
© 2020 Wenda Zhang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/334979825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CYCLIC BEST FIRST SEARCH IN BRANCH-AND-BOUND ALGORITHMS

BY

WENDA ZHANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Teaching Assistant Professor Douglas King, Chair
Professor Sheldon Jacobson, Director of Research
Professor Xin Chen
Assistant Professor Lavanya Marla

Abstract

In this dissertation, we study the application of a search strategy called cyclic best

first search (CBFS) in branch-and-bound (B&B) algorithms. First, we solve a one ma-

chine scheduling problem with release and delivery times with the minimum makespan

objective with a B&B algorithm using a variant of CBFS called CBFS-depth and a

modified heuristic for finding feasible schedules. Second, we investigate the conditions

of the search trees that may lead to CBFS-depth outperforming BFS in terms of the

average number of nodes explored to prove optimality. Finally, we present a B&B al-

gorithm using CBFS for a close-enough traveling salesman problem that demonstrates

the benefit of using CBFS even if it does not improve the number of nodes explored

to prove optimality. Overall, we show that using CBFS has a number of advantages

to the performance of a B&B algorithm in comparison to the other search strategies

given the right problems.

ii

To my parents and the memory of grandma.

iii

Acknowledgements

I would like to thank my advisor Dr. Sheldon Jacobson, whose knowledge and ex-

perience guided me through years of struggle in finding my footing in research. This

dissertation would not have happened without your help putting me on the path for-

ward every time I went astray.

I would also like to thank Dr. Jason Sauppe, who provided many great comments

on the experiments that I should run and the issues that I have not investigated fully.

Most importantly, thank you for still being so patient with me even after dealing with

all of my careless writing errors.

Thanks to Dr. Douglas King, Dr. Xin Chen and Dr. Lavanya Marla for sacrificing

their time to sit on my committee and read this work.

Thanks to my girlfriend Yijue for always being there when I needed support. Some-

how she found the time to help me achieve a healthier life style while pursuing her own

Doctoral degree.

Thanks to my parents for their constant support even though I have not been able

to go back home to visit them in more than 3 years. I especially thank them for their

cooking recipes without which I don’t think I can survive on another continent.

Finally, thanks to my cat Alfi for being a lovely companion who constantly reminds

me that whatever my problems are, I should always look past them and focus on his

needs.

