
c© 2020 Thomas Shull

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/334979854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MAKING NON-VOLATILE MEMORY PROGRAMMABLE

BY

THOMAS SHULL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Josep Torrellas, Chair
Assistant Professor Jian Huang
Professor David Padua
Professor James Larus, École Polytechnique Fédérale de Lausanne
Professor Steven Swanson, University of California, San Diego

Abstract

Byte-addressable, non-volatile memory (NVM) is emerging as a revolutionary memory technol-
ogy that provides persistence, near-DRAM performance, and scalable capacity. By using NVM,
applications can directly create and manipulate durable data in place without the need for serial-
ization out to SSDs.

Ideally, through NVM, persistent applications will be able to maintain crash-consistency at a
minimal cost. However, before this is possible, improvements must be made at both the hardware
and software level to support persistent applications. Currently, software support for NVM places
too high of a burden on the developer, introducing many opportunities for mistakes while also
being too rigid for compiler optimizations. Likewise, at the hardware level, too little information
is passed to the processor about the instruction-level ordering requirements of persistent applica-
tions; this forces the hardware to require the use of coarse fences, which significantly slow down
execution.

To help realize the promise of NVM, this thesis proposes both new software and hardware sup-

port that make NVM programmable. From the software side, this thesis proposes a new NVM pro-
gramming model which relieves the programmer from performing much of the accounting work
in persistent applications, instead relying on the runtime to perform error-prone tasks. Specifi-
cally, within the proposed model, the user only needs to provide minimal markings to identify the
persistent data set and to ensure data is updated in a crash-consistent manner.

Given this new NVM programming model, this thesis next presents an implementation of the
model in Java. I call my implementation AutoPersist and build my support into the Maxine research
Java Virtual Machine (JVM). In this thesis I describe how the JVM can be changed to support
the proposed NVM programming model, including adding new Java libraries, adding new JVM
runtime features, and augmenting the behavior of existing Java bytecodes.

In addition to being easy-to-use, another advantage of the proposed model is that it is amenable
to compiler optimizations. In this thesis I highlight two profile-guided optimizations: eagerly allo-
cating objects directly into NVM and speculatively pruning control flow to only include expected-
to-be taken paths. I also describe how to apply these optimizations to AutoPersist and show they
have a substantial performance impact.

While designing AutoPersist, I often observed that dependency information known by the com-
piler cannot be passed down to the underlying hardware; instead, the compiler must insert coarse-
grain fences to enforce needed dependencies. This is because current instruction set architectures
(ISA) cannot describe arbitrary instruction-level execution ordering constraints. To fix this limita-

ii

tion, I introduce the Execution Dependency Extension (EDE), and describe how EDE can be added
to an existing ISA as well as be implemented in current processor pipelines.

Overall, emerging NVM technologies can deliver programmer-friendly high performance. How-
ever, for this to happen, both software and hardware improvements are necessary. This thesis takes
steps to address current the software and hardware gaps: I propose new software support to assist
in the development of persistent applications and also introduce new instructions which allow for
arbitrary instruction-level dependencies to be conveyed and enforced by the underlying hardware.
With these improvements, hopefully the dream of programmable high-performance NVM is one
step closer to being realized.

iii

To my family and friends.

iv

Acknowledgments

My Ph.D. has been a very memorable journey. While there have been many experiences, by far
the most valuable takeaway has been the friends I have made and researchers I have met throughout
the process. They have made my Ph.D. very enjoyable and something I will look back at with fond
memories.

First, I would like to thank my advisor, Professor Josep Torrellas. Throughout my Ph.D., Josep
has expertly balanced allowing me enough freedom to explore random topics while also guiding
me to areas ripe for research. Josep has always been supportive and willing to spend time to help
me concretize my ideas. His work ethic is unparalleled and serves as an inspiration to all.

I would also like to thank my committee for their help and guidance. I have worked with
Jian extensively on designing a new non-volatile memory (NVM) programming environment. His
expertise and insights on NVM systems has been invaluable throughout the project and has helped
to increase its impact. Too, I have appreciated Jian’s help in writing papers and his willingness to
spend the time and effort needed to ensure everything is done right. Thank you also to the rest of
my committee for your insightful questions throughout my exam and for your comments on my
dissertation.

I would like to express my sincere gratitude to the various Computer Science Department sup-
port staff who have helped along the way. Thank you to Sherry Unkraut and Madeleine Garvey
for helping with all of the i-acoma travel arrangements and scheduling. Likewise, I’d like to thank
Kara MacGregor, Kathy Ann Runck, Mary Beth Kelly, Viveka Kudaligama, and Maggie Metzger
Chappell for providing assistance with various program logistics.

I am also grateful for the camaraderie of the other i-acoma group members, both past and
present. I joined the group along with three other students, Bhargava, Jiho, and Raghavendra,
and have shared many of the Ph.D.’s important milestones alongside them. Wonsun served as my
first mentor and helped introduce me to managed language virtual machines. Jiho and I worked
together on many JavaScript projects. Throughout the years, I have enjoyed also getting to know
Antonio, Apostolos, Dimitris, Mengjia, Serif, Wooil, and Yasser, among others.

Beyond the i-acoma group, I’d also like to thank the other friends I met throughout graduate
school. Thank you for serving as an enjoyable escape from work while also expanding my hori-
zons.

My family has been essential for me both in striving for, and completing my Ph.D. Throughout
my entire academic career, my family has always been supportive and has always encouraged me
to make the most of my potential. Thank you for helping to set me up for success in graduate

v

school and beyond.
Finally, and most importantly, I would like to thank my wife, Sofi. I met Sofi here while in grad

school, and she is by far and away its greatest reward. Thank you for helping me stay focused and
always being supportive. I am grateful that we get to begin our new journey united, as we both
travel through valleys and stand atop mountains together.

vi

Table of Contents

Chapter 1 Introduction . 1
1.1 The Promise of Emerging Non-Volatile Memory (NVM) Technologies 1
1.2 Current Support for Persistent Applications . 1
1.3 Thesis Contribution and Overview . 2
1.4 Thesis Organization . 5

Chapter 2 Background & Related Work . 6
2.1 Current Hardware Non-Volatile Memory (NVM) Support 6
2.2 Using NVM in Persistent Applications . 7
2.3 Improving NVM Performance . 9
2.4 Java Virtual Machine (JVM) Behavior . 10

Chapter 3 Designing a New Programmer-Friendy NVM Programming Model 13
3.1 Introduction . 13
3.2 Limitation of Existing NVM Frameworks . 14
3.3 New Programmer-Friendly NVM Programming Model 16
3.4 Example of Runtime Responsibilities . 19
3.5 Discussion . 19

Chapter 4 AutoPersist: An Easy-To-Use Java NVM Framework 23
4.1 Introduction . 23
4.2 Applying The Programming Model to Java . 24
4.3 Implementing AutoPersist within the JVM . 27
4.4 Advanced Implementation Aspects . 30
4.5 Discussion . 37

Chapter 5 Improving AutoPersist’s Performance Through Profile-Guided Optimizations . . 40
5.1 Introduction . 40
5.2 AutoPersist Performance Overheads . 40
5.3 Characterizing Persistence Checks . 43
5.4 Biasing Persistence Checks . 46
5.5 Implementing Biased Persistence Checks . 49
5.6 Optimizing Object Allocation . 52
5.7 Discussion . 53

Chapter 6 Evaluating AutoPersist on Real Hardware . 56
6.1 Introduction . 56
6.2 Infrastructure . 56
6.3 Applications . 57
6.4 Implementation Frameworks . 58

vii

6.5 Configurations . 59
6.6 Programmability . 60
6.7 Framework Comparison . 61
6.8 Analysis of AutoPersist’s Performance . 63
6.9 Summary . 69

Chapter 7 ISA Support for Instruction-Level Execution Dependencies 70
7.1 Introduction . 70
7.2 Understanding Fence Overhead . 71
7.3 Main Idea . 73
7.4 EDE ISA Definition . 76
7.5 Hardware Implementation . 81
7.6 Experimental Setup . 85
7.7 Evaluation . 87
7.8 Discussion . 90

Chapter 8 Conclusion . 93

Chapter 9 References . 94

viii

Chapter 1: Introduction

1.1 THE PROMISE OF EMERGING NON-VOLATILE MEMORY (NVM) TECHNOLOGIES

Byte-addressable non-volatile memory (NVM) holds much promise within the computing world.
Traditionally memory technologies have an inherent tradeoff where they can be either fast, small,
and transient (volatile), or slow, large, and durable (non-volatile). Because of these tradeoffs, large
hierarchies of memories are present in today’s systems, allowing frequently queried data to reside
in caches near the processor, while peripheral block-storage devices are used to store both inactive
data and data which must not be lost when an application terminates.

NVM is interesting because it does not fit within the traditional memory dichotomy. Instead,
NVM’s traits bridge the gap between existing memory technologies. In particular, NVM is byte-
addressable like DRAM, but is non-volatile like storage devices. In terms of performance, NVM
is slower than DRAM but is faster SSDs. Likewise, NVM has higher capacity than DRAM but
less than SSDs.

Recently, significant technological advances have been made towards manufacturing NVM,
such as Intel 3D XPoint [1], Phase-Change Memory (PCM) [2], and Resistive RAM (ReRAM) [3].
Indeed, in April 2019 Intel began to sell 3D XPoint memory [1] to be used within servers and plans
to also incorporate NVM into their consumer products.

Because of NVM’s unique characteristics, it is poised to benefit many different domains. Due
to its byte-addressability and larger capacity than DRAM, one immediate use case of NVM is to
improve the performance of in-memory databases. In addition, its non-volatility can be leveraged
to improve the performance of file systems [4] and allow for smaller batching sizes within real-time
logging systems such as Java Flight Recorder [5].

However, many researchers are also optimistic that NVM can help fundamentally change how
persistent applications are programmed. In particular, NVM provides the opportunity for an ap-
plication’s working data set and durable data set to be unified. This eliminates the act of copying
data to/from durable storage and also devising a serialization scheme. Hence, in the future, NVM
is poised to allow for faster application recovery, fine-grain persistent updates, and faster perfor-
mance, all while also being simpler to program.

1.2 CURRENT SUPPORT FOR PERSISTENT APPLICATIONS

While non-volatile memory technologies have much promise, leveraging NVM in persistent
applications requires both hardware and software support. On the hardware side, since volatile

1

caches sit between the processor and NVM, instructions must be issued to ensure data is propa-
gated to NVM. Intel’s x86-64 processors have introduced the CLWB instruction [6], which writes
back a cache line to NVM while also retaining the line in the cache, to help push data to NVM.
Likewise, within Arm’s AArch64 architecture, the DC CVAP instruction [7] has been introduced to
accomplish the same function.

Another consequence of volatile caches is that even when data is forced to propagate to memory
via CLWBs or DC CVAPs, the order in which data is persisted may not follow program order; this can
cause an inconsistent program state to be present at the time of a crash. To prevent reorderings,
currently fences must be added to the execution to ensure data is persisted in the desired order.
On x86-64, the SFENCE instruction is used to block subsequent writes from executing until all
prior stores and CLWBs have completed. On AArch64, the DSB instruction must be used to order
stores and DC CVAPs. Note that SFENCE and DSB predate NVM, and have been retrofitted to also
enforce NVM orderings. Furthermore, these instructions enforce an ordering on all stores and
NVM writebacks, and therefore have significant performance overheads.

In addition to the hardware coordination described above, much software support is also needed
to maintain crash-consistency. Such support includes the ability to relocate data to different
virtual address regions, crash-consistent memory allocation and collection, and support for col-
lectively having sets of writes atomically persist. To help assist with these tasks, many NVM
programming frameworks have been proposed. Proposed frameworks include Intel’s PMDK [8],
Mnemosyne [9], NVHeaps [10], Espresso [11], and others [12, 13, 14, 15, 16, 17, 18].

While the specific details of the frameworks vary, at minimum these frameworks have support
for persistent allocation and primitives to enable the persistent updates of data. Overall, however, I
believe that current frameworks place too many burdens on the programmer. In particular, existing
frameworks require the programmer to either explicitly identify all persistency characteristics of
data structures and objects, or they require the programmer to use library data-structures which
have already been correctly labeled. This limitation makes the process of creating persistent ap-
plications very time-intensive, and also introduces opportunities for correctness and performance
bugs due to the increased programming complexity [19]. Moreover, it limits the ability of persis-
tent applications to reuse existing libraries.

1.3 THESIS CONTRIBUTION AND OVERVIEW

With NVM devices available today, it is critical that the proper software tools are available to
ensure programmers can leverage NVM effectively. In addition, it is important that hardware is
able to efficiently execute code patterns commonly found within persistent applications.

2

I believe the NVM frameworks available today are too complicated to be widely adopted by
programmers. In response, in this thesis I propose a new NVM application environment called
AutoPersist. AutoPersist strives to achieve a better balance of programmability, correctness, and
performance than prior NVM frameworks.

Likewise, I find that current instruction set architectures (ISA) are unable to effectively com-
municate to the hardware the ordering requirements of patterns commonly found within persistent
applications. To fix this issue, in my thesis I propose to extend the ISA to allow for arbitrary
instruction-level ordering dependencies to be defined within the ISA. I call my extension the Ex-

ecution Dependency Extension (EDE) and describe both how it can be incorporated into Arm’s
AArch64 instruction set architecture as well as the underlying hardware representation.

1.3.1 Summary of Contributions

Designing a New Programmer-Friendy NVM Programming Model. Before designing a new
NVM framework, I studied and characterized existing frameworks [20]. Based on my characteri-
zation, I discovered that existing NVM frameworks too closely match the underlying hardware. In
particular, they require the user to explicitly identify all data which must reside in NVM and wrap
stores that need to be performed persistently. In my opinion, these requirements place too much of
a burden on programmers and create many opportunities to write buggy programs.

To make using NVM simpler, I propose a new NVM programming model which requires mini-
mal markings to define persistent data. Specifically, I introduce the concept of durable roots, i.e.,
named objects that are used at recovery time as hooks into the persistent data structures. Once a
user identifies the durable roots, my model requires the runtime to automatically make all objects
reachable from durable roots recoverable and also requires the runtime to ensure stores to these
objects are performed persistently. Such a model will be intuitive to programmers and foster the
integration of NVM into applications.

AutoPersist: An Easy-To-Use Java NVM Framework. Based on my model, I propose a new
NVM framework in Java which I call AutoPersist [21]. In Chapter 4, I define how such a programmer-
friendly NVM programmer model could be applied to Java. In addition, I describe how the under-
lying Java Virtual Machine (JVM) must be modified to support this model. These changes include
augmenting each object’s internal representation, changing the heap layout and garbage collection
process, and also extending the behavior of many JVM bytecodes.

I implement AutoPersist on top of the Maxine JVM [22] and run my framework on top of a
system with NVM DIMMs. I find that AutoPersist is able to significantly simplify the task of
creating persistent programs while also outperforming existing Java NVM frameworks. This is

3

because since AutoPersist is integrated into the JVM, it is better at understanding the underlying
object layout, performing dynamic optimizations, and customizing the execution to be tailored
towards the observed common cases.

Improving AutoPersist’s Performance Through Profile-Guided Optimizations. While in the
baseline AutoPersist implementation significantly outperforms existing Java NVM framework of-
ferings, I find that many opportunities still exist to improve AutoPersist’s performance. In par-
ticular, I find two significant sources of overhead. First, I observe that the runtime often must
move objects between the volatile and non-volatile heaps. Second, persistence checks, or checks
introduced in AutoPersist to determine when runtime actions must be invoked, incur a significant
execution overhead, even if the runtime action is bypassed.

To reduce these overheads, I propose two profile-guided optimizations. First, I propose to re-
duce the overhead of moving objects to NVM by identifying which objects are likely to become
persistent and eagerly allocating these objects within NVM. Second, I propose QuickCheck, a
technique to bias persistence checks towards their expected behavior [23]. QuickCheck divides
the program execution into two phases, a profiling phase and an optimization phase. During the
profiling phase, persistence checks are instrumented to record whether the guarded actions are
bypassed or executed. Later, during the optimization phase, the code is recompiled and machine
code representing the persistence checks and their guarded actions is generated to be biased to-
wards the expected behavior. To further improve performance, guarded actions expected to be
always bypassed are speculatively completely removed from the code.

ISA Support for Instruction-Level Execution Dependencies. Currently, manipulating persis-
tent data structures requires the insertion of fences into the code to ensure writes propagate to
NVM in a specific order. For instance, while performing undo logging, the undo log entry must be
persisted before the original element can be updated.

In undo logging, an update has an execution dependence on its corresponding log entry. An
execution dependence means that, for correctness, the execution dependences source operation
must complete before the dependences sink can make any observable memory changes.

For performance, different log updates should be able to proceed in parallel. However, in current
ISAs, these execution dependencies are not able to be conveyed between independent (i.e., no reg-
ister or memory dependent) instructions. Therefore, programmers must instead use fences, which
enforce an execution ordering between all instructions and serialize independent log updates.

To remedy this, I propose the Execution Dependency Extension (EDE), which allows for fine-
grain execution ordering dependencies to be represented within the ISA, and also describe how
EDE can be added to Arm’s AArch64 ISA.

4

I also present two hardware realizations of EDE. My hardware proposals enforce EDE’s exe-
cution dependencies at different stages within the pipeline: one within the issue queue (IQ) and
another at the write buffer (WB). Overall, I find that EDE is able to significantly improve persistent
applications’ performance.

1.4 THESIS ORGANIZATION

This thesis is organized as follows. Chapter 2 describes current NVM offerings, what instruc-
tions are needed to ensure data is persisted, and current techniques for creating persistent ap-
plications. Next, Chapters 3 through 6 present the design of AutoPersist. Chapter 3 describes
the programming model used within AutoPersist; Chapter 4 describes how AutoPersist is imple-
mented within a Java Virtual Machine (JVM); and Chapter 5 discusses several of AutoPersist’s
optimizations. Finally, Chapter 6 evaluates the performance of AutoPersist.

In Chapter 7, I introduce the EDE ISA extension, and describe how it can be implemented in
hardware. Finally, Chapter 8 concludes by summarizing my contributions.

5

Chapter 2: Background & Related Work

2.1 CURRENT HARDWARE NON-VOLATILE MEMORY (NVM) SUPPORT

In recent years, technological advances have been made towards having byte-addressable non-
volatile memory. Whereas traditionally durably storing data required the use of block-based stor-
age devices such as Hard Disk Drives (HDDs) or Solid State Drives (SSDs), new device technolo-
gies such as Phase-change memory (PCM) [2, 24] and Resistive RAM (ReRAM) [3] that offer
non-volatile memory with byte-level access granularity are being rapidly developed.

These new technologies are known collectively as non-volatile random-access memory (NVM).
NVM offers substantial performance improvements over traditional storage devices; it has perfor-
mance similar to current volatile dynamic random-access memory (DRAM), yet also has higher
capacities and retains its values across system restarts. Intel has already released NVM prod-
ucts [25], including releasing NVM in DIMM form factor in April 2019.

Core

I$ D$

L2 Cache

L3 Slice

DRAM

NVM

Memory Controller

Core

I$ D$

L2 Cache

L3 Slice

DRAM

NVM

Figure 2.1: Hybrid DRAM+NVM hierarchy.

Currently, NVM is being used alongside DRAM in hybrid memory systems. An example hybrid
memory hierarchy is shown in Figure 2.1. In such a setup, Intel systems present the user with two
operation modes for NVM [26]: Memory Mode, where DRAM serves as a transparent cache for
the NVM physical address space; and AppDirect Mode, in which NVM and DRAM are mapped

6

to distinct physical addresses and can be directly accessed individually. Note that on Intel systems
a given channel has the option to contain both NVM and DRAM DIMMs; this is to accelerate the
Memory Mode’s DRAM caching.

While NVM moves non-volatile storage a level closer to the processor, as shown in Figure 2.1,
many levels of volatile cache still exist between the processor and NVM. Hence, one needs to
ensure that persist writes propagate their values beyond the caches and reach NVM. For this reason,
x86-64 processors have introduced the CLWB instruction [6], which writes back a cache line to
NVM while also retaining the line in the cache.

In Armv8.2-A [27], Arm introduced new instructions to propagate writes to the persistence
domain. Specifically, Arm has added the Data or unified Cache line Clean by Virtual Address to

Point-of-Persistence (DC CVAP) [7] instruction to its AArch64 ISA. Like CLWB, DC CVAP ensures
the value at the provided virtual address is sent to NVM.

In both x86-64 and AArch64, CLWB and DC CVAP follow a relaxed memory ordering. This
means, while using these instructions, the order in which the updates reach NVM and are made
persistent is not deterministic. Hence, to guarantee a given ordering, fences must be inserted. On
x86-64, to guarantee that all prior CLWB instructions have completed before subsequent writes and
CLWBs can execute, one needs to insert a storage fence (SFENCE) [6] instruction.

Note that on current Intel systems a store is considered complete once it reaches the on-DIMM
memory controller; it does have to wait until it is actually stored on the non-volatile media. This
is because the memory controller is part of the Asynchronous DRAM Refresh (ADR) [28] domain
on Intel products. ADR expands the persistent domain to include additional components which
are guaranteed to flush to NVM on shutdown. On Intel chips, the memory controller is added to
the ADR by including enough capacitance to provide power to write all data within the memory
controller to NVM in the event of a crash.

On AArch64, a system-wide data synchronization barrier (DSB) [7, 29] is needed to order DC
CVAPs relative to other instructions. DSB imposes an ordering on all instructions – before any
instruction after a DSB can execute, all prior instructions must finish. Note that while AArch64
also provides a data memory barrier (DMB), unfortunately currently this instruction does not order
DC CVAPs.

2.2 USING NVM IN PERSISTENT APPLICATIONS

The Storage Networking Industry Association (SNIA) has been working to standardize inter-
actions with NVM. It has created a low-level programming model [30] meant to be followed by
device driver programmers and low-level library designers. In addition, an open source project

7

has been created to provide application developers with a high-level toolkit compliant with SNIA’s
device-level model. This project has resulted in the development of the Persistent Memory Devel-
opment Kit (PMDK) [8], a collection of libraries in C/C++ and Java that a developer can use to
build persistent applications on top of NVM.

PMDK requires that programmers explicitly label all the persistent data in their code with prag-
mas. As an alternative, PMDK also provides a library of persistent data structures, such as a
durable array and hashmap, with the necessary persistent pragmas already built into the library.

For persistently storing data, PMDK requires the programmer to either explicitly persist stores,
or use demarcated failure-atomic regions. Failure-atomic regions enable many stores to persistent
memory to appear to be persisted atomically. Recently, PMDK has also introduced C++ templates
that allow some operations to be persistent without explicit user markings.

POBJ LAYOUT BEGIN (l i s t) ;
POBJ LAYOUT ROOT(l i s t , s t r u c t d u r a b l e l i s t) ;
POBJ LAYOUT END(l i s t) ;
s t r u c t d u r a b l e l i s t {

i n t e l e m e n t ;
TOID (s t r u c t d u r a b l e l i s t) n e x t ;

}
TOID (s t r u c t d u r a b l e l i s t) head ; \\ i n i t i a l i z e d e l s e w h e r e
void i n s e r t (PMEMobjpool ∗pop , i n t e l e m e n t){

TX BEGIN (pop){
TOID (s t r u c t d u r a b l e l i s t) node =

TX NEW(s t r u c t d u r a b l e l i s t) ;
D RW(node)−>e l e m e n t = e l e m e n t ;
TX ADD FIELD (head , n e x t) ;
D RW(node)−>n e x t = D RO(head)−>n e x t ;
D RW(head)−>n e x t = node ;

} TX END
}

Figure 2.2: Example using NVM pragmas.

Figure 2.2 shows how to use PMDK’s macros to create a persistent list and also the method to
add needed elements to the head of the list. As shown in the figure, the user is expected to describe
the layout of the list via POBJ LAYOUT (*) macros. In addition, each pointer access to persistent
memory must be done through a D RW or D RO. The above macros are needed because PMDK
uses location-independent pointers which allows for the objects to be assigned a different virtual
address space across restarts. Finally, the list prepend must be performed within a transaction to
ensure that either the action persistently completes or the newly allocated memory is recovered in
the event of a crash. PMDK provides TX (*) macros to denote the transactional region (TX BEGIN

and TX END), transactional memory allocation (TX NEW), and transactional memory modifications

8

to persistent state (TX ADD FIELD).
In addition to the industrial efforts, academia has also proposed several frameworks for NVM [11,

10, 9, 12, 13, 14, 15, 16, 17, 18]. With the exception of Espresso [11], all of these languages target
C/C++. Some frameworks leverage language-level support directly [17, 18], whereas others are
built as libraries and provide a persistence API to the user.

Another differentiating factor between these frameworks is how both failure-atomic regions
are identified and also race resolution occurs. Failure-atomic regions are portions of code which
provide the appearance of having all persistent updates complete atomically at the end. Some
frameworks, such as BPFS [12], propose to periodically create epochs to which all memory opera-
tions are aligned. Others, such as Atlas [13], tie failure-atomic regions to existing critical sections
within the code. Finally, others, such as NVMReconstruction [17], expect the user to identify
failure-atomic regions manually.

Once failure-atomic regions are identified, another responsibility of many frameworks is to en-
sure that the failure-atomic regions of multiple threads compose into a crash-consistent state. One
approach to accomplish this is to use software transaction memory to rollback racy updates [9].
Another approach is to track happens-before dependencies between log entries and coordinate the
rollback of log entries across multiple threads [13]. Note, however, that it is not necessary for
the runtime to offer race detection and mitigation. Instead, many frameworks, including PMDK,
expect the user to correctly synchronize their application to prevent races between failure-atomic
regions.

Presently, the two most popular ways to durably store objects within Java [31] is by either us-
ing the Java Persistence API (JPA) or extending Java’s Serializable interface. JPA is an API
which allows applications to transparently interface with databases from multiple providers. Al-
ternatively, extending the Serializable interface allows an application designer to directly write
objects to durable storage. These existing techniques are designed for when there is a separation
between the volatile main memory and non-volatile storage. New frameworks need to be designed
for Java to fully leverage the capabilities of NVM.

