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ABSTRACT 

The present study compared the performance of machine learning classification models against 

logistic regression in the context of predicting training attrition from the Delayed Enlistment 

Program in the United States Marine Corps (UMSC) with scores from the Tailored Adaptive 

Personality Assessment System (TAPAS). The base-rate of attrition was low which made the 

model training process difficult, but the random-forest model outperformed logistic regression in 

predicting cases of attrition in a stratified 50% attrition sample. 
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CHAPTER 1: INTRODUCTION 

The attrition rate of new recruits is a metric of high importance for efficient resource 

management in the U.S. Military, namely because it is associated with wasted time and resources 

during training. For this reason, all branches of the U.S. Military maintain records of the attrition 

rates and recruiter performance for their training programs and employ a variety of methods to 

predict and minimize attrition as part of an effort to cut unnecessary costs (Halstead, 2009). 

 Loosely speaking, this process involves inputting an array of recruit data (e.g., 

demographics, personality/cognitive test scores, etc.) into a classifier algorithm to predict 

whether the individual will indeed follow through with training until completion. However, 

attrition is a dichotomous decision variable (i.e., did attrit, did not attrit) with a low base-rate 

(i.e., observed instances of attrition are relatively infrequent, about 12% in the sample analyzed 

in this study), which can make classification with generalized linear models (GLMs) (i.e., a 

probit or logit regression model) difficult due to large fluctuations in the point-biserial 

correlations between low base-rate dichotomous variables and continuous predictors (e.g., 

Berkson’s fallacy). 

 A popular approach to classification is statistical learning (“machine learning”), which 

includes algorithms that can sometimes yield greater predictive accuracy than GLMs 

(Vijayakumar & Cheung, 2018). The present study explored the feasibility of incorporating facet 

scores from the Tailored Adaptive Personality Assessment System (TAPAS) into a predictive 

model of U.S. Marine recruit attrition using machine learning classification techniques. 
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CHAPTER 2: METHOD 

Participants 

Records from a total of 39,043 recruits to the United States Marine Corps (USMC) were 

analyzed. Of these, only 238 (0.61%) records contained missing data for at least one variable. 

The data were standardized and missing values were imputed during preprocessing using k-

nearest neighbor (kNN) imputation (Bokhari & Hubert, 2018; Witten, Frank, & Hall, 2011). 

The sample was 89.13% male and the mean age was 22.09 (SD = 2.40 years). 

Demographic statistics are displayed in Tables 2.1 and 2.2. Finally, the recruits’ target role in the 

USMC and reason for discharge is reported in Table 2.3. Notably, not every target role is 

represented by a case of attrition from the DEP program, and the proportion of each type of case 

differed by target role according to the likelihood-ratio test, χ2(144, N = 39,043) = 1,143.55, p < 

.0001, Cramér’s V = .06. 

Table 2.1: Sample demographics.  
  Male  Female  Other    

BR  12.25%  13.72%  0.00% Attrition BR Totals 

African American  2,750  487   404 (8.18%) 12.48% 3,237 (8.29%) 
American Indian   154  25   25 (0.51%) 13.97% 179 (0.46%) 

Asian  994  104  1 169 (3.42%) 15.38% 1,099 (2.81%) 

Biracial   767  117   137 (2.78%) 15.50% 884 (2.26%) 
Caucasian  22,006  2,500   3,728 (75.53%) 15.21% 24,506 (62.77%) 

Hawaiian/Pacific Islander  205  117   30 (0.61%) 13.10% 322 (0.59%) 

Unknown  7,865  969   434 (8.79%) 4.91% 8,834 (22.63%) 
Declined to respond  59  16   9 (0.18%) 12.00% 75 (0.19%) 

Attrition  4,354 

(88.21%) 

 582 

(11.79%) 

  

(0.00%) 

  4,936 

Total   34,800 

(89.13%) 

 4,242 

(10.87%) 

 1 

(<.01%) 

  39,043 

BR refers to the base rate of attrition within each group. 
The values along the Attrition row and column refer to the proportions of each group represented in the subsample of USMC recruits 

who are discharged from the DEP program. 
 

Instruments 

 Demographic records 

Recruit age and of years of education were specified as covariates in each of the models. 

 AFQT score 
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The Armed Forces Qualification Test (AFQT) score is the percentile score obtained from 

four subtests (i.e., Arithmetic Reasoning, Mathematics Knowledge, Word Knowledge, and 

Paragraph Comprehension) of the Armed Services Vocational Aptitude Battery (ASVAB), the 

test commonly used for assessing recruit enlistment eligibility by branches of the U.S. Military 

(Drasgow, Embretson, Kyllonen, & Schmitt, 2006). 

 

Table    2.2      Means, standard deviations, and correlation matrix.     

  
(1) 

  
(2) 

  
(3) 

  
(4) 
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(6) 

  
(7) 

  
(8) 

  
(9) 

  
(10) 

  
(11) 

  
(12) 

  
(13) 

  
(14) 

  
(15) 

  
(16) 

  
(17) 

  
(18) 

  
(19) 

  
(1) Attrition 

  
N/A 

  
[ - .16,   
.06] 

  

[ - .16,  - 
.12] 

  

[2.27,     
3.39] 

  

[ - .03,  
- .00] 

  

[ - .02,   
.00 ] 

  

[ - .10, 
  

- .06] 
  

[ - .01,   
.02 ] 

  

[ - .01,   
.02 ] 

  

[ - .01,   
.02 ] 

  

[.00,    
.03] 

  

[ - .01, 
   

.01 ] 
  

[ - .08,  
- .04] 

  

[.01,    
.03] 

  

[ .01, 
    

.01 ] 
  

[ - .01,   
.02 ] 

  

[ - .03,  - 
.00] 

  

[ - .02,   
.01 ] 

  

[ - .02,   
.01 ] 

  
(2) Age 

    
- .03** 

  
22.09 

  
(2.40) 

  
                                  

(3) Years of  
education 

  

- .05** 
  .66** 

  
11.69 

  
(0. 87) 

  
                                

                                        
(4) AFQT 

  
.04** 

  .06** 
  .15** 

  
59.29 

  
(21.34) 

  
                              

TAPAS facets 
                                        

(5)  Achievement 
  

- .01* 
  .09** 

  .09** 
  .01** 

  0.14 
  

(0.50) 
  

                            
(6)  Adjustment 

  
- .01 

  .02* 
  

.02** 
  

.08** 
  

.17** 
  

0.05 
  

(0.61) 
  

                          
(7)  Commitment to  
serve 

  

.01 
  - .02** 

  
- .03** 

  
- .09** 

  
.25** 

  
.19** 

  
0.05 

  
(0.61) 

  
                        

(8)  Courage 
  

.00 
  

.01 
  

.02** 
  

.11** 
  

.33** 
  

.27** 
  

.32** 
  

0.36 
  

(0.55) 
  

                      
(9)  Dominance 

  
.00 

  .06** 
  .08** 

  .08** 
  .29** 

  .14** 
  .18** 

  .26** 
  

0.27 
  

(0.50) 
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tempered 

  

