

 Full dataset†           

  BMI (continuous, kg/m2)** 1.04 1.00, 1.08 0.016 0.94 0.92, 0.96 0.000 0.98 0.95, 1.01 0.279 > 

  Overweight/obese (BMI 25+) 1.62 1.15, 2.30 0.006 0.58 0.48, 0.71 0.000 0.95 0.67, 1.33 0.762 > 

  BMI at age 18 (continuous, kg/m2)** 1.04 0.98, 1.10 0.192 0.93 0.90, 0.95 0.000 0.96 0.91, 1.02 0.192 > 

  Overweight/obese at age 18 (BMI 25+) 1.21 0.66, 2.24 0.536 0.56 0.43, 0.74 0.000 0.68 0.36, 1.29 0.240 > 

  Breast biopsy/aspiration/lumpectomy 1.21 0.85, 1.74 0.294 1.22 1.04, 1.43 0.016 1.48 1.00, 2.18 0.050 55.3% 

  Calcification (yes vs no) 1.85 1.36, 2.51 0.000 1.22 1.07, 1.38 0.003 2.24 1.61, 3.11 0.000 31.9% 

  Calcification class (continuous score) 1.24 1.13, 1.36 0.000 1.05 1.01, 1.10 0.015 1.30 1.18, 1.44 0.000 21.2% 

  First degree family history of BC 2.24 1.50, 3.36 0.000 0.88 0.73, 1.05 0.151 1.97 1.27, 3.05 0.003 Not mediated 

  Parous vs nulliparous 0.79 0.54, 1.16 0.225 0.78 0.66, 0.93 0.005 0.62 0.41, 0.93 0.022 45.1% 

  Smoking ever 1.30 0.97, 1.75 0.082 1.00 0.89, 1.13 0.992 1.30 0.94, 1.79 0.107 Not mediated 

 Parous women only‡           

  Number of live births (continuous) 1.05 0.86, 1.29 0.626 0.89 0.81, 0.97 0.010 0.94 0.75, 1.16 0.552 > 

  Age at first live birth (continuous) 1.03 1.00, 1.07 0.083 1.00 0.98, 1.01 0.841 1.03 0.99, 1.07 0.132 Not mediated 

With exposure × MD interaction            

 Full dataset†           

  Overweight/obese (BMI 25+) 1.64 1.05, 2.57 0.031 0.58 0.45, 0.75 0.000 0.95 0.66, 1.37 0.790 > 

  Overweight/obese at age 18 (BMI 25+) 1.82 0.66, 5.03 0.251 0.41 0.21, 0.79 0.008 0.74 0.35, 1.58 0.437 > 

  Breast biopsy/aspiration/lumpectomy 1.21 0.84, 1.74 0.297 1.178 1.00, 1.39 0.053 1.43 0.97, 2.11 0.073 50.5% 

  Calcification (yes vs no) 1.78 1.29, 2.45 0.000 1.176 1.04, 1.32 0.008 2.09 1.48, 2.95 0.000 28.6% 

  Calcification class (continuous score) 1.23 1.11, 1.35 0.000 1.055 1.01, 1.10 0.015 1.30 1.17, 1.44 0.000 23.1% 

  First degree family history of BC 2.78 1.63, 4.73 0.000 0.821 0.62, 1.08 0.165 2.28 1.32, 3.93 0.003 Not mediated 

  Parous vs nulliparous 0.864 0.58, 1.29 0.477 0.770 0.64, 0.93 0.005 0.665 0.44, 1.00 0.049 59.3% 

  Smoking ever 1.280 0.94, 1.74 0.117 0.999 0.89, 1.12 0.992 1.279 0.92, 1.78 0.145 Not mediated 
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(cont.) 
Supplementary Table 4.2. Direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic 

density (MD), excluding postmenopausal women at mammogram date* 

  Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 
Mediated§ 

  OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val   

 Parous women only‡           

  Number of live births (continuous) 1.17 0.93, 1.47 0.176 0.92 0.85, 1.00 0.039 1.08 0.86, 1.36 0.515 < 

  Age at first live birth (continuous) 1.03 0.99, 1.07 0.167 1.00 0.98, 1.02 0.842 1.03 0.98, 1.08 0.264 Not mediated 

*Mediation analysis using the method and SAS macro by Valeri, L., & VanderWeele, T. J. (2013) and the 95% CIs were estimated using the delta method; 
†Multivariate analyses adjusted for study (EMF, OB, BCIA, WISH), age at mammogram (<35 y, 35-39 y, 40-44 y, 45-49 y), percent mammographic density (continuous, %), BMI (<20, 20 to <24, 24 to <28, 28 to 32 kg/m2), 
calcification (yes or no), family history of breast cancer in a first-degree relative (yes or no), parity (yes or no), breast biopsy/aspiration/lumpectomy (ever or never), smoking (ever or never), mammogram film type (X-ray or 
Xeroradiograph); 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (1, 2, or 3+) for parity and further adjusted for age at first live birth (continuous, years); 
§Proportion mediated (PM) was calculated using the following formula if NIE is significant: PM = ORNDE (ORNIE - 1)/(ORNDE × ORNIE - 1); PM calculated to be < 0% and > 100% were denoted by “<” and “>” respectively; 
**Mediation analysis with exposure-mediator interaction for continuous BMI and BMI at age 18 was not reported due to high multicollinearity detected for the interaction term; 
Abbreviations: CI, confidence interval; OR, odds ratio; NDE, natural direct effect; NIE, natural indirect effect; PM, proportion mediated. 
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Supplementary Table 4.3. Total, direct and indirect effects of percent mammographic density (PMD) on the risk of breast cancer, 

mediated by breast biopsy or calcification, among all women* 

 Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 
Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

Without exposure × MD interaction           

 Full dataset†           

  Breast biopsy/aspiration/lumpectomy 1.03 1.02, 1.03 0.000 1.00 1.00, 1.00 0.727 1.03 1.02, 1.03 0.000 Not mediated 

  Calcification (yes vs no) 1.03 1.02, 1.03 0.000 1.00 1.00, 1.00 0.021 1.03 1.02, 1.04 0.000 5.6% 

With exposure × MD interaction 

          

 Full dataset† 
          

  Breast biopsy/aspiration/lumpectomy 1.03 1.02,1.04 0.000 1.00 1.00,1.00 0.278 1.03 1.02, 1.04 0.000 Not mediated 
  

Calcification (yes vs no) 1.03 1.02, 1.03 0.000 1.00 1.00, 1.00 0.081 1.03 1.02, 1.04 0.000 Not mediated 

*Mediation analysis using the method and SAS macro by Valeri, L., & VanderWeele, T. J. (2013) and the 95% CIs were estimated using the delta method; 
†Multivariate analyses adjusted for study (EMF, OB, BCIA, WISH), age at mammogram (<35 y, 35-39 y, 40-44 y, 45-49 y), percent mammographic density (continuous, %), BMI (<20, 20 to <24, 24 to <28, 28 to 32 kg/m2), 
calcification (yes or no), family history of breast cancer in a first-degree relative (yes or no), parity (yes or no), breast biopsy/aspiration/lumpectomy (ever or never), smoking (ever or never), mammogram film type (X-ray or 
Xeroradiograph); 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (1, 2, or 3+) for parity and further adjusted for age at first live birth (continuous, years);  
§Proportion mediated (PM) was calculated using the following formula if NIE is significant: PM = ORNDE (ORNIE - 1)/(ORNDE × ORNIE - 1); 
**Mediation analysis with exposure-mediator interaction for continuous BMI and BMI at age 18 was not reported due to high multicollinearity detected for the interaction term; 
Abbreviations: CI, confidence interval; OR, odds ratio; NDE, natural direct effect; NIE, natural indirect effect; PM, proportion mediated. 
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CHAPTER 5: STUDY 2 

A Mediation Analysis of the Mayo Mammography Health Study Data 

 

 

Abstract 

 

Background: Percent mammographic density (PMD) is a strong risk factor for breast cancer. 

Less is known about the role of PMD as an intermediate marker for breast cancer risk.  

 

Methods: Data from a nested case-control study of breast cancer, including 677 cases and 1284 

matched controls, was analyzed using mediation analysis. We estimated the direct effects of 

various risk factors on risk of breast cancer and their indirect effects (i.e. effects mediated 

through PMD), as well as the proportion mediated by PMD. 

