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ABSTRACT

It is well known that feedforward neural networks can approximate any con-

tinuous function supported on a finite-dimensional compact set to arbitrary

accuracy. However, many engineering applications require modeling infinite-

dimensional functions, such as sequence-to-sequence transformations or input-

output characteristics of systems of differential equations. For discrete-time

input-output maps having limited long-term memory, we prove universal

approximation guarantees for temporal convolutional nets constructed using

only a finite number of computation units which hold on an infinite-time

horizon. We also provide quantitative estimates for the width and depth of

the network sufficient to achieve any fixed error tolerance. Furthemore, we

show that discrete-time input-output maps given by state-space realizations

satisfying certain stability criteria admit such convolutional net approxi-

mations which are accurate on an infinite-time scale. For continuous-time

input-output maps induced by dynamical systems that are stable in a similar

sense, we prove that continuous-time recurrent neural nets are capable of

reproducing the original trajectories to within arbitrarily small error tolerance

over an infinite-time horizon. For a subset of these stable systems, we provide

quantitative estimates on the number of neurons sufficient to guarantee the

desired error bound.
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CHAPTER 1

INTRODUCTION

Many sequence-to-sequence learning applications such as audio generation,

natural language processing, time series forecasting, and system simulation

are well-suited for parametric models that can be trained from measurement

data with minimal knowledge of the original system structure. Traditionally,

recurrent neural networks and other recursive architectures typified by internal

state feedback have been favorable choices for approximating sequence-to-

sequence transformations because they are naturally formulated for processing

arbitrary length inputs. In comparison, fixed feedforward architectures must

be designed for a predetermined input sequence length.

Convolutional neural networks and related convolutional architectures are

also well-suited for variable length input sequences, but enjoy additional

computational advantages during training and runtime that follow from the

lack of feedback elements [1]. Without state feedback, shifted copies of

the input sequence can be processed in parallel rather than consecutively.

Furthermore, in practice, convolutional models have achieved competitive

performance in tasks often approached with recurrent models [2, 3, 4, 5, 1, 6].

There is significant overlap in the properties of systems that are modeled

efficiently by both convolutional and recurrent architectures. Recurrent

models possess a theoretically unlimited memory because the output at a

given time depends on the initial condition and the complete sequence of input

values occurring up until that time. Therefore, such models are strictly more

expressive than autoregressive models that only consider a finite number of

past input values to determine the output at each time. Despite this infinite

memory property, recurrent architectures often fail tests of their capability to

learn artificially long input-output sequence relationships [7]. Additionally,

infinite memory represents marginal value in practice [8, 1] as well as in

theoretical considerations [9].

Recurrent models that exhibit exponential stability – that is, where the
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dependence on the output of the initial condition decays exponentially in

time – can be approximated arbitrarily accurately by feedforward models

that only consider past input values occurring within a sufficiently large, but

nonetheless finite, time horizon [10]. Additionally, for learning finite length

input-output sequence relationships, feedforward models that implement

temporal convolutions perform as well as or better than recurrent nets [2, 11, 7].

Evidently, a salient characteristic of systems that are well-suited for both

convolutional and recurrent models is a limited long-term dependence on past

input values.

By construction, the criterion for exponential stability of a recurrent model

as considered in previous work [10] depends on the state-space representation.

In order to verify if a system demonstrates this stability property, it is

necessary to choose a particular realization in advance. This framework is not

ideal because any sequence-to-sequence transformation can be assigned both

stable and unstable state-space realizations. For example, a stable model can

be made into an unstable one by augmenting the dynamics with unstable,

unobservable states that have no influence on the output. Therefore, it is

desired to formulate a more general characterization of limited long-term

memory that abstracts away the notion of stability and instead uses intrinsic

properties of the input-output map. This formalism can then be reconnected

to the stability conditions expressed in the language of dynamical systems.

Characterizing limited long-term input dependence amounts to requiring

that the output of the system depend predominantly on values of the input

occurring within a short time horizon and negligibly on values of the input

beyond that time horizon. This property can be defined more precisely as

continuity of the input-output map with respect to a special norm that weights

recent input values more heavily than past input values, called fading memory

[12]. Expanding upon this definition, a more minimal characterization called

approximately finite memory [13] eliminates the role of the weighted norm in

fading memory. This property instead requires that the output of a system

due to an infinitely long input sequence and the output due to the same input

sequence after being truncated to a finite time horizon will be arbitrarily close

given a sufficiently large horizon. Such systems can be modeled canonically

by temporal convolutional nets, which by construction only operate on input

values occurring within a finite horizon of the output time.

To facilitate a more rigorous comparison between recurrent and convolu-
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tional models, we seek to quantitatively evaluate the approximation capability

of temporal convolutional nets for modeling causal, time-invariant input-

output maps with approximately finite memory and of recurrent neural nets

for modeling such maps that admit state-space realizations (taking the form of

a dynamical system). In Chapter 2, we establish the existence of the desired

model and quantitative bounds on the context length, network dimensions,

and total number of computation units sufficient to achieve any given error

tolerance.

To compare the expressivity of temporal convolutional nets to recurrent

models that demonstrate exponential stability, we can consider bounds de-

veloped in [10] which outline when truncated recurrent models approximate

their untruncated counterparts. However, there still exist many recurrent

models that demonstrate approximately finite memory, thus are compara-

ble to convolutional models, but are not exponentially stable. To expand

our comparison to these models, we adapt our analysis to a more relaxed

incremental stability condition – described in [14] – which only requires the

influence of the initial condition to be asymptotically negligible. Chapter

3 discusses the technical formulation of this property and its relationship

to other stability conditions. Therein, we show that incremental stability

implies approximately finite memory. For any recurrent system exhibiting

this property, we derive bounds on the context length and dimensions of a

temporal convolutional net which approximates the aforementioned recurrent

system and derive the result of [10] as a special case.

Chapter 4 shifts focus to analyzing the expressivity of continuous-time

recurrent neural nets for modeling incrementally stable systems. Existing

results have already established that recurrent nets are capable of simulating

trajectories to within any error tolerance over a finite time interval [15, 16,

17, 18]. These previous works apply Grönwall’s inequality to control the

difference between the paths of the original system and the simulated paths,

which incurs an exponential degradation of the approximation accuracy over

time. Without enforcing additional assumptions, simulating a system over

a longer time horizon with the same error limit requires an exponentially

more accurate approximation. This is problematic because the number of

computation units in the network and number of training samples required to

achieve the desired error tolerance will depend on the simulation time scale,

which in many applications is unknown a priori.
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However, for systems satisfying modest stability conditions, Grönwall’s

inequality is overly conservative, and a more detailed argument can prove

that approximation error does not in general accumulate without bound.

The same incremental stability property described earlier can be utilized to

establish strict guarantees that the output of a simulating model will remain

sufficiently close to the output of the original system over infinite time scales,

rather than permitting performance degradation after a fixed time horizon.

For stable systems satisfying the additional assumption that the gradient

of the Fourier transform of the transition function is integrable, we derive

quantitative bounds for the size of the recurrent net sufficient to achieve a

desired error tolerance.

