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ABSTRACT
The present study compared the performance of machine learning classification models against
logistic regression in the context of predicting training attrition from the Delayed Enlistment
Program in the United States Marine Corps (UMSC) with scores from the Tailored Adaptive
Personality Assessment System (TAPAS). The base-rate of attrition was low which made the
model training process difficult, but the random-forest model outperformed logistic regression in

predicting cases of attrition in a stratified 50% attrition sample.
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CHAPTER 1: INTRODUCTION

The attrition rate of new recruits is a metric of high importance for efficient resource
management in the U.S. Military, namely because it is associated with wasted time and resources
during training. For this reason, all branches of the U.S. Military maintain records of the attrition
rates and recruiter performance for their training programs and employ a variety of methods to
predict and minimize attrition as part of an effort to cut unnecessary costs (Halstead, 2009).

Loosely speaking, this process involves inputting an array of recruit data (e.qg.,
demographics, personality/cognitive test scores, etc.) into a classifier algorithm to predict
whether the individual will indeed follow through with training until completion. However,
attrition is a dichotomous decision variable (i.e., did attrit, did not attrit) with a low base-rate
(i.e., observed instances of attrition are relatively infrequent, about 12% in the sample analyzed
in this study), which can make classification with generalized linear models (GLMs) (i.e., a
probit or logit regression model) difficult due to large fluctuations in the point-biserial
correlations between low base-rate dichotomous variables and continuous predictors (e.g.,
Berkson’s fallacy).

A popular approach to classification is statistical learning (“machine learning”), which
includes algorithms that can sometimes yield greater predictive accuracy than GLMs
(Vijayakumar & Cheung, 2018). The present study explored the feasibility of incorporating facet
scores from the Tailored Adaptive Personality Assessment System (TAPAS) into a predictive

model of U.S. Marine recruit attrition using machine learning classification techniques.



CHAPTER 2: METHOD
Participants

Records from a total of 39,043 recruits to the United States Marine Corps (USMC) were
analyzed. Of these, only 238 (0.61%) records contained missing data for at least one variable.
The data were standardized and missing values were imputed during preprocessing using k-
nearest neighbor (kNN) imputation (Bokhari & Hubert, 2018; Witten, Frank, & Hall, 2011).

The sample was 89.13% male and the mean age was 22.09 (SD = 2.40 years).
Demographic statistics are displayed in Tables 2.1 and 2.2. Finally, the recruits’ target role in the
USMC and reason for discharge is reported in Table 2.3. Notably, not every target role is
represented by a case of attrition from the DEP program, and the proportion of each type of case
differed by target role according to the likelihood-ratio test, ¥*(144, N = 39,043) = 1,143.55, p <

.0001, Cramér’s V = .06.

Table 2.1: Sample demographics.

Male Female Other

BR 12.25% 13.72% 0.00% Attrition BR Totals
African American 2,750 487 404 (8.18%) 12.48% 3,237 (8.29%)
American Indian 154 25 25(0.51%) 13.97% 179 (0.46%)
Asian 994 104 1 169 (3.42%)  15.38% 1,099 (2.81%)
Biracial 767 117 137 (2.78%) 15.50% 884 (2.26%)
Caucasian 22,006 2,500 3,728 (75.53%)  15.21% 24,506 (62.77%)
Hawaiian/Pacific Islander 205 117 30 (0.61%) 13.10% 322 (0.59%)
Unknown 7,865 969 434 (8.79%) 4.91% 8,834 (22.63%)
Declined to respond 59 16 9(0.18%) 12.00% 75 (0.19%)
Attrition 4,354 582 4,936

(88.21%) (11.79%) (0.00%)
Total 34,800 4,242 1 39,043

(89.13%) (10.87%) (<.01%)

BR refers to the base rate of attrition within each group.
The values along the Attrition row and column refer to the proportions of each group represented in the subsample of USMC recruits
who are discharged from the DEP program.

Instruments
Demographic records
Recruit age and of years of education were specified as covariates in each of the models.

AFQT score



The Armed Forces Qualification Test (AFQT) score is the percentile score obtained from
four subtests (i.e., Arithmetic Reasoning, Mathematics Knowledge, Word Knowledge, and
Paragraph Comprehension) of the Armed Services VVocational Aptitude Battery (ASVAB), the
test commonly used for assessing recruit enlistment eligibility by branches of the U.S. Military

(Drasgow, Embretson, Kyllonen, & Schmitt, 2006).

Table 2.2 Means, standard deviations, and correlation matrix.
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*p < .05 **p < .01 are bolded. Statistically non-significant correlation coefficients and mean differences are italicized.
Note: For row (1), the values in brackets are 95% confidence intervals for the pairwise mean difference (relative to the no-attrition group) using the Welch two-sample
t-test. Analyses were repeated using the corresponding nonparametric test, the Wilcoxon rank-sum-test, and results were identical.

TAPAS
The Tailored Adaptive Personality Assessment System (TAPAS; Drasgow, Stark,
Chernyshenko, Nye, & Hulin, 2012) was developed as a large-scale, fake-resistant assessment of

the Big Five taxonomy of personality (including 21 lower-order personality facets and physical



condition), using computer adaptive testing (CAT) techniques to reduce the risk of test exposure
and compromise. The test has shown promise in predicting important outcomes in military
applications, such as in-role performance and recruiter performance (Drasgow et al., 2012; Nye,
White, Horgen, Drasgow, Stark, & Chernyshenko, 2018).
Attrition

Attrition was coded as a dichotomous outcome variable to indicate whether the recruit
had ultimately been discharged from the Delayed Enlistment Program (DEP), regardless of the
target role or the reason for discharge. Originally, we attempted to predict the reason for
discharge as a multinomial outcome variable, but the lack of observations in several of the reason
categories resulted in several of the machine learning models (i.e., CART, random forests)
making no classifications into the attrition group, even with stratification.

Table 2.3: Recruits’ target role in the USMC and reason for discharge from the DEP program.