 

Results: The association between prior breast biopsy and risk of breast cancer was partially 

mediated by PMD (proportion mediated = 19.12%) in postmenopausal women, with an indirect-

effect odds ratio of 1.09 (95% CI: 1.02-1.17; P = 0.016). PMD mediated 32.13% and 14.97% of 

the increased risks associated with combined current use of estrogen and progesterone and the 

number of alcoholic drinks per month, which yielded an indirect-effect odds ratio of 1.17 (95% 

CI: 1.02-1.33; P = 0.021) and (ORNIE, 1.00; 95% CI, 1.00-1.01; P = 0.096), respectively. No 

significant mediation by PMD was observed with respect to a first-degree family history of 

breast cancer and age at menopause. There was inconsistent mediation for the effect of adult 

body mass index. 

 

Conclusions: PMD partially mediated the associations between prior breast biopsy and hormone 

replacement therapy of combined estrogen and progestin with the risk of breast cancer among 

postmenopausal women, suggesting that these risk factors at least partially influence breast 

cancer risk through changes in breast tissue composition. 
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5.1 INTRODUCTION 

 

Several independent observations suggest that mammographic breast density may be a 

potential mediator for breast cancer risk. First, high breast density on a mammogram has been 

repeatedly shown to be one of the strongest independent risk factors for breast cancer [1-4]. 

Second, mammographic density has also been shown to be associated with a wide array of risk 

factors for breast cancer such as age, menopausal status, family history of breast cancer, parity, 

age at first live birth, body mass index, physical activity, alcohol consumption, and hormone 

replacement therapy [1]. Furthermore, breast density can even be changed by several exposures or 

interventions that are also known to influence breast cancer risk [5]. For example, tamoxifen, an 

anti-estrogen, has been reported to reduce mammographic density as well as the risk of breast 

cancer [6-9]. In this context, it was proposed that some established breast cancer risk factors may 

be mediated by their intermediate effects on the mammary tissue, which is evaluated by 

mammographic densities. 

 

To test this hypothesis, several studies have attempted to assess the potential role of 

mammographic density as a mediator for breast cancer risk [10-16]. Results showed that 

mammographic density partially mediated the associations for some breast cancer risk factors such 

as childhood somatotype, being parous, history of benign breast disease, and hormone replacement 

therapy (HRT) use, but not risk factors such as a family history of breast cancer. While these 

studies have examined whether mammographic density mediates the associations with breast 

cancer risk for some risk factors, the extent of mediation was not estimated using statistical 

mediation analyses based on a counterfactual framework. Most of the studies regarding the role of 

mammographic density as a mediator were based on analysis using the traditional “difference 

method” [10, 13-15]. To our knowledge, only two studies [13, 15] used causal mediation analysis 

to evaluate the effect of a number of known risk factors for breast cancer through mammographic 

density and one of which was conducted as a secondary analysis [13].   

 

In the present study, we conducted a causal mediation analysis [17] using data from the 

Mayo Mammographic Health Study, aiming to evaluate and quantify the extent to which 

mammographic density mediated the association between various risk factors of interest, each 

factor at a time, with the risk of breast cancer risk.  



94 

 

 

5.2 METHODS 

 

Study Design and Participants 

We included data from a nested case-control study of breast cancer, the Mayo 

Mammography Health Study (MMHS). The data source, study design, and participant 

characteristics have been described in detail previously [18]. The MMHS prospectively enrolled 

patients scheduled for a screening mammogram from October 2003 through September 2006 at 

the Mayo Clinic in Rochester, MN. Women were invited to participate if they were at least 35 

years old, residents of Minnesota, Iowa, or Wisconsin (tri-state), and had no personal history of 

breast cancer. Women scheduled for a diagnostic mammogram (known or suspected breast cancer) 

were not eligible. Eligible women were mailed an invitation packet consisting of a study brochure, 

a consent form, a baseline questionnaire, and a permission form to link to state tumor registries. 

This study included 677 cases of women with an initial diagnosis of either in situ or invasive 

disease and 1284 matched controls. Controls were randomly sampled from the underlying cohort 

and were matched to cases on age, year of examination, and state of residence. This study was 

approved by the Institutional Review Boards at Mayo Clinic (Rochester, MN). 

 

Measurement of Mammographic Density 

For all cases and women in the sub-cohort, we obtained and digitized one view from the 

enrollment screen-film mammogram (2003-2006). Screen-film mammograms were digitized on 

the Array 2905 laser digitizer. Absolute dense area, absolute non-dense area (the total area minus 

the dense area), and percent mammographic density (PMD, the dense area divided by the total 

area, times 100%) were measured from digitized images of the craniocaudal mammogram view 

using the Cumulus software for computer-assisted thresholding (Canto Software, San Francisco, 

CA, USA). PMD was estimated from the contralateral breast for cases and the corresponding side 

for matched controls. All images had identifying information removed and re-oriented so that all 

images were presented consistently despite the side evaluated. Thus, the reader was blinded to 

cancer status.  
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In addition, the clinical BI-RADS four-category tissue composition assessment, 

corresponding to the enrollment mammogram, was obtained from the Mayo Clinic electronic 

medical record. Mayo Clinic attending radiologists classified each mammogram into one of four 

categories as defined in the BI-RADS lexicon during this period (American College of Radiology, 

3rd edition): a) the breast is almost entirely fat; b) there are scattered fibro glandular densities; c) 

the breast tissue is heterogeneously dense, which may lower the sensitivity of mammography; and 

d) the breast is extremely dense, which could obscure a lesion on mammography. All four 

mammogram views (craniocaudal and mediolateral oblique for ipsilateral and contralateral sides) 

contributed to the assessment of BI-RADS composition.   

 

Breast cancer risk factors and confounders 

All women were asked to complete a written questionnaire that covered mammogram 

screening behaviors; menstrual and reproductive factors; surgeries of the breast, ovaries, and/or 

uterus; use of hormone replacement therapies; medical history; family size and cancer history; use 

of non-steroidal anti-inflammatory medications; use of vitamins and complementary medicines; 

alcohol and cigarette use; physical activity; current weight and weight history; race; and education. 

Height and weight were also abstracted from the Mayo Clinic medical record at the medical visit 

closest in time to when each mammogram was collected for the study. Information on the selected 

risk factors and covariates were obtained from both medical record review and self-administered 

questionnaires at the time of mammography.  

 

Statistical Methods 

The mean and standard deviation (SD) were presented for continuous variables while 

numbers and percentages were presented for categorical variables. A causal mediation analysis 

was conducted following the approach outlined by VanderWeele and Vansteelandt [19], 

implemented by using a SAS macro that can accommodate the case-control design [20]. First, an 

unconditional logistic regression model for breast cancer was fitted on the potential risk factor and 

PMD, adjusting for matching variables and the baseline covariates. Second, a linear regression 

was fit for PMD on the potential risk factor and covariates using the controls. The regression for 

PMD and the regression for breast cancer risk were combined to obtain the ORs and 95% CIs for 

the following effects: (a) the natural direct effect (NDE) (i.e., the effect of the exposure on breast 
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cancer risk not through PMD if PMD was fixed at the level that it would have been without the 

exposure), (b) the natural indirect effect (NIE) (i.e., the effect of the exposure on breast cancer risk 

through PMD), and (c) the total association between the exposure and breast cancer risk. Despite 

a lack of statistical significance on all exposure–PMD interaction terms, we compared the results 

with and without an exposure × PMD interaction term. We used both the delta method and 

bootstrap sampling (1000 samples) to obtain 95% confidence intervals (CIs). The proportion 

mediated was estimated by the equation of ORNDE × (ORNIE -1)/(ORNDE × ORNIE -1), where ORNDE 

is the direct-effect odds ratio and ORNIE is the indirect-effect odds ratio [19]. For all analyses, PMD 

measures were square-root transformed to improve normality. The analyses were conducted on 

post- and pre-menopausal women separately. All the p-values used were two-sided. Type I errors 

were set at 0.05. All statistical analyses were performed using SAS version 9.3 (SAS Institute, 

Inc., Cary, North Carolina, USA). 

