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Abstract

We present methodologies for reduced order modeling of convection dominated flows. Accordingly,

three main problems are addressed.

Firstly, an optimal manifold is realized to enhance reducibility of convection dominated flows.

We design a low-rank auto-encoder to specifically reduce the dimensionality of solution arising from

convection-dominated nonlinear physical systems. Although existing nonlinear manifold learning

methods seem to be compelling tools to reduce the dimensionality of data characterized by large

Kolmogorov n-width, they typically lack a straightforward mapping from the latent space to the

high-dimensional physical space. Also, considering that the latent variables are often hard to

interpret, many of these methods are dismissed in the reduced order modeling of dynamical systems

governed by partial differential equations (PDEs). This deficiency is of importance to the extent

that linear methods, such as principle component analysis (PCA) and Koopman operators, are still

prevalent. Accordingly, we propose an interpretable nonlinear dimensionality reduction algorithm.

An unsupervised learning problem is constructed that learns a diffeomorphic spatio-temporal

grid which registers the output sequence of the PDEs on a non-uniform time-varying grid. The

Kolmogorov n-width of the mapped data on the learned grid is minimized.

Secondly, the reduced order models are constructed on the realized manifolds. We project the

high fidelity models on the learned manifold, leading to a time-varying system of equations. Moreover,

as a data-driven model free architecture, recurrent neural networks on the learned manifold are

trained, showing versatility of the proposed framework.

Finally, a stabilization method is developed to maintain stability and accuracy of the projection

based ROMs on the learned manifold a posteriori. We extend the eigenvalue reassignment method of

stabilization of linear time-invariant ROMs, to the more general case of linear time-varying systems.

Through a post-processing step, the ROMs are controlled using a constrained nonlinear lease-square
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minimization problem. The controller and the input signals are defined at the algebraic level, using

left and right singular vectors of the reduced system matrices. The proposed stabilization method is

general and applicable to a large variety of linear time-varying ROMs.
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Chapter 1

Introduction

Numerical simulations of nonlinear fluid flow systems often require very large computational resources.

This can be especially true in the case of high-Reynolds number flows, compressible flows, and

combustion, where very fine spatial and temporal discretization are required to adequately resolve

and propagate the flow states. These computational costs often hinder the use of high-fidelity

computer simulations for applications where repeated realizations of the system are required [3–5].

These applications include, for example, interdisciplinary design and shape optimization [6–11],

uncertainty quantification (UQ) [12–15], and real-time control [16, 17]. There are, therefore,

significant engineering and scientific benefits to developing and studying model order reduction

(MOR) approaches that seek to reduce the size and cost of the computational models while minimizing

the loss of physical fidelity.

Projection-based or artificial neural network-based model order reduction approaches are of the

two generally accepted approaches to overcome this challenge. The goal is to leverage the abundance

of computational resources in the off-line stage in order to develop low-cost models capable of

delivering real-time/low-cost solutions in the on-line stage. The investment in the off-line stage can

often be justified by frequent realizations or limited resources in the on-line stage.

Reduced Order Models (ROMs), by definition, are particularly efficient in representing systems

with identifiable low-rank coherent structures [18], where the system states can be reproduced on

a manifold using a relatively low number of bases. In the context of linear time-invariant (LTI)

systems, the rank of the system is described precisely by the Hankel singular values of the system [4].

Similarly, for nonlinear and/or parameterized systems the rate of decay of the singular values of

a matrix of snapshots of the solution, is usually used as a measure for the projection-based ROM

efficiency [4, 19–26]. The fast decay of singular values corresponding to elliptic and parabolic partial

differential equations (PDEs) are well studied [27–29]. In the field of fluid dynamics, examples of
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such problems are low-Reynolds number flow, where the diffusion term dominates the dynamics.

Contrarily, in a large class of engineering problems, such as convection dominated flows featuring

traveling wave-like solutions with moving sharp gradients, such as shocks and interfaces, the rate

of decay of the singular values is substantially slower, and unfortunately the first premise of an

efficient ROM cannot be met. Therefore, to construct efficient ROMs of high-Reynolds number

flows, supersonic flows, acoustic waves, and multi-phase flows with distinct moving interfaces, the

more fundamental problem of reducibility of the system has to be resolved. Similar deficiencies also

prevail outside the field of fluid dynamics, examples include reduction of models in computational

finance [30] and spread of infectious diseases [31], as well as different applications in image processing

such as object tracking [32]. Formally, the Kolmogorov n-width of the solution space indicates how

close the n-dimensional subspaces can approximate the state-space.

Even in the most modern MOR approaches the state variables are approximated on linear

subspaces [4, 33–40]. Typically, these subspaces are identified via Proper Orthogonal Decomposition

(POD) [41–47], Dynamic Mode Decomposition (DMD) [48–55], balanced POD [56, 57] (based on

balanced truncation [58]), and reduced basis methods [59]. Many of these linear low-dimensional

subspaces can be replicated in an artificial neural networks; however, the cost of training of such

architectures are considerably higher. The appeal of neural networks is their capability to identify

the nonlinear manifolds simply by using nonlinear activation functions, and therefore enhancing

reducibility. However, these universal approximators are developed without considering the physics

of the problems and therefore lack interpretability.

Over the years, a large variety of MOR methodologies have been proposed to address reduction

of convection dominated flow. These method are mostly centered on the traditional projection-based

models. However, there is a more recent growing attention on the artificial neural network-based

(ANN) models. The attempts to address reduction of convection-dominated flows can be summarized

in three main categories.

In the first family of methods, symmetries or self-similarities concealed in the system or data are

exploited via different forms of transformations (interpolation, scaling, rotation, or translation) [22,

45, 60–65]. Rowley and Marsden [60] apply the Karhunen-Loéve decomposition to nonlinear one-

dimensional equations with continuous translational symmetry by introducing a method to find

reconstruction equations for such problems. The amount of shifts in the reconstruction equations
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are a function of time and are determined by template fitting [66] or centering [67]. The method is

extended using Lie algebra to accommodate rescaling in time [61]. Mowlavi and Sapsis [64] extend

the approach to stochastic systems. Rim et al. [22] propose an iterative algorithm called transport

reversal that decomposes the snapshot matrix into multiple shifting profiles. The transport reversal

matrix dictates the required shift of the profile to minimize the distance between the initial condition

and the solution in a later time. This method is extensible to multidimensional problems via the

Radon transform [68]. Another set of closely related approaches incorporate the transformations in

the definition of the bases, e.g. Lagrangian DMD (LDMD) [21] or shifted POD (sPOD) [23, 69–71].

In the latest efforts, Mendible et al. [26] develop an unsupervised machine learning algorithm based

on a library of candidate wave-speeds to generalize the sPOD modes with time-varying speeds. In

another series of approaches, a spatio-temporal domain using time-varying maps are learned, these

maps are trained to track the traveling features of the solution [72, 73].

In the second family of methods, global bases are replaced with local bases [74–76] or split

bases [77]. Amsallem et al. [74] formulate the criteria to partition the domain (time or variable-space)

into sub-regions in which each sub-region is assigned with corresponding reduced-order bases. The

sub-region selection procedure scales with the dimension of the low-order model, rather than the

high-fidelity model, to maintain the computational efficiency. Carlberg [77] enriches the basis by

splitting a given basis vector into several vectors which minimizes the error for a quantity of interest.

Lucia [75] decomposes the domain into overlapping subdomains to isolate the region containing

translating shocks. The solution is ensured to be smooth using constraints in the optimization-based

solver.

Finally, in the third family of methods, traditional MOR is generalized by adding some form of

temporal dependency in the spatial bases [20, 26, 63, 78]. In Iollo and Lombardi [20], transport and

diffusion phenomena are decoupled and treated independently. Transport is modeled by solving

an optimal transport problem while diffusion is expressed via traditional, stationary global modes.

Finally, in Gerbeau and Lombardi [63], the spatial bases are evolved in time using the eigen-bases

of the governing PDEs.

In this thesis, we address the problem of irreducibility regardless of the type of the reduced order

model, i.e. we propose a low-rank registration-based manifold to decrease the Kolmogorov n-width

of the solution space.
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1.1 Motivations

Despite the efficacy and success of tools such as POD, it is well known that linear dimensionality

reduction techniques often miss important convection-dominated structures in the data. Consider,

for example, the scalar linear convection equation



∂w

∂t
+ ∂w

∂x
= 0, (x, t) ∈ [0,∞)× [0, 1],

w(x, 0) = 0.8 + 0.5 e−(x−0.3)2/0.052
,

w(0, t) = 0.8.

(1.1)

This initial value problem models a flow in a one-dimensional domain and has the exact solution

w(x, t) = w(x−t, 0). The exact solution to this equation, and the corresponding POD approximations

using k = 5 and k = 10 POD modes are given in Fig. 1.1a, Fig. 1.1b, and Fig. 1.1c, respectively.

The contour plots illustrate the solution in the x− t plane while the line plots show the solution at

t ∈ {0, 1/3, 2/3, 1}. Despite the relative simplicity of the governing equation, this particular solution

clearly violates the assumption that the solution can be accurately approximated using a small linear

subspace. Moreover, because the POD decomposition is optimal, no other subspace can be expected

to outperform the POD solutions illustrated in Fig. 1.1. The solutions are fundamentally high-rank

and therefore, cannot be efficiently compressed via linear dimensionality reduction techniques such

as POD.

It must also be emphasized that the presence of a convective term is not a necessary nor sufficient

condition for this bottleneck. Firstly, it is not a sufficient condition because not all solutions of the

convection equation are high-rank. For example, the solution for initial conditions w0 = sin(x) in the

domain (x, t) ∈ [0, 2π]× [0, T ] with periodic boundary conditions is exactly rank two, and therefore,

would be reproduced exactly - without error - using exactly two POD modes. Secondly, it is not a

necessary condition because high-rank solutions often arise in raw data-sets. For example, consider

the well known benchmark problem in machine learning and computer vision – a data-set comprised

of a rotated character “A”. The character “A” is stored in a 50× 50 matrix and is rotated a total

of 90 degrees with 3 degrees increments resulting in a snapshot matrix of dimension 2500× 31. A

representative sample of the snapshots is shown in Fig. 5.1a while a single POD mode reconstruction

is illustrated in Fig. 5.1b. As expected, a linear dimensionality approach such as POD is not capable
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of extracting the intrinsic low-dimensional characteristics of this problem.
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Figure 1.1: Traditional POD approximations of a solution of the scalar convection equation.

(a) Snapshots

(b) k = 1 POD approximation of the snapshots

Figure 1.2: 90 degrees rotation of character “A”
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1.2 Contributions

The objective of this thesis is to develop an accurate and stable low-rank reduced order model for

convection dominated nonlinear flows. The major contribution of this work are as follows:

1. An efficient and low-rank registration-based auto-encoder and reduced order mod-

els

We address the fundamental limitation of common approaches used for MOR of convection-

dominated nonlinear flows. The traditional POD low-rank optimization problem is generalized

to learn a nonlinear manifold. In practice, a registration process is defined that minimizes

the Kolmogorov n-width of the mapped snapshots. From a classical physics viewpoint, it can

be seen as a change of frame of reference to a parameter/time-varying spatial grid, i.e. an

arbitrary Lagrangian-Eulerian (ALE) framework. The registration-based optimization problem

yields two set of independent global bases: the first approximates the state variables of the

system while the second approximates the location of the temporally evolving computational

grid. This proposed new approach offers several advantages over previous methods. First,

because the proposed approach can be interpreted as a data-driven generalization of Rowley

and Marsden [60], is not limited by any of the difficulties associated with solving auxiliary

reconstruction equations [22, 64]. Second, due to this data-driven formulation, the proposed

method is also, in principle, extendable to arbitrary physical and parameter dimensions. This

is in contrast to other methods [60, 64] where extensions beyond a single dimension are

infeasible. Finally, the proposed approach is implemented in both projection-based ROMs

and neural network-based ROMs. Therefore, the burden of high training costs associated

with universal approximators such as [24, 79, 80], can be avoided in presence of the governing

PDEs. Otherwise, it enhances both the accuracy and the training costs of the universal

approximators.

2. Enabling the predictive capabilities in ROMs of convection-dominated flows

We extend the proposed ROM formulation to enable the predictive simulation beyond the

range of the training snapshots, a known challenge for both projection-based and neural

network-based ROMs. In the proposed method, the identified manifold is evolved in time and
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is extrapolated beyond the training regime. This task has become feasible in the proposed

framework, since the time-varying grid follows a low-rank representation of characteristics

underlying the convection dominated problem.

3. Stabilization of linear time-varying reduced order models

We propose a new approach to stabilize discrete linear time-varying projection-based reduced

order models, since the ROMs on the identified manifolds are time-varying dynamical systems

and lack an a priori stability guarantee, a common construct of projection-based ROMs.

We have extended the optimization-based eigenvalue reassignment method for LTIs [81], to

linear time-varying ROMs through an optimization-based singular value calibration method,

an a posteriori stabilization method. The approach calibrates the largest singular values

while maintaining the singular vector and minimizing the ROM error. Since the energy

decay/growth of the state parameters in LTVs is bounded by products of the largest singular

values of the sequence of system matrices, the singular values, instead of the eigenvalues, are

calibrated. As a byproduct of this choice, the eigenvalues of the system matrices are reassigned

without requiring any further assumption on their type, i.e. real versus complex-conjugate

pairs, something that must be specifically treated in the original method of eigenvalues

reassignment [81].

1.3 Thesis outline

This thesis is organized as follows. In §1, we propose a manifold on which convection dominated

PDEs can be optimally reduced by introducing an unsupervised learning problem. Subsequently,

in §3 we discuss the procedure to construct the projection-based and neural network-based reduced

order models on the learned manifolds. Projection of the PDEs on the learned manifold leads to

time-varying ROMs, therefore in §4, a feedback controller is designed to algebraically stabilize

the corresponding linear time-varying ROMs. In §5 the proposed approach is applied to several

representative problems. Finally, in §6, the contributions of this thesis and the future prospects are

laid out.
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Chapter 2

Identifying an optimal manifold

Any of the model order reduction approaches has two essential elements. First, identifying a

subspace or manifold on which the solution can be represented. Secondly, constructing the reduced

order dynamical system on the identified subspace/manifold. In this section, we focus on the

first element of building any ROMs, which we demonstrated to be the bottle-neck of ROMs for

convection-dominated flows (§1.1). The ROMs are constructed in §3.

In section §2.1, the concepts and definitions corresponding to manifold learning and reducibility of

ROMs are discussed. The unsupervised learning problem to reduce dimensionality of the convection-

dominated flows is posed and discussed in §2.2. The reducibility of different snapshots using the

proposed framework is demonstrated in §5.1.

2.1 Preliminaries

The goal of reduced order modeling is to leverage the vast amount of data generated from high

accuracy simulations to learn a low-dimensional model that can accurately and efficiently approximate

the underlying dynamical system. This is especially a challenging task for convection dominated

PDEs, where the Kolmogorov n-width of the snapshots of the solution is relatively large, i.e. the

solution cannot be effectively reduced on a linear subspace. Such problems emerge frequently

in a broad range of applications, from Navier-Stokes equations (fluid dynamics) to Schrödinger

equation (quantum-mechanical systems) [26]. In the machine learning community, the recognition of

similar challenge dates back to 1990s and attempts in classification of handwritten digits [82], where

presence of simple transformations such as translations and rotations in the data-set is well known to

dramatically deteriorate the accuracy of linear methods such as principle component analysis (PCA).

Fundamentally, other linear manifolds (subspaces) suffer from similar drawbacks, examples include

8



proper orthogonal decomposition (POD), multidimensional scaling (MDS) [83], factor analysis [84]

and independent component analysis (ICA) [84]. Therefore, the high dimensionality of the data

on any of these linear manifolds has incentivized a slew of nonlinear manifold learning approaches,

such as Iso-map [85], kernel PCA [86], locally linear embedding (LLE) [87], Laplacian eigenmaps

(LEM) [88], semi-definite embedding (SDE) [89], auto-encoders [90], t-SNE [91], and diffeomorphic

dimensionality reduction [92].

Although many of the aforementioned nonlinear methods provide the sought after low-dimensional

manifold, only a few provide the mapping from the learned low-dimensional to the high-dimensional

manifold, for a survey [see 93]. This is especially important in reduced order modeling of PDEs,

since the models are to be evolved in the parameters space or time on the low-dimensional manifold,

i.e. evolving of the latent variables, and subsequently the latent variables have to be mapped to the

physical high-dimensional manifold. Auto-encoders (AE), specifically convolutional auto-encoders

(CAEs) [94] and deep convolutional generative adversarial networks (DCGANs) [95], are amongst the

successful methods used in dimensionality reduction of PDEs [93, 96]. However, linear manifolds such

as proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are still often

extensively preferred to these nonlinear approaches, since they provide an interpretable framework

for analysis of the system, as well as controlling of the reduced system. POD reveals the coherent

structures in fluid flows [46, 47], and DMD obtains a finite-dimensional, matrix approximations of

the Koopman operator, which opens the possibility of taking advantage of estimation and control

theories developed for the linear systems [97]. In a more recent effort, it is shown that deep

AE architectures can be trained to transform nonlinear PDEs into linear PDEs, by learning the

eigen-function of the Koopman operator [98]. In this approach, although the transformation is

nonlinear, the latent variables lie on a linear subspace. Finally, a similar approach that prioritizes

the optimal reducibility by learning a nonlinear manifold leads to a low-dimensional latent space.

Therefore, by definition, such an approach results in a more efficient reduced order model.

In this section, we develop an auto-encoder to learn a manifold on which the reduced order

models can be efficiently constructed. To this end, we pose an unsupervised learning problem, that

learns a spatio-temporal grid on which the low-rank linear decomposition of the solution of the PDE

is optimal. The method can be interpreted as learning a map that registers the output sequence of

a convection-dominated PDE to a low-rank reconstruction of the solution. The method is in spirit
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of registration based manifold learning approaches, e.g. [92, 99].

2.1.1 Reducibility and linear manifolds

In approximation theory, Kolmogorov n-width is used to measure how well the n-dimensional

subspaces can approximate the solution manifold,M [100]. In other words, the “success” of linear

dimension reduction is tied to availability of an accurate enough approximation for the solution

manifold [101] and the decay of the n-width describes the best achievable error by an n-term

approximation [102]. The following definitions and theorems from [103] briefly explains this measure

and its connection to convection-dominated flows.

Definition: LetM be a normed linear space and M̃n any n-dimensional subspace ofM. For

each x ∈M, δ
(
x,M̃n

)
shall denote the distance of the n-dimensional subspace M̃n from x, defined

by

δ
(
x; M̃n

)
= inf

{
‖x− y‖X : y ∈ M̃n

}
. (2.1)

If there exist a y∗ ∈ M̃n for which δ
(
x,M̃n

)
= ‖x − y∗‖, then y∗ is the best approximation of

x from M̃n. Extending the concept from a single element of x to S, a given subset of M, the

deviation of S from M̃n is defined as

δ
(
S; M̃n

)
= sup

x∈S
inf

y∈M̃n

‖x− y‖, (2.2)

representing the worst element of x ∈ S approximated in M̃n.

Definition: Kolmogorov n-width ofM, dn (M), is defined as

dn (S;M) := inf
M̃n

δ
(
S; M̃n

)
, (2.3)

where the infimum is taken over all n-dimensional subspaces (M̃n) of the state space,M.