2.3 IMPROVING NVM PERFORMANCE

Many proposals have been made to improve the performance of NVM. An important area of
study has been to devise new data structures which optimally leverage NVM’s traits. This includes
leveraging NVM’s byte-addressability in structures [32, 33] as well as storing in DRAM data, such
as indexes, which can be recreated across crashes [34, 35].

As stated before, often it is necessary for a collection of writes to NVM to have the appearance of

9

being persistently completed atomically. To do so requires the use of logging to enable the recovery
of a consistent state in the event of a crash. Therefore, logging is a key feature of NVM application
and hence has been studied extensively. Many works have tried to optimize the performance of
logging in software [36, 37, 38, 39, 40]. These works try to limit the amount of fences which must
be added to the problem by either redoing work after a crash or by leveraging Intel’s intra-cacheline
ordering guarantees.

In addition to the software logging optimization techniques cited above, many researchers have
also proposed hardware techniques to accelerate logging [41, 42, 43, 44, 45, 46]. In these works,
the performance of logging is increased by the introduction of advanced memory controllers,
persistent caches, and/or additional persistent storage buffers. Unfortunately, these hardware ap-
proaches are very brittle, have unclear software interoperability, and are tied to a specific logging
approach. I believe at most hardware should only offer primitives for logging and that the majority,
if not all of the logging support, should be implemented in software.

Similar to how a processor’s consistency model dictates when stores and loads become visible
to other threads, persistency models have been proposed [47, 48, 49, 50, 51, 52, 53] to dictate how
loads to and stores from non-volatile memory can be reordered by the hardware. The proposed
persistency models allow different amounts of reordering, with more relaxed models potentially
having better performance with the tradeoff of possibly creating very counterintuitive data states
in the non-volatile memory. Based on the hardware’s underlying persistency model, the software
must decide where fences are needed within the application to ensure a specific ordering.

Another way to improve the performance of NVM is to allow the crash-consistent state to lag
behind the program’s visible state. This can be done by adding buffers within the hardware to
store pending NVM writes and to monitor the system’s coherence messages to determine the order
in which data must be written back to NVM. This concept, known as buffered persistency, has
been proposed in multiple works [15, 54, 55, 52]. While buffered persistency can significantly
improve performance, I believe the cost of monitoring coherence messages is prohibitive. Instead,
a simpler and more effective solution is to add additional capacitance to chips which can be used
to flush volatile cache state in the event of a shutdown. This approach, known as eADR (enhanced
asynchronous DRAM refresh), allows for persistent fences to be removed from programs without
the need to monitor coherence messages.

2.4 JAVA VIRTUAL MACHINE (JVM) BEHAVIOR

Java programs are executed on top of a Java Virtual Machine (JVM) [56]. The JVM receives
as input .class files consisting of JVM bytecodes and metadata about the location of methods

10

and other classes. From this input, the JVM generates machine code customized for the current
execution environment’s architecture.

Some of Java’s key features are its object transparency and automatic memory management. In
Java, users do not have direct pointers to memory. Instead, they have reference handles to objects.
These reference handles hide an object’s underlying representation, allowing the runtime to store
metadata hidden from the user alongside user-declared object fields. This metadata, also known
has header fields, helps to improve the performance of runtime features such as synchronization
and garbage collection.

In addition, since users can only access objects through references, the runtime is free to move
objects around throughout execution. Object movement is done both for performance reasons and
also to collect garbage. Garbage collection is a key feature of Java. Instead of the user having to
explicitly free memory, the runtime is able automatically to identify unreachable objects and to
reclaim this memory. This helps to improve programmer productivity and eliminate common bugs
such as dangling pointers.

Instead of generating machine code ahead-of-time before execution, most JVM implementations
dynamically generate code throughout execution using Just-in-Time (JIT) compilation techniques.
By performing JIT compilation, non-executed code paths do not need to be compiled, and the
generated code can be tailored to be optimized for the application’s current behavior.

 + Fast Compilation Times
— Generates Lower Quality Code
 + Collects Profiling Information

“Hot” M
ethod Recom

pilation

Sp
ec

ul
at

ive
 O

pt
im

iza
tio

n
Fa

ilu
re

Baseline Compiler

 — Slower Compilation Times
 + Generates High Quality Code
 + Utilizes Profiling Information

Optimizing Compiler

Compiler Traits

Baseline Compiler

Optimizing Compiler

Compilation Cycle

Figure 2.3: JVM compilation overview.

To fully leverage the potential of JIT compilation, advanced JVM compilers are organized into
multiple tiers, where each tier offers a different tradeoff between the time to generate code and the
quality of code generated. Figure 2.3 provides a high-level overview of JVM compilation. The

11

initial compiler, commonly known as the baseline compiler, generates code quickly. However, the
code is not efficient. The “hot” methods in which most of the execution time is spent are later
recompiled by a more advanced compiler, which in the figure I call the optimizing compiler. The
optimizing compiler produces high-quality code. However, the code takes longer to generate.

An optimization commonly performed during multi-tiered compilation is to perform speculative

optimizations within the optimizing compiler. Instead of generating code which can correctly
handle all corner cases, the optimizing compiler chooses to speculate on which behaviors will be
encountered during runtime, and only generates code that covers these behaviors. By performing
this speculation, the optimizing compiler is able to better optimize the code paths. However, if an
unexpected behavior is encountered, i.e., a mispeculation occurs, the optimized code will not be
able to handle it correctly. In this case, the execution is transferred back to the code generated by
the baseline compiler, which handles all corner cases. This process of transferring code execution
back to a more conservative version of generated code is known as an on-stack-replacement [57]
fallback, and the points at which they can occur are known as deoptimization points.

Performing an on-stack-replacement fallback on a mispeculation can be an expensive operation.
Therefore, the optimizing compiler must be careful in choosing what speculative optimizations to
perform. To assist with this process, multi-tiered compilers collect profiling information during
the initial execution phase, which the optimizing compiler can later use to guide its speculation
choices. The baseline compiler instruments its generated code with profiling metrics which are
dynamically updated during execution. After that, when code is recompiled by the optimizing
compiler, this collected profiling information is utilized. Profiling information has been shown to
accurately predict the behavior of later executions and help the optimizing compiler improve the
application performance [58, 59, 60, 61, 62, 63].

12

Chapter 3: Designing a New Programmer-Friendy NVM Programming Model

3.1 INTRODUCTION

By using NVM, persistent applications have the potential to improve in both simplicity and
performance. Unfortunately, current NVM frameworks leave much to be desired. In particular,
they require the programmer to label all persistent data, identify which stores need to be persis-
tently handled, and disallow preexisting built-ins and libraries to be used in a persistent manner.
This increases the adoption difficulty and presents many opportunities for the programmer to make
mistakes.

In addition, current frameworks’ low-level abstraction is a mismatch for today’s managed lan-
guages, such as Java. For instance, in managed languages, objects’ underlying representation and
location are hidden from the user; therefore, it is incongruent for users to consider the persistency
implications for each object and write.

Finally, since current NVM frameworks are implemented as libraries, as opposed to having full
language- and compiler-level integration, the implementations are rigid and performance is left on
the table. This is because the compiler is unable to understand the programmer’s intentions and
optimize the code accordingly.

This chapter explains the limitations of existing frameworks and proposes a new programmer-
friendly NVM programming model. In particular, the proposed model minimizes the amount of
markings an application developer must add to the program, allows for existing code to be handled
persistently, and is amenable to full language- and compiler-level integration.

To minimize the amount of user markings required and enable the reuse of preexisting code,
my model leverages persistence by reachability. Persistence by reachability expects the runtime
to ensure that all objects reachable from an object labeled as persistent to also be handled persis-
tently. Via persistence by reachability, a user must only label handles in data structures requiring
persistency in order to ensure the entire data structure is made persistent. Furthermore, via persis-
tence by reachability, if a handle points to a built-in or library object, then this object must also
be handled persistently. Therefore, via persistence by reachability, the user needs to add very few
markings into their code and also existing code can be handled persistently.

By default, in my model it is the requirement of the underlying implementation to persist all
durable objects automatically. In this way, the user does not have to explicitly identify persistent
stores. In addition to its default behavior, my model also enables the user to identify larger regions
which will abide by failure-atomic semantics (i.e., either all or none of the region’s updates become
part of the persistent state).

13

Finally, since my model requires minimal user intervention and instead places requirements
on the underlying runtime, there are many opportunities for optimizations. This is because the
compiler is free to optimize the implementation based on both the observed application runtime
behavior and also the features of the underlying hardware.

3.2 LIMITATION OF EXISTING NVM FRAMEWORKS

Existing frameworks with support for programming NVM ask programmers to make many con-
cessions. A programmer must correctly mark all memory which should be durable and ensure that
data is persisted properly either through explicit failure-atomic regions or persists. This is an error-
prone process requiring many markings in code and prohibiting the use of preexisting libraries. As
highlighted by Ren et al. [19], programmers have many difficulties correctly adapting code to be
compliant with existing NVM frameworks.

3.2.1 Abstraction Level Mismatch

Current frameworks are incongruent with the current trend towards managed languages. Man-
aged languages, such as Java, try to lower the programmer burden and increase both safety and
productivity.

Instead of targeting a specific machine, Java applications target the Java Virtual Machine (JVM) [56].
By doing so, the underlying representation of objects is hidden from the user. This allows the run-
time to change the objects’ representation by performing such optimizations as colocation [64] and
scalar replacement [65]. Another key feature of Java is garbage collection (GC). Because the user
is unable to directly manipulate pointers, the runtime is able to move objects to both collect dead
objects as well as remove fragmentation.

Unfortunately, existing NVM frameworks are tied to the underlying hardware. Currently the
framework’s features closely match the current hardware primitives. In particular, the user must
make static decisions about what objects should be placed in NVM as well as identifying which
writes are to persist data. This forces the user to consider object layout decisions which are typ-
ically abstracted away. Furthermore, in managed languages where objects are already moved
around to GC, whether an object is a persistent or not should be a dynamic trait. However, current
NVM frameworks do not allow for dynamic traits to be defined.

Another tenet of managed languages such as Java is to ensure safe execution. Java performs
many runtime checks to detect incorrect programs early before lasting damage is done. For in-
stance, Java automatically checks array accesses to ensure the element being accessed remains

14

within bounds and triggers an exception as soon as an out of bounds access occurs, preventing
unintentionally buggy programs or malicious entities from continuing to execute and potentially
leaking or corrupting memory. Contrary to Java, existing NVM frameworks present many oppor-
tunities for unchecked or silent errors to occur, such as if non-volatile memory points to volatile
memory or if a consistent program state is not persisted before a crash occurs.

3.2.2 Incompatibility with Existing Code

Managed languages typically rely on a large central set of libraries and utilities included by
default with their distributions. Programmers appreciate that via this built-in functionality there is
a de facto standard application programmer interface (API) for many data structures and template
for accomplishing most tasks. For instance, in Java, programmers rely on a large set of List, Map,
Tree, and Set data structures to hold data.

Unfortunately, since existing NVM frameworks require each durable object to be marked, exist-
ing built-in libraries cannot be used, as they will not have the proper durable markings and persists
in place. This is detrimental in at least two ways. First, since existing code cannot be reused, a
substantial amount of work must be performed to recreate existing infrastructure. This reduces
how likely developers will switch to using fine-grain persistency within their applications. The
greater issue is that increasing the amount of code one has to create increases the likelihood of
bugs being introduced into the code. A key feature of libraries is that they have been verified for
functional correctness; newly written code is much more likely to have correctness, performance,
and persistency bugs.

3.2.3 Limited Optimization Potential

Java and managed languages in general try to provide the programmer with simple intuitive
models which are easy for the user to adhere to. However, while the models provided may be
high-level, users still expect competitive performance. Indeed, users expect Java code to execute
efficiently and have minimal overheads. To accomplish this, most Java/JVM implementations em-
ploy Just-In-Time (JIT) compilers with speculative optimizations to attain maximal performance.
JIT compilation allows for the generated code to be optimized for the common, or “hot,” paths
seen during execution. Furthermore, since the models Java provides are high-level, the compiler
has much freedom to perform optimizations which may benefit the current execution.

Unfortunately, low-level frameworks, such as what exists for NVM currently, have limited op-
timization potential. This is because they are overspecified – by the framework features being

15

closely tied to existing hardware. As a result, the high-level intentions of the programmer are lost,
making it hard to for a compiler to be effective.

For instance, in many frameworks the user must manually perform persist operations and design
the logging necessary for failure-atomic regions. This ties the application to a specific implemen-
tation of failure-atomic region support. Furthermore, if a user manually emits persist operations,
they may be unnecessary or suboptimally placed. Unfortunately, the compiler will struggle to op-
timize around and remove them, as explicit persist operations can have barriers which limit the
compiler’s ability to perform optimizations.

Overall, these existing frameworks impose many restrictions on application programmers which
will limit their integration into managed languages. Clearly, a new NVM programming model is
needed to match the expectations of managed language programmers.

3.3 NEW PROGRAMMER-FRIENDLY NVM PROGRAMMING MODEL

In the previous section, I highlighted the main deficiencies of existing NVM frameworks; namely,
that many of their features are not aligned with the philosophy of Java and other managed lan-
guages. In this section, I provide a high-level specification of a new NVM programming model
tailored to managed languages.

3.3.1 Model Goals

An ideal model for programming NVM is very intuitive for a programmer to use, not overspec-
ified, and also is decoupled from the underlying hardware. This allows for the model to remain
unchanged as hardware improves, enables the compiler to make aggressive optimizations, and
minimizes the chances for the programmer to write incorrect persistent applications. Below the
main goals a new model should attain are described.

Goal 1. As few objects as possible should require durable markings.

Current models require programmers to mark many objects as durable. This is because they
want to ensure only objects which must necessarily be durable incur the performance overheads of
residing in non-volatile memory. However, this is very error-prone and requires the programmer to
mark many objects. Contrary to this, I believe the number of durable markings should be minimal;
a user should only have to mark objects immediately visible during the crash recovery process.
Instead, the runtime should then automatically make all objects reachable from these few objects
durable as well.

16

Goal 2. Libraries and other pre-existing codes should not need to be changed to work correctly in
a durable program.

As described in Chapter 3.2, existing NVM frameworks cannot be used with current unmodified
standard libraries. I believe this is unacceptable – users should not be forced to rewrite large swaths
of code, potentially introducing bugs, to create durable applications.

Goal 3. The user should not need to explicitly persist durable objects.

Many current NVM frameworks require the user to explicitly persist objects to ensure a value
reaches NVM. This limits the amount of optimizations the compiler can perform and potentially
enables the user to either add an excessive or insufficient number of persist operations. I believe
that instead a framework should automatically persist durable objects as necessary without user
involvement.

Goal 4. A clear and simple persistency model should be provided.

As described in Chapter 2.1, the order of operations to NVM may not be in program order unless
measures are taken, due to caches in between the processor and NVM. This can result in program
state at recovery time that does not correspond to a sequential execution of the application. Hence,
a persistency model must be established and enforced by the framework that is intuitive to the user
and simplifies recovery.

Goal 5. Failure-atomic region support should be provided and need only minimal markings.

In many cases, it is necessary for a region of code to appear to execute atomically in case of
failure, with either all or none of the operations in the region being persisted. I believe support for
failure-atomic regions must be provided, and that it should be intuitive for programmers to use.
Namely, the user should not need to differentiate between durable and volatile objects within the
region and the mechanisms for achieving this atomicity should be transparent. In addition, the user
should not need to specify how the atomic support should be implemented; instead, the framework
should perform logging in the most efficient way for the specific use case.

3.3.2 Establishing a New NVM Programming Model

With the above goals in mind, I now establish a new NVM programming model for managed
languages. My model consists of three requirements that the runtime must ensure hold true. The
requirements I create fall into two categories: determining which objects must be placed in non-
volatile memory and ensuring that the order in which stores are persisted is intuitive to program-
mers.

17

Placing Objects in Non-Volatile Memory.

NVM Model Requirement 1. All objects reachable from the durable root set must be recoverable
and in non-volatile memory.

I define the durable root set as the set of pointers which are named entries into durable structures.
At recovery time, the programmer can directly access these roots by name. Since these roots are
visible across executions, by necessity they must be named and marked; otherwise, they cannot be
recovered if a crash were to occur.

This requirement helps to meet Goals 1 and 2. This requirement helps to meet Goal 1 because it
only requires that the durable root set have markings; since it ensures all of the objects reachable
from this set to be stored in non-volatile memory, it is unnecessary to mark them. Note that all
objects which should be durable must be reachable from a durable root; since they are unnamed,
otherwise it would be impossible to access them across executions.

This requirement also helps meet Goal 2, as it implies that if a library data structure is reachable
from a durable root, then it will automatically be made durable. This prevents the libraries from
having to be modified in any way. Specifically, built-in classes’ fields do not need durable markings
as is necessary in existing NVM frameworks.

To meet this requirement, the runtime may need to move objects to non-volatile memory when it
detects they are reachable from a durable root. Note that managed languages already move objects
throughout execution while performing garbage collection. However, how the runtime chooses to
adhere to this requirement is implementation specific.

Controlling Persistent Atomicity Granularity.

NVM Model Requirement 2. Support for failure-atomic regions must be provided. All stores to
durable objects within a failure-atomic region should appear to have been performed atomically
and persistently at the end of the region.

This requirement is intended to satisfy Goal 5. Namely, it ensures support for atomic regions
is provided, users do not have to explicitly mark objects within atomic regions, and that failure-
atomic regions’ behavior is as expected.

While this requirement ensures that users have the support for failure-atomic regions of arbi-
trary size they expect, it also does not place unnecessary limitations on the language runtime and
compiler. The runtime is free to perform any logging strategy and the compiler is free to reorder
operations to both volatile and non-volatile memories as long as the model requirements are met.

18

NVM Model Requirement 3. Outside of explicit failure-atomic regions, each store to memory
reachable from a durable root should be persistently completed before a new store to non-volatile
memory can proceed.

This requirement helps to meet Goals 3 and 4. First, it ensures stores to durable objects must be
persistently performed without explicit user instructions. Second, for a single-thread, this require-
ment enforces a specific ordering of stores to NVM. This allows the user to clearly reason about
what values will be persisted at a given point in the execution.

To meet this requirement the runtime is responsible for inserting persist operations and fences
as necessary. Like NVM Model Requirement 1, how the runtime chooses to achieve this should
be implementation specific.

3.4 EXAMPLE OF RUNTIME RESPONSIBILITIES

Given programmer-labeled durable roots, I present an example of the required behavior of my
model in Figure 3.1. Figure 3.1(a) shows the initial state of the heap, where objects A, B, C, D,
and E are in volatile memory, and F and G are in NVM. Object G is pointed to by a durable root
and, hence, must be in NVM. Object F is reachable from G and must also be in NVM. Because
the other objects are not reachable from a durable root, they do not need to be in NVM.

The program changes the G→ F pointer to G→ E in Figure 3.1(b), which leaves the heap in
an incorrect state. Objects E and C are now reachable from G but are still in volatile memory.
They could not be recovered if a crash were to occur. To ensure that my framework’s requirements
are met, the runtime makes the changes shown in Figure 3.1(c). Specifically, before G’s pointer
changes, the runtime moves E and C from the volatile to the non-volatile heap (i.e., new objects
Envm and Cnvm) (operation 1©). Then, it adjusts all the pointers to the original E and C objects.
Since F is not reachable from a durable root anymore, eventually it will be moved back to volatile
memory.

3.5 DISCUSSION

3.5.1 Model Implementation Approaches

Given the model proposed in this Chapter, many implementation choices exist. The most
straightforward implementation option is to implement this model via middleware and source-
to-source compilation. Via this approach, at compile time the middleware would rewrite the pro-
gram’s outputted bytecode to contain all of the runtime checks and actions needed by my model.

19

Note, however, this approach would have significant performance overheads. This is because since
the language compiler is unaware of the model’s semantics, the optimization potential is limited.

Another option is to directly support the model within the language compiler. Via this approach,
the compiler itself will incorporate the model’s semantics into its internal representation (IR),
compiler optimization passes, and generated output. By doing so, more performant code can be
generated. In particular, within managed language virtual machines, profile-guided optimizations
can be added to minimize the amount of runtime checks and code movement needed. In Chapter 5,
I discuss many compiler techniques which can be used to improve the model’s performance.

3.5.2 Applicability to Statically Compiled Languages

Note that my model is designed to work optimally with managed languages, such as Java, Scala,
and Kotlin, as opposed to statically compiled languages such as C and C++. A key feature of my
model is to have the runtime dynamically move objects to NVM throughout execution. Unfortu-
nately, due to casting and the pointer arithmetic semantics of the C and C++ languages, having
such support is problematic. Hence, to meet Requirement 1, either (1) pointer casting and arith-
metic must be banned, or (2) all objects which may be reachable from persistent memory at any
point in their lifetime must initially be placed in NVM and also always abide by Rules 2 and 3.

Note that option one enables precise object pointer graphs to be constructed. This is the ap-
proach taken by some prior frameworks [17, 18]. Beyond allowing objects to be moved through-
out runtime, precise object pointer graphs also allow for objects to be relocated to different virtual
addresses across new executions, as highlighted by Cohen et al. [17].

Option two forgoes runtime analysis and pessimistically assumes all objects may be reachable
from a durable root at all times. This has significant performance implications, since NVM is
slower than DRAM, and also because all updates must be persistent. Also, this approach does not
enable objects to be assigned different virtual address spaces across restarts.

3.5.3 Differentiating User-Annotated Code & Pre-existing Code

In my model the user is expected to identify durable roots and failure-atomic regions. Another
key tenet of my model is that pre-existing codes are allowed to be used in persistent applications.
However, one cannot expect pre-existing code to contain any persistent markings. Therefore,
it is important to ensure measures are in place to handle pre-existing code correctly when it is
unmarked.

Via the reachability features of my model, it is straightforward to ensure objects within pre-
existing code can become persistent. Likewise, stores within the code will be persistently com-

20

pleted. However, in many cases it may not make sense for sequential persistency to be the default
model. Therefore, I propose to automatically begin a failure-atomic region once the execution en-
ters pre-existing code, which then continues until the execution returns to the annotated application
code.

To distinguish between pre-existing and user-annotate code, the user can explicitly specify
which classpaths they have annotated. Note that for Java execution the application classpaths
are already expected to be provided by the user, so the additional effort needed to identify anno-
tated classes is minimal. Given this information, unless the user has specified otherwise, by default
within user-annotated code each store will be persisted in order and a failure-atomic region begins
whenever a pre-existing class is entered.

3.5.4 Limitations

While my model substantially reduces the effort of creating persistent applications, limitations
still exist. One of my model’s limitations is that failure-atomic regions are not ordered between
threads. This means that if two threads concurrently execute failure-atomic regions which access
the same data or have causal relationships and a crash happens, the application may be recovered
to an inconsistent state. To prevent this, the user must insert synchronization primitives to ensure
isolation.

Another limitation of my model is handling situations when threads and other inherently tran-
sient data, such as socket connections, are reachable from a durable root. In these scenarios, either
the pointer to the transient information can be set to its default value (NULL) or the transient process
can be restarted. Ideally, a model should provide a overwritable default action which allows the
user to initiate any recovery processes. This is the approach taken by Cohen et. al [17].

3.5.5 Alternative Persistency Models

Given the benefit of hindsight, I believe that a snapshot-based persistency model is more appro-
priate for a user-friendly programming model. In a snapshot-based persistency model, the user is
expected to request a snapshot of the entire persistent state as needed. Taking a snapshot either
requires all threads to reach a barrier or for the data to be partitioned into independent sections;
however, in a snapshot model, the races described in Chapter 3.5.4 will not occur.

Note that snapshot-based persistency is orthogonal to how the persistent data is identified, and
therefore works very well with persistence by reachability. Furthermore, since how the snapshots
are created are left up to the underlying runtime, in snapshot-based persistency many opportunities
for optimizations exist.

21

Volatile Memory Non-Volatile MemoryVolatile Memory Non-Volatile Memory

A

C

ED

B F

G

(a) Initial Heap State

durable root

Volatile Memory Non-Volatile Memory

A

C

ED

B F

G

(b) Model Violation

durable root

Volatile Memory Non-Volatile Memory

A

C

ED

B F

G

(c) Correct State Change

durable root

Envm

Cnvm

1

Figure 3.1: Changing heap state to meet the model’s requirements.

22

Chapter 4: AutoPersist: An Easy-To-Use Java NVM Framework

4.1 INTRODUCTION

The programming model defined in Chapter 3 aims to make the process of creating persistent
applications programmer-friendly by offloading much of the responsibility of NVM programs to
the runtime. Because of this, runtime support is crucial to the realization of my NVM programming
model.

In this chapter, I describe how to implement my NVM programming model in a Java Virtual
Machine (JVM). I chose to implement my model in Java, as opposed to another language, for many
reasons. First, as discussed in the prior Chapter, my model is designed for managed languages, not
statically compiled languages like C/C++. Given this, Java and the JVM is the natural target; Java
is the most popular managed language for enterprise applications.

Another reason for targeting the JVM for my programming model is that many other languages
beyond Java also target the JVM. As will be discussed in Chapter 4.5.1, since I add persistence
support at the JVM level, it is also straightforward to incorporate my model into all JVM-based
languages.

I implement my NVM programming model within the Maxine JVM [22] and call my imple-
mentation AutoPersist, in reference to the persistence by reachability trait of my model. Within
Maxine, many changes are made to support creating persistent applications. Primarily, this in-
cludes introducing a new NVM heap space and adding the runtime support to both move objects
to NVM as necessary and ensure updates to objects within NVM follow the persistency model.

This chapter describes many implementation details, including how the semantics of many JVM
bytecodes must be augmented to account for correct persistent updates and the movement of ob-
jects between the volatile and non-volatile heaps. To help assist the runtime in identifying an
object’s current state, a new header word has be added to each object to contain this information.
In addition, as will be described in Chapter 5, this header word can be used to contain information
needed by optimization passes.

Because Java is a multi-threaded language, care must be taken to ensure threads do not race
while moving data. Therefore, this chapter also describes how multi-threaded coordination of
object movement in performed within AutoPersist.