Marine Marine Marine Marine Marine Marine Corps Merchant
Regular Corps Reserve Corps Non- Non- Marines
Regular Reserve applicant applicant
BR 15.03% 4.47% 18.91% 8.71% 0.59% 0.84% 0% Totals
Attrition 3,876 335 624 97 3 1 4,936 (12.64%)
(7853%)  (6.79%)  (12.64%)  (1.97%) (0.06%) (0.029%) (0%)
Apathy/personal problem 1,586 107 248 37 3 1,981 (40.13%)
Officer program 406 45 39 9 499 (10.11%)
(Non-EPTS) Medical disqualification 286 45 95 21 1 448 (9.08%)
Enlisted in another service 355 17 55 5 432 (8.75%)
Dependency disqualification 278 17 36 6 337 (6.83%)
(EPTS) Moral disqualification 154 13 40 7 214 (4.34%)
Disqualified for option 179 14 15 1 209 (4.23%)
Marriage 101 24 10 3 138 (2.80%)
Temporarily disqualified 112 4 10 2 128 (2.59%)
Death 95 13 13 1 112 (2.47%)
Did not report on ship date 71 15 14 2 102 (2.07%)
Failed to graduate 46 1 9 56 (1.13%)
Religious training/appointment 44 6 4 54 (1.09%)
Enlistment misunderstanding 28 3 18 1 50 (1.01%)
Pursuit of higher education 30 2 21 35 (0.71%)
Recruiting error 27 27 (0.55%)
Refused to enlist 14 6 20 (0.41%)
(EPTS) Medical delinquency 16 2 18 (0.36%)
(Non-EPTS) Moral disqualification 9 2 4 1 16 (0.32%)
Personal hardship 12 1 13 (0.26%)
Component code change 10 1 11 (0.22%)
Pregnancy 8 3 11 (0.22%)
Positive direct antiglobulin test (DAT) 4 3 1 8 (0.16%)
Other 4 1 1 6 (0.12%)
No attrition 21,905 7,166 3,299 1,114 503 119 2 34,108 (87.36%)
Totals 25,780 7,501 3923 1,211 506 120 2 39,043
(66.03%) (19.21%) (10.05%) (3.10%) (1.30%) (0.31%) (0.01%)

BR refers to the base rate of attrition within each target role.

The percentages along the Attrition row are the proportion of cases of attrition from recruits seeking the corresponding role, while
the percentage in the Attrition row of the totals column is the overall base rate.

Note: EPTS refers to conditions that existed prior to military service.

4



Classifiers
CART model

Classification and regression trees (CART) are a family of statistical learning models that
are relatively easy to interpret, but often suffer from high variance and low accuracy (James,
Witten, Hastie, & Tibshirani, 2013). The classification tree model predicts a categorical outcome
variable by using a set of predictor variables to generate a binary decision tree via recursive
partitioning of the dataset (Breiman, Friedman, Olshen, & Stone, 1984).

The CART model is generated by a top-down, greedy algorithm that splits the dataset
into two disjoint subsets based on the values of one predictor. For each predictor, we then
consider a number of possible splits to branch off. For a dataset with n observations, there are n —
1 possible splits between adjacent values of a continuous predictor variable, while for a
categorical variable with ¢ categories, there are 2°~* possible splits. The split that is selected to
form a new tree branch is the one that minimizes node impurity—a global measure of error—of
the leftover sets. Continuous variables use the sum of squared errors within groups as a measure
of node impurity, while categorical variables use the sum of the Gini diversity indexes (gdi)
obtained from the proportions of groups formed by the split: gdi =1 — X5_, pZ, where p,
indicates the proportion of the sample observed in the cth category of the outcome variable
(Witten et al., 2011).

Moreover, the CART algorithm is a stagewise (i.e., “myopic”) greedy algorithm, which
means it selects the best possible split (i.e., the one that generates the least node impurity) at
every iteration, and once a split is made the algorithm does not revisit it. As a result, the final tree
structure given by the algorithm is not guaranteed to be an optimal solution (Breiman et al.,

1984). Note that the Gini indexes are maximized when group proportions are equal, and



minimized when the proportion of one class is 100%. Thus, the base-rates of the subsets have
direct influence over the generation of the classification tree structure at every iteration of the
algorithm.

Of course, as with other forms of supervised learning, there is a dilemma between
overfitting and underfitting the model to the training sample. An underfitted model produces an
overly shallow, inaccurate tree. On the other hand, excessively complex trees are associated with
increased resubstitution error, as well as shrinkage (i.e., increased testing error) (Witten et al.,
2011). Attempting to fit saturated trees onto a dataset produces potentially spurious results from
excessively large and volatile estimates of the irreducible error component of mean-squared error
(MSE) (i.e., the variance of the error residuals; V(£)) obtained during training, as well as
unstable tree structures generated by the learning algorithm; however, overfitting may even occur
in model selection (Bokhari & Hubert, 2018; Cawley & Talbot, 2010; Hastic et al., 2009;
Yarkoni & Westfall, 2017). The effect of overfitting is comparable to using a less powerful
machine learning algorithm (Cawley & Talbot, 2010).

There are a variety of methods for managing the problems caused by overfitting, such as
regularization or early stopping rules (Cawley & Talbot, 2010). In the classification tree
algorithm, for example, the resulting tree can be simplified (“pruned”) back to an optimal level
using a training control procedure (Witten et al., 2011). k-fold cross-validation (CV) is a type of
training control procedure that involves sampling observations without replacement into k
equally-sized subsets (without overlap) by using each subset as the testing set and the remainder
as the training set. The statistical learning model estimated from all but one of the subsets is then
applied to each of the k subsets to yield an average estimate of testing error (Bokhari & Hubert,

2018; Witten et al., 2011, Chapter 5; Yarkoni & Westfall, 2017).



The most complex form of this procedure, n-fold cross-validation (also called leave-one-
out cross-validation), generates models using each individual observation as the testing sample
(i.e., k =n) (Bokhari & Hubert, 2018). This procedure is approximately unbiased and is the most
efficient k-fold CV procedure; however, it is also the most computationally-expensive, does not
allow for stratification, and may not work well for all datasets (Bokhari & Hubert, 2018). For
instance, classifying datasets with unbalanced group proportions may be particularly difficult to
achieve, especially if the training set contains fewer than 5 observations in each cell. Thus,
stratification is sometimes combined with CV procedures to create models using subsets with
equivalent proportions of each group; however, this procedure slightly reduces estimated error
variance (Breiman, Friedman, Olshen, & Stone, 1984; Yarkoni & Westfall, 2017).

A good compromise is stratified 10-fold CV, which retains some of the most desirable
properties, but with slightly smaller variance and larger bias than the leave-one-out CV
procedure (Bokhari & Hubert, 2018; Breiman & Spector, 1992; Breiman et al., 1984). As
mentioned, both k-fold CV and stratification can be applied to other types of classifiers besides
CART.

Random forests

Sometimes, certain statistical learning methods like decision trees suffer from too much
variance to such an extent that the model may exhibit differential performance when fit onto two
randomly-selected halves of the dataset. This occurs because classification trees have high
variance and low bias, which often results in overfitting (James et al., 2013). A remedy for the
large variance is bootstrap aggregation (“bagging’), which improves prediction accuracy by
generating B trees from B random training samples taken with replacement from the dataset,

instead of a single tree. In bagging, individual trees are grown deep and not pruned, which



reduces variance when averaging their predictions. However, trees may differ significantly in
structure, and they make predictions less interpretable (James et al., 2013).

