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ABSTRACT

In this dissertation we describe several algorithms for computing flows, connectivity, and
disjoint paths in planar graphs. In all cases, the algorithms are either the first polynomial-
time algorithms or are faster than all previously-known algorithms.
First, we describe algorithms for the maximum flow problem in directed planar graphs

with integer capacities on both vertices and arcs and with multiple sources and sinks. The
algorithms are the first to solve the problem in near-linear time when the number of terminals
is fixed and the capacities are polynomially bounded. As a byproduct, we get the first
algorithm to solve the vertex-disjoint S − T paths problem in near-linear time when the
number of terminals is fixed but greater than 2. We also modify our algorithms to handle
real capacities in near-linear time when they are three terminals.
Second, we describe algorithms to compute element-connectivity and a related structure

called the reduced graph. We show that global element-connectivity in planar graphs can
be found in linear time if the terminals can be covered by O(1) faces. We also show that
the reduced graph can be computed in subquadratic time in planar graphs if the number of
terminals is fixed.
Third, we describe algorithms for solving or approximately solving the vertex-disjoint

paths problem when we want to minimize the total length of the paths. For planar graphs,
we describe: (1) an exact algorithm for the case of four pairs of terminals on a single face;
and (2) a k-approximation algorithm for the case of k pairs of terminals on a single face.
Fourth, we describe algorithms and a hardness result for the ideal orientation problem.

We show that the problem is NP-hard in planar graphs. On the other hand, we show that
the problem is polynomial-time solvable in planar graphs when the number of terminals is
fixed, the terminals are all on the same face, and no two of the terminal pairs cross. We also
describe an algorithm for serial instances of a generalization of the ideal orientation problem
called the k-min-sum orientation problem.
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CHAPTER 1: INTRODUCTION

Computer scientists have been trying to develop algorithms for planar and near-planar
graphs since the 1950s for two reasons. First, such graphs have substantial structure, and as
a result often admit algorithms that are faster and simpler than algorithms for general graphs.
Second, such graphs arise often in applications, especially in transportation, geographical
routing, computer vision, and VLSI design. Specific problems in planar graphs that have
applications include the maximum flow problem, the minimum cut problem, the shortest
path problem, and the disjoint paths problem. For example, road networks can be modeled
as planar graphs if we ignore bridges and tunnels, and so it is useful to find shortest paths in
planar graphs. In computer vision, pixels in images are often arranged in a two-dimensional
grid, and they need to be partitioned into clusters using minimum-cut algorithms. In VLSI
design, we need to pack components onto a chip so that the wires connecting the components
do not cross each other, so it is useful to find disjoint paths.
This thesis is concerned with two classes of problems: connectivity problems and disjoint

path problems. In connectivity problems, we are given, say, two vertices called terminals in
a graph, and we want to find the minimum number of graph components that we need to
remove in order to disconnect the two terminals. The set of removed components is called a
cut. Here a “component” can mean a vertex, or an edge, or something called an element [1,
2, 3]; depending on what we consider to be a component, we get different variations of
the problem. We also get different variations depending on whether the input graph is
directed or undirected, and whether or not the components of the graph are weighted. (If
the components are weighted, then we want to minimize the total weight of the removed
components instead of the number of removed components.) In another variation, there may
be more than two terminals. In this case, we may be interested in disconnecting any pair of
terminals, or we may designate some terminals to be sources and some to be sinks, in which
case we are only interested in disconnecting the sources from the sinks.
Theorems by Karl Menger [4] and by Lester R. Ford Jr. and Delbert R. Fulkerson [5] show

that there is an intimate connection between connectivity and maximum flows in graphs,
which are ways of routing commodities through graphs. In many cases, our best algorithms
for computing connectivity actually compute flows and then extract connectivity values from
those flows. Network flow problems are themselves an important class of problems studied
in operations research and computer science. They were first formulated in the 1950s by
Theodore E. Harris and Frank S. Ross, who were studying the Soviet rail network in Eastern
Europe [6]. Specifically, Harris and Ross wanted to compute how much of certain commodi-
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ties the network could transport from certain cities to other cities. Soon afterwards, Ford
and Fulkerson described an algorithm for this problem (and thus for network flow problems
in general) [5]. Since then, network flow has found further applications in transportation,
logistics, telecommunications, and scheduling [7].
The second class of problems that this thesis is concerned with are disjoint-paths problems.

In disjoint-paths problems, we are given a set of k pairs of vertices called terminals, and we
want to find k pairwise-disjoint paths such that the i-th path connects the i-th pair of
terminals. Here “pairwise-disjoint” can mean either edge-disjoint [8], vertex-disjoint [9], non-
crossing [10], or something a bit less standard called nonconflicting [11]. Shortest disjoint
paths problems are defined similarly, but we also want the k paths to be “short" in some sense;
for example, we may require that each path be a shortest path connecting its endpoints [12],
or that the sum of the lengths of the k paths be minimized [9, 13], or that the length of the
longest of the k paths be minimized [9]. As in the case of connectivity problems, we also
get different variations depending on whether the input graph is directed or undirected, and
whether the graph is weighted or unweighted. In still another variation, we want to connect
as many terminal pairs as possible via disjoint paths [14].
Disjoint paths problems are an important class of problems in graph theory, with appli-

cations in VLSI design [15, 16] and network routing [17, 18]. Both maximum-flow problems
and the disjoint paths problem are special cases of multicommodity flow problems. Specif-
ically, the maximum flow problem is a fractional multicommodity flow problem with only
a single commodity, while the edge-disjoint paths problem is an integral multicommodity
flow problem where each edge has unit capacity and each terminal pair has unit demand.
In addition, the version of the shortest edge-disjoint paths problem where we wish to mini-
mize the sum of the lengths of the paths is an integral minimum-cost multicommodity flow
problem where each edge has unit capacity, each terminal pair has unit demand, and each
edge has cost equal to its length.
In this thesis we study two connectivity problems and two shortest disjoint paths problems

in planar graphs: the maximum flow problem with vertex capacities; the element connec-
tivity problem; the minimum-sum shortest disjoint paths problem; and the ideal orientation
problem [19], in which we are asked to find nonconflicting paths that are also shortest paths.
These problems will be defined more precisely in section 2. All of them involve finding
paths, flows, or cuts that are optimal in some sense. For the two connectivity problems,
polynomial-time algorithms are already known [3, 20], and the primary open question is
whether or not the algorithms can be sped up in planar graphs, ideally to near-linear time.
The two shortest-disjoint-path problems are solvable in very special cases [9, 12] and are
NP-hard in general [19, 21], but many cases in between still have unknown complexity, even
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in planar graphs.
This thesis is organized as follows. In Chapter 2 we define the key concepts that will

be in used in the rest of the thesis. In Chapter 3 we investigate flow in directed pla-
nar graphs with vertex capacities and multiple sources and sinks. First, we show that for
unit capacities (equivalently, bounded integer capacities), maximum flows can be found in
O(min{k2n, n log3 n+ kn}) time, where k is the number of terminals. Second, we show that
for integer capacities, maximum flows can be found in O(k5n polylog(nU)) time, where U is
the maximum capacity of a single vertex or arc. Third, we show that for three terminals, we
can find maximum flows in O(n log n) time, even when the capacities are non-negative reals.
All three results are obtained by extending Kaplan and Nussbaum’s algorithm for finding
maximum flows in directed planar graphs with vertex capacities and a single source and
sink [22]; the second result also uses an algorithm of Borradaile et al. for finding maximum
flows in k-apex graphs [23].
In Chapter 4, we investigate element connectivity in planar graphs. We show that the

global element connectivity can be found in O(bn) time if the terminals can be covered by
b faces. In addition, we show that the reduced graph of a planar graph can be found in
O(kn5/3 log4/3 n) time, where k is the number of terminals.
In Chapter 5, we describe our results for the minimum-sum vertex-disjoint paths problem.

We show that for four terminal pairs on the same face of a planar graphs, the problem can
be solved in O(kn6) time. In addition, we describe a k-approximation algorithm for the case
where there are k terminal pairs on the same face of a planar graph.
In Chapter 6, we describe our results for the orientation problem in planar graphs. We

describe four results: (1) an O(n log n)-time algorithm for the ideal orientation problem when
all terminals are on the outer face in a certain order we call serial order; (2) a polynomial-
time algorithm for the ideal orientation problem when all terminals are on the outer face
and non-crossing, and the number of terminals is fixed; (3) a proof that the ideal orientation
problem is NP-hard in planar graphs if the terminals are allowed to be on any face and
the number of terminals is part of the input; and (4) an O(kn5)-time algorithm for the
minimum-sum orientation problem (in which the nonconflicting paths need not be shortest
paths but must have minimum total length) when all the terminals are on the outer face in
serial order.
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CHAPTER 2: PRELIMINARIES

2.1 GRAPHS

In this thesis, G is a simple plane graph with vertex set V (G), edge or arc set E(G), and
face set F (G). When there is no risk of confusion, we will write V for V (G), E for E(G),
or F for F (G). The graph G can be either directed or undirected; we will specify when we
need G to be one or the other. The graph G is also weighted; depending on the context, the
weight function is either a capacity function c or a length function `. Let n be the number of
vertices in G; it is well known that Euler’s formula implies |E(G)| = O(n). For any vertex
v ∈ V (G), let degG(v) denote the degree of v in G. If G is a graph and W ⊆ V (G), then
G \ W is the induced subgraph of G with vertex set V (G) \ W . For any integer N , let
[N ] = {1, . . . , N}.

Walks, paths, incoming arcs, outgoing arcs. We use uv or (u, v) to denote an arc or
directed edge that is directed from u to v, and {u, v} to denote an undirected edge connecting
u and v. A nontrivial walk is a sequence of arcs ((u1, v1), . . . , (up, vp)) such that vi = ui+1

for all i ∈ [1, p− 1]. Such a walk starts at u1 and ends at vp. If in addition vp = u1 then P
is a cycle. We can also have trivial walks that consist of no arcs; such walks start and end
at the same vertex. In a slight abuse of terminology, we will say that the walk W uses the
(undirected) edges {u0, v0}, . . . , {up, vp}. The directed walk W is in an undirected graph G
if {ui, vi} is an edge in G for all i ∈ {0, . . . p−1}. A walk W contains a vertex v if one of the
arcs of W has v as an endpoint. Thus we will sometimes view paths and cycles as sets of
vertices or as sets of arcs instead of as sequences of arcs. The walk ((u1, v1), . . . , (up, vp)) is
a path if u1, . . . , up, vp are all distinct. For any v ∈ V , let in(v) = {(u, v) | (u, v) ∈ E(G)} be
the set of incoming arcs of v, and let out(v) = {(v, u) | (v, u) ∈ E(G)} be the set of outgoing
arcs of v. Similarly, if W is a set of vertices, then in(W ) = {(u, v) ∈ E(G) | u /∈ W, v ∈ W}
and out(W ) = {(u, v) ∈ E(G) | u ∈ W, v /∈ W}.

Touching, subpaths, concatenation. Two walks meet or touch if they have at least one
vertex in common. Two regions touch or meet if their closures have non-empty intersection.
For any path P and any vertices u and v on that path, we write P [u, v] to denote the subpath
of P from u to v. Similarly, let P [u, v) denote the subpath of P from u to the predecessor
of v, let P (u, v] denote the subpath of P from the successor of u to v, and let P (u, v) denote
the subpath of P from the successor of u to the predecessor of v; these subpaths could be
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empty. The concatenation of two paths P and P ′ is denoted P ◦ P ′.

Predecessors, reversals, k-apex graphs. If u appears before vertex v on the walk P ,
then we write u ≺P v; we will only use this notation when there is no risk of ambiguity. The
reversal of any arc (u, v), denoted rev((u, v)), is (v, u). We may assume without loss of gen-
erality that if e ∈ E(G), then rev(e) ∈ E(G), and both e and rev(e) are embedded together.
If P is a path (e1, . . . , ep), then the reversal of P , denoted rev(P ), is (rev(ep), . . . , rev(e1)).
A graph Ga is a k-apex graph if there are k vertices whose removal from the graph would
make Ga planar. These k vertices are called apices.

Boundary and degree. For any plane graph G, we write ∂G to denote the boundary of
the outer face of G; we also informally call ∂G the boundary of G. In Chapter 5, we will
assume without loss of generality that ∂G is a simple cycle. We write deg(v) to denote the
degree of a vertex v.

Orientations and crossing. An orientation of an undirected graph G is a directed graph
H that is formed by replacing each edge {u, v} ∈ E(G) with exactly one of the arcs uv or
vu. If four terminals si, ti, sj, tj are on a common face, then we say that the terminal pairs
cross if their cyclic order (either clockwise or counterclockwise) on the face is si, sj, ti, tj;
otherwise, the terminals are noncrossing. Similarly, two embedded paths P1 and P2 cross
at a vertex v if there are four arcs or edges of P1 ∪ P2 incident to v and these edges or arcs
alternate between P1 and P2 in cyclic order around v.

Duality. If G is a plane graph, the dual graph G∗ of G has a vertex h∗ for every face h of G,
and an arc e∗ for every arc e of G. The arc e∗ is directed from the vertex of G∗ corresponding
to the face in G on the left side of e, to the vertex of G∗ corresponding to the face in G

on the right side of e. If e is undirected, then so is e∗. Any undirected edge {u, v} can be
represented by two directed arcs (u, v) and (v, u), each with the same weight as {u, v}. We
put lengths `(e∗) on the arcs e∗ of G∗ as follows: `(e∗) = c(e) for every e ∈ E(G).

2.2 FLOWS AND CONNECTIVITY

2.2.1 Maximum flows

Suppose that G is a directed planar graph such that two disjoint subsets of V (G) are
special: S is a set of sources and T is a set of sinks. In the context of maximum flow,
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vertices that are in either S or T are called terminals, and k is the number of terminals.
Suppose further that each arc e has a non-negative capacity c(e) and each non-terminal
vertex v has a positive capacity c(v). In this case we say that G is a flow network.

f in, f out, flows, feasibility. Let f : E(G)→ [0,∞]. To lighten notation, in this thesis we
will write f(u, v) instead of f((u, v)) for any arc (u, v). For each vertex v, let

f in(v) =
∑
e∈in(v)

f(e) and f out(v) =
∑

e∈out(v)

f(e). (2.1)

Similarly, if W is a set of vertices, then let

f in(W ) =
∑

e∈in(W )

f(e) and f out(W ) =
∑

e∈out(W )

f(e). (2.2)

The function f is a flow in G if it satisfies the following flow conservation constraints:

f in(v) = f out(v) ∀v ∈ V (G) \ (S ∪ T ) (2.3)

A flow is feasible if in addition it satisfies the following two types of constraints:

0 ≤ f(e) ≤ c(e) ∀e ∈ E(G) (2.4)

f in(v) ≤ c(v) ∀v ∈ V (G) \ (S ∪ T ) (2.5)

Constraints of the first type are arc capacity constraints and those of the second type are
vertex capacity constraints. A flow f routes f(e) units of flow through the arc e. An arc
e ∈ in(v) carries flow into v if f(e) > 0, and an arc e′ ∈ out(v) carries flow out of v if
f(e′) > 0. We assume that min{f(e), f(rev(e))} = 0 for every arc e.

Maximum flow problem. In the maximum flow problem, we are trying to find a feasible
flow f with maximum value, where the value |f | of a flow f is defined as

|f | =
∑
s∈S

(f out(s)− f in(s)). (2.6)

When all arc capacities are 1 and vertex capacities are infinite, the maximum flow problem
becomes the arc-disjoint S-T paths problem, and the value of the maximum flow is the
maximum number of arc-disjoint paths from vertices in S to vertices in T . Similarly, when
all the vertex and arc capacities are 1, the maximum flow problem becomes the vertex-disjoint
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S-T paths problem. In addition, we can define an undirected version of the maximum flow
problem by requiring c(rev(e)) = c(e) for all edges e in undirected graphs. When G is
undirected and all edge capacities are 1 and vertex capacities are infinite, the maximum flow
problem becomes the edge-disjoint paths problem.
Note that capacities may be infinite, and we can assume without loss of generality that

terminals have infinite capacity: if a source s has finite capacity c, then we can add a node
s′, an arc (s′, s) of capacity c, replace s with s′ in S, and let s′ have infinite capacity, all
while preserving planarity. A similar reduction eliminates finite capacities on the sinks. Fur-
thermore, we may assume without loss of generality that none of the sources have incoming
arcs and none of the sinks have outgoing arcs.

val(G) and circulations. Let val(G) be the value of the maximum flow in a flow network
G (which may have vertex capacities). A circulation is a flow of value 0. A circulation g is
simple if gin(v) = gout(v) for every terminal v. Non-simple circulations only exist if there
are more than two terminals. A flow f has a flow cycle C if C is a cycle and f(e) > 0 for
every arc e in C, and f is acyclic if it has no flow cycles. A flow cycle C of a flow f is unit
if f(e) = 1 for every arc e in C. A flow f saturates an arc e if f(e) = c(e). A flow is a
path-flow if its support is a path.

Basic operations. We will often add two flows f and g together to obtain a flow f + g,
or multiply a flow f by some constant c to get a flow cf . These operations are defined in
the obvious way: for every arc e, we have

(f + g)(e) = max{0, f(e) + g(e)− f(rev(e))− g(rev(e))} (2.7)

(cf)(e) = c · f(e) (2.8)

The graph Gst. Given a flow network with multiple sources and sinks, we can reduce
the maximum flow problem to the single-source, single-sink case by adding a supersource s,
supersink t, infinite-capacity arcs (s, si) for every si ∈ S, and infinite-capacity arcs (ti, t) for
every ti ∈ T . Call the resulting flow network Gst. Finding a maximum flow in the original
network G is equivalent to finding a maximum flow from s to t in Gst. The graph Gst is
not necessarily planar but is a 2-apex graph. In this thesis, we will work in Gst instead of
G when we want circulations to be unions of flow cycles; in G, circulations can consist of
source-to-source or sink-to-sink paths.
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The flow graph fG. Given a flow f in a flow network G, the flow graph of f is a graph fG
that contains all the vertices of G but only contains the arcs of G that carry non-zero flow;
furthermore, each arc e in fG has weight f(e). Depending on the context, we will interpret
these arc weights as either capacities or flow.

The extended graph G◦. Given a flow network G with vertex capacities, Kaplan and
Nussbaum [22] defined the extended graphG◦ based on constructions of Khuller and Naor [24],
Zhang, Liang, and Jiang [25], and Zhang, Liang, and Chen [26]. Starting with Gst, we replace
each finitely capacitated vertex v ∈ V (Gst) with an undirected cycle of d vertices v1, . . . , vd,
where d = |in(v)| + |out(v)| is the degree of v. Each edge in the cycle has capacity c(v)/2.
(An undirected edge e with capacity c(e) can be viewed as two arcs e and rev(e), each with
capacity c(e), so G◦ can be viewed as a directed flow network.) We make every arc that was
incident to v incident to some vertex vi instead, such that each arc is connected to a different
vertex vi, the clockwise order of the arcs is preserved, and the graph remains planar. We
also identify the new arc (u, vi) or (vi, u) with the old arc (u, v) or (v, u) and denote the
cycle replacing v by Cv. The resulting graph G◦ has O(n) vertices and arcs. See Figure 2.1.
This idea of eliminating vertex capacities in planar graphs by replacing each vertex with

a cycle has also been used in the context of finding shortest vertex-disjoint paths in planar
graphs [13].

The graph G. Given a flow network G with vertex capacities, let G be the flow network
obtained as follows: Starting with Gst, replace each capacitated vertex v with two vertices
vin and vout, and add an arc of capacity c(v) directed from vin to vout. All arcs that were
directed into v are directed into vin instead, and all arcs that were directed out of v are
directed out of vout instead. See Figure 2.1. It is well known that every feasible flow in Gst

corresponds to a feasible flow in G of the same value, and vice versa. The graph G has O(n)

vertices and arcs.

Restrictions and extensions. Suppose G and H are flow networks such that every arc
in G is also an arc in H. If f ′ is a flow in H, then the restriction of f ′ to G is the flow f

in G defined by f(e) = f ′(e) for all arcs e ∈ E(G). Conversely, if f is a flow in G, then an
extension of f to H is any flow f ′ in H such that f(e) = f ′(e) for every arc e ∈ E(G).
Every arc in G or Gst is an arc in both G and G◦. Every feasible flow in G has a feasible

restriction in G. Conversely, every feasible flow f in G has a feasible extension f in G, by
defining f(vin, vout) = f in(v). Every feasible flow in G◦ has a restriction in G; this restriction
is a flow but is not necessarily feasible. On the other hand, we have the following lemma:
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(a) (b) (c)

Figure 2.1: (a) capacitated vertex v ∈ G with capacity c(v) (b) corresponding cycle Cv in
G◦; each edge in Cv has capacity c(v)/2 (c) corresponding arc (vin, vout) in G with capacity
c(v)

Lemma 2.1. Every feasible flow f in G has an extension f ◦ that is feasible in G◦. Further-
more, we can find f ◦ in O(n log3 n) time.

Proof. To show that f ◦ exists, we use the well-known flow decomposition theorem, which
states that any flow f in G can be decomposed into a sum of flows f1, . . . , fm such that for
each i, the support of fi is either a cycle or a path from a source to a sink. For each i ∈ [m],
let pi be the support of fi and let ui = |fi|.
For each capacitated vertex w ∈ G, we define f ◦ on the cycle Cw in G◦ as follows: for each

i ∈ [m], if some arc in pi carries ui units of flow into a vertex x on Cw and another arc in pi
carries ui units of flow out of a vertex x′ on Cw, then we route ui/2 units of flow clockwise
along Cw from x to x′ and ui/2 units of flow counter-clockwise along Cw from x to x′. It is
easy to see that f ◦ satisfies conservation constraints. Since f in(Cw) ≤ c(w), no arc on Cw
carries more than c(w)/2 units of flow, so f ◦ is feasible.
We now describe how to find f ◦. We must define f ◦(e) = f(e) for all arcs e ∈ E(G). We

reduce the problem of finding f ◦ on all other arcs to finding a flow in a planar flow network
H. Let H be the subgraph of G◦ consisting of all cycles Cv where v is a capacitated vertex
in G; it suffices to define f ◦ on the arcs of H. Recall that for all v ∈ V (G), the vertices in
Cv are v1, . . . , vd in clockwise order, where d = degG(v). For each vertex vi in H, let ei,v be
the unique arc in G incident to vi. When it is clear what vertex v is, we will write ei instead
of ei,v. For each v ∈ V (G) and i ∈ [degG(v)], let

demand(vi) =

−f(ei) if ei ∈ in(vi)

f(ei) if ei ∈ out(vi)
(2.9)

That is, demand(vi) is the net amount of flow that f ◦ carries out of vi using only arcs in
E(G). For each vertex vi such that demand(vi) is negative, let vi be a source in H; similarly,
if demand(vi) is positive, let vi be a sink in H. For each v ∈ V (G),

∑degG(v)
i=1 demand(vi) = 0.
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(a) (b)

Figure 2.2: Extending a flow from G to G◦. (a) An example of f at v; arcs are labeled with
their flow values (b) H at Cv with terminals labeled with their demand values; v1 and v3 are
sources; v2 and v4 are sinks

See Figure 2.2.
Since f ◦ exists, there exists a flow fH in H such that f outH (vi) = −demand(vi) for every

source vi and f inH (vi) = demand(vi) for every sink vi. To actually find fH , we do the following.
For each source vi in H, we add a vertex v′i that will be a source instead of vi, and we add
an arc (v′i, vi) with capacity −demand(vi); similarly, for each sink vj in H, we add a vertex
v′j that will be a sink instead of vj, and we add an arc (vj, v

′
j) with capacity demand(vj).

Then fH is an acyclic maximum flow in the resulting network. The restriction of fH to H
is exactly f ◦ on the arcs of H. Finding fH requires finding a maximum flow in a union of
disjoint “suns” with multiple sources and sinks, where a sun is a cycle in which each vertex
has a pendant arc appended to it. This can be done in, say, O(n log3 n) time using the
algorithm of Borradaile et al. [23]. Simpler and more intuitive algorithms exist but are not
necessary, as this will not the bottleneck when we use it. QED.

Thus given a flow in G we can easily compute a corresponding flow in G◦, and vice versa.

The residual graph. If f is a flow in a flow network G with capacity function c and
without vertex capacities, then the residual capacity of an arc e with respect to f and c,
denoted cf (e), is c(e)− f(e) + f(rev(e)). The residual graph of G with respect to f and c (or
just the residual graph of G with respect to f when c is the capacity function given as input)
has the same vertices and arcs as G, but each arc e has capacity cf (e). A residual arc of G
with respect to f is an arc with positive residual capacity, a residual path is a path made up
of residual arcs, and a residual cycle is a cycle made up of residual arcs. It is well known
that a flow f is a maximum flow in a graph G if the residual graph of G with respect to f
does not have any residual paths from a source to a sink.

Fractional and integer flows. A flow f ◦ in G◦ is an integer flow if f ◦(e) is an integer
for every arc e in G; otherwise, f ◦ is fractional. A flow in G is integer if it is integer-valued
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on all arcs of G and is fractional otherwise.
We now prove the following lemma:

Lemma 2.2. Let f ◦ be a fractional flow in G◦ such that |f ◦| is an integer. Then there exists
an integer flow f ◦1 in G◦ of the same value as f ◦ such that (f ◦1 )in(Cv) ≤ d(f ◦)in(Cv)e for
every vertex v ∈ V (G). Furthermore, we can find f ◦1 in O(n log3 n) time.

First let f be the restriction of f ◦ to G, and let f be the extension of f to G. Since G has
O(n) arcs, results by Lee et al. [27] and by Kang and Payor [28] imply the following.

Lemma 2.3. Let f be a fractional flow in G such that |f | is an integer. Then there exists
an integer flow f1 in G of the same value as f such that f1(e) ≤

⌈
f(e)

⌉
for every arc e in

G. Furthermore, we can find f1 in O(n log n) time.

Compute f1 as in Lemma 2.3 and let f1 be the restriction of f1 to G. Finally, we define
f ◦1 to be an extension of f1 to G◦; by Lemma 2.1, we can do this in O(n log3 n) time.
We need to show that f ◦1 is the desired integer flow. Since f1 is an integer flow in G, f ◦1 is

an integer flow in G◦. Also, we have |f ◦1 | = |f1| = |f1| = |f | = |f | = |f ◦|. Lemma 2.3 implies
that for every v ∈ V (G), we have

f1(v
in, vout) ≤

⌈
f(vin, vout)

⌉
(2.10)

=⇒ f in1 (v) ≤ df in(v)e (2.11)

=⇒ (f ◦1 )in(Cv) ≤
⌈
(f ◦)in(Cv)

⌉
. (2.12)

Thus we have described how to convert a fractional flow f ◦ in G◦ to an integer flow f ◦1 in
G◦ of the same value, such that for each v ∈ V (G), the flow going into Cv under f ◦1 is at
most the flow going into Cv under f ◦ (assuming that |f ◦| is an integer and G◦ has integer
arc capacities).

Canceling flow-cycles. We implicitly use three algorithms that allow us to assume with-
out loss of generality that certain flows are acyclic. The first is by Kaplan and Nussbaum [22]:

Lemma 2.4. Suppose we are given a feasible flow f ◦ in G◦. By canceling flow-cycles, we
can compute in O(n) time another feasible flow of the same value as f ◦ whose restriction to
G is feasible and acyclic.

We describe this algorithm in more detail in Section 2.2.2. Using this first algorithm, we
can assume that whenever we compute a flow in G◦, the restriction of that flow to G is
acyclic. The second algorithm we use implicitly is also by Kaplan and Nussbaum. Using the
algorithm of Lemma 2.4, they show the following [22]:
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Lemma 2.5. Suppose we are given a feasible flow in any planar graph. By canceling flow-
cycles, we can compute in O(n) time an acyclic flow of the same value as that of the given
flow.

Using this second algorithm, we can assume that any flow we compute in a planar graph
is acyclic. The third algorithm that we use implicitly is by Sleator and Tarjan [29]:

Lemma 2.6. Given a flow in a flow network with O(n) vertices and arcs, we can compute
another flow of the same value that is acyclic in O(n log n) time by canceling flow-cycles.

Using this third algorithm, we may assume that if we compute a flow in a graph with
O(n) arcs in Ω(n log n) time, then that flow is acyclic.

2.2.2 Proof sketch of Lemma 2.4

The purpose of this subsection is to describe the algorithm of Lemma 2.4. This is needed
for the proof of Lemma 3.11. We will not prove the correctness of the algorithm, as that has
been done elsewhere [22] [30].
The algorithm has three steps and is based on an algorithm of Khuller, Naor, and Klein [30]

that finds a circulation without clockwise residual cycles in a directed planar graph in O(n)

time.

Finding a circulation without clockwise residual cycles. We describe the algorithm
of Khuller, Naor, and Klein that finds a circulation g in G◦ without clockwise residual
cycles [30].
The graph G◦ \ {s, t} is planar. Let h∞ be the infinite face of G◦ \ {s, t}, and let h∗∞ be

its dual vertex. Using the algorithm of Henzinger et al. [31], compute the shortest path tree
rooted at h∗∞ in (G◦ \ {s, t})∗ in O(n) time. For every face h of G, let Φ(h) be the distance
in (G◦ \ {s, t})∗ from h∗∞ to h∗. For any arc e ∈ E(G◦ \ {s, t}), we define g(e) as follows. Let
h` be the face on the left of e and hr be the face on the right of e. If Φ(hr) ≥ Φ(h`), then
set g(e) = Φ(hr) − Φ(h`). Otherwise, set g(e) = 0 (and g(rev(e)) will automatically be set
to Φ(h`)−Φ(hr)). Khuller, Naor, and Klein [30] proved that the resulting flow function g is
a simple circulation in G◦ such that G◦ has no clockwise residual cycles with respect to g.