.00 
  .08** 

  .07** 
  .07** 

  .14** 
  .24** 

  .09** 
  .13** 

  
.01* 

  
0.32 

  
(0.51) 
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.06** 
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.24** 
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  - 0.02 

  
(0.50) 

  
                

(12)  Optimism 
  

- .00 
  .02* 

  
.04** 

  
.05** 

  
.17** 

  
.28** 

  
.13** 

  
.16** 

  
.11** 

  
.19 ** 

  
.05** 

  
0.17 

  
(0.44) 

  
              

(13)  Physical  
condition 

  

- .04** 
  

- .01 
  .03** 

  .02** 
  

.24** 
  

.09** 
  

.15** 
  

.20** 
  

.18** 
  

- .02** 
  

.06** 
  

.08** 
  

0.26 
  

(0.55) 
  

            

(14)  Responsibility 
  

.01** 
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.07** 
  

.14** 
  

.32** 
  

.17** 
  

.18** 
  

.31** 
  

.21** 
  

.19** 
  

.09** 
  

.17** 
  

.13** 
  

0.30 
  

(0.47) 
  

          
(15)  Selflessness 

  
- .00 

  
.01* 

  
.02** 

  
- .05** 

  
.17** 

  
- .02** 

  
.06** 

  
.07** 

  
.08** 

  
.11** 

  
.07** 

  
.08** 

  
.03** 

  
.16** 

  0.03 
  

(0.42) 
  

        
(16)  Sociability 

  
.00 

  
.02 

  
.01** 

  
- .13** 

  
.14** 

  
.12** 

  
.11** 

  
.09** 

  
.25** 

  
.03** 

  
.18** 

  
.11** 

  
.07** 

  
.04** 

  
.14** 

  - 0.35 
  

(0.56) 
  

      
(17)  Team  
o rientation 

  

- .01* 
  .02** 

  .03** 
  - .09** 

  .08** 
  .04** 

  .07** 
  .06** 

  .10** 
  .10** 

  .02** 
  .07** 

  .05** 
  .05** 

  .12** 
  .22** 

  
- 0.09 

  
(0.45) 

  
    

(18)  Tolerance 
  

- .00 
  

.07** 
  

.08** 
  

.04** 
  

.06** 
  

.04** 
  

.01 
  

.06** 
  

.03** 
  

.14** 
  

.12** 
  

.06** 
  

.01** 
  

.05** 
  

.21** 
  

.15** 
  

.10** 
  

0.001 
  

(0.51) 
  

  
(19 )  Virtue 

  
- .00 

  .10** 
  

.07** 
  

<.01 
  .27** 

  
.07** 

  
.18** 

  
.19** 

  
.08** 

  
.23** 

  
.04** 

  
.14** 

  
<.01 

  .28** 
  

.25** 
  

.04** 
  

.07** 
  

.12** 
  

0.59 
  

(0.22) 
  

*p < .05 **p < .01 are bolded. Statistically non-significant correlation coefficients and mean differences are italicized. 

Note: For row (1), the values in brackets are 95% confidence intervals for the pairwise mean difference (relative to the no-attrition group) using the Welch two-sample 

t-test. Analyses were repeated using the corresponding nonparametric test, the Wilcoxon rank-sum-test, and results were identical. 

       

  
  

 

TAPAS 

 The Tailored Adaptive Personality Assessment System (TAPAS; Drasgow, Stark, 

Chernyshenko, Nye, & Hulin, 2012) was developed as a large-scale, fake-resistant assessment of 

the Big Five taxonomy of personality (including 21 lower-order personality facets and physical 
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condition), using computer adaptive testing (CAT) techniques to reduce the risk of test exposure 

and compromise. The test has shown promise in predicting important outcomes in military 

applications, such as in-role performance and recruiter performance (Drasgow et al., 2012; Nye, 

White, Horgen, Drasgow, Stark, & Chernyshenko, 2018).  

Attrition 

Attrition was coded as a dichotomous outcome variable to indicate whether the recruit 

had ultimately been discharged from the Delayed Enlistment Program (DEP), regardless of the 

target role or the reason for discharge. Originally, we attempted to predict the reason for 

discharge as a multinomial outcome variable, but the lack of observations in several of the reason 

categories resulted in several of the machine learning models (i.e., CART, random forests) 

making no classifications into the attrition group, even with stratification. 

Table 2.3: Recruits’ target role in the USMC and reason for discharge from the DEP program. 
  Marine 

Regular 

Marine 

Corps 

Regular 

Marine 

Reserve 

Marine 

Corps 

Reserve 

Marine 

Non-

applicant 

Marine Corps 

Non-

applicant 

Merchant 

Marines 

 

 

 

BR 15.03% 4.47% 18.91% 8.71% 0.59% 0.84% 0% Totals 

Attrition 3,876 

(78.53%) 

335 

(6.79%) 

624 

(12.64%) 

97 

(1.97%) 

3 

(0.06%) 

1 

(0.02%) 

 

(0%) 

4,936 (12.64%) 

 

 Apathy/personal problem 1,586 107 248 37 3   1,981 (40.13%) 

 Officer program 406 45 39 9    499 (10.11%) 

 (Non-EPTS) Medical disqualification 286 45 95 21  1  448 (9.08%) 

 Enlisted in another service 355 17 55 5    432 (8.75%) 

 Dependency disqualification 278 17 36 6    337 (6.83%) 

 (EPTS) Moral disqualification 154 13 40 7    214 (4.34%) 

 Disqualified for option 179 14 15 1    209 (4.23%) 

 Marriage 101 24 10 3    138 (2.80%) 

 Temporarily disqualified 112 4 10 2    128 (2.59%) 

 Death 95 13 13 1    112 (2.47%) 

 Did not report on ship date 71 15 14 2    102 (2.07%) 

 Failed to graduate 46 1 9     56 (1.13%) 

 Religious training/appointment 44 6 4     54 (1.09%) 

 Enlistment misunderstanding 28 3 18 1    50 (1.01%) 

 Pursuit of higher education 30 2  21    35 (0.71%) 

 Recruiting error 27       27 (0.55%) 

 Refused to enlist 14  6     20 (0.41%) 

 (EPTS) Medical delinquency 16 2      18 (0.36%) 

 (Non-EPTS) Moral disqualification 9 2 4 1    16 (0.32%) 

 Personal hardship 12  1     13 (0.26%) 

 Component code change 10 1      11 (0.22%) 

 Pregnancy 8  3     11 (0.22%) 

 Positive direct antiglobulin test (DAT) 4 3 1     8 (0.16%) 

 Other 4 1 1     6 (0.12%) 

No attrition 21,905 7,166 3,299 1,114 503 119 2 34,108 (87.36%) 

Totals 25,780 

(66.03%) 

7,501 

(19.21%) 

3,923 

(10.05%) 

1,211 

(3.10%) 

506 

(1.30%) 

120 

(0.31%) 

2 

(0.01%) 

39,043 

BR refers to the base rate of attrition within each target role. 