 

Sensitivity Analysis 

To assess the robustness of our results, we repeated the analyses by restricting the data 

based on menopausal status at the enrollment date. This increased the sample size of 

premenopausal women and gave the analysis a greater power. Analyses were also conducted based 

on both models with and without an exposure × PMD interaction.  

 

5.3 RESULTS 

 

The characteristics of the study population and the set of potential risk factors and selected 

confounders are shown in Table 5.1. We identified a total of 537 cases and 1021 controls who 

were postmenopausal at the time of screening mammograms. Only 20.6% of the subjects (140/263 

cases/controls) were premenopausal. The participants were largely white women (98%).  

 

Among postmenopausal women, several risk factors were found to be significantly 

associated with increased risk of breast cancer (Table 5.2). These include those women with a first-

degree family history of breast cancer (OR = 1.451; 95% CI: 1.132, 1.858), history of breast 

biopsy/lumpectomy (OR = 1.815; 95% CI: 1.410, 2.335), per year increase in age at menopause 

(OR = 1.126, 95% CI: 1.011, 1.256), combined estrogen and progesterone hormone replacement 
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therapy (HRT) use (OR = 1.932, 95% CI: 1.212, 3.070), an increasing number of alcoholic drinks 

(OR = 1.010; 95% CI: 1.000, 1.020), and higher BMI (OR = 1.032; 95% CI: 1.014, 1.051). Further 

adjustment for PMD attenuated the associations for a history of breast biopsy/lumpectomy, 

combined estrogen and progesterone HRT use, and the number of alcoholic drinks (Table 5.2). 

Among premenopausal women, no risk factor was significant. This is likely due to low power for 

the small sample size with only 140 cases and 263 controls. Therefore, a sensitivity analysis 

including subjects who were premenopausal at enrollment (191 cases and 356 controls) was 

conducted, which was able to detect a significant effect for having a first-degree family history of 

breast cancer (OR = 1.751; 95% CI: 1.097, 2.789) (Table 5.3). Further adjustment for PMD did 

not attenuate the association between first-degree family history and risk of breast cancer. 

 

The results of mediation analyses for postmenopausal women are summarized in Table 5.4 

and Supplementary Table 5.1. Women with a first-degree family history of breast cancer were 

found to have a significantly higher risk of breast cancer (ORtotal effect, 1.40; 95% CI, 1.082-1.810; 

P = 0.010). However, no significant mediation by PMD was observed for this variable (ORNIE 0.95, 

95% CI: 0.902-1.011; P = 0.170). Having a history of breast biopsy/lumpectomy was indirectly 

associated with increased risk of breast cancer through its effect on PMD (ORNIE, 1.09; 95% CI, 

1.025-1.166; P = 0.007), with a proportion of 18.7% mediated by PMD. It was also directly 

associated with breast cancer risk (ORNDE, 1.64; 95% CI, 1.269-2.120; P < 0.001) via a pathway 

independent of PMD. Women who reported usage of combined estrogen and progesterone HRT 

had a significantly increased risk of breast cancer (ORtotal effect, 1.95; 95% CI, 1.203-3.160; P = 

0.007). This association was decomposed into a significant indirect-effect odds ratio of 1.19 (95% 

CI, 1.048-1.340; P = 0.007) through PMD and a direct-effect odds ratio of 1.65 (95% CI, 1.026-

2.637; P = 0.039) independent of PMD. Overall, 32.5% of the increased risk of breast cancer 

related to using combined estrogen and progesterone HRT was attributable to higher PMD. PMD 

partially mediated the association with number of alcoholic drinks (ORNIE, 1.00; 95% CI, 1.00-

1.01; P = 0.096) but not age at menopause (ORNIE, 1.02; 95% CI, 0.92-1.14; P = 0.676).  

 

BMI at enrollment before a questionnaire was provided displayed a highly significant 

negative indirect association with breast cancer risk through PMD (ORNIE, 0.940; 95% CI, 0.92-

0.96; P=0.000), while it displayed a significant positive relationship with breast cancer risk 
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(ORNDE, 1.048; 95% CI, 1.02-1.08; P=0.003) independent of PMD. The opposing direct and 

indirect effects resulted in an overall non-significant total effect of BMI (ORtotal effect, 0.98; 95% 

CI, 0.96-1.01; P = 0.274). 

 

BMI at time of mammogram (enrollment) was associated with risk of breast cancer (ORtotal 

effect, 1.03; 95% CI, 1.009-1.046; P = 0.004). It had a significant negative indirect association with 

breast cancer risk through PMD (ORNIE, 0.931; 95% CI, 0.91-0.96; P = 0.000). However, the direct 

association acting independently of PMD was not significant, although positive (ORNDE, 1.04; 95% 

CI, 0.99-1.10; P = 0.121).  

 

The results of mediation analyses for premenopausal women are summarized in Table 5.5. 

Similarly, a first-degree family history of breast cancer was found to be a significant risk factor 

for breast cancer (ORtotal effect, 1.72; 95% CI, 1.065-2.784; P = 0.027). However, the association 

was not mediated through PMD (ORNIE, 0.98; 95% CI, 0.910-1.062; P = 0.664). 

 

Including versus excluding the exposure-mediator interaction terms did not change the 

estimates of the direct and indirect effects dramatically (Table 5.4-5.5). When the analyses for 

postmenopausal women excluding those who became postmenopausal between enrollment and the 

time of mammograms, results were similar to that seen for all women at the time of enrollment 

(Supplementary Table 5.1).  

 

5.4 DISCUSSION  

 

Our results showed that PMD partially mediated the association between prior history of a 

breast biopsy and current combined hormone replacement therapy (E+P) with the risk of breast 

cancer among postmenopausal women. However, it did not mediate the observed association 

between first-degree family history of breast cancer and the risk of breast cancer in both pre- and 

post-menopausal women.  

 

The present study estimated that about 19% of the increased risk associated with a history 

of breast biopsy is mediated through PMD among postmenopausal women. This observation of 
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significant mediation by PMD for the association between prior breast biopsy and breast cancer 

risk in postmenopausal is consistent with a previous study that included the MMHS as part of the 

data source [14]. In the study, a significant mediation by PMD of the association between prior 

breast biopsy and invasive breast cancer risk was found in both pre- and postmenopausal women, 

with mediation proportions of 17% and 24% respectively. In another study using data from the 

Nurses’ Health Study (NHS), PMD was also found to mediate the association between history of 

biopsy-confirmed benign breast disease and breast cancer risk, with 17% and 33% mediated in 

pre- and postmenopausal women respectively [13]. The observed partial mediation is also 

supported by an earlier study [21] that compared the relative risks of Gail model risk factors before 

and after adjusting for BI-RADS mammographic density categories, which showed that the 

association of having a previous biopsy with breast cancer was reduced by 13% and 19% for 

women under age 50 and those aged 50 or above respectively. Although significant mediation by 

PMD of the association between prior breast biopsy and breast cancer risk was consistently 

observed in these studies, this result should be cautiously interpreted. This is because it is difficult 

to determine the temporality between breast biopsy and PMD and a biopsy may be requested after 

detecting a high-density pattern in the mammogram. However, in our study, breast biopsy was 

assessed prior to PMD measurements. 

 

PMD was found to partially mediate the association between current use of combined 

estrogen and progestin HRT and the risk of breast cancer in postmenopausal women, with a 

mediated proportion of 32%. This result is in agreement with that of Rice et al., who analyzed data 

by pooling MMHS data with the other three case-control studies and found that 26% of the 

increased risk associated with current estrogen plus progestin HRT use was mediated by PMD. A 

study by Byrne et al. even found that the increase in breast cancer risk among postmenopausal 

women using estrogen plus progestin HRT regimen was completely mediated by the increase in 

PMD after a year of HRT treatment [16]. In our study, the total effects for the current use of any 

HRT and current estrogen-only HRT use were not significant. Thus, we did not present the 

mediated proportion. These results are supported by previous clinical trials that have demonstrated 

that postmenopausal treatment with formulations of estrogen plus progestin, is associated with an 

increase in mammographic density and risk of breast cancer [22], whereas estrogen therapy alone 

is not [23].  
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A family history of breast cancer in first-degree relatives is an established risk factor for 

breast cancer. In our study, the increased risk of breast cancer in relation to a first-degree family 

history of breast cancer was found to be independent of PMD. This result of no mediation is 

consistent with two recent studies which showed that the association with a family history of breast 

cancer was not mediated by PMD in both premenopausal and postmenopausal women [13, 14]. 