iv

Table of Contents

List of Figures . vii

List of Tables . viii

Chapter 1. Introduction . 1

1.1 Outline . 4

Chapter 2. Preliminaries . 6

2.1 B&B algorithm and cyclic best first search 6

2.2 Labeling functions . 8

Chapter 3. CBFS in the One-machine Scheduling Problem with De-

layed Precedence Constraints 11

3.1 Introduction . 11

3.2 Balas’ Branch-and-Bound Algorithm 15

3.3 The Heuristic . 18

3.4 Search Strategy . 27

3.5 Computational Results . 28

3.6 Conclusion and Future Work . 37

Chapter 4. The Number of Nodes Explored by CBFS 39

4.1 Introduction . 39

v

4.2 Assumptions and Search Tree Definition 42

4.3 Estimate ECD . 46

4.4 Numerical Experiments . 51

4.5 Conclusion And Future Work . 61

Chapter 5. CBFS in the Close-enough Traveling Salesman Problem . 63

5.1 Introduction . 63

5.2 Preliminaries . 66

5.3 Search strategy . 70

5.4 Further improvement . 73

5.5 Numerical experiments . 78

5.6 Conclusion and future research . 94

Chapter 6. Conclusion . 96

BIBLIOGRAPHY . 100

Appendix A. Additional Results: MLTH 106

Appendix B. Compute τ̂i,j,l,e,g . 108

Appendix C. Estimated Probability of E-type Nodes Exploration in

Depth Level d . 113

vi

List of Figures

2.1 The nodes processed in each cycle . 10

3.1 Graph Representation of a Schedule 16

4.1 Comparison of B&B-BFS, B&B-CD and CBFS-depth expectation by q . . 53

4.2 Probabilities of selecting E-type nodes in level d during each cycle (r =

0.3) . 54

4.3 Comparison of B&B-BFS, B&B-CD and CBFS-depth expectation by r . . 55

4.4 Probabilities of selecting E-type nodes in level d during each cycle (q =

0.5) . 56

4.5 Performance profiles from the one machine scheduling problems 57

4.6 Expected and Average Number of Nodes Explored 59

5.1 Example of a feasible solution to a CETSP instance 67

5.2 Branching variable selection methods 74

C.1 Comparison of the estimated probability of E-type node exploration in

depth level d with simulation (q = 0.9, r = 0.3) 113

C.2 Comparison of the estimated probability of E-type node exploration in

depth level d with simulation (q = 0.5, r = 0.7) 114

vii

List of Tables

3.1 Standard 1|ri, qi|Cmax instances, k = 15 30

3.2 Standard 1|ri, qi|Cmax instances, k = 20 31

3.3 Standard 1|ri, qi|Cmax instances, k = 25 31

3.4 Selected instances, Standard 1|ri, qi|Cmax 34

3.5 1|ri, qi, dpc|Cmax instances, k = 10 . 35

3.6 1|ri, qi, dpc|Cmax instances, k = 15 . 36

3.7 Selected instances, 1|ri, qi, dpc|Cmax . 37

3.8 Selected instances, 1|ri, qi, dpc|Cmax . 37

5.1 Implementation improvement comparison 80

5.2 Results on 62 2D instances with known feasible solution 84

5.3 Results on 42 3D instances with known feasible solution 86

5.4 Results on 56 instances with constant radii with no known feasible so-

lution . 90

A.1 Ratio of MLTH used in all iterations on 1|ri, qi|Cmax instances 106

A.2 Ratio of MLTH used in all iterations on 1|ri, qi, dpc|Cmax instances . . . 106

A.3 Percentage difference from optimal solutions on 1|ri, qi|Cmax instances 107

A.4 Percentage difference from optimal solutions on 1|ri, qi, dpc|Cmax in-

stances . 107

viii

Chapter 1

Introduction

The branch-and-bound (B&B) algorithm [27] has been widely-used for solving opti-

mization problems exactly (without loss of generality, we assume the optimization

problem is a minimization problem). The algorithm builds a search tree of nodes that

represent regions of the solution space. Each node can be explored to either find the

best solution in the corresponding solution space or generate child nodes that further

divide the solution space. Moreover, the algorithm can detect regions of the solution

space that do not lead to an optimal solution. These regions can then be pruned (i.e.

removed from further consideration). We say a node is processed if it is either explored

or pruned without exploration. When all nodes are processed, the algorithm either

terminates with an optimal solution or concludes that the problem is infeasible.

The procedure used by a B&B algorithm to determine the order in which nodes

in a search tree are processed is called a search strategy. Three strategies (and their

variations) have been frequently used: Depth First Search (DFS), Breadth First Search

(BrFS) and Best First Search (BFS). DFS selects unprocessed nodes to be processed

in the reverse order that they are generated [41]. DFS is known to have low memory

requirement to perform and finds complete solutions quickly because the search dives

1

to the bottom of the search tree quickly. However, the search strategy cannot move

on from a poor region of the search tree to a promising region, where a good feasible

solution may be used to prune all nodes in the poor region without exploration. As a

result, DFS can perform badly when the distribution of good feasible solutions is not

even across the search tree.

BrFS selects unprocessed nodes following the order that they are generated. The

order of the search often leads to poor performance in B&B algorithms as complete

solutions may not be generated until late in the search process which limits pruning and

requires large amount of memory to store unprocessed nodes [34]. However, when the

breadth of the search is needed and there are pruning rules to reduce the exploration

of nodes that do not lead to good solutions, BrFS can still be applied as part of the

B&B algorithm [38].

BFS stores all unprocessed nodes and tries to identify the node that is the most

likely to lead to an optimal solution. This is achieved by applying a measure-of-best

function µ to the unprocessed nodes and selecting the node with the minimum value

of µ. A frequently used function for minimization problems is µLB, which returns a

lower bound on the value of the feasible solutions that can be found within the subtree

rooted at a node. In this work, if not specified otherwise, we assume BFS uses µLB.