The percentages along the Attrition row are the proportion of cases of attrition from recruits seeking the corresponding role, while 

the percentage in the Attrition row of the totals column is the overall base rate. 

Note: EPTS refers to conditions that existed prior to military service. 
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Classifiers 

CART model 

Classification and regression trees (CART) are a family of statistical learning models that 

are relatively easy to interpret, but often suffer from high variance and low accuracy (James, 

Witten, Hastie, & Tibshirani, 2013). The classification tree model predicts a categorical outcome 

variable by using a set of predictor variables to generate a binary decision tree via recursive 

partitioning of the dataset (Breiman, Friedman, Olshen, & Stone, 1984). 

 The CART model is generated by a top-down, greedy algorithm that splits the dataset 

into two disjoint subsets based on the values of one predictor. For each predictor, we then 

consider a number of possible splits to branch off. For a dataset with n observations, there are n – 

1 possible splits between adjacent values of a continuous predictor variable, while for a 

categorical variable with c categories, there are 2c – 1 possible splits. The split that is selected to 

form a new tree branch is the one that minimizes node impurity—a global measure of error—of 

the leftover sets. Continuous variables use the sum of squared errors within groups as a measure 

of node impurity, while categorical variables use the sum of the Gini diversity indexes (gdi) 

obtained from the proportions of groups formed by the split: , where  

indicates the proportion of the sample observed in the cth category of the outcome variable 

(Witten et al., 2011). 

 Moreover, the CART algorithm is a stagewise (i.e., “myopic”) greedy algorithm, which 

means it selects the best possible split (i.e., the one that generates the least node impurity) at 

every iteration, and once a split is made the algorithm does not revisit it. As a result, the final tree 

structure given by the algorithm is not guaranteed to be an optimal solution (Breiman et al., 

1984). Note that the Gini indexes are maximized when group proportions are equal, and 
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minimized when the proportion of one class is 100%. Thus, the base-rates of the subsets have 

direct influence over the generation of the classification tree structure at every iteration of the 

algorithm. 

 Of course, as with other forms of supervised learning, there is a dilemma between 

overfitting and underfitting the model to the training sample. An underfitted model produces an 

overly shallow, inaccurate tree. On the other hand, excessively complex trees are associated with 

increased resubstitution error, as well as shrinkage (i.e., increased testing error) (Witten et al., 

2011). Attempting to fit saturated trees onto a dataset produces potentially spurious results from 

excessively large and volatile estimates of the irreducible error component of mean-squared error 

(MSE) (i.e., the variance of the error residuals; ) obtained during training, as well as 

unstable tree structures generated by the learning algorithm; however, overfitting may even occur 

in model selection (Bokhari & Hubert, 2018; Cawley & Talbot, 2010; Hastic et al., 2009; 

Yarkoni & Westfall, 2017). The effect of overfitting is comparable to using a less powerful 

machine learning algorithm (Cawley & Talbot, 2010). 

There are a variety of methods for managing the problems caused by overfitting, such as 

regularization or early stopping rules (Cawley & Talbot, 2010). In the classification tree 

algorithm, for example, the resulting tree can be simplified (“pruned”) back to an optimal level 

using a training control procedure (Witten et al., 2011). k-fold cross-validation (CV) is a type of 

training control procedure that involves sampling observations without replacement into k 

equally-sized subsets (without overlap) by using each subset as the testing set and the remainder 

as the training set. The statistical learning model estimated from all but one of the subsets is then 

applied to each of the k subsets to yield an average estimate of testing error (Bokhari & Hubert, 

2018; Witten et al., 2011, Chapter 5; Yarkoni & Westfall, 2017). 
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The most complex form of this procedure, n-fold cross-validation (also called leave-one-

out cross-validation), generates models using each individual observation as the testing sample 

(i.e., k = n) (Bokhari & Hubert, 2018). This procedure is approximately unbiased and is the most 

efficient k-fold CV procedure; however, it is also the most computationally-expensive, does not 

allow for stratification, and may not work well for all datasets (Bokhari & Hubert, 2018). For 

instance, classifying datasets with unbalanced group proportions may be particularly difficult to 

achieve, especially if the training set contains fewer than 5 observations in each cell. Thus, 

stratification is sometimes combined with CV procedures to create models using subsets with 

equivalent proportions of each group; however, this procedure slightly reduces estimated error 

variance (Breiman, Friedman, Olshen, & Stone, 1984; Yarkoni & Westfall, 2017). 

A good compromise is stratified 10-fold CV, which retains some of the most desirable 

properties, but with slightly smaller variance and larger bias than the leave-one-out CV 

procedure (Bokhari & Hubert, 2018; Breiman & Spector, 1992; Breiman et al., 1984). As 

mentioned, both k-fold CV and stratification can be applied to other types of classifiers besides 

CART. 

Random forests  

Sometimes, certain statistical learning methods like decision trees suffer from too much 

variance to such an extent that the model may exhibit differential performance when fit onto two 

randomly-selected halves of the dataset. This occurs because classification trees have high 

variance and low bias, which often results in overfitting (James et al., 2013). A remedy for the 

large variance is bootstrap aggregation (“bagging”), which improves prediction accuracy by 

generating B trees from B random training samples taken with replacement from the dataset, 

instead of a single tree. In bagging, individual trees are grown deep and not pruned, which 
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reduces variance when averaging their predictions. However, trees may differ significantly in 

structure, and they make predictions less interpretable (James et al., 2013). 

The random forests model is an extension of bagged classification trees that is 

constructed by a similar algorithm (Breiman, 2001), except that decision trees are instead grown 

using q random subsets of p predictors at each node (usually q is set equal to √p, to reduce test 

error and over bagging) (James et al., 2013). This algorithm is advantageous for generating 

models that do not rely on any one variable as the dominant predictor of the outcome variable, 

except possibly the root node, and it reduces error variance in the trees (Breiman et al., 1984); 

however, each random forests model uses a smaller portion of the data, reducing accuracy 

(Witten & Frank, 2011). Unlike the CART model or OLS regression, the random forests model 

is not easily interpretable within the context of the original problem because it consists of a 

multitude of deep trees, each with a large number of nodes, each generated from only a random 

subset of predictors in a subset of the dataset. In this study, we used a random forests model with 

B = 500 classification trees and 2,717 nodes (M = 5.434 nodes per tree). The attrition 

classification is predicted by each of the individual decision trees in the forest as described in the 

CART model, and the most commonly occurring category is selected as the result. 

Generalized linear model 

In the present study, a logistic regression (logit) model was trained to classify individuals 

on the attrition variable for comparison, using the same model specification and training controls 

as the other models. However, there are several problems worth mentioning that make traditional 

ordinary least squares (OLS) regression an inadequate training model. In OLS regression, even a 

predictor that is unrelated to the outcome will have a nonzero coefficient due to statistical noise, 
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which leads to overfitting particularly in models with a high ratio of predictors relative to sample 

size (Yarkoni & Westfall, 2017). 