Finding a flow without clockwise residual cycles. Let f ◦ be a feasible flow in G◦.
We describe an algorithm due to Kaplan and Nussbaum [22] that computes a flow f ◦1 in G◦

with the same value as f ◦ and without clockwise residual cycles. A symmetric algorithm can
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then compute a flow in G◦ with the same value as f ◦ and without counterclockwise residual
cycles.
Let G◦f be the residual graph of G◦ with respect to f ◦. Using the algorithm of step 1, find

a circulation g in G◦f such that G◦f does not have clockwise residual cycles with respect to
g. Now define f ◦1 = f ◦ + g. Computing f ◦1 takes O(n) time. Kaplan and Nussbaum showed
that f ◦1 is a feasible flow in G◦ with the same value as f ◦ and without clockwise residual
cycles [22].

Finding an acyclic flow. Finally, let f ◦ be a feasible flow in G◦. We describe the algo-
rithm due to Kaplan and Nussbaum [22] that computes a flow of the same value as f ◦ whose
restriction to G is acyclic. We will do this by first eliminating counterclockwise flow-cycles
to get a flow f ◦1 ; a symmetric algorithm then eliminates clockwise flow-cycles.
Define a new capacity function c1 on the arcs of G◦ by first setting c1(e) = f ◦(e) for

e ∈ E(G). This will ensure that we do not increase the flow along any arc of G. All other
arcs in G◦ are in Cv for some vertex v; for these arcs e we set c1(e) = c(e) = c(v)/2. Now
we apply the previous algorithm to G◦ and c1 to find a flow f ◦1 with the same value as f ◦

such that there are no clockwise residual cycles in G◦ with respect to f ◦1 and c1. Kaplan
and Nussbaum [22] showed that the restriction of f ◦1 to G does not contain counterclockwise
flow-cycles.
We now repeat the previous procedure symmetrically, by defining a new capacity c2 that

restricts the flow on every arc e of G to be at most f ◦1 (e), and finding a circulation in G◦

without counterclockwise residual cycles. This way we get from f ◦1 a flow f ◦2 of the same
value whose restriction to G does not contain clockwise flow-cycles in G. For every e ∈ E(G),
we have f ◦2 (e) ≤ f ◦1 (e) ≤ f ◦(e), so we did not create any new flow-cycles when going from
f ◦ to f ◦1 to f ◦2 . Thus f ◦2 is a feasible flow in G◦ with the same value as f ◦ whose restriction
to G is feasible and acyclic.

2.2.3 Element-connectivity

Suppose we are given an undirected graph G with two vertices s and t. The maximum
number of pairwise edge-disjoint paths from s to t is called the edge-connectivity between s
and t in G, and we denote it by λG(s, t). This quantity λG(s, t) can be computed by any
maximum flow algorithm. By the edge-connectivity version of Menger’s theorem, λG(s, t)

is the minimum number of edges whose removal from the graph would disconnect s from t

in G [4]. The maximum number of pairwise vertex-disjoint paths from s to t is called the
vertex-connectivity between s and t in G, and we denote it by κG(s, t). If there is no edge
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connecting s and t, then κG(s, t) is the minimum number of vertices other than s and t

whose removal would disconnect s from t.

Element connectivity. Again suppose G is an unweighted, undirected graph. Let T ⊂
V (G) be a set of terminals, and in this context let k = |T |. Vertices not in T are called
non-terminals, and an element is an edge or a non-terminal. Let κ′(u, v) denote the element-
connectivity between two terminals u and v; this is the minimum number of elements whose
removal would disconnect u from v, which by Menger’s theorem is equal to the maximum
number of element-disjoint paths between u and v [4]. Finally, the global element-connectivity
κ′(T ) is minu,v∈T κ

′(u, v). This is the minimum number of elements whose deletion separates
some pair of terminals.
By subdividing each edge between terminals using a new non-terminal, we can assume

that T is an independent set. In this case, κ′(u, v) becomes the minimum number of non-
terminals whose removal would disconnect u from v. Element-connectivity is related to edge-
connectivity and vertex-connectivity as follows. If we set T = V , then element-connectivity
becomes edge-connectivity. Also, if |T | contains exactly two vertices s and t, then κ′G(s, t) =

κG(s, t).
The element-connectivity between u and v is equal to the value of the maximum flow

between u and v if every edge and non-terminal has unit capacity. Khuller and Naor [24]
showed that when there is a single source and sink, one can eliminate vertex capacities
while preserving the maximum-flow value and planarity by replacing each vertex of capacity
c(v) with a cycle of deg(v) bi-directed edges, each with capacity c(v)/2. Previously, we
defined this new graph to be G◦. See Figure 2.1. The reduction shows that finding element-
connectivity values in planar graphs reduces to finding edge-connectivity values in planar
graphs.

The reduced graph. Element connectivity has applications in packing disjoint Steiner
trees and forests because of a structure called the reduced graph, which we now describe.
The reduced graph is known to exist because of the following theorem due to Chekuri and
Korula [2].

Theorem 2.1. Let G = (V,E) be an undirected graph and T ⊆ V be a set of terminals.
Let e be any edge whose endpoints are non-terminals. Now let G1 = G \ e and G2 = G/e

Then at least one of the following holds:

• For all u, v ∈ T , we have κ′G(u, v) = κ′G1
(u, v).

• For all u, v ∈ T , we have κ′G(u, v) = κ′G2
(u, v).
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By repeatedly applying the theorem, we get:

Corollary 2.1. Let G = (V,E) be an undirected graph and T ⊆ V be a set of terminals.
There is a minor H = (V ′, E ′) of G such that T ⊆ V ′; both T and V ′ \ T are independent
sets in H; and κ′H(u, v) = κ′G(u, v) for all terminals u, v.

This graph H is the reduced graph.

2.3 DISJOINT PATHS AND ORIENTATIONS

Suppose each edge e ∈ E(G) has a non-negative length `(e). The length of a walk w

in G, which we denote with `(w), is the sum of the lengths of its edges, with appropriate
multiplicity if w is not a simple path. The total length of any set of walks W , which we
denote with `(W) =

∑
w∈W `(w), is just the sum of their lengths. The distance from a vertex

u to a vertex v in a graph G is the length of a shortest walk from u to v and is denoted by
dG(u, v); this walk will be a simple path.
In an abuse of terminology, we say that two directed paths are edge-disjoint if their

underlying undirected paths are edge-disjoint (we assume each arc uv is embedded together
with its reversal vu).
In the vertex-disjoint paths problem, we are given a graph G along with k vertex pairs

(s1, t1), . . . , (sk, tk), and we want to find k pairwise vertex-disjoint paths connecting each
node si to the corresponding node ti. In this context, the vertices s1, . . . , sk, t1, . . . , tk are
called terminals. The problem is NP-hard [32] and is not to be confused with the previously-
defined vertex-disjoint S − T paths problem, which is a special case of the maximum flow
problem and thus polynomial-time solvable. The edge-disjoint paths problem or arc-disjoint
paths problem are defined similarly, except that we require the paths to be pairwise edge-
disjoint or arc-disjoint, respectively, not vertex-disjoint. Note that for the vertex-disjoint
paths problem, we may assume without loss of generality that the terminals are distinct,
because otherwise the desired paths do not exist.

2.3.1 Shortest disjoint paths

In the k-min-sum vertex-disjoint paths problem, we are given a graph G, in which every
edge e has a non-negative real length `(e), and k pairs of vertices (s1, t1), . . . , (sk, tk), and
our goal is to compute vertex-disjoint paths P1, . . . , Pk, where each path Pi is a path from si

to ti, and the total length
∑k

i=1 `(Pi) is as small as possible. (Here `(Pi) =
∑

e∈Pi
`(e).) The
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Figure 2.3: An example where k = 4 and the order of the terminals on the outer face is
s1, t1, s2, t2, t3, t4, s4, s3. The solid black graph is GD ∪ ∂G, and the dashed red graph is the
demand tree T . Non-terminal vertices on ∂G have not been drawn. Edges e1, . . . , e4 are red
and dashed.

k-min-min problem is similar but requires us to minimize minki=1 `(Pi), while the k-min-max
problem requires us to minimize maxki=1 `(Pi).
Given an instance of the k-min-sum problem with all terminals on the outer face of G, we

define the demand graph GD to be the graph whose vertices are the terminals of G and that
has an edge between si and ti for all i; furthermore, the vertices of GD should be embedded
in the same places as they are embedded in G, and the edges of GD should be embedded
inside ∂G. We then define the demand tree T as T = (GD ∪ ∂G)∗ \ (∂G)∗. Here, the union
of two graphs (V,E) and (V ′, E ′) is (V ∪ V ′, E ∪E ′), G∗ is the dual graph of G, and (∂G)∗

denotes the cocycle in (GD ∪∂G)∗ corresponding to the cycle ∂G in GD ∪∂G. Each demand
pair (si, ti) corresponds to an edge siti in GD and an edge in T , which we denote by ei.
Two demand pairs (si, ti) and (sj, tj) are adjacent if their corresponding edges ei and ej in
T are incident to a common vertex. If the demand tree T is rooted, then a demand pair
(si, ti) is a child of the demand pair (sj, tj) if ei and ej are adjacent and both endpoints of
ei are descendants of both endpoints of ej; in this case (sj, tj) is the parent of (si, ti). See
Figure 2.3.
In Chapter 5, we will describe an algorithm that solves a 4-min-sum problem. We will

assume that our given instance of 4-min-sum and every instance of 2-min-sum and 3-min-
sum considered by our algorithm has a unique solution. If necessary, these uniqueness
assumptions can be enforced with high probability using the isolation lemma of Mulmuley,
Vazirani, and Vazirani [33]:

Lemma 2.7 (Isolation Lemma). Let n and N be positive integers, and let F be an arbitrary
family of subsets of the universe [n]. Suppose each element x ∈ [n] receives an integer weight
w(x), each of which is chosen independently and uniformly at random from [N ]. With
probability at least 1 − n/N , there is a unique set in F that has minimum total weight
among all sets of F .
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To enforce uniqueness, we define a new length function `′(e) = `(e) + ε · w(e), where ε is
a formal infinitesimal, and w(e) is chosen uniformly at random from [N ]. Equivalently, we
consider lengths of edges—and by extension, lengths of paths—to be ordered pairs (`, w),
which we add as vectors and compare lexicographically. Now two (sets of) paths have equal
perturbed length only if their actual lengths are equal and their infinitesimal perturbation
terms are equal.
In our application of the isolation lemma, F is the family of vertex-disjoint paths con-

necting corresponding terminals in some k-min-sum instance. Our algorithm computes the
solutions to O(n5) k-min-sum subproblems (each with k ≤ 3). Thus, if we set N = O(n6),
the Isolation Lemma implies that with probability at least 1 − Ω(1/n), all feasible solu-
tions to all such subproblems have distinct perturbation terms, which implies that all such
subproblems have unique optimal solutions. In fact, however, we only require a constant
number of these subproblems to have unique solutions, so it suffices to set N = Θ(n2).

2.3.2 Orientation

In orientation problems, G is a simple undirected plane graph, each edge e ∈ E(G) has a
positive length `(e) > 0, and (s1, t1), . . . , (sk, tk) are k pairs of vertices in G. As usual, the
vertices s1, t1, . . . , sk, tk are called terminals. An orientation of G is a directed graph that is
formed by assigning a direction to each edge in G. For any orientation H of G, let d′(u, v)

be the distance from u to v in H. In the orientation problem, we want to find an orientation
H of G such that for all i ∈ {1, . . . , k}, ti is reachable from si in H. In the ideal orientation
problem, we want to find an orientation G′ of G such that for all i, d(si, ti) = d′(si, ti).

Nonconflicting paths. It is possible to reformulate the ideal orientation problem in terms
of finding nonconflicting shortest paths; we will use this reformulation in Chapter 6. Two
directed walks P and Q in G conflict if there is an edge {u, v} in G such that uv is an arc
in P and vu is an arc in Q. Two walks are nonconflicting if they do not conflict. The ideal
orientation problem then asks us to find pairwise nonconflicting directed walks P1, . . . , Pk

such that Pi is a shortest path from si to ti for all i ∈ {1, . . . k}. We call the set of such
paths a solution to the instance.

k-min-sum, k-min-max, and k-min-min problems. In the k-min-sum orientation
problem, the input is the same as the input to the ideal orientation problem, and we still
want to find paths P1, . . . , Pk such that Pi connects si to ti, but now our goal is to minimize
the sum of the lengths of the paths Pi instead of insisting that each Pi be a shortest path.
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The k-min-sum orientation problem is at least as hard as the ideal orientation problem. The
k-min-max orientation problem is the same as the k-min-sum orientation problem except
that we want to minimize the length of the longest path Pi instead of the sum of the lengths
of the paths, the k-min-min orientation problem requires us to minimize the length of the
shortest path Pi.

2.3.3 Partially edge-disjoint noncrossing paths

In the partially vertex-disjoint paths problem (PVPP), we are given a directed planar
graph H, vertices u1, v1, . . . , uh, vh; subgraphs H1, . . . , Hh of H; and a set S of pairs {i, j}
from {1, . . . , h}. We wish to find directed paths Q1, . . . , Qh such that

• Qi connects ui to vi for all i,

• Qi is in Hi for all i, and

• for all i, j, if {i, j} ∈ S then Qi and Qj are vertex-disjoint.

Note that we do not require the paths to be shortest paths; in fact the graph H is un-
weighted. Schrijver [34] solved the partially vertex-disjoint paths problem for fixed h in
polynomial time. He does not state the running time of the algorithm, but it appears to be
(poly(|V (H)|))h2 .

Partially noncrossing edge-disjoint paths problem (PNEPP). PNEPP is the same
as PVPP except that if {i, j} ∈ S, then we require the directed paths Qi and Qj to be non-
crossing edge-disjoint paths instead of vertex-disjoint paths. (Recall that by “edge-disjont”
we mean that if Qi uses e then Qi can use neither e nor rev(e).)

Reduction. We now describe a polynomial-time reduction from PNEPP to PVPP. Sup-
pose we are given an instance H of PNEPP with terminal pairs (u1, v1), . . . , (uh, vh) and a set
S of pairs of indices of terminals, and subgraphs H1, . . . , Hh. We construct an instance H ′

of PVPP by replacing each non-terminal vertex v with a 2h× 2h grid gv of bidirected edges,
where n = |V (G)|. (The grid can be made smaller, say pv × pv where pv = max{k, deg(v)},
but this suffices for our purposes.) Every arc that was incident to vertex v in H is instead
incident to a vertex on the boundary of gv; furthermore, we can make it so that no two arcs
in H share endpoints in H ′. See Figure 2.4. The subgraphs H1, . . . , Hh and the terminals
s1, t1, . . . , sh, th are the same in H ′ and H. To show that this reduction is correct we need
to prove the following lemma:
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(a) (b) (c)

Figure 2.4: (a) a dashed red path and a dotted blue path going through a vertex v in G (b)
corresponding grid gv in H with k = 2. (c) routing the dashed red path and dotted blue
path through gv, in the proof of Lemma 2.8

Lemma 2.8. The following two statements are equivalent:

1. In G, there exist paths P1, . . . , Ph such that Pi connects ui to vi, Pi is in Hi for all i,
and if {i, j} ∈ S then Pi and Pj are noncrossing and edge-disjoint.

2. In H, there exist paths Q1, . . . , Qh such that Qi connects ui to vi, Qi is in Hi for all i,
and if {i, j} ∈ S then Qi and Qj are vertex-disjoint.

Proof. ⇒: Suppose that noncrossing partially edge-disjoint paths P1, . . . , Ph exist in G. We
construct paths Q1, . . . , Qh as follows. For any arc e in Pi, we add e to Qi. This defines
the portions of the paths Q1, . . . , Qh outside the grids gv; these portions are vertex-disjoint
because by construction the endpoints of G are all distinct.
To find the portions of Q1, . . . , Qh inside a single grid gv, we need to solve the following

problem. Suppose k′ of the paths P1, . . . , Ph went through v in G. Re-index the paths such
that P1, . . . , Pk′ go through v and Pk′+1, . . . , Ph do not. We are given a subgraph g of the
n × n bidirected grid with k′ pairs of noncrossing terminals (w1, x1), . . . , (wk′ , xk′) on the
boundary of g, and we want to find pairwise vertex-disjoint paths in g such that the i-th
path πi connects wi to xi. To solve this problem, we route the paths one by one as follows.
List the terminals w1, x1, . . . , wk′ , xk′ in cyclic order around the outer face of g; there must
be some i such that the two vertices wi and xi appear consecutively in this list. Terminals wi
and xi split the boundary of g into two segments; we let πi be the portion of the boundary
that does not contain any other terminals. Remove the vertices of πi from g and recursively
compute the other paths π1, . . . , πi−1, πi+1, . . . , πh′ .
Routing πi is possible as long as g is connected. Each time we recurse, the outerplanarity

index of the g goes down by at most 1. Initially, g is the 2h× 2h grid, so the outerplanarity
index of g starts at h ≥ k′. Thus our recursive algorithm is able to connect all the pairs
(x1, w1), . . . , (xh′ , wh′).
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⇐: Suppose partially vertex-disjoint paths Q1, . . . , Qh exist in H. Trivially, the paths
Q1, . . . , Qh are noncrossing partially edge-disjoint too. Each path Pi can be defined to be
the “projection” of Qi into G in the obvious way: an arc e of G is in Pi if and only if e was
in the original path Qi.
The paths P1, . . . , Pk are noncrossing because the paths Q1, . . . , Qk are noncrossing. We

now show that the paths P1, . . . , Pk are pairwise edge-disjoint. Suppose for the sake of
argument that Pi and Pj share an arc uv. Arc uv is in the original graph G, so it must
connect the grid gu to the grid gv. Since there is only one edge in H that connects gu to gv,
this means that Qi and Qj both use this arc, and so are not vertex-disjoint. QED.

The reduction clearly runs in polynomial time.
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CHAPTER 3: MAXIMUM FLOW WITH VERTEX CAPACITIES

As noted in the introduction, the maximum flow problem was introduced in the 1950s
by Harris and Ross [6], who were studying the Soviet rail network in Eastern Europe and
wanted to compute how much of certain commodities the network could transport from
certain cities to other cities. They modeled the rail system as a directed graph: the rail
lines become edges and the interchanges become vertices. The quantity they wanted to
compute was how much traffic (or flow) the network could handle. Ford and Fulkerson gave
an algorithm that solved this problem, and also proved a duality theorem for the maximum
flow problem called the max-flow min-cut theorem [5]. Given a flow network G with a single
source s and single sink t, we define a cut to be a set of edges, arcs, and vertices whose
removal from G would destroy all paths from s to t, and the capacity of a cut is the sum of
the capacities of the edges, arcs, and vertices in that cut. The minimum cut is the cut with
minimum capacity. The max-flow min-cut theorem says that the value of the maximum flow
is always equal to the capacity of the minimum cut. A special case of this theorem is the
arc-connectivity version of Menger’s theorem [4], which states that the maximum number of
arc-disjoint paths connecting s to t in a directed graph is equal to the minimum number of
arcs whose removal would destroy all paths from s to t.
Since Ford and Fulkerson, many researchers have worked on finding fast algorithms for

the maximum flow problem, some of which we use in this thesis. Ford and Fulkerson them-
selves described an augmenting-path algorithm computing maximum flows in general di-
rected graphs with integer capacities in O(mU∗) time, where m is the number of arcs in the
flow network and U∗ is the value of the maximum flow. Currently, the fastest algorithms
for general graphs run in O(mn) time for real capacities [20], Õ(m10/7) time for unit capaci-
ties [36], and O(mmin(n2/3,

√
m) log n2

m
logU) time for integer capacities [37], where U is the

maximum capacity in G. (Here and in the rest of this proposal, m is the number of edges
or arcs in the input graph and n is the number of vertices.)
For planar graphs, even faster algorithms are known; we first list some results for the case

where there are no vertex capacities. Maximum flows can be found in O(n) time if G is
directed st-planar, meaning that s and t are on the same face [31]. They can be found in
O(n) time if G is directed planar with unit arc capacities [38, 39] (more generally, in O(nU)

time if the capacities are integers bounded by U). They can be found in O(n log log n) time if
G is undirected planar [40], in O(n log n) time if G is directed planar [41], and in O(n log3 n)

time if G is directed planar and has multiple sources and sinks [23]. In surface graphs of

The results in this chapter appeared in SODA 2019 [35].
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(a) (b)

Figure 3.1: (a) before Ford and Fulkerson’s reduction eliminating capacity of v [5] (b) after
reduction

genus g, they can be found in gO(g)n3/2 time for real capacities and O(g8n polylog(nU)) time
for integer capacities, where again U is the maximum capacity [42]. They can be found in
O(α3n log3 n) if G is an α-apex graph (i.e., a graph that can become planar after the removal
of α vertices) [23]. They can be found in O(β3n log n) time if G is the union of β planar
graphs with β shared vertices [43]. Furthermore, in graphs with multiple sources and sinks,
they can be found with a simple pair of nested for-loops: For all sources si, for all sinks tj,
compute the maximum flow from si to tj in the current residual graph [44]. Combining this
with previously mentioned algorithms ( [38] [39] [41]) yields algorithms for maximum flows in
directed planar graphs with multiple sources and sinks that run in O(k2nU) time for integer
weights bounded by U and in O(k2n log n) time for real weights. Finally, finding flows in
undirected graphs reduces to finding flows in directed graphs because each undirected edge
{u, v} of capacity c can be modeled as two directed arcs uv and vu of capacity c.
The results in the previous paragraph solve the maximum flow problem when there are

only edge or arc capacities. In this chapter we are concerned with the case where vertices of
the graph also have capacities, which limit the amount of commodity that can go through
that vertex. In general directed graphs, adding capacities to the vertices does not make the
problem any harder because of a reduction first suggested by Ford and Fulkerson [5]. For
each vertex v with finite capacity c, we do the following. Replace v with two vertices vin

and vout, and add an arc of capacity c directed from vin to vout. All arcs that were directed
into v are directed into vin instead, and all arcs that were directed out of v are directed out
of vout instead. See Figure 3.1. Unfortunately, this reduction does not preserve planarity.
Consider the complete directed graph on four vertices. This graph is planar, but if we apply
the reduction of Ford and Fulkerson on any single vertex, we get a graph whose underlying
undirected graph is K5, which is not planar by Kuratowski’s Theorem.
When there are vertex capacities, prior work has only been able to exploit planarity in the

cases where there is a single source and sink or when the number of vertices with capacities
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is fixed. Khuller and Naor [24] were the first to consider the case where there is a single
source and sink. Currently, the best known algorithm for this case is due to Kaplan and
Nussbaum [22], who described an algorithm for maximum flow in directed planar graphs
with vertex capacities that runs in O(n log n) time. In doing so, they fixed a flaw in a paper
of Zhang, Liang and Chen [26]. They also give an algorithm that runs in O(n) time when
all vertex and arc capacities are unit, solving the vertex-disjoint paths problem in directed
planar graphs with a single source and sink. This extended a result by Ripphausen-Lipa,
Wagner, and Weihe that only applied to undirected graphs [45]. Zhang, Liang, and Chen [26]
described an algorithm that finds maximum flows in undirected st-planar graphs with vertex
capacities in O(n) time.
In the case of multiple sources and sinks, Borradaile et al. give an algorithm that runs

in O(α3n log3 n) time, where α is the number of vertex capacities [23]. For arbitrary num-
bers of terminals and vertex capacities, the best-known algorithm prior to the results de-
scribed in this chapter uses the Ford-Fulkerson reduction described earlier to eliminate ver-
tex capacities, connects a super-source to all sources, connects all sinks to a supersink,
and then in the resulting graph applies either Mądry’s algorithm [36] for finding maximum
flows in unit-capacity networks, Goldberg and Rao’s algorithm [37] for finding maximum
flows in integer-capacity networks, or Orlin’s algorithm [20] for finding maximum flows in
sparse real-capacity networks. The resulting algorithm runs in Õ(n10/7) time for unit ca-
pacities, O(n3/2 log n logU) time for integer capacities where U is the largest capacity, and
O(n2/ log n) time for real capacities. Since the work in this chapter first appeared, Liu and
Sidford [46] have sped up Mądry’s algorithm; thus they are able to compute maximum flows
in planar graphs with unit capacities and vertex capacities in O(n4/3+o(1)) time.
Maximum flows in directed planar graphs without vertex capacities can be computed in

near-linear time [23], and one expects to be able to achieve the same time bound even when
the graph has arbitrarily many vertex capacities. However, doing so seems to be difficult.
The techniques for computing flows in planar graphs without vertex capacities rely heavily
on the use of residual graphs, which do not exist when there are vertex capacities. The only
tool we have for dealing with vertex capacities in planar graphs is Kaplan and Nussbaum’s
reduction, but that reduction fails when there are multiple sources and sinks because of
saddles, which we explain in section 3.1. Even for the case where there are two sources and
one sink and all vertex capacities are unit, no near-linear-time algorithms were previously
known.
In this chapter, we extend Kaplan and Nussbaum’s algorithm to directed planar graphs

with integer capacities and a fixed number of sources and sinks. The key observation is
that when there are multiple sources and sinks, applying their algorithm results in a flow

23



that is infeasible at only k − 2 vertices, where k is the number of terminals. For each of
these infeasible vertices, we define the excess of the vertex to be the amount by which it is
infeasible, and we show that the sum of the excesses of all the infeasible vertices is at most
(k − 2)U . This means that when U is small, the flow returned by Kaplan and Nussbaum’s
algorithm is close to feasible. We exploit this observation to obtain the following:

Theorem 3.1. Let G be a directed planar graph with k terminals and with integer capacities
on both arcs and vertices. If all capacities are bounded by a constant, then we can find a
maximum flow in G in O(min{k2n, n log3 n+ kn}) time.

Thus when k is fixed, we can solve the vertex-disjoint paths problem in directed planar
graphs with multiple sources and sinks in near-linear time.
Our second algorithm deals with the case where U may be unbounded. The basic idea is

a scaling algorithm. First we guess the value of the maximum flow using binary search; this
increases the running time of the algorithm by a factor of O(log(nU)). Starting with a flow
with k−2 infeasible vertices, we find a way to improve the flow that decreases the maximum
excess of the vertices by some factor that depends only on k. The improved flow has the
same value as the original flow. We show that after O(k log(kU)) improvement phases, each
infeasible vertex has O(k) excess. As in the first algorithm, we exploit this observation to
obtain the following:

Theorem 3.2. Let G be a directed planar graph with k terminals and with integer capacities
on both arcs and vertices. If U is the maximum capacity of a single vertex or arc, then we
can find a maximum flow in G in O(k5n polylog(nU)) time.

Our third algorithm deals with the special case where k = 3. In this case, the fact
that there is only one infeasible vertex considerably simplifies the problem, since we can just
focus on decreasing the excess of this one vertex without worrying about trade-offs. (Roughly
speaking, if there is more than one infeasible vertex, we have to consider that decreasing
the excess of one vertex could increase the excess of another vertex.) We show that we can
modify our second algorithm such that only one improvement phase is necessary. This third
algorithm works even if the capacities are arbitrary real numbers instead of integers.

Theorem 3.3. Given a directed planar graph G with three terminals and with capacities
on both arcs and vertices, we can find a maximum flow in G in O(n log n) time.

The outline of this chapter is as follows. In Section 3.1, we prove the structural properties
that show that Kaplan and Nussbaum’s algorithm almost works when there are multiple
sources and sinks. In section 3.2, we describe our algorithm for the case where capacities are
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integers bounded by a constant. In Section 3.3, we use this algorithm to solve the case of
arbitrary integer capacities. In Section 3.4, we describe the modifications to the algorithms
that are necessary for the case when k = 3 and the capacities are arbitrary reals.

3.1 SADDLES AND EXCESS

Suppose f ◦ is a feasible flow in G◦ whose restriction f to G is acyclic. It is easy to see
that f satisfies conservation and arc capacity constraints. In this section, we show that f
violates at most |S|+ |T | − 2 vertex capacity constraints.
Let fG be the flow graph of f . For any vertex v in fG, the alternation number of v, denoted

by α(v), is the number of direction changes (i.e., from in to out or vice versa) of the arcs
incident to v as we examine them in clockwise order. Thus α(u) = 0 for all terminals u, and
the alternation number of any vertex is even. A vertex v is a saddle in f if α(v) ≥ 4. We
let index(v) denote the index of v and define it by index(v) = α(v)/2− 1.
Since fG is a plane directed acyclic graph, a result of Guattery and Miller [47] implies the

following:

Lemma 3.1. If fG has k1 sources and k2 sinks, then the sum of the indices of the saddles
in fG is at most k1 + k2 − 2. In particular, a vertex in fG is a saddle if and only if it has
positive index, so fG has at most k − 2 saddles.

Proof. First we need a few definitions. For any face φ in fG, let α(φ) denote the alternation
number of φ; α(φ) is the number of times the arcs on the boundary of φ change direction as we
traverse this boundary. Thus α(φ) = 0 if the arcs on the boundary of φ form a directed cycle.
We use index(φ) to denote the index of a face φ, which is defined by index(φ) = α(φ)/2− 1.
Now we can proceed with the proof. See Figure 3.2. If at each vertex v in fG we cycle

through its incident arcs in order according to the embedding of fG, each transition from
one arc e to the next arc e′ results in exactly one alternation either for v or for the face on
whose boundary the two arcs e and e′ lie. Thus

2E =
∑

v∈V (fG)

α(v) +
∑

φ∈F (fG)

α(φ) (3.1)

=⇒ E =
∑

v∈V (fG)

(index(v) + 1) +
∑

φ∈F (fG)

(index(φ) + 1) (3.2)

=⇒ E = V + F +
∑

v∈V (fG)

index(v) +
∑

φ∈F (fG)

index(φ) (3.3)

=⇒ −2 =
∑

v∈V (fG)

index(v) +
∑

φ∈F (fG)

index(φ) (3.4)

25



Figure 3.2: Proof of Lemma 3.1. Solid blue transitions contribute one alternation to a vertex;
dashed red transitions contribute one alternation to a face.

where in the last line we have used Euler’s formula V (fG) − E(fG) + F (fG) = 2. Since fG
is acyclic, index(φ) ≥ 0 for each face φ, so −2 ≥

∑
v∈V (fG) index(v). Finally, index(v) = −1

for each terminal v, so
k1 + k2 − 2 ≥

∑
v:index(v)≥1

index(v). (3.5)

A vertex v is a saddle if and only if index(v) ≥ 1, so this shows that the sum of the indices
of the saddles in fG is at most k1 + k2 − 2. QED.