Finally, in this chapter I also explain how my model is exposed within the Java language. To
meet my model’s requirements, it is only necessary to enable the user to identify durable roots
and failure-atomic regions. However, for debugging purposes, I also add an introspection API to
allow users to query the state of a given object. In addition, this chapter also describes the recovery

23

process in the event of a crash.

4.2 APPLYING THE PROGRAMMING MODEL TO JAVA

4.2.1 Labeling Durable Roots

AutoPersist requires the programmer to declare the set of durable roots. Declaring a durable root
consists of two parts: identifying the object and associating a name with it. I add a new annotation
to Java [31], @durable root, which is used to label fields containing objects. A field labeled with
@durable root indicates that the object pointed to by this field is a durable root.

Only static fields can be labeled with @durable root in AutoPersist. Static fields have a unique
name in the application environment, and hence can be easily identified at recovery time. While
adding support in AutoPersist to allow dynamic fields to also be @durable roots is trivial, I
believe that the benefits that this additional feature would provide are outweighed by the opportu-
nities for programmer mistakes that it would introduce. As multiple instances of the object could
be created, it would be easy for the programmer to make mistakes when associating the durable
root to a specific instance of the object.

4.2.2 Failure-Atomic Regions

The default behavior of AutoPersist is to ensure that stores to objects reachable from a @durable-
root are persisted in sequential order. However, in some situations, it may be necessary to provide

the appearance of multiple stores completing atomically from the crash-consistency perspective.
To allow this, AutoPersist supports failure-atomic regions.

In AutoPersist, the user is expected to label the start and end of failure-atomic regions. Given
these labels, the runtime ensures that all stores to objects reachable from a durable root within this
region complete atomically from a crash-consistency perspective at the end of the region. There
is no additional user involvement. AutoPersist uses a flattened nesting approach to ensure values
are not made persistent prematurely. Like other implementations [8, 66, 67, 68], AutoPersist’s
failure-atomic region support is meant solely to provide all-or-nothing visibility to persistent data
in the event of a crash. It does not detect data races or perform rollbacks like software transactional
memory. Instead, the user is still expected to provide any synchronization needed to prevent data
races in accordance with the Java memory model [69]. This type of concurrency model is known
as an open transactional model [70]. Chapter 4.4.5 covers how we implement failure-atomic region
support in AutoPersist.

24

4.2.3 Persistency Model

As described in Chapter 3.3.2, AutoPersist provides a simple and intuitive persistency model.
Outside of failure-atomic regions, all writes to values reachable from a @durable root are per-
sisted in a sequential order. Inside of failure-atomic regions, no data is made persistent until the
end of the region. At that point, all stores to data reachable from a @durable root within the
region are made persistent atomically.

To ensure sequential persistency outside of failure-atomic regions, AutoPersist detects the case
when a value V is being stored into an object O that is reachable from a @durable root. When
this happens, the actions that AutoPersist takes depend on the state of the value V being stored. If
V is either a primitive value or was previously reachable from a @durable root, then AutoPersist
ensures that the store to object O is done persistently by adding a CLWB and an SFENCE after the
store.

However, if V is an object that was not previously reachable from a @durable root, before
AutoPersist can store V in O, AutoPersist must make V and its transitive closure persistent. Note
that the order in which AutoPersist makes V and its transitive closure persistent does not affect the
persistency model. This is because V will be unrecoverable until V is stored into O. It only matters
that V and its transitive closure are made persistent before this store is performed.

While searching and potentially relocating V and its transitive closure, AutoPersist also inserts
the necessary CLWBs to ensure their persistency. Before the store of V in O, AutoPersist inserts an
SFENCE to ensure that all CLWBs have completed. After the store, AutoPersist inserts a CLWB
and an SFENCE. In Chapter 4.4.1, I discuss how to update the objects that pointed to the old
locations of V or its transitive closure.

Inside failure-atomic regions, before every store to an object reachable from a @durable root,
AutoPersist saves in a persistent undo log the value that will be overwritten. The undo log operation
is followed by a CLWB and SFENCE to ensure that the log entry has been made persistent. After
that, the store to the object is performed and a CLWB is added to write back the new update to
NVM. At the end of the failure-atomic region, AutoPersist inserts an SFENCE to ensure that all
the stored data has reached the NVM. Then, the undo log is discarded. With this design, stores to
objects reachable from a @durable root are allowed to be completed out of order, but they are
all persisted at the end of the region. Moreover, if the atomic region fails to complete, the undo
log in persistent memory is used to undo all of the updates in the region that were persisted. Such
updates should not be part of the crash-consistent program state.

This persistency model only applies to data reachable from @durable roots. None of the other
data will be recovered in the event of a crash. Hence, it does not need to abide by AutoPersist’s
persistency model. Such data can be reordered in accordance with the Java memory model.

25

4.2.4 Recovery API

In order to recover data from a @durable root after a crash, AutoPersist must have recovery
code that allows the program to retrieve previous versions of an object as it starts-up. To allow this,
AutoPersist extends the Java Object class to include a new method, recover(String image),
which attempts to recover the value of the implicit object argument within a named image. In
order to differentiate multiple executions running simultaneously, when initializing execution, the
programmer is expected to provide an image name for the given execution. This image name is
used to recover objects from the execution’s non-volatile heap. The recover method is expected
to be called from a @durable root. If either the named image cannot be found or the object the
method is invoked from is not a durable root, then null is returned.

Figure 4.1 shows a simple example of how to use this method. The example tries to recover a
key-value store. If the key-value store cannot be recovered, then a new version of it is instantiated.

@ d u r a b l e r o o t
p u b l i c s t a t i c KeyValueSto re kv ;
s t a t i c {

i f ((kv = kv . r e c o v e r (” image name ”)) == n u l l){
kv = new KeyValueSto re () ;

}
}

Figure 4.1: Recovery API example.

4.2.5 Introspection API

A strength of my programming model is that its simple abstraction frees the programmer from
having to worry about many details. However, sometimes, such as when debugging, the user may
want to extract more object information. For this reason, AutoPersist includes several method calls
that allow for introspection. The method calls are: isRecoverable(), inNVM(), isDurable-
Root(), inFailureAtomicRegion(tid), and failureAtomicRegionNestingLevel(tid).

The functionality of most of these calls is self-evident. isRecoverable(), inNVM(), and is-

DurableRoot() are called by an object and return a boolean of the requested information. On the
other hand, inFailureAtomicRegion(tid) and failureAtomicRegionNestingLevel(tid)

take a thread identifier as argument, and query it for the desired information.

26

4.2.6 Unrecoverable Keyword

In some situations, a programmer may decide that some data reachable from a @durable root

does not need to be recoverable across a crash. To provide this functionality, AutoPersist includes
the @unrecoverable annotation, which can be applied to any dynamic object field. Any field
labeled with this annotation will disable AutoPersist’s requirements on stores to that field.
@unrecoverable may be used to limit the performance impact of persistency when objects can

be recovered or recreated via other means. However, I strongly argue that the default behavior
should be that all objects reachable from durable roots should be handled in a crash-consistent
manner. This approach minimizes the likelihood of programmer mistakes.

4.3 IMPLEMENTING AUTOPERSIST WITHIN THE JVM

In this section, I describe how I implement AutoPersist the Java Virtual Machine (JVM). In
AutoPersist, an object can be in one of three states: Ordinary, Converted, and Recoverable. The
ordinary state means that the object will not be recovered in the event of a crash. The recoverable
state indicates that the object is reachable from a durable root, and will be recovered in the event
of a crash. The converted state means that the object is in the process of transitioning from the
ordinary to the recoverable state. The object and its transitive closure may not yet be reachable
from a durable root. However, the runtime is in the process of making them reachable. For brevity,
an object that is in either the converted or recoverable state is said to be in the ShouldPersist state.

A programmer may choose to mark a field in any object as @unrecoverable. In such case,
AutoPersist does not perform any persistency-related action on the field.

4.3.1 Modified Object Store Operations

AutoPersist alters the behavior of several JVM bytecodes. Below I highlight the main changes
to storing to static and dynamic object fields, as well as to arrays.

Storing to Static Object Fields. Storing to a static field in Java is represented by the putstatic
(C,F,V) bytecode. Normally, this instruction stores value V into field F of class C’s static ob-
ject representation. AutoPersist’s new implementation of putstatic is shown in Algorithms 4.1
and 4.2.

In the putStatic procedure, first, if the value to be stored is an object, the algorithm finds
the real current location of the object (Line 3). This is necessary because, as discussed in Chap-
ter 4.4.1, when an object is moved to NVM, not all the pointers to it are immediately updated.

27

Instead, AutoPersist leaves behind some temporary forwarding objects that point to the object’s
new location in NVM.

Algorithm 4.1 Modified object store operations. (1/2)
1: procedure PUTSTATIC(class, field, value)
2: if typeof(value) is Object then
3: value = getCurrentLocation(value)
4: if isDurableRoot(field) and !isRecoverable(value) then
5: value = makeObjectRecoverable(value)
6: end if
7: end if
8: if inFailureAtomicRegion(tid) and isDurableRoot(field) then
9: logStore(class, field)

10: end if
11: writeField(class, field, value)
12: if isDurableRoot(field) then
13: RecordDurableLink(field, value)
14: end if
15: end procedure

16: procedure PUTFIELD(holder, field, value)
17: holder = getCurrentLocation(holder)
18: if typeof(value) is Object then
19: value = getCurrentLocation(value)
20: if !isUnrecoverable(field) and isShouldPersist(holder) and !isRecoverable(value) then
21: value = makeObjectRecoverable(value)
22: end if
23: end if
24: if inFailureAtomicRegion(tid) and !isUnrecoverable(field) and isShouldPersist(holder) then
25: logStore(holder, field)
26: end if
27: writeField(holder, field, value)
28: if isShouldPersist(holder) and !isUnrecoverable(field) then
29: cachelineWriteback(holder, field)
30: if !inFailureAtomicRegion(tid) then
31: persistFence()
32: end if
33: end if
34: end procedure

Next, if the field being stored to is a persistent root and the value being stored into the field is
not recoverable, then the value is made recoverable (Lines 4-5). This is the only case that needs

28

action for stores to static object fields.
After this, if the thread is in a failure-atomic region and the field is a persistent root, the old

value is logged. Next, the value is written to the field. Finally, if the field is a persistent root, then
the address of the object is stored in a global table (Line 13) that will be used to retrieve the object
in a recovery.

Algorithm 4.2 Modified object store operations. (2/2)
1: procedure ARRAYSTORE(holder, index, value)
2: holder = getCurrentLocation(holder)
3: if typeof(value) is Object then
4: value = getCurrentLocation(value)
5: if isShouldPersist(holder) and !isRecoverable(value) then
6: value = makeObjectRecoverable(value)
7: end if
8: end if
9: if inFailureAtomicRegion(tid) and isShouldPersist(holder) then

10: logStore(holder, index)
11: end if
12: writeArray(holder, index, value)
13: if isShouldPersist(holder) then
14: cachelineWriteback(holder, index)
15: if !inFailureAtomicRegion(tid) then
16: persistFence()
17: end if
18: end if
19: end procedure

Storing to Dynamic Object Fields and Arrays. Storing to a dynamic object field in Java is
represented by the putfield(H,F,V) bytecode. Normally, this instruction stores value V into
field F of dynamic object field holder H. Procedure putField in Algorithm 4.1 shows the new
implementation. It is similar to putStatic, but has a few notable differences. First, the field
being stored to cannot be a persistent root, so this condition does not need to be checked. Second,
the holder object itself may now be in the ShouldPersist state. Therefore, for putField, the state
of the holder object dictates whether the value to be stored must be made recoverable. Note that
if the field is marked as @unrecoverable, no persistency action is taken. Line 20 reflects the
appropriate check used to determine whether the value needs to be made recoverable.

After the object’s field is updated (Line 27), the state of the holder determines what additional
actions must be performed to satisfy my model. If the holder object is in the ShouldPersist state
and the field stored to is not @unrecoverable, then the corresponding cache line is written back

29

(Line 29). Further, if not in a failure-atomic region, a fence is inserted to guarantee completion of
the writeback (Line 31).

Stores to arrays (JVM’s {a,b,c,d,f,i,l,s}astore bytecodes) are also modified in a way
similar to putfield. Procedure arrayStore in Algorithm 4.2 shows the modifications.

4.3.2 Object Header

As the internal object representation is hidden from the user in Java, I modify the object layout
to assist with the implementation. I add a 64-bit header word to each object, which I call the
NVM Metadata header. This header stores information about the state of the object relevant to
AutoPersist. Figure 4.2 shows the fields in AutoPersist’s object header word.

1 1 1 1 1 1 1 1 7 48

forwarding ptr / alloc profile index
modifying count

copying

gc mark

forwarded

has profile

queued

non-volatile

converted

requested non-volatile

1

recoverable

Figure 4.2: NVM Metadata header contents.

In the header, the converted and recoverable bits denote the object state: converted objects have
the converted bit set; recoverable ones have the recoverable bit set; ordinary objects have both bits
clear. The rest of the bits are introduced in subsequent sections.

4.4 ADVANCED IMPLEMENTATION ASPECTS

This section describes transparently updating pointers, determining which objects to move to
NVM, thread safety, garbage collection, and failure-atomic region support.

4.4.1 Transparently Updating Pointers

When an object is moved from volatile memory to NVM, all pointers to the original location of
the object must be updated to reflect its new location (Figure 3.1). However, AutoPersist adjusts
the pointers lazily; for performance, it temporarily inserts a level of indirection for some pointers
until GC occurs.

30

Algorithm 4.3 Modified object load operation.
1: procedure GETCURRENTLOCATION(ob j)
2: if isForwarded(obj) then
3: return getForwardingPtr(obj)
4: end if
5: return obj
6: end procedure

7: procedure GETFIELD(holder, field)
8: holder = getCurrentLocation(holder)
9: value = readField(holder, field)

10: if typeof(value) is Object then
11: newValue = getCurrentLocation(value)
12: end if
13: return newValue
14: end procedure

For example, in Figure 3.1, when objects C and E are moved to NVM, the pointers from objects
A, D, E, and G would also need to be updated. However, supporting the ability to change all of
these pointers at the time of the move would have prohibitive performance overheads. Indeed,
one would have to add a pointer table, and introduce a level of indirection to all pointer accesses.
Alternatively, at the time of the move, one could search the entire heap to discover and update
pointers to the moved objects. Either of these options would result in significant slowdowns.

Consequently, AutoPersist temporarily retains the original C and E objects and converts them
into forwarding objects. Only the new pointers from the recoverable objects (G and Envm) point to
the new recoverable copies of the objects (Envm and Cnvm). The other pointers are left pointing to
the forwarding objects (i.e., A to C, and D to E) until a GC cycle is executed.

Note that this approach is correct, as it relies on the following key insight: if an object is in
volatile memory, then all pointers to the object must be from objects not reachable from the durable
root set. This is true by Requirement 1. Hence, if an object is moved, its original location can be
used as a temporary forwarding pointer for pointers from objects in volatile memory. The only
objects that cannot use this forwarding pointer in volatile memory are the objects that were in
NVM or have been moved to NVM. The pointers from these objects are updated during the moving
process.

In AutoPersist, the NVM Metadata header of forwarding objects is set as follows: the for-

warded bit is set, and the 48-bit forwarding ptr field points to the object’s real location in NVM
(Figure 4.2). In addition, some JVM bytecodes are adjusted to check for forwarding objects.

Algorithm 4.3 shows how bytecodes must be altered. First, procedure getCurrentLocation

31

retrieves the current location of an object. It checks the object’s forwarded bit in the NVM Metadata
header to see if the object currently pointed to is a forwarding object (Line 2). If so, the procedure
reads the real location of the object from the forwarding ptr field in the header (Line 3).

The second procedure, getField(H,F), shows how the JVM bytecode getfield must be mod-
ified. Originally, this instruction loads the value stored in field F of dynamic object field holder H

onto the JVM stack. Now, getCurrentLocation is called to ensure that the correct pointers are
being used (Lines 8 and 11). Many of the procedures shown in Algorithms 4.1 and 4.2 must also
perform this same check. Similar modifications are made to other JVM bytecodes that load and
store values, namely, getstatic, if acmpeq, if acmpne, monitorenter, monitorexit, and
the various array load bytecodes.

During GC, pointers to forwarding objects are updated to point to the real objects, and the
forwarding objects are removed. As GC already must adjust pointers, it is natural for AutoPersist
to perform this operation during GC.

4.4.2 Movement of Objects

In AutoPersist, it is the responsibility of the runtime to move objects to NVM when necessary
during execution, to ensure all objects reachable from the durable root set are in NVM. This means
that the runtime must potentially trace the transitive closure of an object to ensure that all reachable
objects are persistent.

Algorithms 4.4 and 4.5 shows the various procedures used for this operation. Procedure make-
ObjectRecoverable manages the phases of the operation. First, the initial object (i.e., the one
that initiates the transitive search) is passed to procedure addToQueueIfNotConverted (Line 2)
to be added to a thread-local work queue. This queue holds the objects that need to be processed
to ensure that the transitive closure is in NVM. To ensure that a given object is not placed twice in
the work queue, a queued bit is added in the NVM Metadata header of each object (Figure 4.2).
If an object is in the work queue, the queued bit is set. Inter-thread dependencies are also detected
at this point (Line 18). Note that multiple threads may be performing this action simultaneously.
Hence, a CAS operation is used to set the queued bit (Line 22). Once the queued bit is set, the
object is placed in the local work queue without synchronization.

Next, procedure convertObjects is called. This procedure processes the objects in the work
queue (Line 3). For each object, AutoPersist first checks whether it is already allocated in NVM.
The non-volatile bit in the NVM Metadata header (Figure 4.2) is set if the object is in NVM. If
the bit is not set, the object is moved to NVM (Line 6). In either case, cache line writebacks
must be inserted to guarantee that the entire contents of the object are persistent (Line 8). Since
AutoPersist can precisely determine an object’s layout, the runtime is able to insert the minimal

32

number of CLWBs necessary to ensure that the entire object has been written back. Next, the
converted bit of the NVM Metadata header is set. After this, AutoPersist searches all the objects
that are reachable by pointers from the current object and, if necessary, add them to the work queue
(Line 11). Note that fields annotated with the @unrecoverable marking are not searched.

Algorithm 4.4 Transitive persist (1/2).
1: procedure MAKEOBJECTRECOVERABLE(object)
2: addToQueueIfNotConverted(object)
3: convertObjects()
4: wait for other threads to complete phase
5: update ptrs within NVM to objects’ current locations
6: wait for other threads to complete phase
7: set recoverable flag in all objects within work queue
8: return getCurrentLocation(object)
9: end procedure

10: procedure ADDTOQUEUEIFNOTCONVERTED(obj)
11: do
12: obj = getCurrentObject(obj)
13: oldHeader = readPersistentHeader(obj)
14: if isRecoverable(obj) then
15: return
16: end if
17: if isConverted(obj) or isQueued(obj) then
18: detect any inter-thread dependency
19: return
20: end if
21: newHeader = setIsQueued(oldHeader)
22: while !CAS(obj, oldHeader, newHeader)
23: workQueue.add(obj)
24: return
25: end procedure

While doing this, the algorithm also checks each of the pointers to see if they will need to
be updated. Pointers will need to be updated if the object they point to will be moved to NVM
while executing this algorithm. Such pointers are placed in another queue, the ptr queue, for later
processing (Line 13). Recall that these updates are necessary to prevent persistent objects from
pointing to volatile forwarding objects. Finally, if the object has moved, the work queue must point
to the new location of the object (Line 16).

When the convertObjects procedure returns, the thread must ensure that other objects reach-
able from the initial object and that are being persisted by other threads are already persisted. This

33

is done by monitoring a global table and checking whether the other threads have finished their
work (Line 4). If they have not, the thread waits until they do. In practice, I observe very little wait
time.

Algorithm 4.5 Transitive persist (2/2).
1: procedure CONVERTOBJECTS

2: idx = 0
3: while idx != workQueue.size() do
4: obj = workQueue[idx]
5: if !isNonVolatile(obj) then
6: obj = moveToNonVolatileMem(obj)
7: end if
8: write back entire object to NVM
9: setIsConverted(obj)

10: for (ref, offset) in nonUnrecoverableReferences(obj) do
11: addToQueueIfNotConverted(ref)
12: if !isNonVolatile(ref) then
13: ptrQueue.add(obj, offset, ref)
14: end if
15: end for
16: workQueue[idx] = obj
17: idx += 1
18: end while
19: end procedure
20: procedure UPDATEPTRLOCATIONS

21: while ptrQueue.size() != 0 do
22: (obj, offset, ref) = ptrQueue.pop()
23: ref = getCurrentLocation(ref)
24: writeOffset(obj, offset, ref)
25: end while
26: end procedure

27: procedure MARKRECOVERABLE

28: idx = 0
29: while !workQueue.isEmpty() do
30: obj = workQueue.pop()
31: setRecoverable(obj)
32: end while
33: end procedure

The next step is to call procedure updatePtrLocations to update all pointer locations within
the ptr queue (Lines 22 to 24). Afterwards, once again in rare cases, the thread pauses for other

34

threads to complete their work (Line 6).
The last step of this algorithm is to call the markRecoverable procedure to set the recoverable

flag of all objects modified by this thread (Line 7). Recall that when recoverable is set for an object,
it means that all objects reachable from this object are also persistent. This is stronger than the
converted flag, which is a transition state. Finally, the process returns the object’s current location
(Line 8).

Mapping AutoPersist’s three object states to traditional tri-color GC terms [71], the ordinary
state is the white color, the converted state is the gray color, and the recoverable state is the black
color. In other words, if a mutator thread encounters a converted object while performing a store,
then it must proactively make the object’s new transitive closure recoverable, even though the
object is not yet reachable from a durable root. This is necessary to ensure that a crash-consistent
state is maintained in the presence of concurrent mutations.

4.4.3 Thread Safety

Since Java is multithreaded, it is possible for a thread to try to access an object as the object
is being moved to NVM. Without precautions, this can create a race condition that creates an
execution state not possible in the Java memory model. To prevent this, caution must be taken in
two places: when moving objects to NVM, and when storing to objects. This is because, without
synchronization, it may be possible for these two events to race and for stores to be lost.

To prevent this race from occurring, two new fields are added to the NVM Metadata header:
copying and modifying count (Figure 4.2). The copying flag is set while the object is being copied
over to NVM. The modifying count field indicates the number of threads that are currently in the
process of modifying the object. Both fields are updated using CAS operations.

Algorithm 4.6 shows moveToNonVolatileMem, the thread-safe procedure to move an object to
NVM. A thread is only allowed to copy an object to NVM when no other thread is in the process
of modifying the object. Hence, the procedure checks the object’s modifying count and waits to
perform the copy until the modifying count is zero (Line 6).

To improve performance, I include two optimizations. First, while an object is being copied, I
still allow another thread to modify the object. To modify the object, a thread clears the copying
flag before performing the modification. Hence, if the copying thread detects that the copying flag
has been cleared during the copying (Line 14), then the copy must be performed again. Otherwise,
the operation has been successful, and the thread resets the copying flag (Line 18).

The second optimization is not to increment the modifying count unless necessary. Increment-
ing the count is only necessary if the modifying thread detects that the object may have moved
while it was performing the modification. The thread can check this by reading the object’s

35

NVM Metadata header state and the object’s address before and after it performs the write. Note
that I need to place a fence between the write and subsequent reads to ensure that the write has
completed by the time the reads are issued. If a change is detected, the write is repeated, this time
incrementing the modifying count.

Algorithm 4.6 Moving object to NVM.
1: procedure MOVETONONVOLATILEMEM(obj)
2: newObj = allocateNVM(sizeof(obj))
3: while true do
4: do
5: oldHeader = readPersistentHeader(obj)
6: if getModifyingCount(oldHeader) < 0 then
7: continue
8: end if
9: newHeader = setIsCopying(oldHeader)

10: while !CAS(obj, oldHeader, newHeader)
11: copyMem(obj, newObj, sizeof(obj))
12: do
13: oldHeader = readPersistentHeader(obj)
14: if !isCopying(oldHeader) then
15: continue
16: end if
17: newHeader = unsetIsCopying(oldHeader)
18: while !CAS(obj, oldHeader, newHeader)
19: return newObj
20: end while
21: end procedure

4.4.4 Allocation and Garbage Collection

Since there are now volatile and non-volatile portions of the heap, AutoPersist’s runtime al-
locator and garbage collector must be adjusted to account for this expansion, and to ensure that
objects are placed in the correct portion of the heap. For allocation, thread local allocation buffers
(TLABs) are used. Each thread has both a volatile and a non-volatile TLAB, which it can use to
bump-allocate objects.

For GC, AutoPersist uses a stop-the-world copying collector for both parts of the heap. During
a collection, if a forwarding object is encountered, all pointers to that object are adjusted to point
to the object’s new location, and the forwarding object is reaped.

36

4.4.5 Failure-Atomic Region Support

As described in Chapter 4.2.2, AutoPersist supports failure-atomic regions. Given the seman-
tics of my model, there is much flexibility in choosing how to design the implementation. Cur-
rently, AutoPersist uses per-thread undo logs with write-ahead logging. As shown in Algorithm 4.1
(Lines 9, 25, and 10), inside a failure-atomic region, any value within a durable object that will be
overwritten is first logged ahead of the store. This involves copying the original value, a pointer to
the object, and the value’s offset within the object’s internal layout to a thread-local log. Logging
this information ensures that the object can be correctly restored in the event of a crash.

For each JVM thread, AutoPersist adds a counter indicating the current failure-atomic region
nesting level, and a pointer to its thread-local undo log. The undo log is also considered a durable
root, to ensure that all objects pointed to by the log continue to be persisted correctly. At the
end of the failure-atomic region, the thread’s undo log is cleared, allowing any dead objects to be
reclaimed.

4.5 DISCUSSION

4.5.1 Applying Model to Other JVM-Based Languages

Many other languages, such as Kotlin, Scala, and Clojure, are also designed to run on top of
Java Virtual Machine implementations. Because of this, it is straightforward to use AutoPersist to
create persistent applications in these languages as well.

Since AutoPersist augments the JVM bytecode semantics, other languages can also reap its
benefits. It is only necessary for each language to ensure that the @durable root and optionally
the @unrecoverable keywords are available within the language. Additionally, the Recovery
and Introspection APIs described in Chapters 4.2.4 and 4.2.5 can be defined to better match the
given language’s flavor; however, this is not strictly necessary, as traditionally other JVM-based
languages are able to directly invoke Java APIs.