Regularization techniques are thus often used to mitigate overfitting and improve 

statistical prediction by penalizing the model’s objective function (e.g., in OLS, the sum of 

squared errors) a priori (Cawley & Talbot, 2010). One such example is a widely-used alternative 

to OLS regression, least absolute shrinkage and selection operator (LASSO) regression 

(Tibshirani, 1996), which works by including a shrinking penalty in the objective function (i.e., 

the sum of squared errors) based on the absolute coefficient magnitudes (the  norm), 

, to produce intentionally biased coefficient estimates. This is known as an L1 penalty, 

and it relies on the size of a tuning parameter, λ (λ ≥ 0), which controls the amount of shrinking. 

As λ increases, model bias increases and forces small coefficient estimates to 0 (to thus eliminate 

predictors that do not contribute to predicting the outcome) (James et al., 2013). Generally, 

coefficient estimates produced by LASSO regression outperform OLS and generalize better to 

new datasets (Yarkoni & Westfall, 2017), and the resulting models are simpler to interpret.  

The LASSO regression model is included in this study for a comparison between the 

machine learning models and (regularized) linear regression. When selecting the tuning 

parameter λ for the LASSO model based on fit criteria, using the Bayesian Information Criterion 

(BIC) yields the true model more consistently than using cross-validated error (Wang et al., 

2007; Zhang et al., 2010). However, for consistency with the other classification models, we 

selected a tuning value that minimized cross-validated AUC, not BIC. 

Test performance indices 

 A variety of indices were used to assess aspects of model performance. They are 

discussed here within the context of the UMSC dataset. 
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Accuracy 

Accuracy simply refers to the total proportion of recruits who were assigned by a model 

to the correct attrition classification. 

Phi coefficient 

The phi coefficient ( ) is a measure of association between two dichotomous variables 

that can be interpreted similarly to the Pearson correlation coefficient. It is related to the 

goodness-of-fit chi-square statistic obtained from the 2 × 2 confusion table by .  In this 

study, we investigate the strength of the association between model predictions of attrition and 

their actual values as an index of test performance. 

Sensitivity 

Sensitivity (also called the true-positive rate; TPR) refers to the proportion of true-

positive results that are correctly identified (Bokhari & Hubert, 2015). In this context, it refers to 

the proportion of recruits who attrit the DEP program and are correctly classified by a model into 

the yes-attrition group. 

Specificity 

Specificity (also called the true-negative rate; TNR) refers to the proportion of true-

negative results that are correctly rejected (Bokhari & Hubert, 2015). In this context, it refers to 

the proportion of recruits who do not attrit the DEP program and are correctly classified by a 

model into the no-attrition group. 

PPV 

Positive predictive value (PPV; aka. precision) is the proportion of true-positive results 

among all positive predictions (Bokhari & Hubert, 2015). In this context, it refers to the 

proportion of recruits who attrit amongst those assigned by a model into the yes-attrition group. 
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NPV 

  The proportion of true negatives refers to the proportion of true-negative results among 

all negative predictions (Bokhari & Hubert, 2015). In this context, the negative predictive value 

(NPV) refers to the proportion of recruits who do not attrit amongst those assigned by a model 

into the no-attrition group. 

Sensitivity indices 

Based on signal detection theory, we used the normalized hit and false alarm rates from 

the receiver operating characteristic (ROC) curve to calculate the sensitivity index, d-prime (d'), 

which corresponds to the distance between the homoscedastic noise and signal distributions 

(Green & Swets, 1966). In this context, a larger value of d' indicates the model is better able to 

discriminate between the attrition groups. We also calculated A' (Grier, 1971), a nonparametric 

alternative that relaxes the normality distributional assumptions of d' and is independent of 

response bias. A' is particularly useful for evaluating sensitivity when signal and noise 

distributions are heteroscedastic, or when the difference between the sensitivity and the false-

alarm rate is small (Pollack & Norman, 1964). 

Clinical efficiency  

We examined whether any of the specified models met the criteria for accurate 

classification prediction beyond base rates (i.e., clinical efficiency) (Bokhari & Hubert, 2015). 

Notably, however, Bokhari and Hubert (2015) caution that when base rates are low, meeting 

clinical efficiency is difficult and requires high test specificity.  

 The criteria are as follows: the Meehl-Rosen criterion is met when the positive-predictive 

value is at least as large as the base rate (i.e., PPV  ≥ base rate) (Meehl & Rosen, 1955). 

Assuming false positive and negative errors are equally undesirable, the Dawes criterion is met 
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either when PPV  ≥ 50% (for base rates ≤ 50%) or when NPV  ≥ 50% (for base rates > 50%) 

(Dawes, 1962). Lastly, the Bokhari-Hubert (B-H) criterion, which implies the former criteria 

(although the reverse is not necessarily true), specifies that the use of a test over base rates is 

justifiable if and only if the test generates a confusion matrix such that nTrue Positives > nFalse Positives 

and nTrue Negatives > nFalse Negatives (Bokhari & Hubert, 2015). Accordingly, satisfying this criterion 

corresponds to finding a pair of confidence intervals around sensitivity and specificity that both 

exceed 50%. 

AUC 

The area under the receiving operating curve (AUC), also known as the concordance 

index, is a popular indicator of diagnostic test reliability. In general, AUC is independent of the 

underlying base rates (Bokhari & Hubert, 2015, Chapter 1), but when calculating a single 

decision threshold, AUC is exactly equivalent to accuracy when the base-rates of both categories 

are equivalent (i.e., 50%) (Hanley & McNeil, 1982).  

Despite its usefulness, AUC has several problems of its own which merit discussion, 

namely variability across populations with different base rates, spectrum bias within groups 

(Ransohoff & Feinstein, 1978), as well as other biases traditionally associated with sensitivity 

and specificity (Begg, 1971; Moons & Harell, 2003; Witten et al., 2011, Chapter 5). For a 

dichotomous outcome variable such as attrition, the low base-rate (12.28%) can make predictions 

(e.g., classification tree structures) especially volatile because of its influence on the greedy 

algorithms used for generating the trees. This makes AUC by itself inadequate for assessing the 

accuracy of classification models generated from low-base rate signals (Bokhari & Hubert, 2015; 

Witten et al., 2011). In these cases, establishing clinical efficiency requires high test specificity 

or class stratification (Bokhari & Hubert, 2015; Dawes, 1962). 
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Unfortunately, the low-base rate of attrition posed a problem for the present analysis 

because the CART algorithm was unable to generate a tree beyond the root node. Similarly, the 

model generated by the random forests algorithm had a selection rate of 0%. These conditions 

make comparisons between models meaningless as many of the indices of test performance 

cannot be compared or even computed. 