A vertex v ∈ V (G) is infeasible under the flow f if f in(v) > c(v) and is feasible otherwise.
For any vertex v ∈ V (G), let ex(f ◦, v) and ex(f, v) denote the excess of the vertex v under
f ◦ or f :

ex(f ◦, v) = ex(f, v) = max{0, f in(v)− c(v)} (3.6)

The excess of a vertex is positive if and only if the vertex is infeasible. We also define
ex(f ◦) = ex(f) = maxv∈V (G) ex(f, v). We say that f has excess ex(f, v) on v.

Lemma 3.2. Let index(v) be defined for each vertex v in G using the flow graph fG of f .
For each vertex v in fG, we have ex(f, v) ≤ index(v)c(v).

Proof. Let f ◦G be the flow graph of f ◦. We have α(v) = 2 · index(v) + 2. Thus, if we examine
the arcs in fG incident to v in clockwise order, there are index(v) + 1 groups of consecutive
incoming arcs. Consider such a group of consecutive incoming arcs (ui, v), . . . , (uj, v) in fG.
We can view these as arcs (ui, vi), . . . , (uj, vj) in f ◦G, where vi, . . . , vj are consecutive vertices
in Cv. In f ◦G, the only two arcs in out({vi, . . . , vj}) are (vi, vi−1) and (vj, vj+1), which have
total capacity c(v). Thus, for each vertex v in fG, each group of consecutive incoming arcs
in fG has total weight at most c(v). This shows that f in(v) ≤ (index(v) + 1)c(v) for any
vertex v, from which the lemma follows. QED.
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Combining Lemmas 3.1 and 3.2, we see that the sum of the excesses of all vertices under
f is at most (k − 2)U . Lemma 3.2 implies that f is only infeasible at saddles of fG.

3.2 BOUNDED-INTEGER-CAPACITY CASE

Suppose that all vertex and arc capacities are integers less than some constant U . Let f ◦

be an integral maximum flow in G◦, and let f be its restriction to G. By Lemma 2.4 we may
assume without loss of generality that f is acyclic. Since the capacities of G◦ are integers
and half-integers bounded by U , computing f takes O(n log3 n) time using the algorithm of
Borradaile et al. [23] or O(k2nU) time using O(k2) invocations of the algorithm of Brandes
and Wagner [38] or of Eisenstat and Klein [39]. The flow f may be infeasible at up to
k − 2 vertices x1, . . . , xk−2. By Lemma 3.1 and 3.2, the sum of the excesses of the infeasible
vertices is at most (k − 2)U . After finding f , the algorithm has two steps.

Step 1. In this step, we remove ex(f, xi) units of flow through each infeasible vertex xi to
get a feasible flow f1 in G. The flow f1 will have lower value than f . To do this, let fG be
the flow graph of f . The graph fG is a directed acyclic graph; let v1, . . . , vn be a topological
ordering of fG. To remove all of the excess flow through an infeasible vertex xi, we do the
following:

• Push ex(f, xi) units of flow back from xi to the sources of fG, as follows. Process the
vertices in fG in the order vn, . . . , v1. To process a vertex vj, check whether there is
too much flow going through vj (either because vj = xi or because flow conservation is
violated at vj). If so, then decrease the flow on incoming arcs of vj in fG until there is
no longer too much flow going into vj (i.e., until the flow going into vj is at most c(vj)
if vj = xi, or until flow is conserved at vj if vj 6= xi).

• Pull ex(f, xi) units of flow back to xi from the sinks of fG, using a similar algorithm
as in the previous bullet point.

Let f1 be the resulting feasible flow. Removing excess flow through a vertex xi takes O(n)

time, so step 1 takes O(kn) time.

Step 2. Let f1 be the extension of f1 to G. In this step, we do the following:

• Compute a maximum flow f2 in the residual graph of G with respect to f1 using the
classical Ford-Fulkerson algorithm.
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• Return the restriction of f1 + f2 to G.

Since f2 is a maximum flow in the residual graph of G with respect to f1, we see that f1 +f2

is a maximum flow in G. It follows that the restriction of f1 + f2 to G is a maximum flow
in G, as desired.
We have val(G) ≤ val(G◦) = |f | ≤ |f1| + (k − 2)U . Thus the value of f2 is at most

(k− 2)U , so computing f2 takes O(knU) time. Hence step 2 takes O(knU) time. Thus if U
is bounded by a constant, the entire algorithm runs in O(min{k2n, n log3 n+ kn}) time.

3.3 INTEGER CAPACITIES

Suppose all vertex and arc capacities are integers. Let λ∗ = val(G). The basic structure
of the algorithm is as follows:

• Guess λ∗ via binary search.

1. Suppose we guess the value of the maximum flow of G to be λ. Find a flow f ◦ in
G◦ of value λ. By Lemma 2.4, we may assume that the restriction f of f ◦ to G
is acyclic.

2. While ex(f) > 2k, improve f .

3. Fix f using the algorithm from section 3.2.

One can see that the algorithm has three main steps which we call phases. In phase 2,
improving f means that we find a flow f2 of the same value as f such that

ex(f2) ≤
⌈
k − 1

k
ex(f)

⌉
. (3.7)

We then set f to be the new flow f2. We will eventually show that a single improvement
of f can be done in O(k4n log3 n) time. In phase 3, fixing f means that we remove ex(f, x)

units of flow through each infeasible vertex x to get flow f ′, extend f ′ to a flow f ′ in G, and
then use the Ford-Fulkerson algorithm to find a maximum flow f ′′ in the residual graph of
G with respect to f ′; we then set f to be the restriction of f ′ + f ′′ to G. To do the binary
search, we use the fact that λ ≤ λ∗ if the result of phase 3 is a feasible flow of value λ, and
λ > λ∗ if either phase 2 fails or if the flow that results from phase 3 has value less than λ.
Before we describe how phase 2 is implemented, let us analyze the running time of the

algorithm. If U is the maximum capacity of a single vertex, then λ∗ ≤ nU , so the binary
search for λ∗ only requires O(log(nU)) guesses. Computing f ◦ in phase 1 takes O(n log3 n)

28



time using the algorithm of Borradaile et al. [23]. By Lemma 3.2, at the beginning of phase
2, ex(f) ≤ (k − 2)U . The following lemma shows that phase 2 takes O(k5n log3 n log(kU))

time:

Lemma 3.3. After O(k log(kU)) iterations of the while-loop in phase 2, ex(f, x) ≤ 2k for
every vertex x ∈ V (G).

Proof. After each iteration, ex(f) decreases roughly by a factor 1 + 1/(k − 1) ≥ 1 + 1/k.
Thus we only require O(log1+1/k(kU)) = O( ln(kU)

ln(1+1/k)
) iterations. For k ≥ 1 we have

e1/2 <(1 + 1/k)k < e (3.8)

=⇒ 1/2 <k ln(1 + 1/k) < 1 (3.9)

=⇒ 1

2k
< ln(1 + 1/k) <

1

k
. (3.10)

This means that O(k log kU) iterations suffice. QED.

In phase 3, the same reasoning as in Section 3.2 shows that computing f ′+f ′′ takes O(k2n)

time. The total running time of the algorithm is thus

O(log(nU)[n log3 n+ k5n log3 n log(kU) + k2n]) = O(k5n log3 n log kU log nU) (3.11)

= O(k5n polylog(nU)). (3.12)

The rest of this section describes one iteration of the while-loop in phase 2. Specifically,
given a feasible flow f ◦ whose restriction f to G has at most k − 2 infeasible vertices, we
compute a flow f ◦2 in G◦ whose restriction f2 to G has at most k− 2 infeasible vertices, each
of which has excess at most

⌈
k−1
k
ex(f)

⌉
. Let X be the set of infeasible vertices under f ,

and for each x ∈ X, define exx = ex(f, x). The procedure that finds f ◦2 has three stages. In
stage 1, we find a circulation g◦ such that f ◦+g◦ is feasible in G◦ and (f ◦+g◦)in(Cx) ≤ c(x)

for every x ∈ X. However, the restriction of f ◦ + g◦ to G may have large excesses on
vertices not in X. To fix this, in stage 2 we use g◦ to compute a feasible flow f ◦1 in G◦

satisfying ex(f ◦1 ) ≤
⌈
k−1
k
ex(f)

⌉
. Intuitively, f ◦1 approximates f ◦ + g◦/k while being an

integer circulation. In stage 3, we use Lemma 2.4 on f ◦1 to get a flow f ◦2 of the same value
whose restriction to G is acyclic and has at most k− 2 infeasible vertices. If λ > λ∗, then g◦

may not exist and stage 1 may fail; if λ ≤ λ∗, then g◦ exists and all three stages will work.
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(a) (b) (c)

Figure 3.3: (a) Cx in G◦ if x ∈ X (b) xin and xout in G× (c) source xin and sink xout in Hi

if x = xi

3.3.1 Stage 1

To get g◦, we first convert f ◦ to a feasible flow f× of the same value in a flow network G×

such that the restrictions of f ◦ and f× to G are equal. Then, we find a circulation g× in G×

such that the restriction of f× + g× to G has no excesses on the vertices of X. Finally, we
convert f× + g× to a feasible flow f ◦ + g◦ in G◦, from which we get g◦.
We construct G× as follows. Starting with G◦, we do the following for each vertex x ∈ X:

• Replace Cx with an arc (xin, xout) of capacity c(x).

• Every arc of a capacity c going from a vertex u to a vertex in the cycle Cx is now an
arc (u, xin) of capacity c.

• Every arc of a capacity c going from a vertex in the cycle Cx to a vertex x is now an
arc (xout, u) of capacity c.

In a slight abuse of terminology, we say that a flow in G◦ is an extension of a flow in G×

if the two flows have the same restriction to G. Similarly, a flow in G× is a restriction of a
flow in G◦ if the two flows have the same restriction to G. See Figure 3.3. To define f×, let
f×(u, v) = f ◦(u, v) for all arcs (u, v) ∈ E(G×) ∩ E(G◦), and let f×(xin, xout) = (f ◦)in(Cx)

for all x ∈ X. It is easy to see that f× is a flow from s to t whose only infeasible arcs are
(xin, xout) for all x ∈ X. Furthermore, (f×)out(xout) = (f×)in(xin) = f in(x) for all x ∈ X.
We have the following lemma:

Lemma 3.4. For each x ∈ X, let ωx ≥ 0. The following two statements are equivalent:

1. There exists a feasible circulation g◦ in the residual graph of G◦ with respect to f ◦

such that
(f ◦ + g◦)in(Cx) = (f ◦ + g◦)out(Cx) = f in(x)− ωx (3.13)

for all x ∈ X.
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2. There exists a circulation g× in G× such that f× + g× has a feasible extension in G◦,
f× + g× is feasible in G× except at arcs (xin, xout) for all x ∈ X, and

(f× + g×)in(xin) = (f× + g×)(xin, xout) = (f× + g×)out(xout) = f in(x)− ωx (3.14)

for all x ∈ X.

Proof. (1)⇒ (2) : Suppose (1) holds. Let g× be the circulation in G× defined by g×(e) =

g◦(e) for each e ∈ E(G◦) ∩ E(G×) and g×(xin, xout) = (g◦)in(Cx) for all x ∈ X. That
is, g× is the restriction of g◦ to G×. The circulation g× satisfies conservation constraints
at xout because (g×)in(xout) = g×(xin, xout) = (g◦)in(Cx) = (g◦)out(Cx) = (g×)out(xout); a
similar argument shows that g× satisfies conservation constraints at xin. Also, g× satisfies
conservation constraints at all other vertices because g◦ does.
Since (f ◦)in(Cx) = (f×)in(xin) and (g◦)in(Cx) = (g×)in(xin), we have (f ◦ + g◦)in(Cx) =

(f× + g×)in(xin). A symmetric argument shows that (f ◦ + g◦)out(Cx) = (f× + g×)out(xout).
Flow conservation implies (f× + g×)in(xin) = (f× + g×)(xin, xout). The flow f× + g× is
feasible at all arcs in E(G×) ∩ E(G◦) because f ◦ + g◦ is.

(2)⇒ (1) : Suppose (2) holds. There is a feasible extension h◦ of f× + g× to G◦. Let g◦

be the circulation in G◦ such that f ◦+ g◦ = h◦. Since f ◦+ g◦ is feasible in G◦, g◦ is feasible
in the residual graph of G◦ with respect to f ◦. It is easy to see that g◦ is an extension of g×.
Since (f ◦)in(Cx) = (f×)in(xin) and (g◦)in(Cx) = (g×)in(xin), we have (f ◦ + g◦)in(Cx) =

(f× + g×)in(xin). A symmetric argument shows that (f ◦ + g◦)out(Cx) = (f× + g×)out(xout).
QED.

If λ ≤ λ∗, then there exists a feasible flow fλ in G of value λ that can be extended
to feasible flows f×λ in G× and f ◦λ in G◦. Thus statement (1) of Lemma 3.4 holds for
the circulation f ◦λ − f ◦ in G◦ and for some choices of ωx where ωx ≥ exx for all x ∈ X.
Lemma 3.4 then implies that there exists a circulation g× in G× such that (f×+g×)in(xin) =

(f× + g×)(xin, xout) = (f× + g×)out(xout) ≤ c(x) for all x ∈ X, meaning that f× + g× is
feasible in G×. If λ > λ∗, then g× may not exist and its computation may fail. Let g be the
restriction of g× to G.
We will compute the circulation g× as the sum of k − 2 circulations φ×1 , . . . , φ

×
k−2. Let

x1, . . . , xk−2 be an arbitrary ordering of the vertices in X. For all i ∈ [k − 2], let γ×i =

φ×1 + · · ·+φ×i , and let γi be the restriction of γ×i to G. In particular, γ×0 is the zero flow and
γ×k−2 = g◦. We will find the circulations φ×1 , . . . , φ

×
k−2 one by one, and we will choose φ×i to

satisfy the following property:
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Lemma 3.5. For all i ∈ [k − 2], f× + γ×i is a flow in G× that is feasible except at some
arcs (xinj , x

out
j ) where j > i. Furthermore, the restriction of f× + γ×i to G has at most ex(f)

excess on xi+1, . . . , xk−2 and at most i · ex(f) excess on vertices in V (G) \X.

Intuitively, the lemma states that φ×i gets rid of the excess on xi without increasing any of
the excesses on x1, . . . , xi−1 above 0, without increasing any of the excesses on xi+1, . . . , xk−2

above ex(f), and without increasing any other excesses by more than ex(f).
We now describe how to find φ×i inductively. Suppose h× = f× + γ×i−1 is a feasible flow

in G× whose restriction h to G has no excess on x1, . . . , xi−1, at most ex(f) excess on
xi, . . . , xk−2, and at most (i − 1) · ex(f) excess on all vertices in V (G) \ X. Our goal is to
find a circulation φ×i in G× such that h×+φ×i is a feasible flow in G× satisfying Lemma 3.5.
Finding φ×i reduces to finding a flow φi,H in an O(k)-apex graph Hi, and we construct Hi

as follows: Starting with the residual graph of G× with respect to h×, delete arcs (xini , x
out
i )

and (xouti , xini ). Let the source be xini and the sink be xouti . For all j > i, the arc (xinj , x
out
j )

has capacity c(xj) + ex(f) − h×(xinj , x
out
j ) and the arc (xoutj , xinj ) has capacity h×(xinj , x

out
j ).

See Figure 3.3. We have the following lemma:

Lemma 3.6. Let ω ≥ 0. For all i ∈ [k − 2], the following two statements are equivalent:

1. There exists a circulation φ×i in G× such that h×+φ×i is feasible in G× except possibly
at arcs (xinj , x

out
j ) for all j > i, where (h× + φ×i )(xinj , x

out
j ) ≤ c(xj) + ex(f). Also,

(h× + φ×i )in(xini ) = (h× + φ×i )(xini , x
out
i ) = (h× + φ×i )out(xouti ) = hin(xi)− ω. (3.15)

2. There exists a feasible flow φi,H in Hi of value ω.

Proof. (1)⇒ (2) : Suppose (1) holds. Let φi,H be the restriction of φ×i to Hi. The flow φi,H

is feasible in Hi by the definition of Hi.
Since (h×)(xini , x

out
i ) = (h)in(xi) and (h× + φ×i )(xini , x

out
i ) = hin(xi) − ω, we have that

φ×i (xouti , xini ) = ω. Since xini is not a source in G×, flow conservation at xini implies that
(φ×i )out(xin) = ω. This means that |φi,H | = φouti,H(xini ) = ω.

(2) ⇒ (1) : Suppose (2) holds. Define an extension φ×i of φi,H to a circulation in G× by
setting φ×i (xouti , xini ) = ω. It is easy to see that g× satisfies conservation constraints. The
arc capacities in Hi ensure h× + φ×i is feasible in G× except possibly at arcs (xinj , x

out
j ) with

j > i, where (h× + φ×i )(xinj , x
out
j ) ≤ c(xj) + ex(f).

Since h×(xini , x
out
i ) = hin(xi) and φ×i (xouti , xini ) = ω, we have (h×+φ×i )(xin, xout) = hin(xi)−

ω. On the other hand, xini and xouti are not terminals in G×, so flow conservation implies
(h× + φ×i )in(xini ) = (h× + φ×i )(xini , x

out
i ) = (h× + φ×i )in(xouti ). QED.
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By the existence of g×, we know that there exists a circulation φ×i such that h× + φ×i is
feasible in G×, so statement (1) in Lemma 3.6 holds for some ω ≥ ex(h, xi). By Lemma 3.6,
there must exist a flow φi,H of value ex(h, xi) in Hi. We compute φi,H as follows: Starting
with Hi, we add a vertex xs that will be the source instead of xini , and we add an arc (xs, xini )

with capacity ex(h, xi); similarly, we add a vertex xt that will be the sink instead of xini , and
an arc (xouti , xt) with capacity ex(h, xi). The resulting graph has an acyclic maximum flow
that saturates every arc incident to a terminal and so has value ex(h, xi), and the restriction
of this flow to Hi is φi,H . We have assumed (by induction) that ex(h×, xi) ≤ ex(f), so
|φi,H | ≤ ex(f).
We need to show that our choice of φ×i satisfies Lemma 3.5. By Lemma 3.6, the flow φi,H

corresponds to a circulation φ×i in G× such that h× + φ×i has no excess on x1, . . . , xi and is
feasible in G× except possibly at arcs (xinj , x

out
j ) for all j > i, where (h× + φ×i )(xinj , x

out
j ) ≤

c(xj) + ex(f). The restriction of h× + φ×i to G is thus feasible at x1, . . . , xi and has at most
ex(f) excess at xi+1, . . . , xk−2. If λ > λ∗, then φi,H may not exist and might have value
strictly less than ex(h, xi) when we try to compute it. If this happens, then the restriction
of h× + γ×i to G will have positive excess on xi.
Let φi be the restriction of φ×i to G. Let v be any vertex in V (G)\X. Since φi,H is acyclic,

φi sends at most |φi,H | units of flow through v. Thus for all v ∈ V (G) \X, we have

ex(h+ φi, v) ≤ ex(h, v) + |φi,H | (3.16)

≤ (i− 1) · ex(f) + ex(f) (3.17)

≤ i · ex(f). (3.18)

This proves Lemma 3.5.
When i = k−2, we get that f×+γ×i = f×+g× is a feasible flow in G× where ex(f+g, v) ≤

(k−2)ex(f) for all v ∈ V (G)\X. The flow f×+g× has no excess on the vertices of X, so the
proof of Lemma 2.1 implies that f× + g× has an extension in G◦. Lemma 3.4 then implies
that g× corresponds to a circulation g◦ in G◦ such that ex(f ◦ + g◦, x) = 0 for all x ∈ X and
ex(f ◦ + g◦, v) ≤ (k − 2)ex(f) for all v ∈ V (G) \X; we can compute g◦ in O(n log3 n) time.
We have proved the following lemma:

Lemma 3.7. For any vertex x ∈ X, ex(f ◦ + g◦, x) = 0. For any vertex v ∈ V (G) \ X,
ex(f ◦ + g◦, v) ≤ (k − 2)ex(f).

Computing φ×i requires us to compute a maximum flow in a graph with O(k) apices (these
are s, t, and xin and xout for all x ∈ X), which takes O(k3n log3 n) time using the algorithm
of Borradaile et al. [23]. Since we need to compute k − 2 such flows, computing g◦ takes
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O(k4n log3 n) time.

3.3.2 Stage 2

Having found an integer circulation g◦ in G◦, we construct the fractional circulation g◦/k
in G◦. Then, using the algorithm of Lemma 2.2, we let f ◦1 be an integer flow in G◦ such that

(f ◦1 )in(Cv) ≤
⌈
(f ◦ + g◦/k)in(Cv)

⌉
=⇒ ex(f ◦1 , v) ≤ dex(f ◦ + g◦/k, v)e . (3.19)

for every vertex v ∈ V (G).

Lemma 3.8. For any vertex v ∈ V (G), ex(f ◦1 , v) ≤
⌈
k−1
k
ex(f)

⌉
.

Proof. If x ∈ X, then we have ex(f ◦, x) ≤ ex(f) and ex(f ◦+g◦, x) = 0 by Lemma 3.7. Thus

ex(f ◦1 , x) ≤ dex(f ◦ + g◦/k, x)e ≤
⌈
k − 1

k
ex(f)

⌉
. (3.20)

If v ∈ V (G) \X, we have ex(f ◦, v) = 0 and ex(f ◦ + g◦, v) ≤ (k − 2)ex(f) by Lemma 3.7.
Thus

ex(f ◦1 , v) ≤ dex(f ◦ + g◦/k, v)e ≤
⌈
k − 2

k
ex(f)

⌉
. (3.21)

QED.

Using the algorithm of Lemma 2.2, computing f ◦1 takes O(n log3 n) time.

3.3.3 Stage 3

In this stage, we finally get f ◦2 . Using Lemma 2.4, we find a flow f ◦2 of the same value as f ◦1
such that the restriction f2 of f ◦2 toG is acyclic. By Lemma 3.1, f ◦2 has at most k−2 infeasible
vertices. Since f ◦2 (e) ≤ f ◦1 (e) for all arcs e, we still have ex(f ◦2 , v) ≤ ex(f ◦1 , v) ≤

⌈
k−1
k
ex(f)

⌉
for all vertices v ∈ V (G). Stage 3 takes O(n) time, so the total running time of stages 1-3
is O(k4n log3 n).

3.4 THREE TERMINALS WITH REAL CAPACITIES

In the case of three terminals, we can find a maximum flow in O(n log n) time even if G
has arbitrary real capacities. Without loss of generality, we may assume that there are two
sources and one sink. Let f ◦ be a maximum flow in G◦. We can compute f ◦ in O(n log n)
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time by using the algorithm of Borradaile and Klein [41]: first find a maximum flow f ◦1 from
s1 to t, and then find a maximum flow f ◦2 from s2 to t in the residual graph of G◦ with respect
to f ◦1 . The desired flow f ◦ is just f ◦1 + f ◦2 . By Lemma 2.4 we may assume without loss of
generality that the restriction f of f ◦ to G is acyclic. By Lemma 3.1, the flow graph fG of
f has at most one saddle x, and has index 1. If f is feasible at x, then f is the maximum
flow in G and we are done, so assume f is infeasible at x.

3.4.1 Almost-feasible flows

Let δ = val(G◦) − val(G). Suppose f ◦δ is a maximum flow in G◦ whose restriction fδ to
G is acyclic and has a single infeasible vertex xδ. Lemmas 3.1 and 3.2 guarantee that xδ
has excess at most c(xδ), but this excess might still be greater than δ. If it turns out that
ex(fδ, xδ) = δ, then f ◦δ and fδ are almost feasible. Given an almost-feasible flow fδ in G, we
can remove δ units of flow through xδ to get a maximum flow in G. This can be done in
O(n) time using an algorithm similar to that of Step 1 in Section 3.2. In this subsection, we
show that almost-feasible flows exist.

Lemma 3.9. There exists a maximum flow f ◦δ in G◦ such that the restriction fδ of f ◦δ to G
is acyclic and has a single infeasible vertex x with ex(fδ, x) = δ.

Proof. Let fmax be a maximum flow in G, and let f ◦max be an extension of fmax to G◦.
In the residual graph of G◦ with respect to f ◦max, find an acyclic maximum flow g◦. Let
(f ′)◦ = f ◦max + g◦ and let f ′ be the restriction of (f ′)◦ to G. Since g◦ is acyclic with a single
sink and has value δ, it can be decomposed into arc-disjoint paths whose total flow value
is δ. Therefore, for every vertex v in G, the flow through v in f ′ is larger than the flow
through v in fmax by at most δ. Hence, the excess of every vertex under f ′ is at most δ. By
Lemma 2.4, there is a flow f ◦δ with the same value as (f ′)◦ whose restriction fδ to G does
not contain flow-cycles.
Since g◦ is a maximum flow in the residual graph of G◦ with respect to f ◦, (f ′)◦ and f ◦δ

are maximum flows in G◦. Since fδ(e) ≤ f ′(e) for every arc e, we have ex(fδ) ≤ δ. Since fδ
is acyclic, Lemma 2.4 implies that fδ has at most one infeasible vertex x.
If ex(fδ, x) < δ, then, starting with fδ, we can remove ex(fδ, x) units of flow through x to

get a feasible flow in G with value strictly higher than |fδ| − δ = val(G), a contradiction.
Thus ex(fδ, x) = δ. QED.
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3.4.2 Getting an almost-feasible flow

It remains to show how to compute an almost-feasible flow. We will describe an algorithm
that finds a circulation g◦ in G◦ such that the restriction of f ◦ + g◦ to G is almost feasible.
Let exx = ex(f).
Construct the flow network G× the same way as in Section 3.3.1, and construct H in the

same way as Hi is constructed in section 3.3.1 for i = 1. In other words, H is constructed
as follows. Starting with the residual graph of G◦ with respect to f ◦, we do the following:

• Replace Cx with vertices xin and xout.

• Every arc of capacity c going from a vertex u to a vertex in the cycle Cx is now an arc
from (u, xin) of capacity c

• Every arc of capacity c going from a vertex in the cycle Cx to a vertex u is now an arc
(xout, u) of capacity c.

• Let xin be the source instead of s and xout be the sink instead of t. (Recall from the
definition of Gst in section 2 that s is a supersource connected to the original two
sources s1 and s2.)

Lemmas 3.4 and 3.6 both apply for H = H1. Thus our goal is now to find a maximum flow
gH in H that can be extended to a circulation in the residual graph of G◦ with respect to
f ◦.
We will now show that we can make two simplifications to H. The goal of these simpli-

fications is to eliminate the apices s, xin, and xout so that H becomes planar. First, since
we are ultimately trying to find a flow in H from xin to xout, we may assume without loss
of generality that arcs of the form (u, xin) and (xout, v) do not exist in H. As a result, the
only arcs in H that are incident to xin are arcs of the form (xin, u) where f(u, x) > 0. If
we consider these arcs as arcs in G, then, since x has index 1, these arcs form two intervals
in the cyclic order around x. Therefore, we can replace xin with two sources xin1 and xin2 ,
replacing arcs (xin, u) in the first interval with (xin1 , u) and arcs (xin, u) in the second interval
with arcs (xin2 , u). A similar simplification eliminates xout. See Figure 3.4. (We could not
perform this simplification in Section 3.3.1 because the desired flow in H could send flow
from xin to some (x′)in to xout.) One effect of this simplification is that every flow gH in
H automatically extends to a circulation g◦ in the residual graph of G◦ with respect to f ◦.
This is because f has an extension f ◦ in G◦ and (f + gH)(e) ≤ f(e) for any arc e incident
to x in G, so f + gH has an extension to G◦.
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(a) (b)

Figure 3.4: (a) The flow graph of f at the unique infeasible vertex (b) sources and sinks of
H after eliminating apices

Second, we show that we can delete the arcs (s, s1) and (s, s2). This eliminates the apex
s.

Lemma 3.10. If there is an augmenting path π in H (i.e., a path from a source to a sink
in H) containing s, then there is an augmenting path π′ in H not containing s.

Proof. See Figure 3.5. In this proof, we say that an arc e carries flow if f(e) > 0, and a path
carries flow if all of its arcs carry flow. Consider two arcs e, e′ carrying flow out of x such
that as we cyclically traverse the arcs incident to x in clockwise order, some arc between e
and e′ carries flow into x, and some arc between e′ and e carries flow into x. There must be
a path P from x to t starting with e that carries flow. Similarly, there must be a path P ′

from x to t starting with e′ that carries flow. Without loss of generality, assume P and P ′

do not cross. Let u be the first vertex on P after x that also appears on P ′. The vertex u
must also be the first vertex on P ′ after x that also appears on P , because otherwise f has
flow-cycles. Let Q be the prefix of P that ends at the arc of P that goes into u, and let Q′ be
the prefix of P ′ that ends at the arc of P ′ that goes into u. These prefixes are well-defined
because f is acyclic. Since both Q and Q′ go from x to u, their union partitions the plane
into two regions. Denote the inner region by R and the outer region by R′.
Since there are arcs in both R and R′ carrying flow into x and f is acyclic, one source

must be in R and the other must be in R′. Furthermore, there is some path Qs from s2 to
x carrying flow, and there is some path from s1 to x carrying flow.
Without loss of generality, suppose the augmenting path π in H starts in xin, goes to

s1 ∈ R, uses arcs (s1, s) and (s, s2), and ends by going from s2 ∈ R′ to xout. We can replace
it by an augmenting path π′ that starts at xin, follows rev(Qs) to s2, and then follows π
from s2 to xout. The augmenting path π′ does not contain s.