In the context of Petrov–Galerkin projection schemes, n-width identifies the best achievable

rate of convergence for a given set of input data [104]. The connection between SVD of the Hankel

operator and the Kolmogorov n-width is rigorously established [105, 106]. More specifically, it can

be shown by appropriately defining the subspaces minimizing the Kolmogorov n-width, it is then

equivalent to (n + 1)st Hankel singular value [107]. This connection combines the concepts and
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literature in regard to rate of decay of singular values, Kolmogorov n-width and acceptable accuracy

and feasibility of a low-rank reduced order model.

2.1.2 POD-based subspace learning

In the context of spectral methods in computational fluid dynamics (CFD), the spatial bases are

usually analytical functions, e.g. trigonometric functions or Chebyshev polynomials. In the context

of MOR, the spatial bases are derived a posteriori from a snapshot of a solution dataset. Over the

years, a large variety of approaches for generating bases from snapshots have been developed. We

confine our attention to bases generated via the proper orthogonal decomposition (POD) [41–47].1

Constructing the bases from the snapshots in the spirit of the POD method can be formulated

mathematically as a low-rank matrix approximation problem as follows:

For a given snapshot matrix M ∈ RN×K , find a lower rank matrix M̃ ∈ RN×K that solves the

minimization problem

minimize
rank(M̃)=k

∥∥∥M − M̃
∥∥∥
F
, (2.4)

where k � N . A snapshot matrix is defined here as a matrix whose columns contain the states of

the system of interest. More specifically, each column corresponds to the state of the system for

some particular value of the system parameters, time, or the boundary/initial conditions. Hence,

M = [w1, · · · ,wK ], where wi ∈ RN is the state at the ith parameter/time step. In problem (2.4),

the rank constraint can be taken care of by representing the unknown matrix as M̃ = UV , where

U ∈ RN×k and V ∈ Rk×K , so that problem (2.4) becomes

minimize
U , V

‖M −UV ‖F . (2.5)

It is well known that the solution of the above low-rank approximation problem is given by

the singular value decomposition (SVD) of M . Specifically, U = [u1, · · · ,uk] ∈ RN×k and

V = Σ [v1, · · · ,vk] ∈ Rk×K , where M = U∗Σ∗V ∗T, U∗ = [u1, · · · ,uk,uk+1, · · · ,uN ], V ∗T =

[v1, · · · ,vk,vk+1, · · · ,vK ], and Σ∗ = diag (σ1, σ2, · · · , σr) is a diagonal rank-r matrix of singular

values, where σ1 ≥ σ2 ≥ · · · ≥ σr, and Σ = diag (σ1, σ2, · · · , σk). This decomposition has a very
1It is emphasized however that the same principle is applicable to any basis generation method; such as, for

example, the dynamic mode decomposition (DMD) and Koopman modes [48–55].
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close connotation to factor analysis [84] and can be reproduced by artificial neural networks with

linear activations [108]. These methods are discussed in more details in §2.1.3. Although the linearity

of the learned manifold leads to inefficiencies in convection-dominated PDEs with large Kolmogorov

n-width, the existence of a closed form solution as well as the abundance of computationally efficient

approaches, such as [109], has made the method predominately be utilized in the field. Our goal

is to extend the norm minimization problem of (2.5) to an interpretable and efficient nonlinear

manifold learning problem.

2.1.3 Artificial neural network-based manifold learning

The growing investment in machine learning infrastructure has lead to abundance of efficient open-

source software and task specific hardware designed to leverage universality of neural network in

different applications. In the context of model order reduction of dynamical systems, neural networks

are used to identify nonlinear manifolds [93] or even to construct an end-to-end representation of

the dynamical systems [79, 80, 110].

In neural network architectures auto-encoders are often used to provide the dimensionality

reduction step [79]. In other words, an encoder reduces the input state from an n-dimensional space

to a k-dimensional space, a recurrent neural network (RNN) evolves the hidden state parameter on an

k-dimensional space and then the hidden states can be decoded to the n-dimensional physical space

to extract the quantity of interest. All the components of the architecture are trained simultaneously.

In the context of machine learning, auto-encoders are feature-extracting functions parameterized

in a closed form [111]. The encoder function, fenc, computes the code or the latent variable, wr ∈ Rk,

from the input vector, w ∈ RN given a set of weights and biases θenc, i.e. wr = fenc (w;θenc).

Another closed-form parameterized function maps with the corresponding set of weights and

biases θdec, decodes the latent variable onto the input space, w̃ = fdec (wr;θdec), resulting in a

reconstruction. Conventionally, auto-encoders are developed as multi-layer perceptrons (MLPs)

with nonlinear activation functions, i.e.

wr = fenc (w;θenc) = σenc (Wew + be) , (2.6a)

w̃ = fdec (wr;θdec) = σdec (Wdwr + bd) , (2.6b)
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where σenc and σdec are encoder and decoder activation functions (typically, the element-wise sigmoid

or hyperbolic tangent non-linearity, or an identify function). The task of training an auto-encoder

is to seek the set of weights and biases in

θenc =
{
We ∈ Rk×N , be ∈ Rk

}
,

and

θdec =
{
Wd ∈ RN×k, bd ∈ RN

}
,

that minimizes the reconstruction error/loss, L, i.e.

minimize
θenc, θdec

Nt∑
n=1
L (w[n], w̃[n]) , (2.7)

where w̃[n] = fdec (fenc (w[n];θenc) ;θdec). A special case of auto-encoders with identity activation

functions, no biases and minimizing a squared Euclidean reconstruction error, i.e.

minimize
Wd, We

Nt∑
n=1
‖w[n]−WdWew[n]‖2F , (2.8)

given Wd = We
T , learns the same subspace as principal component analysis (PCA) [112], and

therefore identifies the direction of the greatest variance in the data-set [90]. The PCA bases, or

the POD bases as described in (2.5), can be recovered from the identified weights [113]. Poor

performance of these approaches has been identified in machine learning community, e.g. in text

classification problem in presence of even simple transformations such as translation and rotation [82].

In principle, a very similar challenge persists in the reduction of the convection dominated flows.

2.2 Proposed approach: Low-rank registration-based

auto-encoder

We generalize the linear manifold learning problem of (2.4), as a nonlinear manifold learning as

follows: For a given data-set lying on the high-dimensional state space, learn a manifold, and the

corresponding mapping, on which the solution can be efficiently expressed as a linear low-rank
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decomposition. The map from the high-dimensional physical manifold to the identified manifold is

denoted by G (M) : RN×K → RN×K and its reverse by G−1
(
M̃
)

: RN×K → RN×K .2

The proposed manifold learning minimization problem is in the following form:

minimize
G−1(.), M̃

∥∥∥M − G−1
(
M̃
)∥∥∥

F
, (2.9)

where M̃ is the mapped data on the learned manifold. In this case, we assume M̃ is low-rank

and M̃ = UV is the rank-kr linear decomposition of the mapped data, where U ∈ RN×kr and

V ∈ Rkr×K . The map and the corresponding operators are illustrated in Fig. 2.1.

M ∈ RN×K
M̃ ∈ RN×K

G (M)

G−1
(
M̃
)

Figure 2.1: Illustration of the snapshots, M , and the low-rank snapshots on the identified manifold, M̃ ,
and the corresponding maps between the manifolds.

For a given map, G−1 (.), the rank-kr decomposition of the mapped data, i.e.

minimize
U , V

‖G (M)−UV ‖F , (2.10)

can simply be computed by the SVD of G (M), instead of M , as described in §2.1.2. In principle,

the compression of the data on the learned manifold is lossless if kr ≥ rank(G (M)). However,

aliasing errors lead to a limitation on the reconstruction accuracy on a finite-dimensional space

(see §5.1.3). The proposed compression in (2.9) outperforms the traditional POD of (2.4), if and

only if rank(G (M)) < rank(M).

2.2.1 Interpolation and Diffeomorphism

2 In this section, we limit the discussion of the maps to an abstract level and the numerical details of these operators
are postponed to §2.2.1.
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In this section, we tie the idea of the identified manifold to a time/parameter-varying grid. The

matrix of the constant grid point positions is X = x0 � 1 = [x0,x0, · · · ,x0] ∈ RN×K , where �

denotes the Hadamard product and x0 ∈ RN is the vector of grid positions, where its ith row

corresponds to position of the ith grid. Accordingly, X̃ = [x̃1, x̃2, · · · , x̃K ] ∈ RN×K is a matrix

of the parameter/time-varying grid point positions, and similarly x̃i ∈ RN is the vector of grid

positions at the ith time-level, where

x̃i := x0 + ∆x̃i ∈ RN , (2.11)

where x0 is the vector of constant grid positions, and ∆x̃i is the distance between the constant grid

position and the time-varying grid at the ith time-level. Equation (2.11) in the matrix notations is

rewritten as,

X̃ := X + ∆X̃ ∈ RN×K , (2.12)

and is illustrated in Fig. 2.2.

Figure 2.2: Illustration of the time-constant grid, X, and the time-varying grid, X̃.

Moreover, M = [m1,m2, · · · ,mK ] ∈ RN×K and M̃ = [m̃1, m̃2, · · · , m̃K ] ∈ RN×K are the

snapshots of the state parameters on X and X̃, respectively. Consequently, the map between the

state space and the identified manifold is represented by an interpolation scheme between these

two sets of grids. The map G (.), interpolates the snapshots stated on the constant grid onto the

parameter/time-varying grid. Similarly, the map G−1 (.), interpolates the snapshots stated on the

parameter/time-varying grid onto the constant grid. These operators/maps are presented in Alg. 1

and Alg. 2. To summarize:

• G (.) interpolates M stated on X onto X̃ and results in G (M), and
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• G−1 (.) interpolates M̃ stated on X̃ on to X and results in G−1
(
M̃
)
.

Algorithm 1 The map from the constant grid to the parameter/time-varying grid, G (.)
Input: The constant grid (X ∈ RN×K),

The parameter/time-varying grid (X̃ ∈ RN×K),
The snapshots of the state variables on the constant grid (M ∈ RN×K),

Output:The snapshots of the state variables on the parameter/time-varying grid (M̃ ∈ RN×K)
1: for i = 1, 2, 3, · · · ,K do
2: m̃i ← interpolate mi stated on xi to x̃i // Using the interpolation scheme of choice
3: end for

Algorithm 2 The map from the parameter/time-varying grid to the constant grid to , G−1 (.)
Input: The constant grid (X ∈ RN×K),

The parameter/time-varying grid (X̃ ∈ RN×K),
The snapshots of the state variables on the parameter/time-varying grid (M̃ ∈ RN×K),

Output:The snapshots of the state variables on the constant grid (M ∈ RN×K)
1: for i = 1, 2, 3, · · · ,K do
2: mi ← interpolate m̃i stated on x̃i to xi // Using the interpolation scheme of choice
3: end for

Finally, the proposed method in (2.9) can be interpreted as a registration task, that minimizes the

Kolmogorov n-width of the snapshots of the latent variables, G (M), on the learned parameter/time-

varying grid.3

Remark 1 As an extension of Alg. 1 and Alg. 2, the loop/march in the column space can be

substituted with multi-directional interpolation schemes, e.g. bi-linear or tri-linear.4 Constructing

a surrogate model and evaluating the model at the target grid points is another applicable and

straightforward generalization. Considering the relative computational costs of these interpolation

methods, any of the commonly used and off-the-shelf schemes can be utilized in the proposed

framework.

We impose diffeomorphism as a condition on the mapping to and from the learned manifold:

By definition, a map, G (.), is said to be diffeomorphic if G (.) and G−1 (.) are differentiable [114].

Bijectivity (i.e. one to oneness) and smoothness guarantee diffeomorphism. Therefore, by enforcing

the map to be diffeomorphic, we ensure existence and uniqueness of M̃ , given M and vice versa.

Bijectivity is achieved by ensuring that volume of all the cells remain strictly positive as a constraint
3Image registration is the task of finding point-wise correspondences and their transformations between a set of

images and a template or atlas image.
4Bi-linear for a one-dimensional in space and time and tri-linear for a two-dimensional in space and time.
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in (2.9). A negative cell volume leads to the indeterminate derivative of the state parameter, which

can be seen as a “tear” in an image. Smoothness of the grid is maintained by penalizing the abrupt

changes of the grid volume, both in space and parameter/time.

2.2.2 Low-rank registration

In the this section, the construction of the grid in the parameter/time space is discussed. There are

two general approaches to formulate the grid deformation in a registration problem. In the first

class of approaches, the grid nodes are controlled as the solution of the a minimization problem.

Diffeomorphism can then be achieved by enforcing a constraint on the determinant of the deformation

gradient: be strictly positive for all grid cells. This approach leads to a high-dimensional optimization

problem which its nonlinearity and ill-posedness makes it computationally challenging [115]. In the

second class of approaches, the mapping is the solution of a transport equation, i.e. flow fields, as in

diffeomorphic dimensionality reduction [92]. Interestingly, in some special cases, a similar transport

equation arises where the frame of references is changed from the Eulerian to the Lagrangian

viewpoint, i.e. by solving the hyperbolic PDEs on the corresponding characteristic lines. This

change of the reference is proven to be efficient in reduced order modeling of convection dominated

PDEs [39, 116, 117], also see appendix §A. In [39, 116, 117], it is shown that a low-rank grid can

efficiently reduce the dimensionality of the snapshots of convection dominated flows featuring a

large Kolmogorov n-width. We leverage this premise in a data-driven setting.

Recall (2.11) and (2.12) for the time-varying grid, and incorporate the assumption that the

time-varying grid is low-rank, i.e.

X̃ := X +UxVx ∈ RN×K , (2.13)

where UxVx ∈ RN×K is a rank-r matrix, where Ux ∈ RN×r and Vx ∈ Rr×K . In its vector form

x̃i ∈ RN is constructed as

x̃i := x0 +Uxvxi, (2.14)

where x0 is the constant grid, vxi ∈ Rr is the ith column of Vx = [vx0,vx1, · · · ,vxK ]. In summary,

X̃ ∈ RN×K defines the evolution of the parameter/time-varying grid on which the low-dimensional
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latent variables lie and is illustrated in Fig. 2.3.

Figure 2.3: Illustration of the time-constant grid, X, and the low-rank time-varying grid, X̃ := X +UxVx.

The rank-r grid is then the solution of the proposed manifold learning problem. The latent

variables can be interpreted as the evolution of the state parameters on the low-rank approximation

of the path on which the information travels, i.e. low-rank approximation of the characteristic lines

of the hyperbolic PDEs. This is one of the key elements of the proposed method, which greatly

reduces the size of the optimization compared to existing registration-based methods, such as [99].

More importantly, by incorporating the underlying physics of the nonlinearities of the hyperbolic

PDEs, unprecedented predictive capabilities beyond the training range are achieved. The existence

of a low-rank near-optimal grid for many of the convection-dominated PDEs are demonstrated

in §5; However, the extension of this change of frame for any arbitrary and stochastic systems is not

straightforward.

2.2.3 Implementation

In this section, we summarize the elements of the proposed algorithm and make some clarifications

on implementation of the method. As illustrated in Fig. 2.4, the procedure is designed to identify

a low-rank grid, X̃ = X + UxVx, on which the snapshot of the mapped data, M̃ = G (M), is

low-rank. The final minimization problem has the following form:

minimize
U , V , Ux, Vx

∥∥∥M − G−1 (UV )
∥∥∥
F

+ ‖Γ1Ux‖F +
∥∥∥Vx Γ2

T
∥∥∥
F
,

subject to v–n ≥ v–min,∀n ∈ {1, . . . ,K} ,

x̃n|∂Ω = x|∂Ω,∀n ∈ {1, . . . ,K} ,

(2.15)
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M ∈ RN×K
M̃ ∈ RN×K

G (M)

G−1
(
M̃
)

Figure 2.4: Illustration of proposed new nonlinear dimensionality reduction approach.

where G−1 (.) interpolates the low-rank mapped snapshots, UV , stated on a low-rank parameter/time-

varying grid, X̃, to the constant grid, X, i.e. G−1 (.) : X̃ := X +UxVx →X, and Γ1 ∈ RN×N and

Γ2 ∈ RK×K are Tikhonov matrices designed to promote grid smoothness. Also v–n ∈ RN−1 is a

vector of cell volumes of the parameter/time-varying grid at the nth parameter/time step, v–min is

the minimum admissible cell volume, and x̃n|∂Ω and x|∂Ω are boundary points of the learned grid

and the constant grid, respectively. The minimum cell volume is a hyper-parameter and is problem

dependent.

The Tikhonov matrices are defined as Γ1 = γxDxx and Γ2 = γtDtt, where Dxx and Dtt are the

second derivative matrices in the spatial and parameter space, respectively. This choice penalizes

any abrupt changes in the spacing of the grid in space and time/parameter space, respectively. The

appropriate Tikhonov matrices are hyper-parameters and problem dependent. Constructing the

reconstruction error versus norm of the Tikhonov terms and locating the L-shaped corner of the

graph provides a systematic approach to choose γx and γt [118].

Moreover, for practical reasons, a weak constraint on the rank reduction is chosen. While (2.9)

implies minimizing over the rank of M̃ , in many cases, the solution of the minimization for a preset

size of the decomposition is preferred. We assume M̃ = UV , where U ∈ RN×kr , V ∈ Rkr×K ,

and kr � N , kr � K. Moreover, to reduce the size of the optimization problem, Ux and Vx are
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uniformly down-sampled, however, the objective is evaluated on the fine grid.

To interpolate the snapshots between the two sets of grid, we simply utilize a p-degree polynomial

interpolation scheme. This choice innately incorporates a sparsity pattern into the mapping. While

the latent space representation of a data-point on the identified grid using a nearest-neighbor

interpolation only requires one data-point on the constant grid, a p-degree polynomial interpolation

requires p − 1 entries of the input vector. This, in principle, leads to a great reduction in the

size of the optimization problem compared to the traditional neural networks, where there is no a

priori assumptions on the structure of the neurons’ connectivity.

Algorithm 3 summarizes the proposed low-rank registration-based auto-encoder.

Algorithm 3 Training of the low-rank registration-based auto-encoder
Input: Hyper-parameters:

Γ1, Γ2,
Minimum admissible grid volume (v–min),

Reduction parameters:
Rank of the parameter/time-varying grid (r),
Rank of the low-dimensional representation (kr),

The snapshots matrix (M ∈ RN×K),
The constant grid (X = x0 � 1 ∈ RN×K),
Maximum number of iterations (jmax),

Output: Parameter/time-varying grid and its low-rank decomposition X̃,
The corresponding maps, i.e. G (.) : X → X̃ and G−1 (.) : X̃ →X

1: Initialize the time-varying grid, i.e. X̃(0) = X +U (0)
x V

(0)
x , with U (0)

x ∈ RN×r and V (0)
x ∈ Rr×K

using the SVD decomposition of the constant grid, X, plus a small random perturbation
2: j ← 0
3: while j ≤ jmax do
4: M̃ ← G (M) // Interpolate the snapshots, M , onto X̃(j)

5: UV ≈ M̃ s.t. rank(UV ) = kr // Approximate M̃ using its SVD as in (2.10)
6: M̃ ← G−1 (UV ) // Interpolate UV onto the constant grid, X
7: J =

∥∥∥M − M̃
∥∥∥

F
+
∥∥∥Γ1U

(j)
x

∥∥∥
F

+
∥∥∥V (j)

x Γ2
T
∥∥∥

F
// Evaluate the objective

8: Update U (j)
x and V (j)

x minimizing J // Update the grid bases via the rule of the optimization
9: X̃(j+1) = X(j) +U (j)

x V
(j)

x // Update the grid using the grid bases
10: j ← j + 1
11: end while

2.2.4 Alternative interpretations of the proposed method

We have formulated the proposed method as an image registration problem, here we pose the

method from other perspectives.
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• Change of frame of reference

The method is based on changing the frame of reference from a stationary observer to an

arbitrarily moving observer, whose path can be characterized by a low-rank decomposition.