The random forests model is an extension of bagged classification trees that is
constructed by a similar algorithm (Breiman, 2001), except that decision trees are instead grown
using q random subsets of p predictors at each node (usually q is set equal to Vp, to reduce test
error and over bagging) (James et al., 2013). This algorithm is advantageous for generating
models that do not rely on any one variable as the dominant predictor of the outcome variable,
except possibly the root node, and it reduces error variance in the trees (Breiman et al., 1984);
however, each random forests model uses a smaller portion of the data, reducing accuracy
(Witten & Frank, 2011). Unlike the CART model or OLS regression, the random forests model
is not easily interpretable within the context of the original problem because it consists of a
multitude of deep trees, each with a large number of nodes, each generated from only a random
subset of predictors in a subset of the dataset. In this study, we used a random forests model with
B = 500 classification trees and 2,717 nodes (M = 5.434 nodes per tree). The attrition
classification is predicted by each of the individual decision trees in the forest as described in the
CART model, and the most commonly occurring category is selected as the result.

Generalized linear model

In the present study, a logistic regression (logit) model was trained to classify individuals
on the attrition variable for comparison, using the same model specification and training controls
as the other models. However, there are several problems worth mentioning that make traditional
ordinary least squares (OLS) regression an inadequate training model. In OLS regression, even a

predictor that is unrelated to the outcome will have a nonzero coefficient due to statistical noise,



which leads to overfitting particularly in models with a high ratio of predictors relative to sample
size (Yarkoni & Westfall, 2017).

Regularization techniques are thus often used to mitigate overfitting and improve
statistical prediction by penalizing the model’s objective function (e.g., in OLS, the sum of
squared errors) a priori (Cawley & Talbot, 2010). One such example is a widely-used alternative
to OLS regression, least absolute shrinkage and selection operator (LASSO) regression
(Tibshirani, 1996), which works by including a shrinking penalty in the objective function (i.e.,
the sum of squared errors) based on the absolute coefficient magnitudes (the £, norm),

IB1l, < t, to produce intentionally biased coefficient estimates. This is known as an L; penalty,
and it relies on the size of a tuning parameter, 1 (2 > 0), which controls the amount of shrinking.
As 1 increases, model bias increases and forces small coefficient estimates to 0 (to thus eliminate
predictors that do not contribute to predicting the outcome) (James et al., 2013). Generally,
coefficient estimates produced by LASSO regression outperform OLS and generalize better to
new datasets (Yarkoni & Westfall, 2017), and the resulting models are simpler to interpret.

The LASSO regression model is included in this study for a comparison between the
machine learning models and (regularized) linear regression. When selecting the tuning
parameter A for the LASSO model based on fit criteria, using the Bayesian Information Criterion
(BIC) yields the true model more consistently than using cross-validated error (Wang et al.,
2007; Zhang et al., 2010). However, for consistency with the other classification models, we
selected a tuning value that minimized cross-validated AUC, not BIC.

Test performance indices
A variety of indices were used to assess aspects of model performance. They are

discussed here within the context of the UMSC dataset.



Accuracy

Accuracy simply refers to the total proportion of recruits who were assigned by a model
to the correct attrition classification.
Phi coefficient

The phi coefficient (¢) is a measure of association between two dichotomous variables

that can be interpreted similarly to the Pearson correlation coefficient. It is related to the

(=
goodness-of-fit chi-square statistic obtained from the 2 x 2 confusion table by ¢ = wﬂ"f—!. In this

study, we investigate the strength of the association between model predictions of attrition and
their actual values as an index of test performance.
Sensitivity

Sensitivity (also called the true-positive rate; TPR) refers to the proportion of true-
positive results that are correctly identified (Bokhari & Hubert, 2015). In this context, it refers to
the proportion of recruits who attrit the DEP program and are correctly classified by a model into
the yes-attrition group.
Specificity

Specificity (also called the true-negative rate; TNR) refers to the proportion of true-
negative results that are correctly rejected (Bokhari & Hubert, 2015). In this context, it refers to
the proportion of recruits who do not attrit the DEP program and are correctly classified by a
model into the no-attrition group.
PPV

Positive predictive value (PPV; aka. precision) is the proportion of true-positive results
among all positive predictions (Bokhari & Hubert, 2015). In this context, it refers to the

proportion of recruits who attrit amongst those assigned by a model into the yes-attrition group.
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NPV

The proportion of true negatives refers to the proportion of true-negative results among
all negative predictions (Bokhari & Hubert, 2015). In this context, the negative predictive value
(NPV) refers to the proportion of recruits who do not attrit amongst those assigned by a model
into the no-attrition group.
Sensitivity indices

Based on signal detection theory, we used the normalized hit and false alarm rates from
the receiver operating characteristic (ROC) curve to calculate the sensitivity index, d-prime (d'),
which corresponds to the distance between the homoscedastic noise and signal distributions
(Green & Swets, 1966). In this context, a larger value of d' indicates the model is better able to
discriminate between the attrition groups. We also calculated A" (Grier, 1971), a nonparametric
alternative that relaxes the normality distributional assumptions of d' and is independent of
response bias. A' is particularly useful for evaluating sensitivity when signal and noise
distributions are heteroscedastic, or when the difference between the sensitivity and the false-
alarm rate is small (Pollack & Norman, 1964).
Clinical efficiency

We examined whether any of the specified models met the criteria for accurate
classification prediction beyond base rates (i.e., clinical efficiency) (Bokhari & Hubert, 2015).
Notably, however, Bokhari and Hubert (2015) caution that when base rates are low, meeting
clinical efficiency is difficult and requires high test specificity.

The criteria are as follows: the Meehl-Rosen criterion is met when the positive-predictive
value is at least as large as the base rate (i.e., PPV > base rate) (Meehl & Rosen, 1955).

Assuming false positive and negative errors are equally undesirable, the Dawes criterion is met

11



either when PPV > 50% (for base rates < 50%) or when NPV > 50% (for base rates > 50%)
(Dawes, 1962). Lastly, the Bokhari-Hubert (B-H) criterion, which implies the former criteria
(although the reverse is not necessarily true), specifies that the use of a test over base rates is
justifiable if and only if the test generates a confusion matrix such that Ntrue positives > Nralse Positives
and NTrue Negatives > Nralse Negatives (BOKhari & Hubert, 2015). Accordingly, satisfying this criterion
corresponds to finding a pair of confidence intervals around sensitivity and specificity that both
exceed 50%.