QED.

Let gH be the maximum flow in H and let g◦ be its extension to G◦. We apply Lemma 2.4
to find a flow f ◦3 with the same value as f ◦ + g◦ whose restriction f3 has no flow-cycles.
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Figure 3.5: H in the proof of Lemma 3.10 with all terminals merged into the vertex x. The
dashed blue path is π. The dotted red path is π′. Note that π and π′ overlap. The shaded
region is R.

By Lemma 3.1, the flow f ◦3 is infeasible at a single vertex y. If y = x, then f ◦3 must
be almost feasible. This is because Lemma 3.4 implies that if gH is a maximum flow in
H, then f ◦ + g◦ is a maximum flow in G◦ that minimizes the excess of x. Furthermore,
f3(e) ≤ (f ◦ + g◦)(e), so f3 is a maximum flow in G◦ that minimizes the excess of x.
If y 6= x, then we define a function F : E(G) × [0, 1] → R for each arc e ∈ G. F (e, β) is

defined as follows. We apply Lemma 2.4 to f ◦+ βg◦ to get a flow f ◦β whose restriction fβ to
G is acyclic. We then define F (e, β) = fβ(e). For all arcs e ∈ E(G), we have F (e, 0) = f(e)

and F (e, 1) = f3(e).
Clearly, F (·, β) has an extension that is feasible in G◦ for all β, and F (e, ·) is continuous

for any arc e ∈ E(G). Consider how F (·, β) changes as β increases from 0 to 1. We start
with excess on x and no other vertices, and end with excess on y but no other vertices.
Moreover, no matter what β is, there is at most one infeasible vertex. Thus, at some point,
say when β = β0, we must have no infeasible vertices. Since F (·, β0) is a maximum flow in
G◦, it must be a maximum flow in G.
To compute β0, we need the following lemma.

Lemma 3.11. For every fixed arc e ∈ E(G), ∂F (e,β)
∂β

is constant.

Proof. The proof requires understanding the details of the algorithm of Lemma 2.4, which
can be found in Section 2.2.2. Here we summarize how the flow F (·, β) is computed:

1. Compute f ◦β = f ◦+βg◦. Define a capacity function c′ by c′(e) = f ◦β(e) for all e ∈ E(G)

and c′(e) = c(e) for all e /∈ E(G). Construct the residual graph G◦β of G◦ with respect
to f ◦β and c′. Let h∞ be the infinite face of G◦ \ {s}. For each face h of G◦β \ {s}, let
Φ(h) be the distance of h∗ from h∗∞ in (G◦β \ {s})∗. For each arc e in G◦ \ {s}, let h` be
the face on the left of e and let h` be the face on the right. Let gβ(e) = Φ(hr)−Φ(h`)
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for each arc e in G◦ \ {s}; gβ is a simple circulation. Finally, let f ◦γ = f ◦β + gβ, and let
fγ be the restriction of f ◦γ to G. The flow fγ has no counter-clockwise flow-cycles.

2. Define a new capacity function c′′(e) = f ◦γ (e) for e ∈ E(G) and c′′(e) = c(e) for
e /∈ E(G). Construct the residual graph G◦γ of G◦ with respect to c′′ and f ◦γ . For
each face h of G◦γ \ {s}, let Φ(h) be he distance of h∗ from h∗∞ in (G◦γ \ {s})∗. Let
gγ(e) = Φ(h`)− Φ(hr). Finally, F (·, β) is the restriction of f ◦γ + gγ to G.

It suffices to show that the shortest path trees Tβ in (G◦β \ {s})∗ and Tγ in (G◦γ \ {s})∗

rooted at h∗∞ do not change as β increases. Suppose for the sake of argument that Tβ changes
as β increases. Then, there exist vertices u∗ and v∗ in (G◦β \{s})∗ and two internally disjoint
paths P ∗1 and P ∗2 from u∗ to v∗ in (G◦α \{s})∗ whose lengths are changing at different rates as
β increases. Let H be the region bounded by P ∗1 and P ∗2 , and suppose that P1 ◦ rev(P2) is a
clockwise cycle. The change in the length of P ∗1 in (G◦β \ {s})∗ is the change in the capacity
of the cut P1 in G◦β \ {s}, which is the change in the amount of flow f ◦+βg◦ sends out of H
through the arcs of P1. Similarly, the change in the length of P ∗2 is the change in the amount
of flow f ◦ + βg◦ sends into H through the arcs of P2. This means that the net amount of
flow that f ◦ + βg◦ carries into H is changing as β increases, but this is impossible, since
g◦ is a simple circulation. We conclude that Tβ does not increase as β increases. A similar
argument shows that since gβ is a simple circulation and f ◦γ = f ◦ + βg◦ + gβ, Tγ does not
change as β increases.

QED.

Lemma 3.11 implies that d
dβ
ex(F (·, β), x) is constant, and we can find it because

d

dβ
ex(F (·, β), x) = ex(F (·, 1), x)− ex(F (·, 0), x) (3.22)

= ex(f3, x)− ex(f, x), (3.23)

We then let
β0 = − ex(F (·, 0), x)

d
dβ
ex(F (·, β), x)

. (3.24)

and F (·, β0) is a maximum flow in G.
The algorithm takes O(n log n) time to compute f ◦. It takes O(n log n) time to compute

gH , from which we can obtain g◦, f ◦3 , and f3 in linear time. If y = x, then we have an
almost-feasible flow that can be turned into a maximum flow in G in linear time. If y 6= x,
then we can compute β0 and F (·, β0) in linear time. The entire algorithm takes O(n log n)

time.
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3.5 OPEN PROBLEMS

When it comes to finding flow in planar graphs with vertex capacities, three main open
problems remain: (1) eliminate the dependence on k in the running times of the algorithms
of Sections 3.2 and 3.3; (2) generalize our algorithms to graphs with real capacities and more
than three terminals; and (3) generalize any of our algorithms to surface-embedded graphs.
Unfortunately, the first two open problems seem difficult. For the first problem, all of our
algorithms relies on Lemma 3.1, so designing an algorithm whose running time does not
depend on the number of terminals will probably require completely new techniques. For
the second problem, we can either try to generalize the algorithm of Section 3.3 to handle
real capacities or try to generalize the algorithm of Section 3.4 to handle more than three
terminals. The difficulty with generalizing the algorithm of Section 3.3 is that this algorithm
is fundamentally a scaling algorithm, which can only handle integer capacities. If we apply
the algorithm to a graph with real capacities, then the flow could keep approaching the
maximum flow without ever getting to it. The difficulty with generalizing the algorithm
of Section 3.4 to the case where k > 3 is as follows. Suppose that k = 4. We can define
a maximum flow in G◦ as being almost feasible if we can remove δ units of flow to get a
feasible flow in G, where again δ = val(G◦)−val(G). We can prove that almost-feasible flows
always exist. The main problem seems to be that there is no easy way of characterizing or
getting an almost-feasible flow. For example, minimizing the sum of the excesses of the two
infeasible vertices x and x′ does not necessarily work. Suppose there is one flow where the
infeasible vertices both have excesses of 10, and another flow where the vertices both have
excesses of 7. If δ = 10, then it could be the case that the first flow is almost feasible because
removing a unit of flow through x may simultaneously remove a unit of flow through x′ (i.e.,
we can decompose the first flow into paths and cycles such that some paths pass through
both x and x′), while the second flow is not almost feasible because removing a unit of flow
through x does not simultaneously remove a unit of flow through x′, and vice versa.
The third open problem – generalizing an algorithm to surface graphs – may be easier.

Consider the algorithm of Section 3.3. This algorithm exploits planarity in four ways. First,
it relies on Lemma 3.1, which bounds the number of saddles, uses the fact that the graph is
planar. However, the lemma can be easily generalized to surface graphs as follows:

Lemma 3.12. Any directed acyclic graph embedded on an orientable surface of genus g
with k1 sources and k2 sinks has at most k1 + k2 − 2 + 2g saddles.

Second, our algorithm needs to compute “lifts” of feasible flows in G into a supergraph G◦

in near-linear time. If G is planar, this reduces to computing a flow in a planar graph that
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is just the union of disjoint cycles. If G has genus g, then we need to compute flows in a
surface-embedded graph that is just the union of cycles. Clearly such a graph is still planar,
so no changes in the algorithm are needed.
Third, our algorithm uses an algorithm by Borradaile et al. [23] that computes flows in

O(k)-apex graphs in O(k3n log3 n) time. (An O(k)-apex graph is a graph that can become
a planar graph with the removal of O(k) vertices.) If G is a graph of genus g, then instead
we need to compute integer flows in graphs that become surface graphs with the removal of
O(k) vertices. Currently, no such algorithm is known. However, we may be able to construct
one using the same strategy that Borradaile et al. use. Essentially, they Hochstein and
Weihe’s algorithm [43] to their own O(n log3 n)-time algorithm for multiple-source multiple-
sink maximum flow in planar graphs. The result is an algorithm for O(k)-apex graphs with
multiple sources and sinks that runs in O(k3n log3 n) time. In other words, adding k vertices
arbitrarily to the graph increases the running time by a factor O(k3). Now in our case,
we have algorithms that can compute integer flows in surface graphs with a single source
and sink in O(g8n polylog(nU)) time [42]. We can generalize this to multiple sources and
sinks in O(k2g8n polylog(nU)) time by computing flows from each source to each sink while
updating the residual graph [44]. Thus, it seems we can use Hochstein and Weihe’s algorithm
to get an algorithm that finds integer flows in graphs that become a surface graphs with the
removal of O(k) vertices in O(k5g8n polylog(nU)) time.
Fourth, our algorithm uses a subroutine by Kaplan and Nussbaum that cancels cycles in

planar flows in a particular way in O(n) time. Roughly speaking, the subroutine first cancels
clockwise cycles, and then cancels counterclockwise cycles. However, in surface graphs, cycles
can be neither clockwise nor counterclockwise. Thus, generalizing the subroutine of Kaplan
and Nussbaum appears to be the main technical barrier to generalizing our algorithm to
surface graphs. Specifically, given a surface graph and a homotopy or homology class, we
would like to be able to find a circulation in the graph such that the resulting residual graph
contains no cycles in the class, in near-linear time. Even for unit-capacity flow networks
embedded in the torus, no polynomial-time algorithms are known. A related problem is the
following: given a maximum flow in a surface graph, compute an acyclic maximum flow in
the surface graph. Currently, the fastest algorithm known takes O(m log n) time for general
graphs and thus O((n + g) log n) time for surface graphs [29], but Kaplan and Nussbaum
showed that O(n) time is achievable in planar graphs [22]. Are there faster algorithms that
exploit the topology of surface graph? More generally, are there algorithms that can compute
acyclic flows in near-planar graphs faster than O(m log n) time?
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CHAPTER 4: ELEMENT CONNECTIVITY

In this chapter, G is an undirected, unweighted graph, T ⊂ V (G) is a set of terminals,
and k = |T |. In the preliminaries, we defined the element-connectivity κ′(u, v) between two
terminals u and v. Element-connectivity was first defined by Jain et al. [1].
Chekuri, Rukkanchanunt, and Xu [3] proved that element-connectivity admits a structure

called a Gomory-Hu tree. This is a tree τ whose vertices are the terminals of G; furthermore,
for any two terminals u and v, κ′(u, v) is the weight of the lightest edge on the path between
u and v in τ . The existence of this tree implies that there are only k − 1 distinct element-
connectivity values. They used this to show that the element-connectivity between every pair
of terminals can be computed in O(k MF(n,m)) time, where MF(n,m) is the time required
to compute a maximum flow in a unit-capacitated graph. In general graphs, it is known
that MF(n,m) = O(

√
nm) [48], while in planar graphs we have MF(n,m) = O(n) [39] and

in surface graphs of genus g we have MF(n,m) = O(g8n log4 n) [42]. Thus we can compute
all element-connectivity values in O(kn) time in planar graphs and O(kg8n log4 n) time in
surface graphs. Alternatively, Borradaile et al. [49] showed that Gomory-Hu trees in surface
graphs can be computed in 2O(g2)n log3 n time. The algorithm can be easily modified to find
the element-connectivity between every pair of terminals in surface graphs in 2O(g2)n log3 n

time. Chekuri et al. [3] also gave an algorithm that will compute the reduced graph in
O(kmn) time. Applying that algorithm to planar graphs gives us a running time of O(kn2).
In this chapter we describe some minor optimizations to the results mentioned in the

previous paragraph. First, we show that the global element connectivity of a planar graph
can be computed in O(bn) time when the terminals can be covered by b faces. This is an
improvement over previous results when b ∈ o(k). Second, we show that the reduced graph
of a planar graph can be found in O(kn5/3 log4/3 n) time.

4.1 GLOBAL ELEMENT CONNECTIVITY

Suppose G is planar and all the terminals can be covered by b faces. We show how to
find the global element-connectivity in O(bn) time. As mentioned earlier, global element-
connectivity in G reduces to global edge-connectivity in G◦, so we will assume that we are
finding global edge-connectivity, which is just the capacity of the minimum cut in G◦ that
separates two terminals.
First we consider b = 1; we may assume that all terminals are on the outer face F . Let

(G◦)∗ denote the dual of G◦; each terminal in G◦ becomes a terminal face in (G◦)∗, and face
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(a) (b)

Figure 4.1: Solid edges and circular vertices are primal; dotted edges and square vertices are
dual. Circles with black interiors are terminals.

F becomes a dual vertex F ∗. We are looking for the minimum cut in G◦ that separates two
terminals; this is equivalent to the shortest cycle C in (G◦)∗ that separates two terminal
faces. Clearly C must go through F ∗. Split F ∗ into k vertices F ∗1 , . . . , F ∗k , as shown in
Figure 4.1. The global edge-connectivity is then just the shortest distance between F ∗i and
F ∗j , where i 6= j and i and j range over {1, . . . , k}. We can solve this problem in O(n) time
by simultaneously growing k breadth-first-search trees rooted at F ∗1 , . . . , F ∗k , and stopping
when two of these trees meet. Alternatively, Borradaile [50] showed how to find this shortest
distance in O(n) time even when the graph is weighted.
Now suppose b > 1. The minimum cut that separates two terminals either separates two

terminals on the same face or it separates two of the b faces that cover the terminals. We
can take care of the first case in O(bn) time using the algorithm for the b = 1 case b times.
To take care of the second case, go through each of the b faces that cover the terminals and
for each face arbitrarily pick one of the terminals on the face as a representative. While
there exist two unseparated representative terminals, find the minimum cut separating them
that does not cross any previously-computed minimum cut. (Two cuts cross if their dual
cycles cross). Computing a single such cut can be done in O(n) time using the algorithm of
Eisenstat and Klein [39]. We can compute b − 1 cuts in this way before all representatives
are separated. Thus this second case takes O(bn) total time. We conclude:

Theorem 4.1. In planar graphs where the terminals can be covered by b faces, global
element-connectivity can be found in O(bn) time.
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4.2 THE REDUCED GRAPH

In Section 2.2.3 we defined the reduced graph of G. The naive algorithm for computing
the reduced graph when the input graph is planar (or of bounded genus) proceeds as follows.
First, we compute the Gomory-Hu tree for element-connectivity in O(n log3 n) time [49].
Then, we iterate over the edges of G. For each edge e, we either contract or delete e,
whichever action preserves element-connectivity values between the endpoints of each of the
k − 1 edges of the Gomory-Hu tree. Checking whether or not a single element-connectivity
value is preserved reduces to recomputing a maximum flow in a graph with vertex capacities
when an edge is deleted or contracted; this takes O(n) time. Thus the algorithm takes
O(kn2) time.
We can improve this naive algorithm in planar graphs. First, recall that maximum flow

values in G are equal to maximum flow values in G◦, which has no vertex capacities. To
improve the naive algorithm, we use a result of Italiano et al. [40], who described a dynamic
maximum-flow algorithm in undirected planar graphs (without vertex capacities) that is able
to insert edges, delete edges and answer maximum-flow value queries between any pair of
vertices. Their algorithm computes an r-division and runs in

O

(
T1
r

+ T2 + r +
n√
r

log2 n

)
(4.1)

time per operation, where T1 is the time required to compute an r-division, and T2 is the
time required to compute a dense distance graph on r vertices. We have T1 = O(n) by results
of Goodrich [51] and of Klein, Mozes, and Sommer [52], and in unit-capacitated graphs we
have T2 = O(r) by an algorithm of Eisenstat and Klein [39]. Setting r = n2/3 log4/3 n, we
see that dynamic maximum-flow can be solved in G◦ in O(n2/3 log4/3 n) time per operation.
Furthermore, a single contraction or deletion of an edge in G can be simulated by a constant
number of insertions and deletions of edges in G◦. We conclude

Theorem 4.2. We can compute the reduced graph in O(kn5/3 log4/3 n) time if G is planar.

4.3 OPEN PROBLEMS

Several open problems exist. First, we showed that if all the terminals are on a single
face, then the global (i.e., smallest) element connectivity can be computed in O(n) time.
How fast can we compute all k − 1 element connectivity values? O(kn)-time algorithms are
known, but it would be nice to get an O(n+ k)-time algorithm.
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Next, there is the question of computing a reduced graph faster. One idea might be to
speed up the algorithm for computing dynamic maximum flows, since we are not adding any
edges to G and we are only interested in the case of unweighted graphs. Thus, every time we
delete or contract an edge in G, we know that each maximum flow value either remains the
same or decreases by exactly 1. On the other hand, even for unweighted graphs, there may
be some lower bounds to keep in mind. Specifically, Abboud and Dahlgaard [53] showed the
following theorem.

Theorem 4.3. No algorithm can solve the dynamic shortest path problem in unit weight
planar graphs on N nodes with amortized query time O(N1/3−ε) and update time O(N1/3−ε)

for any ε > 0 unless the OMv conjecture is false. (In the online boolean matrix-vector
multiplication problem, we are given an n× n matrix M and n column-vectors v1, . . . , vn of
size n, one by one. We need to compute Mvi before we are allowed to see vi+1. The OMv
conjecture says that no algorithm can solve this problem in O(n3−ε) time.)

We can modify this reduction to apply to dynamic maximum flow in unit-weight planar
graphs. The idea is that a shortest path is a shortest cycle if the endpoints of the path
are the same, and the shortest cycle in a planar graph corresponds to a minimum cut or
maximum flow in its dual.
Another potential idea for computing the reduced graph is the following. Recall from The-

orem 2.1 that each edge connecting two non-terminals can be either contracted or deleted
without affecting the element-connectivity between any two terminals. Say an edge be-
tween two non-terminals is contractible if it can be contracted without affecting any element-
connectivity values, and say the edge is deletable if it can be deleted without affecting any
such values; some edges can be both contractible and deletable. We can view the element-
connectivity between two vertices u and v as the capacity of the minimum cut separating u
and v, where a cut can contain edges and non-terminals. Note that an edge in any minimum
cut between two terminals must be contracted, because deleting the edge would decrease the
capacity of the cut. Conversely, any edge that is not in any minimum cut can be deleted;
since the graph is unweighted, their deletion would not decrease any minimum cut values
between terminals. Now it would seem that all we need to do is to compute all minimum cuts
between the terminals by computing the Gomory-Hu tree, and then every edge between two
non-terminals can be classified as either contractible or deletable. We can contract all con-
tractible edges at once because after contracting a single edge, all other contractible edges
remain contractible. The main issue with this idea is that we cannot delete all deletable
edges at once: after deleting an edge, some edges that were deletable may no longer be
deletable, since some cuts that were not minimum before become minimum.
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CHAPTER 5: SHORTEST DISJOINT PATHS

The vertex-disjoint paths problem is a special case of multicommodity flows. This problem
is NP-hard [32], even if G is undirected planar [55] or if G is directed and k = 2 [21]. On the
other hand, it can be solved in polynomial time if G is undirected and k is bounded [56, 57]
or if G is directed acyclic and k is bounded [21]. Furthermore, the problem is fixed-parameter
tractable with respect to the parameter k in directed planar graphs [58, 59]. Other related
results can be found in the survey by Naves and Sebő [60].
The k-min-sum problem has been previously considered in the context of network routing,

where the goal is to minimize the amount of energy required to send packets [17, 18]. Mid-
dendorf and Pfeiffer [55] proved that the k-min-sum problem is NP-hard when the parameter
k is part of the input, even in undirected 3-regular plane graphs. However, surprisingly lit-
tle is known about the complexity of the planar k-min-sum when k is fixed. In fact, no
non-trivial algorithms or hardness results are known for either the 2-min-sum problem in
directed planar graphs or the 5-min-sum problem in undirected planar graphs, even when
all terminals are required to lie on a single face.
Polynomial-time algorithms for the planar k-min-sum problem are known for arbitrary k

when all 2k terminals lie on a single face, in one of two patterns. In a parallel instance,
the terminals appear in cyclic order s1, . . . , sk, tk, . . . , t1, and an a serial instance, the ter-
minals appear in cyclic order s1, t1, s2, t2, . . . , sk, tk. Even in directed planar graphs, parallel
instances of k-min-sum can be solved using a straightforward reduction to minimum-cost
flows [61] in O(kn) time. A recent algorithm of Borradaile, Nayyeri, and Zafarani [62] solves
any serial instance of k-min-sum in an undirected planar graph in O(kn5) time.
If we allow arbitrary patterns of terminals, fast algorithms are known for only very small

values of k. Kobayashi and Sommer [9] describe two algorithms, one running in O(n3 log n)

time when k = 2 and all four terminals are covered by at most two faces, the other running
in O(n4 log n) time when k = 3 when all terminals are incident to a single face. Colin de
Verdière and Schrijver [13] describe an O(kn log n)-time algorithm for directed planar graphs
where all sources si lie on one face and all targets ti lie on another face. Finally, if k ≤ 3,
every planar instance of k-min-sum with all terminals on the same face is either serial or
parallel.
Zafarani [63] proved an important structural result for the planar k-min-sum problem.

Consider an undirected edge-weighted plane graph G with terminals s1, t1, . . . , sk, tk on its
outer face, and suppose sk and tk are adjacent in cyclic order of the terminals. (The other

This chapter is based on joint work with Prof. Jeff Erickson [54].
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2k − 2 terminals can appear in any order.) Let Q1, Q2, . . . , Qk be the shortest vertex-
disjoint paths in G connecting all k terminal pairs, and let P1, P2, . . . , Pk−1 be the shortest
vertex-disjoint paths in G connecting every pair except sk, tk, where the subscript on each
path indicates which terminals it connects. Zafarani’s Structure Theorem states that if two
paths Pi and Qj cross, then i = j.
Finally, Datta et al. [64] recently proved that the k-min-sum problem in unweighted plane

graphs, with all terminals on the outer face, can be solved in polynomial time for arbitrary
fixed k and arbitrary terminal patterns. Specifically, they described a randomized algorithm
that runs in O(4knω+1) expected time, and a deterministic algorithm that runs in O(4knω)

time where O(nω) is the time for fast matrix multiplication. Their algorithms rely on subtle
inclusion-exclusion techniques that appear difficult to generalize to weighted graphs.
Both the k-min-min and k-min-max problems appear to be harder than the k-min-sum

problem. Van der Holst and de Pina [61] proved that k-min-max is strongly NP-hard when
k is not fixed, when all terminals lie on the outer face. Yang, Zheng, and Lu [65] proved
that the problem is NP-hard when k = 2 and all terminals can be covered by two faces,
and Yang, Zheng, and Katukam [66] showed that vertex-disjoint k-min-min is NP-hard in
general graphs when k = 2 and both paths share the same pair of endpoints.
In this chapter, we describe three results. First, we describe the first polynomial-time

algorithm to solve the 4-min-sum problem in undirected edge-weighted planar graphs with
all eight terminals on a common face. If the given instance is parallel or serial, it can be solved
using existing algorithms; otherwise, the terminals can be labeled s4, s3, s1, t1, s2, t2, t3, t4 in
cyclic order around their common face. To solve these instances, our algorithm first computes
a solution to the 3-min-sum problem for the terminal pairs s1t1, s2t2, s4t4, using an existing
algorithm [9, 62]. We identify a small set of key anchor vertices where the 3-min-sum
solution intersects the 4-min-sum solution we want to compute. For each possible choice of
anchor vertices, our algorithm connects these vertices to the terminals by solving parallel
min-sum problems in three carefully constructed subgraphs of G. Overall, our algorithm
runs in O(n6) time.
Second, we sketch a method of extending our 4-min-sum algorithm to larger values of k

when the terminals appear in order s1, t1, s2, t2, t3, . . . , tk, sk, . . . , s1 along the outer face. Our
extended algorithm runs in polynomial time for any fixed k.
Third, we describe a k-approximation for the k-min-sum vertex-disjoint paths when all k

terminal pairs are on the outer face of a planar graph. In this algorithm, we construct an
integer program for the problem, solve a linear program relaxation of this integer program,
and then round the resulting fractional solution.
Our algorithms search for pairwise vertex-disjoint walks with minimum total length that
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connect corresponding terminals, rather than explicitly seeking simple paths. Because all
edge lengths are non-negative, the shortest set of walks will of course consist of simple paths.
This chapter is organized as follows. Sections 5.1- 5.4 deal with our 4-min-sum algorithm.

In Section 5.1 we describe the algorithm for solving parallel instances of the k-min-sum prob-
lem. This algorithm is not new but is included for completeness. In Sections 5.2 and 5.3
we prove several structural properties that will be used in our 4-min-sum algorithm. In Sec-
tion 5.4 we describe the 4-min-sum algorithm. In Section 5.5 we describe our slight extension
of the 4-min-sum algorithm. In section 5.6 we describe the k-approximation algorithm; this
section does not rely on any of the previous sections in this chapter.

5.1 ALGORITHM FOR PARALLEL INSTANCES

Our 4-min-sum algorithm relies on a black-box subroutine to solve parallel instances of 2-
min-sum and 3-min-sum. Van der Holst and de Pina [61] observed that any parallel instance
of k-min-sum can be solved in polynomial time by reduction to minimum-cost flow problem.
In fact, these instances can reduced in O(n) time to a planar instance of minimum-cost flow,
by replacing each vertex with a clockwise directed unit-capacity cycle, as described by Colin
de Verdiére and Schrijver [13] and Kaplan and Nussbaum [67]. The resulting minimum-
cost flow problem can then be solved O(kn) time by performing k iterations of the classical
successive shortest path algorithm [68, 69, 70], using the O(n)-time shortest-path algorithm
of Henzinger et al. [31] at each iteration.

Lemma 5.1. Any parallel planar instance of the k-min-sum problem can be solved in O(kn)

time.

Proof. Let G denote the input plane graph, without loss of generality embedded so that all
2k terminals lie on the outer face ∂G. We assume G is directed; otherwise, replace every
undirected edge with two oppositely oriented directed edges with equal length.
First, we convert the input graph G into a planar flow network G′ with vertex capacities

as follows. We add a new source vertex ŝ, with unit-capacity edges to each terminal si, and
a new target vertex t̂, with unit capacity edges from each terminal ti. Finally, we assign
every edge of G unit capacity and cost equal to its length, and we assign each vertex of G
capacity 1.
Now we need to compute a minimum-cost flow in G′ from ŝ to t̂ with value k. If no such

flow exists, the given instance of k-min-sum is infeasible. Otherwise, the minimum-cost flow
decomposes into k vertex-disjoint paths from ŝ to t̂, each carrying one unit of flow. Removing

48



the new vertices ŝ and t̂ leaves us with k vertex-disjoint paths in G, each connecting some
terminal si to the corresponding terminal tj.
To compute the minimum-cost flow quickly, we further reduce G′ to a planar flow net-

workH with only edge capacities, by replacing each vertex v (except ŝ and t̂) with a clockwise
cycle Cv of deg(v) directed edges, each with unit capacity and zero cost. We also redirect
the edges incident to v to distinct vertices of Cv, so that the resulting graph remains planar.
We then compute a minimum-cost flow in H in O(kn) time by performing k iterations of the
classical successive shortest path algorithm [68, 69, 70], using the O(n)-time shortest-path
algorithm of Henzinger et al. [31] at each iteration. Finally, we project the resulting flow
back to G′ by contracting each cycle Cv to its original vertex v.
It remains only to prove that the algorithm is correct. Let P = {P1, P2, . . . , Pk} be the

set of k paths that comprise a minimum-cost flow with value k in H. Because each edge in
H has unit capacity, the paths in P are pairwise edge-disjoint. Without loss of generality,
the ith path Pi contains the edges {ŝ, si} and {ti, t̂}.
The paths in P partition the bounded faces of G into k + 1 regions, each of which is

bounded by at most two paths in P . If a path Pi runs clockwise along the boundary of a
region, then we say that Pi is the left border of every face in the region. Every bounded face
of H has at most one left border path. In particular, for any vertex v in G, the face of H
bounded by Cv has at most one path as its left border; on the other hand, any path in P
that uses edges in Cv must be the left border of Cv. Thus, at most one path in P uses edges
in Cv.
We conclude that the set of paths in G corresponding to P is a feasible solution to the

k-min-sum problem. Conversely, any set of k vertex-disjoint paths in G can be transformed
into a feasible flow in H with value k. QED.