To summarize, given any input-output map having approximately finite

memory, we provide quantitative estimates for how efficiently a temporal

convolutional net can approximate such a map. In the special case where

this input-output map is given explicitly by a state-space realization, we

express our results in terms of stability conditions on the corresponding

dynamical system. To compare convolutional to recurrent architectures, we

can express the latter as a state-space realization and determine how large

a convolutional model should be to approximate that realization. Finally,

we study simulating continuous-time state-space models by recurrent neural

nets and provide quantitative characterizations of the expressivity of this

architecture for modeling a subset of stable dynamical systems.
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CHAPTER 2

UNIVERSAL APPROXIMATION WITH
TEMPORAL CONVOLUTIONAL NETS

Let S denote the set of all real-valued sequences u = (ut)t∈Z+ , where Z+ :=

{0, 1, 2, . . .}. An input-output map (or i/o map, for short) is a nonlinear

operator F : S → S that maps an input sequence u ∈ S to an output

sequence y = Fu ∈ S. (We are considering real-valued input and output

sequences for simplicity; all our results carry over to vector-valued sequences

at the expense of additional notation.) We will denote the application and

the composition of i/o maps by concatenation. We are concerned with i/o

maps F that are:

• causal — for any t ∈ Z+, u0:t = v0:t implies (Fu)t = (Fv)t, where

u0:t := (u0, . . . , ut);

• time-invariant — for any k ∈ Z+,

(FRku)t =

(Fu)t−k, for t ≥ k

0, for 0 ≤ t < k
,

where R : S → S is the right shift operator (Ru)t := ut−11{t≥1}.

2.1 Approximately finite memory

A key notion we will work with is that of approximately finite memory [13]:

Definition 2.1. An i/o map F has approximately finite memory on a set of

inputs M⊆ S if for any ε > 0 there exists m ∈ Z+, such that

sup
u∈M

sup
t∈Z+

∣∣(Fu)t − (FWt,mu)t
∣∣ ≤ ε, (2.1)

where Wt,m : S → S is the windowing operator (Wt,mu)τ := uτ1{max{t−m,0}≤τ≤t}.

We will denote by m∗F(ε) the smallest m ∈ Z+, for which (2.1) holds.
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If m∗F(0) <∞, then we say that F has finite memory on M. If F is causal

and time-invariant, this is equivalent to the existence of an integer m ∈ Z+

and a nonlinear functional f : Rm+1 → R, such that f(0, . . . , 0) = 0 and, for

any u ∈M and any t ∈ Z+,

(Fu)t = f(ut−m, ut−m+1, . . . , ut), (2.2)

with the convention that us = 0 if s < 0. In this work, we will focus on the

important case when f is a feedforward neural net with rectified linear unit

(ReLU) activations ReLU(x) := max{x, 0}. That is, there exist k affine maps

Ai : Rdi → Rdi+1 with d1 = m+ 1 and dk+1 = 1, such that f is given by the

composition

f = Ak ◦ ReLU ◦Ak−1 ◦ ReLU ◦ . . . ◦ ReLU ◦A1,

where, for any r ≥ 1, ReLU(x1, . . . , xr) := (ReLU(x1), . . . ,ReLU(xr)). Here,

k is the depth (number of layers) and max{d2, . . . , dk} is the width (largest

number of units in any hidden layer).

Definition 2.2. An i/o map F is a ReLU temporal convolutional net (or

ReLU TCN, for short) with context length m if (2.2) holds for some feedfor-

ward ReLU neural net f : Rm+1 → R.

Remark 2.1. While such an F is evidently causal, it is generally not time-

invariant unless f(0, . . . , 0) = 0.

2.2 The universal approximation theorem for

input-output maps

In this section, we state and prove one of our main results: Any causal and

time-invariant i/o map that has approximately finite memory and satisfies

an additional continuity condition can be approximated arbitrarily well by a

ReLU temporal convolutional net. In what follows, we will consider i/o maps

with uniformly bounded inputs, i.e., inputs in the set

M(R) := {u ∈ S : ‖u‖∞ := sup
t∈Z+

|ut| ≤ R} for some R > 0.
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For any t ∈ Z+ and any u ∈M(R), the finite subsequence u0:t = (u0, . . . , ut)

can be considered as an element of the cube [−R,R]t+1 ⊂ Rt+1; conversely,

any vector x ∈ [−R,R]t+1 can be embedded into the sequence space M(R)

by setting us = xs1{0≤s≤t}. To any causal and time-invariant i/o map F we

can associate the nonlinear functional F̃t : Rt+1 → R defined in the obvious

way: for any x = (x0, x1, . . . , xt) ∈ Rt+1,

F̃t(x) := (Fu)t,

where u ∈ S is any input such that us = xs for s ∈ {0, 1, . . . , t} (the values

of us for s > t can be arbitrary by causality). We impose the following

assumptions on F:

Assumption 2.1. The i/o map F has approximately finite memory onM(R).

Assumption 2.2. For any t ∈ Z+, the functional F̃t : Rt+1 → R is uniformly

continuous on [−R,R]t+1 with modulus of continuity

ωt,F(δ) := sup
{
|F̃t(x)− F̃t(x

′)| : x,x′ ∈ [−R,R]t+1, ‖x− x′‖∞ ≤ δ
}
,

and inverse modulus of continuity

ω−1
t,F (ε) := sup

{
δ > 0 : ωt,F(δ) ≤ ε

}
,

where ‖x‖∞ := max0≤i≤t |xi| is the `∞ norm on Rt+1.

The following qualitative universal approximation result was obtained by

Sandberg in [13]: if a causal and time-invariant i/o map F satisfies the

above two assumptions, then, for any ε > 0, there exists an affine map

A : Rm+1 → Rd and a lattice map ` : Rd → R, such that

sup
u∈M(R)

sup
t∈Z+

∣∣(Fu)t − ` ◦ A(ut−m:t)
∣∣ < ε, (2.3)

where we say that a map ` : Rd → R is a lattice map if `(x0, . . . , xd−1)

is generated from x = (x0, . . . , xd−1) by a finite number of min and max

operations that do not depend on x. Any lattice map can be implemented

using ReLU units, so (2.3) is a ReLU TCN approximation guarantee. The

main result of this chapter is a quantitative version of Sandberg’s theorem:
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Theorem 2.1. Let F be a causal and time-invariant i/o map satisfying

Assumptions 2.1 and 2.2. Then, for any ε > 0 and any γ ∈ (0, 1), there exists

a ReLU TCN F̂ with

• context length m = m∗F(γε)

• width m+ 2

• depth
( O(R)

ω−1
m,F((1−γ)ε)

)m+2

such that

sup
u∈M(R)

‖Fu− F̂u‖∞ < ε. (2.4)

Remark 2.2. The role of the additional parameter γ ∈ (0, 1) is to trade off

the context length and the depth of the ReLU TCN.

Remark 2.3. While the approximating ReLU TCN F̂ is clearly causal, it

may not be time-invariant unless f̂(0, . . . , 0) = 0, where f̂ is the ReLU net

constructed in the proof below.

Proof. Let m = m∗F(γε). Since F̃m : Rm+1 → R is continuous with modulus

of continuity ωm,F(·), there exists a ReLU net f̂ : Rm+1 → R of width m+ 2

and depth
( O(R)

ω−1
m,F((1−γ)ε)

)m+2
, such that

sup
x∈[−R,R]m+1

|F̃m(x)− f̂(x)| < (1− γ)ε,

as proved by Hanin and Sellke [19]. Now consider the TCN F̂ defined by

(Fu)t := f̂(ut−m, . . . , ut). Fix an input u ∈M(R) and consider two cases:

1) If t ≥ m, then ut−m:t = (Lt−mWt,mu)0:m, where L : S → S is the left

shift operator (Lu)t := ut+1. Therefore,

(FWt,mu)t
(a)
= (FRt−mLt−mWt,mu)t

(b)
= (FLt−mWt,mu)m

(c)
= F̃m(ut−m:t),

where (a) uses the fact that t ≥ m, (b) is by time invariance of F, and (c) is

by the definition of F̃m.

2) If t < m, then ut−m:t = (Rm−tWt,mu)0:m (recall the convention that, for

any v, we set vs = 0 whenever s < 0). Therefore

(FWt,mu)t
(a)
= (Rm−tFWt,mu)m

(b)
= (FRm−tWt,mu)m

(c)
= F̃m(ut−m:t),
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where (a) uses the fact that m > t, (b) is by time invariance, and (c) is by

the definition of F̃m.