4.5.2 Applying Model to Scripting Languages

Beyond the JVM ecosystem, another potential target for my NVM programming model is script-
ing languages, such as JavaScript, Python, Ruby, and Perl. While scripting languages share many
traits with Java, two of their common traits could have an impact on the implementation strategy.
First, scripting languages are single-threaded. This would substantially simplify the NVM support
needed, as one does not need to worry about data races.

37

The second important scripting language trait is that they are dynamically typed. This means
that at compile type the layout of an object is unknown. Traditionally, scripting language runtimes
create inline caches [58] and a internal typing system of hidden classes to help ensure efficient
execution. With this infrastructure already in place, an opportunity exists to expand the hidden
class type system to also include a notion of persistency. Doing so would help to ensure the
efficient execution of my NVM programming model within scripting language runtimes.

4.5.3 Alternative JVM Implementations

I choose to implement AutoPersist within Maxine due to Maxine’s modularity and origins as
a research JVM. However, presently the most popular JVM implementation is HotSpot [72, 73].
HotSpot outperforms Maxine mainly due to its more advanced garbage collection and compil-
ers. Hence, to fully realize my model’s performance potential AutoPersist should be applied to
HotSpot.

Unfortunately, HotSpot is a very old and complex code base; the original HotSpot implemen-
tation was built around 2000. Over time, as new features have been added to the JVM and per-
formance improvements have been made, the technical debt within HotSpot has only increased.
Luckily, recently Oracle Labs has undertaken efforts to build both a new compiler and ahead-of-
time runtime system. The new compiler is called Graal [74, 75] while the new runtime system is
called SubstrateVM [76]. SubstrateVM aims to be as fast as HotSpot while also having a much
cleaner code base written in Java itself. Because of this, I believe SubstrateVM is a good target for
AutoPersist.

Another reason SubstrateVM is an ideal target for AutoPersist is that it is designed to build Java
applications ahead-of-time. This means that classes cannot be dynamically loaded throughout
execution but instead must be known during SubstrateVM’s ahead-of-time analysis. As discussed
in Espresso [11], one complication of creating persistent applications in Java is deciding where
to store class metdata. However, this is not an issue within SubstrateVM due to it being stored
ahead-of-time within the application’s executable.

4.5.4 Opportunities for Hardware Improvements

As described in Chapter 4.3 and shown in Algorithm 4.1 and 4.2, to implement sequential per-
sistency in Java on x86-64 a CLWB and SFENCE is needed after every field update to an object
reachable from a @durable root. Given NVM’s current characteristics, this can have a signifi-
cant performance impact.

38

Recently, proposals have been made to extend Intel’s asynchronous DRAM refresh domain
(ADR) [28] to include all hardware caches. In such a system, commonly referred to as eADR,
added capacitors store enough power to allow for the processor’s caches to be flushed out to mem-
ory before the system loses power. In such a system, it is now no longer necessary to insert cache
maintenance instructions and fences to ensure data reaches the persistent domain. Furthermore,
since x86-64 processors follow a TSO memory model, then by default stores to persistent memory
are sequential. Hence, persistent caches would significantly benefit AutoPersist.

39

Chapter 5: Improving AutoPersist’s Performance Through Profile-Guided Optimizations

5.1 INTRODUCTION

While AutoPersist faithfully implements the NVM programming model proposed in Chapter 3,
much performance is left on the table. This is because the runtime must correctly handle all corner
cases which may arise throughout the application’s execution. This results in many persistence

checks and conditional runtime actions being placed within the generated code.
I define persistence checks as the process needed to determine if a persistence runtime action,

such as moving an object to NVM, needs to be taken. While many persistence checks must be
performed throughout execution, I find that often the result of the persistence checks are very
predictable. Therefore, they are an ideal candidate for profile-guided optimizations.

In this chapter, I propose to leverage the multi-tiered nature of JVM compilers to reduce the
overhead of persistence checks via profile-guided optimizations. Specifically, during the execution
warmup phase, profiling information is collected about the behavior of each persistence check.
Later, when optimized code is generated, this profiling information is read to bias the generated
persistence check code to favor its expected behavior. Additionally, I am able to further reduce
persistence check’s overhead by speculative eliminating code paths unlikely to be taken.

Another overhead of AutoPersist’s runtime is the time spent moving objects from DRAM to
NVM. In AutoPersist’s default implementation, initially all objects are allocated in DRAM and
are only moved to NVM once they become reachable from a durable root. However, I observe that
in many situations soon after an object is allocated it becomes reachable from a @durable root;
this is inefficient since two copies of the object must be made. To prevent this from happening, in
this chapter I also describe an optimization to eagerly allocate objects in NVM.

In a similar manner to persistence checks, profiling can be used to identify allocation sites which
allocate objects soon to become part of the persistent state. Once these sites are identified, the code
is regenerated to directly allocate objects in NVM at this sites instead of in DRAM. Therefore, once
the object becomes part of the durable state it does not need to be moved. Furthermore, this helps
performance by reducing the number of forwarding objects present within the code. Further details
of this optimization are also explained in this chapter.

5.2 AUTOPERSIST PERFORMANCE OVERHEADS

AutoPersist has the potential to dramatically ease the programming burden of creating persis-
tent applications. However, to facilitate widespread adoption, its performance must be close to

40

other manually optimized NVM frameworks. One significant overhead is the persistence checks
required by AutoPersist around accesses to both persistent and non-persistent objects. Before I dis-
cuss the proposed solution to reduce the persistence checking overhead, in this section I describe
in more detail the overhead of AutoPersist’s persistence checks.

5.2.1 Store Field Persistence Checks

As described in Chapter 4.3.1, many persistence runtime actions in AutoPersist are dependent
on whether an object is reachable from a durable root. Since these actions can be very expensive,
it is beneficial to ensure that they are only enabled when absolutely necessary.

Because of this, AutoPersist includes many checks, called persistence checks, to guard runtime
actions needed for correct persistent execution. Persistence checks query the object’s state to
determine whether the action is needed and must be activated, or if the action can be bypassed.

Algorithm 5.1 store operation with persistence checks.
1: procedure PUTFIELD(holder, field, value)

[Start Persistence Check Code]
2: [Persistence Check]
3: if isShouldPersist(holder) or isForwarded(holder) then
4: [Persistence Check’s Guarded Action]
5: if isForwarded(holder) then
6: holder = getForwardingPtr(holder)
7: end if
8: if isForwarded(value) then
9: value = getForwardingPtr(value)

10: end if
11: if !isUnrecoverable and !isRecoverable(value) then
12: value = makeObjectRecoverable(value)
13: end if
14: if inFailureAtomicRegion(tid) and !isUnrecoverable(field) then
15: logStore(holder, field)
16: end if
17: end if

[End Persistence Check Code]
18: writeField(holder, field, value)

[Start Persistence Check Code]
19: [Persistence Check]
20: if isShouldPersist(holder) and !isUnrecoverable(field) then
21: [Persistence Check’s Guarded Action]
22: cachelineWriteback(holder, field)
23: if !inFailureAtomicRegion(tid) then
24: persistFence()
25: end if
26: end if

[End Persistence Check Code]
27: end procedure

41

To better understand the concept of persistence checks, let us revisit the actions covered in
Chapter 4.3.1. Algorithm 5.1 reshows the same process, but rewritten in a way to better highlight
the concept of persistence checks.

Both before and after the original write (line 18), many actions are needed. Without persis-
tence support, the function storeField(holder,field,value) writes value V into field F of
the holder object H (line 27). In AutoPersist, both before and after writing V into field F , persis-
tence checks must be included to ensure the runtime performs all actions needed when handling
persistent objects.

The persistence check code before the write (lines 2 to 17) first checks whether the guarded ac-
tion should be activated or not. This is done by including a persistence check (line 3) to determine
if H is either forwarded or in the ShouldPersist state. If H is a forwarding object, its forwarding
address will point to a persistent object. As explained in Chapter 4.4.1, forwarding objects act as
temporary pointers to persistent objects before all pointers are updated during a GC cycle. If the
persistence check is true, then the action it is guarding will be executed (lines 4 to 17). This code
first retrieves the current location of H. This is performed by checking whether the holder object
has been forwarded (line 5) or not. If so, the current holder object’s location must be retrieved
(line 6). AutoPersist has an extra object header word to allow for the fast retrieval of persistent
state information and storing forwarding addresses. Next, the runtime must ensure that V is also
persistent. As with object H, this check must first retrieve V ’s current location (lines 8 to 10), and
then afterwards must check whether V is persistent (line 11). If V is not persistent, then the run-
time must move V and its transitive closure to NVM. Lines 14 to 16 perform the logging needed
to maintain the appearance of atomicity within failure-atomic regions.

The persistence check’s guarded action after the original write (lines 21 to 26) ensures that the
proper persistency measures are taken. If H is persistent, the field must be written back to NVM
using a CLWB (line 22). In addition, if execution is currently not within a failure-atomic region,
then a SFENCE must be inserted to ensure data consistency.

Note that while there are many checks within a persistence check’s guarded action, only the
checks on lines 3 and 20 are considered to be persistence checks, as these are the checks which
guard runtime actions needed when interacting with persistent objects.

5.2.2 Load Field Persistence Checks

In addition to modifying object store procedures, AutoPersist must also add a persistence check
to load procedures to ensure pointers do not refer to forwarding objects. Algorithm 5.2 revisits the
process covered previously in Chapter 4.4.1.

Without persistence support, loadField(holder,field) loads the value V from field F of

42

Algorithm 5.2 load operation with a persistence check
1: procedure LOADFIELD(holder, field)

[Start Persistence Check Code]
2: [Persistence Check]
3: if isForwarded(holder) then
4: [Persistence Check’s Guarded Action]
5: holder = getForwardingPtr(holder)
6: end if

[End Persistence Check Code]
7: value = readField(holder, field)
8: return newValue
9: end procedure

holder object H and returns V . In AutoPersist, before this load can occur, a persistence check is
inserted (line 3) to guard retrieving the current location of H (line 5). As described in Chapter 5.2.1,
only objects which are persistent can have forwarded objects.

5.3 CHARACTERIZING PERSISTENCE CHECKS

As shown in Chapter 5.2, AutoPersist requires many persistence checks to guard runtime ac-
tions. In this section I first evaluate the overhead of these persistence checks. Afterwards, I profile
the activation behavior of persistence checks across various persistent applications.

avrora batik fop h2 jython luindex lusearch sunflow Average
0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e NoChecks
WChecks

Figure 5.1: DaCapo persistence check overhead.

5.3.1 Overhead of Persistence Checks

As shown in Algorithms 5.1 and 5.2, persistence checks are used frequently in AutoPersist.
However, the actions guarded by these checks are only activated if the holder object being ac-

43

apparat kiama scalac scalap scalariform scalaxb tmt Average
0.0

0.5

1.0

1.5

2.0

2.5

3.0
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e NoChecks

WChecks

Figure 5.2: Scala DaCapo persistence check overhead.

cessed is reachable from the durable root set. Otherwise, for non-persistent holder objects, the
actions are bypassed. To evaluate the cost of persistence checks guarding bypassed actions, I run
the DaCapo [77] and Scala DaCapo Benchmark Suites [78]. As these benchmarks do not have
persistent markings, all objects will be non-persistent by default. Hence, they provide an excellent
opportunity to evaluate the overheads of persistence checks with bypassed actions. I evaluate two
configurations: NoChecks, which does not have persistence checks, and WChecks, which includes
the persistence checks described in Chapter 5.2. More details about the evaluation environment
are in Chapter 6.

Figures 5.1 and 5.2 show the performance of the two configurations. In the worst performing
benchmark, Scala DaCapo’s tmt benchmark, WChecks is 214% slower than NoChecks. On aver-
age, I find the WChecks configuration is 51.1% and 59.7% slower than the NoChecks configuration
for the DaCapo and Scala DaCapo benchmarks, respectively. This overhead is significant because
no useful work is performed, since all persistence checks guard bypassed actions. While AutoP-
ersist can significantly simplify the process of creating persistent programs, its overhead must be
minimal, compared to other NVM frameworks. Clearly, the overheads of persistence checks must
be drastically reduced before AutoPersist can gain widespread acceptance.

5.3.2 Persistence Check Activation Behavior

As described in Chapters 5.2.1 and 5.2.2, in AutoPersist, the actions guarded by persistence
checks are activated only when the holder object is either a persistent object or a forwarded object.
While it is possible in theory for each persistence check’s action to vary between being activated
and bypassed throughout program execution, it is well known that many program characteristics

44

are highly consistent throughout execution in Java and other languages. They include branching
behaviors, virtual call dispatch targets, and dynamic object property lookup offsets.

To confirm whether the behavior of the actions guarded by persistence checks are as consis-
tent as other program features, I monitor the behavior of persistence checks across two persistent
applications. The persistent applications are two versions of a persistent key-value store. Each
version is based on QuickCached [79], a pure Java implementation of memcached [80], and uses
a different persistent data structure internally for its key-value storage. Specifically, Functional

HashMap (Func) uses a functional hash map as its backend, and Hybrid B+Tree (JavaKV) uses
a B+ tree where only the leaf nodes are persistent. Chapter 6.3 contains more details about the
persistent applications.

I run each persistent application with the Yahoo! Cloud Serving Benchmarks [81] and show the
aggregated results. For each run, I monitor the dynamic number of persistence checks encountered,
and the number of persistence checks guarding activated actions. In addition, I categorize each
persistence check site into one of three categories based on its behavior: check sites with actions
that are always activated, check sites with actions that are sometimes activated, and check sites
with actions that are never activated.

Dynamic Check Behavior Classification of Check Sites
Data # Checks # Checks w/ Actions % Checks w/ Actions % Sites w/ Actions % Sites w/ Actions % Sites w/ Actions
Structure Seen (M) Activated (M) Activated Always Activated Sometimes Activated Never Activated
Func 2708.4 6.4 0.24 0.03 0.05 99.86
JavaKV 2730.9 5.6 0.20 0.09 0.02 99.87

Table 5.1: Persistence check statistics when running YCSB workloads.

The profiling results are shown in Table 5.1. The results highlight two main traits. First, persis-
tence checks have predictable behavior; very few checks guard actions which are only sometimes
activated. Second, and most noticeably, actions guarded by persistence checks are activated very
rarely. In each application, I find that over 99% of the checks guard bypassed actions. One reason
for this is that these actions are never activated for non-persistent objects. However, another impor-
tant reason why the persistence check activation bypass rate is so high is that the checks described
in Chapter 5.2.2, which are placed before object loads, are rarely activated, regardless of whether
handling persistent or non-persistent objects. This is because these actions are only activated if
the pointer is to a forwarded object. As explained in Chapter 4.4.1, forwarded objects exist only
temporarily before a garbage collection cycle occurs. The results shown Table 5.1 indicate that
forwarded pointers are seldomly used.

Overall, the results confirm that the behavior of persistence checks is highly predictable and
suggest that, in persistent applications, the actions guarded by persistence checks are rarely acti-
vated.

45

5.4 BIASING PERSISTENCE CHECKS

Baseline Compiler

Collect Persistence Check
Profile Information

Optimizing Complier

Bias Persistence Checks
Based on Profile Information

Optimize “Hot”
Methods

Fallback to Baseline Code on Unexpected
Persistence Check Action Activation

Figure 5.3: Overview of QuickCheck.

The previous section highlighted two traits of persistence checks: they impose significant over-
heads and the activation behavior at a given check site is highly predictable. Based on these two
traits, I propose to transform individual persistence checks dynamically to optimize for the com-
mon case expected at each check site. In addition, for persistence checks which guard actions
that are predicted to never be activated, I propose to speculatively remove the actions guarded by
the check. I name the solution QuickCheck. The following subsections describe QuickCheck’s
technical details.

5.4.1 Overview of QuickCheck

To minimize the overhead of persistence checks, I propose to bias each check to be specialized
for its common case. Specifically, I propose to have two phases of execution for each method,
namely, a profiling phase where profiling information is collected for each persistence check, and
a biasing phase where each check is transformed to be optimized for its expected common case.

Given that modern JVM implementations already compile “hot” code regions multiple times,
as discussed in Chapter 2.4, QuickCheck can use these multiple code generation phases as its
profiling and biasing phases. Figure 5.3 shows how QuickCheck can be added to the traditional
JVM compilation phases. Initially, when code is generated by the baseline compiler, the compiler
is augmented to also generate profile information about each persistence check site. For each
persistence check site, the runtime records the number of times the check’s action is activated and
bypassed.

After that, when the profiled method is recompiled by the optimizing compiler, the optimiz-
ing compiler uses the persistence check profile information to generate optimized code. Specif-
ically, QuickCheck directs the compiler to perform simple optimizations such as deciding if the

46

1. persistence_check;
2. jmp_if_false Post_Action;

3. guarded action

4. label Post_Action:
5. code after guarded action

1. persistence_check;
2. jmp_if_true Action_Activation;

3. label Post_Action:
4. code after guarded action
…
5. return;

6. label Action_Activation:
7. guarded action
8. jmp Post_Action;

1. persistence_check;
2. jmp_if_true Action_Activation;

3. code after guarded action
…
4. return;

5. label Action_Activation:
6. jump to baseline code;

(a) Likely activation of action
guarded by persistence check

(b) Unlikely activation of action
guarded by persistence check

(c) Very unlikely activation of action
guarded by persistence check

Figure 5.4: Code generation strategies for persistence checks in AutoPersist.

action guarded by the check should be on the main execution path or should be sunk to the end
of the method. To further improve performance, QuickCheck can also direct the compiler to per-
form speculative optimizations to further reduce the overhead of highly predictable checks. For
persistence checks guarding actions which are extremely unlikely to be activated, QuickCheck’s
modified compiler generates code which assumes the action guarded by the check will never be
activated. If this assumption is false, then QuickCheck triggers a deoptimization to the baseline

47

compiler when this action is activated. This fallback to the baseline compiler on an unexpected
activation is represented by the dashed line in Figure 5.3.

5.4.2 Persistence Check Biasing Strategies

As discussed, the optimizing compiler can use the persistence check profile information col-
lected during warm-up to generate better code. This section describes how to bias the generated
code. I divide the likelihood of a check’s guarded action being activated into two categories: likely

and unlikely. Figures 5.4 (a) and (b) show how QuickCheck generates code in these two cases.
Figure 5.4 (a) shows the code for persistence checks whose guarded actions are likely to be acti-
vated. On line 1, the persistence check is performed. Line 2 contains a conditional branch to the
post-action code. The branch is taken if the persistence check guards a bypassed action. Other-
wise, if the branch is not taken, execution falls through to line 3 and performs the guarded action.
Finally, the post-action code is placed after the guarded action routine (line 5). Given that it is
likely that the persistence check guards an activated action, it is desirable to have the routine on
the fall-through path of the conditional branch, as processors initially predict forward branches as
not-taken [6].

Figure 5.4 (b) shows how QuickCheck generates code for persistence checks whose guarded
actions are unlikely to be activated. On line 2, the conditional branch jumps to the guarded action
routine on line 6 if the action is activated. The fall-through code is the code after the guarded
action. Since the guarded action is unlikely to be activated, it is beneficial to move the routine
off of the main execution path down to the end of the method. This improves instruction cache
performance by ensuring that code unlikely to execute will not interrupt the spatial locality of code
likely to execute.

As discussed above, the optimizing compiler can use the persistence check profile information
collected during warm-up to generate better code. This section describes how to bias the generated
code. I divide the likelihood of a check’s guarded action being activated into two categories: likely

and unlikely. A given persistence check’s category dictates how the compiler will generate code
for it. For persistence checks guarding actions likely to be activated, the action code is placed on
the fall-through path; on the other hand, unlikely to be activated actions can be moved off of the
main execution path down to the end of the method.

5.4.3 Speculatively Removing Action Routines

As shown in Chapter 5.3.2, over 99% of persistence checks guard actions that are never acti-
vated. To further reduce overhead, QuickCheck introduces the very unlikely category for actions

48

extremely unlikely to be activated.
In this case, instead of simply moving the guarded action routine off the main execution path,

QuickCheck speculatively removes it. In the rare case that a check categorized as very unlikely

needs to be followed by the execution of the guarded action, a deoptimization occurs and execution
is transferred to the baseline compiler.

Figure 5.4 (c) shows the code generated by QuickCheck. On line 2, there is a conditional branch
which is taken when the persistence check’s guarded action is activated. However, instead of the
guarded action routine being the destination of the conditional branch, now, as shown on line 6,
execution is transferred to the code generated by the baseline compiler.

Because of the substantial overhead of transferring execution to a different code tier, performing
this speculative optimization is only beneficial if it is rarely incorrect. Hence, QuickCheck only
performs it if the profile predicts that the persistence check’s guarded action will never be executed.

This speculative optimization provides further cache performance improvements over Figure 5.4
(b), by not only improving spatial locality, but also eliminating the code bloat of routines that are
unlikely to execute. More importantly, this speculative optimization helps improve the efficiency
of compiler optimization passes by eliminating code that can interfere with the optimizations. As
shown in Algorithms 5.1 and 5.2, the code guarded by persistence checks includes many memory
accesses, calls to the runtime, and even memory fences. By removing this code, the compiler is
now able to perform more aggressive code reordering. In addition, since the compiler’s aliasing
information is now unobscured by runtime calls, many additional optimizations, such as common
subexpression elimination, are also more effective.

5.5 IMPLEMENTING BIASED PERSISTENCE CHECKS

This section explains how I apply QuickCheck to AutoPersist. I first describe how the baseline
compiler is modified to collect persistence check profiling information. Afterwards, I discuss how
this profiling information is used to determine the activation bias of each persistence check and
guide code generation in the optimizing compiler.

5.5.1 Persistence Check Profile Collection

As shown in Figure 5.3, QuickCheck needs the baseline compiler to collect profiling information
which is used in later phases to determine the activation bias of persistence checks. To accomplish
this, I modify the baseline compiler to record profiling information at each persistence check.

To store the profiling information, I expand the per-method profiling present in the baseline
compiler to include two new counters for each persistence check site: an activated counter and a

49

bypassed counter. The proper counter is incremented depending on whether the check’s guarded
action is activated or bypassed.

While two persistence checks surround each write operation (see Chapter 5.2.1), only the persis-
tence check before the write must be profiled. This is because if the pre-write persistence check’s
guarded action is executed, then the post-write check’s guarded action is also executed, as can
be seen in Algorithm 5.1. While the check at line 3 determines if the object is either forwarded
or persistent, and the check at line 20 only queries if the object is persistent, note that these are
equivalent. This is because if the pre-write check’s guarded action is executed and the object is for-
warded, then the persistent object will be retrieved from its forwarding address (line 6). Hence, the
object will be persistent in the check at line 20. Having only one profile site per store helps limit
the memory and computation overhead of recording the persistence check profiling information.

5.5.2 Compiler Optimization Pass

Calculating Persistence Check Bias

Once a method is “hot” enough to be recompiled, the optimizing compiler reads each persistence
check profile’s activated and bypassed counters to determine the activation rate of its guarded
action. Based on this activation rate, checks are categorized into four states for biasing:

• likely: Action activated over 95% of the time.

• unbiased: Action activated 5%–95% of the time.

• unlikely: Action activated less than 5% of the time.

• very unlikely: Action not activated during profiling.

Once the biasing state of each persistence check is determined, the optimizing compiler can
generate code which is optimized for the expected behavior. the following describes how the
persistence checks added to both load and store operations are optimized based on their biasing
state.

Load Operation Persistence Check Generation

As shown in Chapter 5.2.2, all operations that load a value from the heap must have a persis-
tence check beforehand to check for forwarding pointers. Based on the check’s biasing state, the

50

optimizing compiler biases the persistence check branch shown in line 3 of Algorithm 5.2. Specif-
ically, for persistence checks in the likely, unbiased, and unlikely states, QuickCheck adjusts the
weight of the true branch being executed to 95%, 50%, and 5%, respectively.

AutoPersist uses Graal as its optimizing compiler [74]. Within Graal, each branch is represented
as a node containing a configurable parameter denoting its true branch weight. Subsequent com-
piler optimization passes then use this branch weight to determine whether the true branch should
be present or not in the main execution path. Note that for other popular compilers such as LLVM,
HotSpot C2, and GCC, a similar mechanism also exists.

Algorithm 5.3 load with very unlikely biased check.
1: procedure LOADFIELD(holder, field)

[Start Persistence Check Code]
2: if isForwarded(holder) then
3: [Misprediction Deoptimization]
4: end if

[End Persistence Check Code]
5: value = readField(holder, field)
6: return newValue
7: end procedure

For persistence checks in the very unlikely state, QuickCheck sets the weight of the true branch
being executed to 1% and also changes the true branch execution path to trigger a deoptimization.
Algorithm 5.3 shows a simplified version of this persistence check. If line 3 is reached, then a
signal is raised. This point is registered as a deoptimization point, where execution transfers to the
baseline compiler. To catch raised signals, I modify the runtime to install a handler which performs
an on-stack-replacement [57] to transfer execution to the baseline compiler in the event of a raised
signal.

Store Operation Persistence Check Generation

As shown in Algorithm 5.1, stores originally have persistence checks both before and after the
write operation. For checks in the likely, unbiased, and unlikely state, I adjust the weight of the true
branches like in Chapter 5.5.2. However, instead of biasing all the branches within the guarded
action code, I only bias the branches on lines 3 and 20 of the algorithm. This is because these are
the branches which determine whether the persistence check’s action is activated or not. I chose
not to profile the behavior of internal branches in the guarded action code due to the code’s low
activation rate, as shown in Chapter 5.3.2.

For very unlikely biased persistence checks, I only generate a persistence check before the write.
This is because the post-write check’s action can only be activated if the pre-write check’s action is

51

activated. However, if the pre-write check’s action is activated, then execution will be transferred to
the baseline code and the subsequent code generated by the optimizing compiler will not execute.