The proposed method generates two sets of bases: firstly, a rank-kr linear decomposition

of the snapshots from the moving observer viewpoint: UV , and secondly, a rank-r linear

decomposition of the path of that observer: X̃ = X +UxVx. The observers moves such that

the flow field from its viewpoint, i.e. an arbitrary Lagrangian-Eulerian (ALE) framework, is

low rank. Note that for the moving observer, both sets of bases are time-invariant. While in

the stationary framework, the observer identifies a single, but time-varying set of bases that

optimally factorizes the solution. This interpretation is the foundation of the projection-based

ROMs constructed in §3.2.1.

• Manifold learning and approximation theory

The proposed approach identifies a nonlinear manifold characterized by a low-rank grid on

which the Kolmogorov n-width of the solution is minimal.

• Low-rank registration-based auto-encoder

The proposed approach can be viewed as an auto-encoder layer, where the parameterization

of the activation functions is tied to a computational grid. In this interpretation, the latent

variables – the code as defined in (2.6)– can be efficiently approximated in the linear POD

subspace. Moreover, the activation function is a nonlinear function based on an interpolation

scheme and parameter/time-varying grid. Moreover, the grid is identifiable on a rank-r space.

The encoder function interpolates the data from the Eulerian grid onto the ALE grid using

any of the arbitrary interpolation schemes, i.e. G−1 (w[n]). The latent variables are therefore

representation of the data on the time-varying grid. Subsequently, the latent representation is

decoded to the Eulerian grid using an interpolation scheme, G−1 (G (w[n])).

Auto-encoders are seen as a dimensionality reduction if the dimension of the coded layer, k,

is less than the dimension of the input layer, N , hence the name bottleneck [111]. However,

there are use cases of over-complete auto-encoders, where k > N . The output of G (w[n]),

our proposed auto-encoder, is of the same dimension of the input vector, k = N . The
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dimensionality reduction step of the approach is achieved using PCA/POD of the latent state.

The major benefit of the proposed approach compared to the traditional nonlinear activation

function is its physical interpretability. The traditional auto-encoders tend to detect edges at

different positions and orientations of the input snapshot, without any recognizable structure.

In the proposed approach, however, the latent parameters represent the variables on a low-rank

time-varying frame, which in many cases, corresponds to a low-rank approximation of the

characteristics lines of the hyperbolic PDEs (see 2.2.2).

In (2.15), both the high-dimensional snapshots and its low-dimensional representation on the

learned manifold (latent variables) are stored in a matrix. In contrast to most machine vision

tasks dealing with images, the PDEs are not necessarily solved on a uniform Cartesian grid.

Many of the PDEs are discretized on unstructured computational grids, while many of the

traditional machine learning tools are developed for uniform Cartesian grids representing an

image. Often, the snapshot matrix of M is defined on a constant grid (Eulerian framework)

and M̃ , by construct, is associated to the snapshots of latent variables on a parameter/time-

varying grid (ALE framework). The convolutional auto-encoders are successfully adopted

to learn the low-dimensional features of fluids systems on such grids [79, 93], however, the

extension of the method to unstructured grids requires exploring other less known approaches

capable of handling irregular connectivities [119]. The proposed auto-encoder is, in principle,

oblivious to the type of the computational grid and the associated connectivity.

22



Chapter 3

Reduced order models on the
identified manifold

In §2, the first step of the model reduction procedure, i.e. identification of an efficient manifold, was

discussed and developed. In this section, we construct the reduced order model on the identified

subspace/manifold and evolve the model in time. We review the projection-based model order

reduction with POD bases and a completely data-driven model order reduction architecture based

on artificial neural networks (ANNs).

3.1 Preliminaries

3.1.1 Projection-based model order reduction

Consider a first order dynamical system in form of

dw

dt
= f (w) , (3.1)

where t ∈ [0, T ] denotes the range of time, and f : RN → RN is a nonlinear function, and

w = w (t) ∈ RN is a vector of the state variables. The system is defined on the space x ∈ Ω, Ω

being the domain equipped with appropriate boundary conditions at ∂Ω and initial condition, w[0].

The domain is discretized uniformly in space on a stationary Eulerian grid x = [x1, . . . , xNx ]T using

standard techniques such as finite-volume or finite-elements.

Without any loss of generality, it is assumed throughout the remainder of this paper that (3.1)

is discretized in time using an implicit linear multi-step scheme. Hence, if t[0] = 0 < t[1] < · · · <

t[Nt] = T denotes a discretization of the time-interval [0, T ], where t[n] = n∆t, n ∈ {1, · · · , Nt}, the
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discrete counterpart of (3.1) at time-step n is

R (w[n]) =
s∑
j=0

αjw[n− j] +
s∑
j=0

βjf(w[n− j]) = 0 (3.2)

where s is the order of accuracy of the chosen time-integrator and αj and βj are the two constants

characterizing it.

In traditional projection-based MOR where the solution is approximated by a POD subspace as

the global trial,

w[n] ≈ w̃[n] = w[0] +Uwr[n], (3.3)

where the columns of U ∈ RN×k contain the bases for this subspace, and wr[n] ∈ Rk denotes

the temporal coefficients of the bases at the corresponding time step. As extensively discussed

in §2, the success of the ROM is based on the accuracy of the approximation (3.3), where k � N .

Substituting (3.3) into (3.2) and projecting it onto the POD subspace, U ∈ RN×k, yields the

projection-based reduced order model

UTR (w[0] +Uwr[n]) = 0. (3.4)

3.1.2 Artificial neural network-based model order reduction

Any dynamical system of (3.1) or (3.4) can be approximated using a slew of neural network

architectures, for a comparison see [80]. Amongst the most promising architectures, Recurrent

Neural Networks (RNNs) are specifically designed to represent sequential data. RNNs can be trained

either on the physical or latent space realized by auto-encoders as discussed in §2.1.3. In this thesis,

we concentrate on RNNs on the identified manifolds to construct neural network-based ROMs,

where the hidden state at nth time-step, wr[n] ∈ Rk, is calculated in

wr[n] = fRNN (Wrrwr[n− 1] +Uruu[n] + br) , (3.5)

as a function of the previous time-step hidden state (wr[n− 1]) and the current time-step input

(u[n] ∈ RN ) and biases (br ∈ Rk), where Wrr ∈ Rk×k, and Uru ∈ Rk×N . The hidden state is then
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Figure 3.1: Traditional neural network architecture. The snapshots matrix, M ∈ RN×K , is coded to the
latent layer, wr ∈ Rk×K , and then is decoded to the low-rank representation as M̃ ∈ RN×K . The RNN cells,
fRNN, are trained on the latent layer.

mapped to the n-dimensional space,

w[n] = σdec (Wwrwr[n] + bw) , (3.6)

where σdec is the activation function that maps the hidden state to the physical high-dimensional

space, where Wwr ∈ RN×k and bw ∈ RN . The process of training an RNN is to find the weight

matrices and biases that minimizes a cost function, a distance between the solution of the HFM and

the output of the RNN, ∀n ∈ {1, Nt}. Vanishing or exploding gradient leads poor training of an

RNNs with significant long-term dependencies. Long short-term memory (LSTM) cells [120], and

the gated recurrent unit (GRU) [121] can often address these issues. In the case where k � N , the

hidden states evolve in time on a low-dimension manifold. LSTMs are shown to outperform other

architectures [80], and are used to approximate reduced order models in the present thesis, i.e.

wr[n] = fLSTM (wr[n− 1]) . (3.7)

We employ the LSTM cells to approximate the PDEs on the learned manifold as a proven architec-

ture [122]. The network is trained on a learned manifold using a dense neural network (§2.1.3) as

illustrated in Fig. 3.1.
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3.2 Proposed Approach: Construction of ROMs on the

identified manifold

In this section, the ROMs are constructed on the time-varying grid, i.e. the solution of the proposed

manifold learning problem introduced in §2.2, from an ALE point of view (see §2.2.4).

3.2.1 ALE projection-based ROM

In this section, the proposed nonlinear dimensionality reduction procedure is used to construct the

projection-based reduced ROMs of the governing equations of interest. Without loss of generality,

we utilize the Eulerian interpretation of the proposed method for this purpose (see §2.2.4). That

is, the flow field is approximated using time-varying global bases, w[n] = U [n]wr[n], where

G−1 (U) = {U [0],U [1], . . . ,U [Nt]}. Under this interpretation, construction of ROMs proceeds in a

manner very similar to traditional projection-based MOR techniques discussed in §3.1.1.

In the proposed new approach, only a single modification is required; i.e. replacing the time-

invariant basis U with the time-varying one U [n] as follows

UT [n]R (w[0] +U [n]wr[n]) = 0. (3.8)

The stability of the resulted time-varying reduced order model of (3.8) remains an open question.

Although it can be seen as a caveat of the proposed approach, such lack of stability guarantee

is common in the nonlinear or even linear time-invariant ROMs, since only a small category of

projections and class of equations preserve energy, e.g. [123, 124]. To address the issue, a posteriori

stabilization methods are often used [81, 125, 126]. The goal of this class of methods is to minimally

modify/rotate/augment the reduced system to enforce stability constraints. In principle, a similar

approach can be utilized to stabilize projection-based ALE ROMs. We develop a stabilization

method applicable to time-varying ROMs in §4.

3.2.2 Low-rank registration-based auto-encoder neural network-based ROM

In this section, the proposed nonlinear dimensionality reduction is incorporated as an auto-encoder

layer in a neural network architecture. Addition of this layer, by definition, lowers the dimensionality
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of the latent variable snapshots, therefore, it is expected to lead to faster training and lower

reconstruction error.

Consider a traditional neural network architecture to approximate a dynamical system onto a low-

dimensional space, as depicted in Fig. 3.1. An auto-encoder layer, or layers of a deep auto-encoder,

are trained to lower the dimensionality of the snapshots (see §2.1.3). The RNN/LSTM layers are

then trained to evolve the dynamical system in time (see §3.1.2). For an unforced dynamical system

a one-to-many network is trained. The initial condition of the dynamical system is the only input

of the network and u[n] = 0, ∀n ∈ {0, · · · , Nt} in (3.5) or (3.7). To summarize the training, similar

to (2.7):

minimize
θenc, θdec

Nt∑
n=1
L (w[n], fdec (fenc (w[n];θenc) ;θdec)) , (3.9)

where wr[n] = fenc (w[n];θenc), and

wr[n] = fRNN (wr[n− 1]) . (3.10)

We propose the network architecture as depicted in Fig. 3.2, where the network is initialized with

the low-rank registration-based auto-encoder (§2.2). The cost function is then re-written:

minimize
θenc, θdec

Nt∑
n=1
L (w̃[n], fdec (fenc (w̃[n];θenc) ;θdec)) , (3.11)

where w̃[n] is the nth column of M̃ = G (M), wr[n] = fenc (w̃[n];θenc), and

wr[n] = fRNN (wr[n− 1]) . (3.12)

The additional low-rank registration-based auto-encoder layer, improves the accuracy and training

costs of the neural network-based models by reducing the dimensionality of the latent variable.

The proposed network with the addition of the low-rank registration-based auto-encoder layer is

illustrated in Fig. 3.2.
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Figure 3.2: Neural network architecture equipped with the proposed low-rank registration-based auto-
encoder layer. The proposed auto-encoder of G (.) maps the snapshots matrix ofM ∈ RN×K onto the learned
manifold, i.e. M̃ = G (M) ∈ RN×K . The mapped snapshot of M̃ is coded to the latent layer, wr ∈ Rkr×K ,
and then is decoded to the low-rank representation as M̃ ∈ RN×K , and finally is mapped to the physical
space by G−1

(
M̃
)
∈ RN×K . The RNN cells, fRNN, are trained on the latent layer.

3.2.3 Predictive ROMs

For a ROM to be truly useful, it must be capable of predicting, sufficiently accurately, new solutions

outside of the training regime. For unsteady problems, the prediction regime usually refers to time

intervals beyond the interval used to generate the snapshots.

It is well known that traditional ROMs perform relatively poorly in this predictive regime.

The extension of the proposed ROMs, either projection-based or neural network-based, to enable

predictive simulation beyond the final time step of the snapshots is quite straightforward. Considering

that the learned manifold is described by a low-rank grid (§2.2.2), the temporal basis of the grid, Vx,

is extrapolated in time. In absence of any a priori knowledge of the system, a linear extrapolation

is chosen.
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Chapter 4

Stabilization of time-varying ROMs

In this section, we develop our new approach to stabilize LTV ROMs.1 The goal is to design

an input matrix and the associated control signal. This should not be confused with an optimal

control problem, where the goal is to determine the control signal to minimize some performance

criterion [128], e.g. flow control [129–131]. The proposed ROM stabilization method is motivated

by pole placement or spectral assignment approaches, which belong to a class of methods called

feedback stabilization methods [132]. The application of pole placement and eigenvalue reassignment

is first introduced in context of stabilization of LTI ROMs [81].

In section §4.1, the fundamentals of the stability and stabilization of linear systems and ROMs are

reviewed. The proposed methodology of designing a feedback controller appropriate for time-varying

ROMs is motivated and formulated mathematically as a nonlinear constrained minimization problem

in §4.2. The evaluation of the performance of the proposed method is postponed to §5.3.

4.1 Preliminaries

It is well known that projection-based ROMs do not, in general, inherit the stability properties

of the corresponding HFMs. That is, even when the snapshots used to generate the bases arise

from solutions of stable HFMs, there is no guarantee that the resulting ROMs will also be stable.

Dimensionality reduction in these methods is based on discarding the less important modes of the

solution space. The importance is often measured by energy content of the corresponding bases and

does not take into account the underlying dynamics. This might lead to instability of the reduced

order models, e.g. by truncating the dynamics corresponding to dissipation of the energy by high

frequency, low-energy coherent structures in a turbulent flow. Stability of a ROM is a function of the
1Some of the material presented in this section and §5.3 also appears in [127] and is used following the Wiley’s

licensing and copyright guidelines.
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number of bases retained [36, 125, 133], the particular dynamical system under consideration [133],

and the method used to develop the ROM.

Balanced truncation of linear time-invariant systems preserve the stability of the resulted ROMs

a priori [58, 134]. In this method, controllability and observability Gramians are computed, which

is a very costly procedure especially for large-scale HFMs [123]. Balanced truncation requires

solving matrix equations. Developing efficient approximate numerical algorithms for large matrix

equations remains an active area of research [135–139]. To avoid the high cost of balanced truncation,

POD based [41–47] and balanced POD (BPOD) [56, 57] reduction methods are often used. These

approximate methods however, in general lack the stability guarantee of balanced truncation;

although a variety of heuristics methods are available to improve the stability properties of the

ROMs. To name a few, Amsallem and Farhat [140] show that the POD-based ROMs originating

from the descriptor form of the linearized CFD equations tend to be more stable compared to the

non-descriptor form in certain applications, or Rowley et al. [123] prove that an “energy-based”

inner product preserves the stability of an equilibrium point in symmetric linear-time invariant

(LTI) systems.

In the other perspective, stability is achieved a posteriori by modifying or controlling the identified

ROM equations. Examples of such approaches include adding a pressure term to model the truncated

scales [141] and including an additional constraint on the resolved kinetic energy [36]. In LTI ROMs,

where the unstable modes are accessible, it is straightforward to reassign the eigenvalues of the

reduced system matrix to the stable region and achieve stability with minimal effect on accuracy [81].

Similarly for the ROMs of compressible Navier-Stokes equations, comprising of time-invariant linear

and quadratic nonlinear terms, the realized reduced subspace can be minimally rotated to achieve

stability [142]. In an other attempt a margin of stability is achieved by minimally modifying the

test subspace to satisfy Lyapunov equations for LTIs [125]. More recently, a hybrid approach is

proposed that combines eigenvalues reassignment and modification of the test subspace, showing to

be more robust in a test case of linearized Euler equations when the number of unstable eigenvalues

is large [126].

Many of the reduction methods can be extended to the reduction of time-varying systems, for a

review see [143] and the references therein. Balanced truncation methods, with a priori stability

guarantee, are generalized to linear time-varying systems [144–147]. The cost of balanced truncation
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for time-varying systems is even more prohibitive compared to LTIs, considering that observability

and controllability Gramians as well as projection of the system matrices are computed at each time

step [147]. To the best of our knowledge, there are no methods specifically developed to stabilize

linear time-varying ROMs that scale to large system.

In this section, we propose an a posteriori method to stabilize linear time-varying ROMs. The

approach is an extension on eigenvalue reassignment method of LTIs in [81] for more general cases of

linear time-varying ROMs. Time-varying ROMs may originate from approximations of time-varying

dynamical systems or arise as byproducts of time-varying bases, see §4.1.2. In our method developed

in this thesis, we propose a feedback controller with minimal penalty on accuracy of the ROM.

The function of the feedback controllers are not as straightforward as reassigning the unstable

eigenvalues of one single system matrix to the stable half plane (inside unit circle for a discrete

ROM) as it is in an LTI. More general criteria are taken into account as nonlinear constraints of an

optimization problem to guarantee stability. The size of the optimization problem is reduced by a

sporadic activation of the controller, and only controlling the most energy growing modes of the

system. The method is non-intrusive, i.e. it does not require access to the HFM solver or system

of equations, since it operates on reduced order system matrices directly. Therefore, the proposed

method applies to reduced systems of any construct lacking a priori stability guarantee, e.g. POD,

Krylov-based, balanced-POD, moment matching.

In §4.1.1, the stability of time-varying linear systems is reviewed. In §4.1.2, the standard

projection-based model order reduction generating linear time-varying ROMs is reviewed. The

projection-based ROM using POD bases is discussed, although the stabilization method proposed

in this thesis is not restricted to this particular choice. The eigenvalue reassignment method of

stabilizing linear time-invariant ROMs, as the foundation of the proposed approach, is summarized

in §4.1.3.

4.1.1 Linear systems and stability

Consider a continuous time, linear time-invariant (CLTI) system

ẇ = Aw +Bu, (4.1)
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where A ∈ RN×N is the system (or state) matrix. The is system is exponentially stable if and only

if all the eigenvalues of the system matrix have negative real parts, i.e. ∀i, Re {λi (A)} ≤ 0 [148].

Either by discretizing the continuous system of (4.1) or by the modeling of a discrete phenomenon,

a discrete time, linear time-invariant (DLTI) system is

w[n+ 1] = Aw[n], (4.2)

where A is the system (or state) matrix. The is system is exponentially stable if and only if all the

eigenvalues of the system matrix lie within the unit circle [148], i.e. ∀i, |λi (A) | ≤ 1.

Consider a time-discrete linear time-varying system, as the HFM,

w[n+ 1] = A[n]w[n] +B[n]u[n],

y[n] = C[n]w[n],
(4.3)

where A[n] ∈ RN×N , B[n] ∈ RN×P , and C[n] ∈ RQ×N are system (or state), input, and output

matrices, w[n] ∈ RN is the state vector, u[n] ∈ RP is the control vector, and y[n] ∈ RQ is the

output vector, at the nth time step.