In either case, the triangle inequality gives

|(Fu)t − (F̂u)t| ≤ |(Fu)t − (FWt,mu)t|+ |(FWt,mu)t − (F̂u)t|

= |(Fu)t − (FWt,mu)t|+ |F̃m(ut−m:t)− f̂(ut−m:t)|

< γε+ (1− γ)ε = ε.

Since this holds for all t and all u with ‖u‖∞ ≤ R, the result follows.

2.3 The fading memory property

In order to apply Theorem 2.1, we need control over the context length m∗F(·)
and over the modulus of continuity ωt,F(·). In general, these quantities are

difficult to estimate. However, it was shown by Park and Sandberg in [20] that

the property of approximately finite memory is closely related to the notion

of fading memory, first introduced by Boyd and Chua in [12]. Intuitively, an

i/o map F has fading memory if the outputs at any time t due to any two

inputs u and v that were close to one another in recent past will also be close.

Let W denote the subset of S consisting of all sequences w, such that

wt ∈ (0, 1] for all t and wt ↓ 0 as t→∞. We will refer to the elements of W
as weighting sequences. Then we have the following definition, due to [20]:

Definition 2.3. We say that an i/o map F has fading memory on M⊆ S
with respect to w ∈ W if for any ε > 0 there exists δ > 0 such that, for all

u,v ∈M and all t ∈ Z+,

max
s∈{0,...,t}

wt−s|us − vs| < δ =⇒ |(Fu)t − (Fv)t| < ε. (2.5)

The weighting sequence w governs the rate at which the past values of the

input are discounted in determining the current output. To capture the best

trade-offs in (2.5), we will also use a w-dependent modulus of continuity:

αw,F(δ) := sup
{
|(Fu)t − (Fv)t| : t ∈ Z+,u,v ∈M, max

s∈{0,...,t}
wt−s|us − vs| ≤ δ

}
.

It was shown by Park and Sandberg in [20] that an i/o map satisfies Assump-
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tions 2.1 and (2.2) if and only if it has fading memory with respect to some

(and hence any) w ∈ W . The following result provides a quantitative version

of this equivalence:

Proposition 2.1. Let F be an i/o map.

1. If F satisfies Assumptions 2.1 and 2.2, then it has fading memory on

M with respect to any weighting sequence w ∈ W, and

α−1
w,F(ε) ≥ wm∗F(ε/3)ω

−1
m∗F(ε/3),F(ε/3). (2.6)

2. If F has fading memory on M(R) with respect to some w ∈ W, then it

satisfies Assumptions 2.1 and 2.2, and

m∗F(ε;R) ≤ inf
{
m ∈ Z+ : wm ≤

α−1
w,F(ε)

R

}
and ωt,F(δ) ≤ αw,F(δ).

(2.7)

Proof. Suppose F satisfies Assumptions 2.1 and 2.2. Fix some ε > 0 and let

m = m∗F(ε/3) and δ = wmω
−1
m,F(ε/3). Now fix some t ∈ Z+ and consider any

two u,v ∈M(R) such that

max
s∈{0,...,t}

wt−s|us − vs| < δ. (2.8)

Using the same reasoning as in the proof of Theorem 2.1, we can write

(FWt,mu)t = F̃m(ut−m:t) and (FWt,mv)t = F̃m(vt−m:t), where, as before, we set

us = vs = 0 for s < 0. From the monotonicity of w and (2.8) it follows that

‖ut−m:t − vt−m:t‖∞ ≤
1

wm
max

s∈{t−m,...,t}
wt−s|us − vs| < ω−1

m,F(ε/3),

which implies that

|(FWt,mu)t − (FWt,mv)t| = |F̃m(ut−m:t)− F̃m(vt−m:t)| < ε/3.
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Altogether, we see that (2.8) implies that

|(Fu)t − (Fv)t|

≤ |(Fu)t − (FWt,mu)t|+ |(FWt,mu)t − (FWt,mv)t|+ |(Fv)t − (FWt,mv)t|

< ε/3 + ε/3 + ε/3 = ε,

which leads to (2.6).

Now suppose that F has fading memory with respect to w. Given ε > 0,

let δ = α−1
w,F(ε) and choose any m ∈ Z+, such that wm < δ/R. If t < m, then

u0:t = (Wt,mu)0:t, and thus (Fu)t = (FWt,mu)t. On the other hand, if t ≥ m,

then, for any u ∈M(R),

max
s∈{0,...,t}

|us − (Wt,mu)s| =

0, t−m ≤ s ≤ t

|us|, s < t−m

and therefore, by the monotonicity of w and the choice of m,

max
s∈{0,...,t}

wt−s|us − (Wut,m)s| = max
s<t−m

wt−s|us| ≤ wm‖u‖∞ < δ,

which implies that |(Fu)t − (FWt,mu)t| < ε. Consequently, m∗F(ε) ≤ m. More-

over, since the elements of w take values in (0, 1], it follows from definitions

that, for any u,v ∈M(R) and any t,

‖u0:t − v0:t‖∞ < δ

=⇒ max
s∈{0,...,t}

wt−s|us − vs| < δ

=⇒ |(Fu)t − (Fv)t| ≤ αw,F(δ).

This establishes (2.7).
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CHAPTER 3

DYNAMICAL SYSTEMS AND
INCREMENTAL STABILITY

So far, we have considered arbitrary i/o maps F : S → S. However, many

such maps admit state-space realizations [21] — that is, there exist a state

transition map f : Rn × R → Rn, an output map g : Rn → R, and an

initial condition ξ ∈ Rn, such that the output sequence y = Fu is determined

recursively by the discrete-time dynamical system

xt+1 = f(xt, ut) (3.1a)

yt = g(xt) (3.1b)

with x0 = ξ. The i/o map F realized in this way is evidently causal, and it is

time-invariant if f(ξ, 0) = ξ and g(ξ) = 0. In this chapter, we will identify

the conditions under which such recurrent models satisfy Assumptions 2.1

and 2.2. Along the way, we will derive the approximation results of Miller

and Hardt in [10] as a special case.

3.1 Approximately finite memory and incremental

stability

Consider the system in (3.1). Given any input u ∈ S, any ξ ∈ Rn, and any

s, t ∈ Z+ with t ≥ s, we denote by ϕu
s,t(ξ) the state at time t when xs = ξ.

Let M be a subset of S. We say that X ⊆ Rn is a positively invariant set

of (3.1) for inputs in M if, for all ξ ∈ X, all u ∈ M, and all 0 ≤ s ≤ t,

ϕu
s,t(ξ) ∈ X. We will be interested in systems with the following property [14]:

Definition 3.1. The system (3.1) is uniformly asymptotically incrementally

stable for inputs inM on a positively invariant set X if there exists a function
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β : R+ × R+ → R+ of class KL,1 such that the inequality

‖ϕu
s,t(ξ)− ϕu

s,t(ξ
′)‖ ≤ β(‖ξ − ξ′‖, t− s) (3.2)

holds for all inputs u ∈M, all initial conditions ξ, ξ′ ∈ X, and all 0 ≤ s ≤ t,

where ‖ · ‖ is the `2 norm on Rn.

In other words, a system is incrementally stable if the influence of any

initial condition in X on the state trajectory is asymptotically negligible. A

key consequence is the following estimate:

Proposition 3.1. Let u, ũ be two input sequences in M. Then, for any

ξ ∈ X and any t ∈ Z+,

‖ϕu
0,t(ξ)− ϕũ

0,t(ξ)‖ ≤
t−1∑
s=0

β
(
‖f(x̃s, us)− f(x̃s, ũs)‖, t− s− 1

)
, (3.3)

where xs and x̃s denote the states at time s due to inputs u and ũ, respectively,

with x0 = x̃0 = ξ.