Algorithm 5.4 store with very unlikely biased check.
1: procedure STOREFIELD(holder, field, value)

[Start Persistence Check Code]
2: if isShouldPersist(holder) or isForwarded(holder) then
3: [Misprediction Deoptimization]
4: end if

[End Persistence Check Code]
5: writeField(holder, field, value)
6: end procedure

Algorithm 5.4 shows the store operation when the persistence check is biased to the very unlikely

state. Now, on line 2, the persistence check guards a deoptimization point. The compiler sets the
weight of the true path to be 1% so line 3 is removed from the main execution path. Also, as with
very unlikely load operation, line 3 is registered as a deoptimization point.

5.6 OPTIMIZING OBJECT ALLOCATION

In AutoPersist, beyond reducing the overhead of persistence checks, I am also able to leverage
the JVM’s tiered compilation strategy to reduce the number of objects which must be moved
to NVM. Specifically, a source of overhead in AutoPersist’s implementation is when an object
is moved to NVM because it becomes reachable from a durable root. AutoPersist reduces this
overhead by predicting that an object will eventually be moved to NVM, and eagerly allocating it
in NVM in the first place.

To accomplish this, I modify the initial compiler to produce profiling information that is used
by the optimizing compiler to reduce object handling overhead. Each profiled allocation site is
given an entry in a global table called allocProfile. The entry contains a count of the number of
objects allocated from this site that are later moved to NVM. During execution, as objects are
instantiated, two new fields in their NVM Metadata header (Figure 4.2) are set as follows: the
has profile flag is set, and the alloc profile index field is set to the index of the entry within the
allocProfile table corresponding to its allocation site. If the object is later moved to NVM, the
entry within allocProfile corresponding to the object’s allocation site is incremented.

To access the correct entry within allocProfile, the object’s allocProfile index field is read. Note
that it is fine for both the forwarding ptr and the alloc profile index to share the same field in the
NVM Metadata header, as they are not needed at the same time.

The compiler also retrieves profiling information on the number of method invocations and
branch behavior. Via this information, the compiler is able to accurately estimate the total number

52

of objects allocated from a site.
Later, when the optimizing compiler recompiles a method, for each of its allocation sites, it

checks the total number of objects allocated and the allocProfile count. Based on these values, it
decides on whether the site should either continue to allocate objects in volatile memory or switch
to eagerly allocating in NVM. To prevent the GC from moving objects eagerly allocated in NVM
back to volatile memory, these objects set the requested non-volatile flag (Chapter 4.4.4) in their
NVM Metadata header.

Note that deciding which memory to use for initial object allocation is a performance issue and
not a correctness one. AutoPersist guarantees that the necessary objects will be moved to NVM
to meet my NVM model’s requirements. This profiling information simply helps to attain higher
performance.

Beyond the reduction of copying objects between DRAM and NVM, another benefit of this
optimization is the reduction of forwarding objects created. Since there are fewer forwarding
objects, less runtime actions will need to be taken, and hence more persistence checks will be
classified as either unlikely or very unlikely, which will further improve performance.

5.7 DISCUSSION

5.7.1 Additional Opportunities for Removing Checks

Via QuickCheck, the runtime is able to successfully remove much of the runtime check overhead
throughout execution. However, since I am leveraging profiling information, for correctness it is
still necessary to validate assumptions made by the runtime.

Instead of using profiling-based analysis, it is also possible to perform formal analysis passes
to guarantee application behavior. For instance, via class hierarchy analysis [72], reachability
analysis [76], and pointer analysis [82, 83], it may be possible to prove a given load/store location
either always interacts with a volatile object or durable object. Via this analysis, then no longer
would checks have to be present at sites with known behavior; instead, any needed actions could
be directly encoded in the generated code.

Leveraging escape analysis is another way to remove runtime checks. Escape analysis [65, 84]
is used to identify objects whose lifetime is limited to its nested functional scope and therefore can
be allocated in the stack instead of the heap. By virtue of its characteristics, any object which is
identified by escape analysis as a candidate for stack allocation will never become reachable from
a @durable root, and hence will not need any runtime checks.

Beyond removing unnecessary runtime checks, proving an object will never become part of

53

the persistent state also enables additional compiler optimizations. For instance, provably volatile
objects do not need to follow the sequential persistency semantics of my model; instead, in accor-
dance with the Java Memory Model [69], compiler optimization are able to eliminate redundant
memory operations as well as move around memory operations to achieve better performance.

5.7.2 Improving Eager NVM Allocation

In Chapter 5.6, I described how profiling can be used to identify sites which would benefit from
eagerly allocating objects in NVM. While this is an effective optimization, additional improve-
ments can be made. Because NVM decisions are made at an allocation-site granularity, allocation
sites which see both persistent and volatile objects (i.e. are persistency-polymorphic) cannot ea-
gerly allocate objects in NVM. To prevent persistency-polymorphic sites from being created, ei-
ther aggressive inlining or specialization can be added to the generated code. Inlining reduces the
number of persistency-polymorphic allocation sites by allowing different execution paths to have
private allocation sites, as opposed to sharing the same code. Likewise, method specialization can
be performed to help split executions based on their expected allocation behavior.

In addition to more precisely allocating eagerly objects in NVM, the runtime overhead can be
reduced if these objects are directly set to being recoverable, as opposed to merely being in NVM.
Currently, I chose not to directly set these objects as being recoverable due to the overhead of
persistency actions. However, as discussed in Chapter 4.5.4, if caches become persistent, then
most of the cost of enforcing sequential persistency is eliminated. In this scenario, directly setting
eagerly allocated objects as recoverable is likely to be beneficial.

5.7.3 Profile-Guided Support for Logging

In my programming model, the implementation is free to choose how to provide failure-atomic
support. Currently, in AutoPersist I use undo logging in all scenarios. However, as described
by Marathe et al. [85], depending on the usage pattern, different logging strategies are optimal.
Therefore, opportunities exist to tune each failure-atomic region to use either undo logging, redo
logging, or copy-on-write based on its characteristics.

Deciding which logging strategy to use is an ideal candidate to be optimized by the JVM’s
profile-guided optimization support. During warmup, various metrics about each failure-atomic
region, such as the log size, the number of data structures modified, and the number of reads
after writes to persistent data, can be collected. Then, based on this information, the optimizing
compiler can choose which type of logging should be implemented for each failure-atomic region.

54

Note that any type of logging chosen will result in correct execution; profiling and specialization
would merely serve to improve the performance of logging.

5.7.4 Runtime Support for Caching and Redundancy

Current NVM offerings implement advanced schemes to ensure data integrity and prevent wearout.
For instance, to guard against permanent cell failures and enable even wear, Intel Optane DC per-
sistent memory modules use error code correction (ECC) algorithms and also have on-DIMM logic
to move around data blocks. However, even with such measures in place, there is no guarantee that
a permanent fault will not occur and leave all data within the module unrecoverable.

Likewise, currently NVM is significantly slower than DRAM. In a recent paper [86], the authors
found that NVM’s read latency is about 3× higher than DRAM and its read and write bandwidths
max out at 39.4 GB/s and 13.9 GB/s, respectively. This means that applications with objects in
NVM will experience a significant slowdown, even if the data is rarely overwritten.

To combat both problems, AutoPersist could automatically create multiple copies of persis-
tent objects in different DIMMs. For resiliency, each copy could be in a different NVM DIMM
whereas, for performance, read-mostly data could be cloned into DRAM. The main issue with
creating these copies is keeping track of where all copies of the object reside and ensuring they
remain consistent. However, in AutoPersist this also can be managed by the runtime. For instance,
AutoPersist could assign each clone a virtual address that facilitates colored object pointers, where
pointers to different copies of the object differ only by a set of tag bits. Note that colored pointers
already are used by concurrent garbage collectors to help store phase information within point-
ers [87]. In addition, AutoPersist could add information to each object’s header to help identify
whether multiple copies of an object exist.

55

Chapter 6: Evaluating AutoPersist on Real Hardware

6.1 INTRODUCTION

In this chapter I evaluate my new NVM programming model and AutoPersist. I compare it
against existing Java NVM offerings in terms of both programmability and performance. In ad-
dition, I demonstrate how the optimizations described in Chapter 5 improve the performance of
AutoPersist.

6.2 INFRASTRUCTURE

6.2.1 Compiler Platform

I implement the AutoPersist framework described in Chapter 4 along with the optimizations
described in Chapter 5 within the Maxine JVM [22]. Maxine is an open-source research JVM
that enables the fast prototyping of new features while achieving competitive performance. I use
Maxine 2.0.5, and modify both its initial tier compiler (T1X) and its optimizing compiler (Graal).

In addition, I modify its object layout to integrate AutoPersist’s NVM Metadata header (Fig-
ure 4.2), add new NVM heap regions, extend its GC (Chapter 4.4.4), and implement failure-atomic
regions (Chapter 4.4.5).

I modify Maxine’s baseline compiler (T1X) to collect the profiling information described in
Chapter 5, and modify Maxine’s optimizing compiler (Graal) [74] to use the proposed persistence
check biasing and eager NVM allocation techniques. In addition, Maxine is augmented to include
the handlers needed to handle the mispeculation of persistence checks biased to the very unlikely

state.

6.2.2 Server Platform

All tests are run on a server with 12 128GB Intel Optane DC persistent memory modules and
384GB of DDR4 DRAM. The server contains two 24-core Intel R© second generation Xeon R©
Scalable processors (codenamed Cascade Lake), and runs Fedora 27 on Linux 4.15. Each node
has 6 memory channels, each attached to both NVM and DRAM.

In all experiments, AutoPersist reserves 20GB for each of the volatile and non-volatile heap
spaces. To create the non-volatile heap, AutoPersist uses libpmem [8] to map a portion of the
application’s virtual address space to NVM. After that, via the Direct Access (DAX) protocol,

56

applications can directly interact with the Intel Optane DC persistent memory. Intel’s cache line
writebacks (CLWB) and store memory fences (SFENCE) are used to persist values.

Note that currently I have the non-volatile heap space mapped entirely to 1 NVM DIMM.
However, it is possible to stripe the NVM heap space across multiple DIMMs to improve per-
formance [86].

6.3 APPLICATIONS

To evaluate AutoPersist and my optimizations, I perform experiments on a persistent key-value
store, several persistent kernels, and two existing Java benchmark suites. In the following subsec-
tions I describe the applications used for evaluation, as well as the configurations used to evaluate
AutoPersist.

6.3.1 Java Benchmark Suites

To evaluate the effectiveness of QuickCheck in reducing the overhead of persistence checks
guarding bypassed actions, I run most of the DaCapo [77] and Scala DaCapo [78] benchmark
suites on AutoPersist. Both benchmarks suites are commonly used to evaluate the performance of
JVM implementations. To measure the optimal performance of the applications, each benchmark
is run several times (with the same warm-up counts as used in [88]) before measuring the execution
time.

As these benchmarks do not have persistent markings, all objects will be non-persistent by
default. Hence, they provide an excellent opportunity to evaluate the overheads of persistence
checks with bypassed actions.

6.3.2 Persistent Key-Value Store

I implement a persistent version of a key-value store using AutoPersist. Specifically, I modify
QuickCached [79], a pure Java implementation of Memcached to use persistent data structures
internally for its key-value storage. The different backends compared are:

• IntelKV. This is Intel’s pmemkv library [89], along with its Java bindings. This backend uses
its kvtree3 configuration, which consists of a hybrid b+ tree written in C++ using the PMDK
library version 1.5. Similar to existing work [34], in this implementation, only the leaf nodes
are in persistent memory. Note that the IntelKV backend does not use AutoPersist. Hence,
it runs on an unmodified JVM.

57

• Func. This backend uses the PCollection library [90] and is implemented in Java. In my
implementations the entire datastructure is in persistent memory.

• JavaKV. This backend uses the same B+ tree structure as in Intel’s pmemkv library [89]
kvtree3 backend, except written in Java. Specifically, this configuration uses a hybrid B+
tree. Similar to existing works [34], in this implementation, only the leaf nodes are in per-
sistent memory.

To evaluate the performance of these backends, I use the Yahoo! Cloud Serving Benchmark
(YCSB) [81], a benchmark suite commonly used to evaluate the performance of cloud storage
services. I run its A, B, C, D, and F workloads after populating the key-value store with one
million key-value pairs (each pair is 1KB by default). For each workload, I perform five hundred
thousand operations.

6.3.3 Persistent Kernels

Data Structure & Description
Mutable ArrayList (MArray): ArrayList using copying to maintain persistence for inserts and
deletes. Updates are in place.
Mutable LinkedList (MList): Doubly-linked list.
Failure-Atomic Region ArrayList (FARArray): ArrayList using failure-atomic regions to
allow in-place insertions and deletions.
Functional ArrayList (FArray): Functional data structure that uses copying for all writes to
the structure. It uses PCollections’ PTreeVector class.
Functional LinkedList (FList): Functional data structure that uses copying for all writes to the
structure. It uses PCollections’ ConsPStack class.

Table 6.1: Description of persistent data structures.

To isolate the behavior of AutoPersist from the effects of large applications, I also create kernels
which perform a random collection of reads, writes, inserts, and deletes against five typical persis-
tent data structures. The benchmarks are listed in Table 6.1. MArray, MList, and FARArray are
hand-written to ensure correct persistent operation. FArray and FList are functional data structures
from the PCollections library [90], and inherently use persistence-safe structures.

6.4 IMPLEMENTATION FRAMEWORKS

To compare AutoPersist against existing NVM frameworks, I also created my own implemen-
tation of Espresso [11]. Espresso requires the user to add markings identifying objects to allocate

58

in NVM, to mark stores that must be flushed to NVM, and to insert memory fences. I have tried to
faithfully implement Espresso in the most optimal way possible, including creating new compiler
intrinsics and developing new JVM built-in calls to ensure that the Espresso markings execute as
efficiently as possible.

To evaluate the persistent key-value store and kernels, I have implemented all Java-based back-
ends and data structures in both AutoPersist and Espresso. Note that for Espresso this required
creating a new persistent version of the PCollection library whereas AutoPersist is able to use the
original unmodified PCollection library. In addition, I do not run the DaCapo and Scala DaCapo
on Espresso, as these applications only serve to evaluate the runtime overheads of AutoPersist.

6.5 CONFIGURATIONS

6.5.1 QuickCheck Evaluation

Configuration & Description
Clean: Unmodified Maxine JVM. No persistent support.
Unbiased: Original AutoPersist implementation. No persistence check biasing performed.
Likely: Bias all persistence checks to the likely state and represent them as likely taken branches
as shown in Figure 5.4(a).
Unlikely: Bias all persistence checks to the unlikely state and represent them as unlikely taken
branches as shown in Figure 5.4(b).
Deopt: Bias all persistence checks to the very unlikely state and represent them as shown in
Figure 5.4(c).
QuickCheck: Use QuickCheck to dynamically predict persistence check activation behavior
and bias them accordingly.

Table 6.2: Configurations evaluated.

To evaluate the performance of my persistence check biasing optimizations, I test multiple con-
figurations. The different configurations are shown in Table 6.2. The Clean configuration is the
unmodified Maxine JVM, which does not have persistent support. The Unbiased configuration is
the AutoPersist implementation, but without persistence check biasing. The Likely and Unlikely

configurations bias each persistence check site to the likely and unlikely state, respectively. The De-

opt configuration biases all persistence checks to the very unlikely state. Finally, the QuickCheck

configuration uses the profiling and biasing techniques proposed in the prior Chapter.

59

6.5.2 AutoPersist vs. Espresso

Framework Description
NoProfile AutoPersist without the profiling opt. of Chapter 5
T1X NoProfile but only using the initial tier compiler (T1X)
T1XProfile T1X plus collecting the profiling info of Chapter 5
AutoPersist Complete AutoPersist
Espresso Implementation of Espresso [11]

Table 6.3: Frameworks evaluated.

Table 6.3 shows the different AutoPersist-based NVM frameworks used in the evaluation against
Espresso. NoProfile is AutoPersist without the profiling optimizations described in Chapter 5. T1X

is NoProfile but only using the initial tier compiler (T1X). T1XProfile is T1X plus collecting the
profiling information described in Chapter 5. In other words, both T1X and T1XProfile are not
using the optimizing compiler (Graal). AutoPersist is the full AutoPersist framework with all of its
optimizations. Espresso’s implementation is described in Chapter 6.4.

6.6 PROGRAMMABILITY

A key benefit of AutoPersist is that it requires a developer to add only minimal markings in
their program to ensure crash consistency. Specifically, the markings are: identifying the durable
root set, inserting failure-atomic region entry and exit points, and marking unrecoverable fields
for higher performance. This is in contrast to Espresso, which needs explicit markings for each
persistent object allocation, cache line writeback to NVM, and fence [11].

Framework Applications Kernels Total Markings
Func JavaKV MArray MList FARArray FArray FList

AutoPersist 4 6 1 1 5 1 1 19
Espresso 55 45 49 48 63 47 14 321

Table 6.4: Number of markings for memory persistency.

Table 6.4 shows the number of markings added for each application when using AutoPersist
and Espresso. Table 6.4 shows that AutoPersist only needs 19 markings in total. This includes the
durable root markings, failure-atomic region labels, and also all unrecoverable markings added.
In contrast, when using Espresso, the programmer needs to add 321 markings in the programs to
ensure crash consistency.

60

A B C D F Average
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Func-E
Func-AP

JavaKV-E
JavaKV-AP

IntelKV
Logging
Runtime

Memory
Execution

Figure 6.1: Key-value store execution time.

There is a significant difference in the number of markings required in the two frameworks.
However, in my experience, even this difference does not do justice to the fact that I found it
much more difficult to create a correct crash-consistent application in Espresso. Overall, using
AutoPersist greatly reduces programmer effort and the likelihood of introducing performance or
correctness bugs.

6.7 FRAMEWORK COMPARISON

6.7.1 Key-Value Store

Figure 6.1 shows the execution time of different persistent key-value store backends while run-
ning YCSB. In the figure, the different versions of the Func and JavaKV backends are named as
{backend}-{framework}, where framework can be E for Espresso and AP for AutoPersist. A bar is
also shown for IntelKV. The execution time is normalized to Func-E. The execution time is broken
down into four categories which, from top to bottom, are: Logging, Runtime, Memory, and Execu-

tion. Logging is the time spent performing logging in failure-atomic regions. Note that it does not
include the time spent executing CLWB or SFENCE instructions while performing this logging.
Runtime is the time spent by the AutoPersist runtime ensuring that the transitive closure of the
durable root set resides in NVM, and moving objects to NVM as necessary. It corresponds to the
execution of the makeObjectRecoverable method (Algorithm 4.4). Memory is the overhead of exe-
cuting CLWB and SFENCE instructions. Finally, Execution is the remaining execution time. Note
that Logging and Runtime only apply to AutoPersist backends. Also, IntelKV cannot be broken
down because it uses a C++ library that one cannot instrument; all its time is Execution.

61

Looking at the Average bars, one see that the execution time of IntelKV is 116% and 119%
higher than of Func-E and JavaKV-E, respectively, which correspond to a previously proposed
system. More importantly, the execution times of the Func-AP and JavaKV-AP backends are 31%
and 28% lower than of Func-E and JavaKV-E, respectively.

The reason why IntelKV is substantially slower than the others is that, since the QuickCached
application is written in Java and the pmemkv library in C++, the data objects must be serialized
in order to pass them from QuickCached to the pmemkv library. For the backends implemented in
pure Java, the data does not need to be serialized, as the non-volatile portion of the heap provides
crash consistency.

AutoPersist significantly outperforms Espresso due to having a practically negligible Memory

time. This is because AutoPersist’s runtime is able to limit the number of CWLBs when objects
become reachable from the durable root set. Specifically, as AutoPersist is built into the JVM,
it has precise knowledge of the address and layout of the objects. Hence, when objects become
recoverable, it emits a single CLWB per cache line, reducing the total number of CLWBs. On the
other hand, since Espresso adds cache line writebacks at the source code level, it does not have
any information about the object’s layout or alignment within cache lines. Hence, it must insert
a CLWB for every object field to ensure that the object is entirely persistent. This is an inherent
limitation of performing markings at the Java source code level. It is a strong argument for why,
in managed languages such as Java, it is best to let the runtime decide when to emit cache line
writebacks.

How much AutoPersist outperforms Espresso is directly proportional to the number of insert
and update operations within the given YCSB benchmark. For instance, in the read-only C work-
load and read-mostly B workload, Espresso performs about the same as AutoPersist. However,
for workloads with writes, such as A, D, and F, AutoPersist is able to significantly outperform
Espresso.

Figure 6.1 also shows that the Logging and Runtime times in AutoPersist are negligible. Impor-
tantly, the Runtime overhead is negligible because of the efficiency of AutoPersist’s algorithms.
Finally, when using the same framework, the performance difference between Func and JavaKV

is minimal. This is because both data structures are tree-based and have similar branching factors.

6.7.2 Persistent Kernels

Figure 6.2 shows the kernel execution times for Espresso and AutoPersist. For each kernel, the
bars are normalized to Espresso. The bars are broken down into the usual categories. On average,
AutoPersist reduces the execution time by 59% over Espresso. The AutoPersist gains largely come
from a large reduction in Memory time. This is because, as discussed in Chapter 6.7.1, AutoPersist

62

MArray MList FARArray FArray FList Average
0.00

0.25

0.50

0.75

1.00

1.25

1.50
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Espresso AutoPersist

Logging
Runtime

Memory
Execution

Figure 6.2: Espresso and AutoPersist kernel execution time.

inserts the minimal number of CLWBs necessary to ensure that objects reachable from the durable
root set are persistent.

Unlike other kernels, the AutoPersist configuration of FARArray does not reduce the Memory

time much. This is because, in this kernel, many CLWBs and SFENCEs are executed while per-
forming logging. AutoPersist cannot easily reduce the number of such CLWBs and SFENCEs
because a given log entry must be persisted before its program store can execute. MList has little
Memory time because it does not need to perform many writes. AutoPersist increases the Memory

time because it supports sequential persistency and, therefore, introduces more SFENCEs.

6.8 ANALYSIS OF AUTOPERSIST’S PERFORMANCE

6.8.1 Persistence Check Overhead in Volatile Applications

Figures 6.3 and 6.4 show the execution time of the DaCapo and Scala DaCapo benchmarks
when using the configurations described in Table 6.2. On average, for the DaCapo benchmarks,
the execution time of Likely, Unbiased, Unlikely, Deopt, and QuickCheck is 61.0%, 51.1%, 19.1%,
8.8%, and 8.8% higher than Clean, respectively. It is expected that the Likely configuration should
have the worst performance. This is because, in this configuration, the persistence checks are bi-
ased towards activating the guarded actions, while throughout execution the actions are always
bypassed. It is also expected that Unlikely outperforms Unbiased, and Deopt outperforms Un-

likely, as stronger biases towards the expected behavior should improve performance. Finally, the
QuickCheck configuration performs the same as Deopt, which shows that AutoPersist is able to
successfully profile persistence check sites.

63

avrora batik fop h2 jython luindex lusearch sunflow Average
0.0

0.5

1.0

1.5

2.0

2.5

3.0
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Clean

Likely
Unbiased
Unlikely

Deopt
QuickCheck

Figure 6.3: DaCapo execution time.

apparat kiama scalac scalap scalariform scalaxb tmt Average
0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e Clean
Likely

Unbiased
Unlikely

Deopt
QuickCheck

Figure 6.4: Scala DaCapo execution time.

The Scala DaCapo benchmark results are very similar to the DaCapo results. On average, the
execution time of Likely, Unbiased, Unlikely, Deopt, and QuickCheck is 62.3%, 59.7%, 38.5%,
5.7%, and 5.7% higher than Clean, respectively. As with the DaCapo benchmarks, each configu-
ration’s performance corresponds to its bias towards the persistence checks’ guarded actions being
bypassed. Overall, these results show that the biasing strategies employed by QuickCheck are
effective in reducing the overhead of bypassed actions guarded by persistence checks.

Overall, QuickCheck reduces the execution time of the DaCapo and Scala DaCapo benchmarks
by 42.3% and 54.0% relative to Unbiased, which is the original implementation of AutoPersist.
This is an average 48.2% reduction.

In QuickCheck the remaining overhead of persistence checks over Clean is largely due to need-
ing to read each object’s header word. The value of the header word is used to determine if the

64

object as been forwarded or is persistent. While QuickCheck needs many additional reads com-
pared to Clean, QuickCheck’s performance is very similar. To better understand why QuickCheck’s
overheads are so low, I profiled every object header read in AutoPersist. I recorded the memory
address accessed and compared it to the memory address of the object field accessed next. I found
that most header accesses read addresses that are very close to the addresses of subsequent mem-
ory access. In particular, on average, 88.0% and 87.6% of header accesses are within 2 cache lines
of the subsequent memory access for the DaCapo and Scala DaCapo benchmarks, respectively.
This indicates that the header word reads exhibit very good spatial locality and, hence, the data
prefetching hardware in current processors is likely to ensure they add minimal overhead.

6.8.2 Persistence Check Overhead in Persistent Applications

A B C D F Average
0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e IntelKV
Func-Unbiased

Func-QuickCheck
JavaKV-Unbiased

JavaKV-QuickCheck

Figure 6.5: Persistent YCSB execution time.

Key-Value Store. Figure 6.5 shows the execution time of the persistent memcached data struc-
tures running the YCSB benchmark suite under different configurations. A configuration corre-
sponds to a persistent storage engine and biasing strategy, as identified with “{storage engine}-
{biasing strategy}”. All results are normalized to the configuration of Func with Unbiased. Two
traits are noticable in the figure. First, all AutoPersist storage engines outperform IntelKV. On
average, the execution time of IntelKV is 62.0% and 57.7% higher than the Unbiased configura-
tions of Func, and JavaKV, respectively. This is because, when using IntelKV, objects must be
serialized and transferred to IntelKV’s C++ backend. In AutoPersist, Java objects do not need to
be serialized since they are directly stored into the non-volatile heap.

65

The second trait is that, for each persistent storage engine, using my biasing techniques im-
proves performance. On average, the QuickCheck configurations of Func and JavaKV reduce the
execution time by 9.3% and 6.5% compared to their respective Unbiased configurations. On aver-
age, this is an 7.9% reduction. Notice that the improvements are much smaller than when running
the non-persistent applications. This is because, since persistent objects are being used, much of
the execution time is spent executing CLWBs and SFENCEs in both configurations. However, this
performance improvement is still significant, as it is achieved without any new hardware or user
involvement.