The system in the general form of (4.3), is either a representation of an inherently discrete

dynamical system or discretization of (linear or linearized) system of PDEs in space and time.

The solution of (4.3) can be presented as summation of the zero-input, and the zero-state

response of the system, i.e.

w[n] = φA[n, 0]w[0] +
n−1∑
l=0
φA[n, l]B[l]u[l], (4.4)

where the state transition matrix (φA[n, n0]), by definition, relates the state of the autonomous

system at time n to the state at an earlier time step n0,

φA[n, n0] =

 I n = n0,

A[n− 1]A[n− 2] · · ·A[n0] n > n0.
(4.5)

Stability of linear time varying systems is a classic problem [149, 150] with ongoing inter-

est [151–155]. However, it has only more recently gained attention in the model order reduction

32



community [145, 156–160]. We discuss some of the fundamentals of stability of such systems to the

extents required to discuss the contributions of the present work.

For a TV system to be exponentially stable, in addition to satisfying the stability, the rate of

change of the variation of A[n] also needs to be “slow enough” [149, 161]. Sufficient conditions for

eigenvalues and upper bounds on rate of change of the system can be found in Ilchmann et al. [162].

However, for general DLTVs there is no obvious relationship between stability and the eigenvalue

locations of the system matrices [148]. Only in the case of periodic systems, using Floquet-Lyapunov

theory or its discrete-time counterpart [163], the stability can be studied by an equivalent LTI

system [164]. In general, there are three families of criteria to assess the stability of LTVs: state

transition matrix based, Lyapunov based, and methods based on poles and zeros [165].

The following theorem provides upper and lower bounds for the state parameter growth or decay

of a DLTV [148]. Rugh [148] proves the following upper and lower bounds on rate of growth/decay

of the states of the system. For the (zero-input) discrete-time LTV denote the largest and smallest

point-wise eigenvalues of AT [n]A[n] by λmax[n] and λmin[n]. Then for any w[0] and n the solution

of (4.3) satisfies
n−1∏
j=0

√
λmin[j] ≤ ‖w[n]‖

‖w[0]‖ ≤
n−1∏
j=0

√
λmax[j], n ≥ 0. (4.6)

Note that the singular values of A[n] are the square roots of the eigenvalues of AT [n]A[n] [166]. The

computation of singular-values of A[n] is numerically more stable than computation of eigenvalues

of AT [n]A[n] [167], therefore we replace the square root of the eigenvalues in (4.6) with the

corresponding singular-values.

In the case of discrete time, time-periodic systems, with period of p, i.e. A[n+ p]=A[n]. The

LTP is stable if and only if modulus of all the eigenvalues of Π = A[p] · · ·A[1], lie within the unit

circle.

4.1.2 Time-varying ROMs

In the traditional projection-based model order reduction approach, the solution is approximated

on a global trial subspace

w[n] ≈ Uwr[n], (4.7)
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where the columns of U ∈ RN×k contain the bases for this subspace, and wr[n] ∈ Rk denotes the

temporal coefficients of the bases at the corresponding time step, n. In the case that the state

parameter can be represented using a small number of bases, k � N , the dimension of the model is

significantly reduced.

In general, U can be computed using a number of different approaches. In spectral methods,

analytical functions such as trigonometric functions or Chebyshev polynomials are often used [168].

In the context of data-driven ROMs, the bases are usually extracted from snapshots of the solution,

M , capturing some major characteristics of the solution, e.g. POD captures the energy content [47],

DMD approximates the best linear operator fitting consecutive-time of data vectors [169] and

optimally time-dependent modes capture directions of transient instabilities [170]. POD bases, as a

common choice of reduced bases with a broad range of applications, is briefly discussed in §2.1.2. It

is emphasized that the methods developed here are not restricted to the choice of the bases and can

be applied to any linear/linearized reduced order system of equations.

The separation of the spatial and temporal bases, as in (4.7), is a common construct of the bases

in projection-based model order reduction. However, this assumption can be relaxed introducing a

time-varying subspace,

w[n] ≈ U [n]wr[n], (4.8)

as in recent literature in regard to parametric time-varying systems [171], a time-varying shift of the

reduced systems [26], or reduced description of transient chaotic systems by definition of optimally

time-dependent modes [78].

In the present thesis, we are especially interested in the time-varying ROMs as the result of

time-varying bases since the projection-based ROMs on the time-varying grid introduced in §3.2.1

results in time-varying bases, i.e.

U [n] = G−1 (U) , (4.9)

where G−1 (.) maps the bases from the time-varying grid at nth time step to a constant grid.

Time-dependent bases also naturally arise by a change of reference framework as in [26, 60, 64].

Substituting (4.8) in the HFM of (4.3), and projecting the equation onto a test subspace, U [n],
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leads to a time-varying reduced order system of equation

wr[n+ 1] = Ar[n]wr[n] +Br[n]u[n],

yr[n] = Cr[n]wr[n],
(4.10)

where
Ar[n] =

(
UT [n+ 1]U [n+ 1]

)−1
UT [n+ 1]A[n]U [n] ∈ Rk×k,

Br[n] =
(
UT [n+ 1]U [n+ 1]

)−1
UT [n+ 1]B[n] ∈ Rk×P ,

Cr[n] = C[n]U [n] ∈ RQ×P .

(4.11)

In the case of Galerkin projection, U [n] = U [n].

4.1.3 LTI ROM stabilization via eigenvalue reassignment

To help motivate the approach for time-varying system, we begin by first considering the time-

invariant case. Consider a linear time-invariant reduced order system of the form

wr[n+ 1] = Arwr[n] +Bru[n],

yr[n] = Crwr[n],
(4.12)

where wr[n] ∈ Rk is the state vector, u[n] ∈ RP is the control vector. Ar ∈ Rk×k, Br ∈ Rk×P , and

Cr ∈ RQ×k are constant matrices of system (or state), input, and output. In the pole placement

approach, the system is augmented by a controller and an input, Bcuc[n], i.e.

wr[n+ 1] = Arwr[n] +Bru[n] +Bcuc[n]. (4.13)

Assuming a full-state feedback of the form uc[n] = −Kwr[n], where K ∈ RP×k is the feedback or

gain matrix,

wr[n+ 1] = (Ar −BcK)wr[n] +Bru[n]. (4.14)

The closed-loop controlled system of form (4.14) is in the form of (4.12), where the stabilized/con-

trolled system matrix, Âr, is defined as

Âr := Ar −BcK, (4.15)
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and v[n] is now the updated input, and we refer to the output of the stabilized ROM as ŷr[n].

The pole placement control problem determines K to achieve the desired poles/eigenvalues

of the closed loop system [132]. The locations of the poles and the quality of choice of the

feedback are measured by the “tracking performance”. In other words, a tracking problem is a

stabilization problem with the goal of minimizing the deviation of the current states from the desired

trajectory [172]. In the ROM framework the tracking performance is defined using the ROM error,

i.e. the goal of the controller is to minimize the distance between the stable HFM and the stabilized

ROM;

minimize
Nt∑
n=0
‖y[n]− ŷr[n]‖2 , (4.16)

where ‖.‖2 denotes the L2 -norm of a vector.

In the traditional viewpoint of controller design and its applications to physical systems, there

are limitations in the choice of the controller in addition to the feasible input rate or magnitude and

actuators’ saturation. Considering our goal of stabilization of a reduced order model, the design of

Bc and K is in the algebraic level. Control and feedback matrices can be arbitrarily chosen, given

the pair (Ar,Bc) is stabilizable (or controllable in a more strict sense).

The optimization problem of (4.16) minimizes the ROM output error via transformation of the

reduced system matrices. The eigenvalues of LTI systems dictates the decay/growth rate of the

response, therefore by placing the eigenvalues of Âr in the unit circle, or in the left half plane in the

continuous cases, the system can be stabilized. The algorithms developed by Kalashnikova et al.

[81] minimize the ROM error by placing the unstable eigenvalues in the stable region in continuous

systems. Reformulation of the algorithm to a discrete system is trivial, i.e.

minimize
λi

Nt∑
n=0
‖y[n]− ŷr[n]‖2 ,

subject to 1. λi ∈ C,

2. |λi| ≤ 1, for i ∈ {1, · · · , L ≤ k} ,

(4.17)

where λi are the unstable complex conjugate pairs and real eigenvalues of the state matrix of reduced

and controlled system, and L is the number of the unstable eigenvalues of the original ROM of size

k.
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4.2 Proposed approach: LTV ROM stabilization via feedback

controllers

To extend the pole-placement method summarized in the previous section to LTV systems, the

control input matrices are assumed to be time-dependent [132], i.e.

wr[n+ 1] = Ar[n]wr[n] +Br[n]u[n] + Bc[n]uc[n], (4.18)

and subsequently the feedback matrices are chosen to be time-varying,

wr[n+ 1] = (Ar[n]−Bc[n]K[n])wr[n] +Br[n]u[n]. (4.19)

The extension of the approach to the time-varying ROMs is challenging due to two main factors.

Firstly, in the LTI case, reassigning the eigenvalues of the system matrix to the stable region leads

to a stable ROM; However, the location of the point-wise eigenvalues in the LTV ROMs does not

provide sufficient condition for stability [173]. Secondly, in LTI case, the rate of growth/decay of

the state parameter is directly bounded by magnitude of the eigenvalues; However, in LTV ROMs,

the stability depends on the point-wise eigenvalues of Ar
T [n]Ar[n], i.e. to the largest and smallest

eigenvalues of point-wise gram matrices.

In the following, we discuss the choice of input and gain matrix design as well as the condition

for the stability to equip the trajectory error minimization of (4.16). Consider

Bc[n] = U [n],

K[n] = Σc[n]V T [n],
(4.20)

where U [n] and V [n] are left and right singular vectors of Ar[n] and Σc[n] is a real, positive,

diagonal matrix, i.e. Σc[n] = diag (σ1[n], σ2[n], · · · , σk[n]), where σ1[n] ≥ σ2[n] ≥ · · · ≥ σk[n].

Substituting (4.20) in (4.19)

wr[n+ 1] = Âr[n]wr[n] +Br[n]u[n], (4.21)
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where the controlled/stabilized reduced system matrix at the nth time-step, Âr[n], is defined as

Âr[n] = U [n]Σ∆[n]V T [n] := U [n] (Σ[n]−Σc[n])V T [n]. (4.22)

Therefore, the choice of the input and gain matrices as in (4.20) can be interpreted as calibration

of the singular values of point-wise system matrices and provides direct control on the upper and

lower bounds of the growth/decay of the state parameter.

The final minimization problem has the following form:

minimize
σi[n]

Nt∑
n=0
‖y[n]− ŷr[n]‖2 ,

subject to 1. σ∆
i [n] ∈ R+, for n∈ {0, · · · , Nt},

2. sup
n≥n0

∥∥∥φÂr
[n, n0]

∥∥∥
2
≤ c[n0],

(4.23)

where σ∆
i [n] are the singular values of Σ∆[n].

For a discrete-time linear time-periodic system (DLTP), with period of p, i.e.

Ar[n] = Ar[n+ p], (4.24)

the stability is dictated by eigenvalues of the monodromy matrix, i.e. Πr = φAr [p, n0] [164].

Therefore, in a linear time-periodic system, the optimization problem of (4.23) reads

minimize
σi[n]

Nt∑
n=0
‖y[n]− ŷr[n]‖2 ,

subject to 1. σ∆
i [n] ∈ R+, for n ∈ {0, · · · , p} ,

2. |λi| ≤ 1, for i ∈ {1, · · · , k} ,

(4.25)

where σ∆
i [n] are the singular values of Σ∆[n] and λi are the eigenvalues of the monodromy matrix

of reduced and controlled system, Π̂r[n]. In the special case of discrete-time linear time-invariant
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systems, the time-varying controller of (4.20) reduces to

Bc = U ,

K = ΣcV
T ,

(4.26)

and the optimization problem of (4.23) reads

minimize
σi

Nt∑
n=0
‖y[n]− ŷr[n]‖2 ,

subject to 1. σ∆
i ∈ R+,

2. |λi| ≤ 1, for i ∈ {1, · · · , k} ,

(4.27)

where σ∆
i are the singular values of Σ∆ and λi are the eigenvalues of the state matrix of reduced

and controlled system, Âr.

4.2.1 Solution of constrained optimization problem

As proposed so far, the size of the optimization problems is kNt, leading to a costly optimization

problem for large systems, especially in numerical simulation of the discretized PDEs where a fine

temporal discretization is required for the stability and the accuracy of HFMs. To address this

problem, two components are introduced to this algorithm. Firstly, since the designed controller

is not necessarily required to be applied at all point-wise matrices, a “sporadic feedback control”

is incorporated. In this approach, the controller is sporadically and sparsely applied in time, i.e.

control one out of every ∆n point-wise matrices. Secondly, the controller is applied only to the first

few most energy growing modes of the system. In the case of time-varying systems, since the rate of

the growth is bounded by the product of the largest singular values, it is sufficient to control only

the first few largest singular values of the system matrices. Consider the l largest singular values

of the point-wise system matrix at the nth time-step, i.e. σ1[n] ≥ σ2[n] ≥ · · · ≥ σl[n], then Σc[n]

of (4.20) is redefined as

Σc[n] =

 Σl[n] 0

0 0

 ∈ Rk×k, (4.28)

where Σl[n] ∈ Rl×l is a diagonal matrix of the first l leading singular values.
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Although this problem is non-convex, it is noteworthy that the proposed optimization problem

is guaranteed to be feasible for a small enough choice of ∆n and a large enough choice of l. By

selecting l = k and ∆n = 1, all the singular values of all the point-wise system matrices are included

in the optimization, and by setting Σc[n] = Σ[n], ∀n ∈ {0, 1, 2, · · · , Nt} the system is dead-beat

controlled, i.e. the state of the system is brought to zero.

It is well known that optimizing over singular values is challenging due to the high likelihood of

local minima. Our numerical experiments confirm that this is also an issue for the stabilization

approach proposed here. To address this issue, the optimization problem is solved using the multi-

start global optimization algorithm; implementation details are summarized in the results section of

this thesis. It is emphasized that – although a global optimization is required in our approach –

the size of the optimization depends on the size of the ROM, and not the original HFM. Thus, in

multi-query applications - such as design, optimization, or real-time embedded applications - the

relatively high costs of the off-line stabilization stage can can be justified by the savings during the

on-line stage. Finally, although a simple multi-start global search is proposed here, some further

computational speedups can be expected through the use of a more sophisticated global optimization

algorithm.

The proposed algorithm is summarized in Alg. 4. An upper bound on the cost of each iteration

of the proposed optimization problem is O
(
k3M3) and thus it is bounded cubically with the

dimension k of the LTV ROM and the number of time varying system matrices, M . For a general

time-varying system M = Nt, and for time-periodic and time-invariant systems, M = p and M = 1,

respectively. Additionally, by introducing the sporadic control (∆n) of the l leading singular values

of the reduced point-wise system matrices (Σl[n]), the cost of the stabilization method is reduced to

O
(
l3Nt

3/∆n3
)
. The cost of all other steps in Alg. 4 are independent of the dimension of the HFM.

The cost of the proposed algorithm is therefore significantly lower than competing approaches. For

example, the balanced truncation [147] approach scales as O
(
N3M

)
, where N is the size of the

HFM, making it prohibitive for realistic large-scale problems.

Finally, the choice of l or ∆n is a compromise between ROM performance and available off-line

computational resources.
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Algorithm 4 Stabilization of linear time-varying/time-periodic/time-invariant ROMs

Input: M =


Nt, for a linear time-varying ROM with Nt time steps,
p, for a linear time-periodic ROM with period p,
1, for a linear time-invariant ROM,

The reduced point-wise matrices (i.e. Ar[n], Br[n], Cr[n] ∀n ∈ {0, · · · ,M}),
The number of time steps (Nt),
Output of the high-fidelity model (i.e. y[n] ∀n ∈ {0, 1, 2, · · · , Nt} )
The rank of the stabilizer/controller matrix (l),
The temporal sparsity in the activation of the controller matrix (∆n),
The number of the starting points in the search loop (jmax)

Output: The stabilized reduced system matrices, Âr[n] ∀n ∈ {0, · · · ,M}
The stabilizer/controller matrices of singular values, Σc[n] ∀n ∈ {0,∆n, 2∆n, · · · }

1: Compute SVD of Ar[n], i.e. U [n]Σ[n]V T [n] ∀n ∈ {0, · · · ,M}
2: Initialize the controlled/stabilized reduced matrices, Âr[n], with Ar[n] ∀n ∈ {0, · · · ,M}
3: j ← 0
4: while j ≤ jmax do // Multi-start search loop
5: Initialize Σc[n] ∀n ∈ {0,∆n, 2∆n, · · · } as defined in (4.28)
6: Solve the constrained optimization problem of (4.23), (4.25), or (4.27) // Local optimization algorithm
7: Construct the controlled reduced matrices as in (4.22), Âr[n] ∀n ∈ {0, · · · ,M}
8: Integrate numerically the stabilized ROM, i.e. ŷr[n] ∀n ∈ {0, 1, 2, · · · , Nt}
9: Calculate the ROM error,

∑Nt

n=0 ‖y[n]− ŷr[n]‖2
10: Keep Σc[n] ∀n ∈ {0,∆n, 2∆n, · · · } and Âr[n] ∀n ∈ {0, · · · ,M} of the ROM with the lowest error
11: j ← j + 1
12: end while
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4.2.2 Stabilization in predictive regimes

Predictive regimes in context of ROM stabilization is for the ROM to be capable of predicting

the system response, given system inputs and state parameters outside of those used during the

off-line training stage. The introduced stabilization approach generates ROMs that are, in principle,

capable of performing all such predictive simulations; and a large number of such simulations are

illustrated in the results section of this thesis. Here, we briefly discuss some of the stability/accuracy

guarantees, and lack thereof, associated with our method.

In the case of novel inputs and initial conditions, predictive ROM performance can be expected

to be relatively high due to the fact that the proposed stabilization approach generates ROMs

that are guaranteed stable for arbitrary input signals and initial conditions; see section §4.1.1. In

the case of novel system state parameters, ROM stability cannot be guaranteed. Thus, predictive

simulations featuring new system parameters can be expected to be more challenging. However,

it is emphasized that most ROM methodologies in the literature also tend to lack out-of-the-box

stability/accuracy guarantees. Rigorous robustness to parameter variations is an active area of

research and it is realistic to expect many of the methods developed in this area to be applicable to

our proposed approach. Such extensions, however, are beyond the scope of the present thesis.
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Chapter 5

Numerical experiments

In this section, the methods developed in this thesis are evaluated using several numerical experi-

ments.

In §5.1, several parameter-dependent and time-dependent problems are designed to feature

traveling waves in different directions, shock formations and moving fronts, and nonlinear PDEs.

The optimal manifolds and the corresponding time-varying spatial grids are identified using the

low-rank registration-based auto-encoder developed in §2. The reconstruction mean squared error,

as a measure of reducibility of the mapped snapshots on the identified manifold and the traditional

POD subspace, are compared. In §5.2, the projection-based and neural network-based ROMs

of the time-dependent problems of §5.1 are constructed using the methods discussed in §3. The

ROMs on the POD subspace and the identified manifolds are compared and the enhancement in

predictive capabilities of the ROMs on the identified manifolds are demonstrated. In §5.3, different

projection-based ROMs, of time-invariant, time-periodic and time-varying systems are stabilized

using the stabilization method proposed in §4. The robustness of the method with respect to

parameter and input states is evaluated using an uncertainty quantification analysis.