As such, we repeated the same analysis following the stratified 10-fold cross-validation 

procedure with random subsamples of size N ~ 8,885 (approximately 22.76% of the original 

dataset), such that the attrition rate was fixed at 50%. Here, the subset was obtained by using all 

of the yes-attrition records, and randomly sampling an equal amount of no-attrition records. This 

procedure has a strong empirical basis as the best choice for obtaining reliable estimates of 

diagnostic accuracy, particularly in cases where one class is unbalanced (Witten, et al., 2011, 

Chapter 5). 
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CHAPTER 3: RESULTS 

The specified models were trained using the dataset in R. Confusion matrices and errors 

resulting from this analysis are displayed in Table 3.2. Unique contributions from each model are 

shown in the Venn diagram of correct predictions in Figure 3.6. 

The full classification tree model generated by the CART algorithm is drawn in Figure 

3.1. Individuals are classified by the decision tree according to the predictors, beginning at the 

root node (the uppermost node on the tree). Each node involves a yes-no decision based on 

standardized values of a predictor, ending at the leaf node (the lowest node on the tree) where a 

prediction is made. In Figure 3.1, as we descend the tree, if the condition on a node is met, we 

move left; otherwise, we move right. The percentages at the bottom of each node are the 

proportions of recruits (out of the entire sample) that reach this part of the tree, with the majority 

category represented as a “Yes” for attrition or “No” for no attrition (in the leaf node, this also 

represents the prediction that is made), while the two decimal numbers at the center represent 

proportions of the no-attrition and yes-attrition categories respectively within this part of the tree. 

 
Figure 3.1: Attrition classification tree for the 50% stratified sample. 

Note: the threshold values for each of the variables on the tree refer to standardized values. 
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For example, after the first split, approximately 6% of all recruits in the stratified sample 

have an AFQT score lower than 1.30 SD below the mean and are immediately classified into the 

leftmost node in the tree which corresponds to the no-attrition group. Accordingly, 84% of this 

group is indeed part of the no-attrition group. 

The 10-fold cross-validated testing errors and tuning parameters are in Figures 3.2-3.4. In 

this study, we only investigated the models with superior cross-validated testing error. 

Figures 3.2-3.4: Gradient descent of cross-validated testing errors by model. 

 
3.2: CART models. 

 

 
3.4: Random forests models. 

 
3.3: LASSO models. 

Model Comparison 

The logit model was an adequate fit for the dataset, χ2(18, N = 9,872) = 216.07, p < 

.0001, χ2/df  = 12.00, MSE = 4.10, AIC = 13,507.43, BIC = 13,644.18, = -6,734.715. The 

only statistically-significant (p < .05) predictors of attrition were years of education (  =  -0.25, 

SE  = 0.03), the AFQT score (  =  0.15, SE  = 0.02), and the Commitment to serve (  =  -0.12, 
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SE  = 0.02), Physical condition (  =  -0.11, SE  = 0.02), Sociability (  =  0.07, SE  = 0.02), and 

Responsibility (  =  0.07, SE  = 0.02) facets of TAPAS. The solution paths for the LASSO 

model are included in Figure 3.5. Accordingly, the coefficients corresponding to the TAPAS 

facets of the Dominance, Optimism, Selflessness, and Team Orientation were shrunk to 0 at λ = 

1.926614 × 10-3, the value of the tuning parameter that maximized cross-validated AUC. 

Regularization by the LASSO model shrunk the magnitude of the coefficients by at most .03, for 

Age. The coefficients for both models are summarized in Table 3.1. 

 
Figure 3.5: Effect of LASSO regularization on regression coefficients. 

Table 3.1: Coefficients for logit and LASSO regression.   

Source  Logit Logit Logit LASSO LASSO LASSO SE  

Intercept  -.034 0.966 -- -.032 0.969 -- .021 

Age   .066 1.068 +1.65% .036 1.037 +0.91% .036 

Years of education -.253 0.777 -6.29% -.227 0.797 -5.64% .030 

AFQT  .151 1.163 +3.77% .144 1.155 +3.59% .023 

TAPAS         

 Achievement -.011 0.989 -0.29% -- -- -- .024 

 Adjustment -.040 0.961 -0.99% -.023 0.977 -0.57% .023 

 Commitment to serve -.115 0.891 -2.87% -.107 0.899 -2.67% .022 

 Courage .018 1.019 +0.46% .006 1.006 +0.16% .023 

 Dominance .006 1.006 +0.15% -- -- -- .023 

 Even-tempered .031 1.031 +0.76% .019 1.019 +0.48% .022 

 Ingenuity .022 1.023 +0.56% .017 1.017 +0.43% .022 

 Optimism .008 1.008 +0.21% -- -- -- .022 

 Physical condition -.109 0.896 -2.73% -.101 0.904 -2.53% .021 

 Responsibility .071 1.074 +1.78% .060 1.061 +1.49% .024 

 Selflessness -.005 0.995 -0.12% -- -- -- .021 

 Sociability .072 1.075 +1.80% .061 1.063 +1.52% .022 

 Team orientation -.003 0.997 -0.70% -- -- -- .021 

 Tolerance -.027 0.973 -0.69% -.017 0.983 -0.42% .021 

 Virtue -.013 0.987 -0.00% -.002 0.998 -0.05% .023 

Standardized regression coefficients that are significant at p < .05 are bolded.  refers to the estimated 

change in the probability of attrition, per 1-SD increase in the predictor. 
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By contrast, recruits were predicted by the CART model to attrit from the DEP program 

if the AFQT score was 1.30 SD above the mean (~87th percentile) and they received at least 0.22 

SD below the mean number of years of education (M = 11.5), or if their physical condition was at 

or below 0.11 standard deviations below the mean (M = 0.14). 

Table 3.2: Confusion matrices (50% attrition sample). 
  Logit model  LASSO model  CART model  Random forests model 

  Attrition No 

attrition 

Error  Attrition  No 

Attrition 

 Error  Attrition No 

attrition 

Error  Attrition No 

attrition 

Error 

Attrition  2,838 2,098 42.50%  2,881  2,055  41.63%  3,484 1,452 29.42%  3,145 1,791 36.28% 
No attrition 2,273 2,663 46.05%  2,249  2,687  45.56%  2,907 2,029 58.89%  2,564 2,372 51.94% 

Note: the optimal values for each cell are bolded. 

  

 
Figure 3.6: Venn diagram of correct predictions of attrition by model. 

  
Table 3.3: Phi coefficients between model predictions.   

 (1) (2) (3) (4)  

(1) Logit (.0201)     

(2) LASSO .9308 (.0204)    

(3) CART .3982 .4170 (.0093)   

(4) Random forests .3416 .3528 .4086 (.0007)  
All Phi coefficients significant at p < .05 are bolded. 

Note: For comparison, italicized values in parentheses along the diagonal are the largest Phi coefficients 
calculated between each model’s predictions and one of 10,000 randomly-selected permutations of 

possible classifications for the sample of N = 9,872 participants, out of all 29,872 permutations. The 

performance for the optimal randomized classifier was: ACC = 52.19%, SENS = 52.07, SPEC = 51.80, 
PPV = 51.93, NPV = 51.94. 
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All models outperformed base-rate prediction and shared about 29.10% of correct 

predictions, as shown in Figure 3.6. Phi coefficients were calculated between model predictions 

in Table 3.3. Approximately 86.63% of the variability in predictions was shared between the 

logit and LASSO models, compared with 16.70% between the CART and random forests model.  