Regardless of the measure-of-best function, BFS requires exponential memory with

respect to the depth of the search tree to store all the unprocessed nodes in the worst

case. Dechter and Pearl [17] shows that under some assumptions (notably no ties in the

measure-of-best function), BFS explores the smallest number of nodes of any search

strategy.

On Mixed Integer Programming (MIP) problems, a hybrid search strategy of BFS

and DFS (BFS with diving) has been shown to be the most effective for a general

purpose solver [1, 28]. In its basic form, BFS with diving uses DFS for the search until

2

some criteria are met, and the search strategy selects a new node using BFS, from

which node DFS is used again. Solving child node immediately after its parent node

means the solver can use the solution information from the parent node for solving the

child node, which reduces the solving time of the child node. This advantage is called

a “warm start” [1]. This search strategy is the basis for the search strategies used by

both commercial and non-commercial MIP solvers today (i.e. CPLEX, SCIP).

On combinatorial optimization problems, where there is no general purpose solver

and a complete B&B algorithm has to be created, the choice of the search strategy

is decided by the authors. The “warm start” that makes BFS with diving effective in

MIP problems may not be available on these problems. As a result, when there is no

special structure of the search tree that can be utilized by DFS or BrFS and no severe

space constraint, BFS is frequently chosen since it tends to explore fewer nodes than

DFS and BrFS [7, 15].

In recent years, a new search strategy called Cyclic Best First Search (CBFS) has

been applied to many optimization problems, including scheduling [23, 38, 39, 32, 47],

graph coloring [33], traveling salesman [48], and MIP problems [34] (notably, we showed

that the BFS with diving strategy can be represented as a CBFS strategy). The CBFS

strategy partitions a search tree by assigning unprocessed nodes to contours using a

labeling function κ, where each contour is a set of unprocessed nodes. Then, at each

iteration of the B&B algorithm, the search strategy applies a measure-of-best function

µ to a contour for node selection. Different assignments of nodes to contours can lead

to significantly different search orders.

In this dissertation, we will explore the impact of CBFS on two B&B algorithms for

two combinatorial optimization problems, respectively. One problem is a one machine

scheduling problem and the other is a variant of the traveling salesman problem called

close-enough traveling salesman problem. Additionally, we investigate the performance

3

of CBFS with a particular labeling function, called CBFS-depth, compared with BFS

on a variety of problems.

1.1 Outline

In Chapter 2, we presents detailed descriptions of CBFS, including some labeling func-

tions that lead to different behaviors of CBFS. In particular, we show the labeling

functions that allow CBFS to behave as BFS, BrFS, DFS and BFS with diving. Fur-

thermore, we present the labeling function of a variant of CBFS called CBFS-depth

that partitions unprocessed nodes into contours by their depth levels in the search

tree. This variant of CBFS has been successfully applied to several combinatorial

optimization problems [23, 38, 39, 32].

In Chapter 3, we demonstrate the effectiveness of CBFS-depth on a B&B algo-

rithm for a one-machine scheduling problem with release and delivery times with the

minimum makespan objective, as well as a variation to this problem that requires a

delay between the completion of one job and the start of another (delayed precedence

constraints). We also propose an improved heuristic for finding feasible solutions in ad-

dition to the use of CBFS-depth in our B&B algorithm. Computational experiments

demonstrate that our B&B algorithm lead to a substantial improvement in running

time and number of iterations on the one-machine problem instances both with and

without delayed precedence constraints.

Given that CBFS-depth explores fewer nodes than BFS on the one machine problem

and on several other problems [23, 38, 39, 32], we are interested in the conditions of the

search trees that may lead to CBFS-depth outperforming BFS in terms of the average

number of nodes explored to prove optimality. In Chapter 4, we present the results of

the investigation. A search tree model for B&B algorithms based on the distributions of

4

nodes with different lower bounds is proposed. An estimation of the expected number

of nodes expanded by CBFS-depth based on the search tree model is discussed and

a B&B algorithm was applied on randomly generated search trees according to the

proposed model with both search strategies to study how the average number of nodes

expanded is affected by the search tree. Finally, both search strategies are tested

on some optimization problems to validate the observation from the generated search

trees.