However, in another study, PMD was found to explain 14% (95% CI, 4-39%) of the association 

of family history (at least one affected first-degree relative) with breast cancer risk [10]. This 

evidence suggests that only a small portion of the association between family history of breast 

cancer and the risk of breast cancer may be mediated by PMD if any. 

 

We hypothesize that BMI at a younger age might act predominantly through its negative 

association through breast density, whereas BMI at an older age may also act positively through 

pathways independent of breast density. Thus, for young women, BMI is a protective factor acting 

mainly through reducing breast density. However, for older women (postmenopausal), other 

pathways may play a more important role, thus BMI is a risk factor for postmenopausal women. 

Although the BMI measures were not significantly associated with risk of breast cancer in our 

data, results from casual mediation analyses suggested the presence of inconsistent mediation or 

suppression, in which the direct and indirect effects had opposite directions while the total effect 

was not significant. 

 

Limitations of the study recognized by the authors include the small number of 

premenopausal women, the uncertain temporality for breast biopsy and mammograms, and the 

representativeness of the controls which are a random sample of the population in a nested case-

control design. In addition, the mediation results are based on PMD but not on other 

mammographic measures available in the study, including absolute dense area and absolute non-

dense area by the Cumulus software and the clinical BI-RADS four-category tissue composition 

assessment. We used PMD as the potential mediator because it was found to be a stronger breast 

cancer risk factor than the absolute dense area and non-dense area [3, 24]. Another reason is that 

previous studies found that Tamoxifen can reduce PMD and breast cancer risk, however, it is 

unknown whether a decrease in the dense area, an increase in the nondense area, or both were 
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responsible for the change in PMD (Norman F Boyd 2011). Therefore, it makes sense to examine 

if PMD serves as a mediator for breast cancer risk before conducting further mediation analysis 

on other potential mediators.  

 

 

5.5 CONCLUSIONS 

 

In summary, the present study demonstrated that prior breast biopsy and current combined 

hormone replacement therapy (E+P) may affect the risk of breast cancer partially through their 

effect on PMD among postmenopausal women. On the other hand, a first-degree family history of 

breast cancer and the number of alcoholic drinks per month affect breast cancer risk mainly 

through pathways independent of PMD. These findings may provide insights into the mechanisms 

involved in the development of breast cancer and highlight a potential biological pathway through 

breast density to the etiology of breast cancer.  

 

 

 

  



102 

 

TABLES 

 

Table 5.1. Selected risk factors at the time of mammography by case/control status and menopausal 

status 

 Postmenopausal Premenopausal 

 

Cases 

(N=537) 

Controls 

(N=1021) 

Cases 

(N=140) 

Controls 

(N=263) 

Mean (SD)         

    Age (years) 63.8 (9.1) 63.5 (9.5) 46.8 (5.6) 46.5 (5.1) 

    Percent mammography density (%) 16.2 (11.2) 13.8 (10.9) 25.6 (12.8) 22.4 (15.5) 

    Dense area (cm2) 23.7 (16.9) 19.5 (16.5) 31.5 (16.3) 27.2 (17.1) 

    Non-dense area (cm2) 141.7 (65.9) 141.5 (67.9) 106.3 (62.5) 119.5 (71.9) 

    Weight (LBS) 167.6 (36.1) 161.6 (36.4) 161.0 (36.8) 166.7 (43.3) 

    Height (Inches) 64.8 (2.4) 64.5 (2.4) 65.4 (2.8) 65.2 (2.6) 

    BMI (kg/m2) 29.2 (6.4) 28.1 (6.1) 27.0 (6.1) 28.0 (7.2) 

    Number of alcoholic drinks (# per month) 6.6 (12.3) 5.7 (10.3) 5.8 (9.1) 5.9 (9.2) 

    Godin Scale Score 22.0 (17.7) 22.7 (18.7) 28.7 (22.9) 27.7 (21.0) 

N (percent)     

Race or ethnicity         

    White 494 (99.2%) 948 (98.6%) 127 (98.4%) 245 (98.0%) 

    Other 4 (0.8%) 13 (1.4%) 2 (1.6%) 5 (2.0%) 

Education         

    Grade school or junior high 5 (1.0%) 10 (1.0%) 1 (0.8%) 2 (0.8%) 

    High school 132 (26.9%) 291 (30.5%) 11 (8.5%) 33 (13.2%) 

    College 253 (51.5%) 478 (50.1%) 96 (74.4%) 169 (67.6%) 

    Professional (after college) 101 (20.6%) 175 (18.3%) 21 (16.3%) 46 (18.4%) 

State         

    Minnesota 421 (78.4%) 799 (78.3%) 122 (87.1%) 236 (89.7%) 

    Wisconsin 34 (6.3%) 50 (4.9%) 4 (2.9%) 6 (2.3%) 

    Iowa 42 (7.8%) 107 (10.5%) 4 (2.9%) 8 (3.0%) 

    Unspecified 40 (7.4%) 65 (6.4%) 10 (7.1%) 13 (4.9%) 

BIRADS         

    1 96 (17.9%) 273 (26.7%) 13 (9.3%) 42 (16.0%) 

    2 243 (45.3%) 427 (41.8%) 34 (24.3%) 89 (33.8%) 

    3 171 (31.8%) 280 (27.4%) 67 (47.9%) 101 (38.4%) 

    4 27 (5.0%) 41 (4.0%) 26 (18.6%) 31 (11.8%) 

Previous breast biopsy         

    No breast surgery 372 (69.5%) 816 (80.1%) 122 (89.7%) 238 (91.5%) 

    Breast biopsy or lumpectomy 159 (29.7%) 191 (18.7%) 14 (10.3%) 19 (7.3%) 

    Other breast surgery including mastectomy 4 (0.7%) 12 (1.2%) 0 (0.0%) 3 (1.2%) 

Family history of breast cancer         

    No 383 (71.3%) 798 (78.2%) 111 (79.3%) 227 (86.3%) 

    Yes 154 (28.7%) 223 (21.8%) 29 (20.7%) 36 (13.7%) 

Age at menarche         

    9 or younger 7 (1.3%) 6 (0.6%) 2 (1.5%) 1 (0.4%) 

    10 22 (4.1%) 33 (3.2%) 4 (2.9%) 5 (1.9%) 

    11 66 (12.3%) 117 (11.5%) 11 (8.1%) 37 (14.2%) 
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Table 5.1. Selected risk factors at the time of mammography by case/control status and menopausal 

status 

 Postmenopausal Premenopausal 

 

Cases 

(N=537) 

Controls 

(N=1021) 

Cases 

(N=140) 

Controls 

(N=263) 

    12 139 (26.0%) 265 (26.0%) 29 (21.3%) 76 (29.2%) 

    13 156 (29.2%) 295 (28.9%) 52 (38.2%) 70 (26.9%) 

    14 64 (12.0%) 136 (13.3%) 16 (11.8%) 30 (11.5%) 

    15 or older 46 (8.6%) 103 (10.1%) 12 (8.8%) 28 (10.8%) 

    Unknown 35 (6.5%) 64 (6.3%) 10 (7.4%) 13 (5.0%) 

Nulliparous         

    No 466 (88.6%) 879 (87.8%) 120 (87.0%) 227 (87.0%) 

    Yes 60 (11.4%) 122 (12.2%) 18 (13.0%) 34 (13.0%) 

Parity (among parous)         

    1 45 (9.7%) 88 (10.0%) 14 (11.7%) 31 (13.7%) 

    2 159 (34.1%) 295 (33.6%) 56 (46.7%) 119 (52.4%) 

    3 131 (28.1%) 256 (29.1%) 35 (29.2%) 49 (21.6%) 

    4 67 (14.4%) 130 (14.8%) 13 (10.8%) 23 (10.1%) 

    5 64 (13.7%) 110 (12.5%) 2 (1.7%) 5 (2.2%) 

Age at first birth (among parous)         

    <30 392 (89.7%) 763 (91.6%) 82 (73.2%) 166 (77.2%) 