Proof of Proposition 3.1. The family of mappings ϕu
s,t(·) has the following

semiflow property : For any input u and any 0 ≤ r ≤ s ≤ t,

ϕu
r,t(ξ) = ϕu

s,t(ϕ
u
r,s(ξ)). (3.4)

By telescoping and by the semiflow property (3.4), we have

ϕu
0,t(ξ)− ϕũ

0,t(ξ) =
t−1∑
s=0

(
ϕu
s,t(ϕ

ũ
0,s(ξ))− ϕu

s+1,t(ϕ
ũ
0,s+1(ξ))

)
=

t−1∑
s=0

(
ϕu
s+1,t(ϕ

u
s,s+1(ϕũ

0,s(ξ)))− ϕu
s+1,t(ϕ

ũ
0,s+1(ξ))

)
. (3.5)

Using the fact that ϕu
s,s+1(ϕ

ũ
0,s(ξ)) = ϕu

s,s+1(f(ϕũ
0,s(ξ), us)) and the stability

property (3.2),∥∥∥ϕu
s+1,t(ϕ

u
s,s+1(ϕũ

0,s(ξ)))− ϕu
s+1,t(ϕ

ũ
0,s+1(ξ))

∥∥∥ ≤ β
(
‖f(x̃s, us)− f(x̃s, ũs)‖, t− s− 1

)
.

1A function β : R+ × R+ → R+ is of class KL if it is continuous and strictly increasing
in its first argument, continuous and strictly decreasing in its second argument, β(0, t) = 0
for any t, and limt→∞ β(r, t) = 0 for any r [21].
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Substituting this into (3.5), we get (3.3).

Consider a state-space model (3.1) with a positively invariant set X, with

the following assumptions:

Assumption 3.1. The state transition map f(x, u) is Lf -Lipschitz in u for

all x ∈ X and the output map g(x) is Lg-Lipschitz in x ∈ X.

Assumption 3.2. For any initial condition ξ ∈ X there exists a compact set

Sξ ⊆ X such that ϕu
0,t(ξ) ∈ Sξ for all u ∈M(R) and all t ∈ Z+.

Assumption 3.3. The system (3.1) is uniformly asymptotically incrementally

stable on X for inputs in M(R), and the function β in (3.2) satisfies the

summability condition ∑
t∈Z+

β(C, t) <∞ (3.6)

for any C ≥ 0. (For example, if β(C, k) = Ck−α for some α > 1, then this

condition is satisfied.)

We are now in position to prove the main result of this section:

Theorem 3.1. Suppose that Assumptions 3.1–3.3 are satisfied. Then the i/o

map F of the system (3.1) satisfies Assumptions 2.1 and 2.2 with

m∗F(ε) ≤ min
{
m ∈ Z+ :

∑
k≥m

β(diam(Sξ), k) < ε/Lg

}
(3.7)

and

ωt,F(δ) ≤ Lg

t−1∑
s=0

β(Lfδ, s), ∀t ∈ Z+. (3.8)

Proof. Fix some t,m ∈ Z+. For an arbitrary input u ∈M(R), let ũ = Wt,mu,

where we may assume without loss of generality that t ≥ m. Then we have

14



ũs = us1{t−m≤s≤t}, and therefore

t−1∑
s=0

β
(
‖f(x̃s, us)− f(x̃s, ũs)‖, t− s− 1

)
=

t−m−1∑
s=0

β
(
‖f(x̃s, us)− f(x̃s, 0)‖, t− s− 1

)
≤

t−m−1∑
s=0

β(diam(Sξ), t− s− 1)

=
t−1∑
s=m

β(diam(X), s)

≤
∞∑
s=m

β(diam(Sξ), s). (3.9)

By the summability condition (3.6), the summation in (3.9) converges to 0 as

m ↑ ∞. Thus, if we choose m so that the right-hand side of (3.9) is smaller

than ε/Lg, it follows from Proposition 3.1 that

|(Fu)t − (FWt,mu)t| = |g(ϕu
0,t(ξ))− g(ϕũ

0,t(ξ))| ≤ Lg‖ϕu
0,t(ξ)− ϕũ

0,t(ξ)| < ε.

This proves (3.7). Now fix any two u, ũ ∈ M(R) with ‖u0:t − ũ0:t‖∞ < δ.

Then max0≤s≤t ‖f(x, us)− f(x, ũs)‖ ≤ Lfδ for all x ∈ X, so Proposition 3.1

gives

|F̃t(u0:t)− F̃t(ũ0:t)| = |g(ϕu
0,t(ξ))− g(ϕũ

0,t(ξ))|

≤ Lg‖ϕu
0,t(ξ)− ϕũ

0,t(ξ)‖

≤ Lg

t−1∑
s=0

β(Lfδ, s),

which proves (3.8).

15



3.2 Exponential incremental stability and the

Demidovich criterion

Miller and Hardt [10] consider the case of contracting systems: There exists

some λ ∈ (0, 1) and a set U ⊆ Rm, such that

‖f(x, u)− f(x′, u)‖ ≤ λ‖x− x′‖ (3.10)

for all x, x′ ∈ Rn and all u ∈ U. Such a system is uniformly exponentially

incrementally stable on any positively invariant set X, with β(C, t) = Cλt.

In this section, we obtain their result as a special case of a more general

stability criterion, known in the literature on nonlinear system stability as

the Demidovich criterion [22]. The following result is a simplified version of

a more general result of [14]:

Proposition 3.2 (the discrete-time Demidovich criterion). Consider the

recurrent system (3.1) with a convex positively invariant set X, where the

state transition map f(x, u) is differentiable in x for any u ∈ U. Suppose that

there exists a symmetric positive definite matrix P and a constant µ ∈ (0, 1),

such that

∂

∂x
f(x, u)>P

∂

∂x
f(x, u)− µP � 0 (3.11)

for all x ∈ X and all u ∈ U, where ∂
∂x
f(x, u) is the Jacobian of f(·, u) with

respect to x. Then the system (3.1) is uniformly exponentially incrementally

stable with β(C, t) =
√
κ(P )Cµt/2, where κ(P ) is the condition number of P .

Proof. Fix any u ∈ U and ξ, ξ′ ∈ X, and define the function Φ : [0, 1]→ R by

Φ(s) := (f(ξ, u)− f(ξ′, u))>Pf(sξ + (1− s)ξ′, u).

Then

Φ(1)− Φ(0) = (f(ξ, u)− f(ξ′, u))>P (f(ξ, u)− f(ξ′, u)). (3.12)
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By the mean-value theorem, there exists some s̄ ∈ [0, 1], such that

Φ(1)− Φ(0) =
d

ds
Φ(s)

∣∣∣
s=s̄

= (f(ξ, u)− f(ξ′, u))>P
∂

∂x
f(ξ̄, u)(ξ − ξ′),

(3.13)

where ξ̄ = s̄ξ + (1 − s̄)ξ′ ∈ X, since X is convex. From (3.11), (3.12), and

(3.13) it follows that

(f(ξ, u)− f(ξ′, u))>P (f(ξ, u)− f(ξ′, u))

≤ (ξ − ξ′)> ∂
∂x
f(ξ̄, u)>P

∂

∂x
f(ξ̄, u)(ξ − ξ′)

≤ µ(ξ − ξ′)>P (ξ − ξ′).

Define the function V : X× X→ R+ by V (ξ, ξ′) := (ξ − ξ′)>P (ξ − ξ′). From

the above estimate, it follows that V is a Lyapunov function for the dynamics,

i.e., for any u ∈ U and ξ, ξ′ ∈ X,

V (f(ξ, u), f(ξ′, u)) ≤ µV (ξ, ξ′). (3.14)

Consequently, for any input u with ut ∈ U for all t and any ξ, ξ′ ∈ X,

V (ϕu
0,t+1(ξ), ϕu

0,t+1(ξ′)) = V (f(ϕu
0,t(ξ), ut), f(ϕu

0,t(ξ
′), ut))

≤ µV (ϕu
0,t(ξ), ϕ

u
0,t(ξ

′)).