5.1 Identification of the low-rank registration-based manifold

We provide several experiments to demonstrate the capabilities of the proposed low-rank registration-

based auto-encoder. In this section, we solve for the low-rank grid and test the reducibility/com-

pression of the snapshots. We attempt to demonstrate both compression and interpretability of our

results in these experiments. These problems were selected to illustrate the unique capabilities of

the proposed new approach: i.e. the compression efficiency, the ability to handle multiple waves

traveling in multiple different directions and nonlinear PDEs. In all these experiments, we resort to
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readily available optimization packages capable of solving optimization with nonlinear constraints;

such as minimize in scipy for our Python implementation, or interior-point method in fmincon in

our Matlab implementation. The gradients in the update rule of the optimization are calculated

using finite-differences.

The mean squared error, ε, is defined as the measure of accuracy of the reconstructions, i.e.

ε = 1
N ×K

N∑
i=1

K∑
j=1

(wi,j − w̃i,j)2 , (5.1)

where wi,j and w̃i,j are the entries on the ith row and jth column of M ∈ RN×K and M̃ ∈ RN×K ,

respectively. The relation between the mean squared error and the Frobenius norm error is

straightforward.

5.1.1 Manifold learning in rotated character “A”

Consider a computer vision task of learning the nonlinear transformation, rotation, given a data-set

comprised of a rotated character “A”. The image of character “A” is stored in a 50×50 matrix and is

rotated a total of 90 degrees with 3 degrees increments resulting in a snapshot matrix of dimension

2500× 31. A representative sample of the snapshots is shown in Fig. 5.1a, and a single POD mode

reconstruction is illustrated in Fig. 5.1b. In this problem, Ux is down-sampled to size of 7, i.e. the

total of 49 control points. Moreover, v–min = 0, Γ1 = 100Dxx and Γ2 = (100/π)Dθθ, where Dxx

and Dθθ are the second derivative matrices in the spatial and parameter space, respectively. The

boundary point constraints are removed for this particular problem. The optimization problem

of (2.15) approximates the rigid body rotation. In Fig. 5.1d and Fig. 5.1f, the snapshots are

approximated using a single basis (kr = 1) on the learned manifold of r = 1 and r = 2, respectively.

The rank-1 grid, Fig. 5.1c, introduces a slight scaling and shear in the reconstruction, however,

the character and its rotation is clearly realized (Fig. 5.1d). By increasing the rank of the grid to

r = 2, Fig. 5.1e, the scaling artifact is removed from the reconstruction of the snapshots (Fig. 5.1f).

The reconstruction delivered on the learned grid, using the proposed approach, is remarkably more

accurate compared to the traditional POD approach.
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(a) The snapshots.

(b) The rank-1 reconstruction of the snapshots (k = 1) on the POD subspace.

(c) The parameter-varying rank-1 grid corresponding to the identified manifold.

(d) The rank-1 reconstruction of the snapshots (kr = 1) on the rank-1 grid (r = 1).

(e) The parameter-varying rank-2 grid corresponding to the identified manifold.

(f) The rank-1 reconstruction of the snapshots (kr = 1) on the rank-2 grid (r = 2).

Figure 5.1: 90 degrees rotation of character “A”.
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5.1.2 Quasi-1D Euler flow in parameter-varying nozzles

Consider the non-linear, quasi-one-dimensional Euler equations modeling fluid flows in a variable-area

stream tube,

∂ρ

∂t
+ ∂

∂x
(ρu) = − 1

A

dA

dx
ρu, (5.2a)

∂ρu

∂t
+ ∂

∂x
(ρu2 + p) = − 1

A

dA

dx
ρu2, (5.2b)

∂ρE

∂t
+ ∂

∂x
([ρE + p]u) = − 1

A

dA

dx
(ρE + p)u, (5.2c)

with A(x) in a finite domain x ∈ [0, 10], where ρ is the fluid density, u is the fluid velocity, p is the

thermodynamic pressure, and

ρE = ρe+ 1
2ρu

2, (5.3)

is the total energy density. The pressure is related to ρE by the equation of state

p = (γ − 1)
(
ρE − 1

2ρu
2
)
, (5.4)

for a perfect gas with specific heat ratio of γ = 1.4. The x = 0 boundary models a reservoir

with specified total stagnation pressure pt = 101325 Pa, and stagnation temperature Tt = 300 K,

while the right boundary at x = 10 enforces a specific static back pressure, pb = 73145 Pa. The

variable-area stream tube is defined as follows

A(x) = 1.398 + µ tanh(1.8(x− 5)), (5.5)

where µ ∈ [0.1, 127].

Equation (5.2) is discretized using central finite differences and stabilized using a first-order

artificial viscosity scheme. N = 200 grid points are used to discretized the domain 0 ≤ x ≤ 10. The

solution is marched to steady state using the implicit Euler time integration scheme.

Solution snapshots are computed using 10 instances of the parameter µi = 0.1 + 0.13(i− 1), for

i = {1, . . . , 10}. The manifold is learned by solving the low-rank optimization problem of Alg. 3.

As in Fig. 5.2, the solution compressed with kr = 2 on the learned manifold of a rank-2 grid is
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(a) Snapshots (µ1, µ5, µ10)
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(b) Reconstruction of µ10 snapshot

Figure 5.2: The density along a converging/diverging nozzle; (5.2a): some different cases (µ1, µ5, µ10)
comprising the snapshot matrix; (5.2b): comparison of snapshots (thick grey) and their reduced order
representation on the POD subspace (dashed blue) and the learned manifold of r = 2 (solid red) for µ10 case.

indistinguishable from the high fidelity snapshots, while the k = 2 approximation on the linear POD

subspace contains large amplitude oscillations in the vicinity of the shock.
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5.1.3 Manifold learning in second-order wave equation

Consider the second-order wave equation in a single dimension,

∂2w(x, t)
∂t2

− ∂2w(x, t)
∂x2 = 0, (5.6)

in the domain (x, t) ∈ [0, 1]× [0, 1], with initial conditions w0 = e−((x−0.5)/0.05)2 , and ∂w/∂t(x, 0) =

∂2w/∂t2(x, 0) = 0 and Dirichlet boundary conditions w(0, t) = w(1, t) = 0. The second-order

order equation is chosen specifically to demonstrate the proposed method’s ability to efficiently

approximate multiple waves traveling in different directions; a phenomena which often presents a

challenge to competing methodologies. Equation (5.6) is discretized using an implicit second-order

discretization in time and second-order central discretization in space leading to a “4-level scheme”,

with second-order, central finite difference discretization of the second derivative on equidistant grid

points of Nx = 500 and ∆t = 5 × 10−4. A rank-2 time-varying grid (r = 2) is learned via (2.15)

having set kr = 4, and Γ1 = 1.3× 10−3Dxx and Γ2 = 1.3× 10−3Dtt, where Dxx and Dtt are the

second derivative matrices in space and time, respectively. The rank-2 time-varying grid (r = 2)

representing the learned manifold is depicted in Fig. 5.3. For illustration purposes, only every 20th

grid points are plotted.
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Figure 5.3: The time-varying rank-2 grid corresponding to the identified manifold of wave equation.

The rank-4 and rank-8 low-dimensional representation of snapshots are compared on the constant

grid and the time-varying grid in Fig. 5.4. On the learned manifold, the reconstruction is closer to

the snapshots and free of non-physical oscillations, the artifacts of discarding the low-energy/high-
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frequency POD bases on the Eulerian grid. The error decreases by increasing the size of the

reconstruction on the constant and time-varying grids and are compared in Fig. 5.5. In this

particular problem, the reconstruction error at the training point (kr = 4) is approximately 2 orders

of magnitude lower than the reconstruction error on the POD subspace. By increasing the rank

of the reconstructions, the error decreases. However, at k = kr ≈ 22, the reconstruction error on

both manifolds are equal. This is mainly due to the error introduced by using the interpolation

operator, G (.). Specifically, the aliasing caused by representing the bases with high frequency on

a locally coarse grid, and therefore the introduced error only dominates at a relatively high-rank

reconstruction.

(a) k = 4 on the Eulerian grid (b) kr = 4 on the learned rank-2 grid (r = 2)

(c) k = 8 on the Eulerian grid (d) kr = 8 on the learned rank-2 grid (r = 2)

Figure 5.4: The wave snapshots of the one-dimensional wave, on top of the computational grid representative
of the corresponding manifolds.
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Figure 5.5: Reconstruction error in second-order wave problem. The rank-k reconstruction on POD subspace
(dashed blue line), and rank-kr reconstruction on the identified manifold of r = 2 (solid black line).
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5.1.4 Manifold learning in one-dimensional Riemann problem

Consider the inviscid Euler equations of fluid flows for one-dimensional Riemann problem,

∂

∂t
q + ∂

∂x
fx = 0, (5.7)

where q = [ρ, ρu, ρe]T , fx = [ρu, ρu2 + p, ρuH]T , H = e+ p/ρ, and p = ρ(γ − 1)(e− 0.5u2) for air

as a perfect gas with specific heat ratio of γ = 1.4.

We consider the initial conditions corresponding to the Sod’s shock tube problem [174]:

[ρ, p, u]L = [1, 1, 0] for x = [0, 0.5] and [ρ, p, u]R = [0.125, 0.1, 0] for x = [0.5, 1]. The inviscid

Euler equation of (5.7) is solved using a first-order Roe scheme for t ∈ [0, 1.0]. The optimization

problem of (2.15) are solved setting r = 2, kr = 4, v–min = ∆xmin = 10−4, Γ1 = 0.015Dxx and

Γ2 = 0.015Dtt, whereDxx andDtt are the second derivative matrices in space and time, respectively.

The solution of the HFM and rank-8 reconstructions of the primitive variables on the POD

subspace and the identified manifold are compared in Fig. 5.6 and Fig. 5.7. The non-physical

oscillations of the low-rank reconstructions are significantly diminished on the identified manifold

while the shocks fronts are preserved. The error decreases in both cases by increasing the number of

bases (Fig. 5.8). Both the error and the rate of decay of the reconstruction error on the learned

manifold of time-varying grids are improved compared to the POD subspace on the Eulerian grid;

Therefore, for a large range of k and kr, the proposed method outperforms the traditional method.
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(f) k = 8 reconstruction of ρ
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(g) kr = 8 reconstruction of p
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(h) kr = 8 reconstruction of u
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(i) kr = 8 reconstruction of ρ

Figure 5.6: One-dimensional Riemann problem (Sod’s shock tube). (5.6a) to (5.6c): Snapshots of the
primitive variables, (5.6d) to (5.6f): rank-8 POD reconstruction of primitive variables, (5.6g) to (5.6i): rank-8
reconstruction of primitive variables on the learned manifold, with rank-2 grid (r = 2).
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Figure 5.7: The primitive variables of the one-dimensional Riemann problem (Sod’s shock tube) at
t ∈ {0.01, 0.23, 0.32, 1}. Snapshots (thick gray line), the rank-8 POD reconstruction (dashed blue line), and
the rank-8 reconstruction on low-rank registration-based manifold (solid red line).

53



(a) Pressure (b) Velocity (c) Density

Figure 5.8: Reconstruction error of the one-dimensional Riemann problem (Sod’s shock tube). The rank-k
reconstruction on POD subspace (dashed blue line), and rank-kr reconstruction on the identified manifold of
r = 2 (solid black line).
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5.1.5 Manifold learning in two-dimensional Riemann problem

Consider the inviscid Euler equations in two dimensions,

∂

∂t
q + ∂

∂x
fx + ∂

∂y
fy = 0, (5.8)

where q = [ρ, ρu, ρv, ρe]T , fx = [ρu, ρu2 + p, ρuv, ρuH]T , fy = [ρv, ρuv + p, ρv2 + p, ρvH]T , and

H = e+ p/ρ , p = ρ (γ − 1)
(
e− 0.5

(
u2 + v2)) in the domain (x, y, t) ∈ [0, 1]× [0, 1]× [0, tmax], with

initial conditions as illustrated in Fig. 5.9. Configurations are named corresponding to the paper in

which they were originally proposed [2].

ρ=1.5
u=v=0
p=1.5

ρ=0.138
u=v=1.206
p=0.029
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(a) Configuration 3
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p=1.0
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(b) Configuration 12

Figure 5.9: Initial conditions for two-dimensional Riemann problems, taken from Lax and Liu [2].

The snapshots of primitive variables are generated using a high-order artificial viscosity scheme

coupled with a 4th-order Runge-Kutta time discretization with ∆t = 5× 10−4 on a 150× 150 grid. A

rank-2 time-varying grid (r = 2) is learned via (2.15) setting kr = 4, and Γ1 = 0.05Dxx = 0.05Dyy,

where Dxx and Dyy are the second derivative matrices in x and y directions and Γ2 = 0.05Dtt,

where Dtt is the second derivative matrix in time. Also, v–min = ∆xmin∆ymin, where ∆xmin =

∆ymin = 6.7× 10−4. The rank-2 time-varying grids (r = 2) representing the learned manifold for

order reduction of configuration 3 and 12 are depicted in Fig. 5.10 and Fig. 5.14. In Fig. 5.11

and Fig. 5.15, the rank-8 low-dimensional representations of density contours are compared on the

constant grid (k = 8) and the learned manifold (kr = 8). On the learned manifold, traveling shocks
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are conserved and free of non-physical oscillatory solutions, resulting in a significant error reduction

(Fig. 5.13c and Fig. 5.17c). The density on the diagonal of the domain are plotted in Fig. 5.12 and

Fig. 5.16.

The numerical scheme used to solve the high fidelity models in the present section is not total

variation diminishing (TVD), therefore it leads to spurious oscillations as the shock travels. These

are different from the oscillations caused by low-rank approximation of a traveling shock discussed

in §1.1. It is especially clear in configuration 3, as an example, in the region between the shock

and x = 0 in Fig. 5.12. The oscillations are filtered in construction of low-rank representations,

since these high-frequency bases are of low-energy content and are dismissed at the truncation step.

This can also be seen in Fig. 5.12. Implementing flux-splitting weighted essentially non-oscillatory

(WENO) schemes can resolve this issue at the high fidelity level, for a survey see [175]. However,

the evaluation of the flux limiters on the reduced order level requires special considerations that is

out of the scope of the present thesis.
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(d) t = 0.8

Figure 5.10: The time-varying rank-2 grid corresponding to the identified manifold of the configuration 3
of two-dimensional Riemann problem.
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(a) Snapshot of ρ, t = 0.2 (b) k = 8, t = 0.2 (c) kr = 8, t = 0.2

(d) Snapshots of ρ, t = 0.4 (e) k = 8, t = 0.4 (f) kr = 8, t = 0.4

(g) Snapshots of ρ, t = 0.8 (h) k = 8, t = 0.8 (i) kr = 8, t = 0.8

Figure 5.11: The density snapshots of the two-dimensional Riemann problem at t ∈ {0.2, 0.4, 0.8} of the
simulations with configuration 3 initial conditions and their rank-8 reconstruction, on top of the computational
grid representative of the corresponding manifolds.
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Figure 5.12: Configuration 3 of two-dimensional Riemann problem, Snapshots (thick gray line), POD
reconstruction with k = 8 (dashed blue line), Reconstruction on time-varying grid with kr = 8 (solid red line).
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(a) Pressure (b) Velocity (c) Density

Figure 5.13: Reconstruction error in configuration 3 of the two-dimensional Riemann problem. The rank-k
reconstruction on POD subspace (dashed blue line), and rank-kr reconstruction on the identified manifold of
r = 2 (solid black line).
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(b) t = 0.0625
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Figure 5.14: The time-varying rank-2 grid corresponding to the identified manifold of the configuration 12
of two-dimensional Riemann problem.
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(a) Snapshots of ρ, t = 0.0625 (b) k = 8, t = 0.0625 (c) kr = 8, t = 0.0625

(d) Snapshots of ρ, t = 0.125 (e) k = 8, t = 0.125 (f) kr = 8, t = 0.125

(g) Snapshots of ρ, t = 0.25 (h) k = 8, t = 0.25 (i) kr = 8, t = 0.25

Figure 5.15: The snapshots of density of the two-dimensional Riemann problem at t ∈ {0.0625, 0.125, 0.25}
of the simulations with configuration 12 initial conditions and their rank-8 reconstruction, on top of the
computational grid representative of the corresponding manifolds.
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Figure 5.16: Configuration 12 of two-dimensional Riemann problem, Snapshots (thick gray line), POD
reconstruction with k = 8 (dashed blue line), Reconstruction on time-varying grid with kr = 8 (solid red line).
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(a) Pressure (b) Velocity (c) Density

Figure 5.17: Reconstruction error in configuration 12 of the two-dimensional Riemann problem. The rank-k
reconstruction on POD subspace (dashed blue line), and rank-kr reconstruction on the identified manifold of
r = 2 (solid black line).
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5.2 ROMs on the low-rank registration-based manifold

In this section, we construct ROMs on the identified optimal manifolds. The performance of

both traditional projection-based ROMs and neural network-based ROMs, discussed in (§3), are

demonstrated for time dependent examples first introduced in §5.1.

5.2.1 Second-order wave equation

In this section, we construct the projection-based ROMs on the constant Eulerian grid (§3.1.1) and

the time-varying grids (§3.2.1) of the wave equation problem discussed in §5.1.3. The time-varying

grid represents the manifold on which the Kolmogorov n-width are optimally reduced as identified

in §5.1.4. The ROMs’ error are compared in Fig. 5.18. As expected, the increase in reducibility of

the snapshots on the learned manifold directly translates to more efficient ROMs.

Figure 5.18: ROM error in second-order wave equation. The rank-k ROM on POD subspace (dashed blue
line), and rank-kr ROM on the identified manifold of r = 2 (solid black line).
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5.2.2 One-dimensional Riemann problem

In this section, we construct projection-based ROMs on the constant Eulerian grid (§3.1.1) and

the time-varying grids (§3.2.1) of the one-dimensional Riemann problem discussed in §5.1.4. The

time-varying grids represent the manifold on which the Kolmogorov n-width are optimally reduced

as realized in §5.1.4 for t ∈ [0, 0.23]. The error of these ROMs are compared in Fig. 5.19. Overall, the

ROMs on the optimal manifold capture the evolution of the moving discontinuity with substantially

fewer oscillations that results in a lower ROM error (Fig. 5.20 and Fig. 5.21). The non-monotonic

decrease of the ROM error is due to the absence of the stability guarantee of the ROMs (see §4).

(a) Pressure (b) Velocity (c) Density

Figure 5.19: ROM error of the one-dimensional Riemann problem. The rank-k ROM on POD subspace
(dashed blue line), and rank-kr ROM on the identified manifold of r = 2 (solid black line).
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0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

x

u

t = 0.01

(b) Velocity at t = 0.01

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

ρ

t = 0.01

(c) Density at t = 0.01

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

p

t = 0.23

(d) Pressure at t = 0.23

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

x

u

t = 0.23

(e) Velocity at t = 0.23

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

ρ

t = 0.23

(f) Density at t = 0.23

Figure 5.20: The primitive variables of the one-dimensional Riemann problem (Sod’s shock tube) at
t ∈ {0.01, 0.23}. Snapshots (thick gray line), POD ROM with k = 8 (solid red line). ROM with kr = 8 (solid
red line).
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Figure 5.21: The primitive variables snapshots on the domain of the one-dimensional Riemann problem
(Sod’s shock tube). (5.21a) to (5.21c): Snapshots of the primitive variables, (5.21d) to (5.21f): POD ROM
with k = 8, (5.21g) to (5.21i): ROM with kr = 8.
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5.2.3 Two-dimensional Riemann problem

In this section, we construct projection-based ROMs on the constant Eulerian grid (§3.1.1) and

the time-varying grids (§3.2.1) of the two-dimensional Riemann problem discussed in §5.1.5. The

optimal manifolds are realized in §5.1.5.