    30+ 45 (10.3%) 70 (8.4%) 30 (26.8%) 49 (22.8%) 

Number of children breastfed for at least a 

month (among parous) 

        

    Did not breastfeed any 221 (50.7%) 417 (50.0%) 33 (29.7%) 70 (32.7%) 

    1 to 2 children 137 (31.4%) 261 (31.3%) 46 (41.4%) 106 (49.5%) 

    3 to 5 children 71 (16.3%) 140 (16.8%) 31 (27.9%) 36 (16.8%) 

    6 to 11 children or more 7 (1.6%) 14 (1.7%) 0 (0.0%) 1 (0.5%) 

    Unknown 0 (0.0%) 2 (0.2%) 1 (0.9%) 1 (0.5%) 

Postmenopausal at enrollment         

    No 56 (10.4%) 96 (9.4%) 140 (100.0%) 263 (100.0%) 

    Yes 481 (89.6%) 925 (90.6%) 0 (0.0%) 0 (0.0%) 

Age at menopause         

    <30 3 (0.7%) 16 (2.0%) - - 

    30-39 33 (8.2%) 92 (11.7%) - - 

    40-44 49 (12.2%) 101 (12.8%) - - 

    45-49 106 (26.3%) 194 (24.7%) - - 

    50-54 163 (40.4%) 289 (36.7%) - - 

    55+ 49 (12.2%) 95 (12.1%) - - 

Birth control pill use         

    Never 189 (35.3%) 346 (34.0%) 18 (13.2%) 23 (8.8%) 

    Yes, Past 333 (62.2%) 651 (63.9%) 96 (70.6%) 190 (73.1%) 

    Yes, Current 12 (2.2%) 15 (1.5%) 21 (15.4%) 47 (18.1%) 

    Yes, Unknown 1 (0.2%) 7 (0.7%) 1 (0.7%) 0 (0.0%) 

Hormone replacement therapy use         

    Never 162 (30.3%) 310 (30.4%) 126 (92.6%) 231 (88.8%) 

    Past 238 (44.5%) 450 (44.2%) 5 (3.7%) 15 (5.8%) 

(cont.) 
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Table 5.1. Selected risk factors at the time of mammography by case/control status and menopausal 

status 

 Postmenopausal Premenopausal 

 

Cases 

(N=537) 

Controls 

(N=1021) 

Cases 

(N=140) 

Controls 

(N=263) 

    Current, E only 79 (14.8%) 168 (16.5%) 0 (0.0%) 2 (0.8%) 

    Current, P only 0 (0.0%) 1 (0.1%) 2 (1.5%) 1 (0.4%) 

    Current, E+P 40 (7.5%) 44 (4.3%) 1 (0.7%) 9 (3.5%) 

    Current, other 4 (0.7%) 21 (2.1%) 1 (0.7%) 0 (0.0%) 

    Current, unknown 12 (2.2%) 25 (2.5%) 1 (0.7%) 2 (0.8%) 

Regular alcohol use         

    No 167 (31.2%) 348 (34.2%) 30 (22.1%) 61 (23.5%) 

    Yes 368 (68.8%) 671 (65.8%) 106 (77.9%) 199 (76.5%) 

Smoking history         

    Never 327 (61.1%) 626 (61.4%) 84 (61.8%) 173 (66.5%) 

    Yes, Past 188 (35.1%) 334 (32.8%) 42 (30.9%) 68 (26.2%) 

    Yes, Current 20 (3.7%) 59 (5.8%) 10 (7.4%) 19 (7.3%) 

Frequency to work up a sweat         

    Often 73 (14.9%) 164 (17.2%) 28 (21.5%) 55 (22.3%) 

    Sometimes 271 (55.2%) 503 (52.9%) 64 (49.2%) 124 (50.2%) 

    Never/Rarely 147 (29.9%) 284 (29.9%) 38 (29.2%) 68 (27.5%) 

Godin Scale         

    Score <14 Sedentary 168 (33.9%) 334 (34.9%) 36 (27.7%) 69 (27.8%) 

    Score 14-23 Moderate 131 (26.5%) 221 (23.1%) 28 (21.5%) 51 (20.6%) 

    Score ≥24 Active 196 (39.6%) 402 (42.0%) 66 (50.8%) 128 (51.6%) 

BMI: body mass index, E: estrogen, E + P: estrogen plus progestin 

a Among parous 

 

 

  

(cont.) 
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Table 5.2. Odds ratios (ORs) for breast cancer risk unadjusted and adjusted for PMD in 

women who were postmenopausal at the time of mammogram 

Selected risk factor Cases / 

controls 

OR (95% CI) Unadjusted 

for PMD 

OR (95% CI) Adjusted 

for PMD 

BMI (kg/m2)  524/999 1.032 (1.014, 1.051) 1.063 (1.042, 1.085) 

Height (inch) (adjust for BMI) 524/999 1.039 (0.992, 1.088) 1.043 (0.995, 1.093) 

Height (inch) (adjust for weight) 525/997 1.019 (0.971, 1.069) 1.000 (0.953, 1.051) 

Weight (lbs) (adjust for height) 525/997 1.005 (1.002, 1.008) 1.010 (1.007, 1.014) 

BMI (kg/m2), current 535/1017 1.029 (1.010, 1.049) 1.062 (1.040, 1.085) 

BMI (kg/m2), 5 years ago 530/1008 1.012 (0.993, 1.031) 1.036 (1.015, 1.058) 

BMI (kg/m2), 10 years ago 525/1004 1.019 (0.998, 1.040) 1.046 (1.022, 1.070) 

Age at menarche ≤10 vs 11-14 years 524/999 1.353 (0.802, 2.256) 1.387 (0.817, 2.328) 

Age at menarche ≥15 vs 11-14 years 524/999 0.828 (0.562, 1.204) 0.824 (0.557, 1.202) 

Nulliparous versus parous a 524/999 0.925 (0.656, 1.293) 0.814 (0.573, 1.144) 

Parity per 1 child increase b 464/877 0.973 (0.897, 1.055) 0.993 (0.915, 1.077) 

Age at first birth ≥30 vs <30 years b 437/883 1.278 (0.846, 1.915) 1.189 (0.782, 1.791) 

Family history of breast cancer yes vs 

no 

524/999 1.451 (1.132, 1.858) 1.465 (1.138, 1.883) 

Previous breast biopsy yes vs no 524/999 1.815 (1.410, 2.335) 1.641 (1.269, 2.122) 

Age at menopause c 393/771 1.126 (1.011, 1.256) 1.127 (1.011, 1.259) 

HRT current vs never/former use 524/999 1.054 (0.817, 1.356) 0.931 (0.717, 1.204) 

    HRT current vs never use 524/999 1.064 (0.790, 1.433) 0.924 (0.681, 1.252) 

    HRT former vs never use 524/999 1.016 (0.785, 1.316) 0.987 (0.760, 1.284) 

HRT current E vs never/former use 524/999 0.934 (0.685, 1.264) 0.838 (0.611, 1.140) 

HRT E+P vs never/former use 524/999 1.932 (1.212, 3.070) 1.645 (1.023, 2.636) 

Number of alcoholic drinks per month, 

per drink increase 
524/999 1.010 (1.000, 1.020) 1.008 (0.998, 1.018) 

Adjusted for age (continuous), state (Minnesota, Wisconsin, Iowa, unspecified), current BMI (continuous), 

parity/age at first birth (nulliparous, parous age at first birth <30, parous age at first birth ≥30 years), previous biopsy 

(no, yes, other), and family history of breast cancer (no, yes), any HT use (current, past, never), and alcoholic drinks 

per month (continuous) 

PMD was square-root transformed 

Nulliparous versus parous a: not adjusted for parity/age at first birth 

Parity per 1 child increase b: Among parous 

Age at first birth ≥ 30 versus < 30 years b: Among parous 

Age at menopause c: categories <30, 30-39, 40-44, 45-49, 50-54, ≥55 years 
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Table 5.3. Odds ratios (ORs) for breast cancer risk unadjusted and adjusted for PMD in 

women who were premenopausal at the time of enrollment 

Selected risk factor Cases/controls OR (95% CI) 

Unadjusted for PMD 

OR (95% CI)  