Iterating, we obtain the inequality V (ϕu
0,t(ξ), ϕ

u
0,t(ξ

′)) ≤ µtV (ξ, ξ′). Finally,

since P � 0,

‖ϕu
0,t(ξ)− ϕu

0,t(ξ)‖2 ≤ λmax(P )

λmin(P )
µt‖ξ − ξ′‖2 = κ(P )‖ξ − ξ′‖2µt,

and the proof is complete.

Theorem 3.2. Suppose the system (3.1) satisfies Assumption 3.1 and the

Demidovich criterion with U = [−R,R], its positively invariant set X contains

0, and f(0, 0) = 0. Then its i/o map F with zero initial condition x0 = 0
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satisfies Assumptions 2.1 and 2.2 with

m∗F(ε) ≤
2 log(

2κ(P )LfLgR

(1−√µ)2ε
)

log 1
µ

and ωt,F(δ) ≤
√
κ(P )LfLgδ

1−√µ
. (3.15)

Proof. Since P is symmetric and positive definite, ‖x‖P :=
√
x>Px is a norm

on Rn with λmin(P )‖ · ‖2 ≤ ‖ · ‖2
P ≤ λmax(P )‖ · ‖2. Then, for all ξ ∈ X,

u ∈M(R), and t,

‖ϕu
0,t+1(ξ)‖P = ‖f(ϕu

0,t(ξ), ut)‖P
≤ ‖f(ϕu

0,t(ξ), ut)− f(0, ut)‖P + ‖f(0, ut)− f(0, 0)‖P
≤ √µ‖ϕu

0,t(ξ)‖P +
√
λmax(P )LfR,

where we have used the Lyapunov bound (3.14). Unrolling the recursion gives

the estimate

sup
t∈Z+

sup
u∈M(R)

‖ϕu
0,t(ξ)‖P ≤

√
µ‖ξ‖P +

√
λmax(P )LfR

1−√µ
.

Thus, Assumption 3.2 is satisfied, where Sξ is the ball centered at 0 with

`2-radius
√
κ(P )

(
‖ξ‖+

LfR

1−√µ

)
. Assumption 3.3 is also satisfied by Proposi-

tion 3.2. The estimates in (3.15) follow from Theorem 3.1.

The following result now follows as a direct consequence of Theorems 2.1

and 3.2:

Corollary 3.1. If the system (3.1) satisfies the conditions of Theorem 3.2,

then its i/o map F with zero initial condition can be ε-approximated in the

sense of Theorem 2.1 by a ReLU TCN F̂ with width polylog(1
ε
) and depth

quasipoly(1
ε
).2

3.3 Contractivity vs. the Demidovich criterion

If the contractivity condition (3.10) holds and f(x, u) is differentiable in x,

then the Demidovich criterion is satisfied with P = In and µ = λ2. In that case,

2We say that a given quantity N has quasipolynomial growth in 1/ε, and we write
N ≤ quasipoly(1/ε), if N = O(exp(polylog(1

ε ))).
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we immediately obtain the exponential estimate β(C, t) ≤ Cλt. However, the

Demidovich criterion covers a wider class of nonlinear systems. As an example,

consider a discrete-time nonlinear system of Lur’e type (cf. [23, 24, 25] and

references therein):

xt+1 = Axt +Bψ(ut − yt) (3.16a)

yt = Cxt. (3.16b)

Here, the state xt is n-dimensional while the input ut and the output yt are

scalar, so A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n. The map ψ : R → R is

a fixed differentiable nonlinearity. The system in (3.16) has the form (3.1)

with f(x, u) = Ax+Bψ(u− Cx) and g(x) = Cx, and can be realized as the

negative feedback interconnection of the discrete-time linear system

xt+1 = Axt +Bvt (3.17a)

yt = Cxt (3.17b)

and the nonlinear element ψ using the feedback law vt = ψ(ut− yt). We make

the following assumptions (see, e.g., [21] for the requisite control-theoretic

background):

Assumption 3.4. The nonlinearity ψ : R→ R satisfies ψ(0) = 0, and there

exist real numbers −∞ < a ≤ b <∞ such that a ≤ ψ′(·) ≤ b.

Assumption 3.5. A is a Schur matrix, i.e., its spectral radius ρ(A) is

strictly smaller than 1; the pair (A,B) is controllable, i.e., the n× n matrix

[B |AB | . . . |An−1B] has rank n; and the pair (A,C) is observable, i.e., the

n× n matrix [C> |A>C> | . . . | (A>)n−1C>] has rank n.

Assumption 3.6. Let T := {z ∈ C : |z| = 1} denote the unit circle in the

complex plane. The rational function G(z) := C(zIn − A)−1B satisfies

‖G‖H∞(T) := sup
z∈T
|G(z)| < γ−1 (3.18)

for some γ > 0 such that r2 ≤ γ2 for all a ≤ r ≤ b.

Remark 3.1. Assumption 3.4 imposes a slope condition on ψ and is standard

in the analysis of Lur’e systems [26, 13, 24]. The function G(z) is the transfer
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function of the linear system (3.17). Assumption 3.5 states that the triple

(A,B,C) is a minimal realization of G. The quantity ‖G‖H∞(T) appearing

in Eq. (3.18) in Assumption 3.6 is the H∞-norm of G on the unit circle in

the complex plane. Assumptions 3.5 and 3.6 are also common and are in the

spirit of the well-known circle criterion [26, 23].

With these preliminaries out of the way, we have the following:

Proposition 3.3. Suppose that system (3.16) satisfies Assumptions 3.4–3.6.

Then it satisfies the discrete-time Demidovich criterion with X = Rn and

U = R, and moreover µ > ρ(A)2.

Proof. Since the matrix A is Schur, the function

g(r) := sup
z∈T
|G(rz)| = ‖G(r·)‖H∞(T), r > ρ(A)

is continuous. In particular, there exists some r0 ∈ (ρ(A), 1), such that

g(r0) < g(1) < γ−1. Consequently, the rational function

H(z) := γG(r0z) =
γC

r0

(
zIn −

A

r0

)−1

B

is well-defined for all z ∈ C with |z| ≥ r0, and we have the following:

• A
r0

is a Schur matrix;

• the pair ( A
r0
, B) is controllable;

• the pair ( A
r0
, γC
r0

) is observable;

• ‖H‖H∞(T) < 1.

Then, by the Discrete-Time Bounded-Real Lemma [27], there exist real

matrices L,W and a symmetric positive definite matrix P ∈ Rn×n, such that

A>PA+ γ2C>C + r2
0L
>L = r2

0P (3.19a)

B>PB +W>W = In (3.19b)

A>PB + r0L
>W = r0In. (3.19c)
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From (3.19), for any θ ∈ R we have

(A− θBC)>P (A− θBC)− r2
0P

= A>PA− θ(C>B>PA+ A>PBC) + θ2C>B>PBC − r2
0P

= (θ2 − γ2)C>C − (r0L− θWC)>(r0L− θWC).

Let µ := r2
0. Then, since γ2 ≥ θ2 for all θ ∈ [a, b], it follows that

(A− θBC)>P (A− θBC)− µP � 0, a ≤ θ ≤ b.

Since

∂

∂x
f(x, u) =

∂

∂x

(
Ax+Bψ(u− Cx)

)
= A− ψ′(u− Cx)BC

and ψ′(u− Cx) ∈ [a, b] for all x and u, the proposition is proved.

The crucial ingredient in the proof is the Discrete-Time Bounded-Real

Lemma [27], which guarantees the existence of the matrix P appearing in

the Demidovich criterion. The main takeaway here is that the function

f(x, u) = Ax+Bψ(u− Cx) need not be contractive (i.e., it may be the case

that P 6= In), but it will be contractive in the ‖ · ‖P norm.