 A goodness-of-fit test revealed the proportion of observations assigned to each cell by 

the logit model differed from chance assignment (no-information rate = 50%), χ2(1, N = 9,872) = 

129.05, p < .0001, Cramér’s V = .11. Predictions from the LASSO model also outperform base-

rate assignment, χ2(1, N = 9,872) = 161.58, p < .0001, Cramér’s V = .13. Finally, the CART 

model (χ2(1, N = 9,872) = 147.22, p < .0001, Cramér’s V = .12) and the random forests model 

generated confusion matrices that differed significantly from chance assignment, χ2(1, N = 

9,872) = 139.73, p < .0001, Cramér’s V = .12. A full comparison of performance indices is 

provided in Table 3.5 and Figure 3.7. 

We also examined whether the models satisfied the criteria for clinical efficiency 

(Bokhari & Hubert, 2015). A proportion test on the PPV and NPV of each model was used to 

obtain 95% confidence intervals for the Meehl-Rosen and Dawes criteria as measures of the 

incremental predictive power of each model. The results for these analyses are summarized in 

Table 3.4. In general, the LASSO and logit models best fulfilled the Meehl-Rosen criterion (and 

the PPV part of the Dawes criterion), while the CART and random forests model best fulfilled 

the NPV part of the Dawes criterion; however, the differences between models were small, and 

the confidence intervals overlap.  For the B-H criterion, a pair of exact binomial tests were 

conducted using nTrue Positives and nTrue Negatives as the number of successes within each attrition 

group to obtain 95% confidence intervals for sensitivity and specificity against the base-rate also 

in Table 3.4. Almost every model met each of the target criteria for superior accuracy beyond 
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base-rate prediction in the stratified subsample. In the case of the CART and random forests 

model, specificity did not outperform change assignment.  

Finally, the LASSO model had the largest AUC (best accuracy), followed by the random 

forests model; however, the 95% CIs closely overlap. In general, the LASSO and logit models 

minimized classification error in the no-attrition groups (i.e., maximized specificity, PPV), while 

the CART and random forests models minimized classification error in the yes-attrition groups 

(i.e., maximized sensitivity, NPV). This result suggests the choice of model involves a tradeoff 

between two kinds of misclassification errors that can be minimized. Although the LASSO and 

logit models had superior specificity, the sensitivity indexes of both the CART and random 

forests model were much better, suggesting the machine learning models may be better at 

correctly identifying instances of attrition. Notably, regularization (i.e., LASSO regression) 

slightly improved performance across all criteria by 0.49-0.87%.  

  The random forests model had the largest PPV and was best able to discriminate 

instances of attrition from noise according to the detection indices d' and A'. The confidence 

intervals of the sensitivity index are non-overlapping, suggesting that both CART and random 

forests models outperform logistic regression in correctly identifying cases of attrition, at a cost 

of lower specificity. 

Table 3.4: Statistical criteria for clinical efficiency. 
   Logit  LASSO  CART  Random forests 

SENS – 50%  7.50% 
[.0610, .0888] 

 8.37% 
[.0698, .0975] 

 20.58% 

[.1929, .2185] 
 13.72% 

[.1236, .1506] 

SPEC – 50%  3.95% 

[.0255, .0535] 

 4.44% 

[.0304, .0583] 

 -8.89% 

[-.1027, -.0751] 

 -1.94% 

[-.0335, -.0054] 
PPV – 50%  5.55% 

[.0415, .0690] 

 6.16% 

[.0479, .0752] 

 4.51% 

[.0329, .0572] 

 5.09% 

[.0379, .0638] 

NPV – 50%  5.93% 
[.0451, .0735] 

 6.66% 
[.0524, .0808] 

 8.29% 

[.0663, .0993] 
 6.98% 

[.0546, .0849] 

SENS = sensitivity, SPEC = specificity, PPV = positive predictive value, NPV = negative predictive value. 

Note: Brackets represent 95% confidence intervals. Optimal values are bolded for each row. 
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Figure 3.7: Comparisons of model performance. 

 
Table 3.5: Model performance indices (50% attrition sample). 

  Logit  LASSO  CARTa  Random forestsb  

SR   51.77%   51.97%   64.74%    58.04%   

ACC   55.72%   56.40%   55.84%    55.89%   

SENS   57.50%   58.37%   70.58%    63.72%   
SPEC   53.95%   54.44%   41.11%    48.06%   

PPV   55.53%   56.16%   54.41%    55.09%   

NPV   55.93%   56.66%   58.29%    56.98%   
d'   .2881   .3226   .3163    .3020   

A'   .6028   .6136   .6125    .6074   

ϕ   .1145   .1281   .1223    .1192   

SR = selection rate, ACC = accuracy (equivalent to area under the receiving operating curve (AUC)), SENS = sensitivity, SPEC = specificity, PPV = 

positive predictive value, NPV = negative predictive value, d' = sensitivity index, A' = nonparametric sensitivity index, ϕ = Phi coefficient between 

attrition predictions and observed values. 

Note: The selection rate considers an occurrence of attrition as a positive result. The no-information rate is 50%. Finally, the optimal values for each 
row are bolded where applicable. 
aThe optimal CART model was tuned with 3 splits using a complexity parameter of 0.006077796. 
bThe optimal random forests model was tuned using 2 variables randomly sampled as candidates at each branch split. 
All proportions and Phi coefficients are significant at p < .0001. 

 

Predictor importance 

The importance ratings (given by the log-loss function for the regression models; Gini 

node impurity for the machine learning models) of the most important predictors of attrition in 

the stratified sample (i.e., those that accounted for ≥80% of the total importance ratings) are 

given for the highest-accuracy models in Figures 3.8-3.11. Namely, the AFQT score, years of 

education (and/or possibly age), physical condition, as well as the Commitment to serve, 

Sociability, Responsibility, and Courage facets of TAPAS were important predictors of attrition 

common to most models. Interestingly, higher AFQT scores were associated with increased 
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probability of attrition. Unsurprisingly, variable importance was nearly identical between the 

LASSO and logit models; by comparison, the CART model emphasized the AFQT score and 

physical condition over years of education, Commitment to Serve, and Responsibility.  The model 

generated by the random forests algorithm had a considerably more uniform and varied 

distribution of predictor importance than the other models, as evidenced by Figure 3.11; 

however, the AFQT was still the most important predictor, as with the CART model. 

Figures 3.8-3.11: Variable importance by model. 

 
3.8: Logit model. 

 
3.9: LASSO model. 

  
3.10: CART model. 

 
3.11: Random forests model. 