The solution of the ROMs are compared to the high fidelity models for configuration 3 and 12 in

Fig. 5.22 to Fig. 5.25. The Eulerian ROMs for configuration 3 are unstable and become unbounded

within the range of the simulation, while some of the ROMs on the time-varying grid remain a close

approximation of the snapshots. Overall, the ROMs on the optimal manifold capture the evolution

of the moving discontinuity with substantially fewer oscillations that results in a lower ROM error

(Fig. 5.26 and Fig. 5.27). The missing points in the figures are due to the unstable and unbounded

ROMs. Attributing the instability of Galerkin ROMs in convection-dominated flows with large

Kolmogorov n-width has recently gained more attentions [176].
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(a) Snapshots of ρ, t = 0.2 (b) kr = 8, t = 0.2

(c) Snapshots of ρ, t = 0.4 (d) kr = 8, t = 0.4

(e) Snapshots of ρ, t = 0.8 (f) kr = 8, t = 0.8

Figure 5.22: The density snapshots of the two-dimensional Riemann problem at t ∈ {0.2, 0.4, 0.8} of
configuration 3 and its rank-8 ROMs on the time-varying grid. POD ROMs are unstable and unbounded.
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Figure 5.23: Density on diagonal of the domain in configuration 3 of the two-dimensional Riemann problem
at t ∈ {0.2, 0.4, 0.8}. HFM (thick gray line), POD ROMs are unstable and unbounded. ROM with kr = 8
(solid red line).
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(a) Snapshots of ρ, t = 0.0625 (b) k = 8, t = 0.0625 (c) kr = 8, t = 0.0625

(d) Snapshot of ρ, t = 0.125 (e) k = 8, t = 0.125 (f) kr = 8, t = 0.125

(g) Snapshot of ρ, t = 0.25 (h) k = 8, t = 0.25 (i) kr = 8, t = 0.25

Figure 5.24: Density snapshots on the domain in configuration 12 of the two-dimensional Riemann problem
at t ∈ {0.0625, 0.125, 0.25}. Snapshots and rank-8 ROMs, on top of the computational grid representative of
the corresponding manifolds.
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Figure 5.25: Density on diagonal of the domain in configuration 12 of the two-dimensional Riemann problem
at t ∈ {0.0625, 0.125, 0.25}. Snapshots (thick gray line), POD ROM with k = 8 (dashed blue line), ROM
with kr = 8 (solid red line).

(a) Pressure (b) Velocity (c) Density

Figure 5.26: ROM error in configuration 3 of the two-dimensional Riemann problem. The rank-k ROM on
POD subspace (dashed blue line), and rank-kr ROM on the identified manifold of r = 2 (solid black line).

(a) Pressure (b) Velocity (c) Density

Figure 5.27: ROM error in configuration 12 of the two-dimensional Riemann problem. The rank-k ROM
on POD subspace (dashed blue line), and rank-kr ROM on the identified manifold of r = 2 (solid black line).
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5.2.4 Prediction of two-dimensional Riemann using projection-based ROMs

In this section, the predictive capabilities of the projection-based ROMs on the learned manifold

are compared to traditional ROMs on the POD subspace. Consider configuration 12 of the two-

dimensional Riemann problem as described in §5.1.5. The high fidelity model is solved for t = [0, 0.1]

and the snapshot matrix is constructed. In the training stage, the time-varying grid is identified

to minimize the error of the low-rank reconstruction given kr = 4, and r = 2. The POD bases of

the primitive variables are then constructed on the Eulerian grid and on the learned manifold. To

reconstruct/predict beyond the training stage, the bases are extrapolated linearly in time beyond

the training stage. Specifically, in the case of POD reconstruction where M̃ = UV , the temporal

bases (V ) are extrapolated linearly beyond the training range, and in the case of reconstruction on

the learned manifold both of the snapshots and grid temporal bases (V and Vx) are extrapolated

beyond the training range, where M̃ = G−1 (UV ) and the low-rank time varying grid is UxVx.

In both cases the ROMs are evolved in time. In the case of the ROM on the identified manifold,

the grid beyond the training range is similarly extrapolated in time, by extending Vx. The rank-2

solution of ROMs on the domain and ROM and low-rank reconstruction on the diagonal of the

domain are compared in Fig. 5.28 to Fig. 5.30. Both the POD ROM on the Eulerian grid and the

ROM on the time-varying grid capture the formation of the shock and are close to the high fidelity

model within the training range. However, beyond the training range, the shock is predicted to

remain stationary on the Eulerian grid, while the shock captured by the ROM on the time-varying

grid closely follows the solution of the high fidelity model. The ROM error the primitive variables

on the diagonal of the domain are compared in Fig. 5.31, showing an order of magnitude decrease

in the error on the identified manifold.
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(a) Snapshots of ρ, t = 0 (b) k = 2, t = 0 (c) kr = 2, t = 0

(d) Snapshots of ρ, t = 0.1 (e) k = 2, t = 0.1 (f) kr = 2, t = 0.1

(g) Snapshots of ρ, t = 0.25 (h) k = 2, t = 0.25 (i) kr = 2, t = 0.25

Figure 5.28: The density snapshots of the two-dimensional Riemann problem at t ∈ {0, 0.1, 0.25} of
configuration 12 and their rank-2 ROMs, on top of the computational grid representative of the corresponding
manifolds. The bases are trained for t = [0, 0.1].
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Figure 5.29: Configuration 12 of two-dimensional Riemann problem, HFM (thick gray line), POD re-
construction with k = 2 (dashed blue line), reconstruction on time-varying grid with kr = 2 (solid red
line).
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Figure 5.30: Configuration 12 of two-dimensional Riemann problem, HFM (thick gray line), POD ROM
with k = 2 (dashed blue line), ROM with kr = 2 (solid red line).
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Figure 5.31: Transient ROM error in configuration 12 of the two-dimensional Riemann problem. The error
is measured on the diagonal of the domain (see Fig. 5.28). POD ROM (black lines with square markers),
rank-2 ROMs on the identified manifold (blue lines triangle markers). The bases are trained on t = [0, 0.1]
(solid lines) and the prediction is extended to t = 0.25 (dashed lines).
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5.2.5 Low-rank auto-encoder in an LSTM architecture

In this section, the proposed method is implemented as an auto-encoder layer wrapped around a

traditional machine learning architecture to increase reducibility and subsequently to improve the

predictive capabilities of an RNN approximating the governing PDEs.

In the traditional architecture, the densely connected auto-encoder and the LSTM are trained

simultaneously (Fig. 3.1). In the proposed architecture (Fig. 3.2), the low-rank registration-based

manifold identified by G (.) , is trained and in the next step the densely connected auto-encoder

and the LSTM cells are trained separately, i.e. the LSTM is trained to approximate G (M), where

M ∈ RNx×Nt is the snapshots matrix on the constant Eulerian grid and G (.) interpolates the

given snapshots to the time-varying grid. To identify the latent space, two consecutive neural

network layers map the input of size RNx to RNenc and finally to Rk or Rkr , where the LSTM

cells are trained to approximate the evolution of the latent variables in the traditional and the

proposed architectures in Rk or Rkr , respectively. The neural network architectures are deployed in

Keras [177]. The parameters and hyper-parameters are summarized in Table 5.1 and for any of the

undeclared parameters, the default values as in [177] are used.1 The predictive capabilities of the

LSTM trained on the proposed low-rank registration-based auto-encoder is demonstrated in §5.2.6.

Table 5.1: Summary of the hyper-parameters and the neural network architectures.
Nx Nenc k, kr

∗ k, kr
+ σenc σLSTM r γx γt

Viscous Burgers’ equation 250 20 4 [5, 20] tanh tanh 1 1 1

Second-order wave equation 500 20 2 [5, 20] tanh tanh 2 10−3 10−3

∗ At the training stage of the low-rank registration-based auto-encoder,
+ At the training and evolution of neural network-based LSTM

Viscous Burgers’ equation

Consider the scalar, one-dimensional viscous Burgers’ equation,

∂w(x, t)
∂t

+ w
∂w(x, t)
∂x

= ν
∂2w(x, t)
∂x2 , (5.9)

1The codes are made available at github.com/rmojgani/PhysicsAwareAE.
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in the domain (x, t) ∈ [0, 2.5]× [0, tmax], equipped with initial conditions w(x, 0) = w0(x), and Dirich-

let boundary conditions at x = 0 and x = 2.5, where ν = 10−3, w(x, 0) = 0.8 + 0.5 e−(x−0.5)2/0.12 ,

w(0, t) = w(2.5, t) = 0, for t = [0, tmax]. An implicit second order time discretization is used with

∆t = 8× 10−3 and space is uniformly discretized where ∆x = 10−2. In the proposed architecture,

the rank-1 time-varying grid (r = 1), representing the low-rank registration-based auto-encoder, is

trained as in (2.15) with kr = 4. In this problem, vmin = ∆xmin = 10−3, Γ1 = Dxx and Γ2 = Dtt,

andDxx andDtt are second derivative matrices in space and time. The grid bases are down-sampled

to 15 and 5 control points in space and time, respectively.

The snapshots and output of the LSTM network on the NN and low-rank registration-based

auto-encoder are compared in Fig. 5.32 for a case of k = 10. The error for a range of sizes of LSTM,

k and kr, are plotted in Fig. 5.32d. In this case, the error has reached it’s plateau at kr ≤ 4, showing

the low-dimensionality of the snapshots on the trained auto-encoder.

Second-order wave equation

Consider the one-dimensional second-order wave equation,

∂2w(x, t)
∂t2

− ∂2w(x, t)
∂x2 = 0, (5.10)

in the domain (x, t) ∈ [0, 1]× [0, 1], equipped with initial conditions w(x, 0) = w0(x), and Dirichlet

boundary conditions at xa, and xb, where w(x, 0) = e−(x−0.5)2/0.12 , w(0, t) = w(1, t) = 0, for t = [0, 1].

An implicit second-order time-discretization is used with ∆t = 2.5× 10−3 and space is uniformly

discretized where ∆x = 10−2. The grid manifold is identified with the following parameters: the

time-varying grid is of rank-2 (r = 2), the reconstruction on the learned manifold is of rank-2

(kr = 2), v–min = ∆xmin = 10−3, γx = γt = 10, and the size of the grid bases, in both space and

time, are down-sampled to 15 control points. The solution of wave equation and output of the

reduced LSTMs are plotted in Fig. 5.33, showing the increase in the performance of the low-rank

registration-based auto-encoder compared to the traditional architecture.
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Figure 5.32: LSTM with k = 10 approximating the solution of the viscous Burgers’ equation for t = [0, 1].
In (d), dashed blue line corresponds to the LSTM on dense neural network and solid black line corresponds
to LSTM on low-rank registration-based auto-encoder.
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Figure 5.33: LSTM with k = 5 approximating the solution of the second-order wave equation for t = [0, 1].
In (d), dashed blue line corresponds to the LSTM on dense neural network and solid black line corresponds
to LSTM on low-rank registration-based auto-encoder.
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5.2.6 Prediction of one-dimensional problems using LSTM ROMs

Consider the neural network-based ROMs trained on the solution of the Burgers’ equation in

t = [0, 1]. In this section, we evaluate the trained models in the prediction range of t = [1, 1.5].

To extend the identified manifold of the proposed low-rank registration-based auto-encoder, Vx is

extrapolated linearly in time (similar to §5.2.4).

In Fig. 5.34, the models are extended beyond the training range, i.e. t = [1, 1.5], and the

LSTM solutions, Fig. 5.34b and Fig. 5.34c, are compared to the Burgers’ solution in Fig. 5.34a.

The error of LSTMs-based ROMs trained on the densely connected neural network layer and

low-rank registration-based auto-encoder layer for different sizes of LSTM, k and kr, are compared in

Fig. 5.34d. As expected, the neural network auto-encoder cannot predict the convection underlying

the physics of the problem outside the training range (Fig. 5.34b); however, by levering the convection

identified in the low-rank registration-based auto-encoder, the LSTM trained on the low-dimensional

manifold realized by the proposed approach leads to a solution much closer to the solution of the

Burgers’ equation. In the predictive regime, even increasing the dimension of the latent variable (k)

does not decrease the error.
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Figure 5.34: LSTM with k = 10 approximating and predicting the solution of the Burgers’ equation for
t = [0, 1.5]. The LSTM models are trained for t = [0, 1].
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5.3 Stabilization of time-varying ROMs

In this section, we demonstrate the performance of the proposed stabilization method on several

time-invariant, time-periodic and general time-varying linear systems: a model of the international

space station (ISS) perturbed by an impulse (LTI), a synthetic time-varying system based on the ISS

system matrices, a second order wave equation on a time-varying grid, and a mechanical vibrations

system. Robustness of the proposed algorithms with respect to the inputs and system parameter

is also presented for the mechanical vibrations system. Finally, the computational costs of the

experiments and the complexity of the method are discussed.

The HFMs are solved numerically using standard finite element and time discretization ap-

proaches. The spatial bases are constructed via POD of the collected snapshots, unless otherwise

stated. The bases are time-independent in §5.3.1 and §5.3.2 and they are time-varying in §5.3.3

through §5.3.5.

In all the cases the, reduced systems are generated off-line and the stabilization algorithm is

utilized to derive the “stabilized ROMs” via the proposed approach. The transient error ε, is

defined as the distance between the HFM and the ROM solution between the initial time and the

corresponding time step nt, i.e.

ε =
∑nt
n=0 ‖y[n]− ŷr[n]‖2∑nt

n=0 ‖y[n]‖2
. (5.11)

The constrained nonlinear optimization problems are solved using in Matlab using the interior-point

algorithm implementation of the Matlab optimization toolbox [178]. The gradients are approximated

using first-order finite-differences.

5.3.1 Time-invariant international space station

For the first example, we consider the dynamical system associated with the structural vibrations

of the Russian service module (component 1R) of the international space station (ISS) [179, 180].

The discretized system corresponds to a time-invariant dynamical system with a sparse system

matrix and the associated input and output matrices. Following [181], the HFM is solved using a

backward Euler time integration (first order implicit) scheme. The initial condition is assumed to

be the response of the system to an impulse of u (t) =
(
1× 104) δt=0 from an stationary condition,
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Figure 5.35: Eigenvalues of the the HFM of the international space station (black plus markers), and the
corresponding the POD Galerkin ROM (blue triangle markers) and the stabilized ROM (red square markers).
For all ROMs k = 10.

i.e. w[0] = 0. In the off-line stage, the snapshot of M ∈ R270×2000 is collected where t = 0.1 and

∆t = 5×10−5. Although the solution of the Galerkin ROM with k = 10 appears bounded within the

training stage, i.e. t ∈ [0, 0.1] , the system actually contains 6 unstable eigen-modes (two complex

conjugate pairs and two real eigenvalues as in Fig. 5.35a). The instability of the system becomes

apparent in the predictive regimes, where the solution of the ROM clearly diverges from the HFM

as shown in Fig. 5.36a.

The ROM of size k = 10 is stabilized using the proposed algorithm summarized in Alg. 4. The

six largest singular values of the ROM’s system matrix is calibrated to stabilize the system matrix

(l = 6), leading to Âr and the corresponding eigenvalues in Fig. 5.35b. It is noteworthy that the

stable complex conjugate pairs of eigenvalues are resolved without any assumptions on types of the

eigenvalues, in contrast to the eigenvalue reassignment methods in [81].

Figure 5.36a shows the solution of the stabilized ROM when l = 6, i.e. controlling the first 6

energy-growing modes. The Power Spectral Density (PSD) of the HFM solution, the original ROM

and the stabilized ROM are also compared in Fig. 5.36b, showing the convergence of the stabilized

ROM to the HFM in the frequency domain, as well as the time domain.

5.3.2 Time-varying international space station

To obtain a linear time-periodic model, the constant system matrix of module 1R of ISS (§5.3.1)

are modified to be time-periodic as in [147]. The time-varying system matrix is defined as A[n] =

α[n− 1]∆tA, where t[n] = (n− 1)∆t and α[t] = sin (ω0t). In this example ω0 = 8π and the initial
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Figure 5.36: International space station excited by an impulse. (a) Output of the system in time; (b) Spectral
density of system output. The high-fidelity model (thick gray line), the original Galerkin ROM (dashed blue
line) and the stabilized ROMs (solid red line). For all ROMs k = 10.

0 10 20 30

0.9

1

1.1

1.2

k

λ
m

a
x

(a)

Prediction

0 10 20 30 40 50
10−2

10−1

100

101

t

ε

(b)

Figure 5.37: Time-varying international space station. (a) The maximum modulus of eigenvalue the
monodromy matrices of different sizes of ROM; (b) The transient error of the Galerkin ROM (dashed blue
line) and the stabilized ROMs (solid red line).

condition is w[0] = 1 ∈ R270×1, and the input matrix is assumed to be zero B = 0 ∈ R270×270.

Consider the output matrix of C = [c1, c2, c3] ∈ R3×270 as presented in §5.3.1, we define the output

matrix in the current section as c1 + c2 cos (ω0t) + c3 cos (ω0t) ∈ R1×270.

The HFM is solved using a backward Euler time integration (first order implicit) scheme, where

∆t = 5× 10−3. The snapshot, M ∈ R270×1000, is collected for 20 time periods (tmax = 5). The LTP

ROM is then constructed using the Galerkin projection. The maximum modulus of the eigenvalues

of the monodromy matrix of the reduced system for different ROM sizes are plotted in Fig. 5.37a,

showing many of the ROMs are unstable. We choose the ROM of size k = 21 with λmax = 1.1588

to demonstrate our stabilization method. Every one out of ten system matrices (∆n = 10) with

l = 8 are calibrated in this example. The maximum modulus of the eigenvalue of the monodromy

matrix of the stabilized reduced order matrix is within the unit circle, λmax = 0.9983.
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Figure 5.38: Eigenvalue of the monodromy matrices of time-periodic ISS model, HFM (black plus markers),
the Galerkin ROM (blue triangle markers) and the stabilized ROM (red square markers).

5.3.3 Wave equation on a time-varying grid

In this section, the proposed stabilization method is applied to a second-order wave equation in a

single dimension on a time-varying grid. Consider

∂2w(x, t)
∂t2

= ∂2w(x, t)
∂x2 , (5.12)

in the domain (x, t) ∈ [0, 1] × [0, 1], where w is the state parameter. We set initial conditions,

w0 = e−((x−0.5)/0.05)2 , and ∂w/∂t(x, 0) = 0 and Dirichlet boundary conditions w(0, t) = w(1, t) = 0.

Equation (5.12) is discretized using an implicit second-order discretization in time and second-

order central discretization in space leading to a “4-level scheme”, i.e.

(
2I −∆t2Dxx

)
w[n+ 1] = 5w[n]− 4w[n− 1] +w[n− 2], (5.13)

where Dxx discrete approximation of the second derivative on equidistant grid points.