5.2 STRUCTURE

Let G be an undirected plane graph with non-negative edge lengths, and let s4, s3, s1,
t1, s2, t2, t3, t4 be eight distinct vertices in clockwise order around the outer face, as shown
in Figure 5.1. Let Q = {Q1, . . . , Q4} denote the unique optimal solution to this 4-min-sum
instance, where each path Qi connects si to ti, and let P = {P1, P2, P4} denote the unique
optimal solution to the induced 3-min-sum problem that omits the demand pair s3t3, where
again each path Pi connects si to ti. We can compute P in O(n4 log n) time using the
algorithm of Kobayashi and Sommer [9], or in O(n5) time using the more general algorithm
of Borradaile et al. [62].
We assume without loss of generality that the paths in P and Q do not use edges on the

49



outer face. If necessary to enforce this assumption, we can connect the terminals using an
outer cycle of eight infinite-weight edges.
The paths in P divide G into four regions, as shown in Figure 5.1(a). Let X be the unique

region adjacent to all the paths in P . For each index i 6= 3, let Ci denote the subpath of
∂G from si to ti that shares no edges with X, let Ri denote the closed region bounded by Pi
and Ci, and let R◦i denote the half-open region Ri \ Pi.

5.2.1 Envelopes

Fix a reference point z on the boundary path C4. Let π be some path from si to ti, for
some index i. We say that a point x 6∈ π lies below π if x lies on the same side of π as the
point z, and above π otherwise.
Now fix two indices i ≤ j. Let π be an arbitrary path from si to ti, and let ρ be an

arbitrary path from sj to tj; these two paths may intersect arbitrarily. If i = j, let D be the
path in ∂G from si to ti that lies above π and E be the path in ∂G from sj to tj that lies
below ρ. Otherwise, let D and E be the unique disjoint paths in ∂G from si to ti and from sj

to tj, respectively. The paths π and ρ divide the interior of G into connected regions. Let U
be the unique region with the entire path D on its boundary, and let L be the unique region
with the entire path E on its boundary. Finally, let U(π, ρ) = ∂U \D and L(π, ρ) = ∂L \E.
Intuitively, for most choices of i and j, U(π, ρ) is the “upper envelope” of π and ρ, and

L(π, ρ) is the “lower envelope” of π and ρ. However, when i = 1 and j = 2, the path U(π, ρ)

is better thought of as the “left envelope” (because it lies below ρ), and L(π, ρ) is better
thought of as the “right envelope” (because it lies above ρ); fortunately, this exception arises
only in the proof of Lemma 5.3.

Lemma 5.2. For any terminal-to-terminal paths π and ρ, we have `(U(π, ρ))+ `(L(π, ρ)) ≤
`(π) + `(ρ).

Proof. Each component of U(π, ρ) \ π is an open subpath of ρ that lies entirely above π and
therefore is disjoint from L(π, ρ). It follows that every edge in U(π, ρ) ∩ L(π, ρ) is an edge
of π. Similarly, every edge in U(π, ρ) ∩ L(π, ρ) is an edge of ρ. QED.

5.2.2 How the paths in P and Q intersect

We begin by proving several structural properties of the 4-min-sum solution Q that will
help us compute it quickly once we know the 3-min-sum solution P . Our structural obser-
vations are summarized in the following theorem:
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Figure 5.1: (a) Terminals, paths in P , and the regions they define. (b) Typical structures
for Q.

Theorem 5.1. If Qi crosses Pj, then either i = j = 1, or i = j = 2, or i = 3 and j = 4.
Moreover, either Q1 ⊂ R1 or Q2 ⊂ R2 or both, and Q4 ⊂ R4.

Figure 5.1(b) shows two typical structures for Q that are consistent with this theorem.
We prove Theorem 5.1 using a series of exchange arguments, with the following high-level
structure. Suppose some pair of paths Pi and Qj cross, in violation of Theorem 5.1. By
considering upper and lower envelopes of various paths in P and Q, we construct new sets P ′

and Q′ of vertex-disjoint paths. Then we argue, usually via Lemma 5.2, that `(P) + `(Q ≥
`(P ′) + `(Q′), contradicting the unique optimality of P and Q.

Lemma 5.3. Q1 does not cross P2, and Q2 does not cross P1.

Proof. Suppose for the sake of argument that Q1 crosses P2. Let P ′2 be the “right envelope”
L(Q1, P2) and let Q′1 be the “left envelope” U(Q1, P2). By definition, P ′2 is a path from s2 to
t2, and Q′1 is a path from s1 to t1. Let P ′ = {P1, P

′
2, P4} and Q′ = {Q′1, Q2, Q3, Q4}.

The path P2 separates P ′2 from both P1 and P4, so the paths in P ′ are vertex-disjoint.
Similarly, Q1 separates Q′1 from Q2, Q3, and Q4, so the paths in Q′ are vertex-disjoint.
Lemma 5.2 implies that `(P) + `(Q) ≥ `(P ′) + `(Q′). However, the unique optimality of
P implies `(P) < `(P ′), and the unique optimality of Q implies that `(Q) < `(Q′), so we
have a contradiction. We conclude that Q1 does not cross P2.
A symmetric argument implies that Q2 does not cross P1. QED.

Lemma 5.4. Q1 and Q2 do not cross P4.

Proof. The proof is similar to that of Lemma 5.3 Suppose for the sake of argument that
Q1 crosses P4. Let P ′4 = L(Q1, P4) and Q′1 = U(Q1, P4). Let P ′ = {P1, P2, P

′
4} and Q′ =

{Q′1, Q2, Q3, Q4}. P4 separates P ′4 from P1 and P2, so the walks in P ′ are pairwise vertex-
disjoint. Q1 separatesQ′1 fromQ2, Q3, andQ4, so the walks inQ′ are pairwise vertex-disjoint.
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The optimality of P implies `(P) < `(P ′), and the optimality of Q implies that `(Q) <

`(Q′). On the other hand, `(P) + `(Q) ≥ `(P ′) + `(Q′), a contradiction.
A symmetric argument implies that Q2 does not cross P4. QED.

Lemma 5.5. Q3 crosses neither P1 nor P2.

Proof. We prove that Q3 does not cross P1; the proof for the other statement is symmetric.
Suppose for the sake of argument that Q3 crosses P1. Let P ′1 = U(P1, Q3), P ′2 = U(P2, Q3),

and P ′4 = U(P4, Q4). Let Q′3 = L(P1, L(P2, Q3)) and Q′4 = L(P4, Q4). Finally, let P ′ =

{P ′1, P ′2, P ′4} and Q′ = {Q1, Q2, Q
′
3, Q

′
4}. As in the previous proofs, we claim that P ′ and Q′

are sets of vertex-disjoint paths.
P1 separates P ′1 from P ′2. Suppose for the sake of argument that P ′1 meets P ′4 at a vertex x.

Since x is on P ′1, it is inside R1 and it is on or above Q3. Since x is on P ′4, it is either on P4

or Q4. If x is on P4, then since x is inside R1, P1 touches P4. If x is on Q4, then since x is on
or above Q3, Q3 touches Q4. In both cases we obtain a contradiction. A similar argument
shows that P ′2 does not meet P ′4, so the walks in P ′ are pairwise vertex-disjoint.
Q1 and Q2 are trivially disjoint, and Q3 separates Q1 and Q2 from Q′3 and Q′4. Suppose Q′3

intersects Q′4 at a vertex x. Since x is on Q′4, it is inside R4 and on or below Q4. Because x
is on Q′3, it is either in P1, P2, or Q3. If x is on Q3, then because x is on or below Q4, Q3

crosses below Q4. If x is on P1 or P2, then since x is in R4, either P1 or P2 touches P4. In
all cases we obtain a contradiction, so the paths in Q′ are pairwise vertex-disjoint.
Each component of Q′3 \ Q3 is an open subpath of P1 or P2 that lies entirely below Q3

and therefore is not contained in P ′1 or P ′2. Similarly, each component of P ′1 \ P1 is an open
subpath of Q3 that lies entirely above P1 and therefore is not contained in P ′2 or Q′3, and
each component of P ′2 \P2 is an open subpath of Q3 that lies entirely above P2 and therefore
is not contained in P ′1 or Q′3.
It follows that `(P ′1) + `(P ′2) + `(Q′3) ≤ `(P1) + `(P2) + `(Q3), and therefore `(P) + `(Q) ≥

`(P ′) + `(Q′), contradicting the unique optimality of P and Q. QED.

Corollary 5.1. Q4 does not meet P1 or P2.

Lemma 5.6. Q4 lies entirely in R4.

Proof. For the sake of argument, supposeQ4 leaves R4. Define two new paths P ′4 = U(P4, Q4)

and Q′4 = L(P4, Q4). Let P ′ = {P1, P2, P
′
4} and Q = {Q1, Q2, Q3, Q

′
4}.

Corollary 5.1 implies that P ′4 does not meet P1 or P2, so the walks in P ′ are pairwise vertex-
disjoint. On the other hand, Q4 separates Q′4 from Q1, Q2, and Q3, so the paths in Q′ are
pairwise vertex-disjoint. Lemma 5.2 implies `(P ′4) + `(Q′4) ≤ `(P4) + `(Q4), and therefore
`(P ′) + `(Q′) ≤ `(P) + `(Q), contradicting the unique optimality of P and Q. QED.
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Figure 5.2: An impossible configuration of optimal paths, for the proofs of Lemmas 5.6 and
5.8.

To complete the proof of Theorem 5.1, we must consider two cases, depending on whether
or not Q3 crosses P4. Typical solutions for these two cases are illustrated in Figure 5.1(b).

The case where Q3 does not cross P4.

Lemma 5.7. If Q3 does not cross P4, then Q1 and Q2 do not meet P4.

Proof. Q3 separates s1, t1, s2, t2 from s4 and t4. Thus, Q3 separates Q1 and Q2 from P4.
QED.

Lemma 5.8. If Q3 does not cross P4, then every component of Q1 \R◦1 meets P2, and every
component of Q2 \R◦2 meets P1.

Proof. Suppose some component q of of Q1 \ R◦1 does not meet P2, as shown at the top of
Figure 5.2. We can derive a contradiction using a similar exchange argument to Lemma 5.6.
The endpoints x and y of q must lie on P1; let p denote the subpath P1[x, y]. Define two

new paths P ′1 = P1 \ p ∪ q and Q′1 = Q1 \ q ∪ p. Clearly P ′1 and Q′1 are both walks from s1

to t1. Let P ′ = {P ′1, P2, P4} and Q = {Q′1, Q2, Q3, Q4}. Lemma 5.7 and our assumption that
q does not meet P2 imply that the walks in P ′ are pairwise vertex-disjoint. On the other
hand, p lies in the disk enclosed by P ′1 ∪ C1, which implies that the walks in Q′ are also
pairwise vertex-disjoint. The optimality of P implies that `(P) < `(P ′), and the optimality
of Q implies that `(Q) < `(Q′), but clearly `(P) + `(Q) = `(P ′) + `(Q′), so we have a
contradiction.
A symmetric argument implies every component of Q2 \R◦2 meets P1. QED.

Lemma 5.9. If Q3 does not cross P4, then either Q1 ⊂ R1 or Q2 ⊂ R2 or both.

Proof. For the sake of argument, suppose Q1 leaves R1 and Q2 leaves R2. Let S1 be the
closed region bounded by Q1 ∪ C1 and let S2 be the closed region bounded by Q2 ∪ C2. We
call each component of S1 \ R◦1 a left finger, and each component of S2 \ R◦2 a right finger.
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Lemma 5.8 and the Jordan curve theorem imply that each finger is a topological disk that
intersects both P1 and P2. Thus, the fingers can be linearly ordered by their intersections
with P1 from s1 to t1 (from bottom to top in Figure 5.3). Because Q1 is a simple path, the
fingers intersect Q1 in the same order. Without loss of generality, suppose the last finger
in this order is a right finger. Let s be the last left finger, and let s′ be the right finger
immediately after s.
Let w be the last node of P1 (closest to t1) that lies in s, and let y be the last node of P2

(closest to t2) that that lies in s′. We define four subpaths p1 = P1[w, t1], q1 = Q1[w, t1],
p2 = P2[s2, y], and q2 = Q2[s2, y], as shown on the left of Figure 5.3. (Paths p2 and q2 could
enclose more than one right finger.)

s1

t1 s2

t2
w

ys0

s

p1
p2q2

q1 z
x

Figure 5.3: Another impossible configuration, for the proof of Lemma 5.9.

Now exchange the subpaths p1 ↔ q1 and p2 ↔ q2 to define four new walks P ′1 = P1\p1∪q1,
Q′1 = Q1 \ q1 ∪ p1, P ′2 = P2 \ p2 ∪ q2, and Q2 = Q2 \ q2 ∪ p2. Finally, let P ′ = {P ′1, P ′2, P4}
and Q′ = {Q′1, Q′2, Q3, Q4}. As in previous lemmas, we argue that P ′ and Q′ are sets of
vertex-disjoint walks.
Lemma 5.5 implies that Q3 does not cross P1 or P2, and trivially Q3 does not cross Q1.

Thus, none of the paths Q3, P4, Q4 touches any of the paths p1, q1, p2, q2. It follows that P4

does not touch either P ′1 or P ′2, and similarly, Q3 and Q4 does not touch either Q′1 or Q′2.
We define two more auxiliary nodes x and z, as shown on the right in Figure 5.3. Let x be

the first vertex of P2 also on Q1. Vertex y must precede x on P2, because x ∈ s and y ∈ s′.
Let z be the first vertex of P1 also on q2. Vertex w must precede z on P1, because w ∈ s
and z ∈ s′.
Trivially, q1 does not meet q2, and P1 \ p1 does not meet P2 \ p2. Any left finger formed

from q1 must succeed s. Because s is the last left finger, q1 does not form any left fingers
and does not touch P2. By definition, z is the first node of P1 also on q2. On the other hand,
all vertices of P1 \ p1 (except w) precede w on P1, which in turn strictly precedes z on P1, so
P1 \ p1 is disjoint from q2. We conclude that P ′1 does not meet P ′2, implying that the walks
in P ′ are vertex-disjoint:
Trivially, p1 does not meet p2, and Q1\q1 does not meet Q2\q2. Since q1 does not meet P2,

x is the first vertex of P2 also on Q1 \ q1. On the other hand, all vertices of p2 (except y)
precede y on P2, which in turn strictly precedes x on P2, so Q1 \ q1 is disjoint from p2. Any
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right finger whose boundary contains a subpath of Q2 \ q2 must precede s′, and any right
finger that meets p1 must succeed s. Because no right fingers lie strictly between s and s′,
the path Q2 \ q2 does not form any right fingers that meet p1. We conclude that Q′1 does
not meet Q′2, which implies that the walks in Q′ are vertex-disjoint.
Finally, we clearly have `(P) + `(Q) = `(P ′) + `(Q′), contradicting the unique optimality

of P and Q. QED.

The case where Q3 crosses P4.

Lemma 5.10. If Q3 crosses P4, then every component of Q1 \ R1 meets P2 or P4 or both,
and every component of Q2 \R2 meets P1 or P4 or both.

Proof. The proof is the same as that of Lemma 5.8. QED.

Lemma 5.11. If Q3 crosses P4, then either Q1 or Q2 (or both) touches P4.

Proof. The proof is similar to that of Lemma 5.3. Suppose for the sake of argument that Q1

and Q2 do not touch P4.
Let q be a maximal component of Q3 ∩ R4, and let a and b be the endpoints of q. Let

p = P4[a, b], and define two new paths P ′4 = P4\p∪q andQ′3 = Q3\q∪p. Let P ′ = {P1, P2, P
′
4}

and Q′ = {Q1, Q2, Q
′
3, Q4}.

P4 separates P1 and P2 from q, so P1 and P2 are disjoint from P ′4 and the walks in P ′

are pairwise vertex-disjoint. By assumption, Q1 and Q2 do not touch p, so Q1 and Q2 are
disjoint from Q′3. Also, P ′4 separates p from Q4, so Q′3 is disjoint from Q4. It follows that
the walks in Q′ are pairwise vertex-disjoint.
The unique optimality of P implies that `(P ′) < `(P ′), and the unique optimality of Q

implies that `(Q′) < `(Q′), but clearly `(P) + `(Q) = `(P ′) + `(Q′), a contradiction. QED.

In the rest of this subsection we assume without loss of generality that Q1 touches P4.
Our goal is to show that Q2 ⊂ R2. Let u be the last vertex on Q1 ∩P4, and let b be the first
vertex on P4[u, t4] that is on Q3, as shown in Figure 5.4(a) and (b) below.

Lemma 5.12. If vertex u precedes vertex v in P4, then either u precedes v in Q3, or
P4[u, v] = rev(Q3[v, u]).

Proof. Suppose for the sake of argument that u precedes v in P4, v precedes u in Q3, and
P4[u, v] 6= rev(Q3[v, u]). Without loss of generality, assume that none of the vertices in
Q3(v, u) are on P4. Let q3 = Q3[v, u] and p4 = P4[u, v]. Define P ′4 by removing all cycles
from P4 \ p4 ∪ rev(q3), and define Q′3 by removing all cycles from Q3 \ q3 ∪ rev(p4). This
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means that Q′3 is a simple path from s3 to t3 that does not cross Q3, and P ′4 is a simple path
from s4 to t4 that does not cross P4. Let P = {P1, P2, P

′
4} and Q = {Q1, Q2, Q

′
3, Q4}.

If Q3(v, u) ⊆ R4, then p4 does not meet Q4 by Lemma 5.6, and Q3 separates Q′3 from Q1

and Q2. It follows that the walks in Q are pairwise vertex-disjoint. Path P4 separates q3
from P1 and P2, so the paths in P are pairwise vertex-disjoint.
If Q3(v, u)∩R4 = ∅, then p4 does not meet Q1 or Q2 by Lemma 5.4, and Q3 separates Q′3

from Q4. It follows that the walks in Q are pairwise vertex-disjoint. Walk P4[s4, u]∪Q3[u, t3]

separates q3 from P1 and P2, so the paths in P are pairwise vertex-disjoint.
The optimality of P implies that `(P ′) < `(P ′), and the optimality of Q implies that

`(Q′) < `(Q′), but clearly `(P) + `(Q) = `(P ′) + `(Q′). QED.

Lemma 5.13. Suppose Q3 crosses P4 and Q1 touches P4. If u and b are defined as above,
then Q2 does not touch P4[u, b].

Proof. Suppose for the sake of contradiction that Q2 touches P4[u, b]. We define six special
vertices v, y, z, w, x, and a, as shown in Figure 5.4(a):

• Vertex v is the first vertex on Q2 ∩ P4. By assumption, v is on P4[u, b].

• If Q3[s3, b] touches P1, then y is the last vertex in their intersection. Otherwise, y = s1.

• If Q3[b, t3] touches P2, then z is the first vertex in their intersection. Otherwise, z = t2.

• Vertex w is the first vertex on P1[y, t1] that is also on Q1.

• Vertex x is the last vertex on P2[s2, z] that is also on Q2.

• Vertex a is the first vertex on Q3[y, t3] that is also on P4.

Let p1 = P1[w, t1], q1 = Q1[w, t1], p2 = P2[s2, x], q2 = Q2[s2, x], q3 = Q3[a, b], and
p4 = P4[a, b]. Let P ′1 = P1 \p1∪ q1, Q′1 = Q1 \ q1∪p1, P ′2 = P2 \p2∪ q2, and Q′2 = Q2 \ q2∪p2.
Let P ′4 = L(P4, P4 \ p4 ∪ q3) and Q′3 = U(Q3, Q3 \ q3 ∪ p4). Finally, let P ′ = {P ′1, P ′2, P ′4} and
Q′ = {Q′1, Q′2, Q′3, Q4}.
Q1[u, t1] ∪ P4 separates P1 \ p1 from q2, and Q2[s2, v] ∪ P4 separates P2 \ p2 from q1. It

follows that P ′1 and P ′2 are disjoint. Any vertex on both P ′1 and P ′4 must lie on q1, because
P ′4 ⊂ R4, but Q3 separates q1 from P ′4. It follows that P ′1 and P ′4 are disjoint. A symmetric
argument implies that P ′2 and P ′4 are disjoint. We conclude that the walks in P ′ are pairwise
vertex-disjoint.
Q1[u, t1] ∪ P4 separates Q1 \ q1 from p2, and Q2[s2, v] ◦ P4 separates Q2 \ q2 from p1, so

Q′1 and Q′2 are disjoint. The definition of w implies that Q3[s3, b] does not meet p1, and
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Figure 5.4: More impossible configurations, for the proofs of (a) Lemma 5.13 and (b)
Lemma 5.15.

the Jordan Curve Theorem implies that Q3[b, t3] does not meet p1. Thus, p1 and Q3 are
disjoint, which implies that Q′1 and Q3 are disjoint. It follows that if Q′1 and Q′3 share a
vertex c, we must have c ∈ Q′4 \ Q3 ⊆ p4 and therefore c ∈ Q1 \ q1. But this is impossible,
because Q3[s3, y] ∪ P1[y, w] ∪Q1[w, t1] separates Q1 \ q1 from p4. A similar argument shows
that Q′2 is disjoint from Q′3. Finally, Q3 separates Q′3 from Q4. We conclude that the walks
in Q′ are pairwise vertex-disjoint. One can show show that `(P ′4) + `(Q′3) ≤ `(P4) + `(Q3);
for details, see Lemma 5.14. It follows that `(P) + `(Q) ≤ `(P ′) + `(Q′), contradicting the
unique optimality of P and Q. QED.

Lemma 5.14. In the proof of Lemma 5.13, we have `(P ′4) + `(Q′3) ≤ `(P4) + `(Q3).

Proof. Suppose e is an edge in P ′4 and Q′3 \ Q3. The edge e is strictly above Q3 and on p4.
Thus e is not in P4 \ p4 ∪ q3 and must be strictly below it. But Lemma 5.12 implies that
e ∈ p4 cannot be both strictly above Q3 and strictly below P4 \ p4 ∪ q3. It follows that any
edge in P ′4 and Q′3 must be in Q3. A similar argument shows that any edge in P ′4 and Q′3
must be in P4. It follows that `(P ′4) + `(Q′3) ≤ `(P4) + `(Q3). QED.

Lemma 5.15. If Q3 crosses P4 and Q1 touches P4, then some component of Q1 \R1 touches
both P2 and P4.

Proof. Lemma 5.13 implies that Q2 does not touch P4[u, b]. Suppose for the sake of argument
that no component of Q1 \R1 touches both P4 and P2. We define four special vertices y, w,
x, and a, as shown in Figure 5.4(b):

• If Q3[s3, b] touches P1, then y is the last vertex in their intersection. Otherwise, y = s1.

• Vertex w is the first vertex on P1[y, t1] that is also on Q1.

• Vertex x is the first vertex on Q1[u, t1] that is also on P1.

• Vertex a is the first vertex on Q3[y, t3] that is also on P4.
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Let p1 = P1[w, x], q1 = Q1[w, x], p4 = P4[a, b], and q3 = Q3[a, b]. Let P ′1 = P1 \ p1 ∪ q1
and Q′1 = Q1 \ q1 ∪ p1. Define P ′4 = L(P4, P4 \ p4 ∪ q3) and Q′3 = U(Q3, Q3 \ q3 ∪ p4). Let
P ′ = {P ′1, P2, P

′
4} and Q′ = {Q′1, Q2, Q

′
3, Q4}.

An argument similar to the proof of Lemma 5.13 shows that P ′ and Q′ are each sets of
pairwise disjoint walks; see Lemma 5.16 for details. The same argument as Lemma 5.14
implies that `(P ′4) + `(Q′3) ≤ `(P4) + `(Q3). As usual, it follows that `(P ′) + `(Q′) ≤
`(P) + `(Q), contradicting the unique optimality of P and Q. QED.

Lemma 5.16. In the proof of Lemma 5.15, P ′ and Q′ are each sets of disjoint walks.

Proof. By assumption, q1 is disjoint from P2, so P ′1 is disjoint from P2. The same argument
as in the proof of Lemma 5.13 shows that P ′1 is disjoint from P ′4. Additionally, P4 separates
P2 from P ′4. It follows that the walks in P ′ are pairwise vertex-disjoint.
P1[x, t1] ∪ Q1[x, u] ∪ P4 separates p1 from Q2, so Q′1 is disjoint from Q2. Suppose for the

sake of argument that Q′1 and Q′3 meet at c. The definition of y implies that Q3[s3, b] does
not meet p1, while the definition of x implies that Q3[b, t3] does not meet p1. Thus, c ∈ Q′3
implies c ∈ p4, and c ∈ Q′1 implies c ∈ Q1 \q1. But Q1[x, t1] doesn’t meet p4 by the definition
of x, and Q3[s3, y]∪P1[y, w]∪Q1[w, t1] separates Q1[s1, w] from p4, so we have a contradiction.
By assumption, p4 and Q2 are disjoint, so Q2 and Q′3 are disjoint. Q3 separates Q′3 from Q4.
We have shown that the walks in Q′ are pairwise vertex-disjoint. QED.

Lemma 5.17. If Q3 crosses P4 and Q1 touches P4, then Q2 does not touch P4.

Proof. Define a far-reaching subpath to be a component of Q1 \ R1 that touches both P4

and P2 or a component of Q2 \ R◦2 that touches both P4 and P1. Lemma 5.15 says that
some component of Q1 \ R1 is a far-reaching subpath. Symmetrically, if Q2 were to touch
P4, then some component of Q2 \ R2 would also be a far-reaching subpath, but the Jordan
Curve Theorem implies that we cannot have both a far-reaching subpath of Q1 \ R1 and a
far-reaching subpath of Q2 \R2. It follows that Q2 does not touch P4. QED.

Lemma 5.18. If Q3 crosses P4 and Q1 touches P4, then Q2 ⊂ R2.

Proof. The proof is similar to that of Lemma 5.9. By Lemma 5.15 and 5.17, there exists a
component of Q1 \R◦1 that touches both P2 and P4, and Q2 does not touch P4. We will show
that Q2 ⊂ R2. As in the proof of Lemma 5.9, define S1 to be the closed region bounded
by Q1 ∪ C1, define S2 to be the closed region bounded by Q2 ∪ C2, call each component of
S1 \R◦1 intersecting both P1 and P2 a left finger, and call each component of S2 \R◦2 a right
finger. Let f be the unique left finger that touches both P2 and P4.
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The proof of Lemma 5.9 shows that no left fingers exist after the last right finger, and no
right fingers exist after the last left finger. Repeatedly applying this observation shows that
no fingers exist except for the first finger f . Since no right fingers exist, Q2 does not touch
P1. Additionally, Q2 does not touch P4, so Lemma 5.10 implies that Q2 ⊂ R2. QED.

Corollary 5.2. If Q3 crosses P4, then either Q1 ⊂ R1 or Q2 ⊂ R2.

The proof of Theorem 5.1 is now complete.

5.3 SUBGRAPH SOLUTIONS

Our algorithm solves several parallel instances of k-min-sum inside certain subgraphs of
G. To prove that our algorithm is correct, we need to argue that the subgraph solutions
coincide exactly with portions of the desired global solution. As an intermediate step, we
first show that the subgraph solutions interact with the global solution in a limited way.
Unlike the structural results in the previous section, the following lemma applies to planar
k-min-sum instances for arbitrary k.

Lemma 5.19. Let (G, {si, ti | 1 ≤ i ≤ k}) be a planar instance of k-min-sum, with all
terminals si and ti on ∂G, whose unique solution is Q = {Q1, . . . , Qk}. Let S be a subset
of {1, 2, . . . , k} such that the induced planar min-sum instance (G, {si, ti | i ∈ S}) is parallel.
Let H be a subgraph of G such that

(1) Qi ∩H 6= ∅ if and only if i ∈ S, and

(2) for all distinct i, j ∈ S, no component of Qi ∩H separates components of Qj ∩H from
each other in H.

For each index i ∈ S, let ui and vi be vertices of Qi ∩ ∂H such that Qi[ui, vi] ⊆ H. Finally,
suppose (H, {ui, vi | i ∈ S}) is a parallel planar min-sum instance, whose unique solution is
Π = {πi | i ∈ S}. Then for all indices i, j ∈ S, if i 6= j, then πi does not cross Qj.

Proof. First we establish some notation and terminology. Let κ = |S|, and re-index the
terminals so that S = {1, 2, . . . , κ} and the counterclockwise order of terminals around the
outer face of H is u1, . . . , uκ, vκ, . . . , v1. Fix an index i such that 1 ≤ i < κ, and consider
the paths Qi and πi+1.
Let C (“ceiling”) denote the path in ∂G from si to ti that does not contain si+1 or ti+1,

and let A be the closed region bounded by C and Qi. A point in G is above Qi if it lies in
A \Qi and below Qi if it does not lie in A.
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Similarly, let F (“floor”) denote the path in ∂H from ui+1 to vi+1 that does not contain ui
or vi, and let B be the closed region bounded by F and πi+1. A point in H is below πi+1 if
it lies in B \ πi+1 and above πi+1 if it does not lie in B.
Paths Qi and πi+1 also divide the interior of G into connected regions, exactly one of which

has the entire path C on its boundary; call this region U . Finally, let Q′i denote the unique
path in G from si to ti such that C ∪Q′i is the boundary of U . Every point on Q′i lies on or
above Qi, and our assumption (2) implies that every point in Q′i ∩H lies on or above πi+1.
Thus, intuitively, Q′i is the “upper envelope” of Qi and πi+1. In particular, Q′i = Qi if and
only if Qi and πi+1 are disjoint.
Similarly, paths Qi and πi+1 divide the interior of H into closed connected regions, exactly

one of which contains F on its boundary; call this region L. Let π′i+1 denote the unique path
in H from ui+1 to vi+1 such that D∪π′i+1 is the boundary of L. Assumption (2) implies that
every point on π′i+1 lies on or below both πi+1 and Qi. Thus, intuitively, π′i+1 is the “lower
envelope” of Qi and πi+1. In particular, π′i+1 = πi+1 if and only if Qi and πi+1 are disjoint.
Each component of Q′i \ Qi is an open subpath of πi+1 that lies entirely above Qi and

therefore is not contained in π′i+1. Similarly, every component of π′i+1 \ πi+1 is an open
subpath of Qi ∩ H that lies entirely below πi+1 and therefore is not contained in Q′i. It
follows that `(Q′i) + `(π′i+1) ≤ `(Qi) + `(πi+1).
Finally, let Q′ = {Q′1, . . . , Q′κ−1, Qκ, . . . , Qk} and Π′ = {π1, π′2, . . . , π′κ}; see Figure 5.1 for

an example of our construction.