AUC

The area under the receiving operating curve (AUC), also known as the concordance
index, is a popular indicator of diagnostic test reliability. In general, AUC is independent of the
underlying base rates (Bokhari & Hubert, 2015, Chapter 1), but when calculating a single
decision threshold, AUC is exactly equivalent to accuracy when the base-rates of both categories
are equivalent (i.e., 50%) (Hanley & McNeil, 1982).

Despite its usefulness, AUC has several problems of its own which merit discussion,
namely variability across populations with different base rates, spectrum bias within groups
(Ransohoff & Feinstein, 1978), as well as other biases traditionally associated with sensitivity
and specificity (Begg, 1971; Moons & Harell, 2003; Witten et al., 2011, Chapter 5). For a
dichotomous outcome variable such as attrition, the low base-rate (12.28%) can make predictions
(e.g., classification tree structures) especially volatile because of its influence on the greedy
algorithms used for generating the trees. This makes AUC by itself inadequate for assessing the
accuracy of classification models generated from low-base rate signals (Bokhari & Hubert, 2015;
Witten et al., 2011). In these cases, establishing clinical efficiency requires high test specificity

or class stratification (Bokhari & Hubert, 2015; Dawes, 1962).
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Unfortunately, the low-base rate of attrition posed a problem for the present analysis
because the CART algorithm was unable to generate a tree beyond the root node. Similarly, the
model generated by the random forests algorithm had a selection rate of 0%. These conditions
make comparisons between models meaningless as many of the indices of test performance
cannot be compared or even computed.

As such, we repeated the same analysis following the stratified 10-fold cross-validation
procedure with random subsamples of size N ~ 8,885 (approximately 22.76% of the original
dataset), such that the attrition rate was fixed at 50%. Here, the subset was obtained by using all
of the yes-attrition records, and randomly sampling an equal amount of no-attrition records. This
procedure has a strong empirical basis as the best choice for obtaining reliable estimates of
diagnostic accuracy, particularly in cases where one class is unbalanced (Witten, et al., 2011,

Chapter 5).
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CHAPTER 3: RESULTS

The specified models were trained using the dataset in R. Confusion matrices and errors
resulting from this analysis are displayed in Table 3.2. Unique contributions from each model are
shown in the Venn diagram of correct predictions in Figure 3.6.

The full classification tree model generated by the CART algorithm is drawn in Figure
3.1. Individuals are classified by the decision tree according to the predictors, beginning at the
root node (the uppermost node on the tree). Each node involves a yes-no decision based on
standardized values of a predictor, ending at the leaf node (the lowest node on the tree) where a
prediction is made. In Figure 3.1, as we descend the tree, if the condition on a node is met, we
move left; otherwise, we move right. The percentages at the bottom of each node are the
proportions of recruits (out of the entire sample) that reach this part of the tree, with the majority
category represented as a “Yes” for attrition or “No” for no attrition (in the leaf node, this also
represents the prediction that is made), while the two decimal numbers at the center represent

proportions of the no-attrition and yes-attrition categories respectively within this part of the tree.

Mo
50 50
100%
...................... -afqt<-1.3
Yes
48 52
94%
............ ed_yrs =022
No
51 49
50%

Physical.Condition >= -0.11

Yes Yes
84 16 b5 45 47 53 44 56
24% 26% 44%

Figure 3.1: Attrition classification tree for the 50% stratified sample.
Note: the threshold values for each of the variables on the tree refer to standardized values.
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For example, after the first split, approximately 6% of all recruits in the stratified sample
have an AFQT score lower than 1.30 SD below the mean and are immediately classified into the
leftmost node in the tree which corresponds to the no-attrition group. Accordingly, 84% of this
group is indeed part of the no-attrition group.

The 10-fold cross-validated testing errors and tuning parameters are in Figures 3.2-3.4. In
this study, we only investigated the models with superior cross-validated testing error.

Figures 3.2-3.4: Gradient descent of cross-validated testing errors by model.
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3.3: LASSO models. 3.4: Random forests models.

Model Comparison
The logit model was an adequate fit for the dataset, ¥*(18, N = 9,872) = 216.07, p <
.0001, ¥/df =12.00, MSE = 4.10, AIC = 13,507.43, BIC = 13,644.18, —2In 1 = -6,734.715. The
only statistically-significant (p < .05) predictors of attrition were years of education (8 = -0.25,

SE =0.03), the AFQT score (f = 0.15, SE =0.02), and the Commitment to serve (8 = -0.12,
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SE =0.02), Physical condition (8 = -0.11, SE = 0.02), Sociability (8§ = 0.07, SE =0.02), and
Responsibility (8 = 0.07, SE = 0.02) facets of TAPAS. The solution paths for the LASSO
model are included in Figure 3.5. Accordingly, the coefficients corresponding to the TAPAS
facets of the Dominance, Optimism, Selflessness, and Team Orientation were shrunk to 0 at 1 =
1.926614 x 1073, the value of the tuning parameter that maximized cross-validated AUC.
Regularization by the LASSO model shrunk the magnitude of the coefficients by at most .03, for

Age. The coefficients for both models are summarized in Table 3.1.
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Figure 3.5: Effect of LASSO regularization on regression coefficients.
Table 3.1: Coefficients for logit and LASSO regression.

Source Brogit ORpogit Aprogit Lrasso ORpasso Apiasso  SE (ﬁ)
Intercept -.034 0.966 -- -.032 0.969 -- .021
Age .066 1.068 +1.65% .036 1.037 +0.91% .036
Years of education -.253 0.777 -6.29% -.227 0.797 -5.64% .030
AFQT 151 1.163 +3.77% 144 1.155 +3.59% .023
TAPAS
Achievement -.011 0.989 -0.29% -- -- -- .024
Adjustment -.040 0.961 -0.99% -.023 0.977 -0.57% .023
Commitment to serve -.115 0.891 -2.87% -.107 0.899 -2.67% .022
Courage .018 1.019 +0.46% .006 1.006 +0.16% .023
Dominance .006 1.006 +0.15% -- -- -- .023
Even-tempered .031 1.031 +0.76% .019 1.019 +0.48% .022
Ingenuity .022 1.023 +0.56% .017 1.017 +0.43% .022
Optimism .008 1.008 +0.21% -- -- -- .022
Physical condition -.109 0.896 -2.73% -.101 0.904 -2.53% .021
Responsibility 071 1.074 +1.78% .060 1.061 +1.49% .024
Selflessness -.005 0.995 -0.12% -- -- -- .021
Sociability .072 1.075 +1.80% .061 1.063 +1.52% .022
Team orientation -.003 0.997 -0.70% - - - 021
Tolerance -.027 0.973 -0.69% -.017 0.983 -0.42% .021
Virtue -.013 0.987 -0.00% -.002 0.998 -0.05% .023

Standardized regression coefficients that are significant at p < .05 are bolded. ﬁ_,t_:l refers to the estimated
change in the probability of attrition, per 1-SD increase in the predictor.
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By contrast, recruits were predicted by the CART model to attrit from the DEP program
if the AFQT score was 1.30 SD above the mean (~87th percentile) and they received at least 0.22
SD below the mean number of years of education (M = 11.5), or if their physical condition was at
or below 0.11 standard deviations below the mean (M = 0.14).