Reason-specific models 

Following the same imputation and cross-validation procedures, we generated reason-

specific prediction models from stratified subsets of the original sample. Like before, we 

calculated 95% confidence intervals for accuracy and other performance indices. Sample sizes 

for each of the 24 reason-specific subsets ranged from N = 12 to N = 3,962 (i.e., double the 
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frequencies counts for reasons for attrition in Table 2.3). Aggregate results by model are 

presented in Table 3.6. Confidence intervals ordered by increasing sample size are reported for 

accuracy in Figures 3.12-3.15 and the other metrics in 3.16-3.19. 

Table 3.6: Standard deviations, weighted means, and medians for performance indices across models 

generated to predict various reasons for attrition. 
  Logit LASSO CART Random forests  

ACC MWeighted (Mdn) 55.89% (55.06%) 56.62% (58.59%) 53.64% (52.69%) 57.59% (57.33%)  

 SD 7.23% 10.10% 9.40% 10.06%  

SENS MWeighted (Mdn) 56.27% (54.55%) 54.63% (57.49%) 53.15% (51.51%) 60.61% (57.03%)  

 SD 9.45% 30.00% 18.42% 12.89%  
SPEC MWeighted (Mdn) 55.50% (55.99%) 58.62% (63.31%) 54.12% (55.01%) 54.57% (55.53%)  

 SD 7.50% 17.54% 14.23% 8.35%  

PPV MWeighted (Mdn) 55.79% (55.15%) 56.89% (61.01%) 53.61% (55.28%) 57.08% (57.02%)  

 SD 7.19% 8.31% 17.12% 9.51%  

NPV MWeighted (Mdn) 56.05% (55.00%) 56.54% (58.36%) 53.86% (52.64%) 58.27% (57.24%)  

 SD 7.67% 11.66% 7.82% 11.14%  

ACC = accuracy (equivalent to area under the receiving operating curve (AUC)), SENS = sensitivity, SPEC = specificity, PPV = 

positive predictive value, NPV = negative predictive value 

Note: Weighted means are calculated for 24 reasons for attrition using individual sample sizes ranging from N = 12 to N = 3,962. 
Optimal values are bolded for each row. 

 Overall, none of the models performed significantly better than chance at predicting cases 

of attrition due to personal hardship (N = 13), positive DAT test (N = 8), recruiting errors (N = 

27), or component code change (N = 11). Unlike the previous analysis with the 50-50 stratified 

sample, the model-building algorithms used in this aggregate analysis are heavily impacted by 

the small sample sizes for some of the reasons of attrition. The LASSO model performed better 

than chance in 15 reasons for attrition, compared to 11 by the random forests model and 8 by 

logit models. Regularization from logit to LASSO improved accuracy for most reasons for 

attrition, while only 3 CART models produced better accuracy than base-rate prediction. 
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Figures 3.12-3.15: 95% confidence intervals around prediction accuracy by attrition reason. 

 
3.12: Logit model. 

 
3.13: LASSO model. 

 
3.14: CART model. 

 
3.15: Random forests model. 

 In general, the random forests models had the best weighted mean accuracy, sensitivity, 

PPV, and NPV, followed closely by the LASSO models, which had superior specificity. This 

pattern of results is similar to the one we obtained for the 50-50 stratified sample between the 

LASSO and CART models: the LASSO models seem to be best at maximizing specificity, while 

the machine learning models are best at maximizing sensitivity. In this case, the aggregate results 

showed the random forests models barely surpassing the LASSO models in mean accuracy and 
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PPV, while individually, the LASSO models at the 50th percentile of each performance index 

performed better than any other type of model. It is worth noting, as before, that the confidence 

intervals overlap closely between performance metrics of these models, and because the intervals 

are calculated from random subsamples (for which the selection rate may be zero), it is possible 

these differences may be statistically spurious. Moreover, the LASSO and CART models were 

the most variable in performance, while the indices of performance in the logit models had the 

least variability. 

Figures 3.16-3.19: 95% confidence intervals by attrition reason for other metrics of 

performance. 

3.16: 

Logit 

model. 

 
Note: The confidence intervals corresponding to each type of model appear in pages 24-26. 
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3.17: 

LASSO 

model. 

 
3.18: 

CART 

model. 
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3.19: 

Random 

forests 

model. 

 
 Finally, we assessed model performance after applying each of the models generated 

from the stratified sample to the entire sample (with an attrition rate of 12.64%). Confusion 

matrices for this procedure are in Table 3.7, and full model performance is summarized in Table 

3.8. In this analysis, the random forests model performed best out of all the models according to 

all of the indexes of performance, correctly classifying every case of attrition (i.e., perfect 

sensitivity) while also minimizing false-negative cases. The benefits of regularization over logit 

regression improved performance in the LASSO model, but not to the degree observed in the 

results with the stratified sample (in fact, unbalanced accuracy in the full sample was actually 

smaller in the LASSO model). 

Table 3.7: Confusion matrices (Full sample). 
  Logit model  LASSO model  CART model  Random forests model 

  Attrition No 

attrition 

Error  Attrition  No 

Attrition 

 Error  Attrition No 

attrition 

Error  Attrition No 

attrition 

Error 

Attrition  2,854 2,082 42.18%  2,881  2,055  41.63%  3,762 1,174 23.78%  4,936 0 0.00% 
No attrition 15,585 18,522 45.69%  15,577  18,530  45.67%  21,184 12,923 62.11%  14,795 19,312 43.38% 

Note: the optimal values for each cell are bolded. 
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Table 3.8: Model performance indices (Full sample). 
  Logit  LASSO  CARTa  Random forestsb  

SR   47.23%   47.28%   63.89%    50.54%   
ACC   57.82%   54.84%   42.73%    62.11%   

ACC (Balanced)   56.06%   56.35%   57.05%    78.31%   
SENS   57.82%   58.37%   76.22%    100.00%   
SPEC   54.31%   54.33%   37.89%    56.62%   
PPV   15.48%   15.61%   15.08%    25.02%   
NPV   89.90%   90.02%   91.67%    100.00%   

d'   .3053   .3200   .4047    3.8826   
A'   .6082   .6128   .6393    .8916   
ϕ   .0807   .0845   .0976    .3763   

SR = selection rate, ACC = accuracy (equivalent to area under the receiving operating curve (AUC)), SENS = sensitivity, SPEC = specificity, 
ACC (Balanced) = mean of sensitivity and specificity, PPV = positive predictive value, NPV = negative predictive value, d' = sensitivity index, 

A' = nonparametric sensitivity index, ϕ = Phi coefficient between attrition predictions and observed values. 

Note: The selection rate considers an occurrence of attrition as a positive result. The no-information rate is 87.36%. Finally, the optimal values 
for each row are bolded where applicable. 
aThe optimal CART model was tuned with 3 splits using a complexity parameter of 0.006077796. 
bThe optimal random forests model was tuned using 2 variables randomly sampled as candidates at each branch split. 