Adjusted for PMD 

BMI (kg/m2)  191/356 0.985 (0.958, 1.011) 1.010 (0.978, 1.044) 

Height (inch) (adjust for BMI) 191/356 1.015 (0.946, 1.090) 1.013 (0.944, 1.089) 

Height (inch) (adjust for weight) 191/356 1.028 (0.956, 1.107) 1.005 (0.933, 1.084) 

Weight (lbs) (adjust for height) 191/356 0.998 (0.993, 1.002) 1.002 (0.997, 1.008) 

BMI (kg/m2), current 135/259 0.974 (0.941, 1.006) 1.002 (0.962, 1.043) 

BMI (kg/m2), 5 years ago 135/257 0.973 (0.938, 1.006) 1.000 (0.959, 1.042) 

BMI (kg/m2), 10 years ago 135/256 0.976 (0.936, 1.015) 1.011 (0.963, 1.059) 

Age at menarche ≤10 vs 11-14 years 191/356 2.571 (0.908, 7.569) 2.734 (0.950, 8.156) 

Age at menarche ≥15 vs 11-14 years 191/356 0.894 (0.471, 1.636) 0.838 (0.440, 1.543) 

Nulliparous vs parous a 191/356 1.157 (0.813, 1.665) 1.331 (0.928, 1.932) 

Parity per 1 child increase b 162/307 0.922 (0.762, 1.112) 0.939 (0.774, 1.134) 

Age at first birth ≥30 vs <30 years b 153/292 1.424 (0.859, 2.345) 1.418 (0.853, 2.341) 

Family history of breast cancer yes 

vs no 

191/356 1.751 (1.097, 2.789) 1.787 (1.115, 2.858) 

Previous breast biopsy yes vs no 191/356 1.607 (0.943, 2.727) 1.421 (0.823, 2.437) 

Number of alcohol drinks per month, 

per drink increase 

191/356 0.992 (0.972, 1.011) 0.990 (0.970, 1.009) 

Adjusted for age (continuous), current BMI (continuous), parity/age at first birth (nulliparous, parous age at first 

birth <30, parous age at first birth ≥30 years), previous biopsy (no, yes, other), and family history of breast cancer 

(no, yes), and alcoholic drinks per month (continuous) 

PMD was square-root transformed 

Nulliparous versus parous a: not adjusted for parity/age at first birth 

Parity per 1 child increase b: Among parous 

Age at first birth ≥30 versus <30 years b: Among parous 
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Table 5.4. Total, direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic density 

(PMD), among postmenopausal women* 

 Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 

Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

Without exposure × PMD interaction           

 Full dataset†           

  BMI (continuous, kg/m2) 1.06 1.042, 1.093 <.001 0.97 0.956, 0.977 <.001 1.03 1.009, 1.046 0.004 < 

  BMI (continuous, kg/m2), current 1.06 1.038, 1.084 <.001 0.97 0.956, 0.977 <.001 1.02 1.005, 1.045 0.013 < 

  BMI (continuous, kg/m2), 5 years ago 1.04 1.014, 1.057 0.001 0.98 0.966, 0.986 <.001 1.01 0.991, 1.030 0.296 < 

  BMI (continuous, kg/m2), 10 years ago 1.05 1.022, 1.071 <.001 0.97 0.962, 0.983 <.001 1.02 0.996, 1.040 0.114 < 

  Age at menarche ≤10 vs 11-14 years 1.39 0.823, 2.337 0.219 1.01 0.895, 1.135 0.896 1.40 0.819, 2.388 0.220 ~ 

  Nulliparous vs parous* 0.81 0.577, 1.151 0.245 1.13 1.040, 1.218 0.003 0.92 0.646, 1.301 0.627 ~ 

  First degree family history of BC 1.47 1.140, 1.884 0.003 0.95 0.902, 1.011 0.170 1.40 1.082, 1.810 0.010 Not mediated 

  Breast biopsy/aspiration/lumpectomy 1.64 1.269, 2.120 <.001 1.09 1.025, 1.166 0.007 1.79 1.380, 2.330 < .001 18.7% 

  Age at menopause 1.13 1.012, 1.260 0.030 1.00 0.976, 1.021 0.877 1.13 1.008, 1.260 0.036 Not mediated 

  HRT current vs never/former use 0.93 0.718, 1.206 0.587 1.13 1.056, 1.201 <.001 1.05 0.807, 1.361 0.726 ~ 

  HRT current E vs never/former use 0.84 0.614, 1.144 0.265 1.11 1.032, 1.186 0.004 0.83 0.676, 1.270 0.637 ~ 

  HRT current E+P vs never/former use 1.65 1.026, 2.637 0.039 1.19 1.048, 1.340 0.007 1.95 1.203, 3.160 0.007 32.5% 

        Alcoholic drinks per month 1.01 0.999, 1.018 0.095 1.00 1.000, 1.004 0.096 1.01 1.000, 1.020 0.044 14.97% 

 Parous women only‡           

  Parity (continuous) 0.99 0.915, 1.077 0.864 0.99 0.970, 1.003 0.113 0.98 0.902, 1.064 0.623 ~ 

  Age at first live birth 30+ vs <30 years 1.18 0.782, 1.784 0.430 1.09 0.995, 1.199 0.064 1.29 0.846, 1.965 0.237 ~ 

With exposure × PMD interaction           

 Full dataset†           
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(cont.) 

Table 5.4. Total, direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic density 

(PMD), among postmenopausal women* 

 Natural Direct Effect (NDE) Natural Indirect Effect (NIE) Total Effect (TE) 
Proportion 

Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

  Age at menarche ≤10 vs 11-14 years 1.34 0.776, 2.299 0.297 1.01 0.922, 1.098 0.897 1.34 0.773, 2.335 0.296 ~ 

  Nulliparous vs parous* 0.79 0.551, 1.143 0.214 1.18 1.032, 1.343 0.020 0.93 0.641, 1.361 0.724 ~ 

  First degree family history of BC 1.54 1.153, 2.068 0.004 0.94 0.863, 1.017 0.120 1.45 1.078, 1.943 0.014 Not mediated 

  Breast biopsy/aspiration/lumpectomy 1.64 1.269, 2.121 <.001 1.09 1.012, 1.178 0.023 1.79 1.375, 2.334 <.001 18.7% 

  Age at menopause 1.13 1.013, 1.263 0.029 1.00 0.981, 1.017 0.877 1.13 1.011, 1.262 0.031 Not mediated 

  HRT current vs never/former use 0.92 0.703, 1.197 0.526 1.15 1.049, 1.251 0.002 1.05 0.805, 1.374 0.714 ~ 

  HRT current E vs never/former use 0.83 0.604, 1.138 0.245 1.12 1.017, 1.243 0.022 0.93 0.676, 1.286 0.668 ~ 

  HRT current E+P vs never/former use 1.62 0.985, 2.667 0.057 1.20 0.968, 1.498 0.095 1.95 1.199, 3.177 0.007 34.3% 

        Alcoholic drinks per month 1.01 0.999, 1.019 0.086 1.00 1.000, 1.004 0.098 1.01 1.001, 1.021 0.040 14.99% 

 Parous women only‡           

  Number of live births (continuous) 1.01 0.920, 1.099 0.906 0.99 0.973, 1.004 0.138 0.99 0.907, 1.088 0.888 ~ 

  Age at first live birth 30+ vs <30 years 1.21 0.790, 1.840 0.385 1.05 0.957, 1.163 0.280 1.27 0.835, 1.937 0.262 ~ 

*Postmenopausal women at the time of mammogram. Mediation analysis using the SAS macro by Valeri, L., & VanderWeele, T. J. (2013) and the 95% CIs were estimated using the delta method; 
†Multivariate analyses adjusted for age (continuous), current BMI (continuous), parity/age at first birth (nulliparous, parous age at first birth <30, parous age at first birth >=30), previous biopsy (no, 
yes, unknown), family history of breast cancer (no, yes, unknown), any HT use (current vs past/never), and drinks per month (continuous); 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (continuous) for parity/age at first birth and further adjusted for age at 
first live birth (continuous, years); 
Nulliparous versus parous *: not adjusted for parity/age at first birth; 
§Proportion mediated (PM) was calculated using the following formula if NIE is significant: PM = ORNDE (ORNIE - 1)/(ORNDE × ORNIE - 1); PM calculated to be < 0% and > 100% were denoted by “<” 
and “>” respectively; It was not calculated (notated using symbol ~) if the total effect is not significant; 
**Mediation analysis with exposure-mediator interaction for continuous BMI was not reported due to high multicollinearity detected for the interaction term; 
Abbreviations: CI, confidence interval; OR, odds ratio; NDE, natural direct effect; NIE, natural indirect effect; PM, proportion mediated. 
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Table 5.5. Total, direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic density 