Table 3.2: Confusion matrices (50% attrition sample).

Logit model LASSO model CART model Random forests model
Attrition No Error Attrition No Error Attrition No Error Attrition No Error
attrition Attrition attrition attrition
Attrition 2,838 2,098 42.50% 2,881 2,055 41.63% 3,484 1,452 29.42% 3,145 1,791 36.28%
No attrition 2,273 2,663 46.05% 2,249 2,687 45.56% 2,907 2,029 58.89% 2,564 2,372 51.94%

Note: the optimal values for each cell are bolded.

CART Random forests

Logit LASSO
5.08%

2.44%
5.68%

Figure 3.6: Venn diagram of correct predictions of attrition by model.

Table 3.3: Phi coefficients between model predictions.

1) 2) 3) (4)

(1) Logit (.0201)
(2) LASSO .9308 (.0204)
(3) CART .3982 4170 (.0093)

(4) Random forests 3416 .3528 4086 (.0007)

All Phi coefficients significant at p < .05 are bolded.

Note: For comparison, italicized values in parentheses along the diagonal are the largest Phi coefficients
calculated between each model’s predictions and one of 10,000 randomly-selected permutations of
possible classifications for the sample of N = 9,872 participants, out of all 2°¢72 permutations. The
performance for the optimal randomized classifier was: ACC = 52.19%, SENS = 52.07, SPEC = 51.80,
PPV =51.93, NPV = 51.94.
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All models outperformed base-rate prediction and shared about 29.10% of correct
predictions, as shown in Figure 3.6. Phi coefficients were calculated between model predictions
in Table 3.3. Approximately 86.63% of the variability in predictions was shared between the
logit and LASSO models, compared with 16.70% between the CART and random forests model.

A goodness-of-fit test revealed the proportion of observations assigned to each cell by
the logit model differed from chance assignment (no-information rate = 50%), ¥*(1, N = 9,872) =
129.05, p < .0001, Cramér’s V = .11. Predictions from the LASSO model also outperform base-
rate assignment, ¥*(1, N = 9,872) = 161.58, p <.0001, Cramér’s V = .13. Finally, the CART
model (x?(1, N = 9,872) = 147.22, p < .0001, Cramér’s V = .12) and the random forests model
generated confusion matrices that differed significantly from chance assignment, ¥*(1, N =
9,872) = 139.73, p < .0001, Cramér’s V = .12. A full comparison of performance indices is
provided in Table 3.5 and Figure 3.7.

We also examined whether the models satisfied the criteria for clinical efficiency
(Bokhari & Hubert, 2015). A proportion test on the PPV and NPV of each model was used to
obtain 95% confidence intervals for the Meehl-Rosen and Dawes criteria as measures of the
incremental predictive power of each model. The results for these analyses are summarized in
Table 3.4. In general, the LASSO and logit models best fulfilled the Meehl-Rosen criterion (and
the PPV part of the Dawes criterion), while the CART and random forests model best fulfilled
the NPV part of the Dawes criterion; however, the differences between models were small, and
the confidence intervals overlap. For the B-H criterion, a pair of exact binomial tests were
conducted using NTrye positives aNd NTrue Negatives &S the number of successes within each attrition
group to obtain 95% confidence intervals for sensitivity and specificity against the base-rate also

in Table 3.4. Almost every model met each of the target criteria for superior accuracy beyond

18



base-rate prediction in the stratified subsample. In the case of the CART and random forests
model, specificity did not outperform change assignment.

Finally, the LASSO model had the largest AUC (best accuracy), followed by the random
forests model; however, the 95% Cls closely overlap. In general, the LASSO and logit models
minimized classification error in the no-attrition groups (i.e., maximized specificity, PPV), while
the CART and random forests models minimized classification error in the yes-attrition groups
(i.e., maximized sensitivity, NPV). This result suggests the choice of model involves a tradeoff
between two kinds of misclassification errors that can be minimized. Although the LASSO and
logit models had superior specificity, the sensitivity indexes of both the CART and random
forests model were much better, suggesting the machine learning models may be better at
correctly identifying instances of attrition. Notably, regularization (i.e., LASSO regression)
slightly improved performance across all criteria by 0.49-0.87%.

The random forests model had the largest PPV and was best able to discriminate
instances of attrition from noise according to the detection indices d' and A'. The confidence
intervals of the sensitivity index are non-overlapping, suggesting that both CART and random
forests models outperform logistic regression in correctly identifying cases of attrition, at a cost

of lower specificity.

Table 3.4: Statistical criteria for clinical efficiency.

Logit LASSO CART Random forests

SENS - 50% 7.50% 8.37% 20.58% 13.72%
[.0610, .0888] [.0698, .0975] [.1929, .2185] [.1236, .1506]

SPEC - 50% 3.95% 4.44% -8.89% -1.94%
[.0255, .0535] [.0304, .0583] [-.1027, -.0751] [-.0335, -.0054]

PPV - 50% 5.55% 6.16% 4.51% 5.09%
[.0415, .0690] [.0479, .0752] [.0329, .0572] [.0379, .0638]

NPV - 50% 5.93% 6.66% 8.29% 6.98%
[.0451, .0735] [.0524, .0808] [.0663, .0993] [.0546, .0849]

SENS = sensitivity, SPEC = specificity, PPV = positive predictive value, NPV = negative predictive value.
Note: Brackets represent 95% confidence intervals. Optimal values are bolded for each row.
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Figure 3.7: Comparisons of model performance.
Table 3.5: Model performance indices (50% attrition sample).
Logit LASSO CART? Random forests®
SR 51.77% 51.97% 64.74% 58.04%
ACC 55.72% 56.40% 55.84% 55.89%
SENS 57.50% 58.37% 70.58% 63.72%
SPEC 53.95% 54.44% 41.11% 48.06%
PPV 55.53% 56.16% 54.41% 55.09%
NPV 55.93% 56.66% 58.29% 56.98%
d 2881 3226 3163 3020
A 6028 6136 6125 6074
¢ 1145 1281 1223 1192

SR = selection rate, ACC = accuracy (equivalent to area under the receiving operating curve (AUC)), SENS = sensitivity, SPEC = specificity, PPV =
positive predictive value, NPV = negative predictive value, d' = sensitivity index, A' = nonparametric sensitivity index, ¢ = Phi coefficient between
attrition predictions and observed values.