MArray MList FARArray FArray FList Average
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Unbiased QuickCheck

Figure 6.6: Persistent kernel execution time.

Kernels. Figure 6.6 shows the execution time of the kernel applications when using Unbiased

and QuickCheck. On average, QuickCheck outperforms Unbiased by 3.7%. Note that these kernels
heavily write to persistent data structures and hence require many CLWBs and SFENCEs. Overall,
the results show that QuickCheck is beneficial not only when running applications that do not
require data persistence, but also for persistent programs.

Persistence Check Access Patterns. Table 6.5 presents the number of dynamic persistence
checks encountered in the persistent memcached and kernel applications biased towards the Likely,
Unbiased, Unlikely, and Very Unlikely states. The data is shown as percentages. As shown in the
table, in all applications, no check is categorized as Unbiased. Also, similar to Table 5.1, the vast
majority of the persistence checks are biased to either the Unlikely or Very Unlikely states. In the
persistent memcached applications, a large percentage of the checks are in the Unlikely state. This

66

Structures Likely Unbiased Unlikely Very Unlikely
FHMap 0.07% 0.00% 33.08% 66.84%
PBTree 0.15% 0.00% 71.96% 27.88%
HBTree 0.06% 0.00% 71.96% 27.98%
MArray 0.18% 0.00% 0.00% 99.82%
MList 0.38% 0.00% 0.00% 99.62%
FARArray 22.12% 0.00% 0.00% 77.88%
FArray 0.40% 0.00% 0.00% 99.60%
FList 0.03% 0.00% 0.00% 99.97%

Table 6.5: Dynamic persistence check statistics while running YCSB and kernel workloads.

MArray MList FARArray FArray FList Average
0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

T1X
T1XProfile

NoProfile
AutoPersist

Logging
Runtime

Memory
Execution

Figure 6.7: Kernel execution time with AutoPersist configs.

is because these checks are in methods which are compiled by the optimizing compiler before their
activated and bypassed counters have enough samples. Hence, the compiler cannot confidently
conclude that the persistence check’s action will never be activated. Within the kernel applications,
only FARArray has a large portion of checks being in the Likely state. This is because this appli-
cation uses failure-atomic regions for crash consistency. As a result, many more persistence check
sites encounter persistent objects.

Overall, these results further demonstrate that persistence checks have a very consistent behav-
ior. Furthermore, the results show that QuickCheck is able to exploit the bias of persistence checks
to minimize their performance impact.

6.8.3 Breakdown of Persistent Kernels

To highlight the benefits of optimizations within AutoPersist, Figure 6.7 compares the execu-
tion time of the kernels in the different AutoPersist frameworks: T1X, T1XProfile, NoProfile, and

67

AutoPersist (Table 6.3). The bars are normalized to T1X and are broken down into the usual cate-
gories.

As shown in Figure 6.7, on average, NoProfile and AutoPersist reduce the execution time by
36% and 38% over T1X, respectively. This reduction is due to using the optimizing compiler,
which reduces the Execution time. In addition, T1XProfile takes only a bit longer to execute than
T1X, which shows that the overhead of adding profiling into the baseline compiler is minimal.

Comparing NoProfile and AutoPersist shows the performance impact of the profiling pass. By
eagerly allocating in NVM objects anticipated to become persistent, my pass reduces the Runtime

by an average of 39%. However, the total execution time decreases by an average of only 2%.
Nevertheless, I believe that, as NVM technologies improve, the amount of time needed to perform
CLWBs and SFENCEs will decrease. Hence, it will be important to ensure that other bottlenecks,
like runtime overhead, are minimized. Therefore, I believe that the profiling optimization will
become more important.

Kernel NoProfile AutoPersist
Obj Obj Ptr NVM Obj Ptr

Alloc Copy Update Alloc Copy Update
(K) (K) (K) (K) (K) (K)

MArray 29.9 29.9 7.4 29.9 0 0
MList 22.5 22.5 7.4 22.5 0 0
FARArray 15.1 15.1 0 15.1 0 0
FArray 468.4 304.4 281.9 225.9 170.8 170.8
FList 11447.6 11440.1 11417.6 7548.4 3891.7 3884.1

Table 6.6: NoProfile and AutoPersist event counts.

Runtime Events. To further understand the behavior of AutoPersist, the NoProfile and AutoP-

ersist frameworks are profiled while running each kernel (Table 6.6). For NoProfile, Column 1
shows the number of objects allocated during execution; Column 2 shows the number of objects
copied to NVM; and Column 3 shows the number of pointers updated as a result of the copies.

The rest of the columns show the impact of the profiling optimization in AutoPersist. Specifi-
cally, Column 4 shows the number of objects that are eagerly allocated in NVM. The optimization
allocates a large fraction of the objects eagerly. Columns 5 and 6 show the data corresponding
to Columns 2 and 3. My profiling optimization significantly reduces the number of objects to be
copied and the number of pointers to be updated. Note that the FArray and FList kernels still per-
form many copies and updates. This is because some of their methods do not get recompiled by
the optimizing compiler.

68

It can be shown that the number of allocation sites in the source code that are profiled by the
profiling pass ranges from 208 to 279 sites per kernel. Of those, only a small number are converted
to eagerly allocate objects in NVM. Specifically, only 4 to 43 sites per kernel (on average, 15 sites
per kernel) are converted. However, I believe that identifying such sites manually would be hard.

Memory Overheads. The changes proposed in AutoPersist introduce new memory overheads
due to the introduction of the NVM Metadata header word to each object. The memory overhead
of the larger header increases the memory consumption of the key-value store by an average of
9.4%. Fortunately, this overhead is tolerable due to the large memory capacity that NVM can
provide.

6.9 SUMMARY

Overall, I observe that AutoPersist performs favorably against other existing techniques for us-
ing NVM in Java, such as IntelKV and Espresso. In particular, I find that, on average, AutoPersist
is over twice as fast as IntelKV and also substantially outperforms Espresso. In addition, through
using profile-guided optimizations, the runtime overheads within AutoPersist are minimized. Such
results demonstrate that it is possible to have a NVM application environment which is both easy-
to-use and also achieves high performance.

69

Chapter 7: ISA Support for Instruction-Level Execution Dependencies

7.1 INTRODUCTION

Manipulating persistent data structures requires the insertion of fences into the code to ensure
writes propagate to NVM in a specific order. Ensuring all previous writes and cacheline writebacks
have completed requires the insertion of an SFENCE [6] for x86-64 systems or a DSB [7] for
AArch64 systems. Such fences are commonly needed within persistent applications to preserve
the order in which writes propagate to NVM. For instance, while performing undo logging, the
undo log entry must be persisted before the original element can be updated.

In undo logging, the update has an execution dependency on its corresponding log entry. An
execution dependency means that for correctness, the execution dependence’s source operation
must complete before the dependence’s sink can make observable memory changes. For perfor-
mance, however, different log updates should be able to proceed in parallel. Unfortunately, in
current ISAs, these execution dependencies are not able to be conveyed between independent (i.e.
no register or memory dependency) instructions. Instead, programmers have to use fences, which
enforce an execution ordering between all instructions and serialize independent log updates.

Likewise, in AArch64 often multi-threaded volatile applications have fine-grain store orderings
which currently must be enforced via fences. For instance, Java’s memory model [69] requires
select fields to be finalized before an object can be passed to another thread. Unfortunately, in
AArch64 this requires a fence to wait for all stores to complete.

To reduce the need for fences, this chapter proposes an ISA extension to add new instructions ca-
pable of describing execution dependencies. I call the new instructions the Execution Dependency

Extension (EDE), and have added it as an extension to Arm’s AArch64 instruction set architecture.
EDE creates a new addressing mode (EDE addressing mode) and adds this addressing mode

to store and cache maintenance instructions. An instruction is an execution dependency producer

if a subsequent instruction may have an execution dependence with this instruction; similarly, an
instruction is an execution dependency consumer if it has an execution dependence on a prior
instruction.

A new key set, called the execution dependency key (EDK) set, is introduced to help link execu-
tion dependency producers and consumers. A producer-consumer pair with the same EDK is used
to convey an execution dependence; in other words, if an instruction (instA) which produces a spe-
cific EDK number is followed by another instruction (instB) which consumes the same key, then
this means that instB can only make observable changes once instA is complete. Notice that this
linking of execution dependencies via EDKs is very similar to how data dependencies are linked

70

through registers.
Via EDE, one is able to precisely convey instruction-level execution orderings without fences,

thus allowing all other instructions to proceed out-of-order. Now, given the execution orderings
conveyed by EDE, it is the responsibility of the hardware to honor them. In this chapter, I propose
two implementations, called IQ and WB.

In IQ, EDE’s execution dependencies are enforced at the issue queue. This implementation
monitors execution dependencies alongside registers and memory dependencies to help decide
when instructions can be issued.

While IQ achieves significant performance gains, there are still opportunities for further im-
provement. This is because by enforcing execution dependencies at the issue queue, all subsequent
writes within the program are also delayed. To remedy this, I also propose a more aggressive de-
sign which enforces execution orderings of store and cache maintenance instructions at the write
buffer; I call this design WB.

To evaluate the performance impact of EDE, I implement IQ and WB in gem5 [91] while mod-
eling an Arm A72 with hybrid DRAM+NVM memory. For evaluation applications, I both develop
kernels and port Persistent Memory Development Kit (PMDK) [8] applications to use execution
dependencies, thereby minimizing the need for fences. Overall, EDE achieves on average 18%
and 26% speedups across IQ and WB, respectively.

7.2 UNDERSTANDING FENCE OVERHEAD

update_value (A, LogA, *A + 1):

update_value (B, LogB, *B - 3):

update_value (C, LogC, *C / 2):

Framework Code

Phase 1

Instructions 1-6 Instructions 8-9

Instructions 1-6 Instructions 8-9

Instructions 1-6 Instructions 8-9

DSB DSB DSBPhase 2 Phase 3 Phase 4

Execution Timeline

Figure 7.1: Reordering limitations imposed by DSBs

Currently, to guarantee a writeback to NVM is ordered relative to other instructions, a fence must
been inserted within the code to prevent subsequent instructions from executing until the writeback
is complete. To better understand how this negatively affects performance, let us consider how
fences limit the amount of instruction reordering the processor can perform. As an example, I will
explain how a persistent application must implement undo logging with fences.

71

update_value:

1 MOV X1, Addr ; move value address into register
2 MOV X2, AddrLog ; move log address into register
3 MOV X3, ValueNew ; load new value into register
4 LDR X4, [X1] ; load original value into register
5 STP X1, X4, [X2] ; log address & original value
6 DC CVAP [X2] ; persist log entry
7 DSB ; wait for log entry to persist
8 STR X3, [X1] ; store new value
9 DC CVAP [X1] ; persist new value

Figure 7.2: AArch64 undo logging

Figure 7.2 shows the AArch64 instructions needed to implement an update value function.
The goal of update value is to use undo logging to update a value in a crash-consistent manner.
This involves first persistently storing the location’s original value and address into a log and then
updating the value. This function takes as parameters the value’s address (Addr), the address of
the log entry to use (AddrLog), and the new value (ValueNew).

After collecting all of the needed information into registers (lines 1-4), on line 5 this function
stores both the original value and its address into the log via AArch64’s pairwise-store (STP)

instruction. It is necessary to store both the value’s address in addition to the value itself in the log
for proper recovery.

On line 6, a DC CVAP is issued to persist the log entry. Since STP is 16-byte aligned, both stored
values will be on the same cacheline; hence, only one DC CVAP is necessary to persist both values.
Also, since line 6 accesses the same address as line 5, no fence is needed to ensure the stores in
line 5 execute before the DC CVAP. This is because the processor must honor intra-thread memory
dependencies.

On lines 8 and 9, update value writes the new value and ensures it is made persistent. How-
ever, to ensure the logging of lines 5-6 has completed persistently before the value itself is updated
by line 8, a DSB is inserted on line 7. As explained in Chapter 2.1, in AArch64 DSBs must be in-
serted to ensure all prior persistent actions have completed before subsequent instructions execute.
Hence, the DSB on line 7 ensures lines 5-6 complete before lines 8-9.

On AArch64, DSBs impose an ordering on all instructions. This can have a significant perfor-
mance impact when unrelated code follows the DSB. Figure 7.1 shows the impact DSBs have when
three consecutive calls to update value are made. The left-hand part of the figure shows three
calls to update value. These three calls update different addresses (A, B, and C) and also reserve
different log entry values (LogA, LogB, and LogC). To help clarify these are three unrelated calls

72

to update value, I have also colored these calls differently (green, blue, and red).
Since these three calls are independent, ideally the processor will execute instructions from each

of these three calls in parallel. Furthermore, the DC CVAPs from line 9 do not need to complete until
the end of the failure-atomic region. However, due to the presence of DSBs, this is not possible.

The right portion of Figure 7.1 shows the ordering restrictions placed on the instructions by
the DSBs. This Figure shows a timeline of when each of the functions’ instructions can execute
relative to the DSBs. To help make this clear, in the figure I label the execution phases created
by the DSBs. During phase 1, only instructions from the green (first) update value routine can
execute. This is because the DSB within the routine prevents any instructions from the subsequent
two update value calls from being executed. In Phase 2, both instructions 8-9 from the green
routine and instructions 1-6 from the blue (second) routine can execute concurrently. However,
instructions from the red (third) routine are still blocked by the blue routine’s DSB. Furthermore,
even though they are unrelated, the blue routine’s instructions 8-9 are waiting on the green routine’s
instructions 8-9 before they can complete. As can be seen in the figure, in total four phases are
necessary to complete these three calls to update value.

Ideally, since each of the calls is independent, it should only take two phases to execute these
instructions. Instructions 1-6 of each routine should execute in parallel while instructions 8-9 of
each routine should wait for their corresponding persistence dependence. However, because a DSB
is needed to enforce each persistence dependence, these function calls are unnecessarily serialized.

Note that code such as Figure 7.1 is commonplace for failure-atomic regions when frameworks
are used to manage NVM crash consistency for two reasons. First, fences are represented as inline
assembly within the framework code, which means that the compiler has no information about
fences’ intention and hence is unable to move operations around them.

Second, traditionally NVM frameworks are built independently from the persistent applications
and are then dynamically linked into the users’ programs. This means that when the application’s
machine code is generated, the compiler is unable to inline and move around the framework’s
code to minimize the impact of DSBs. Hence, even if the compiler had a better understanding of
the fence’s intention, it would still be unable to perform substantial optimizations.

7.3 MAIN IDEA

7.3.1 Problem – Unable to Convey Instruction Execution Dependencies

As shown in Chapter 7.2, many fences are needed when performing undo logging in persistent
applications. This issue, however, is the symptom of a larger problem: currently, it is not possible

73

MOV X1, Addr
MOV X2, AddrLog

MOV X3, ValueNew

LDR X4, [X1]

STP X1, X4, [X2]

DC CVAP [X2]

DSB

STR X3, [X1]
DC CVAP [X1]

Register Dependence
Memory Dependence
Execution Dependence

Figure 7.3: Dependency graph for the instructions in function update value

to convey arbitrary instruction dependencies within the ISA.
Within traditional applications, register and memory dependencies can be conveyed by the ISA.

Register dependencies are communicated by two instructions referring to the same register while
memory dependencies are conveyed by two instructions accessing the same address. However, in
persistent applications, there are now logical ordering dependencies which are not expressed via a
memory location or a register.

Figure 7.3 shows the same instructions as in Figure 7.2, only now with the register (green ar-
rows) and memory dependencies (purple arrows) within the code labeled. Within the figure, regis-
ter dependencies go from instructions which define the register to instructions which use the same
register. Memory dependencies, on the other hand, chain together all accesses of a given address.
This is because, even while using relaxed memory models, memory accesses within a thread must
honor program order.

This collection of register and memory dependencies imposes a set of scheduling restrictions
on out-of-order (OoO) processors. In order to keep the functional units full and throughput high,
processors try to execute instructions as early as possible. However, processors still must respect
all register and memory dependencies within the execution.

In the example, in cases where a DC CVAP must follow a STP and STR, such as in lines 5→6 and
8→9 of Figure 7.3, the memory dependency between the sets instructions ensures they are not sent
to memory out of order. However, as explained before, one also needs to ensure the DC CVAP of
line 6 executes before the STR of line 8. To convey this in Figure 7.3, I introduce the notion of an
execution dependency. In the figure the execution dependence between DC CVAP [X2] and STR

X3, [X1] is represented by a red arrow.
An execution dependence denotes a required ordering of the specified stores and cacheline

writebacks to memory. An execution dependency means that for correctness the execution de-
pendence’s source operation must complete before the dependence’s sink can make observable

74

memory changes. Note that when an instruction “completes” is defined as when the operation is
observable to memory; this is different than when it is retired/committed. Chapter 7.4.2 describes
in more detail the notion of completion.

Unfortunately, since DC CVAP [X2] does not produce a register used by STR X3, [X1], nor do
these instructions access the same memory address, the processor does not naturally respect this
execution dependence. Therefore, it is necessary to insert a DSB in the code. Within Figure 7.3,
the DSB is represented by a yellow line. Unlike register and memory dependencies, the DSB
enforces an ordering across all instructions. Unfortunately, presently this is the only option one
has to ensure the execution dependency is honored by OoO processors.

7.3.2 Solution – Encode Execution Dependencies within Instructions

Given the above limitations, in this chapter I propose to add new instructions which convey
execution dependencies. Execution dependencies explicitly enforce the ordering of the specified
stores and cacheline writebacks to memory. Collectively, I call my new instructions the Execution

Dependency Extension (EDE).
In the new instructions, in addition to the traditional memory and register dependencies, an exe-

cution dependency on an arbitrary prior instruction can also be defined. I enable this by introducing
several new concepts: the execution dependency key (EDK) set, EDK producing instructions, and
EDK consuming instructions. While the particulars of these new features are described in Chap-
ter 7.4, the main idea is that EDE allows for instructions to be linked so that, given an execution
dependence between two instructions, the sink instruction (EDK consumer) cannot make observ-
able memory changes until the source instruction (EDK producer) is complete.

The benefit of EDE is that, by explicitly describing execution dependencies between instructions
at the ISA level, the number of fences needed within both persistent and multi-threaded applica-
tions is substantially reduced. For instance, in the example described in Chapter 7.2, by using
EDE it is possible to convey the required execution dependence between DC CVAP [X2]⇒ STR

X3 [X1] without the need for a DSB SYS in between the two instructions.
By reducing the number of fences, the processor is able to achieve greater performance by al-

lowing more instructions to be executed in parallel. While this chapter mainly focuses on the need
to convey arbitrary execution dependencies within the ISA as a problem for persistence applica-
tions, EDE also has many uses cases within volatile multi-threaded applications. Chapter 7.8.1
briefly covers other use cases for EDE.

75

7.3.3 Hardware Support for EDE

Via EDE, it is now possible to convey instruction execution dependencies to the underlying hard-
ware. However, it is the hardware’s responsibility to use this provided information to maximize
an application’s performance. While many hardware implementations of EDE are possible, here I
choose to evaluate two practical options. The first implementation, called IQ, enforces execution
dependencies at the issue queue. In this implementation, the execution of an EDK consuming
instruction is delayed until the corresponding EDK producing instruction has completed.

While IQ is effective, it is possible to achieve even further performance benefits. Since stores
and cacheline writeback instructions do not complete (i.e. make observable changes) until after
they are committed, in IQ it is possible for a prior producer-consumer pair to prevent the execution
of subsequent store and cacheline writeback instructions.

To prevent the above stalling from happening, I also propose a more aggressive design which
enforces the ordering of store and cachline writeback instructions at the write buffer; I call this
design WB. In WB, store and cacheline writeback instructions are allowed to commit before their
execution dependencies are satisfied. However, at the stage where their changes are pushed to
memory (i.e. the write buffer), the execution dependencies are enforced. This prevents an instruc-
tion’s commit from being delayed, hence allowing subsequent independent instructions to proceed
unencumbered.

7.4 EDE ISA DEFINITION

This section describes EDE’s specification. First, I describe the high-level concepts needed to
define execution dependencies. Afterwards, I introduce the new instructions EDE provides.

7.4.1 EDE Concepts

In order to allow execution dependencies to be conveyed by the ISA, new high-level concepts
must be introduced. In particular, new abstractions must be provided for defining a dependency
source, a dependency sink, and linking together the source and sink. In EDE, I call the dependency
source the dependency producer, the dependency sink the dependency consumer, and link them
together by execution dependency keys (EDK)s.

Execution Dependency Keys. Normally, intra-thread dependencies are conveyed by registers
or memory addresses. However, for arbitrary execution dependencies, a new convention for link-
ing together instructions must be established. In EDE, execution dependencies are conveyed via

76

execution dependence keys (EDK)s.
EDKs provide a way to link two instructions together. Like traditional registers, EDKs are di-

rectly encoded into instructions; however, unlike registers, no data is stored or loaded. Instead,
EDKs are used to index an execution dependence map (EDM). The EDM holds (EDK→ instruc-
tion) key-value pairs. At the decode stage, an instruction’s EDKs are used to interact with the EDM
and determine any execution dependencies. First, based on the instruction’s EDKs, the EDM is
searched to check if the instruction is the sink of any execution dependencies. Afterwards, the
EDM is updated to reflect any EDKs the instruction redefines. Chapter 7.4.3 shows examples of
how EDKs can be used to establish execution dependencies.

Currently, EDE defines sixteen EDKs (EDK #0− EDK #15). Throughout the rest of the chapter
I refer to each EDK operand as EDK #, where # refers to the key being accessed. The EDM map
itself only has to hold fifteen, not sixteen entries. This is because EDK #0 serves as a zero key.
When the zero key is encoded into an instruction, it means that this field is not being used and can
be ignored. This is needed when a given instruction is either not an execution dependency source
and/or not a sink. An example use case of the zero key can also be found in Chapter 7.4.3.

Dependency Producers. EDE introduces the concept of dependency producers to convey that
an instruction is a source of an execution dependence. A dependency producer is an instruction to
which one or more subsequent dependency consumer instructions may be linked.

Dependency producing instructions provide an EDK which is used to access the EDM. When
a dependency producer instruction is decoded, the EDM is updated to store the new (EDK →
instruction) link in the appropriate slot. In this way, subsequent dependency consumer instructions
using the same EDK will be able to query this EDM entry and be linked to the appropriate in-flight
instruction.

Dependency Consumers. As a complement to dependency producers, in EDE there also needs
to be a way to convey that an instruction is the sink of an execution dependence. EDE defines a
dependency consumer to be an instruction which is dependent on one or more prior dependency
producers.

As with dependency producers, dependency consuming instructions also provide EDKs which
are used to access the EDM. However, for dependency consumers, if an entry is found for the
provided EDK within the EDM, then it means that this dependency consuming instruction must
wait for the EDM entry’s instruction to finish before it can execute itself. Note that multiple
dependency consuming instructions can depend on the same dependency producing instruction.
This is because each dependency consumer is merely querying the EDM, but is not modifying it
in any way.

77

7.4.2 New Instructions

Based on the concepts defined in Chapter 7.4.1, it is now possible to define the instructions
introduced in EDE. The following subsections describe the new addressing mode introduced by
EDE, which memory instructions implement EDE’s addressing mode, and the additional control
instructions that EDE introduces to ensure correctness.

EDE’s New Addressing Mode. Traditionally in ISAs, memory instructions implement multiple
addressing modes. The different addressing modes use various combinations of register and imme-
diate operands to access memory. EDE introduces an additional addressing mode for instructions
with execution dependencies. I call the new addressing mode the execution dependency addressing

mode. The new addressing mode has the following format: (EDKde f,EDKuse) <REGval> [REG],
where EDKde f is the instruction’s dependency producer key, EDKuse is the instruction’s dependency
consumer key, optional <REGval> is the value to be stored, and REG is the memory location to
access.

When using this addressing mode it is possible for an instruction to be both a dependency
consumer and producer. However, it is also possible for an instruction to not create a consumer
or producer dependency by inserting the zero key (EDK #0) in the appropriate operand field. In
this format, it is only possible for an instruction to be dependent on one previous instruction.
However, as explained Chapter 7.4.2, this limitation is removed by using other control instructions
introduced by EDE.

Memory Instructions. While the execution dependency addressing mode can be added to many
instructions, currently EDE is only applied to AArch64’s store and cacheline writeback (DC CVAP)
instructions.

Beyond using the new addressing mode, a key component for execution dependencies is to
define when a dependency producing instruction has completed. This must be defined to establish
when it is safe for a dependency consumer to be sent to memory. Note that when an instruction
“completes” is different than when it is retired/committed. This is because, in order to preserve
precise interrupts, stores and DC CVAPs are sent to the memory subsystem after their retirement.
The following paragraphs define when stores and DC CVAP are considered complete.
Stores. For store (STR(h,b)) and pairwise store (STP), completion is defined terms of the oper-
ation’s visibility to other observers. EDE considers a store operation complete once the stored
value(s) may be visible to other observers.
DC CVAP. AArch64 defines DC CVAP as being complete only once the desired address’s data is
guaranteed to be persistent. EDE uses the same definition for its completion.

78

Note that the completion point is dependent on the underlying system. For instance, in a sys-
tem with Asynchronous DRAM Refresh (ADR) [30], a DC CVAP is considered complete once the
instruction reaches the NVM’s memory controller.
Other Instructions. In this chapter I only discuss adding the execution dependency addressing
mode to Arm’s store and cacheline writeback instructions. However when EDE is used in other
domains it would be used to add this addressing mode to other instructions, such as loads and
synchronization primitives, as well. Chapter 7.8.1 discusses how EDE could be used in other
domains.