The conditions where CBFS-depth explores fewer nodes than BFS is not the only

scenarios in which CBFS is a better choice. In Chapter 5, we present a case in which

CBFS is better than BFS in terms of the memory requirement and the ability to

find good feasible solutions early, given a good choice of the labeling function, even if

CBFS explores more nodes than BFS. We present a B&B algorithm with CBFS for

a close-enough traveling salesman problem (CETSP), which is a generalization of the

Traveling Salesman Problem that requires a salesman to, instead of visiting the exact

location of each customer, just get close enough to each customer. A B&B algorithm

has been proposed in [15] to find the exact solution to this problem by constructing

and examining partial sequences until optimality of a sequence is proven. We propose

improvements to this B&B algorithm, including a variant of CBFS with a labeling

function that takes advantage of the problem specific structure to group unexplored

nodes to obtain good feasible solutions early, a new branching vertex selection scheme, a

method to avoid unnecessary computation, a method to improve the quality of feasible

solutions, and a method to reduce the space requirement of the algorithm. Numerical

experiments show that the improved B&B algorithm finds good solutions faster and

uses less space, which results in better performance overall than the existing algorithm.

5

Chapter 2

Preliminaries

2.1 B&B algorithm and cyclic best first search

A generic optimization problem that B&B algorithms are used to solve can be written

as follows:

minZ := f(x)

s.t. x ∈ X

where the solution space X is the set of all feasible solutions and f : X → R is

the objective function. The goal is to find an optimal solution x∗ ∈ X such that

Z∗ = f(x∗) ≤ f(x) for all x ∈ X.

The B&B algorithm maintains a search tree of nodes. Each node l represents

a partial solution to the original optimization problem and a region of the original

problem solution space X(l). The algorithm explores a node l by solving a relaxation

problem which has solution space XRL(l) ⊇ X(l). Denote the optimal objective value

of the relaxation as f ∗RL(l). f ∗RL(l) provides a valid lower bound on the best solution

in the solution space X(l), and, if it belongs to the solution space X(l), also a feasible

6

solution to the original problem.

The algorithm also keeps track of the best feasible solution for the original problem

that has been found during the search, the objective value of which we denote as Ẑ. We

call this solution the incumbent solution. If f ∗RL(l) ≥ Ẑ or the relaxation is infeasible,

node l can be removed from the search tree (pruned). If f ∗RL(l) < Ẑ and the solution

to the relaxation is feasible to the original problem, we set Ẑ := f ∗RL(l) and update the

incumbent solution.

If a node l is not pruned, we branch from it by generating b child nodes lr for

r = 1, 2, . . . , b to further divide the region of solution space. Each child node lr is

assigned an inherited lower bound fLB(lr) := f ∗RL(l). An unprocessed node l may be

pruned without exploration if a new incumbent solution is found and fLB(l) ≥ Ẑ is

true for the new incumbent objective value Ẑ. After the algorithm has explored or

pruned all nodes, the best feasible solution is proved to be optimal for the original

problem. If such a solution does not exist, the original problem is infeasible.

Pseudocode for the B&B algorithm with CBFS as the search strategy is shown in

Algorithm 1. The CBFS strategy maintains a set of non-empty contours C (Line 2,

Algorithm 1) where each contour C contains some unprocessed nodes. Each contour is

associated with a numbered label and we denote a contour with label i as Ci. In one

iteration of the algorithm, a measure-of-best function µ is used to select an unprocessed

node from a non-empty contour (Line 4, Algorithm 1). The process is similar to BFS

but limited to the unprocessed nodes in one contour.

When child nodes are generated, a labeling function κ is used to assign a label to

each child node, and that node is then inserted into the contour with the same label

(Lines 14-17, Algorithm 1). The non-empty contour selected in each iteration is the one

with the smallest label greater than the label of the contour selected in the previous

iteration, and if there is no such contour, the one with the smallest overall label is

7

Algorithm 1: Branch-and-Bound Algorithm with CBFS
1 Given original problem node lroot
2 Set Ẑ := +∞, i := κ(lroot), Ci := {lroot} and C := {Ci}
3 while C /∈ ∅ :
4 Choose l = arg mink∈Ci