Note: The selection rate considers an occurrence of attrition as a positive result. The no-information rate is 50%. Finally, the optimal values for each
row are bolded where applicable.

#The optimal CART model was tuned with 3 splits using a complexity parameter of 0.006077796.

®The optimal random forests model was tuned using 2 variables randomly sampled as candidates at each branch split.

All proportions and Phi coefficients are significant at p <.0001.

Predictor importance
The importance ratings (given by the log-loss function for the regression models; Gini
node impurity for the machine learning models) of the most important predictors of attrition in
the stratified sample (i.e., those that accounted for >80% of the total importance ratings) are
given for the highest-accuracy models in Figures 3.8-3.11. Namely, the AFQT score, years of
education (and/or possibly age), physical condition, as well as the Commitment to serve,
Sociability, Responsibility, and Courage facets of TAPAS were important predictors of attrition

common to most models. Interestingly, higher AFQT scores were associated with increased
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probability of attrition. Unsurprisingly, variable importance was nearly identical between the
LASSO and logit models; by comparison, the CART model emphasized the AFQT score and
physical condition over years of education, Commitment to Serve, and Responsibility. The model
generated by the random forests algorithm had a considerably more uniform and varied
distribution of predictor importance than the other models, as evidenced by Figure 3.11;
however, the AFQT was still the most important predictor, as with the CART model.

Figures 3.8-3.11: Variable importance by model.
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3.11: Random forests model.
Reason-specific models

Importance

3.10: CART model.

Following the same imputation and cross-validation procedures, we generated reason-
specific prediction models from stratified subsets of the original sample. Like before, we
calculated 95% confidence intervals for accuracy and other performance indices. Sample sizes

for each of the 24 reason-specific subsets ranged from N =12 to N = 3,962 (i.e., double the
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frequencies counts for reasons for attrition in Table 2.3). Aggregate results by model are

presented in Table 3.6. Confidence intervals ordered by increasing sample size are reported for

accuracy in Figures 3.12-3.15 and the other metrics in 3.16-3.19.

Table 3.6: Standard deviations, weighted means, and medians for performance indices across models

generated to predict various reasons for attrition.

Logit LASSO CART Random forests
ACC Mueightes (Mdn) 55.89% (55.06%)  56.62% (58.59%)  53.64% (52.69%)  57.59% (57.33%)
SD 7.23% 10.10% 9.40% 10.06%
SENS Mweightea (Mdn) 56.27% (54.55%)  54.63% (57.49%)  53.15% (51.51%)  60.61% (57.03%)
SD 9.45% 30.00% 18.42% 12.89%
SPEC Mweightes (Mdn) 55.50% (55.99%)  58.62% (63.31%)  54.12% (55.01%) 54.57% (55.53%)
SD 7.50% 17.54% 14.23% 8.35%
PPV Mueightes (Mdn) 55.79% (55.15%)  56.89% (61.01%)  53.61% (55.28%)  57.08% (57.02%)
SD 7.19% 8.31% 17.12% 9.51%
NPV Mweightes (Mdn) 56.05% (55.00%)  56.54% (58.36%)  53.86% (52.64%)  58.27% (57.24%)
SD 7.67% 11.66% 7.82% 11.14%

ACC = accuracy (equivalent to area under the receiving operating curve (AUC)), SENS = sensitivity, SPEC = specificity, PPV =
positive predictive value, NPV = negative predictive value

Note: Weighted means are calculated for 24 reasons for attrition using individual sample sizes ranging from N = 12 to N = 3,962.
Optimal values are bolded for each row.

Overall, none of the models performed significantly better than chance at predicting cases

of attrition due to personal hardship (N = 13), positive DAT test (N = 8), recruiting errors (N =
27), or component code change (N = 11). Unlike the previous analysis with the 50-50 stratified
sample, the model-building algorithms used in this aggregate analysis are heavily impacted by
the small sample sizes for some of the reasons of attrition. The LASSO model performed better
than chance in 15 reasons for attrition, compared to 11 by the random forests model and 8 by
logit models. Regularization from logit to LASSO improved accuracy for most reasons for

attrition, while only 3 CART models produced better accuracy than base-rate prediction.
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Figures 3.12-3.15: 95% confidence intervals around prediction accuracy by attrition reason.

omER — : omER —]
FOSITVE DATTEST —] POSIMVE DATTEST —|
FREGNANCY —] FREGHANCY —| x
COMPONENT CODE CHANGE —] : COMPONENT CODE CHANGE —
PERSCHAL HARDSHF  —| PERSONAL HARDSHP  —| :
WORAL DGHOHEFTS —| HORAL DGNOMEFT —] M
WEDICALDGEFTS —] ] VEDNCALDGEFTS —|
REFUSED T0 ENLISTSEFERATE ACTION NTIA —| b REFUSED TOENLIST.SEFERATE ACTION INTE —| e |
RECAUTNGERRDR —] }—-—0—| RECAUTING ERROR —| |—4—|
PURSUIT 0F HIGHER EDLCATION  —] I—v—0—| FURSUIT OF HIGHER EDUCATION —| %
ENLSTMISUNDERSTANDING —] : & ENLSTMSUNDERSTANDNG —| f——x
RELIGIOUS TRAINNG OF APPOINTMENT A5 AN —] |—-—0—{ FELIGIDUS TRAINNG OR APFOINTUENT A5 AN —| §|—0—{g
FAILURE TO GRADUATE —| |—4—| FAILURE TOGRADUATE —| s
DIDAGT REFORT 0N SHIF DATE —] [ DD NOT REFORT OH SHP DATE —| ——x
e —| e e —| N ek
TEMFORARILY DISGUALIFED THROUGH LOSS 0F —| ——x TEMPORARILY NSGUALIIED THROUGH LOSS 0F — ——
NARRIAGE —] }—v—‘—{ vaRRGE —| Nk
DISQUALIFIED FOR 0FTION —{ I—‘—O—{ DISQUALIFIED FOR OFTION — F—— =
MORALDDEFTS —| = & MORALDOEFTS —| ]
DEFENDENCY DR —| ] * DEPENDENCY DR — Nt
ENLISTEDANOTHER SERVICE —| (| ENLSTEDANOTHER SERVICE. —] }—0—|
MEDICAL DGNONEPTS —| ik MEDICAL DONONEFTS —] |
OFFICER FROGRAN —| e CFRIER FROGRAM —] |
APATHYFERSONAL PROBLEN —] P APATHYPERSONAL PROBLEW —] e k]

0 30 40 50 60 70
3.12: Logit model.