Control Instructions. In addition to the instructions leveraging the new execution dependency
addressing mode described above, EDE also introduces three new instructions to handle more ex-
otic control flows: JOIN (EDKde f, EDKuse1, EDKuse2), WAIT KEY (EDK), and WAIT ALL KEYS.
JOIN (EDKde f , EDKuse1 , EDKuse2). This instruction can wait on up to two prior dependency
producers and is “completed” once both of its dependencies have completed. Via JOIN, it is pos-
sible for a instruction to have execution dependencies with multiple prior dependency producers.
JOIN is also useful for EDK resolution when multiple control paths merge. For instance, if an
instruction is waiting on EDK #1 from one control flow or EDK #2 from another, it is possible to
insert a JOIN (EDK #1, EDK #2, EDK #0) in the latter branch to resolve the key discrepancy.
WAIT KEY (EDK) and WAIT ALL KEYS. In the presence of function calls, without interven-
tion it is possible for a callee function to overwrite an EDK key in use by the caller function and
cause incorrect execution dependencies to be linked. To prevent this from happening, EDE intro-
duces the WAIT KEY (EDK) instruction. The WAIT KEY (EDK) instruction is both a dependency
producer and consumer of the same key. However, unlike other instructions, WAIT KEY (EDK) is
only considered complete once all prior dependency consumers of the matching key have finished.
Therefore, this instruction can be used after a function call to ensure all necessary dependencies
are met. Details about how to define a calling convention for EDE are in Chapter 7.8.3.

I have also introduced a new instruction, WAIT ALL KEYS, which prevents all subsequent in-
structions from executing until all prior dependency producers and consumers complete. This
instruction can be used when compiler dependency analysis fails, such as in the presence of func-
tion calls with unknown destinations and/or unknown side effects. In addition, this instruction can
be useful at the end of large transactions to ensure all persistency operations have finished.

7.4.3 EDE Example

Figure 7.4 shows how EDKs are used to define the execution dependencies among a series of
instructions. In the figure, execution dependencies between instructions are shown by red arrows.

79

Overall, there are execution dependencies between lines 1→6, 2→9, 3→(4,5), and 7→8. Notice
how by using different EDKs it is possible to define execution dependencies between multiple
instructions concurrently. In addition, as shown in lines 1→6 & 7→8, EDKs can be redefined to
establish new execution dependencies.

6. DC CVAP (0, 1) [F]
5. DC CVAP (0, 3) [E]
4. DC CVAP (0, 3) [D]

1. DC CVAP (1, 0) [A]
2. DC CVAP (2, 0) [B]

7. DC CVAP (1, 0) [G]

9. DC CVAP (0, 2) [I]
8. DC CVAP (0, 1) [H]

3. DC CVAP (3, 0) [C]

Figure 7.4: EDK Examples

update_value:

1 MOV X1, Addr

2 MOV X2, AddrLog
3 MOV X3, ValueNew
4 LDR X4, [X1]

5 STP X1, X4, [X2]

6 DC CVAP (1,0) [X2]

7 DSB

8 STR (0,1) X3, [X1]

9 DC CVAP [X1]

Figure 7.5: EDE undo logging

Figure 7.5 shows how to apply EDE to the update value routine previously described in Fig-
ure 7.2. Remember that previously on line 7 a DSB was necessary to ensure line 6 completed
before line 8 executed. Now, instead, the instructions on lines 6 and 8 use EDE’s execution depen-
dency addressing mode to convey this dependence. In Figure 7.5, line 6 is modified to record that
this instruction is a dependency producer of EDK #1 and consumes the zero key. Similarly, line 8
is modified to be a dependency consumer of EDK #1 and to produce the zero key. By doing so, the
DSB on line 7 is no longer necessary and can be removed.

80

7.5 HARDWARE IMPLEMENTATION

In this Chapter I describe how EDE is implemented in hardware.

7.5.1 Mapping Producer-Consumer Pairs

As described in Chapter 7.4.1, the execution dependence map (EDM) is a fifteen-entry map
which holds (EDK→ instruction) key-value pairs. In EDE’s implementation, the EDM stores the
in-flight instruction tags of dependency producers. At the decode stage, while the register file is
being accessed, the EDM is accessed to match all of the instruction’s EDKs. If the consumer EDK
is not found in the EDM, then the instruction does not have an execution dependence. However, if
the EDK is present in the EDM, then the instruction is registered to have an execution dependency
on the corresponding in-flight instruction. Likewise, at the decode stage, if the decoded instruction
has a producer EDK, then the proper EDM slot is updated to store the instruction’s tag.

Once the instruction has completed from EDE’s perspective, it is necessary to remove this
matching entry from the EDM. Therefore, upon completion of a dependency producing instruc-
tion, the corresponding EDK slot is queried within the EDM. If the queried instruction tag matches
the completed instruction’s tag, then the entry is removed.

Maintaining EDM Consistency. In Out-of-Order processors, sometimes squashes are needed
to flush speculative state out of the pipeline. In this situation, the EDM must also be reverted to
a non-speculative state. To accomplish this, two copies of the EDM are maintained: one at the
current non-speculative state (EDMno−spec) and another at the current speculative state (EDMspec).
Note that register files also commonly maintain two mappings [92]. Throughout normal execution,
the EDMspec is used by the front-end. However, on a speculation squash, EDMno−spec is copied
into EDMspec before execution restarts.

To maintain EDM consistency across context switches, in EDE requires that all of the in-flight
dependency producers complete before performing the context switch. However, since Arm ma-
chines already must insert a DSB into context switch handlers, this is already done. Hence, EDE
does not need to provide instructions to allow for the EDM state to be saved and restored.

7.5.2 Determining Instruction Completion

In EDE it is crucial to detect when an instruction completes. As explained in Chapter 7.4.2,
when an instruction completes is dependent on the type of instruction.

81

EDE considers store operations complete once the stored value(s) may be visible to other ob-
servers. In the implementations, stores become visible to other observers once they are pushed
from the write buffer onto the memory subsystem.

For DC CVAPs, EDE only considers them complete once the desired address’s data is guaranteed
to be persistent. In the implementations, the memory system provides an acknowledgement when
the operation has reached the persistent domain.

7.5.3 Implementing EDE’s Memory Instructions

Once execution dependencies are identified, the processor’s back-end must ensure all depen-
dencies are upheld. While many strategies are possible, this chapter proposes two solutions: IQ,
which enforces the execution dependencies at the issue queue, and WB, which waits until the write
buffer to enforce these dependencies. Each design is described below.

Enforcing Dependencies within Issue Queue. In IQ, all required execution orderings are en-
forced at the issue queue. This is done by adding an additional stage to each instruction’s wakeup
logic. Normally, an instruction is deemed ready-to-execute once all of its register and memory
dependencies have been met. IQ now adds additional state to also monitor the status of each
instructions’ execution dependencies. In particular, I add the execution dependencies ready (eDe-

pReady) flag to each instruction within the issue queue. Now, only once an instruction’s execution
dependencies are satisfied (in addition to all other pre-existing dependencies) is the instruction
marked as ready-to-execute.

When an instruction enters the issue queue, IQ checks to see if it has any outstanding execution
dependencies. If so, then the eDepReady flag is unset. Otherwise, since the instruction is not
waiting on any execution dependencies, then the eDepReady is set.

When an instruction has completed, IQ sets the eDepReady flag of all matching dependency
consuming instructions within the issue queue and checks if they can be marked as ready-to-
execute. Once an instruction is marked as ready-to-execute, the existing issue queue scheduling
logic proceeds as before unmodified.

Drawbacks of IQ. While IQ faithfully implements EDE, performance is left on the table be-
cause store and cache maintenance operations do not enter the memory subsystem until after they
are committed. Hence, this means that, in IQ, prior execution dependency pairs can impact the
performance of subsequent memory operations.

To better understand this limitation, consider Figures 7.6(a)&(b). Each figure shows a different
execution timeline for a set of four DC CVAP instructions to different addresses with two sets of

82

issue queue
 address calculation

memory
retire

DC CVAP (1, 0) [A]

(a) Ideal enforcement of execution dependencies

(b) Best-case enforcement of execution dependencies with IQ implementation

DC CVAP (0, 1) [B]

DC CVAP (2, 0) [C]

DC CVAP (0, 2) [D]

DC CVAP (1, 0) [A]

DC CVAP (0, 1) [B]

DC CVAP (2, 0) [C]

DC CVAP (0, 2) [D]

Figure 7.6: Comparison between ideal and IQ execution timelines

execution dependency pairs. In each timeline, each instruction is broken down into its issue queue,
address calculation, retire, and memory phases. Also, in the timelines, there are gaps between
the phases when the instructions are stalled for various reasons described below. Note that in the
figure the length of each phase is not to scale. For instance, the figure portrays the memory phase
as being three times as long as the other phases; however, in practice the length of the memory
phase can be substantially longer.

Figure 7.6(a) shows an ideal timeline for when each of the instructions should execute their
phases while also ensuring all execution dependencies between the instructions are upheld. Note
that to preserve precise interrupts, instructions must be both issued and retired in order. Since there
is an execution dependency between DC CVAP (1, 0) [A] and DC CVAP (0, 1) [B], DC CVAP

(0, 1) [B] must wait to perform its memory phase until DC CVAP (1, 0) [A] has completed.
Unlike DC CVAP (0, 1) [B], DC CVAP (2, 0) [C] does not have an execution dependence

on DC CVAP (1, 0) [A], and hence can proceed to begin its memory phase immediately after it
commits. However, since DC CVAP (0, 2) [D] is dependent on DC CVAP (2, 0) [C], it must
wait to perform its memory phase until DC CVAP (2, 0) [C] has completed.

Figure 7.6(b) shows the timeline for when IQ is used to enforce the execution dependencies.
In this example, the execution takes significantly longer than the ideal (figure 7.6(a)). This is
because even though DC CVAP (2, 0) [C] is not dependent on either DC CVAP (1, 0) [A]

or DC CVAP (0, 1) [B], DC CVAP (2, 0) [C] cannot retire until DC CVAP (0, 1) [B] has
retired. However, since IQ enforces execution dependency ordering at the issue queue, DC CVAP

(0, 1) [B] it unable to proceed to the address calculation phase until DC CVAP (1, 0) [A]’s
memory phase is complete. Hence, IQ is unable to allow the ideal amount of parallelism between
these instructions.

83

While the code example provided in Figure 7.6(a) is very simple, this pattern of pairwise instruc-
tion dependencies is common within NVM applications. As described in Chapter 7.2, a primary
motivating factor for EDE is to allow multiple log updates to proceed in parallel. Unfortunately,
in IQ, the performance benefits when log updates are in close succession will be diminished by
having execution dependencies enforced at the issue queue.

Enforcing Dependencies within Write Buffer. To resolve the performance limitations of IQ,
a second implementation is also introduced where execution dependencies are resolved within
the write buffer. I call this implementation WB. WB allows instruction execution to continue as
normal until retirement. At this point, WB controls in which order instructions in the write buffer
are allowed to be sent to the memory subsystem.

In WB, instruction execution dependencies are kept track of within the write buffer. Now, in-
structions can only interact with memory once their execution dependencies are satisfied. When
a dependency producing instruction is completed, then all of the linked dependency consuming
instructions within the write buffer are updated to reflect that their execution dependencies have
been satisfied.

Overall, the design of WB is very similar to IQ, except now execution dependencies are being
enforced at the write buffer rather than the issue queue. However, by allowing instructions to
commit without stalling for execution dependencies, WB has noticeable performance benefits over
IQ.

7.5.4 Implementing EDE’s Control Instructions

Recall that EDE introduces three new control instructions: JOIN (EDKde f,EDKuse1, EDKuse2),
WAIT KEY (EDK), and WAIT ALL KEYS. Each of these instructions waits for potentially multiple
prior EDE instructions to complete. The following paragraphs describe how each of these instruc-
tions are implemented.
JOIN (EDKde f , EDKuse1 , EDKuse2). As described in Chapter 7.4.2, the purpose of this instruction
is twofold: both to allow a subsequent instruction to wait on multiple dependencies and also to
rename EDKs.

Both IQ and WB implement this instruction by holding in-flight JOIN instructions information
in a side buffer. This buffer is called the join queue and JOIN instructions are inserted into it after
they are decoded. As dependency producers are completed, the join queue is notified; once a JOIN
instruction is completed, the issue queue (in IQ) or write buffer (in WB) is notified.
WAIT KEY (EDK) and WAIT ALL KEYS. As described in Chapter 7.4.2, these instructions
monitor the status of many prior instructions before completing. To keep track of the information

84

needed to decide when these instructions complete, I introduce a new set of counters to track the
number of per-EDK in-flight dependency producers, and also a new counter to keep track to the
total number of in-flight EDE instructions. These counters are updated as instructions commit and
complete. Note that these counters are incremented at the commit stage, not the decode stage. This
is to ensure the count accurately represents the number of dependency producers and consumers
which precedes the control instruction. Once either WAIT KEY or WAIT ALL KEYS reaches the head
of the reorder buffer, it checks the appropriate counter and is retired once the counter reaches zero.

7.6 EXPERIMENTAL SETUP

7.6.1 Simulator Environment

To evaluate EDE and my proposed hardware implementations, I implement both IQ and WB within
the gem5 simulator [91]. I have added EDE’s instructions both into gem5’s AArch64 frontend and
as built-ins within Clang+LLVM [93] version 8.0.

Simulator - ISA gem5 - AArch64 + EDE
Compiler Clang-LLVM 8.0 + EDE builtins

Processor Parameters
Processor OoO core, 3-instr decode width, 3GHz
Ld-St queue 16 entries each
L1 I-cache 32KB, 2-way, 2-cycle access latency
L1 D-cache 48KB, 3-way, 1-cycle access latency
L2 cache 256KB, 16-way, 12-cycle data
L3 cache 1MB/core, 16-way, 20-cycle data

Main-Memory Parameters
Capacity DRAM: 2GB; NVM: 2GB
NVM latency 150ns read ; 500ns write
NVM region size 256B
NVM Write Buffer 128 slots
DRAM Type; 2400MHz DDR4
DRAM Ranks per Channel 2
DRAM Banks per Rank 16

Table 7.1: Simulation architectural parameters.

Within gem5, I use an out-of-order configuration meant to model Arm’s A72 processor [94].
The main simulator architectural parameters are shown in Table 7.1. I have also modified gem5 to
model a hybrid DRAM+NVM memory system. In my setup, both NVM and DRAM requests are

85

sent to one controller. However, the physical address space is split so that part of the address space
targets NVM while the other part targets DRAM. The DRAM interface models 2400MHz DDR4
while the NVM interface has a 128 slot on-DIMM write buffer and includes asymmetric read and
write latencies.

7.6.2 Applications

To evaluate the performance impact of EDE, I use a combination of kernel applications as well
as benchmarks available within the PMDK [8] repository. The applications used are listed in
Table 7.2. As kernel applications, I have created two benchmarks which perform a series of modi-
fications to an array. In update, an operation consists of updating a random index within the array
while in swap, an operation is to swap the values of two random elements within the array; in both
benchmarks, undo logging is used to maintain crash consistency.

Kernel Applications.
update perform updates on random elements within an array.
swap perform pairwise swaps between random array elements.

PMDK Applications
btree B-tree implementation with between 3 and 7 keys per node.
ctree Crit-bit trie [95] implementation.
rbtree Red-black tree implementation with sentinel nodes.
rtree Radix tree implementation with radix 256.

Table 7.2: Evaluation applications

I also have modified a collection of PMDK applications to use EDE. Specifically, within its repo,
PMDK provides the pmembench benchmark suite which can be used to evaluate the performance
of several persistent data structures. To evaluate EDE, I have modified the PMDK API to leverage
EDE while performing undo logging and have updated the tree map data structures to use the new
API. As shown in Table 7.2, the evaluation tests four data structures: btree, ctree, rbtree, and rtree.
In each benchmark, a single operation consists of inserting a new element into the data structure.

Across all benchmarks, multiple operations are grouped into a transaction. Specifically, in the
simulations, I set the applications to have 100 operations per transaction and to run 1,000 transac-
tions, resulting in each application performing 100,000 operations. In the simulations, I run each
application to completion while precisely simulating the time spent performing these operations.

86

7.6.3 Configurations

Configuration & Description

Baseline (B): Use DSBs to enforce crash-consistent ordering.

EDE + IQ (IQ): Use EDE and target IQ hardware.

EDE + WB (WB): Use EDE and target WB hardware.

Unsafe (U): Do not use DSBs. Allows unsafe reorderings.

Table 7.3: Benchmark configurations.

Throughout the evaluation, I compare four different configurations: B, IQ, WB, and U. Table 7.3
describes each configuration in detail. B uses DSBs as needed to ensure a correct crash-consistent
ordering in AArch64. Both IQ and WB use EDE instead of DSBs to properly order each log
entry persist with their following update. However, IQ uses the IQ hardware support while WB

uses the proposed WB design. Finally, in U all DSBs from the execution are removed. Note that
in U the hardware may perform reorderings which violate crash-consistency requirements. This
configuration is shown only to provide more perspective about EDE’s performance gains.

7.7 EVALUATION

7.7.1 Execution Time

update swap btree ctree rbtree rtree geomean
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e B IQ WB U

Figure 7.7: Application execution time.

87

Figure 7.7 shows the execution time for the applications and configurations described in Chap-
ter 7.6. In the figure all execution times are normalized to B. Based on their geometric mean, IQ,
WB, and U reduce the execution time by 15%, 20%, and 38%, respectively.

Most benchmarks attain similar amounts of improvement. Across all benchmarks, IQ performs
better than B. This is because EDE allows for much lighter fences than the DSBs needed in B.
Likewise, WB performs better than IQ across all benchmarks, on average by 5%. This is because,
as discussed in Chapter 7.5.3, since IQ enforces execution dependencies before the commit phase,
it is unable to maximize the amount of parallelism described within EDE. Since WB enforces
execution dependencies within the write buffer, it is able to allow more writes to proceed out of
order.

On average, WB is able to attain 54% of the execution time reduction of U (20% vs. 38%). This
is recovering a significant portion of the time spent ensuring NVM is updated in a crash-consistent
order. Remember that since U removes all fences from the code, it allows for reorderings which
could prevent data recovery. Overall, the results show that EDE is able to significantly reduce the
overhead of maintaining a crash-consistent ordering.

7.7.2 Issue Queue Throughput

update swap btree ctree rbtree rtree average
0%

20%

40%

60%

80%

100%

Pe
r-C

yc
le

 Is
su

e
W

id
th

 D
ist

rib
ut

io
n

B IQ WB U
0
1
2
3
4
5
6
7
8

Figure 7.8: Distribution of # instructions issued each cycle.

Figure 7.8 shows the distribution of the number of instructions issued each cycle. In the figure,
each color represents the percentage of cycles the processor issued the labeled number instructions.
As shown on the y-axis, cumulatively the bars for each setup stack up to account for 100% of the
simulated cycles. Note that although the simulated architecture has a 3-instruction decode width,

88

the issue queue has a width of 8. This configuration has been developed by Arm to most accurately
model its A72 core.

As shown in the figure, all implementations issue 0 instructions in the majority of cycles. This
is to be expected, as writes to NVM have a significant latency and can cause the pipeline to fill. On
average, the IPC is 0.40, 0.46, 0.49, and 0.64 for the B, IQ WB, and U configurations, respectively.

Across all benchmarks, IQ and WB spend fewer cycles being unable to issue instructions than
B. IQ and WB each spend 5% more cycles issuing instruction than B. While IQ and WB both spend
on average 30% of cycles issuing instructions, WB in general issues more instructions during these
active cycles. On average, when issuing instructions, WB is able to issue 8% more instructions
than IQ. This is because WB does not perform any blocking at the issue queue while IQ forces
instructions to remain there until execution dependencies are satisfied.

7.7.3 Pending Writes to NVM

0 20 40 60 80 100 120
update: # Pending Writes to NVM

0
20
40
60
80

100

%
 o

f S
am

pl
es

B IQ WB U

0 20 40 60 80 100 120
swap: # Pending Writes to NVM

0
20
40
60
80

%
 o

f S
am

pl
es

B IQ WB U

0 20 40 60 80 100 120
btree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B IQ WB U

0 20 40 60 80 100 120
ctree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B IQ WB U

0 20 40 60 80 100 120
rbtree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B IQ WB U

0 20 40 60 80 100 120
rtree: # Pending Writes to NVM

0
2
4
6
8

10

%
 o

f S
am

pl
es

B IQ WB U

Figure 7.9: Distribution of Pending Writes to NVM.

Figure 7.9 shows for each benchmark the distribution of the number of pending writes to NVM.
Each configuration is represented by a different colored line. The x-axis shows the number of
pending writes to NVM while the y-axis shows is the percentage of samples with the observed
number of pending NVM writes. A sample is taken each time a store reaches the NVM media.

89

As described in Chapter 7.6, pending NVM writes are held in a 128 slot on-DIMM write buffer.
In general, it is better to have a large number of pending writes; having the buffer full provides
more coalescing opportunities and also enables the memory controller to generate optimal write-
back schedules. However, because fences stall the execution, it can be hard for crash-consistent
applications to issue writes quick enough to keep the buffer full.

Across all benchmarks, U has the most number of pending NVM writes. This is because U does
not issue fences which stall writes from being issued. For the kernel benchmarks, U is able to keep
the memory controller full since it writes to NVM at a high frequency. In the PMDK benchmarks,
since other work must be done to maintain the data structures, the number of pending NVM writes
is lower.

For the other configurations, WB on average has more pending writes than IQ to NVM, while
both EDE implementations have more pending writes than B. As discussed in Chapter 7.5.3, since
WB allows writebacks to NVM quicker than IQ, this behavior is to be expected.

7.8 DISCUSSION

7.8.1 Other uses for EDE

In this chaper I focus on how EDE improves the performance of undo logging in persistent
applications. However, beyond NVM applications, EDE also would have a significant impact in
existing applications where fine grain ordering is needed. For example, EDE can be used when
multi-threaded coordination is needed, such as for the initialization of singleton data, when follow-
ing a publisher pattern, or for inserting data into concurrent data structures. In these situations, one
must ensure the data is properly initialized before any flags are set to indicate the data is available.
Via EDE, this can be done without a fence.

Such multi-threaded coordination of published data is commonplace within code. For instance,
the Java Memory Model [69] requires final fields to be initialized before they are read by another
thread. In addition, traditionally Java Virtual Machine (JVM) implementations store metadata
alongside object fields which also must be initialized before another thread can access the object.
This coordination of small data subsets is an ideal target for EDE.

Another example where multi-threaded coordination of published data is needed is the kernel’s
use of circular buffers. Often kernels use circular buffers to store tracing and logging data collected
through the runtime. Ideally, the buffers should handle being read and updated by multiple threads
concurrently. Via EDE, popping and pushing data from circular buffers can be performed in a
lock-free manner without the use of fences.

90

Finally, concurrent garbage collectors, such as ZGC [87] and Shenandoah [96] require careful
coordination of the movement of data alongside concurrent updates and dynamic code loading. In
this environment, EDE can be used to minimize the overheads of garbage collection barriers.

Note that the use cases described above require the EDE addressing mode to also be added to
loads. It is straightforward to enforce execution dependencies on loads in the issue queue by using
the same technique as done within the IQ implementation.

7.8.2 Compiler Support for EDE

As described in Chapter 7.6, this chapter leverages EDE through the use of new built-in in-
trinsics added to Clang+LLVM. However, it is desirable to more fully integrate EDE into the
compiler. Specifically, I believe the compilers’ internal representation (IR) can easily be modified
to incorporate execution dependencies. For instance, in Java Virtual Machine (JVM) compilers,
a sea-of-nodes [97] representation is commonly used. Like Figure 7.3, this representation creates
a dependency graph to record data, memory, and control dependencies between instructions. It is
straightforward to also introduce execution dependencies into the representation.

In addition, I believe that compilers and frameworks, not application developers, should define
execution dependencies. For the use cases described in Chapter 7.8.1, it is possible for a compiler
to automatically create execution dependencies during its initial IR generation. Similar automatic
support would be possible for persistent applications once persistency support is integrated into
languages. It is also possible to expose EDE to framework developers via new ordering types for
C/C++ atomics [98] and Java VarHandles [99].

Finally, by fully integrating EDE into compilers, it possible for EDKs to be virtualized and for
the compiler to automatically assign logical EDK values. Existing allocation techniques such as
graph coloring [100] and linear scan [101] are straightforward to repurpose for EDK assignments.

7.8.3 EDK Calling Convention

An important consideration for any ISA is its calling convention. Establishing a standardized
calling convention allows for code from multiple sources to be used together. Normally, registers
not used to pass parameters are divided into two categories: caller-saved and callee-saved regis-
ters. In a similar manner, for EDKs the concept of caller-saved and callee-saved keys is introduced.

For caller-saved keys, the caller must assume that the key will be overwritten within the called
function. Hence, for caller-saved keys, after the function returns and before the next dependency
consumer instruction, a WAIT KEY (EDK) instruction must be inserted.

91

For callee-saved keys, the caller function performs no action. However, within the called func-
tion, either (a) a WAIT KEY (EDK) is inserted at the end of the called function or (b) all instructions
which overwrite the key must also be a dependency consumer of the same key value. Note that op-
tion (b) causes the dependencies to be chained together, so that subsequent dependency consumers
must wait for the entire chain to complete before they can execute.

7.8.4 Applying EDE to Other ISAs

In this thesis, I have proposed to add EDE as an extension to Arm’s AArch64 architecture.
However, it is also possible to add this extension to other ISAs such as x86-64, POWER, and
RISC-V. The key difference for each architecture would be to determine when to use EDE to add
execution dependencies not already enforced by the given ISA’s memory model.

Note that in x86-64, cacheline writebacks (CLWBs) are an unordered operation. Hence, EDE
can be used to create an execution dependence between a CLWB and a store to an unrelated ad-
dress. Furthermore, on x86-64, currently a memory fence is needed to ensure a load does not
bypass a prior store; this is a problem for garbage collection. EDE is able to enforce this depen-
dency without a fence as well.

7.8.5 EDE Security Implications

Currently, to prevent spectre and meltdown variants on existing Arm hardware, the recom-
mended mitigation is to insert a DSB and instruction synchronization barrier (ISB) in tandem [102].
Instructions using EDE still follow AArch64’s barriers, so existing spectre mitigations will also be
effective for EDE.

92

Chapter 8: Conclusion

The emergence of byte-addressable non-volatile memory devices promises to radically alter how
applications will persist data in the future. However, before such technology can truly become
popular, two main issues have to be solved. First, NVM frameworks must be introduced that
enable programmers to easily create persistent applications while still having high performance.
Second, current gaps in hardware support that have a significant performance impact on persistent
applications must be corrected.