We construct the reduced order model of equation (5.13) on a time-varying grid, i.e.

UT [n+ 1]
(
2I −∆t2Dxx

)
U [n+ 1]wr[n+ 1] =

5UT [n+ 1]U [n]wr[n]− 4UT [n+ 1]U [n− 1]wr[n− 1]

+UT [n+ 1]U [n− 2]wr[n− 2],

(5.14)

where w[n] ≈ U [n]wr[n] is approximation of the state parameter on the uniform grid.

It is noteworthy that the reduced bases on the time-varying grid as presented in this thesis is
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different from what often appears in literature [37, 182]. The motivation of this choice is out of the

scope of this thesis and is discussed in [39].

Letting

z[n] =


wr[n]

wr[n− 1]

wr[n− 2]

 ∈ R3k, (5.15)

the first order equivalent of system of (5.14) reads

z[n+ 1] = A[n]z[n], (5.16)

where

A[n] =
5F [n]UT [n+ 1]U [n] −4F [n]UT [n+ 1]U [n− 1] F [n]UT [n+ 1]U [n− 2]

I 0 0

0 I 0

 ,
(5.17)

and F−1[n] := UT [n+ 1]
(
2I −∆t2Dxx

)
U [n+ 1]. We use Galerkin projection in each time step,

i.e. U [n] = U [n].

The HFM of (5.12) is solved on two uniform grids of different sizes and the results are compared.

In the coarse problem Nx = 5× 102 and Nt = 2× 103 and in the fine problem Nx = 5× 103 and

Nt = 2× 104. The k = 4 reduced order system of the wave equation is formed as in (5.16), a POD

Galerkin method resulting in A[n] ∈ R12×12. Some of the eigenvalues of the monodromy matrix lie

outside the unit circle (Fig. 5.39a and Fig. 5.40a), which lead to the exponential growth of the state

parameter and therefore the corresponding error (Fig. 5.39b and Fig. 5.40b).

The system is then stabilized using the proposed method of Alg. 4 with l = 4 and different

choices of ∆n (choosing the first 4 leading singular values of the selected matrices). The stabilization

method reassigns the eigenvalues of the monodromy matrix to their optimal and stable locations

(Fig. 5.39a and Fig. 5.40a), where the ROM error is minimized using (4.16). The stabilized reduced

system is constructed in one period using selected point-wise system matrices. The transient error

of the original ROM and the stabilized over a longer time interval are compared in Fig. 5.39b and
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Figure 5.39: Second-order wave equation on time-varying grid. (a) Eigenvalue of the monodromy matrix
of the ROM on the time-varying grid (blue triangle markers) and the corresponding stabilized ROM with
∆n = 25 (red square markers); (b) Transient error of the POD Galerkin ROM (dashed blue line) and the
stabilized ROM (solid red line for ∆n = 25, dotted cyan line for ∆n = 100 and dashed-dotted black lines for
∆n = 400).
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Figure 5.40: Second-order wave equation on time-varying grid. (a) Eigenvalue of the monodromy matrix
of the ROM on the time-varying grid (blue triangle markers) and the corresponding stabilized ROM with
∆n = 1000. (b) Transient error of the POD Galerkin ROM (dashed blue line) and the stabilized ROM (solid
red line for ∆n = 1000 and dashed-dotted black line for ∆n = 400).

Fig. 5.40b. Note that enforcing the stability guarantee is at the cost of higher error in the first

time-period of the solution. However, this compromise leads to lower error in the predictive regime.

5.3.4 Time-varying mechanical vibrations

In this section, the proposed stabilization method is applied to a variation of an academic linear

structural dynamics system, a system of mass-spring-damper as introduced in [1]. This model is

often used in stability studies of reduced order models as a benchmark problem, e.g. [125, 183]. The

system is comprised of 4 masses connected to each-other with total of 6 springs and 4 dampers

(Fig. 5.41). The original problem is a parameter-varying LTI system, where k5 = 1 + 2α, d5 = α
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Figure 5.41: The schematic of the spring-mass-damper system.

Table 5.2: Masses, damper and spring coefficients [1].

mass (kg) Damper (N.s/m) Spring (N/m)

m1 1 d2 0.1 k1 27
m2 5 d3 0.4 k2 9
m3 25 d4 1.6 k3 3
m4 125 d5 α k4 1

k5 1 + 2α
k6 2 + 2α

and k6 = 2 + 2α, with all the values reported in Table 5.2.

The equations of motion are in a linear semi-discrete system of the form Mẍ(t) +E(t)ẋ(t) +

K(t)x(t) = Bu(t), where ẍ(t) = ∂2x/∂t2, ẋ(t) = ∂x/∂t and x(t) ∈ R4 is the position vector. The

mass matrix is denoted by M . The damping and stiffness matrices, denoted respectively by E(t)

and K(t), are functions of α (t) ∈ [0, 2] as in Fig. 5.42a. The input is a unit step acting on k1 and

the output is the displacement of the 4th mass, m4.

The first-order state-space representation of the system is discretized using a backward Euler

time integration (first order implicit) scheme with ∆t = 0.1, leading to Ar[n] ∈ R8×8 and Nt = 5000,

where t ∈ [0, 500]. The Krylov subspace method of model order reduction is used in reduction

of the original LTI variation of the problem in [1, 125]. In this example, the reduced system

matrices of k = 4 are constructed at each time step using the two-sided Lanczos moment matching

algorithm [184]. More compact representation of the projection can be built considering that

the projection matrices span over the union of all the projection sub-spaces [143], however, it’s

application is beyond the scope of this thesis.

87



0 200 400

0

0.5

1

1.5

2

t

α

(a)

0 200 400

−0.5

0

0.5

1

1.5

t

y

(b)

10−1 100

10−3

10−1

Frequency (rad/s)

P
o
w
er

(1
/
ra

d
/
s)

(c)

Figure 5.42: The time-varying mechanical vibrations system. (a) Time-varying system coefficient, α[t];
(b) Output of the system in time; (c) Power spectral density (PSD) of system output. The high-fidelity model
(thick gray line), the original unstable Krylov ROM (dashed blue line) and the stabilized ROMs (solid red
lines for ∆n = 100 and dashed-dotted black lines for ∆n = 10). For all ROMs k = 4 and l = 3.

The system is excited by a unit step input and therefore its output decays over time, however, the

Krylov based ROM predicts an intermittent growth of the output (Fig. 5.42b). The original Krylov

ROMs are stabilized using Alg. 4. The objective in (4.23) is augmented to penalize abrupt changes

in the norm of the point-wise system matrices, i.e. ∑Nt
n=1‖Âr[n]−Âr[n−1]‖2. In this formulation of the

problem, the norm constraint in (4.23) is set to equal to norm of the state transition matrix of the

HFM. The ROM is controlled using rank-3 stabilizer matrices (l = 3) with ∆n ∈ {10, 100}. The

HFM, the original ROM and the aforementioned stabilized ROMs are compared in Fig. 5.42b and

Fig. 5.42c, showing that a small enough ∆n can be found to ensure stability and convergence of the

ROMs to the HFM, in both the temporal and frequency domains. A more comprehensive study

of the sensitivity of the ROM error to the hyper-parameters and convergence of the optimization

problem are presented in §5.3.5.
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Figure 5.43: The time-varying mechanical vibrations system. The error of the stabilized ROMs (k = 4)
versus ∆n for l ∈ {1, 2, 3, 4}.

5.3.5 Hyper-parameter selection and uncertainty quantification

In this section, the sensitivity of the stabilized ROM with respect to its hyper-parameters, system

parameters, and inputs is summarized. In particular, we study the influence of the of the hyper-

parameters, ∆n and l, on the controller/stabilizer matrices, and perform a series of uncertainty

quantification experiments to demonstrate the robustness of the proposed approach. For the sake

of brevity, we limit this study to the time-varying mechanical vibration system from §5.3.4. The

standard Monte-Carlo sampling is continued to converge to 0.1% of change in the median of the

probability of the QoI. The QoI is the error of the original Krylov ROM and the stabilized ROM, ε.

Hyper-parameters selection

In this section we study the influence of the hyper-parameters on ROM accuracy. More specifically,

we pick a ROM of size k = 4, and compute ROM error in the parameter range l ∈ {1, 2, 3, 4} and

∆n ∈ [20, 2000]. Each ROM is stabilized using the same procedure described in the preceding

sections.

The results of this study are illustrated in Fig. 5.43. As expected, increasing intermittency of the

activation of the controller (decreasing ∆n) and calibrating a larger number of the singular values

(increasing l) decreases the ROM error. Moreover, the ROM error decreases almost monotonically

for l > 1.
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Figure 5.44: The time-varying mechanical vibrations system. Error of the Krylov ROM versus the stabilized
ROM in the Monte-Carlo samples given different standard deviation in uncertainty of the input vector,
u[n] ∼ N (µ = 1,SD), where SD ∈ {0.01, 0.10, 0.25, 0.50}. The black markers represent the cases where the
stabilized ROM is more accurate than the Krylov ROM and red markers represent the opposite.

Input signal uncertainty

In this section, uncertainty is assigned to the input signal acting on k1. The input is sampled from

a normal distribution with a unit mean value, µ = 1, and different values of standard deviation, SD,

i.e. u[n] ∼ N (µ = 1,SD).

The Krylov ROM system subspaces and corresponding matrices are constructed once during the

off-line stage. The stabilized ROM system matrices, Âr[n] ∀n ∈ {0, 1, 2, · · · ,M}, are identified for

the case of unit step input using Alg. 4, where ∆n = 100 and l = 3, as in §5.3.4. Subsequently, the

Krylov ROM and stabilized ROM error calculated for each sample of the Monte-Carlo simulation

and are plotted in Fig. 5.44. The median and the 25th and 75th percentiles of the samples for a range

of the uncertainties in the input vector is summarized in Fig. 5.45, illustrating that the stabilized

ROMs are significantly more accurate compared to the Krylov ROMs in a wide range of uncertain

input vectors.
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Figure 5.45: The time-varying mechanical vibrations system. Krylov (blue) and stabilized ROM (red) error
uncertainty probability distribution propagated from a uncertain input vector. The solid black line indicates
the median and dotted lines indicate 25th and 75th percentiles the ROM.

System parameter uncertainty

In this section, a normally distributed uncertainty is assigned to the system parameter α′[n],

and therefore k5, d5 and k6 in the LTV system of mechanical vibrations (see Table 5.2), i.e.

α′[n] ∼ α[n] +N (µ = 0,SD). There exist a wide variety of approaches for generating Krylov-based

ROMs for parameter varying problems. For the purpose of this study, only two of the simplest ones

are considered. In the first approach, the Krylov subspaces are computed only once at a reference

system parameter, α[n]. While in the second approach, Krylov subspaces are constructed at each of

the sampled α′[n].

Therefore, the off-line computational cost of the first approach is significantly lower in the

multi-query setting of the UQ experiments. The distributions of the error of the Krylov ROMs

and stabilized ROMs are compared in Fig. 5.46. In Fig. 5.47, the Monte-Carlo samples and more

detailed distribution of the error are compared for SD = 0.1. As expected, the proposed stabilization

approach improves significantly both the value and uncertainty of the ROM error, irrespective of

the particular approach used to generate the Krylov ROM subspace.

5.3.6 Computational cost and scaling

In this section, the computational complexity and cost of the proposed stabilization method is

discussed. An upper bound on the cost of each iteration of the proposed optimization problem

is O
(
k3M3) and thus it is bounded cubically with the dimension k of the LTV ROM and the

number of time varying system matrices, M . For a general time-varying system M = Nt, and for
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Figure 5.46: The time-varying mechanical vibrations system. Krylov (blue) and stabilized ROM (red)
error uncertainty probability distribution propagated from a uncertain input vector. The solid black line
indicates the median and dotted lines indicate 25th and 75th percentiles the ROM. (a) The Krylov subspaces
are identified once at α[n]; (b) The Krylov subspaces are identified at each α′[n].
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Figure 5.47: The time-varying mechanical vibrations system. (a) The Krylov subspaces are identified once
at α[n]; (b) The Krylov subspaces are identified at each α′[n]. Error of the Krylov ROM versus the stabilized
ROM in the Monte-Carlo samples where the system parameter α′[n] ∼ α[n] +N (0, 0.1). Moreover, Krylov
(blue) and stabilized ROM (red) error uncertainty probability distribution associated with this simulation are
respectively plotted on the right and top axes.
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time-periodic and time-invariant systems, M = p and M = 1, respectively. However, by introducing

the sporadic control (∆n) of the l leading singular values of the reduced point-wise system matrices

(Σl[n]), the cost of the stabilization method is reduced to O
(
l3M3/∆n3). The cost of all other

steps in Alg. 4 are independent of the dimension of the HFM. The cost of the proposed algorithm is,

therefore, significantly lower compared to competing approaches which typically scale with the size

of the HFM. For example, the balanced truncation [147] approach scales as O
(
N3M

)
, where N is

the size of the HFM, making it prohibitive for realistic large-scale problems.

Table 5.3 summarizes the wall-clock computational costs of evaluating the HFM, the ROM

and performing the stabilization procedure. For the wave equation problem considered in §5.3.3,

the online computational speed-up is approximately 800, while the off-line stabilization costs are

approximately 1/20th of the cost of a single evaluation of the HFM. Higher speedups can be expected

for more realistic, large-scale engineering applications. The wave equation considered in this paper is

one-dimensional and thus, already very efficient to solve even before any model reduction. Moreover,

it is emphasized that the target application of our proposed method is multi-query applications,

such as optimization, where the costs of the offline stabilization procedure must be weight against

potentially hundreds, if not thousands, of queries of the HFM or the ROM. Finally, for the two

other problems considered in this work – the ISS and the mechanical vibrations system – the

corresponding HFMs are too small to fairly demonstrate the computational advantages of the

proposed methodology. These small-scale problems are included to demonstrate the mathematical

foundations of the proposed methodology, and to preform an exhaustive UQ study; something that

would not be possible with a realistic large-scale HFM.
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Chapter 6

Conclusions

In this chapter the contributions of this thesis, as well as prospects for future works are summarized.

6.1 Summary

In this thesis, we propose an approach for dimensionality reduction of convection dominated flows,

construct the reduced order models (ROMs) and develop a stabilization method with the aim to

stabilize the corresponding ROMs.

Most reduced order models are constructed on linear manifolds (subspaces). These manifolds are

identified given the snapshots of the solution of high fidelity models or rich experimental data, using

approaches such as POD/SVD or DMD. Although these approaches lead to straightforward and

fast identifications of the bases, they are inherently incapable of delivering efficient reduced order

models. We formally explain the lack of reducibility/compressibility using Kolmogorov n-width and

motivate our work using simple problems, e.g. pure convection. A similar irreducibility arises in

various systems exhibiting convecting features, traveling wave or shocks, and moving interfaces.

In §2, we propose a low-rank registration-based manifold learning problem with the goal of

minimizing the Kolmogorov n-width of the mapped snapshots. The mapping is defined based on a

registration problem and low-order interpolation schemes. Further we assume that the identified

grid, i.e. a solution of the optimization problem, is of low rank, a characteristics first recognized

in [39], and in this thesis we further demonstrate to be sufficient and effective in various systems.

We also provide different interpretations of the method, i.e. a change of frame of reference from an

Eulerian to an arbitrary Lagrangian Eulerian (ALE) frame, minimizing the Kolmogorov n-width of

the snapshots on a learned manifold, and finally an auto-encoder layer based on the physics of the

convection dominated problems (low-rank registration-based auto-encoder).
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In §3, we derive the ROMs on the learned manifold of §2. In model order reduction of fluid flows,

special attention is given to projection-based and more recently to neural network-based ROMs. In

the case of projection-based ROMs, the identified bases on the learned manifold are interpolated on

the Eulerian grid and the ROMs are constructed on the Eulerian frame. This approach leads to a

non-intrusive construction of ROMs capable of being readily incorporated into most codes. We also

provide an architecture to incorporate the learned manifold as an auto-encoder layer in a neural

network. The proposed auto-encoder reduces the dimensionality of the snapshots and the recurrent

neural network (RNN) are trained to reproduce the mapped snapshots.

The projection-based ROMs of §3 are time-varying dynamical systems, lacking a a priori stability

guarantee. In §4, we develop a a posteriori stabilization method for linear time-varying ROMs.

The stability of dynamical systems and the eigenvalue reassignment method of stabilizing linear

time-invariant ROMs are briefly discussed. The eigenvalue reassignment method is then generalized

to stabilize linear time-varying ROMs. The stability criteria and the feedback controller matrices

are designed differently to reflect the energy growth of linear time-varying systems.

Finally in §5, different experiments are designed to evaluate and demonstrate efficiency and

capabilities of all the proposed methods in §2 to §4.

In §5.1, different parametric and time-dependent problems with traveling waves, moving shocks,

and convection/rotating features are designed, which the traditional linear approaches cannot reduce

efficiently. These problems include: snapshots of images depicting rotating of a image, reduction

of snapshots with different shock location on a parameter-varying nozzle, a wave equation with

Gaussian-like solutions traveling in different directions and reflecting from the boundary, one-

dimensional Riemann problem with shock and expansion forming and reflecting from the boundaries,

two-dimensional Riemann problem depicting traveling shocks and Kelvin–Helmholtz type vortical

structures. For all these problems, the proposed dimensionality reduction approach is compared

to traditional POD reconstruction, demonstrating at least an order or magnitude reduction in

reconstruction error given a set number of bases.

In §5.2, the projection-based and neural network-based ROMs of time-dependent problems

introduced in the previous section are constructed. The neural network-based ROMs of two-

dimensional problems remain open to further developments. The ROMs error are compared against

the traditional ROM where available and a predictive capabilities of the ROMs are investigated. It
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is shown the low reconstruction error in the manifold learning stage directly leads to more efficient

ROMs.

In §5.3, the proposed stabilization method is evaluated on a wide range of time-invariant,

time-periodic and time-varying unstable ROMs. The problems include: a time-invariant model of

international space station and its POD Galerkin ROM, a time-periodic model of international

space station and its POD Galerkin ROM, the one-dimensional wave equation and it’s projection

based ROM on the identified time-varying grid representing the optimal manifold identified in §5.1,

and a mechanical vibrations problem with time-varying system parameters and its Krylov based

time-varying ROM. Finally, the robustness of the stabilized ROMs with respect to the input and

parameters space outside of the training range are demonstrated using the uncertainty quantification

on the ROM error.

6.2 Future work

Given the potential of the proposed framework, it is worth to develop and explore further applications.

In §6.2.1 and §6.2.2 immediate improvements and applications of the methods are discussed. In §6.2.3

to §6.2.5, more speculative and ambitious directions are proposed.

6.2.1 Hyper-reduction for nonlinear time-varying ROMs

In this section, we discuss strategies for developing hyper-reductions algorithms for our proposed

nonlinear time-varying MOR approach. For a general nonlinear dynamical system, projection-

based MOR does not provide online computational speedup. Hyper-reduction refers to a family of

algorithms specifically developed to provide online computational speed-up for general nonlinear

system.