T 1 I
80 90 100

20 30 40 50 60 70

3.13: LASSO model.

80 40 100

omER —
POSITIVE DAT TEST —| POSITIVE DATTEST —|
FREGHANCY —| : FREGUANTY —]
COMPONENT CODE CHANGE  —] : COMRONENT CODE CHANGE —|
PERSONAL HARDSHF  —| FERSONAL HARDSHF  —|
MORAL DONDHEPTS —| MORAL DGWOWEFTS —|
MEOICAL DGEPTS —| MEDICALDGEFTS —|
REFUSED TOENLISTSEFERATE ACTIONINTA —] |—’—“| REFUSED TOERLISTSEFERATE ACTION T2 —| e —
RECAUTING ERADR —] |—‘—| RECRUTNGERRCR —] ]
PURSUIT OF HIGHER EDUCATION  —] — ~FURSUIT OF HGHER EDUCATION ] P
ENLSTMISUNDERSTANDING —] I—‘—'—{ ENUSTMISUNDERSTANDING —| : P
RELIGIDUS TRAINNG OF APFOINTMENTAS AN —] p—— RELIGIOUS TRAINING OR APPOINTMENT AS AN —| s
FAILURE TOGRADUATE —{ }—h—| FAILURE TOGRADUATE —] I—‘—|
IO WOT REPORT OM SHP DATE —] )—“—1 IO NOT REPORT ON SHI DATE — |—‘—0—|
DEATH ’_‘*_( DEATH — f——o
TEMPORARILY DISOUALIRED THROUGH LOSS O —| = TEMPORARILY DISQUALIFIED THROUGH LOSS OF —| ——i#
MARRIAGE — )—v—*—{ MARRIAGE —| i
DISQUALRED FOR 0FTION —] P—O—l SQUALIRED FOR OFTION —| =
MoRAL DGEPTS —| - MORALDGEFTS —| 1
DEFENDENCY DO —] [ EFENDENCY DO —] f——
ENLSTEDVANDTHER SERVICE. —] T s ENLSTENANOTHER SERVICE. — ik
MEDICAL DONONEFTS — —— MEDIGAL DONOVEFTS —| ]
OFFICER PROGRAN =] )—0—| 13 OFRGER FROGRAM —| i
APATHY/FERSONAL FROBLEN —] Dk APATHYFERSOAAL PROBLEN —) B
l

T T 1 T T T T T T T ]
2 30 40 50 60 70 80 90 20 30 40 5 60 70 80 90 100

3.14: CART model. 3.15: Random forests model.
In general, the random forests models had the best weighted mean accuracy, sensitivity,

100

PPV, and NPV, followed closely by the LASSO models, which had superior specificity. This
pattern of results is similar to the one we obtained for the 50-50 stratified sample between the
LASSO and CART models: the LASSO models seem to be best at maximizing specificity, while
the machine learning models are best at maximizing sensitivity. In this case, the aggregate results
showed the random forests models barely surpassing the LASSO models in mean accuracy and
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PPV, while individually, the LASSO models at the 50th percentile of each performance index
performed better than any other type of model. It is worth noting, as before, that the confidence
intervals overlap closely between performance metrics of these models, and because the intervals
are calculated from random subsamples (for which the selection rate may be zero), it is possible
these differences may be statistically spurious. Moreover, the LASSO and CART models were
the most variable in performance, while the indices of performance in the logit models had the
least variability.

Figures 3.16-3.19: 95% confidence intervals by attrition reason for other metrics of
performance.
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Note: The confidence intervals corresponding to each type of model appear in pages 24-26.
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Finally, we assessed model performance after applying each of the models generated

from the stratified sample to the entire sample (with an attrition rate of 12.64%). Confusion

matrices for this procedure are in Table 3.7, and full model performance is summarized in Table

3.8. In this analysis, the random forests model performed best out of all the models according to

all of the indexes of performance, correctly classifying every case of attrition (i.e., perfect

sensitivity) while also minimizing false-negative cases. The benefits of regularization over logit

regression improved performance in the LASSO model, but not to the degree observed in the

results with the stratified sample (in fact, unbalanced accuracy in the full sample was actually

smaller in the LASSO model).

Table 3.7: Confusion matrices (Full sample).

Logit model LASSO model CART model Random forests model
Attrition No Error Attrition No Error Attrition No Error Attrition No Error
aftrition Attrition attrition attrition
Attrition 2,854 2,082 42.18% 2,881 2,055 41.63% 3,762 1,174 23.78% 4,936 0 0.00%
No attrition 15,585 18522  45.69% 15,577 18,530 45.67% 21,184 12,923 62.11% 14,795 19312 43.38%

Note: the optimal values for each cell are bolded.
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Table 3.8: Model performance indices (Full sample).

Logit LASSO CART? Random forests®
SR 47.23% 47.28% 63.89% 50.54%
ACC 57.82% 54.84% 42.73% 62.11%
ACC (Balanced) 56.06% 56.35% 57.05% 78.31%
SENS 57.82% 58.37% 76.22% 100.00%
SPEC 54.31% 54.33% 37.89% 56.62%
PPV 15.48% 15.61% 15.08% 25.02%
NPV 89.90% 90.02% 91.67% 100.00%
d' .3053 .3200 4047 3.8826
A' .6082 .6128 .6393 .8916
¢ .0807 .0845 .0976 .3763

SR = selection rate, ACC = accuracy (equivalent to area under the receiving operating curve (AUC)), SENS = sensitivity, SPEC = specificity,
ACC (Balanced) = mean of sensitivity and specificity, PPV = positive predictive value, NPV = negative predictive value, d' = sensitivity index,
A' = nonparametric sensitivity index, ¢ = Phi coefficient between attrition predictions and observed values.

Note: The selection rate considers an occurrence of attrition as a positive result. The no-information rate is 87.36%. Finally, the optimal values
for each row are holded where applicable.

The optimal CART model was tuned with 3 splits using a complexity parameter of 0.006077796.

®The optimal random forests model was tuned using 2 variables randomly sampled as candidates at each branch split.