(a) (b)

Figure 5.5: Proof of Lemma 5.19. The inner red circle is ∂H. (a) The original paths Q (solid
blue) and Π (dashed red). (b) The transformed paths Q′ (solid blue) and Π′ (dashed red).

Now suppose for the sake of argument that Qi crosses πi+1 for some index i, or equivalently,
that Q′ 6= Q and Π′ 6= Π. As usual, to derive a contradiction, we need to show that Q′ and
Π′ are sets of disjoint walks. The following case analysis implies that the walks in Q′ are
pairwise disjoint:

• None of the paths Qκ+1, . . . , Qk intersect H. On the other hand, for all i < κ, Q′i \Qi

is a subset of πi+1 and therefore lies in H. Trivially, Qκ+1, . . . , Qk are disjoint from
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Q1, . . . , Qκ. Thus, paths Q′1 . . . , Q′κ−1, Qκ are disjoint from paths Qκ+1, . . . , Qk.

• Qκ lies entirely below Qκ−1 and therefore entirely below Q′κ−1.

• Now consider any point x ∈ Q′i, for any index 1 ≤ i < κ−1. Point x lies on or above Qi

(because every point in Q′i lies on or above Qi), and therefore lies above Qi+1. So we
must have x ∈ πi+2 and therefore x ∈ H. But because x ∈ Q′i ∩ H, x lies either on
or above πi+1, and therefore lies above πi+2. So x cannot lie on Q′i+1. We conclude
that Q′i and Q′i+1 are disjoint.

Similar case analysis implies that the walks in Π′ are pairwise disjoint:

• π1 lies entirely above π2 and therefore entirely above π′2.

• Now consider any point x ∈ π′i+1, for any index 1 < i < κ. Point x lies on or below Qi,
and therefore below Qi−1. On the other hand, x lies on or below πi+1, and therefore
lies below πi. So x cannot lie in π′i. We conclude that π′i and π′i+1 are disjoint.

The unique optimality of Π and Q implies `(Π) < `(Π′) and `(Q) < `(Q′). On the other
hand, we immediately have

`(Π) + `(Q) = `(π1) +
κ−1∑
i=1

(
`(Qi) + `(πi+1)

)
+

k∑
i=κ

`(Qi) (5.1)

≤ `(π1) +
κ−1∑
i=1

(
`(Q′i) + `(π′i+1)

)
+

k∑
i=κ

`(Qi) (5.2)

= `(Π′) + `(Q′), (5.3)

giving us a contradiction.
We conclude that πi does not cross Qi−1 for any index i. It follows immediately that πi

does not cross (in fact, does not touch) any Qj such that j < i− 1. A symmetric argument
implies that πi does not cross any Qj such that j > i. QED.

5.4 4-MIN-SUM ALGORITHM

Now we are finally ready to describe our algorithm for computing Q given P . By The-
orem 5.1, we can assume without loss of generality that Q2 ⊂ R2. We define five anchor
vertices as follows; see Figure 5.6.

• If Q1 meets P2, then a is the first vertex of Q1 that is also on P2, and b is the first
vertex in the suffix P2(a, t2] that is also on Q2; otherwise, a = t1 and b = s2.
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• If Q3 meets P2, then c is the first vertex in their intersection; otherwise, c = t3.

• If P4 meets the prefix Q3[s3, c), then d is the last vertex of P4 in their intersection;
otherwise, d = s4.

• Finally, e is the first vertex of the suffix P4(d, t4] that is also on Q4.

We also split each path Qi into a prefix Qs
i and a suffix Qt

i that meet at a single vertex.
Specifically, we split Q1 at a, we split Q2 at b, we split Q3 at c, and we split Q4 at e. Thus,
for example, Qs

1 = Q1[s1, a] and Qt
1 = Q1[a, t1].

s1

t1 s2

t2

s3

s4 t4

t3

a

b
c

d
e

s1

t1 s2

t2

s3

s4 t4

t3

a

d
e

b c

Figure 5.6: Anchor vertices a, b, c, d, e.

Now suppose we know the locations of the anchor vertices a, b, c, d, and e. (Our final
k-min-sum algorithm actually enumerates all O(n5) possible locations for these vertices.)
Our algorithm computes Q in three phases; each phase solves a parallel instance of the k-
min-sum problem (with k = 2 or k = 3) in a subgraph of G in O(n) time, via minimum-cost
flows. The subpaths of Q computed in each phase are shown in Figure 5.7.

c

d
e

s1

t1 s2

t2

s3

s4 t4

t3

a

b

d

a
s1

t1 s2

t2

s3

s4 t4

t3

c

e

b
ζ

δ ϵ

η

θ

b
s1

t1 s2

t2

s3

s4 t4

t3

a
c

e

α

β

γ

d

Figure 5.7: Subpaths of Q computed by the three phases of our algorithm.

• Let H1 be the subgraph of G obtained by deleting every vertex in R2 except a and c,
every edge incident to s4 or e outside of R4, and every vertex of P4(d, t4] except e. The
first phase of our algorithm computes the shortest set of vertex-disjoint paths in H1

from s1 to a, from s3 to c, and from s4 to e. Call these paths α, β, and γ, respectively.
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• If Q1 and P2 are disjoint, let δ = t1 and ε = s2. Otherwise, let H2 be the subgraph
of G obtained by deleting every vertex of P2(a, t2] except b, all edges incident to b

that leave R2, and every vertex of α except a. The second phase of our algorithm
computes the shortest vertex-disjoint paths in H2 from t1 to a and from s2 to b. Call
these paths δ and ε, respectively.

• Finally, let H3 be the subgraph of G obtained by deleting all vertices in α · rev(δ), all
vertices in β[s3, b), all vertices in γ[s4, e), and all vertices in ε[s2, b). The last phase of
our algorithm computes the shortest vertex-disjoint paths in H3 from b to t2, from c

to t3, and from e to t4. Call these paths ζ, η, and θ, respectively.

Lemma 5.20. Qt
3 does not cross P4.

Proof. The proof is similar to that of Lemma 5.3. The lemma is obvious if c = t3, so assume
Q3 touches P2.
Suppose Qt

3 crosses P4. Let q be any component of Qt
3 ∩ R4. The endpoints x and y of q

must lie on P4; let p denote the subpath P4[x, y]. Define two new paths Q′3 = Q3 \ q ∩ p and
P ′4 = P4 \ p ∪ q. Let P ′ = {P1, P2, P

′
4} and Q′ = {Q1, Q2, Q

′
3, Q4}.

P4 separates P1 and P2 from P ′4, so the walks in P ′ are pairwise vertex-disjoint. On the
other hand, Qs

3 ∪ P2 separates Q1 from p, and Q2 does not touch P4 ⊇ p. Furthermore,
subpath p lies outside the disk enclosed by P ′4 ∪ C4, so by Lemma 5.6, Q4 does not meet p.
It follows that the walks in Q′ are also pairwise vertex-disjoint.
The unique optimality of P implies `(P) < `(P ′), and the unique optimality of Q implies

`(Q) < `(Q′). But `(P) + `(Q) = `(P ′) + `(Q′), so we have a contradiction. QED.

Lemma 5.21. α = Qs
1, β = Qs

3, and γ = Qs
4.

Proof. Suppose, for the sake of argument, that (α, β, γ) 6= (Qs
1, Q

s
3, Q

s
4), and define a new set

of walks Q′ := {α ◦Qt
1, Q2, β ◦Qt

3, γ ◦Qt
4}. The following exhaustive case analysis shows

that the paths of Q′ are vertex-disjoint.

• Paths α, β, and γ are disjoint by definition.

• Similarly, Qt
1, Q2, Qt

3, Qt
4 are subpaths of paths in Q and thus are disjoint by definition.

• P2 separates Q2 from α, β, and γ.

• Lemma 5.19 implies that β and γ do not cross Qs
1, and therefore do not touch Qt

1.

• Lemma 5.19 also implies that α does not cross Qs
3, and therefore does not touch Qt

3.
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• Lemma 5.19 also implies that α and β do not cross Qs
4, and therefore do not touch Qt

4.

• Finally, if d = s4, then the definition of H1 implies that γ does not leave R◦4 except at s4
and e, so Lemma 5.20 implies that γ is disjoint from Qt

3. If d 6= s4, then Lemma 5.19
implies that γ does not cross Q3[s3, d]; on the other hand, Qt

3 does not meet Q3[s3, d].
The definition of H1 implies that γ does not cross the path P4[d, t4] and only meets it
at d or e; on the other hand, neither d nor e are on Qt

3. Because Q3[s3, d] ◦ P4[d, t4]

separates γ from Qt
3, we conclude that Qt

3 and γ are disjoint.

Because the walks in Q′ are vertex-disjoint, the unique optimality of Q implies that `(Q) <

`(Q′). On the other hand, the lemmas in Section 5.2.2 and the definitions of the anchor
vertices imply that Qs

1, Qs
3, and Qs

4 are indeed paths inH1 between the appropriate terminals.
Moreover, Qs

1, Qs
3, and Qs

4 are vertex-disjoint, because they are subpaths of the disjoint paths
in Q. Thus, the unique optimality of {α, β, γ} implies that `(α) + `(β) + `(γ) < `(Qs

1) +

`(Qs
3) + `(Qs

4). It follows that `(Q′) < `(Q), giving us the desired contradiction. QED.

Lemma 5.22. rev(δ) = Qt
1 and ε = Qs

2.

Proof of Lemma 5.22. The lemma is obvious if Q1 and P2 are disjoint, so assume otherwise.
For the sake of argument, suppose (rev(δ), ε) 6= (Qt

1, Q
s
2), and let Q′ = {Qs

1 ◦ rev(δ),
ε ◦ Qt

2, Q3, Q4}. The following exhaustive case analysis implies that the walks in Q′ are
pairwise disjoint.

• δ and ε are disjoint by definition.

• Qs
1, Qt

2, Q3, and Q4 are disjoint by definition of Q.

• Lemma 5.19 implies that δ does not cross Qs
2, and therefore does not touch Qt

2.

• The path α ◦ P2[a, t2] separates δ and ε from Q3 and therefore from Q4.

• Lemma 5.21 implies that Qs
1 ∩ V (H2) = {a}. It follows that ε does not touch Qs

1.

The unique optimality of Q now implies that `(Q) < `(Q′).
On the other hand, the lemmas in Section 5.2.2 and the definitions of the anchor vertices

imply that Qt
1 and Qs

2 are vertex-disjoint paths in H2 between the appropriate terminals.
Thus, the unique optimality of {δ, ε} implies that `(Qt

1) + `(Qs
2) > `(δ) + `(ε), and therefore

`(Q) > `(Q′), giving us the desired contradiction. QED.

Lemma 5.23. ζ = Qt
2, η = Qt

3, and θ = Qt
4.
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Proof of Lemma 5.23. Suppose, for the sake of argument, that (ζ, η, θ) 6= (Qt
2, Q

t
3, Q

t
4), and

let Q′ := {Q1, Q
s
2 ◦ ζ, Qs

3 ◦ η, Qs
4 ◦ θ}. As usual, exhaustive case analysis implies that the

walks in Q′ are pairwise disjoint. Several cases rely on Lemmas 5.21 and 5.22, which imply
that α ◦ rev(δ) = Q1, β = Qs

3, γ = Qs
4, and ε = Qs

2.

• ζ, η, and θ are disjoint by definition.

• Q1, Qs
2, Qs

2, and Qs
2 are disjoint by definition of Q.

• Q1 is disjoint from H3 and thus disjoint from ζ, η, and θ.

• Qs
2 ∩H3 = {b}, so Qs

2 is disjoint from η and θ.

• Qs
3 ∩H3 = {c}, so Qs

3 is disjoint from ζ and θ.

• Qs
4 ∩H3 = {e}, so Qs

3 is disjoint from ζ and η.

The unique optimality of Q now implies that `(Q) < `(Q′).
On the other hand, Qt

2, Qt
3, and Qt

4 are paths between appropriate terminals in H3. Thus,
the unique optimality of {ζ, η, θ} implies that `(Qt

2) + `(Qt
3) + `(Qt

3) > `(ζ) + `(η) + `(θ),
and therefore `(Q) > `(Q), giving us the desired contradiction. QED.

Finally, we describe our overall 4-min-sum algorithm. First, in a preprocessing phase, we
compute P using the algorithm of Kobayashi and Sommer [9]. Then for all possible choices
for the anchor vertices a, b, c, d, e, we compute the paths α, β, γ, δ, ε, ζ, η, θ as described above,
first under the assumption that Q2 ⊂ R2, and then under the symmetric assumption that
Q1 ⊂ R1 (mirroring the definitions of the anchor vertices and the paths). The previous
lemmas imply that for the correct choice of anchor vertices, and the correct assumption
Q1 ⊂ R1 or Q2 ⊂ R2, the resulting walks Q1 = α ◦ rev(δ), Q2 = ε ◦ ζ, Q3 = β ◦ η, and
Q4 = γ ◦ θ comprise the optimal solution for the given instance of the 4-min-sum problem.
Altogether, our algorithm solves O(n5) parallel instances of 2-min-sum and 3-min-sum,

each in O(n) time, via minimum-cost flows. Thus, the overall running time of our algorithm
is O(n6).

5.5 EXTENSION OF 4-MIN-SUM ALGORITHM

Here we briefly describe how to extend the algorithm to instances where the cyclic order
of the terminals is s1, t1, s2, t2, t3, . . . , tk, sk, . . . , s3. In this case, Lemma 5.1 becomes
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Lemma 5.24. Let P1, . . . , P`, P`+2, . . . , Pk be the solution to the (k − 1)-min-sum instance
where we omit the terminal pair s`+1t`+1 and Pi connects si to ti. Let Q1, . . . , Qk be the
paths in the desired k-min-sum solution, where Qi connects si to ti. For all i 6= 3, the path
Pi divides G into two regions; let Ri be the region containing neither s3 nor t3.

• If Qi crosses Pj, then either i = j = 1, or i = j = 2, or i = 3 and j = 4.

• Either Q1 ⊂ R1 or Q2 ⊂ R2 or both. Furthermore, Qi ⊂ Ri for i ≥ 4.

Instead of defining five anchor vertices, we need to define 2k − 3 anchor vertices. If
we assume the anchor vertices are known, then solving the k-min-sum problem reduces to
solving two parallel instances of the (k − 1)-min-sum problem and one parallel instance of
2-min-sum. Each of these instances can be solved in O(kn) time. Since we need to try all
possible sets of anchor vertices, the resulting algorithm runs in kn2k−2 time.

5.6 K-APPROXIMATION ALGORITHM

In this section we describe a k-approximation of the k-min-sum problem when all terminals
are on a common face. That is, the algorithm computes a set of pairwise vertex-disjoint
paths whose combined length is within a factor k of optimal, assuming that a set of pairwise
vertex-disjoint paths exists.

5.6.1 (2k-2)-approximation

First we describe a (2k− 2)-approximation algorithm based on linear programming; later
we will show how to modify the algorithm to get a k-approximation. We treat G as a directed
graph by replacing each edge {u, v} with the arcs (u, v) and (v, u); we assume that (u, v) and
(v, u) are embedded together. The k-min-sum problem is a special case of the minimum-cost
multicommodity flow problem. Thus for each i ∈ [k] and arc (u, v) ∈ E(G), we construct
variables xi(v, u) and xi(u, v), representing the flow for the i-th commodity through (v, u)

and (u, v), respectively. We have the following integer program I for the k-min-sum problem:

min
∑

i∈[k],e∈E(G)

xi(u, v)`(e) (5.4)

subject to
∑

i∈[k],(u,v)∈E(G)

xi(u, v) ≤ 1 ∀v ∈ V (G) (5.5)
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∑
i∈[k],(v,w)∈E(G)

xi(v, w) ≤ 1 ∀v ∈ V (G) (5.6)

∑
(u,v)∈E(G)

xi(u, v) =
∑

(v,w)∈E(G)

xi(v, w) ∀i ∈ [k], v ∈ V (G) \ {si, ti} (5.7)

1 +
∑

(u,si)∈E(G)

xi(u, si) =
∑

(si,w)∈E(G)

xi(si, w) ∀i ∈ [k] (5.8)

∑
(u,ti)∈E(G)

xi(u, ti) = 1 +
∑

(ti,w)∈E(G)

xi(ti, w) ∀i ∈ [k] (5.9)

xi(u, v) ∈ {0, 1} ∀i ∈ [k];∀u, v ∈ V (G) (5.10)

Note that in any solution to I, constraint (5.10) forces the left side of constraint (5.8) to be
at least 1, so the right side of (5.4) is at least 1. Constraint (5.6) then implies that the right
side of (5.8) is exactly 1; furthermore, for any i ∈ [k], commodity i has unit flow exiting si,
and no other commodities have flow exiting si. Constraints (5.7) and (5.8) then imply that
for any i ∈ [k], no commodity has flow entering si. A symmetric argument shows that for
any solution to I and for any i ∈ [k], commodity i is the only commodity with flow entering
ti, and no commodity has flow exiting ti. In other words, the flow for any single commodity
does not enter any of the terminals for any other commodity.
We define the linear program relaxation L by replacing the constraints xi(u, v) ∈ {0, 1}

in I with constraints 0 ≤ xi(u, v) ≤ 1. The program L has O(kn2) variables and O(kn2)

constraints, so we can solve L in polynomial time using, say, the ellipsoid algorithm of
Khachiyan [71]. If L is infeasible, then the original instance G of the k-min-sum problem
did not have a solution. Otherwise, let x be the assignment of values to the variables in the
solution to L, and let `∗ be the optimal value of the objective function of L.
For each i ∈ [k], the variables xi(u, v) form a flow fi of value 1 from si to ti. By the flow

decomposition theorem, we can in polynomial time decompose this flow into a set Pi of flows
such that the flows in Pi sum to fi and the support of each flow in Pi is either a cycle or
a path from si to ti. In fact, we may assume without loss of generality that the support of
each flow in Pi is a path and that all of these paths are pairwise noncrossing.
For each i ∈ [k], we now have a set Pi of flow-paths whose values sum to 1. Furthermore,

for each vertex v, the sum of the flow-values through v is at most 1. The rest of the algorithm
finds a way to round the flow-path values such that the resulting objective function has value
at most (2k−2)`∗. This suffices for a (2k−2)-approximation because `∗ is at most the optimal
value of the objective function of I. To distinguish between the values of flow-paths and the
value of the objective function, we will call the value of a flow-path p its weight and denote
it by w(p).
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(a) (b)

Figure 5.8: (a) A possible re-indexing of the terminal pairs after rooting the demand tree at
r. The dashed red graph is T and the solid black graph is GD ∪ ∂G. Edges e1, . . . , e4 are in
T . (b) An example where P is above Q, and P ′ is above Q′. Here C2 is the portion of ∂G
from s2 to t2 containing all other terminals.

Pick an arbitrary leaf r in the demand tree T and root T at r. Now re-index the terminal
pairs such that if (si, ti) is an ancestor of (sj, tj), then i < j. Note that e1 is now the unique
edge in T that is incident to r. See Figure 5.8(a).
We let C1 be the portion of the boundary between s1 and t1 and containing no other

terminals, and for all i > 1, we let Ci be the portion of the boundary between si and ti

containing C1. Given two distinct paths P,Q, both with endpoints si and ti on ∂G, we say
that P is above Q if P lies completely on or inside Ci ◦Q. See Figure 5.8(b).
For each pair (si, ti), we partition the set of flow-paths Pi into 2k−2 parts Pi,1, . . . ,Pi,2k−2

of equal weight (i.e., each part is made up of flow-paths of total weight 1/(2k − 2)), such
that for all j ∈ [2k− 3], the paths in Pi,j are all on or above the paths in Pi,j+1. In order to
do this, we may need to split a flow-path p of weight α into two flow-paths with the same
support as p and combined weight α. See Figure 5.9(a) for an example of a partition where
no splitting of paths is required. Then, for each pair (si, ti), we pick the shortest path Qi in
Pi,k+i−2. Finally, return Qa, the set of picked paths. See Figure 5.9(b).
This completes the description of the algorithm. To show that the algorithm is correct,

we need to show that the paths in Qa have combined length at most (2k − 2)`∗, and that
the paths in Qa are pairwise vertex-disjoint.

Lemma 5.25. ∑
i∈[k],e∈Qa

xi(u, v)`(e) ≤ (2k − 2)`∗ (5.11)
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(a) (b)

Figure 5.9: (a) Example of Pi,1, . . . ,Pi,4 if k = 3 and Pi is made up of four pairwise vertex-
disjoint paths, each of weight 1/4. (b) Example where k = 3 and P1, P2, and P3 are each
made up of four paths of equal weight. The algorithm returns the dashed red paths Q1, Q2,
and Q3. Note that P3,4 = {Q3}.

Proof. We have

`(Qi) = (2k − 2)
∑

p∈Pi,k+i−2

w(p)`(Qi) (5.12)

≤ (2k − 2)
∑

p∈Pi,k+i−2

w(p)`(p) (5.13)

≤ (2k − 2)
∑
p∈Pi

w(p)`(p) (5.14)

(Note that for the last inequality we use the fact that edges in G have non-negative length.)
This implies∑

i∈[k],e∈Qa

xi(u, v)`(e) =
∑
i∈[k]

`(Qi) ≤ (2k − 2)
∑
i∈[k]

∑
p∈Pi

w(p)`(p) = (2k − 2)`∗. (5.15)

QED.

This shows that the sum of the lengths of the paths of Qa is within a factor 2k − 2 of
optimal.

Lemma 5.26. The paths in Qa are vertex-disjoint.

Proof. Suppose for the sake of argument that i < j and picked paths Qi and Qj intersect
at vertex v. It suffices to consider the cases where (si, ti) and (sj, tj) are adjacent, because
if paths connecting adjacent terminal pairs are vertex-disjoint, then all paths are pairwise
vertex-disjoint. That is, it suffices to consider the cases where (si, ti) is a parent of (sj, tj)

and where (si, ti) and (sj, tj) have a common parent. In Figure 5.9(b), (s1, t1) is a parent
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of (s2, t2), while (s2, t2) and (s3, t3) have a common parent. The need to balance these two
cases is where the 2k − 2 comes from.
Suppose (si, ti) is a parent of (sj, tj), so that i < j. In Pi, all of the flow-paths below Qi

also go through v. Similarly, in Pj, all of the flow-paths above Qj also go through v. Thus
we know that in Pi, flow-paths of combined weight strictly more than (k − i)/(2k − 2) go
through v, and in Pj, flow-paths of combined weight strictly more than (k+ j − 3)/(2k− 2)

go through v. Thus under Pi and Pj, the sum of the weights of the flow-paths going through
v is strictly greater than ((k − i) + (k + j − 3)/(2k − 2) ≥ 1, which is impossible. See
Figure 5.9(b), where the paths in P1,3,P1,4,P2,1, and P2,2 have combined weight 1, so red
paths Q1 and Q2 must be vertex-disjoint.
Now suppose (si, ti) and (sj, tj) have a common parent. Since i, j > 1, we have i+ j ≥ 4.

In Pi, all of the flow-paths above Qi also go through v. Similarly, in Pj, all of the flow-paths
above Qj also go through v. Thus we know that in Pi, flow-paths of combined weight strictly
more than (k+i−3)/(2k−2) go through v, and in Pj, flow-paths of combined weight strictly
more than (k+j−3)/(2k−2) go through v. Thus under Pi and Pj, the sum of the weights of
the flow-paths going through v is strictly greater than ((k+ i−3)+(k+j−3))/(2k−2) ≥ 1,
which is impossible. See Figure 5.9(b), where the paths in P2,2,P2,1,P3,1,P3,2, and P3,2 have
combined weight greater than 1, so the red paths Q2 and Q3 must be vertex-disjoint. QED.

This completes the proof of correctness for the (2k − 2)-approximation.

5.6.2 k-approximation

To turn the (2k−2)-approximation algorithm into a k-approximation algorithm, note that
we can modify the (2k − 2)-approximation to give us a (2d − 2)-approximation, where d is
the height of the demand tree T . Solve the linear program relaxation and arbitrarily root
T . For each pair (si, ti), let h(i) be the number of edges in the path from ei to the root in
the T . That is, h(1) = 1, and for each child ej of ei we have h(j) = h(i) + 1. Note that
h(i) ≤ d for all i ∈ [k].
Now instead of partitioning the set of flow-paths Pi into 2k − 2 parts Pi,1, . . . ,Pi,2k−2 of

equal weight, we partition it into 2d−2 parts of equal weight. Likewise, for each pair (si, ti),
instead of picking the shortest path in Pi,k+i−2, we pick the shortest path in Pi,d+h(i)−2. These
are the only changes to the algorithm. The result is a (2d − 2)-approximation algorithm.
The proof of correctness is almost the same as that of the (2k − 2)-approximation and is
omitted.
Now we use the (2d− 2)-approximation to get a k-approximation as follows. The demand
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(a) (b)

Figure 5.10: An example where x is not a leaf. (a) The solid black graph is GD ∪ ∂G, and
the dashed red graph is T (b) The solid black graph is HD ∪ ∂H, and the dashed red graph
is TH . Here u = t2 and v = t3. Edges {t2, s0} and {t0, t3} have infinite length, and edge
{s0, t0} has zero length.

tree T consists of k edges. If T is a path, then G is a parallel instance and can be solved
exactly using min-cost flow, as described in Section 5.1. Otherwise, there is some vertex x
in T that is within bk/2c hops of every other vertex in T .
If x is a leaf in T , then we can root T at x and apply the (2d− 2)-approximation. Since

d ≤ k/2, the (2d− 2)-approximation is a (k − 2)-approximation.
If x is not a leaf, then we first construct a graph H by adding vertices and edges to

G as well as a terminal pair, as follows. The tree vertex x corresponds to a face F in
GD ∪ ∂G, where GD is the demand graph. Since x is not a leaf, F is incident to at least
four terminals. See Figure 5.10(a). Let u and v be two terminals that are incident to F ,
appear consecutively in the cyclic order of the terminals on ∂G, and are not part of the
same terminal pair. We add a new pair of terminals (s0, t0), embedding both terminals
in the infinite face of G. Furthermore, we add an edge {u, s0} of infinite length, an edge
{s0, t0} of length 0, and an edge {t0, v} of infinite length. The resulting graph H is a planar
instance of the (k+ 1)-min-sum problem where all terminals are on ∂H. See Figure 5.10(b).
(Strictly speaking, the construction of H is not necessary, but it allows us to directly apply
the (2d− 2)-approximation.)
Let TH be the demand tree corresponding to H, and let y be the unique leaf of TH incident

to the edge of TH that corresponds to (s0, t0). If we root TH at y, then TH has height bk/2c+1.
Applying the (2d−2)-approximation algorithm to H then gives us a k-approximation for H.
Note that both the optimal solution to H and the solution given by the k-approximation for
H use the zero-length edge {s0, t0} to connect s0 to t0, and this edge is vertex-disjoint from
G. Thus the k-approximation for H also gives us a k-approximation for G.
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5.7 OPEN PROBLEMS

Obviously we would like to extend our 4-min-sum algorithm to more terminal pairs and
more general arrangements of the terminals on the outer face. However, this seems to be
difficult. A potentially more promising idea is to improve the approximation ratio of our
approximation algorithm. We have described a k-approximation algorithm for the k-min-sum
vertex-disjoint paths problem when all terminals are on a common face. For the most part,
the algorithm is based on solving a linear program relaxation and then rounding the solution.
We suspect that LP-based algorithms may actually lead to constant-factor approximations,
perhaps even a 2-approximation. In this subsection, we give several pieces of circumstantial
evidence for this.

Parallel instances. Assume that the optimal solution in the k-min-sum instance is unique.
In this case, the problem reduces to a min-cost flow problem, as shown in Section 5.1. Solving
this min-cost flow problem is in fact equivalent to solving the linear program relaxation that
our approximation algorithm solves. Thus by omitting the rounding step our approximation
algorithm solves parallel instances exactly. This is not a new result, since parallel instances
can be solved faster using min-cost flow algorithms, but is an indication that LP-based
algorithms can be useful for this problem.

Serial instances. We have already described a (2d − 2)-approximation for k-min-sum;
this is a 2-approximation for serial instances. Again, this is not a new result, since serial
instances can be solved faster using the algorithm of Borradaile, Nayyeri, and Zafarani [62],
but is an indication that LP-based algorithms can be useful for this problem.

Integrality gap. The integrality gap of a minimization problem is defined to be the ratio
of the minimum of the integer program to the minimum of the linear program relaxation.
Intuitively, a low integrality gap (i.e., a gap close to 1) means that the relaxation captures
the original integer program well, so solving the relaxation gives a solution close to that of
the original problem. We do not know what the integrality gap of I is, but Figure 5.11 shows
that it is at least 4/3. On the other hand, we have been unable to come up with instances
with higher gaps. Note that our k-approximation is a 3/2-approximation for this instance.