(PMD), among premenopausal women* 

 Natural Direct (NDE) Natural Indirect (NIE) Total 
Proportion 

Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

Without exposure × PMD interaction           

 Full dataset†           

  BMI (continuous, kg/m2)** 1.01 0.974, 1.041 0.689 0.98 0.956, 0.995 0.015 0.98 0.955, 1.009 0.192 ~ 

  Age at menarche ≤10 vs 11-14 years 2.69 0.932, 7.755 0.067 0.92 0.758, 1.129 0.443 2.49 0.848, 7.287 0.097 ~ 

  Nulliparous vs parous 1.05 0.615, 1.809 0.847 1.06 0.967, 1.157 0.224 1.11 0.647, 1.920 0.695 ~ 

  First degree family history of BC 1.75 1.090, 2.816 0.021 0.98 0.910, 1.062 0.664 1.72 1.065, 2.784 0.027 Not mediated 

  Breast biopsy/aspiration/lumpectomy 1.49 0.861, 2.568 0.154 1.07 0.966, 1.178 0.199 1.59 0.918, 2.742 0.098 ~ 

  Alcoholic drinks per month 0.99 0.968, 1.008 0.233 1.00 0.999, 1.005 0.202 0.99 0.970, 1.010 0.325 ~ 

 Parous women only‡           

  Parity (continuous) 0.94 0.778, 1.138 0.529 0.97 0.940, 1.007 0.119 0.92 0.756, 1.109 0.366 ~ 

  Age at first live birth 30+ vs <30 years 1.44 0.871, 2.380 0.155 1.00 0.929, 1.077 0.998 1.44 0.866, 2.393 0.160 ~ 

With exposure × PMD interaction           

 Full dataset†           

  Age at menarche ≤10 vs 11-14 years 5.78 0.599, 55.78 0.129 0.73 0.304, 1.738 0.474 4.20 0.509, 34.76 0.183 ~ 

  Nulliparous vs parous 1.04 0.603, 1.795 0.886 1.08 0.935, 1.245 0.298 1.12 0.645, 1.954 0.682 ~ 

  First degree family history of BC 1.72 1.072, 2.773 0.025 0.99 0.949, 1.037 0.718 1.71 1.061, 2.755 0.027 Not mediated 

  Breast biopsy/aspiration/lumpectomy 1.52 0.862, 2.677 0.148 1.13 0.928, 1.369 0.228 1.71 0.935, 3.136 0.082 ~ 

  Alcoholic drinks per month 0.99 0.969, 1.010 0.298 1.00 0.999, 1.006 0.197 0.99 0.971, 1.012 0.418 ~ 

 Parous women only‡           

  Number of live births (continuous) 0.98 0.795, 1.200 0.822 0.98 0.947, 1.024 0.427 0.96 0.776, 1.191 0.718 ~ 
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(cont.) 

Table 5.5. Total, direct and indirect effects of exposure on risk of breast cancer, mediated by percent mammographic density 

(PMD), among premenopausal women* 

 Natural Direct (NDE) Natural Indirect (NIE) Total 
Proportion 

Mediated§ 

 OR 95%CI p-val OR 95%CI p-val OR 95%CI p-val  

  Age at first live birth (continuous) 1.44 0.867, 2.380 0.160 1.00 0.924, 1.082 0.998 1.44 0.862, 2.395 0.165 ~ 

*Premenopausal women at enrollment. Mediation analysis using the SAS macro by Valeri, L., & VanderWeele, T. J. (2013) and the 95% CIs were estimated using the delta method; 
†Multivariate analyses adjusted for age (continuous), current BMI (continuous), parity/age at first birth (nulliparous, parous age at first birth <30, parous age at first birth >=30), previous biopsy (no, 
yes, unknown), family history of breast cancer (no, yes, unknown), and drinks per month (continuous); 
‡Multivariate analyses restricted to parous women. In addition to risk factors listed in footnote †, replaced number of live births (continuous) for parity/age at first birth and further adjusted for age at 
first live birth (continuous, years); 
Nulliparous versus parous *: not adjusted for parity/age at first birth; 
§Proportion mediated (PM) was calculated using the following formula if NIE is significant: PM = ORNDE (ORNIE - 1)/(ORNDE × ORNIE - 1); PM calculated to be < 0% and > 100% were denoted by “<” 
and “>” respectively; It was not calculated (notated using symbol ~) if the Total effect is not significant; 
**Mediation analysis with exposure-mediator interaction for continuous BMI was not reported due to high multicollinearity detected for the interaction term; 
Abbreviations: CI, confidence interval; OR, odds ratio; NDE, natural direct effect; NIE, natural indirect effect; PM, proportion mediated. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 

6.1 SUMMARY 

6.1.1 Comparison of Study Findings 

 

This section aims to compare the results from the Seattle study and the Mayo study. While 

the subjects in the Seattle study were mainly premenopausal women, those in the Mayo studies 

were mostly postmenopausal. Although the characteristics of the subjects differ, both studies found 

similar conclusions regarding mediation for some of the breast cancer risk factors. This 

comparison is summarized in Table 6.1.  

 

The first breast cancer risk factor with consistent findings regarding mediation is a first-

degree family history of breast cancer. Both studies consistently found that the increased risk of 

breast cancer due to a history of breast cancer in the first-degree family member was not mediated 

by mammographic density, regardless of pre- or postmenopausal status. This indicates that a first-

degree family history of breast cancer may increase breast cancer risk through pathways 

independent of mammographic density. Therefore, for women who have an increased risk of breast 

cancer because of a first-degree family history of breast cancer, having a lower breast density 

would not decrease their breast cancer risk.  

 

The second breast cancer risk factor with a consistent finding regarding mediation is a 

history of breast biopsy. Both studies showed that a portion (18.7-83.1%) of the excess risk in 

relation to a history of breast biopsy was mediated by percent mammographic density. In the 

Seattle study, partial mediation was found for the increased risk associated with prior identification 

of breast calcifications. This suggests that breast lesions such as a history of breast biopsy and 

calcifications on mammograms may increase breast cancer risk through increasing breast density. 

However, the results must be interpreted with caution given that it is unknown whether breast 

lesions occur after an increase in breast density. We cannot rule out the possibility that it may 

occur before or just at the same time as the breast density changes.   

 

The third breast cancer risk factor with a consistent finding regarding mediation is BMI. 

Both studies observed inconsistent mediation or suppression for adult BMI. Suppression occurs 
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when there are multiple pathways with opposing directions between a risk factor and an outcome. 

On the one hand, increasing BMI has been found to be negatively associated with percent 

mammographic density [1-3], which in turn would reduce breast cancer risk. On the other hand, 

increasing BMI appeared to increase breast cancer risk through pathways independent of percent 

mammographic density. The overall total effect depends on these two opposing effects, which may 

seem to disappear when these two effects cancel out each other. This may be the reason why the 

total effects for BMI among pre-menopausal women were found to be not significant. However, 

the total effect for current BMI among postmenopausal women was found to be positive and 

significant. We observed that the direct effect among postmenopausal women independent of 

mammographic density appeared to be stronger than the direct effect via mammographic density. 

This observation supports the hypothesis that the increased risk of breast cancer associated with 

greater BMI in postmenopausal women is largely mediated through pathways independent of 

mammographic density such as those involving estrogen levels. This can also explain why BMI 

appeared to affect the risk of breast cancer for pre- and postmenopausal women differentially. 