3.4 Continuous-time dynamical systems

Much of what has already been developed for discrete-time state-space models

can be adapted to continuous-time state space models. Consider dynamical

systems with input of the following form:

ẋ = f(x, u) x(t) ∈ Rn u(t) ∈ Rm

y = h(x) y(t) ∈ Rp
(3.20)

where the state transition map f : Rn × Rm → Rn and the output map

h : Rn → Rp are continuously differentiable. By augmenting the state space

to include the equations ẏ = ∂h
∂x
f(x, u) if necessary, we may assume without

loss of generality that h is given by a linear map x 7→ Hx for some H ∈ Rp×n.
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The set of uniformly bounded inputs u : R+ → Rm now becomes

U := {u : R+ → Rm : sup
t≥0
|u(t)| ≤ R},

where | · | denotes the Euclidean norm. For an input u ∈ U and times

0 ≤ s ≤ t, we again denote the state x(t) at time t that results from initial

condition x(s) = ξ at time s by ϕus,t(ξ), referred to as the flow or trajectory

generated by the system (3.20). Like before, we call a set X ⊆ Rn positively

invariant for inputs in U if, for all ξ ∈ X , all u ∈ U , and all 0 ≤ s ≤ t, we have

ϕus,t(ξ) ∈ X . The incremental stability property phrased for discrete-time

systems is now stated for continuous-time systems as follows:

Definition 3.2. A dynamical system is uniformly asymptotically incremen-

tally stable for inputs in U on a positively invariant set X if there exists a

function β : R+ × R+ → R+ of class KL3 such that

|ϕus,t(ξ)− ϕus,t(ξ′)| ≤ β(|ξ − ξ′|, t− s) (3.21)

holds for all u ∈ U , all ξ, ξ′ ∈ X , and all 0 ≤ s ≤ t.

This property quantitatively captures the idea that perturbations to the

initial condition have asymptotically negligible influence on the long-term

behavior of the system trajectory. For systems satisfying this definition,

imperfect system models may still be capable of generating outputs that

uniformly approximate the outputs of the original system over infinite time

intervals. We can formulate the necessary assumptions of desired approxima-

tion and simulation results as regularity conditions on the function β which

are now suited for the continuous-time setting. For systems not satisfying

this stability condition, a sharp bound on the approximation error degrades

exponentially with time [28, 29].

3A function β : R+ × R+ → R+ is of class KL if 1) for any t, the map h 7→ β(h, t) is
continuous and strictly increasing and β(0, t) = 0 and 2) for any h, the map t 7→ β(h, t) is
continuous and strictly decreasing and limt→∞ β(h, t) = 0.
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CHAPTER 4

UNIVERSAL SIMULATION WITH
RECURRENT NEURAL NETS

In many practical applications of dynamical systems modeling, the main

criterion for an effective model is that it approximately reproduces both the

correct input/output relationships and the internal state dynamics. There

are many different ways of expressing this criterion; in this work, we use the

following formulation [15]:

Consider two systems Σ and Σ̃ described by the following dynamics:

Σ :
ẋ = f(x, u)

y = Hx

Σ̃ :
˙̃x = f̃(x̃, u)

ỹ = H̃x̃

with inputs u(t) ∈ Rm, outputs y(t) ∈ Rp, and states x(t) ∈ Rn and x̃(t) ∈ Rñ.

Suppose we are given a compact set K ⊂ Rn, a set U of admissible inputs,

and a time interval T ⊆ R+. We say that Σ̃ simulates Σ on sets K and U up

to accuracy ε for times t ∈ T if there exist two continuous maps α : Rñ → Rn

and γ : Rn → Rñ such that, when Σ is initialized at x(s) = ξ ∈ K, Σ̃ is

initialized at x̃(s) = γ(ξ), where s := inf T , and any common input u(·) ∈ U
is supplied to both Σ and Σ̃, we have

|x(t)− α(x̃(t))| < ε and |y(t)− ỹ(t)| < ε

for all t ∈ T . We consider the case when the simulating system Σ̃ is a

(continuous-time) recurrent neural net, i.e., f̃ has the form

f̃(x̃, u) = −1

τ
x̃+ σñ(Ax̃+Bu),

where τ > 0 is a positive constant, A ∈ Rñ×ñ and B ∈ Rñ×m are time-
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invariant matrices, and σñ : Rñ → Rñ is the diagonal map defined by

σñ(x̃) := [σ(x̃1) · · · σ(x̃ñ)]T, where σ : R → (0, 1) is a continuous, strictly

increasing function with limh→−∞ σ(h) = 0 and limh→∞ σ(h) = 1. Such

functions are referred to as sigmoidal in the literature on neural nets [30].

4.1 Simulating stable systems with recurrent neural

nets

Consider system (3.20) with an open positively invariant set X ⊆ Rn. We

impose the following assumptions:

Assumption 4.1. There exists a compact subset K ⊂ X such that, for any

initial condition ξ ∈ K, there exists a compact subset Xξ ⊂ X , such that

ϕus,t(ξ) ∈ Xξ for all u ∈ U and all t ≥ s ≥ 0.

Assumption 4.2. System (3.20) is uniformly asymptotically incrementally

stable on X for inputs in U , and the function β in equation (3.21) satisfies

the following conditions:

1. For any t ≥ 0, the map h 7→ β(h, t) is differentiable from the right at

h = 0.

2.

∫ ∞
0

∂

∂h
β(h, t)

∣∣∣
h=0+

dt =: b <∞.

Assumption 4.2 is evidently satisfied by exponentially stable systems with

β(h, t) = che−κt for some c, κ > 0, but it also holds for systems with much

longer transients, e.g., when β(h, t) = ch
(t+1)1+κ

.

Theorem 4.1. Consider system (3.20) and suppose that Assumptions 4.1

and 4.2 are satisfied. Then, for any ε > 0, there exists a recurrent neural net

of the form

˙̃x = −1

τ
x̃+ σñ(Ãx̃+ B̃u)

ỹ = H̃x̃

for some τ > 0, Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m, and H̃ ∈ Rp×ñ that simulates system

(3.20) on sets K and U up to accuracy ε for all t ∈ R+. Moreover, the

mappings α : Rñ → Rn and γ : Rn → Rñ that implement the approximate

simulation are linear.
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4.2 Technical lemmas

To prove the theorem, we will make use of the following lemmas.

Lemma 4.1. Let Dϕus,t(ξ) · v denote the directional derivative of ϕus,t(ξ) with

respect to ξ in the direction of v. Suppose that Assumptions 4.1 and 4.2 are

satisfied. Then for any ξ ∈ X , the induced norm

‖Dϕus,t(ξ)‖ := sup
|v|=1

|Dϕus,t(ξ) · v|

is integrable with respect to t on [s,∞).

Proof. From definitions,

‖Dϕus,t(ξ)‖ = sup
|v|=1

|Dϕus,t(ξ) · v|

= sup
|v|=1

lim
h↓0

1

|hv|
|ϕus,t(ξ + hv)− ϕus,t(ξ)|

≤ sup
|v|=1

lim
h↓0

1

|hv|
β(|hv|, t− s)

= lim
h↓0

1

h
β(h, t− s)

=
∂

∂h
β(h, t− s)

∣∣∣
h=0+

and, by Assumption 4.2, ∂
∂h
β(h, t− s)|h=0+ is integrable with respect to t on

[s,∞).

Lemma 4.2. Consider two dynamical systems ẋ = f(x, u) and ˙̂x = f̂(x̂, u)

with x(t), x̂(t) ∈ Rn, which generate flows ϕus,t(ξ) and ϕ̂us,t(ξ), respectively.