All Phi coefficients are significant at p < .0001. 
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CHAPTER 4: DISCUSSION 

The choice of models in this study represented a spectrum of interpretability (i.e., face 

validity) for the predictive model of attrition; the most easily interpretable, the mutual 

independence logit model, was obtained by finding an optimal vector of parameters β that 

maximized the likelihood function (i.e., minimized the sum of squares). The size and direction of 

a parameter corresponding to a predictor can be interpreted as its effect on the outcome variable 

(attrition), independent of all other predictors in the model. By contrast, the random forests 

model (which offered the best performance) was the least interpretable, as mentioned earlier, 

because it consists of multiple layers of tree structures, generated from randomly-selected (i.e., 

dataset-sensitive) subsets of the predictors. Thus, these complex tree structures only yield an 

estimate of importance relative to other variables. As seen in Figure 3.11, its distribution of 

variable importance was relatively homogenous. Notably, the classification tree model was a 

reasonably accurate compromise that still presented a fairly interpretable structure (unlike the 

random forests model). However, unlike the random forests model, its distribution of variable 

importance was the least balanced. 

A key finding of this study was that machine learning classification models can 

outperform logistic regression in correctly predicting instances of attrition (even when using 

regularization, as with the LASSO model), but model comparison is difficult in the presence of a 

low (12.28%) sample base-rate. Adequate model comparison required the 50% stratification 

procedure because the low base-rate prevented the machine learning algorithms from correctly 

generating prediction models. As mentioned, however, this procedure carries the consequence of 

slightly underestimating test error variance, which is a limitation inherent to this analysis 

(Breiman, Friedman, Olshen, & Stone, 1984; Yarkoni & Westfall, 2017). While the current study 
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did not attempt to use leave-one-out cross-validation due to computational constraints, it would 

be interesting to verify if machine learning-based classification can be achieved despite the low 

base-rate of attrition using leave-one-out CV. The models generated in the stratified sample may 

also be used quasi-experimentally to predict attrition in a sample of unlabeled data. 

The conclusions drawn from this study are subject to several other limitations stemming 

from the choice of predictors. The multicollinearity observed between several of the predictors 

(e.g., age and years of education) may have confounded the process of selecting the best split 

along the greedy algorithms. Also, evidence of adequate fit does not necessarily provide support 

for a model’s validity without proper knowledge of the theory underlying the predictive model, 

the variability of the data, and the likelihood of other outcomes (in this case, the base rate of 

attrition). In fact, any model that can fit about 50% of the dataset will closely estimate the 

remainder by linear interpolation (Roberts & Pashler, 2000; Rodgers & Rowe, 2002). Moreover, 

there is also risk of leakage of information between observations (which can deflate estimates of 

testing error) when centering the values of a predictor, which was particularly high during 

preprocessing given that predictors were standardized and imputed using kNN imputation for 

missing values (Roberts & Pashler, 2000).  Similarly, the chi-squared statistic used to assess fit is 

inflated in large (N > 1,000) samples like the one used in this study (Schreiber, Nora, Stage, 

Barlow, & King, 2006).  

Notably, model selection strategies should ideally be embedded in the cross-validation 

steps. In this study, the optimal machine learning models we selected to investigate were those 

that were tuned to minimize cross-validated testing error (see note in Table 3.5). This choice is 

certainly worth questioning, as it can result in overfitted models (Cawley & Talbot, 2010; 

Yarkoni & Westfall, 2017). Incidentally, the models that minimized testing error in this study 
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were often the least complex. However, as evidenced by Figures 3.4 more complex models also 

offered similar (±4.5%) classification accuracy, and may be worth exploring to minimize certain 

kinds of misclassification errors or predict a single reason for attrition. It may also be possible to 

prune the complex models with access to another set of labeled data to yield more generalizable 

tree structures than those of the simpler models. 

Nonetheless, the goal of training generalizable machine learning models on large datasets 

to outperform linear regression predictions of important outcome variables is certainly worth 

pursuing, as evidenced by the superior performance of the CART and random forests models in 

this study (Yarkoni & Westfall, 2017). Likewise, finding evidence of adequate model fit can be a 

good starting point for theory development (Rodgers & Rowe, 2002). Theoretically-oriented 

research may thus consider conducting an exploratory factor analysis (EFA) to narrow down the 

list of important predictors as they pertain to attrition prior to generating the models (which can 

be achieved with the covariance matrix presented in Table 2), or develop a model-building 

strategy for studying interaction effects relevant to attrition. 

Overall, the pattern of results suggests the choice of a different training algorithm is 

useful for minimizing certain kinds of classification errors, even at the cost of lower overall 

accuracy. In our study, the choice of which model to endorse for the purpose of predicting 

attrition in the USMC largely depends on the severity of each misclassification error. Intuitively, 

classification in this context may be aimed at reducing false-negatives (i.e., recruits who go on to 

attrit); however, a false-positive result (i.e., incorrectly-identifying a recruit as someone who will 

attrit) may also incur costs. In terms of correctly identifying instances of recruit attrition (i.e., 

reducing false-negative errors) in the stratified sample, the CART and random forests models 

were much more sensitive to instances of attrition than logistic and LASSO regression. The 
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random forests model retained its superior sensitivity even when applied to the full sample. In 

terms of correctly rejecting instances of no attrition (i.e., reducing false-positive errors), the 

LASSO and logit models outperformed the machine learning models. Ultimately, regularization 

of the logit model into the LASSO model resulted in better predictions than the logit model; 

given equal weight to both kinds of misclassification errors, the LASSO model best maximized 

cross-validated AUC. The bulk (29.10%) of correct predictions were common to all models, with 

each model contributing between 3.78%-6.19% unique correct predictions not covered by the 

others. A large portion (17.80%) of all correct predictions of attrition cases was uniquely 

predicted by the machine learning models, compared to 16.43% for the LASSO and logit 

models. 

Individually, the random forests models outperformed logit regression (but not LASSO) 

in predicting most reasons for attrition, while only 3 CART models performed better than 

chance. Although the random forests model performed similarly to the LASSO model in this 

analysis, this result demonstrated the limitations of using machine learning when large sample 

sizes are not available. Several categories for which the logit and/or LASSO models 

outperformed the machine learning models involved sample sizes that were quite small (N ≤ 70), 

suggesting the training algorithms may be overfitting at the expense of testing error (i.e., 

generalizability) in these occurrences of superior accuracy. 

Further investigations may generate better models for budgeting purposes by assigning a 

cost to each false-positive and false-negative decision (or weigh these according to the discharge 

reason), and following our approach of using 95% confidence intervals around performance 

measures to determine which of the models best satisfies the generalized criteria for clinical 

efficiency under these conditions (Meehl & Rosen, 1955), as well as which criteria are most 
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important to consider for the problem at hand. For clinical efficiency to hold, false negatives 

must be considered only between twice and 10.3 times as costly as false positives (Bokhari & 

Hubert, 2015). In the context of predicting USMC attrition, this type of analysis might help to 

generate an interpretable model that links TAPAS personality facets to important outcomes in 

the military, such as attrition, performance, and deviant behaviors. 
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