Conditional 2-approximation. Consider the following algorithm. First, we solve the
linear program relaxation. For each i ∈ [k], we now have a set Pi of flow-paths whose values
sum to 1. Each flow-path has a weight, and we round every weight to the nearest integer.
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Figure 5.11: Our integrality gap instance. The optimal integer solution has value 2, while
the optimal fractional solution has value 3/2 (every edge has weight 1/2)

Paths with weight exactly 1/2 do not get their weights rounded. Call this half-integral
solution H. Note that for each vertex v, at most one path going through v gets its weight
rounded up; furthermore, if a path going through v gets its weight rounded up, then all
other paths going through v get their weights rounded down. It follows that at the end of
the rounding procedure, the total weights of the paths going through v is still at most 1,
and so there are at most two paths going through v. Furthermore, each pair i ∈ [k] has at
most two paths connecting si to ti.
Pick an arbitrary leaf in the demand tree T and root T at this leaf. Re-index the terminal

pairs such that (si, ti) is the root in T . We let C1 be the portion of ∂G between s1 and t1
and containing no other terminals, and for all i > 1, we let Ci be the portion of ∂G between
si and ti containing C1. Given two paths P and Q with endpoints si and ti, we say that P
is lower than Q if Q is inside Ci ◦ Q. Recall that each pair i ∈ [k] has at most two paths
connecting si to ti. For each i, we simply pick the lower of the two paths connecting si to
ti; let Qi be the picked path. If there is only one path connecting si to ti, then we pick that
path.
We claim that the picked paths are vertex-disjoint. Suppose Qi and Qj share a vertex v,

where ej is a parent of ei in the demand tree. Then in the half-integral solution, there must
have been paths of total weight 3/2 going through v, which is impossible.
We also claim that if the algorithm computes a feasible solution, then the solution is a

2-approximation. In the first rounding step (where we obtain a half-integral solution), we
at most double the weight on every path, and weight of every path with weight 1/2 remains
the same. In the second step (where we pick lower paths), we at most double the weight
of paths with weight 1/2, but all other path weights remain the same or decrease. As a
result, throughout the algorithm, the weight of any path at most doubles. This shows that
the value of the solution the algorithm computes is at most twice the minimum of the linear
program relaxation.
The only potential problem with this algorithm is that one of the sets of paths Pi may
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contain more than two paths. Then in the rounding step, the algorithm may round the
weights of all the paths in Pi down. As a result, the solution returned by the algorithm will
not have any paths connecting si to ti. Curiously, though, we have been unable to construct
instances in which for some i, Pi must contain at least three paths, each with weight strictly
less than 1/2. We conjecture that no such instances exist. If we assume this conjecture
holds and k-min-sum instances have unique solutions, then we have a 2-approximation for
the k-min-sum problem when all terminals are on the outer face.
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CHAPTER 6: ORIENTATION PROBLEMS

In this chapter, G is an undirected graph, and (s1, t1), . . . , (sk, tk) are k pairs of vertices
(terminals) in G. We wish to find an orientation, an ideal orientation, or a k-min-sum
orientation for G.
Ito et al. [72] suggest the following application of the orientation problem. Suppose we

have to assign one-way restrictions to aisles in, say, an industrial factory, while maintaining
reachability between several sites. This corresponds to the orientation problem. We may
also want to maintain the distances of routes between the sites in order to keep transit time
low and productivity high; this corresponds to the ideal orientation problem.
The orientation problem was first studied by Hassin and Megiddo [19], and they gave the

following algorithm that works in general graphs. Without loss of generality, assume that G
is connected. First, compute the bridges of G. (A bridge is an edge whose removal would
disconnect G). For each i, pick an arbitrary path from si to ti, and orient the bridges on
this path in the direction that they appear on this path. If a bridge is forced to be oriented
in both directions, then no orientation preserving reachability exists. Otherwise, such an
orientation does exist: in the rest of G each component is a 2-connected component and can
be oriented to be strongly connected, by Robbins’ theorem [73].
By contrast, much less is known about the ideal orientation problem and generalizations

like the k-min-sum orientation problem. Hassin and Megiddo showed that the ideal ori-
entation problem is polynomially-time solvable when k = 2 but is NP-hard for general k.
Eilam-Tzoreff [12] extended Hassin and Megiddo’s algorithm when k = 2 to find an ideal
orientation minimizing the number of shared arcs in the paths realizing the distances in H.
She also solved the generalization when k = 2 and we only require the shorter distance in
H to be a distance in G. The complexity of the ideal orientation problem for fixed k > 2

remains open.
Fenner, Lachish, and Popa [11] considered the min-sum orientation problem in general

graphs when k = 2. They give a PTAS and reduce the 2-min-sum orientation problem to
the 2-min-sum edge-disjoint paths problem. (In the 2-min-sum edge-disjoint paths problem,
we need to find edge-disjoint paths from s1 to t1 and from s2 to t2 of minimum total length.)
It remains unknown whether the 2-min-sum orientation problem or the 2-min-sum edge-
disjoint paths problem can be solved in polynomial time. However, for unweighted graphs,
Bjorklund and Husfeldt showed that the 2-min-sum edge-disjoint paths problem can be
solved in polynomial time [74].
Ito et al. [72] considered the k-min-sum and k-min-max orientation problems. They proved
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Figure 6.1: a serial instance where k = 4

that both problems are NP-hard in planar graphs, and that the k-min-sum orientation
problem is solvable in O(nk2) time if G is a cactus graph and O(n + k2) time if G is a
cycle. They showed that the k-min-max orientation problem is NP-hard in cacti, even when
k = 2, but solvable in cycles in O(n+k2) time. For the k-min-max orientation problem, they
also give a 2-approximation in cacti and a fully polynomial-time approximation scheme for
fixed k in cacti. It remains an open question whether k-min-sum or k-min-max orientation
problems can be solved or approximated in classes of graphs more general than cacti.
In this chapter we present four results, three of which deal with the ideal orientation

problem and one of which deals with the k-min-sum problem. First, we solve the ideal
orientation problem for serial instances, even if k is part of the input. An instance of
any orientation problem is serial if the terminals are all on a single face in cyclic order
u1, v1, . . . , uk, vk, where for each i we have either (ui, vi) = (si, ti) or (ui, vi) = (ti, si). See
Figure 6.1. The algorithm is simple and relies on the fact that we can assume that the paths
realizing the si-to-ti distances are pairwise noncrossing.

Theorem 6.1. We can solve any serial instance of the ideal orientation problem in O(n log n)

time.

The algorithm uses Klein’s algorithm for finding multiple-source shortest paths [75], which
computes an implicit representation of the solution. If an explicit orientation is desired, then
a solution takes O(n2) time to compute.
Second, we solve the ideal orientation problem in planar graphs for a fixed number of

terminals when all terminals are on a single face and no terminal pairs cross. Two pairs of
terminals (si, ti) and (sj, tj) cross if all four terminals are on a common face and the cyclic
order of the terminals is si, sj, ti, tj. The algorithm relies on an algorithm of Schrijver that
finds partially vertex-disjoint paths in directed planar graphs [34].

Theorem 6.2. If k is fixed and all terminals are on the outer face and no terminals cross,
then we can solve the ideal orientation problem in polynomial time.
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The restriction that the terminals be noncrossing may seem arbitrary, but can be motivated
in the following way. Recall that the demand graph GD is the graph with the same vertices as
G but with an edge {si, ti} for each i. Define G+GD to be the graph with the same vertices
as G (or GD) and whose edge set is E(G) ∪ E(GD). The case of noncrossing terminals is
then exactly the case where G+GD is planar.
Third, we show that the ideal orientation problem is NP-hard in planar graphs. The

reduction is from planar 3-SAT and is inspired by reductions by Middendorf and Pfeiffer [8]
and by Eilam-Tzoreff [12], who showed that finding disjoint paths and disjoint shortest
paths are NP-hard in planar graphs. Since the min-sum, min-max, and min-min orientation
problem are all generalizations of the ideal orientation problem, this reduction shows that
the min-sum, min-max, and min-min problems are also NP-hard. This is stronger than
Ito et al.’s result because the ideal orientation problem is a special case of the k-min-sum
orientation problem.

Theorem 6.3. If k is part of the input, then the ideal orientation problem is NP-hard in
unweighted planar graphs.

Fourth, we solve the k-min-sum orientation problem for serial instances. To do this, we
classify each terminal pair as clockwise or counterclockwise, and we break up the instance
into two sub-instances, one of which consists only of clockwise pairs and the other of which
consists only of counterclockwise pairs. It turns out that solving each sub-instance reduces
to solving serial instances of a shortest vertex-disjoint paths problem, which can be done
using an algorithm of Borradaile, Nayyeri, and Zafarani [62]. Finally, after solving the two
sub-instances independently, we show that the two sub-solutions can be easily combined to
solve the original instance.

Theorem 6.4. Any serial instance of the k-min-sum orientation problem can be solved in
O(kn5) time.

Our algorithms search for pairwise nonconflicting directed walks that are shortest paths
connecting corresponding terminals, rather than explicitly seeking simple paths. Because all
edge lengths are positive, the set of shortest walks will end up consisting of simple paths.
Note that given a directed walk P that conflicts with itself, we can repeatedly remove directed
cycles from P to obtain a simple directed path P ′ such that P ′ has the same starting and
ending vertices as P , P ′ is no longer than P , and P ′ does not conflict with itself. Thus we
do not have to worry about directed walks conflicting with themselves.
We assume without loss of generality that the paths in any solution do not use edges on

the outer face. If necessary to enforce this assumption, we can connect the terminals using
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an outer cycle of 2k infinite-weight edges. We also assume that the 2k terminals are all
distinct. (If two terminals, say si and sj, are not distinct, then we add new terminals s′i and
s′j that will be terminals instead of si and sj, respectively, and we add new arcs s′isi and
s′jsj. If si and sj were on a common face then we can ensure s′i and s′j still are.)
This chapter is organized as follows. In section 6.1, we prove various structural results.

In section 6.2 we prove Theorem 6.1, in section 6.3 we prove Theorem 6.2, in section 6.4 we
prove Theorem 6.3, and in section 6.5 we prove Theorem 6.4.

6.1 STRUCTURE

Let a, b, c, and d be four vertices on the outer face of G. Let P be a directed walk from a

to b and let Q be a directed walk from c to d. Walks P and Q are opposite if the cyclic order
of their four endpoints around ∂G is a, b, c, d. P and Q are parallel if the order is a, b, d, c,
and we denote this by P ∼ Q. We define each path to be parallel to itself. Note that if P
is parallel to Q, then Q is parallel to P . We have the following two lemmas.

Lemma 6.1. Suppose G has positive edge weights, and suppose P and Q are opposite
nonconflicting shortest paths. If a vertex x precedes a vertex y on P , then x does not
precede y in Q. In particular, P and Q are edge-disjoint.

Proof. Suppose for the sake of argument that P and Q are opposite nonconflicting shortest
paths, and vertex x precedes vertex y on both P and Q. By the Jordan curve theorem, there
exists a vertex z on P ∩Q such that either z precedes x on Q and y precedes z on P , or y
precedes z on Q and z precedes x on P . Suppose the first case holds. See Figure 5.1a. Since
P and Q are shortest paths, we have

`(P [z, x]) = `(Q[x, z]) = `(Q[x, y]) + `(Q[y, z]) (6.1)

and `(P [z, x]) + `(P [x, y]) = `(P [z, y]) = `(Q[y, z]). (6.2)

This is impossible because `(P [x, y]) = `(Q[x, y]) > 0.
Now suppose the second case holds. See Figure 5.1b. Similar to the first case, we have

`(P [y, z]) = `(Q[z, y]) = `(Q[z, x]) + `(Q[x, y]) (6.3)

and `(P [x, y] + `(P [y, z]) = `(P [x, z]) = `(Q[z, x]), (6.4)

which is impossible because `(Q[x, y]) = `(P [x, y]) > 0.
QED.
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(a) (b)

Figure 6.2: Impossible configurations in the proof of Lemma 6.1. The solid blue path is P
and the dashed red path is Q (a) z ≺Q x and y ≺P z (b) z ≺P x and y ≺Q z

Lemma 6.2. Suppose G has positive edge weights, and suppose P and Q are parallel
shortest paths. If a vertex x precedes a vertex y in P , then y does not precede x in Q. In
particular, P and Q do not conflict.

Proof. This is just Lemma 6.1 with Q replaced by rev(Q). QED.

This lemma immediately suggests an algorithm for a special case of the ideal orientation
problem. Suppose G is an instance where the terminals all appear on the outer face in
clockwise order s1, . . . , sk, tk, . . . , t1. Lemma 6.2 implies that the shortest paths from si to ti
are nonconflicting, so we just need to find a shortest path from si to ti for all i. Steiger [76]
showed how to find a representation of these paths in O(n log log k) time.
The following two lemmas are trivial when shortest paths are unique. In the ideal orien-

tation problem, we cannot assume that shortest paths are unique because then the problem
becomes trivial: just find the (unique) shortest paths and check if they conflict.

Lemma 6.3. Let G be any planar instance of the ideal orientation problem with terminal
pairs (s1, t1), . . . , (sk, tk). If a solution P exists, then a solution P ′ exists in which for every
pair of parallel paths Pi and Pj in P , Pi and Pj are noncrossing.

Proof. This was proved by Liang and Lu [77]. Let P = {P1, . . . , Pk} be a solution to the
ideal orientation problem.
Suppose Pi and Pj are parallel paths that cross each other. Let x be the first vertex of Pi

on Pj and let y be the last. see Figure 6.3.
Now we construct two alternate solutions P ′ and P ′′ to the ideal orientation problem. To

construct P ′, we exchange Pi[x, y] for Pj[x, y]. In other words, let P ′i = Pi[si, x] ◦ Pj[x, y] ◦
Pi[y, ti], and let P ′ = P \ {Pi} ∪ {P ′i}. Since Pi[x, y] and Pj[x, y] are shortest paths, P ′i is
still a shortest path connecting si to ti. Since P ′i only uses arcs in Pi and Pj, P ′i does not
conflict with any other path in P ′. Thus P ′ is another set of k nonconflicting shortest paths.
Furthermore, paths P ′j and P ′i are noncrossing.
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Figure 6.3: Uncrossing Pi and Pj: replace Pi with Pi[si, x] ◦ Pj[x, y] ◦ Pi[y, ti] or replace Pj
with Pj[sj, x] ◦ Pi[x, y] ◦ Pj[y, tj

To construct P ′′, we exchange Pj[x, y] for Pi[x, y]. In other words, let P ′′j = Pj[sj, x] ◦
Pi[x, y]◦Pj[y, ti], and let P ′ = P \{Pj}∪{P ′′j }. Since Pi[x, y] and Pj[x, y] are shortest paths,
P ′′j is still a shortest path connecting si to ti. Since P ′′i only uses arcs in Pi and Pj, P ′′i does
not conflict with any other path in P ′′. Thus P ′′ is another set of k nonconflicting shortest
paths. Furthermore, paths P ′′j and P ′′i are noncrossing.
Let cr(P) be the number of pairs of paths in P that cross each other. We have

2cr(P) ≥ (cr(P ′) + 1) + (cr(P ′′) + 1) (6.5)

where the two instances of “+1” on the right side come from the fact that P ′j and P ′i do
not cross, and P ′′j and P ′′i do not cross. Thus at least one of P ′ and P ′′ have strictly fewer
pairs of crossing paths than P . We have thus found a way to reduce the number of pairs of
crossing paths while maintaining optimality.
The exchange procedure strictly reduces the number of parallel paths that cross each other,

so we can keep repeating the procedure until no two parallel paths cross each other. QED.

Lemma 6.4. Let G be any planar instance of the ideal orientation problem with noncrossing
terminal pairs (s1, t1), . . . , (sk, tk). If there exists a solution P in which parallel paths do
not cross, then there exists a solution P ′ such that (1) parallel paths do not cross; (2) for
every pair of parallel paths Pi and Pj in P ′, Pi ∩ Pj is connected; and (3) the number of
crossings between paths of P ′ is no more than the number of crossings between paths of P .

Proof. Suppose there exists a solution P = {P1, . . . , Pk} in which parallel paths do not
cross. We show how to make property (2) hold while ensuring that parallel paths remain
noncrossing and the total number of crossings between opposite paths does not increase.
Suppose Pi and Pj are parallel paths such that Pi ∩ Pi+1 consists of at least two paths.

There exist vertices x and y on Pi ∩ Pj such that Pi[x, y] and Pj[x, y] intersect only at x
and y. Let I be the set of paths in P that contain Pi[x, y] as a subpath, and let J be the
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set of paths in P that contain Pj[x, y]. Note that Pi ∈ I and Pj ∈ J . The region Bij[x, y],
bounded by Pi[x, y] and Pj[x, y], is a bigon. We will assume without loss of generality that
the bigon Bij[x, y] is minimal, in the sense that no other bigon is contained in Bij[x, y]. Note
that this ensures that no path parallel to any of the paths in I or J enters Bij[x, y], by
Lemma 6.1 and our assumption that parallel paths in P do not cross. This implies that any
path that crosses Pi[x, y] or Pj[x, y] must be opposite to all paths in I and J . There are
two cases:

1. Suppose Pi[x, y] crosses at least as many paths as Pj[x, y] does. Then we exchange
Pi[x, y] for Pj[x, y], as follows. For each path Pp ∈ I, let P ′p = Pp[sp, x] ◦ Pj[x, y] ◦
Pp[y, tp], and let P ′ = P \ I ∪ {P ′p|Pp ∈ I}. Since Pj[x, y] is a shortest path, P ′p is a
shortest path from sp to tp for any Pp ∈ I. Since no paths parallel to Pp enter the
interior of Bij[x, y], P ′p does not cross any paths parallel to it, for any Pp ∈ I. Finally,
for any Pp ∈ P , the number of paths opposite to Pp or Pj that P ′p crosses is at most
the number of paths opposite to Pp or Pj that Pp crosses, since Pj[x, y] crosses at most
as many paths as Pi[x, y] does.

2. Suppose Pi[x, y] crosses fewer paths than Pj[x, y]. Then we can exchange Pj[x, y] for
Pi[x, y]. That is, for any path Pp ∈ J , define P ′p = Pp[sp, x] ◦ Pi[x, y] ◦ Pp[y, tp], and
let P ′ = P \ J ∪ {P ′p|Pp ∈ J }. Analogous to the previous case, one can show that
the number of crossings does not increase and that parallel paths still do not cross.
Furthermore, the resulting solution is still made up of shortest paths and is thus still
a solution.

As long as there exist two parallel paths whose intersection is not a single subpath, we can
perform the exchange. Each time we perform the exchange, the number of crossings does
not increase, parallel paths are still pairwise noncrossing, and the sum of the number of
components of Pi ∩ Pj decreases, where the sum is taken over all pairs of parallel paths Pi
and Pj. Thus the procedure will terminate. QED.

6.2 SERIAL CASE FOR IDEAL ORIENTATIONS

Recall that an instance of the ideal orientation problem is serial if the terminals all appear
on the outer face in clockwise order u1, v1, . . . , uk, vk, where for each i ∈ [k] we have (ui, vi) =

(si, ti) or (ui, vi) = (ti, si). For all i, if (ui, vi) = (si, ti), then we say that (si, ti) and any path
from si to ti are clockwise; otherwise (si, ti) and any path from si to ti are counterclockwise.
Note that a clockwise and a counterclockwise path are parallel, while two clockwise paths
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(a) (b)

Figure 6.4: All paths are directed from si to ti. (a) We have Π = {π1, π2, π3}, where the
dashed red path is π1, solid green path is π2, and dotted blue path is π3 (b) The dashed red
path is L(1,Π), solid green path is L(2,Π), and dotted blue path is L(3,Π)

(or two counterclockwise paths) are opposite. In this section, we describe an algorithm that
solves serial instances of the ideal orientation problem in O(n2) time even when k is part of
the input. First we prove the following lemmas:

6.2.1 Envelopes

Suppose G is a serial instance with terminal pairs (s1, t1), . . . , (sk, tk). Suppose we have a
set Π of arbitrary directed paths π1, . . . , πk such that πi connects si to ti and no path touches
∂G; the paths may intersect arbitrarily. Let Ci be the portion of ∂G that connects si to ti
without containing any other terminals. The paths in π1, . . . , πk divide the interior of G into
connected regions. Let Ri be the unique region with Ci on its boundary. Finally, we define
L(i,Π) to be the directed path from si to ti whose set of edges is ∂Ri\Ci. Intuitively, L(i,Π)

is the “lower envelope” of π1, . . . , πk if we draw G such that si and ti are on the bottom. See
Figure 6.4
For any arc e in Li, either e or rev(e) must be an arc in one of π1, . . . , πk. Thus L(i,Π) does

not contain any edges on ∂G. Also, the walks L(1,Π), . . . , L(k,Π) are pairwise noncrossing.

Lemma 6.5. Suppose G is serial and Π = {π1, . . . , πk} is a set of paths such that πi
connects terminal si to terminal ti for all i. If π1, . . . , πk are pairwise nonconflicting, then
L(1,Π), . . . , L(k,Π) are also pairwise nonconflicting.

Proof. We prove the contrapositive. Suppose L(i,Π) and L(j,Π) conflict at an edge e. Then
the regions Ri and Rj touch each other at e. Since πi and πj do not use any boundary arcs,
the Jordan Curve Theorem implies that πi and πj also conflict at e. QED.

82



Lemma 6.6. Suppose G is serial and Π = {π1, . . . , πk} is a set of pairwise nonconflicting
paths such that πi connects terminal si to terminal ti for all i. Then we have

k∑
i=1

`(πi) ≥
k∑
i=1

`(L(i,Π)). (6.6)

In particular, if π1, . . . , πk are shortest paths, then so are L(1,Π), . . . , L(k,Π).

Proof. Because the walks L(1,Π), . . . , L(k,Π) are pairwise noncrossing, the Jordan Curve
Theorem implies that each arc e can be used by at most one of the walks L(1,Π), . . . , L(k,Π).
By Lemma 6.5, arc rev(e) can only be used by one of the walks L(1,Π), . . . , L(k,Π) if e is
not used by any of those walks. It follows that each edge of G is used by at most one of the
walks L(1,Π), . . . , L(k,Π). In addition, every edge used by one of L(1,Π), . . . , L(k,Π) must
be used by at least one of π1, . . . , πk. The lemma follows. QED.

6.2.2 Algorithm

Lemma 6.7. Let G be a serial instance of the ideal orientation problem with terminal pairs
(s1, t1), . . . , (sk, tk). If a solution exists, then a solution exists in which the paths P1, . . . , Pk

are pairwise noncrossing.

Proof. This is straightforward using envelopes. Let P = {P1, . . . , Pk} be a solution to the
serial instance G of the ideal orientation problem, where Pi connects si to ti. Then the
walks L(1,P), . . . , L(k,P) are pairwise noncrossing. By Lemma 6.5, the walks are pairwise
nonconflicting, and by Lemma 5.2 they are shortest paths, so they constitute a solution.

QED.

A path from si to ti is the outermost shortest path from si to ti if it is outside all other
shortest paths from si to ti. The following lemma states that finding outermost shortest
paths is sufficient:

Lemma 6.8. Let G be a serial instance of the ideal orientation problem with terminal pairs
(s1, t1), . . . , (sk, tk). If a solution P = {P1, . . . , Pk} exists, then a solution exists in which Pi
is the outermost shortest path from si to ti for all i.

Proof. Suppose we have a solution P = {P1, . . . , Pk} where the paths in P are pairwise
noncrossing and some path Pi is not the outermost shortest path from si to ti. Then we can
exchange Pi for the outermost shortest path. That is, let P ′i be the outermost shortest path
from si to ti, and let P ′ = P \ {Pi} ∪ {P ′i}. The new path P ′i is in Ri so it does not cross
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with any other path in P ′; in particular, P ′i does not conflict with any other path in P ′, so
P ′ is a solution. We can keep doing this exchange until we get a solution where every path
is the outermost shortest path. QED.

So the algorithm is to find all outermost shortest paths. If the outermost paths con-
flict, then there is no solution. Computing the outermost paths explicitly takes O(n) time
per path and thus O(n2) time [31]. Alternatively, Klein’s algorithm computes an implicit
representation of the paths in O(n log n) time [75].

6.3 FIXED NUMBER OF TERMINALS AND NONCROSSING PAIRS

In this section we describe an algorithm to solve the ideal orientation problem in planar
graphs where all terminals are on a single face, the number of terminals is fixed, and none
of the terminal pairs cross. (Recall that two terminal pairs (si, ti) and (sj, tj) cross if the
four terminals are on a common face and their cyclic order on that face is si, sj, ti, tj.)
For simplicity, call such instances one-face noncrossing instances. We will first show that
the number of crossings between the paths in a solution is a function bounded only by
k. This allows us to guess all crossing points and then reduce the problem to the partially
noncrossing edge-disjoint paths problem (PNEPP). As described in section 2.3.3, this reduces
to the partially vertex-disjoint paths problem, which has been solved by Schrijver [34]. The
algorithm is inspired by a result of Bérczi and Kobayashi [78].
We saw in the previous section that in the serial instances of the ideal orientation problem

we can assume that the paths in the solution are noncrossing. This is unfortunately not true
for general one-face noncrossing instances. See Figure 6.5a for an example. On the other
hand, we can prove that the number of crossings is small when k is small. Specifically, we
have the following lemma:

Lemma 6.9. Suppose G is a one-face noncrossing instance of the ideal orientation problem
with terminal pairs (s1, t1), . . . , (sk, tk). If a solution exists, then a solution {P1, . . . , Pk}
exists in which for all i and j, path Pi crosses Pj a total of O(k) times.

We will prove this lemma at the end of the section. For now, we will just assume the lemma
is true and describe the algorithm for one-face noncrossing instances. Let G be a one-face
noncrossing instance of the ideal orientation problem with terminal pairs (s1, t1), . . . , (sk, tk).
Suppose P = {P1, . . . , Pk} is a solution with the fewest crossings. Our algorithm first guesses
all the crossing points; by Lemma 6.9, there are O(k3) such points.
Next, inspired by Erickson and Nayyeri [10], we define the overlay graph HP , whose

vertices are the crossing points and terminals, and whose edges are the subwalks between
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(a) (b)

(c)

Figure 6.5: (a) An instance of the ideal orientation problem where the unique solution has
the path from s2 to t2 crossing the path from s3 to t3. All edges have unit weight. (b)
overlay graph corresponding to the unique solution (c) instance of PNEPP corresponding to
the overlay graph. Here S = {{i, j}|i ∈ {1, 2, 3, 5, 7, 9, 10}, j ∈ {4, 6, 8}}

consecutive crossing points and terminals. The graph HP has a natural embedding. Our
algorithm guesses the overlay graph. Given the set of O(k3) crossing points, there are 2O(k6)

possible such graphs. See Figure 6.5b.
The O(k3) crossing points split up P1, . . . , Pk into pairwise noncrossing directed subpaths.

By Lemma 6.1, subpaths of opposite paths are edge-disjoint (there is no analogous restriction
for parallel paths). Furthermore, every directed subpath is a shortest path between its
endpoints. Let {p1, . . . , pβ} be the set of these directed subpaths.
To compute these subpaths, we construct an instance of PNEPP as follows. The directed

graph H is just G where every undirected edge {u, v} is replaced with two arcs uv and vu.
The terminal pairs in G are no longer terminal pairs in H. For each subpath pi in P , we
construct a pair of terminals ui, vi that are just the endpoints of pi. Thus the constructed
terminals will not necessarily be distinct. The set S consists of all pairs {i, j} such that pi
and pj are subpaths of opposite paths in G. For all i ∈ {1, . . . , β}, the subgraph Hi is the
union of all shortest paths from ui to vi in H. Each Hi is a directed acyclic graph.
We then solve the instance H of PNEPP to find subpaths Qi connecting the ui to the vi,

and we check if the concatenations of the appropriate found subpaths are indeed shortest
paths connecting corresponding terminals in G. (In Figure 6.5c, we would need to check, for
example, that the concatenation of Q1, Q2, and Q3 is indeed a shortest path from s1 = u1

to t1 = v3.) If the concatenations are indeed shortest paths in G, then they form a solution
to the instance G of the ideal orientation problem. Clearly, if we take any solution of G, the
subpaths formed by the crossing points are noncrossing and nonconflicting. The following
lemma implies that the algorithm is correct.
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Lemma 6.10. Let G be a one-face noncrossing instance of the ideal orientation problem.
The following statements are equivalent

• There exists a solution to G with crossing points v1, . . . , vh and overlay graph HP .

• There exist crossing points v1, . . . , vh, an overlay graph whose vertices are the crossing
points and the terminals of G, and a set of shortest noncrossing partially edge-disjoint
subpaths connecting the crossing points in accordance with the overlay graph, such
that the paths formed from concatenating the appropriate subpaths are shortest paths.
(Here when we say that two sub-paths are partially edge-disjoint we mean that they are
edge-disjoint if they correspond to subpaths of opposite paths in the overlay graph.)

Proof. ⇒: Let P = {P1, . . . , Pk} be a solution to the instance G of the ideal orientation
problem. Split the paths in P into subpaths using the crossing points. The subpaths are
noncrossing by construction. We just need to show that the subpaths are partially disjoint.
In fact we will show that the paths in P are partially disjoint. If Pi and Pj are parallel,
then there is nothing to prove. If Pi and Pj are opposite, then they are edge-disjoint by
Lemma 6.1.
⇐: Concatenate the subpaths and assume the concatenations are shortest paths. Since

the subpaths are noncrossing, We just need to show that they are nonconflicting. Suppose
P1, . . . , Pk are the resulting paths after concatenation. If Pi and Pj are parallel, then by
Lemma 6.2 they are nonconflicting. If Pi and Pj are opposite, then by construction each
subpath of Pi is edge-disjoint from each subpath of Pj. This means that Pi and Pj are
edge-disjoint, so they don’t conflict. QED.