Then the following inequality holds for all t ≥ s ≥ 0:

|ϕus,t(ξ)−ϕ̂us,t(ξ)| ≤
∫ t

s

‖Dϕur,t(ϕ̂us,r(ξ))‖·|f(ϕ̂us,r(ξ), u(r))−f̂(ϕ̂us,r(ξ), u(r))| dr.

(4.1)

The proof can be found in [31], Chapter 3, Proposition 3.1.3.

Lemma 4.3. Consider the C1 map f : Rn × Rm → Rm from system (3.20)

satisfying Assumption 4.1. Then, for any ε > 0, we can construct:

• compact sets X0 ⊂ X1 ⊂ X2 ⊂ X ;
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• two C∞ bump functions ρ0, ρ1 : Rn × Rm → R that satisfy ρ0|Z0 ≡ 1,

ρ0|(Z1)c ≡ 0, ρ1|Z1 ≡ 1, ρ1|(Z2)c ≡ 0 for Zi := Xi ×Bm
R (0), i ∈ {1, 2, 3},

where Bm
R (0) := {v ∈ Rm : |v| ≤ R};

• a C1 map f̂ that vanishes outside Z2, such that, for (x, u) ∈ Z1,

f̂(x, u) = −1

τ
x+ Tσ`(Ax+Bu+ µ) + ν

for some τ > 0, T ∈ Rn×`, A ∈ R`×n, B ∈ R`×m, µ ∈ R`, and ν ∈ Rn,

and

sup
(x,u)∈Rn×Rm

|ρ(x, u)f(x, u)− f̂(x, u)| ≤ ε.

Proof. By Assumption 4.1, we have a compact subset K ⊂ X , and for each

ξ ∈ K we have a compact subset Xξ ⊂ X with ξ ∈ Xξ. Since K is compact,

the set ∪ξ∈KXξ is bounded. Therefore, the set

X (0)
K := cl

( ⋃
ξ∈K

Xξ
)
,

is closed and bounded, hence compact. Now fix any ε > 0 and let η < min(ε, λ)

where

λ := dist(X (0)
K , ∂X ) := inf{|x− y| : x ∈ X (0)

K , y ∈ ∂X}.

Let Bk
r (0) ⊂ Rk denote the closed Euclidean ball of radius r centered at the

origin and define the following sets:

X (1)
K := X (0)

K +Bn
η
2
(0)

X (2)
K := X (0)

K +Bn
η (0)

Z(i)
K := X (i)

K ×B
m
R (0) for i = 0, 1, 2

where + denotes Minkowski addition and where R is the uniform bound on

inputs u ∈ U . Then we have

X (0)
K ⊂ X

(1)
K ⊂ X

(2)
K ⊂ X

Z(0)
K ⊂ Z

(1)
K ⊂ Z

(2)
K ⊂ X ×B

m
R (0)

X (i)
K , Z(i)

K are compact for i = 0, 1, 2
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Construct a C∞ bump function ρ0 : Rn × Rm → R, so that ρ0|Z(0)
K
≡ 1

and ρ0|Rn×Rm\Z(1)
K
≡ 0. Then we have ρ0f |Z(0)

K
≡ f |Z(0)

K
. By the universal

approximation theorem [32], there exists a feedforward neural net

g(x, u) = Tσ`(Ax+Bu+ µ) + ν,

where T ∈ Rn×`, A ∈ R`×n, B ∈ R`×m, µ ∈ R`, ν ∈ Rn, such that

sup
(x,u)∈Z(2)

K

|(ρ0f)(x, u)− g(x, u)| ≤ ε

2
.

Choose τ > 0 sufficiently large that |x| ≤ τε
2

for all x ∈ X (2)
K . Construct

a second C∞ bump function ρ1 : Rn × Rm → R, so that ρ1|Z(1)
K
≡ 1 and

ρ1|Rn×Rm\Z(2)
K
≡ 0. Now we can construct a C1 map f̂ : Rn × Rm → Rn such

that the following hold:

1. f̂ |Z(1)
K

(x, u) = − 1
τ
x+ g(x, u).

2. sup
(x,u)∈Z(2)

K \Z
(1)
K

|f̂(x, u)| < ε.

3. f̂ |Rn×Rm\Z(2)
K
≡ 0.

Evidently, f̂ is given by multiplying the map (x, u) 7→ − 1
τ
x+ g(x, u) by the

bump function ρ1. Then we have

1. For all (x, u) ∈ Z(0)
K , (ρ0f)(x, u) = f(x, u) and |f(x, u)− f̂(x, u)| ≤ ε.

2. For all (x, u) ∈ Z(1)
K \ Z

(0)
K , |(ρ0f)(x, u)− f̂(x, u)| ≤ ε.

3. For all (x, u) ∈ Z(2)
K \ Z

(1)
K , (ρ0f)(x, u) = 0 and |0− f̂(x, u)| ≤ ε.

4. For all (x, u) ∈ Rn × Rm \ Z(2)
K , (ρ0f)(x, u) = 0 and f̂(x, u) = 0.

Therefore ‖ρ0f − f̂‖∞ ≤ ε and f̂(x, u) = 0 for (x, u) outside the compact set

Z(2)
K , so X0 = X (0)

K , X1 = X (1)
K , X2 = X (2)

K , ρ0, ρ1, and f̂ are the objects we

wished to construct.

Lemma 4.4. The state-space dynamics

˙̂x = −1

τ
x̂+ Tσ`(Ax̂+Bu+ µ) + ν (4.2)
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can be simulated with zero loss in accuracy by a system in the form of a

recurrent net

˙̃x = −1

τ
x̃+ σñ(Ãx̃+ B̃u) (4.3)

for some ñ ∈ N, Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m. That is, there exist matrices

F ∈ Rn×ñ and G ∈ Rñ×n, such that x̂(t) = Fx̃(t) for all t ≥ 0, with initial

conditions x̂(0) = ξ and x̃(0) = Gξ.

Proof. Following [15], we will construct the recurrent net (4.3) and the ma-

trices F and G in several steps.

Step 1 - Eliminating T : We may assume without loss of generality that

the matrix T takes the form [TT
1 0]T with T1 having full row rank. Then the

system (4.2) can be written as

ẋ1 = −1

τ
x1 + T1σ`(A1x1 + A2x2 +Bu+ µ) + ν1, x1(0) = ξ1

ẋ2 = −1

τ
x2 + ν2, x2(0) = ξ2

(4.4)

where ξ = [ξT1 ξT2 ]T and ν = [νT1 νT2 ]T. Since T1 is surjective, there exist

vectors ν̃1, ξ̃1 ∈ R` such that T1ν̃1 = ν1 and T1ξ̃1 = ξ1. Consider the following

transformed system:

ż1 = −1

τ
z1 + σ`(A1T1z1 + A2x2 +Bu+ µ) + ν̃1, z1(0) = ξ̃1

ẋ2 = −1

τ
x2 + ν2. x2(0) = ξ2

(4.5)

The trajectory (x1(t), x2(t)) of system (4.4) can be recovered from the trajec-

tory (z1(t), x2(t)) of system (4.5) via the transformation x1(t) := T1z1(t). Let

κ := σ(0); then the equation for the dynamics of x2 may be rewritten as

ẋ2 = −1

τ
x2 + σn−r(0x+ 0u) + (ν2 − [κ · · · κ]T),

where r := rank(T1). This permits us to combine the two equations in (4.5)

into

˙̄x = −1

τ
x̄+ σn̄(Āx̄+ B̄u+ µ̄) + ν̄

for suitable matrices Ā ∈ Rn̄×n̄, B̄ ∈ Rn̄×m, vectors µ̄, ν̄ ∈ Rn̄, and the initial

condition x̄(0) = ξ̄, where n̄ := `+ n− r and ξ̄ := [ξ̃T1 ξT2 ]T.
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Step 2 - Eliminating ν̄: Define x := x̄− τ ν̄ and θ := τĀν̄ + µ̄. It follows

that

ẋ = −1

τ
x+ σn̄(Āx+ B̄u+ θ)

with x(0) = ξ := ξ̄ − τ ν̄, and the trajectory x̄(t) from Step 1 is recovered via

x̄(t) = x(t) + τ ν̄.