In this thesis, I provided possible solutions to these issues. First, I presented the design and
implementation of AutoPersist, a new programmer-friendly NVM framework in Java. AutoPersist
simplifies creating persistent applications by allowing existing built-in libraries to be used and
requiring minimal annotations from the programmer. Furthermore, through its JVM integration
and use of profile-guided optimizations, AutoPersist is able to provide a programmer-friendly
interface while still attaining high performance.

Second, I also proposed a new ISA extension, named Execution Dependency Extension (EDE),
which allows for arbitrary instruction-level execution dependencies to be conveyed and honored
by the underlying hardware. Through EDE, coarse fences are no longer needed for persistent
applications, thereby substantially improving performance.

93

Chapter 9: References

[1] Intel, “3D XPoint: A Breakthrough in Non-Volatile Memory Technology,”
https://www.intel.com/content/www/us/en/architecture-and-technology/
intel-micron-3d-xpoint-webcast.html, 2018.

[2] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga,
D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, “Phase-change random access memory:
A scalable technology,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp.
465–479, July 2008.

[3] H. Akinaga and H. Shima, “Resistive random access memory (reram) based on metal ox-
ides,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2237–2251, Dec 2010.

[4] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid volatile/non-volatile
main memories,” in 14th USENIX Conference on File and Storage Technologies
(FAST 16). Santa Clara, CA: USENIX Association, Feb. 2016. [Online]. Available:
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu pp. 323–338.

[5] “Java Flight Recorder Runtime Guide.” [Online]. Available: https://docs.oracle.com/
javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170

[6] “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-\instruction-set-reference-manual-325383.pdf,
2015.

[7] Arm, “Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile,”
https://static.docs.arm.com/ddi0487/fb/DDI0487F b armv8 arm.pdf, 2020.

[8] “Persistent Memory Development Kit.” [Online]. Available: http://pmem.io/pmdk/

[9] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent memory,”
in Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI. New York, NY,
USA: ACM, 2011. [Online]. Available: http://doi.acm.org/10.1145/1950365.1950379 pp.
91–104.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XVI. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950380 pp. 105–118.

94

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\instruction-set-reference-manual-325383.pdf
https://static.docs.arm.com/ddi0487/fb/DDI0487F_b_armv8_arm.pdf
http://pmem.io/pmdk/
http://doi.acm.org/10.1145/1950365.1950379
http://doi.acm.org/10.1145/1950365.1950380

[11] M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan, “Espresso: Brewing java
for more non-volatility with non-volatile memory,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018. [Online].
Available: http://doi.acm.org/10.1145/3173162.3173201 pp. 70–83.

[12] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better i/o through byte-addressable, persistent memory,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, ser. SOSP ’09. New York,
NY, USA: ACM, 2009. [Online]. Available: http://doi.acm.org/10.1145/1629575.1629589
pp. 133–146.

[13] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging locks for non-volatile
memory consistency,” in Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, ser. OOPSLA ’14. New York,
NY, USA: ACM, 2014. [Online]. Available: http://doi.acm.org/10.1145/2660193.2660224
pp. 433–452.

[14] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster, “Nvthreads: Practical
persistence for multi-threaded applications,” in Proceedings of the Twelfth European
Conference on Computer Systems, ser. EuroSys ’17. New York, NY, USA: ACM, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3064176.3064204 pp. 468–482.

[15] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An
analysis of persistent memory use with whisper,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’17. New York, NY, USA: ACM, 2017. [Online].
Available: http://doi.acm.org/10.1145/3037697.3037730 pp. 135–148.

[16] J. E. Denny, S. Lee, and J. S. Vetter, “Nvl-c: Static analysis techniques for efficient,
correct programming of non-volatile main memory systems,” in Proceedings of the
25th ACM International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2907294.2907303 pp. 125–136.

[17] N. Cohen, D. T. Aksun, and J. R. Larus, “Object-oriented recovery for non-volatile mem-
ory,” Proceedings of the ACM on Programming Languages,, vol. Vol. 2, no. OOPSLA, pp.
153:1–153:22, 2018.

[18] L. Marmol, M. Chowdhury, and R. Rangaswami, “Libpm: Simplifying application usage
of persistent memory,” ACM Trans. Storage, vol. 14, no. 4, Dec. 2018. [Online]. Available:
https://doi.org/10.1145/3278141

[19] J. Ren, Q. Hu, S. Khan, and T. Moscibroda, “Programming for non-volatile
main memory is hard,” in Proceedings of the 8th Asia-Pacific Workshop on
Systems, ser. APSys ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3124680.3124729 pp. 13:1–13:8.

95

http://doi.acm.org/10.1145/3173162.3173201
http://doi.acm.org/10.1145/1629575.1629589
http://doi.acm.org/10.1145/2660193.2660224
http://doi.acm.org/10.1145/3064176.3064204
http://doi.acm.org/10.1145/3037697.3037730
http://doi.acm.org/10.1145/2907294.2907303
https://doi.org/10.1145/3278141
http://doi.acm.org/10.1145/3124680.3124729

[20] T. Shull, J. Huang, and J. Torrellas, “Defining a high-level programming model for
emerging nvram technologies,” in Proceedings of the 15th International Conference on
Managed Languages & Runtimes, ser. ManLang ’18. New York, NY, USA: ACM, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3237009.3237027 pp. 11:1–11:7.

[21] T. Shull, J. Huang, and J. Torrellas, “Autopersist: An easy-to-use java nvm framework based
on reachability,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI’19, June 2019.

[22] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès, and
D. Simon, “Maxine: An approachable virtual machine for, and in, java,” ACM Trans.
Archit. Code Optim., vol. 9, no. 4, pp. 30:1–30:24, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2400682.2400689

[23] T. Shull, J. Huang, and J. Torrellas, “Quickcheck: Using speculation to reduce the over-
head of checks in nvm frameworks,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE’19, April 2019.

[24] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger, “Phase-
change technology and the future of main memory,” IEEE Micro, vol. 30, no. 1, pp. 143–
143, Jan 2010.

[25] “Intel Optane Technology,”
https://www.intel.com/content/www/us/en/architecture-and-technology/
intel-optane-technology.html.

[26] “Persistent Memory Documentation.” [Online]. Available: https://docs.pmem.io/
persistent-memory/

[27] Arm, “Armv8-A architecture evolution,”
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/
armv8-a-architecture-evolution, 2016.

[28] “SNIA NVDIMM Messaging and FAQ.” [Online]. Available: https://www.snia.org/sites/
default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf

[29] A. Raad, J. Wickerson, and V. Vafeiadis, “Weak persistency semantics from the
ground up: Formalising the persistency semantics of armv8 and transactional models,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360561

[30] “NVM Programming Model v1.2.” [Online]. Available: https://www.snia.org/sites/default/
files/technical work/final/NVMProgrammingModel v1.2.pdf

[31] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley, The Java Language Specifica-
tion, Java SE 8 Edition, 1st ed. Addison-Wesley Professional, 2014.

96

http://doi.acm.org/10.1145/3237009.3237027
http://doi.acm.org/10.1145/2400682.2400689
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://docs.pmem.io/persistent-memory/
https://docs.pmem.io/persistent-memory/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-evolution
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-evolution
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://doi.org/10.1145/3360561
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

[32] F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-value store for dram-nvm
memory systems,” in Proceedings of the 2017 USENIX Conference on Usenix Annual Tech-
nical Conference, ser. USENIX ATC 17. USA: USENIX Association, 2017, p. 349362.

[33] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Re-
designing lsms for nonvolatile memory with novelsm,” in Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC 18. USA:
USENIX Association, 2018, p. 9931005.

[34] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree: A hybrid scm-dram
persistent and concurrent b-tree for storage class memory,” in Proceedings of the 2016
International Conference on Management of Data, ser. SIGMOD ’16. New York, NY,
USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2882903.2915251 pp.
371–386.

[35] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree: Reducing consistency
cost for nvm-based single level systems,” in Proceedings of the 13th USENIX Conference on
File and Storage Technologies, ser. FAST’15. Berkeley, CA, USA: USENIX Association,
2015. [Online]. Available: http://dl.acm.org/citation.cfm?id=2750482.2750495 pp. 167–
181.

[36] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy persistency: A high-performing and write-
efficient software persistency technique,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), June 2018, pp. 439–451.

[37] N. Cohen, M. Friedman, and J. R. Larus, “Efficient logging in non-volatile memory by
exploiting coherency protocols,” Proceedings of the ACM on Programming Languages
(PACMPL), 2017. [Online]. Available: http://infoscience.epfl.ch/record/231400

[38] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-grain checkpointing with
in-cache-line logging,” in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS
19. New York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3297858.3304046 p. 441454.

[39] T. Wang and R. Johnson, “Scalable logging through emerging non-volatile memory,”
Proc. VLDB Endow., vol. 7, no. 10, p. 865876, June 2014. [Online]. Available:
https://doi.org/10.14778/2732951.2732960

[40] E. Giles, K. Doshi, and P. Varman, “Hardware transactional persistent memory,” 2018.

[41] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the performance gap
between systems with and without persistence support,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-46. New York,
NY, USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2540708.2540744
pp. 421–432.

97

http://doi.acm.org/10.1145/2882903.2915251
http://dl.acm.org/citation.cfm?id=2750482.2750495
http://infoscience.epfl.ch/record/231400
https://doi.org/10.1145/3297858.3304046
https://doi.org/10.14778/2732951.2732960
http://doi.acm.org/10.1145/2540708.2540744

[42] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm: Enabling
software-transparent crash consistency in persistent memory systems,” in Proceedings
of the 48th International Symposium on Microarchitecture, ser. MICRO-48. New
York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2830772.2830802 p. 672685.

[43] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient hardware undo+redo
logging for persistent memory systems,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018, pp. 336–349.

[44] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic durability in non-volatile
memory through hardware logging,” in 2017 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), Feb 2017, pp. 361–372.

[45] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3123939.3124539 pp. 178–190.

[46] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist barriers using
speculative execution,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ser. ISCA 17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3079856.3080240 p.
175186.

[47] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in Proceeding of
the 41st Annual International Symposium on Computer Architecuture, ser. ISCA ’14.
Piscataway, NJ, USA: IEEE Press, 2014. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2665671.2665712 pp. 265–276.

[48] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of persistent memory objects
under a full-system-crash failure model,” in Distributed Computing, C. Gavoille and D. Il-
cinkas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 313–327.

[49] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and T. F.
Wenisch, “Language-level persistency,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3079856.3080229 pp. 481–493.

[50] H.-J. Boehm and D. R. Chakrabarti, “Persistence programming models for non-volatile
memory,” in Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory
Management, ser. ISMM 2016. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2926697.2926704 pp. 55–67.

[51] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for persistent memory,”
in 2014 IEEE 32nd International Conference on Computer Design (ICCD), Oct 2014, pp.
216–223.

98

https://doi.org/10.1145/2830772.2830802
http://doi.acm.org/10.1145/3123939.3124539
http://doi.acm.org/10.1145/3123939.3124539
https://doi.org/10.1145/3079856.3080240
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://doi.acm.org/10.1145/3079856.3080229
http://doi.acm.org/10.1145/2926697.2926704

[52] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and T. F. Wenisch,
“Relaxed persist ordering using strand persistency,” in Proceedings of the 47th Annual In-
ternational Symposium on Computer Architecture, ser. ISCA 2020. ACM, 2020.

[53] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for scm with a non-intrusive back-
end controller,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 77–89.

[54] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and T. F. Wenisch,
“Delegated persist ordering,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1–13.

[55] T. M. Nguyen and D. Wentzlaff, “Picl: A software-transparent, persistent cache log for
nonvolatile main memory,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 507–519.

[56] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Machine Specification,
Java SE 8 Edition, 1st ed. Addison-Wesley Professional, 2014.

[57] U. Hölzle, C. Chambers, and D. Ungar, “Debugging Optimized Code with Dynamic Deop-
timization,” in Proc. of PLDI, July 1992, pp. 32–43.

[58] L. P. Deutsch and A. M. Schiffman, “Efficient implementation of the Smalltalk-80 system,”
in Proc. of POPL, 1984.

[59] D. Grove, J. Dean, C. Garrett, and C. Chambers, “Profile-guided receiver class prediction,”
in Proceedings of the Tenth Annual Conference on Object-oriented Programming Systems,
Languages, and Applications, ser. OOPSLA ’95. New York, NY, USA: ACM, 1995.
[Online]. Available: http://doi.acm.org/10.1145/217838.217848 pp. 108–123.

[60] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer, “Memento mori: Dynamic
allocation-site-based optimizations,” in Proceedings of the 2015 International Symposium
on Memory Management, ser. ISMM ’15. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2754169.2754181 pp. 105–117.

[61] C. Chambers, D. Ungar, and E. Lee, “An efficient implementation of self, a dynamically-
typed object-oriented language based on prototypes,” in Conference on Object-oriented
Programming Systems, Languages and Applications, ser. OOPSLA ’89. New York,
NY, USA: ACM, 1989. [Online]. Available: http://doi.acm.org/10.1145/74877.74884 pp.
49–70.

[62] G. Ottoni, “Hhvm jit: A profile-guided, region-based compiler for php and hack,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2018. New York, NY, USA: ACM, 2018. [Online].
Available: http://doi.acm.org/10.1145/3192366.3192374 pp. 151–165.

[63] T. Shull, J. Choi, M. J. Garzaran, and J. Torrellas, “Nomap: Speeding-up javascript using
hardware transactional memory,” in 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2019, pp. 412–425.

99

http://doi.acm.org/10.1145/217838.217848
http://doi.acm.org/10.1145/2754169.2754181
http://doi.acm.org/10.1145/74877.74884
http://doi.acm.org/10.1145/3192366.3192374

[64] C. Wimmer and H. Mössenböck, “Automatic object colocation based on read barriers,”
in Modular Programming Languages, D. E. Lightfoot and C. Szyperski, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 326–345.

[65] L. Stadler, T. Würthinger, and H. Mössenböck, “Partial escape analysis and
scalar replacement for java,” in Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO 14. New York,
NY, USA: Association for Computing Machinery, 2014. [Online]. Available: https:
//doi.org/10.1145/2544137.2544157 p. 165174.

[66] V. Marathe, A. Mishra, A. Trivedi, Y. Huang, F. Zaghloul, S. Kashyap, M. Seltzer, T. Harris,
S. Byan, B. Bridge, and D. Dice, “Persistent memory transactions,” 2018.

[67] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-performance
transactions for persistent memories,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872381 pp. 399–411.

[68] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and T. F.
Wenisch, “Persistency for synchronization-free regions,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI 2018. New York, NY, USA: ACM, 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3192366.3192367 pp. 46–61.

[69] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1040305.1040336 pp. 378–391.

[70] S. Blackburn and J. N. Zigman, “Concurrency - the fly in the ointment?” in Proceedings of
the 8th International Workshop on Persistent Object Systems (POS8) and Proceedings of
the 3rd International Workshop on Persistence and Java (PJW3): Advances in Persistent
Object Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.
[Online]. Available: http://dl.acm.org/citation.cfm?id=648123.747394 pp. 250–258.

[71] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens, “On-the-fly
garbage collection: An exercise in cooperation,” Commun. ACM, vol. 21, no. 11, pp.
966–975, Nov. 1978. [Online]. Available: http://doi.acm.org/10.1145/359642.359655

[72] M. Paleczny, C. Vick, and C. Click, “The java hotspottm server compiler,” in Proceedings
of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium
- Volume 1, ser. JVM01. USA: USENIX Association, 2001, p. 1.

[73] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox, “Design
of the java hotspot client compiler for java 6,” ACM Trans. Archit. Code Optim., vol. 5, no. 1,
pp. 7:1–7:32, May 2008. [Online]. Available: http://doi.acm.org/10.1145/1369396.1370017

100

https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2544137.2544157
http://doi.acm.org/10.1145/2872362.2872381
http://doi.acm.org/10.1145/3192366.3192367
http://doi.acm.org/10.1145/3192366.3192367
http://doi.acm.org/10.1145/1040305.1040336
http://dl.acm.org/citation.cfm?id=648123.747394
http://doi.acm.org/10.1145/359642.359655
http://doi.acm.org/10.1145/1369396.1370017

[74] O. Community, “Graal Project,” http://openjdk.java.net/projects/graal/.

[75] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G. Richards,
D. Simon, and M. Wolczko, “One vm to rule them all,” in Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, ser. Onward! 2013. New York, NY, USA: Association for Computing
Machinery, 2013. [Online]. Available: https://doi.org/10.1145/2509578.2509581 p.
187204.

[76] C. Wimmer, C. Stancu, P. Hofer, V. Jovanovic, P. Wögerer, P. B. Kessler, O. Pliss,
and T. Würthinger, “Initialize once, start fast: Application initialization at build time,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360610

[77] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The dacapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, ser. OOPSLA ’06. New York, NY,
USA: ACM, 2006. [Online]. Available: http://doi.acm.org/10.1145/1167473.1167488 pp.
169–190.

[78] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder, “Da capo con scala: Design and
analysis of a scala benchmark suite for the java virtual machine,” in Proceedings of the 26th
Conference on Object-Oriented Programming, Systems, Languages and Applications, ser.
OOPSLA ’11. New York, NY, USA: ACM, 2011, pp. 657–676.

[79] “QuickCached,”
https://github.com/QuickServerLab/QuickCached.

[80] “Memcached: A distributed memory object caching system.” [Online]. Available:
https://memcached.org/

[81] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM Symposium on Cloud
Computing, ser. SoCC ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152 pp. 143–154.

[82] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL 96.
New York, NY, USA: Association for Computing Machinery, 1996. [Online]. Available:
https://doi.org/10.1145/237721.237727 p. 3241.

[83] L. O. Andersen and P. Lee, “Program analysis and specialization for the c programming
language,” Ph.D. dissertation, 2005.

101

https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/3360610
http://doi.acm.org/10.1145/1167473.1167488
https://github.com/QuickServerLab/QuickCached
https://memcached.org/
http://doi.acm.org/10.1145/1807128.1807152
https://doi.org/10.1145/237721.237727

[84] B. Blanchet, “Escape analysis for object-oriented languages: Application to java,” in
Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA 99. New York, NY, USA:
Association for Computing Machinery, 1999. [Online]. Available: https://doi.org/10.1145/
320384.320387 p. 2034.

[85] V. Marathe, A. Mishra, A. Trivedi, Y. Huang, F. Zaghloul, S. Kashyap, M. Seltzer, T. Harris,
S. Byan, B. Bridge, and D. Dice, “Persistent memory transactions,” 2018.

[86] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu,
S. R. Dulloor, J. Zhao, and S. Swanson, “Basic performance measurements of the intel
optane dc persistent memory module,” 2019.

[87] “ZGC - Open JDK Wiki.” [Online]. Available: https://wiki.openjdk.java.net/display/zgc/
Main

[88] J. Eisl, M. Grimmer, D. Simon, T. Würthinger, and H. Mössenböck, “Trace-based
register allocation in a jit compiler,” in Proceedings of the 13th International Conference
on Principles and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, ser. PPPJ ’16. New York, NY, USA: ACM, 2016. [Online].
Available: http://doi.acm.org/10.1145/2972206.2972211 pp. 14:1–14:11.

[89] “Pmemkv: Key/Value Datastore for Persistent Memory.” [Online]. Available: https:
//github.com/pmem/pmemkv

[90] “PCollections.” [Online]. Available: https://pcollections.org/

[91] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 17,
Aug. 2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[92] W. W. Hwu and Y. N. Patt, “Checkpoint repair for high-performance out-of-order execution
machines,” IEEE Transactions on Computers, vol. C-36, no. 12, pp. 1496–1514, 1987.

[93] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation,” in Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, ser. CGO 04. USA: IEEE
Computer Society, 2004, p. 75.

[94] Arm, “Arm Cortex-A72 MPCore Processor: Technical Reference Manual,”
http://infocenter.arm.com/help/topic/com.arm.doc.100095 0003 06 en/cortex a72
mpcore trm 100095 0003 06 en.pdf, 2020.

[95] D. R. Morrison, “Patriciapractical algorithm to retrieve information coded in alphanumeric,”
J. ACM, vol. 15, no. 4, p. 514534, Oct. 1968. [Online]. Available: https:
//doi.org/10.1145/321479.321481

102

https://doi.org/10.1145/320384.320387
https://doi.org/10.1145/320384.320387
https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/zgc/Main
http://doi.acm.org/10.1145/2972206.2972211
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://pcollections.org/
https://doi.org/10.1145/2024716.2024718
http://infocenter.arm.com/help/topic/com.arm.doc.100095_0003_06_en/cortex_a72_mpcore_trm_100095_0003_06_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100095_0003_06_en/cortex_a72_mpcore_trm_100095_0003_06_en.pdf
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481

[96] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin, “Shenandoah: An
open-source concurrent compacting garbage collector for openjdk,” in Proceedings of the
13th International Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, ser. PPPJ ’16. New York, NY,
USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2972206.2972210 pp.
13:1–13:9.

[97] C. Click and M. Paleczny, “A simple graph-based intermediate representation,” in Papers
from the 1995 ACM SIGPLAN Workshop on Intermediate Representations, ser. IR 95.
New York, NY, USA: Association for Computing Machinery, 1995. [Online]. Available:
https://doi.org/10.1145/202529.202534 p. 3549.

[98] “C++ Atomic Types and Operations.” [Online]. Available: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2007/n2427.html

[99] “JEP 193: Variable Handles.” [Online]. Available: https://openjdk.java.net/jeps/193

[100] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.
Markstein, “Register allocation via coloring,” Computer Languages, vol. 6, no. 1,
pp. 47 – 57, 1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0096055181900485

[101] C. Wimmer, “Linear Scan Register Allocation for the Java HotSpot Client Compiler,” M.S.
thesis, Johannes Kepler University Linz, 2004.

[102] “Arm Whitepaper: Cache Speculation Side-channels.” [On-
line]. Available: https://developer.arm.com/support/arm-security-updates/
speculative-processor-vulnerability/download-the-whitepaper

103

http://doi.acm.org/10.1145/2972206.2972210
https://doi.org/10.1145/202529.202534
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
https://openjdk.java.net/jeps/193
http://www.sciencedirect.com/science/article/pii/0096055181900485
http://www.sciencedirect.com/science/article/pii/0096055181900485
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper

	Chapter 1 Introduction
	The Promise of Emerging Non-Volatile Memory (NVM) Technologies
	Current Support for Persistent Applications
	Thesis Contribution and Overview
	Summary of Contributions

	Thesis Organization

	Chapter 2 Background & Related Work
	Current Hardware Non-Volatile Memory (NVM) Support
	Using NVM in Persistent Applications
	Improving NVM Performance
	Java Virtual Machine (JVM) Behavior

	Chapter 3 Designing a New Programmer-Friendy NVM Programming Model
	Introduction
	Limitation of Existing NVM Frameworks
	Abstraction Level Mismatch
	Incompatibility with Existing Code
	Limited Optimization Potential

	New Programmer-Friendly NVM Programming Model
	Model Goals
	Establishing a New NVM Programming Model

	Example of Runtime Responsibilities
	Discussion
	Model Implementation Approaches
	Applicability to Statically Compiled Languages
	Differentiating User-Annotated Code & Pre-existing Code
	Limitations
	Alternative Persistency Models

	Chapter 4 AutoPersist: An Easy-To-Use Java NVM Framework
	Introduction
	Applying The Programming Model to Java
	Labeling Durable Roots
	Failure-Atomic Regions
	Persistency Model
	Recovery API
	Introspection API
	Unrecoverable Keyword

	Implementing AutoPersist within the JVM
	Modified Object Store Operations
	Object Header

	Advanced Implementation Aspects
	Transparently Updating Pointers
	Movement of Objects
	Thread Safety
	Allocation and Garbage Collection
	Failure-Atomic Region Support

	Discussion
	Applying Model to Other JVM-Based Languages
	Applying Model to Scripting Languages
	Alternative JVM Implementations
	Opportunities for Hardware Improvements

	Chapter 5 Improving AutoPersist's Performance Through Profile-Guided Optimizations
	Introduction
	AutoPersist Performance Overheads
	Store Field Persistence Checks
	Load Field Persistence Checks

	Characterizing Persistence Checks
	Overhead of Persistence Checks
	Persistence Check Activation Behavior

	Biasing Persistence Checks
	Overview of QuickCheck
	Persistence Check Biasing Strategies
	Speculatively Removing Action Routines

	Implementing Biased Persistence Checks
	Persistence Check Profile Collection
	Compiler Optimization Pass

	Optimizing Object Allocation
	Discussion
	Additional Opportunities for Removing Checks
	Improving Eager NVM Allocation
	Profile-Guided Support for Logging
	Runtime Support for Caching and Redundancy

	Chapter 6 Evaluating AutoPersist on Real Hardware
	Introduction
	Infrastructure
	Compiler Platform
	Server Platform

	Applications
	Java Benchmark Suites
	Persistent Key-Value Store
	Persistent Kernels

	Implementation Frameworks
	Configurations
	QuickCheck Evaluation
	AutoPersist vs. Espresso

	Programmability
	Framework Comparison
	Key-Value Store
	Persistent Kernels

	Analysis of AutoPersist's Performance
	Persistence Check Overhead in Volatile Applications
	Persistence Check Overhead in Persistent Applications
	Breakdown of Persistent Kernels

	Summary

	Chapter 7 ISA Support for Instruction-Level Execution Dependencies
	Introduction
	Understanding Fence Overhead
	Main Idea
	Problem – Unable to Convey Instruction Execution Dependencies
	Solution – Encode Execution Dependencies within Instructions
	Hardware Support for EDE

	EDE ISA Definition
	EDE Concepts
	New Instructions
	EDE Example

	Hardware Implementation
	Mapping Producer-Consumer Pairs
	Determining Instruction Completion
	Implementing EDE's Memory Instructions
	Implementing EDE's Control Instructions

	Experimental Setup
	Simulator Environment
	Applications
	Configurations

	Evaluation
	Execution Time
	Issue Queue Throughput
	Pending Writes to NVM

	Discussion
	Other uses for EDE
	Compiler Support for EDE
	EDK Calling Convention
	Applying EDE to Other ISAs
	EDE Security Implications

	Chapter 8 Conclusion
	Chapter 9 References