To summarize, we first guess the crossing points, then guess an overlay graph on these
crossing points and the original terminals, and finally use the overlay graph to construct
and solve an instance of PNEPP. The number of possible sets of crossing points and overlay
graphs depends only on k, while PNEPP can be solved in polynomial time for fixed k (equiv-
alently, fixed β) by reducing to PVPP and using Schrijver’s algorithm [34]. Furthermore,
constructing the instance of PNEPP takes polynomial time. Thus, our algorithm runs in
polynomial time for fixed k.

6.3.1 The crossing bound

In this subsection we prove Lemma 6.9. Suppose P = {P1, . . . , Pk} is a solution to a
one-face noncrossing instance G of the ideal orientation problem, where Pi connects si to ti.
By Lemmas 6.3 and 6.4, we may assume that for every pair of parallel paths in P , the paths
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(a) (b)

Figure 6.6: The dashed red path is Pi and the dotted blue path is Pj. (a) Three bigons B1,
B2, and B3 formed by Pi and Pj. (b) An impossible configuration in the proof of Lemma 6.11.
Here Q is the solid green path, p = 1, and q = 3

do not cross and their intersection consists of at most one subpath; of all such solutions, we
may assume without loss of generality that P is the solution with the fewest crossings. It
suffices to show that for all i, j, path Pi crosses path Pj at most 2k times.
Let h be the number of times Pi and Pj cross; we want to show that h ≤ 2k. Since

terminal pairs (si, ti) and (sj, tj) are noncrossing, h is even. Parallel paths in P do not
cross, so assume that Pi and Pj are opposite. The path Pi divides the interior of G into
two regions; let ρi be the region containing sj and tj, and define a path to be above Pi if
it lies in ρi. Likewise, the path Pj divides the interior of G into two regions; let ρj be the
region containing si and ti, and define a path to be below Pj if it lies in ρj. Let x1, . . . , xh
be the vertices at which Pi and Pj cross, in order along Pi; by Lemma 6.1, this is exactly
the reverse of their order along Pj. Split the region ρi ∩ ρj into h − 1 pairwise internally
disjoint bigons, denoted by B1, . . . , Bh−1; the bigon Bp consists of the region bounded by the
two subpaths Pi[xp, xp+1] and Pj[xp+1, xp]. Note that under our definition, Pi[xp, xp+1] and
Pj[xp+1, xp] may touch but they may not cross. A bigon Bp is odd if p is odd and even if p
is even. Note that any odd bigon is below Pi and above Pj, and any even bigon is below Pj

and above Pi. See Figure 6.6a.
For any vertex x, let predi(x) denote the predecessor of x on Pi, succi(x) denote the

successor of x on Pi, predj(x) denote the predecessor of x on Pj, and succj(x) denote
the successor of x on Pj. Suppose a path Q is parallel to Pi. Path Q and a bigon Bp

partially overlap each other if Q shares edges with Pi[xp, xp+1] and Q does not contain
Pi[predi(xp), succi(xp+1)]. Likewise, suppose a path Q′ is parallel to Pj. Path Q′ and a bigon
Bp partially overlap each other if Q shares edges with Pj[xp+1, xp] but Q does not contain
Pj[predj(xp+1), succj(xp)].
For the rest of this subsection we will say “overlap” when we mean “partially overlap.”
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Lemma 6.9 follows if we can prove the following two lemmas:

Lemma 6.11. Each path in P overlaps at most two different bigons.

Lemma 6.12. Each bigon overlaps some path (different bigons could overlap different
paths).

Lemmas 6.11 and 6.12 together imply that there must be at most 2(k − 1) bigons, and
thus at most 2k crossings between Pi and Pj.

Proof of Lemma 6.11. There are three cases. For the first case, suppose Q is a path parallel
to Pi that overlaps some bigons formed by Pi and Pj. We will show that Q overlaps at most
two bigons. See Figure 6.6b. Let Bp be the first bigon along Pi that Q overlaps and let Bq be
the last, so that Q contains some vertex y on Pi[xp, xp+1] and some vertex z on Pi[xq, xq+1].
We have assumed that the intersection of any two parallel paths in P consists of exactly one
subpath. Since Pi and Q are parallel, this implies that Q contains the subpath Pi[y, z]. In
particular, Q contains each of Pi[xp+1, xp+2], . . . , Pi[xq−1, xq], so Q does not overlap any of
the bigons Bp+1, . . . , Bq−1. It follows that Q overlaps at most two bigons.
For the second case, a symmetric argument shows that if Q is parallel to Pj then Q overlaps

at most two bigons. For the third case, if Q is opposite to both Pi and Pj, then by Lemma 6.1,
Q is edge-disjoint from both Pi and Pj, and so does not overlap any bigons. QED.

Proof of Lemma 6.12. Suppose for the sake of argument that Bp is an odd bigon that does
not overlap any path. The bigon Bp is below Pi and above Pj. Specifically, it is bounded by
Pi[xp, xp+1] ∪ Pj[xp+1, xp]. To lighten notation, let A = Pi[xp, xp+1] and let B = Pj[xp+1, xp].
Our goal is to reduce the number of crossings in P via an exchange procedure similar to those
used in previous lemmas. Roughly speaking, we will do this by reversing the orientations of
A and B and by modifying the paths that enter Bp so that they no longer do so.
First we describe how to reverse the orientations of A and B. By assumption, all paths in
P that use edges in A must contain A, and all paths in P that use edges in B must contain
B. Let QL be the set of paths that contain A and let QR be the set of paths that contain
B. By Lemma 6.1, all paths in QL are parallel to Pi and all paths in QR are parallel to Pj.
Now we simply let

P ′l = Pl[sl, xp] ◦ rev(B) ◦ Pl[xp+1, tl] (6.7)

for any path Pl ∈ Ql, and let

P ′r = Pr[sr, xp+1] ◦ rev(A) ◦ Pr[xp, tr] (6.8)

88



for any path Pr ∈ QR. Let Q′L = {P ′l |Pl ∈ QL} and Q′R = {P ′r|Pr ∈ QR}. Note that Pi ∈ QL
and Pj ∈ QR, so we have described how to modify Pi and Pj.
Now we describe how to modify the paths that enter Bp. This is necessary so that the

paths do not cross with the paths P ′l and P ′r described in the previous paragraph. By
Lemma 6.1, A only crosses paths parallel to Pj, and B only crosses paths parallel to Pi. Let
QA be the set of paths that cross A, and let QB be the set of paths that cross B. For each
path Pa ∈ QA, let ua be the first vertex (of Pa) at which Pa touches A and let va be the last.
We define

P ′a = Pa[sa, ua] ◦ A[ua, va] ◦ Pa[va, ta]. (6.9)

Note that P ′a conflicts with A but does not conflict with rev(A). Furthermore, P ′a no longer
crosses A. Similarly, for each path Pb ∈ QB, let ub be the first vertex (of Pb) at which Pb
crosses B, let vb be the last vertex at which Pb crosses B, and let

P ′b = Pb[sb, ub] ◦B[ub, vb] ◦ Pb[vb, tb]. (6.10)

Let Q′A = {P ′a|Pa ∈ QA} and Q′B = {P ′b|Pb ∈ QB}. This finishes the description of how to
modify P to reduce the number of crossings. That is, let

P ′ = P \ (QL ∪QR ∪QA ∪QB) ∪ (Q′L ∪Q′R ∪Q′A ∪Q′B). (6.11)

We need to show that P ′ is a solution with fewer crossings than P . Paths A and B are
shortest paths, so all subpaths of A and B are shortest paths and all paths in P ′ are shortest
paths. All paths in P ′ use the edges of A in the reverse direction (i.e., from xp+1 to xp), if
at all. Similarly, all paths in P ′ use the edges of B in the reverse direction (i.e., from xp to
xp+1), if at all. All arcs used by P ′ that are not used by P are in A or B, so this implies that
the paths in P ′ are nonconflicting. During the exchange procedure, we replace subpaths in
or on Bp with subpaths of the boundary of Bp, such that no paths in P ′ enter Bp. Tedious
casework implies that no crossings are added when we go from P to P ′; for details, see the
proof of Lemma 6.13. Without increasing the number of crossings in P ′, we can also use the
procedure in the proof of Lemma 6.4 to modify the paths in P ′ so that the intersection of
any pair of parallel paths consists of a single subpath. On the other hand, given any pair
of paths Pl ∈ QL and Pr ∈ QR, P ′l and P ′r have strictly fewer crossings than Pl and Pr; for
details, see the proof of Lemma 6.13 again. This contradicts the fact that P has the fewest
crossings out of all solutions that satisfy Lemma 6.4. We have thus proved the lemma for
odd bigons. A symmetric argument proves the lemma for even bigons. QED.
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Figure 6.7: Paths before the exchange procedure, in the proof of Lemma 6.12. The dashed
red path is Pi, the dotted blue path is Pj, and the solid green path is Pa. Bp is bounded by
A and B

Lemma 6.13. In the proof of Lemma 6.12, the paths in P ′ have no more crossings than the
paths in P .

Proof. We need to extend the definitions of “below” and “above” introduced in subsec-
tion 6.3.1. Suppose P and Q are paths in G whose endpoints are on ∂G. Suppose further
that the endpoints of any two of P,Q, and Pi do not cross. Let Ci be the portion of ∂G
from si to ti that does not contain sj or tj. There are two cases.

1. Suppose the endpoints of Q are not in Ci. The path Q divides the interior of G into
two regions. If P lies entirely in the region whose closure contains si and ti, then P is
below Q.

2. Suppose the endpoints of Q are in Ci. The path Q divides the interior of G into two
regions. If P lies entirely in the region whose closure does not contain sj and tj, then
P is below Q.

Now let P and Q be paths in P . To simplify notation, let P ′ = P if P /∈ QL∪QR∪QA∪QB,
so that P ′ = {p′|p ∈ P}.
First we will show that P ′ and Q′ do not cross more times than P and Q cross. There are

eight different cases (not counting symmetric cases). For the first four cases, suppose P and
Q are both parallel to Pj, so that P and Q do not cross by Lemma 6.3:

1. Suppose P /∈ QL∪QR∪QA∪QB. We have P ′ = P . By Lemma 6.3, none of the edges
of P ′ are in Bp or on A. By Lemma 6.1, none of the edges of P ′ are in B, so none of
the edges of P are on the boundary of Bp. On the other hand, Q′

⊕
Q consists only

of edges in Bp or on its boundary. It follows that if P is below Q, then P ′ is below Q′.
Similarly, if P is above Q, then P ′ is above Q′. In both cases, P ′ and Q′ do not cross.
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2. Suppose P,Q ∈ QL. In both P and Q we replace A with rev(B) to get P ′ and Q′. It
follows that if P is below Q, then P ′ is below Q′. Similarly, if P is above Q, then P ′

is above Q′. In both cases P ′ and Q′ do not cross.

3. Suppose P ∈ QL, Q ∈ QB. In P , we replace A with rev(B) to get P ′. On the other
hand, Q must be below P . Since B is below P and Q′ \ Q consists of edges in B, we
see that Q′ is below P as well. By construction, Q′ is also on or below B, so Q′ is
below P ′ and does not cross it.

4. Suppose P,Q ∈ QB, and suppose without loss of generality that P is below Q. Let u
be the first vertex at which P crosses B and let v be the last. Let sP and tP be the
endpoints of P . Then P [sP , u] and P [v, tP ] are below Q′, so P ′ is below Q′.

For the remaining four cases, suppose P is left-to-right but Q is right-to-left. We need to
show that P ′ and Q′ do not cross each other more than P and Q cross each other:

5. Suppose P /∈ QL ∪ QR ∪ QA ∪ QB. We have P ′ = P . As in case 1, none of the edges
of P are in Bp or on the boundary of Bp. On the other hand, Q′

⊕
Q consists only of

edges in Bp or on its boundary. It follows that P ′ and Q′ do not cross each other more
than P and Q do.

6. Suppose P ∈ QL and Q ∈ QR. Path P replaces A with rev(B) to get P ′, and Q

replaces B with rev(A) to get Q′. Path P contains A, so Lemma 6.1 implies that P
does not cross B and so does not enter the interior of Bp. Similarly, Q contains B
but does not enter the interior of Bp. This means that when we replace P and Q with
P ′ and Q′, the only vertices that could become crossing points or stop being crossing
points are xp and xp+1. But in fact P contains Pi[predi(xp), succi(xp+1)] ) A and Q
contains Pj[predj(xp+1), succj(xp)] ) B, so both xp and xp+1 are points at which P

and Q cross and P ′ and Q′ do not cross. Furthermore, no new crossings are added
when we replace P and Q with P ′ and Q′.

7. Suppose P ∈ QL, Q ∈ QA. Note that Q is above Pj, and so is A ⊃ Q′ \ Q, so Q′ is
above Pj. On the other hand, P ′ \ P consists of edges in rev(B), which is a subpath
of Pj. Thus no new crossings are added when we replace P and Q with P ′ and Q′.

8. Suppose P ∈ QB, Q ∈ QA. As in the previous case, Q and Q′ are above Pj, On the
other hand, P ′ \P consists of edges in rev(B), which is a subpath of Pj. Thus no new
crossings are added when we replace P and Q with P ′ and Q′.

All other cases are symmetric to these eight cases. Note that in case 6, P ′ and Q′ cross each
other fewer times than P and Q, which is part of what we wanted to show. QED.
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6.4 NP-HARDNESS OF IDEAL ORIENTATIONS

In this section we show that the ideal orientation problem is NP-hard in unweighted planar
graphs when k is part of the input. The reduction is from planar 3-SAT and is similar to
reductions by Middendorf and Pfeiffer [8] and by Eilam-Tzoreff [12]. Planar 3-SAT is the
special case of 3-SAT where a certain bipartite graph G(y) is planar, defined as follows.
Given an instance y of 3-SAT, each variable of y is a vertex, and each clause of y is also a
vertex. For every variable xi and every clause cj, we add an edge between xi and cj if either
xi or xi appears in cj. The resulting graph G(y) is bipartite; if it is planar, then y is an
instance of planar 3-SAT. Lichtenstein showed that planar 3-SAT is still NP-hard [79].
Suppose we are given an instance y of planar 3-SAT. As noted by Middendorf and Pfeif-

fer [8], we may assume that each variable appears in three clauses. To see this, fix a planar
embedding of G(y), and let vC1, . . . , vCk be the edges incident to a variable v in clock-
wise order. Introduce new variables v1, . . . , vk and clauses vk ∨ ¬v1 and vi ∨ ¬vi+1 for all
i ∈ {1, . . . , k − 1}. In addition, replace the occurrence of v in Ci with vi. If we do this for
all variables v, we get an instance y′ of planar 3-SAT that is satisfiable if and only if y is
satisfiable, and every variable in y′ appears in exactly three clauses.
We use y to construct an instance of the ideal orientation problem. We will construct a

clause gadget for each clauses and a variable gadget for each variable. The clause gadget
for a clause C is shown in Figure 6.8. There are three terminals pairs (sC , tC), (s′C , t

′
C), and

(s′′C , t
′′
C). Let us note some key properties of GC . We have d(sC , tC) = d(s′′C , t

′′
C) = 3 and

d(s′C , t
′
C) = 4. There are two shortest paths from sC to tC , three shortest paths from s′C to

t′C , and two shortest paths from s′′C to t′′C . There exist pairwise nonconflicting shortest paths
connecting (sC , tC), (s′C , t

′
C), and (s′′C , t

′′
C) in GC . These paths must use at least one of the

edges ab = evC , cd = ewC , and ef = exC . Furthermore, three such nonconflicting shortest
paths exist even when two of the three edges are not to be used.
The edges evC , ewC , and exC are part of the clause gadget associated with C and will

also each be in variable gadgets associated with v, w, and x, respectively. Before defining
the variable gadgets, we need to fix some terminology regarding the orientations of the three
edges. Each of the three edges can be oriented forward or backward as follows. The forward
orientation of evC is from a to b, the forward orientation of ewC is from c to d, and the
forward orientation of exC is from e to f . The backward orientation of an edge is simply the
reverse of the forward orientation. Intuitively, an edge must be oriented forward in order to
be used in some shortest path connecting a pair of terminals; furthermore, orienting an edge
evC forward means that the literal v or ¬v (whichever one appears in C) is set to True.
We also give each of the three edges a true and a false orientation depending on whether
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Figure 6.8: Clause gadget GC for a clause C containing variables v, w, x. All edges are
unweighted.

the literals in C are positive or negative. If v is a literal in the clause C, then the true
orientation of evC is the forward orientation of evC and the false orientation of evC is the
backward orientation. If ¬v is a literal in C, then the true orientation of evC is the backward
orientation and the false orientation is the forward orientation. True and false orientations
for ewC and exC are defined analogously. Intuitively, the true orientation of an edge evC is
the direction that it would be oriented in if the variable v were assigned to true.
Finally, each of the three edges has a clockwise orientation and a counterclockwise orien-

tation. The clockwise orientation of evC is its forward orientation, the clockwise orientation
of exC is its forward orientation, and the clockwise orientation of ewC is its backward orienta-
tion. The counterclockwise orientation of an edge is the reverse of its clockwise orientation.
Intuitively, an edge oriented clockwise goes clockwise around its clause gadget, and an edge
oriented counterclockwise goes counterclockwise around its clause gadget. However, some-
what confusingly, we will construct the variable gadgets such that a clockwise-oriented edge
goes counterclockwise around its variable gadget and a counterclockwise-oriented edge goes
clockwise around its variable gadget.
For each variable v, we construct a variable gadget Gv as follows. Suppose v appears in

clauses C,D, and E; suppose further that vC, vD, and vE are the edges incident to v in
clockwise order in G(y). For each of the three edges evC , evD, and evE (in the clause gadgets),
we check whether or not the true orientation of the edge is the counterclockwise orientation
of that edge. There are four cases:

• If for each of the three edges the true orientation is the counterclockwise orientation,
then we construct the variable gadget in Figure 6.9a.

• If for exactly two of the three edges (without loss of generality, (v, C) and (v,D)) the
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(a) (b)

Figure 6.9: possible variable gadgets Gv for a variable v appearing in three clauses C,D,
and E

true orientation is the counterclockwise orientation, then we construct the variable
gadget in Figure 6.9b.

• If for exactly one of the three edges (without loss of generality, (v, E)) the true ori-
entation is the counterclockwise orientation, then again we still construct the variable
gadget in Figure 6.9b.

• If for each of the three edges the true orientation is the clockwise orientation, then we
still construct the variable gadget in Figure 6.9a.

Finally, for every variable v and every clause C we identify the edge evC in both Gv and GC .
The resulting graph is still planar and is G1(y).
Gv is constructed so that there are only two ways to orient the edges. In one orientation,

all edges vC, vD, and vE are oriented in the true direction, and in the other orientation,
the three edges are oriented in the false direction. Orienting the three edges in the true
direction corresponds to setting the variable to True, and orienting them in the false direction
corresponds to setting them to False. The reduction clearly takes polynomial time, and the
following lemma implies its correctness.

Lemma 6.14. A planar 3-SAT formula y is satisfiable if and only if there exists an ideal
orientation in G1(y).

Proof. ⇒: Suppose y is satisfiable, and fix a satisfying assignment. For each clause C, we
orient the edges in GC as follows. For each of the three literals, we do the following. Let v
or ¬v be some literal in C. Orient the edge evC forwards if v or ¬v is in C and set to True;
otherwise, the edge is oriented backwards. We know that exactly one of the three edges
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evC , ewC , exC is oriented forwards. It is possible to orient the rest of the edges in GC such
that distances between the terminal pairs (sC , tC), (s′C , t

′
C), and (s′′C , t

′′
C) are preserved.

In each variable gadgets Gv, we orient the edges as follows. If v is set to True, then each
of evC , evD, evE are oriented in the true direction; otherwise, the three edges are oriented in
the false direction. It is possible to orient the rest of the edges in Gv such that the distances
between the terminal pairs (sv, tv), (s

′
v, t
′
v, (s′′v, t

′′
v), and (s′′′v , t

′′′
v ) (if they exist) are preserved.

To show that orientations are consistent, recall that in the clause gadgets, there are four
cases:

• v appears in C and is set to True. Then evC is oriented forward and so is oriented in
the true direction.

• ¬v appears in C and v is set to False. Then evC is oriented forward and in the false
direction.

• v appears in C and is set to False. Then evC is oriented backward and so is- oriented
in the false direction.

• ¬v appears in C and v is set to True. Then evC is oriented backward and so is oriented
in the true direction.

In all cases we see that the orientation in the clause gadget is consistent with the orientation
in the variable gadget. ⇐: Suppose an ideal orientation exists. If evC , evD, and evE are
all oriented in the true direction, then set v to True; otherwise they are all oriented in the
false direction and we set v to False. We need to show that this is a satisfying assignment.
Consider a clause C. Since an ideal orientation exists, at least one of the edges evC , ewC ,
and exC must be oriented forward. Say evC is oriented forward. This means that either evC
is oriented in the true direction with v appearing positively, or evC is oriented in the false
direction with v appearing negatively. In the first case, v is set to True, so C is satisfied. In
the second case, v is set to False, so C is satisfied. QED.

6.5 SERIAL CASE FOR K-MIN-SUM ORIENTATIONS

In this section, we describe an algorithm to solve serial instances of the k-min-sum orien-
tation problem. Recall that every terminal pair (si, ti) is either clockwise (i.e., a clockwise
traversal of the outer face will visit si and then immediately visit ti) or counterclockwise.
Given a set Π of arbitrary directed paths π1, . . . , πk such that πi connects si to ti, we define
“lower envelopes” L(1,Π), . . . , L(k,Π) in the same way as in section 6.2. To simplify our
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presentation, we assume that our given instance has a unique solution, if it exists. If neces-
sary, this uniqueness assumptions can be enforced with high probability using the isolation
lemma of Mulmuley, Vazirani, and Vazirani [33].
Before we describe the algorithm, we prove an analog of Lemma 6.7.

Lemma 6.15. Let G be a serial instance of the k-min-sum orientation problem with terminal
pairs (s1, t1), . . . , (sk, tk). If a solution exists, then the paths in the solution are pairwise
noncrossing.

Proof. The proof is similar to that of Lemma 6.7. Let P = {P1, . . . , Pk} be the unique
solution to the serial instance G of the k-min-sum orientation problem, where Pi connects
si to ti. The walks L(1,P), . . . , L(k,P) are pairwise noncrossing. By Lemma 6.5 they are
pairwise nonconflicting. By Lemma 5.2 and our uniqueness assumption, their total length is
strictly less than that of the paths in P . This contradicts the fact that P was the optimal
solution to G. QED.

Let P = {P1, . . . , Pk} be the unique solution to the instance G of the k-min-sum solution.
By the Jordan Curve Theorem, noncrossing opposite paths must be edge-disjoint. This
suggests the following algorithm, which occurs in two phases.

1. In the first phase, we re-index the terminals so that (s1, t1), . . . , (sα, tα) are clockwise
and (sα+1, tα+1), . . . , (sk, tk) are counterclockwise. We split the instance of the k-min-
sum problem into two sub-instances. One of the sub-instances consists of the original
graph G with the clockwise terminal pairs, while the other sub-instance consists of G
with the counterclockwise terminal pairs. We solve each sub-instance separately. In
the clockwise sub-instance, we are finding α noncrossing edge-disjoint directed paths
of minimum total length such that the i-th path connects si to ti for i ∈ {1, . . . , α}
(We will describe later how to find such paths). Likewise, in the counterclockwise
sub-instance we are finding k−α noncrossing edge-disjoint directed paths of minimum
total length such that the (i− α)-th path connects si to ti for i ∈ {α + 1, . . . , k}. We
then let Π = {π1, . . . , πk} be the set of all k paths, where πi connects si to ti. By
Lemma 6.15, the sum of the lengths of π1, . . . , πk is at most the sum of the lengths of
the paths in P .

2. Any two opposite paths in Π are edge-disjoint and so are nonconflicting. However,
parallel paths (i.e., a clockwise path and a counterclockwise path) found by the first
phase may conflict with each other; the purpose of phase 2 is to remove these conflicts.
In phase 2, we simply output L(1,Π), . . . , L(k,Π). By Lemma 6.15, the sum of the
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(a) (b)

Figure 6.10: (a) vertex v ∈ V (G) with incident edges e1, . . . , e6 (b) corresponding cycle Cv
in G◦; each edge in Cv has zero length

lengths of the output paths is no greater than the sum of the lengths of the paths
in P . Since the output paths are envelopes, they noncrossing; the Jordan Curve
Theorem then implies that two output paths can conflict only if they are opposite. On
the other hand, Lemma 6.5 implies that opposite paths are nonconflicting. Thus the
output paths are indeed nonconflicting paths of minimum total length that connect
the terminals.

To finish the description of the algorithm we just need to show how to find the noncross-
ing edge-disjoint directed paths in Phase 1. Before doing this, we define the k-min-sum
noncrossing edge-disjoint paths problem (k-NEPP) and the k-min-sum vertex-disjoint paths
problem (k-VPP) as follows. In k-NEPP we are given a plane graph G with k pairs of
terminals (s1, t1), . . . , (sk, tk), and we wish to find k paths P1, . . . , Pk such that Pi connects
si to ti and the k paths are pairwise noncrossing and edge-disjoint. (Note that under our
definition of “edge-disjoint,” finding edge-disjoint directed paths in undirected graphs is the
same as finding edge-disjoint undirected paths in undirected graphs. Thus for the rest of
this section all paths will be undirected.) k-VPP is similar except that the paths P1, . . . , Pk

are to be vertex-disjoint instead of noncrossing edge-disjoint. It is known that k-VPP can
be solved in serial instances in O(kn5) time when edge lengths are non-negative [62].
In order to find the paths in Phase 1 we need to solve serial instances of k-NEPP. We will

solve such instances by reducing to serial instances of k-VPP; this will finish the description
of the algorithm for serial instances of the k-min-sum orientation problem.
The reduction is as follows. Starting with G, we replace each vertex v in G with an

undirected cycle Cv of deg(v) vertices v1, . . . , vdeg(v). Each edge in the cycle has length zero.
We make every edge that was incident to v incident to some vertex vi instead, such that
each edge is connected to a different vertex vi, the clockwise order of the edges is preserved,
and the graph remains planar. The resulting graph G◦ has O(n) vertices and arcs. See
Figure 6.10. Furthermore, if G has all terminals on the outer face, then so does G◦.
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Lemma 6.16. Suppose G is serial instance with terminal pairs (s1, t1), . . . , (sk, tk). The
following statements are equivalent:

1. There exist pairwise noncrossing edge-disjoint paths P1, . . . , Pk of total length L in G
such that Pi connects si and ti for all i.

2. There exist pairwise vertex-disjoint paths Q1, . . . , Qk of total length L in G◦ such that
Qi connects si and ti for all i.

Proof. ⇒: Suppose there exist pairwise noncrossing edge-disjoint paths P1, . . . , Pk of total
length L in G such that Pi connects si and ti. We construct the paths Q1, . . . , Qk as follows.
For any edge e in Pi, we add e to Qi. This defines the portions of the paths Q1, . . . , Qk outside
the cycles Cv; these portions are vertex-disjoint because by construction the endpoints of
edges of G are all distinct in G◦.
We route the portions of Q1, . . . , Qk inside the cycles Cv in G◦ as follows. Let v be a

vertex of G, and suppose Pi go through v. Suppose the cyclic order of the edges around
v is e1, . . . , ed, where d = deg(v). Say Pi goes into v through ex and leaves through ey,
where x < y. By the Jordan Curve Theorem, either no other path uses ex+1, . . . , ey−1 or
no other path uses ey+1, . . . , ed, e1, . . . , ex−1. Suppose the first case holds (the second case is
symmetric). Route the path Qi through vertices vx, . . . , vy. The resulting paths Q1, . . . , Qk

are vertex-disjoint from because none of the paths P1, . . . , Pk use ex+1, . . . , ey−1 (except
possibly Pi). Clearly Q1, . . . , Qk have the same length as P1, . . . , Pk.
⇐: Suppose there exist pairwise vertex-disjoint paths Q1, . . . , Qk of total length L in G◦.

Trivially, the paths Q1, . . . , Qk are pairwise noncrossing edge-disjoint too. Each path Pi can
be defined by “projecting” Qi into G in the obvious way: an edge of G is in Pi if and only
if e was in the original path Qi. The resulting paths P1, . . . , Pk are pairwise noncrossing
because the original paths Q1, . . . , Qk were pairwise noncrossing. By similar reasoning as in
the second half of the proof of Lemma 2.8, we can see that the paths P1, . . . , Pk are pairwise
noncrossing and edge-disjoint. Clearly P1, . . . , Pk are the same length as Q1, . . . , Qk. QED.

We can use the algorithm of Borradaile, Nayyeri, and Zafarani [62] to solve serial instances
of k-min-sum vertex-disjoint paths. Since G◦ has k pairs of terminals and O(n) vertices and
edges, the algorithm of Borradaile, Nayyeri, and Zafarani still takes O(kn5) time to compute
Π. Given Π, computing the envelopes L(1,Π), . . . , L(k,Π) takes O(n) time, so our entire
algorithm still takes O(kn5) time.
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6.6 OPEN PROBLEMS

Very little is known about the ideal orientation problem or the k-min-sum orientation
problem, and so there are many open problems. Here we list three that we find particularly
interesting. First, we do not know whether or not the ideal orientation problem can be
solved in planar graphs when all terminals are on a single face (and we allow some pairs to
cross). In fact, this problem is open even if k = 3. Second, we do not know if the ideal
orientation problem in planar graphs can be solved when for each i ∈ {1, . . . , k}, si and ti
are on the same face (different pairs could be on different faces), and no two pairs on the
same face cross each other. Again, this is open even if k = 3. If k is fixed, then we may be
able to solve this problem using an algorithm similar to the one in Section 6.3. Finally, we
do not know if the k-min-sum problem can be solved in outerplanar graphs, even if k = 2.
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