Step 3 - Eliminating θ: Since σ : R → (0, 1) is bounded, positive, and

continuous, the fixed-point equation z = τσ(z) has at least one nonzero

solution ζ, by Brouwer’s fixed-point theorem. Consider the following dynamics

for x̃(t) ∈ Rn̄+1:

˙̃x1:n̄ = −1

τ
x̃1:n̄ + σn̄(Āx̃1:n̄ +

1

ζ
θx̃n̄+1 + B̄u), x̃1:n̄(0) = ξ

˙̃xn̄+1 = −1

τ
x̃n̄+1 + σ(x̃n̄+1), x̃n̄+1(0) = ζ

where evidently x(t) = x̃1:ñ(t) and x̃n̄+1(t) ≡ ζ for all t. With ñ := n̄+ 1, this

system can be represented in the desired form ˙̃x = − 1
τ
x̃+ σñ(Ãx̃+ B̃u) by

choosing

Ã :=

Ā 1
ζ
θ

0 1

 , B̃ :=

[
B̄

0

]
.

Altogether, we have shown that the trajectory of the system (4.2) with

x(0) = ξ can be reproduced with zero loss in accuracy by a recurrent net (4.3)

by expanding the dimension of the state space from n to n+ `− r and adding

one more neuron, for a total of ñ = `+n− r+ 1 neurons. The matrices F and

G can be constructed by retracing the above steps backwards from x̃ to x̂ and

then forwards from ξ to ξ̃ := [ξT ζ]T . (The affine map x̄(t) = x(t) + τ ν̄ can

be implemented as a linear map x̄(t) = x̃1:n̄(t) + τ
ζ
ν̄x̃n̄+1, since x̃n̄+1(t) ≡ ζ

for all t.)

4.3 Proof of the universal simulation theorem for

stable dynamical systems

Fix some η > 0 to be chosen later. Consider system (3.20) with an open

positively invariant set X ⊆ Rn satisfying Assumptions 4.1 and 4.2. By
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Lemma 4.3 (with ε← η
b
), there exist a map f̂ : Rn × Rm → Rn and compact

sets Z0 ⊂ Z1 ⊂ Z2 ⊂ X ×Rm, such that f̂ |Z1(x, u) = − 1
τ
x+ Tσ`(Ax+Bu+

µ) + ν and ‖ρ0f − f̂‖∞ ≤ η
b
, where ρ0 is a C∞ bump function satisfying

ρ0|Z0 = 1 and ρ0|(Z1)c = 0.

Moreover, by Lemma 4.3, Zi = Xi × Bm
R (0). Let ϕ̂us,t(ξ) denote the flow

generated by the system ˙̂x = f̂(x̂, u). Since f̂ is a C1 map that vanishes

outside Z2, we clearly have ϕ̂us,t(ξ) ∈ X2 ⊂ X for all ξ ∈ K, all u ∈ U , and

all t ≥ s ≥ 0, since if the trajectory reaches the boundary ∂X2, it must stop

and remain there permanently because f̂ |∂X2×BmR (0) ≡ 0. Furthermore, since

ϕus,t(ξ) ∈ XK = cl(∪ξ∈KXξ) for all t ≥ s ≥ 0 by Assumption 4.1, the flow

generated by the system ẋ = (ρ0f)(x, u) is identically equal to ϕus,t(ξ) because

ρ0f |XK×BmR (0) ≡ f |XK×BmR (0). Therefore by applying Lemmas 4.1 and 4.2, we

have

|ϕus,t(ξ)− ϕ̂us,t(ξ)|

≤
∫ t

s

‖Dϕur,t(ϕ̂us,r(ξ))‖ · |(ρ0f)(ϕ̂us,r(ξ), u(r))− f̂(ϕ̂us,r(ξ), u(r))| dr

≤
∫ t

s

∂

∂h
β(h, r − s)

∣∣∣
h=0+

sup
(x,u)∈Z2

|(ρ0f)(x, u)− f̂(x, u)| dr

≤ b · η
b

= η.

By Lemma 4.4, the system

˙̂x = −1

τ
x̂+ Tσ`(Ax̂+Bu+ µ) + ν

can be simulated with zero loss in accuracy by a system in the form of a

recurrent net

˙̃x = −1

τ
x̃+ σñ(Ãx̃+ B̃u).

For the above recurrent net, let ỹ(t) := H̃x̃(t) with H̃ := HF , whereH ∈ Rp×n

is the linear output map of the original system (3.20) and F ∈ Rn×ñ is the

linear map given by Lemma 4.4. Then Hx̂(t) = HFx̃(t) = H̃x̃(t) for all
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t ≥ 0, and consequently

|y(t)− ỹ(t)| = |Hx(t)− H̃x̃(t)|

= |Hx(t)−Hx̂(t)|

≤ ‖H‖|x(t)− x̂(t)|

≤ ‖H‖η.

Choosing η < min(ε, ε
‖H‖) gives |x(t)−Fx̃(t)| < ε and |y(t)− ỹ(t)| < ε for all

t ≥ 0, with x(0) = ξ and x̃(0) = Gξ, which completes the proof.

4.4 Quantitative approximation bounds for

Barron-class systems

Utilizing quantitative approximation bounds developed for feedforward nets,

we can develop similar results for recurrent nets. For these bounds to hold, it

is necessary for the vector field f(x, u) of the original system (3.20) to satisfy

certain regularity conditions [30]:

Definition 4.1. We say that a continuous function f : Rd → R belongs to

the Barron class if

Cf :=

∫
Rd
|ω||f̃(ω)| dω <∞,

where f̃ : Rd → R is the Fourier transform of f .

Proposition 4.1. Let a continuous function f : Rd → R be given, with

Cf <∞. Then for every r > 0 and every N ∈ N, there exists a feedforward

neural net g : Rd → R of the form

g(z) =
N∑
k=1

ckσ(ak · z + bk) + c0,

such that

sup
z∈Bdr (0)

|f(z)− g(z)| ≤ 2rCf√
N
.

The proof can be found in [30] or in [33]. Note that the constant Cf depends

implicitly on the input-space dimension d. If each coordinate of the state

transition map f : Rn × Rm → Rn from system (3.20) belongs to the Barron
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class, then we can bound the number of computation units (neurons) in a

recurrent net that simulates system (3.20).

Proposition 4.2. The number of computation units sufficient to guarantee

the result of Theorem 4.1 with accuracy ε is

ñ ≥ n+ 1 +
16(Cfb‖H‖∆)2n

ε2
,

where Cf and b are defined earlier, and ∆ := supx∈XK |x|+R + ε
2‖H‖ .

Remark 4.1. The constant Cf may implicitly depend on the total dimension

n+m.

Proof. The desired underlying feedforward net is constructed in the proof of

Lemma 4.3, such that

sup
(x,u)∈Z1

|(ρ0f)(x, u)− g(x, u)| ≤ η

2b
,

where Z1 is a compact subset of Rn × Rm contained in the ball of radius ∆.

On the other hand, Proposition 4.1 gives

sup
(x,u)∈Z1

|(ρf)(x, u)− g(x, u)| ≤ 2Cf∆
√
n√

`
,

where ` is the number of neurons in g. To achieve the desired inequality, it

suffices to take ` ≥ 16C2
f b

2∆2n

η2
. From the proof of Theorem 4.1, we set η < ε

‖H‖ ,

and from Lemma 4.4 we know that ñ ≥ n+ `+ 1 neurons suffice.
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