All Phi coefficients are significant at p <.0001.
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CHAPTER 4: DISCUSSION

The choice of models in this study represented a spectrum of interpretability (i.e., face
validity) for the predictive model of attrition; the most easily interpretable, the mutual
independence logit model, was obtained by finding an optimal vector of parameters g that
maximized the likelihood function (i.e., minimized the sum of squares). The size and direction of
a parameter corresponding to a predictor can be interpreted as its effect on the outcome variable
(attrition), independent of all other predictors in the model. By contrast, the random forests
model (which offered the best performance) was the least interpretable, as mentioned earlier,
because it consists of multiple layers of tree structures, generated from randomly-selected (i.e.,
dataset-sensitive) subsets of the predictors. Thus, these complex tree structures only yield an
estimate of importance relative to other variables. As seen in Figure 3.11, its distribution of
variable importance was relatively homogenous. Notably, the classification tree model was a
reasonably accurate compromise that still presented a fairly interpretable structure (unlike the
random forests model). However, unlike the random forests model, its distribution of variable
importance was the least balanced.

A key finding of this study was that machine learning classification models can
outperform logistic regression in correctly predicting instances of attrition (even when using
regularization, as with the LASSO model), but model comparison is difficult in the presence of a
low (12.28%) sample base-rate. Adequate model comparison required the 50% stratification
procedure because the low base-rate prevented the machine learning algorithms from correctly
generating prediction models. As mentioned, however, this procedure carries the consequence of
slightly underestimating test error variance, which is a limitation inherent to this analysis

(Breiman, Friedman, Olshen, & Stone, 1984; Yarkoni & Westfall, 2017). While the current study
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did not attempt to use leave-one-out cross-validation due to computational constraints, it would
be interesting to verify if machine learning-based classification can be achieved despite the low
base-rate of attrition using leave-one-out CV. The models generated in the stratified sample may
also be used quasi-experimentally to predict attrition in a sample of unlabeled data.

The conclusions drawn from this study are subject to several other limitations stemming
from the choice of predictors. The multicollinearity observed between several of the predictors
(e.g., age and years of education) may have confounded the process of selecting the best split
along the greedy algorithms. Also, evidence of adequate fit does not necessarily provide support
for a model’s validity without proper knowledge of the theory underlying the predictive model,
the variability of the data, and the likelihood of other outcomes (in this case, the base rate of
attrition). In fact, any model that can fit about 50% of the dataset will closely estimate the
remainder by linear interpolation (Roberts & Pashler, 2000; Rodgers & Rowe, 2002). Moreover,
there is also risk of leakage of information between observations (which can deflate estimates of
testing error) when centering the values of a predictor, which was particularly high during
preprocessing given that predictors were standardized and imputed using kNN imputation for
missing values (Roberts & Pashler, 2000). Similarly, the chi-squared statistic used to assess fit is
inflated in large (N > 1,000) samples like the one used in this study (Schreiber, Nora, Stage,
Barlow, & King, 2006).

Notably, model selection strategies should ideally be embedded in the cross-validation
steps. In this study, the optimal machine learning models we selected to investigate were those
that were tuned to minimize cross-validated testing error (see note in Table 3.5). This choice is
certainly worth questioning, as it can result in overfitted models (Cawley & Talbot, 2010;

Yarkoni & Westfall, 2017). Incidentally, the models that minimized testing error in this study
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were often the least complex. However, as evidenced by Figures 3.4 more complex models also
offered similar (+4.5%) classification accuracy, and may be worth exploring to minimize certain
kinds of misclassification errors or predict a single reason for attrition. It may also be possible to
prune the complex models with access to another set of labeled data to yield more generalizable
tree structures than those of the simpler models.

Nonetheless, the goal of training generalizable machine learning models on large datasets
to outperform linear regression predictions of important outcome variables is certainly worth
pursuing, as evidenced by the superior performance of the CART and random forests models in
this study (Yarkoni & Westfall, 2017). Likewise, finding evidence of adequate model fit can be a
good starting point for theory development (Rodgers & Rowe, 2002). Theoretically-oriented
research may thus consider conducting an exploratory factor analysis (EFA) to narrow down the
list of important predictors as they pertain to attrition prior to generating the models (which can
be achieved with the covariance matrix presented in Table 2), or develop a model-building
strategy for studying interaction effects relevant to attrition.

Overall, the pattern of results suggests the choice of a different training algorithm is
useful for minimizing certain kinds of classification errors, even at the cost of lower overall
accuracy. In our study, the choice of which model to endorse for the purpose of predicting
attrition in the USMC largely depends on the severity of each misclassification error. Intuitively,
classification in this context may be aimed at reducing false-negatives (i.e., recruits who go on to
attrit); however, a false-positive result (i.e., incorrectly-identifying a recruit as someone who will
attrit) may also incur costs. In terms of correctly identifying instances of recruit attrition (i.e.,
reducing false-negative errors) in the stratified sample, the CART and random forests models

were much more sensitive to instances of attrition than logistic and LASSO regression. The
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random forests model retained its superior sensitivity even when applied to the full sample. In
terms of correctly rejecting instances of no attrition (i.e., reducing false-positive errors), the
LASSO and logit models outperformed the machine learning models. Ultimately, regularization
of the logit model into the LASSO model resulted in better predictions than the logit model;
given equal weight to both kinds of misclassification errors, the LASSO model best maximized
cross-validated AUC. The bulk (29.10%) of correct predictions were common to all models, with
each model contributing between 3.78%-6.19% unique correct predictions not covered by the
others. A large portion (17.80%) of all correct predictions of attrition cases was uniquely
predicted by the machine learning models, compared to 16.43% for the LASSO and logit
models.

Individually, the random forests models outperformed logit regression (but not LASSO)
in predicting most reasons for attrition, while only 3 CART models performed better than
chance. Although the random forests model performed similarly to the LASSO model in this
analysis, this result demonstrated the limitations of using machine learning when large sample
sizes are not available. Several categories for which the logit and/or LASSO models
outperformed the machine learning models involved sample sizes that were quite small (N < 70),
suggesting the training algorithms may be overfitting at the expense of testing error (i.e.,
generalizability) in these occurrences of superior accuracy.

Further investigations may generate better models for budgeting purposes by assigning a
cost to each false-positive and false-negative decision (or weigh these according to the discharge
reason), and following our approach of using 95% confidence intervals around performance
measures to determine which of the models best satisfies the generalized criteria for clinical

efficiency under these conditions (Meehl & Rosen, 1955), as well as which criteria are most
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important to consider for the problem at hand. For clinical efficiency to hold, false negatives

must be considered only between twice and 10.3 times as costly as false positives (Bokhari &
Hubert, 2015). In the context of predicting USMC attrition, this type of analysis might help to
generate an interpretable model that links TAPAS personality facets to important outcomes in

the military, such as attrition, performance, and deviant behaviors.
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