To motivate the need for hyper-reduction, consider a first-order dynamical system of the form:

d

dt
w = Aw + f (w) , (6.1)

where A ∈ RN×N and f : RN → RN are linear and nonlinear operators, respectively. Let the state

variable at nth time step be wn ≈ Uan, where U ∈ RN×k and an ∈ Rk×1 (more details in §3.1.1).
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Projecting (6.1) on a test subspace Φ ∈ RN×k yields the projection-based reduced order model,

ΦTU
d

dt
a = ΦTAUa+ ΦTf (Ua) . (6.2)

Consider a fully discretized form, for example the first order implicit scheme with Galerkin projection,

an − an−1 = ∆tUTAUan + ∆tUTf (Uan) . (6.3)

In (6.3), the cost of evaluating the linear term scales with the dimensions of the reduced space (k),

while the cost for the nonlinear term scales, in the general case, with the size of the high fidelity

model (N)1.

Several methods, often referred to as hyper-reduction, have been developed for reducing the

computational cost of projection-based nonlinear ROMs [186–188]. In all of these methods, the

main idea involves interpolation of the nonlinear term to reduce the projection cost. For example,

Galbally et al. [15] extend the idea of “gappy” POD [189], a method introduced to reconstruct

missing/masked data, to only evaluate the nonlinear term at selected indices. Discrete empirical

interpolation method (DEIM) avoids the cost of orthogonal projection by specifically selecting

interpolation indices to get a near L2 optimal approximation of the nonlinear term [186]. Carlberg

et al. [187] developed the Gauss-Newton with approximated tensors (GNAT) approach to generalize

the interpolation procedure.

For the sake of brevity, we restrict out attention to the DEIM hyper-reduction strategy. The

goal of DEIM is to approximate f (Uan) by evaluating it at only at few indices (entries). Assume

that r indices are chosen (r � N), and the mask matrix is

P = [e℘1 , · · · , e℘r ] ∈ RN×r, (6.4)

where e℘i ∈ RN is the ℘ith column of the identity matrix IN ∈ RN×N .2 The nonlinear term is

approximated on a low-dimensional subspace f (Uan) = Ψcn, where Ψ ∈ RN×q contains the POD
1Although some nonlinearities such as polynomials can be precomputed, the costs are intractable in many

applications [185].
2The algorithm to choose e℘i is introduced in [186].
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bases.3 The nonlinear term then can be approximated in this subspace,

f (Uan) ≈ Ψ
(
P TΨ

)+
P Tf (Uan) , (6.5)

where + denotes the Moore-Penrose pseudo-inverse, Ψ
(
P TΨ

)+
∈ RN×r and P Tf (Uan) ∈ Rr.

The evaluation of the masked nonlinear term, P Tf (Uan), requires calculations on only selected

indices which usually depend on a few neighboring ones, therefore the approximation of f (Uan)

becomes independent of size of the high fidelity model (N).

Consider the ALE ROM of (6.1), and without loss of generality suppose it is discretized in time

using a first-order implicit scheme (more details in §3.2),

an −Un+
Un−1an−1 = ∆tUn+

AUnan + ∆tUn+
f (Unan) , (6.6)

where G−1(U) =
{
U0,U1, · · · ,UNt

}
, Un ∈ RN×k, and wn ≈ Unan is the approximation of the

state variable expressed on the Eulerian grid at the corresponding time step. The time varying

coefficient of the linear terms, Un+
Un−1 and Un+

AUn, can be precomputed and the evaluation of

the linear terms in the ROM scales with k. In contrast, the nonlinear term cannot be precomputed

and scales with the dimension of the high fidelity model, N . In the case where a low-order

interpolation scheme is used, applying traditional DEIM to the nonlinear term, P Tf (Unan), is

sufficient in reducing the total computation cost. A challenge in this effort will the generalization of

this approach to higher-order interpolation schemes which involve a larger number of neighboring

cells. In this case, traditional DEIM algorithms may fail to offer speed-up. Consequently, we will

also investigate more recent hyper-reduction strategies such as GNAT and Matrix DEIM.

6.2.2 Stabilization of quadratic ROMs of fluid flows

Although the stabilization approach proposed in §4 is, strictly speaking, only applicable to linear,

time-varying dynamical systems, there exist a large class of nonlinear systems that may potentially

take advantage of some of the techniques developed here. For example, consider a ROM generated

via a Galerkin projection of the incompressible Navier-Stokes equations which yields a system of
3In DEIM q = r.
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ordinary differential equations, comprised of constant, linear and quadratic terms, i.e.

da

dt
= C +La+

[
aTQ(1)a,aTQ(2)a, · · · ,aTQ(n)a

]T
, (6.7)

where C ∈ Rk, L ∈ Rk×k and Q(i) ∈ Rk×k, ∀i ∈ {1, · · · , k}. It is well known that, for a large class

of boundary conditions, the nonlinear part of this system is energy preserving: Q(i)
j,k +Q(i)

k,j +Q(j)
i,k +

Q
(j)
k,i +Q(k)

i,j +Q(k)
j,i = 0. Therefore, ROM performance can be improved via appropriate modifications

of the linear part of the system; for a more detailed discussion see [36]. It is foreseeable, therefore,

that the proposed stabilization approach described in this manuscript can be used to stabilize or

calibrate nonlinear ROMs with similar structure.

6.2.3 Low-rank registration-based manifold and Lagrangian coherent

structures

The proposed low-rank registration-based manifold provides a framework to further study the

nonlinear physical phenomena in convection dominated regimes. As demonstrated in §5.1, the

identified low-rank grid follows the convective structures present in the flow field. This can be

interpreted as a method to capture generalized Lagrangian coherent structures of the flow; for a

survey see [190].

Advantages of this realization are twofold. Firstly, the framework provides a numerical approach

to realize the path of the traveling structures. This application is of interest especially for geophysical

and atmospherics flows [191], where locations and paths of the flow structures, often vortices, are

as important as of the statistical properties of the flow. The predictive capabilities the proposed

method in a chaotic regime is yet a challenge. Stochastic problems, such as those in [64], are

still to be addressed. However, the proposed approach has the potential to provide an efficient

yet non-intrusive framework in such regimes. Korteweg–de Vries (KdV) equation, a model of

shallow water surfaces, is the stepping stone of such attempts by featuring higher-order nonlinearity,

large-scale dispersion, and a non-local dispersions.

Secondly, the snapshots from the moving observer viewpoint are low-rank. Accordingly, from

this arbitrary Lagrangian Eulerian (ALE) perspective, the convective features of the flow field are

extracted and the remainder of the flow field largely contains the diffusive and shear components
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of the flow field and their nonlinear interactions. Many of these low-energy and yet important

structures are truncated in the traditional Eulerian approaches of identifying the coherent structures

using POD bases. As an example, consider the two-dimensional Riemann problem of §5.1.5 on a fine

grid of Nx = Ny = 1500 (Fig. 6.1). The Kelvin–Helmholtz type vortical structures are low-energy

and therefore are not captured in the first few leading POD bases, from an Eulerian perspective.

However, in the proposed framework, these structures remain of significant magnitude. Therefore,

the mechanisms of the energy transfer, dynamics and stability of such structures can be investigated

in more details.

0 0.2 0.4 0.6 0.8 1
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Figure 6.1: Kelvin–Helmholtz type vortical structures in Riemann problem of configuration 3 [2] on a
1500× 1500 grid.

6.2.4 Energy decay and stability of convection-dominated ROMs

In §5.2.3, it is shown that the proposed projection-based ROMs can be stable while the traditional

projection-based Galerkin ROMs on the Eulerian grid are unstable. This is achieved by breaking

the Kolmogorov n-width of the problems,4 however, the exact mechanism leading to this favorable

stability property is not identified.

In traditional ROM construction, two sources of instabilities in convection dominated ROMs

have been proposed. In the first, it is argued that the instabilities originate in the truncation of the

dissipating range of the energy cascade of the turbulent flows [36]. In the second argument, the

instabilities are linked to purely numerical factors [176]. Although both perspectives have provided

promising new methods, a consensus on the sources of these instabilities has not been reached.
4Not to be confused with Kolmogorov micro-scales and the energy cascades in turbulent flows.
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A further comparative study of the energy spectrum of the traditional and the proposed

ROMs is suggested to provide deeper insights in regard to the fundamentals of the aforementioned

instabilities. Recognition of the source of these instabilities may directly influence the construction

and stabilization of fluid reduced order models.

6.2.5 Generalization of the grid bases

In the manifold learning problem proposed in §2, a constant time stepping was assumed. This

assumption is consistent with how the high-fidelity model is typically discretized in time. However,

clearly, this assumption is not a necessary construct for construction of the manifold. Indeed,

significant performance improvements can be expected by generalized the method proposed in this

thesis to include a temporal deformation. A schematic of idea is illustrated in Fig. 6.2. Although the

addition of this extra degree of freedom complicates the numerical aspects of the temporal evolution

of the ROMs, the additional improvement in compressibility of the snapshots maybe worthwhile for

certain class of problems.

t
X ∈ RN×K

t
X̃ ∈ RN×K

Figure 6.2: Proposed generalization involving additional temporal deformations.
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Appendix A

Lagrangian bases MOR

Consider the following scalar, one-dimensional convection-diffusion equation

∂w(x, t)
∂t

+ f1(x, t, w)∂w(x, t)
∂x

= f2(x, t, w)∂
2w(x, t)
∂x2 , (A.1)

in the domain (x, t) ∈ [xa, xb] × [0, T ], equipped with initial conditions w(x, 0) = w0(x), and

appropriate boundary conditions at xa, and xb. It is assumed throughout the reminder of this

section that (A.1) is discretized uniformly in space x[n] = [x1, . . . , xN ]T using standard techniques

such as finite-volume or finite-elements. For the sake of simplicity, and without any loss of

generality, time discretization is performed using the first-order implicit Euler scheme. Hence, if

t0 = 0 < t1 < · · · < tNt = T denotes a discretization of the time interval [0, T ] and w(x, tn) ≈ wn =

[wn1 , . . . , wnN ]T ∈ RN , for n ∈ {1, . . . , Nt}, the discrete counterpart of (A.1) at time-step n is

R (wn) = wn −wn−1 + ∆tfn1 (wn)� (Dxw
n)−∆tfn2 (wn)� (Dxxw

n) = 0, (A.2)

where � denotes the Hadamard product, Dx ∈ RN×N , and Dxx ∈ RN×N are the discrete approxi-

mations of the first and second spatial derivatives, respectively.

In traditional projection-based MOR, the solution is approximated by a global trial subspace

wn ≈ w̃n = w0 +Uan, (A.3)

where the columns of U ∈ RN×k contain the basis for this subspace, and an ∈ Rk denotes the

generalized coordinates of the vectors in these basis. Substituting (A.3) into (A.2) and projecting

103



onto test basis Φ ∈ RN×k, yields the square system

ΦTR(w0 +Uan) = 0, (A.4)

where Φ = U in the case of a Galerkin projection.

For the purpose of the proposed dimensionality reduction approach, the governing equations

(A.1) are formulated in the Lagrangian frame of reference

dx

dt
= f1(x, t, w), (A.5a)

∂w

∂t
= f2(x, t, w)∂

2w

∂x2 . (A.5b)

The discrete counterpart of (A.5) at time-step n is

Rx(xn) = xn − xn−1 −∆tfn1 (wn) = 0, (A.6a)

Rw(wn) = wn −wn−1 −∆tfn2 (wn)� (Dn
xxw

n) = 0, (A.6b)

where x[n] = [xn1 , . . . , xnN ]T denotes the locations of the Lagrangian computational grid at nth time

level, and Dn
xx denotes the discrete approximation of the second derivative on the Lagrangian grid

at time level n.

A.1 Construction of Lagrangian ROM

In the proposed new dimensionality reduction approach, the Lagrangian solution is approximated

by a global trial subspace

xn ≈ x̃n = x0 +Uxanx, (A.7a)

wn ≈ w̃n = w0 +Uwanw, (A.7b)

where the columns of Ux ∈ RN×k and Uw ∈ RN×k contain the basis for the corresponding subspace,

and anx ∈ Rk and anw ∈ Rk denote the generalized coordinates of the vectors in these basis.

Substituting (A.7) into (A.6) and projecting onto test basis Φx ∈ RN×k and Φw ∈ RN×k, yields
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the square system

ΦT
xRx(x0 +Uxanx) = 0, (A.8a)

ΦT
wRw(w0 +Uwanw) = 0, (A.8b)

where Φx = Ux and Φw = Uw in the case of a Galerkin projection.

A.2 Construction of Lagrangian global bases

For cases where the HFM is formulated in the Lagrangian frame of reference, that is, when the

governing equations are in the form of (A.6), construction of Lagrangian basis follows a procedure

very similar to traditional POD. Specifically, we solve the low-rank approximation problem given by

(2.5), for a snapshot matrix X ∈ R2N×K containing solution snapshots computed by (A.6). In other

words, [X]:,i =
[
xi,wi

]T for i = 1, . . . ,K. Therefore, the optimal Lagrangian basis corresponds

to Ux = [U ]1:N,1:k and Uw = [U ]N+1:2N,1:k, where U are the left singular vectors of the snapshot

matrix X.

For cases where the HFM is formulated in the Eulerian frame of reference, that is, when the

governing equations are in the form of (A.1), Lagrangian basis cannot be constructed by solving

the standard low-rank approximation problem because Eulerian HFMs typically do not provide the

grid deformation xi. Thus, it is not possible to form the snapshot matrix [X]:,i =
[
xi,wi

]T . The
present thesis addresses such problems.

A.2.1 Lagrangian grid entanglement

In the proposed Lagrangian MOR approach, the evolution of the Lagrangian spatial grid is ap-

proximated in a low-dimensional subspace, xi ≈ Uxa
i
x. Unfortunately, this low-dimensional

approximation is not guaranteed to preserve the topological properties of the original HFM simu-

lation. Indeed, for some particular cases, the low-dimensional Lagrangian grid becomes severely

distorted leading to numerical instabilities. For these cases, particularly those featuring strong

shocks, we propose the following modification to the model reduction procedure. Instead of solving

the diffusion step in the Lagrangian frame, as in (A.8b), the state basis Uw are interpolated from
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the Lagrangian to the stationary Eulerian grid at every time level n and the projection is performed

in the Eulerian frame. Instead of solving the diffusion step in the Lagrangian frame, as in (A.8b),

the state basis Uw are interpolated from the Lagrangian to the stationary Eulerian grid at every

time level n and the projection is performed in the Eulerian frame. Therefore, (A.8b), is replaced

with the following

Φ̂T
wR̂w(ŵ0 + Ûwanw) = 0, (A.9)

where Φ̂w = PxΦxan
x
(Uw), Ûw = PxUxan

x
(Uw), and ŵ0 = PxUxan

x
(w0), are the interpolated basis and

initial conditions and R̂w is the diffusion step in the Eulerian frame, defined as

R̂ (wn) = wn −wn−1 −∆tfn2 (wn)� (Dxxw
n) = 0. (A.10)

The interpolation and the ROM of (A.10) is generalized in §3 of the present thesis.

A.3 Numerical experiments

A.3.1 Convection-diffusion equation

The proposed approach is first applied to the reduction of the scalar linear convection equation and a

high Péclet number convection-diffusion equation. Specifically, we consider (A.1) with f1(x, t, w) = 1,

f2(x, t, w) = 1/Pe, w(x, 0) = 0.5 e−(x−0.3)2/0.052 , w(0, t) = 0, for (x, t) ∈ [0, 1.5] × [0, 1], where

Pe =∞ (pure convection) and Pe = 103.

Two HFMs are constructed for this case; one in the Eulerian frame, as in (A.2), and one in

the fully Lagrangian frame, as in (A.6). For both models, a second-order central finite difference

discretization is used. N = 2000 grid points are used to discretized the domain 0 ≤ x ≤ 1.5. A total

of K = 2000 Eulerian and Lagrangian snapshots are collected. Eulerian and Lagrangian basis are

constructed by solving (2.5). Eulerian ROMs are solved in the form of (A.4) and Lagrangian ROMs

are solved in the fully Lagrangian frame, as in (A.8a) and (A.8b). Galerkin projection is used in all

cases so Φ = U and Φx = Ux, Φw = Uw.

ROM solutions for the convection equation and the high Péclet number convection-diffusion

equation are illustrated in Fig. A.1 and Fig. A.2, respectively.

Convergence of Eulerian and Lagrangian ROMs of the high Péclet number convection-diffusion

106



0 0.5 1 1.5

0.6

0.8

1

1.2

1.4

x

w

(a) Traditional Eulerian HFM.
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(c) Traditional Eulerian ROM with k = 2.
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(d) Lagrangian ROM with k = 2.
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(e) Traditional Eulerian ROM with k = 5.
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(f) Lagrangian ROM with k = 5.

Figure A.1: Model order reduction of scalar convection equation; Solutions are plotted for t = {0, 1/3, 2/3, 1}.

are illustrated in Fig. A.4a, where error is defined as Frobenius distance between HFM and its ROM.

For both cases considered, Lagrangian ROMs significantly outperform the Eulerian ROMs in all

cases considered.

A.3.2 Burgers’ equation

The proposed approach is next applied to the reduction of a convection-dominated Burgers’

equation. Specifically, we consider (A.1) with f1(x, t, w) = w(x, t), f2(x, t, w) = ν, w(x, 0) =

0.8 + 0.5 e−(x−0.3)2/0.12 , w(0, t) = 0, for (x, t) ∈ [0, 1.5]× [0, 1], where ν = 10−3. As before, two HFM

are constructed, one in the Eulerian frame, as in (A.2), and one in the fully Lagrangian frame, as in

(A.6). For both models, a second-order central finite difference discretization is used. N = 2000 grid
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(c) Traditional Eulerian ROM with k = 2.
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(d) Lagrangian ROM with k = 2.
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(e) Traditional Eulerian ROM with k = 5.
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(f) Lagrangian ROM with k = 5.

Figure A.2: Model order reduction of scalar convection-diffusion equation with Pe = 103; Solutions are
plotted for t = {0, 1/3, 2/3, 1}.
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points are used to discretized the domain 0 ≤ x ≤ 1.5. Total of K = 2000 Eulerian and Lagrangian

snapshots are collected. Eulerian and Lagrangian basis are constructed by solving (2.5). Eulerian

ROMs are solved in the form of (A.4). Due to the significant Lagrangian grid entanglement caused

by the nonlinear convection term in the Burgers’ equation, the Lagrangian ROMs are solved using

the modified diffusion step; i.e. (A.8b) is replaced with (A.9). Galerkin projection is used in both

cases.

Solutions at t = {0, 1/3, 2/3, 1} derived using the traditional and the new proposed approach

are illustrated in Fig. A.3.

Convergence of the Eulerian and Lagrangian ROMs are illustrated in Fig. A.4b. The Lagrangian

ROMs significantly outperform the Eulerian ROMs. For example, a k = 1 Lagrangian ROM has

approximately the same error as a k = 20 Eulerian ROM. Note that Lagrangian ROMs only up to

k = 5 are considered. After k = 5, some of the interpolated Lagrangian basis Ûw become linearly

dependent and thus, no further performance gain can be expected.
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(d) Lagrangian ROM with k = 2.
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(e) Traditional Eulerian ROM with k = 5.
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(f) Lagrangian ROM with k = 5.

Figure A.3: Model order reduction of scalar Burgers’ equation with ν = 10−3; Solutions are plotted for
t = {0, 1/3, 2/3, 1}.
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Figure A.4: ROM convergence for scalar convection-diffusion equation and Burgers’ equation. Traditional
Eulerian ROMs (dashed red lines with filled markers) and Lagrangian ROMs (solid black lines with empty
markers).
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