  

Among the reproductive risk factors, nulliparity is the one most likely to be mediated by 

mammographic density. Although the total effect was not significant in the Mayo study, the NIE 

was found to be significant in both studies, indicating a potential mediation. As for postmenopausal 

hormone replacement therapy, current use of combined estrogen and progestin was found to be 

32.5% mediated by percent mammographic density in the Mayo data.  However, this factor was 

not considered in the Seattle data set because women in the Seattle study had their mammograms 

before age 50 years old and less than 10% of them used hormone replacement therapy, a majority 

of whom took the hormone replacement therapy after their mammographic density measures.  

 

6.1.2 Comparison of Study Findings to the Literature 

 

This section aims to compare the results based on the Seattle and Mayo datasets to the 

findings from the literature. Despite heterogeneous participant characteristics among studies, some 

of the findings regarding mediation were found to be consistent with other studies. The comparison 

is summarized in Table 6.2. 
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The findings from the Seattle and Mayo studies are in general consistent with the literature 

for some of the risk factors (Table 6.2). Percent mammographic density was found to partially 

mediate the associations between a history of a breast biopsy and current use of combined estrogen 

and progesterone hormone replacement therapy with risk of breast cancer, suggesting that these 

risk factors at least partially influence breast cancer risk through changes in breast tissue density. 

On the other hand, all studies consistently showed that percent mammographic density did not 

mediate the associations between family history of breast cancer and breast cancer risk in both pre- 

and postmenopausal women. Furthermore, inconsistent mediation or suppression was observed for 

adult BMI across all studies. For other risk factors, further studies are needed to determine the 

mediation effect of mammographic density given inconsistent results.   

 

6.2 CONCLUSIONS 

 

In conclusion, percent mammographic density partially mediated the associations between 

prior breast biopsy and breast cancer risk in both pre- and postmenopausal women as well as 

mediated the association with combined hormone replacement therapy use of estrogen and 

progesterone among postmenopausal women. However, the mediation results for prior breast 

biopsy must be interpreted with caution given that a causal relationship has not been established 

between breast lesions (reflected by a breast biopsy) and an increase in breast density (detected in 

a mammogram). We found that only 10-33% of the association between current use of combined 

HRT and breast cancer risk was mediated by percent mammographic density. While there might 

be a potential mediation for the association between ever parous and current use of HRT overall 

with the risk of breast cancer, further studies are needed to confirm the mediation effect. A 

suppression effect or inconsistent mediation was observed for adult BMI. For the rest of the risk 

factors, there appeared to be not much mediation. Particularly, the increased risk in relation to a 

family history of breast cancer and older age at menopause was found to be not mediated by 

percent mammographic density. This work suggests that the utility of percent mammographic as 

an intermediate marker of breast cancer risk may be limited. Additional research is necessary to 

confirm these observations as well as to explore the extent to which mammographic density 

mediates the associations with other established breast cancer risk factors. 
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TABLES 

 

Table 6.1. Comparison of causal mediation analysis results between the Seattle Data and the Mayo Data 

Risk Factor Seattle Study 

(Case-control) 

Mayo Study 

(Nested case-control) 

Conclusions 

 
Mostly Premenopausal Mostly Postmenopausal 

 

 
TE NIE PM TE NIE PM 

 

1st Degree family history of BC sig* ns Not mediated sig* ns Not mediated Not mediated 

Previous breast biopsy/lumpectomy sig sig* 83.1% sig* sig* 18.7% Partially mediated 

Breast calcifications classification sig* sig* 20.5% ~ ~ ~ Partially mediated 

Parous vs nulliparous sig* sig* 48.6% ns sig* Not calculated Partially mediated 

Parity per 1 child increase (parous only) ns sig* Not calculated ns ns Not calculated Not determined 

Age at 1st live birth (parous only) sig* ns Not mediated ns sig Not calculated Not mediated  

(premenopausal women) 

Age at menopause ~ ~ ~ sig* ns Not mediated Not mediated 

HRT, current vs never/former ~ ~ ~ ns sig* Not calculated Not determined 

HRT (E), current vs never/former ~ ~ ~ ns sig* Not calculated Not determined 

HRT (E+P), current vs never/former ~ ~ ~ sig* sig* 32.5% Partially mediated 

Smoking ever vs never sig ns Not mediated ~ ~ ~ Not mediated 

Alcoholic drinks per month ~ ~ ~ sig* sig 14.97% Partially mediated 

BMI (kg/m2), adult ns sig* Inconsistent 

mediation 

(NIE-, NDE+) 

~ ~ ~ 

Inconsistent mediation 

BMI (kg/m2), age 18 years ns sig* Inconsistent 

mediation 

(NIE-, NDE+) 

~ ~ ~ 

BMI (kg/m2), current ~ ~ ~ sig* 

(+) 

sig* Inconsistent 

mediation (NIE-, 

NDE+) 

BMI (kg/m2), 5 years ago ~ ~ ~ ns sig* Inconsistent 

mediation 
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(cont.) 

Table 6.1. Comparison of causal mediation analysis results between the Seattle Data and the Mayo Data 

Risk Factor Seattle Study 

(Case-control) 

Mayo Study 

(Nested case-control) 

Conclusions 

 
Mostly Premenopausal Mostly Postmenopausal 

 

 
TE NIE PM TE NIE PM 

 

(NIE-, NDE+) 

BMI (kg/m2), 10 years ago ~ ~ ~ ns sig* Inconsistent 

mediation 

(NIE-, NDE+) 

Abbreviations: BC: breast cancer; E: estrogen; E+P: estrogen plus progesterone; BBD: Benign breast disease; TE: total effect; NIE: 

natural indirect effect; NDE: natural direct effect; PM: proportion mediated; sig: significant (p-value <0.1, p-value <.05 if followed by 

an asterisk (*)), ns: not significant 
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Table 6.2. Comparison of our causal mediation analysis results to other studies 

Risk Factor Seattle & Mayo 

study results 

Literature 

Review 

(Chapter 2) 
 

Rice M. et al. 2016, 2018 [4, 5] Summary 

Premenopausal Postmenopausal 

1st Degree family 

history of BC 

Not mediated Small PE 

(≤14%) 

Not mediated Not mediated Not mediated 

Prior breast 

biopsy/BBD 

Partially mediated 

(PM = 18.7-83.1%) 

PE = 12-73% PE = 17%  PE = 24%-33% 

 

Partially Mediated 

Ever parous Partially mediated  

(PM = 48.6%, 

premenopausal) 

PE = 14-52% TE (ns), PE = 40-

52% (ns) 

Either not mediated or 

PE = 43-52%  

Further studies are 

needed 

Parity per child 

increase (parous 

only) 

Not determined Inconclusive Not mediated Not mediated Further studies are 

needed 

Age at 1st live birth 

(parous only) 

Not mediated 

(premenopausal 

women) 

PE = 16-17% Not mediated  PE = 13-16% Not mediated for 

premenopausal 

women 

Age at menopause Not mediated  ~ ~ Not mediated Likely not mediated 

HRT, current vs 

never/former 
 

Not determined PE = 10-37% ~ 
 

PE = 22-37% 

 

Further studies are 

needed 

HRT (E), current 

vs never/former 

Not determined Inconclusive ~ PE = 69% Further studies are 

needed 

HRT (E+P), 

current vs 

never/former 

Partially mediated 

(PM = 32.5%) 

PE = 10-26% ~ PE = 26% Partially mediated  
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(cont.) Table 6.2. Comparison of our causal mediation analysis results to other studies 

Risk Factor Seattle & Mayo 

study results 

Literature 

Review 

(Chapter 2) 
 

Rice M. et al. 2016, 2018 [4, 5] Summary 

Premenopausal Postmenopausal 

Smoking ever vs 

never 

Not mediated ~ ~ ~ Further studies are 

needed 

Alcoholic drinks 

per month 

Partially mediated 

(PM = 14.97%) 

~ Not mediated PE = 16-73% (ns) Further studies are 

needed 

Adult BMI Inconsistent 

Mediation 

All |PE| > 

100% 

TE (ns), IE (-) DE 

(+) 

TE (+), IE (-) DE (+) Inconsistent 

Mediation 

Abbreviations: BC: breast cancer; E: estrogen; E+P: estrogen plus progesterone; BBD: Benign breast disease; TE: total effect; IE: 

indirect effect; DE: direct effect; PM: proportion mediated; PE: proportion explained; sig: significant; ns: not significant 
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