µ(k)
5 Remove l from Ci
6 if Ci = ∅ : Set C = C\{Ci}
7 if fLB(l) ≥ Ẑ : Prune l and go to line 18
8 Explore l to obtain f ∗RL(l)

9 if relaxation is infeasible or f ∗RL(l) ≥ Ẑ : Prune l and go to line 18
10 if the relaxation solution is feasible to original problem :
11 Prune l and update Ẑ when necessary
12 else:
13 Generate child nodes
14 for each generated child node lr :
15 Set fLB(lr) := f ∗RL(l)
16 Insert lr into contour Cκ(lr)
17 if Cκ(lr) /∈ C : Insert Cκ(lr) into C
18 if there exists Cj ∈ C with j > i : Set i = min{j | Cj ∈ C and j > i}
19 else: Set i = min{j | Cj ∈ C}
20 return Ẑ

selected (Lines 18-19, Algorithm 1). As a result, the search strategy cycles through all

non-empty contours until there are no longer any non-empty ones.

2.2 Labeling functions

The labeling function κ is critical to the CBFS strategy: it determines how nodes are

assigned to contours and hence determines the order in which nodes are explored. [34]

shows that given the right labeling function, CBFS can simulate the behavior of any

other search strategy. Theorems 2.1, 2.2, 2.3 and 2.4 provide the labeling functions

that allow CBFS to simulate the behavior of BFS, BrFS, DFS and BFS with diving

proved in [34].

Theorem 2.1. Using κBFS(l) = 0 for all nodes l, CBFS will emulate BFS.

8

Theorem 2.2. Let lj be the jth node generated by BrFS; then, using κBrFS(lj) = j for

all j, CBFS will emulate BrFS.

Theorem 2.3. For any node l, let ∆(l) be an upper bound on the number of nodes

contained in the tree rooted at l that satisfies ∆(l) ≥ 1 +
∑r

j=1 ∆(lj), where l1, l2, . . . , lr

are the children of l. For each child lj of l, define

κDFS(lj) = κDFS(l) + 1 +

j−1∑
k=1

∆(lk).

Using this labeling function for all nodes l, CBFS will emulate DFS.

In the last case, bounds ∆j can be computed if upper bounds on the branching

factor and subtree depth are known. For example, given a binary branching strategy

and a finite number of branching choices, then ∆j = 2u, where u is the number of

remaining branching choices at lj.

Finally, a labeling function is given which shows that the BFS with diving strategy

which chooses the best child node for diving is a special case of CBFS:

Theorem 2.4. The BFS with diving strategy can be emulated by CBFS where the root

node is placed in contour 0, and contours for all other nodes are computed via the

following labeling function for all nodes l:

κdive(l) =

κdive(pred(l)) + 1 if µ(l) ≥ µ(l′) ∀ l′ ∈ sib(l)

0 otherwise.

where pred(l) gives the parent of l in the search tree, and sib(l) gives the set of siblings

of l, that is, nodes of pred(l). Ties in µ for sibling nodes are assumed to be broken

arbitrarily, or using the desired rules in a BFS with diving strategy.

9

The variant of CBFS that has been shown to be successful on a number of combi-

natorial optimization problems is the CBFS-depth strategy. The labeling function for

CBFS-depth is

κdepth(l) := d(l), (2.1)

where d(l) is the depth level of node l in the search tree. Therefore, CBFS-depth selects

a node to explore from one depth level each iteration and selects a node from the next

depth level that still has unprocessed node the next iteration.

1

1

1

1

2

3 2 4

5 3 6 2 7 4 8

C1

C2

C3

C4

Figure 2.1: The nodes processed in each cycle

For example, starting with the root node, Figure 2.1 shows the order in which nodes

are explored in each cycle by CBFS-depth on a search tree with four depth levels. The

number in the nodes indicates which cycle a node is processed. The nodes are shaded

based on their contours (depth levels) which are indicated at the right side of the tree.

The particular nodes explored in each cycle may be different from the ones shown in

the figure, but the figure shows the non-empty contours examined in each cycle.

10

Chapter 3

CBFS in the One-machine Scheduling

Problem with Delayed Precedence

Constraints

3.1 Introduction

The one-machine scheduling problem with release and delivery times with the minimum

makespan objective, also known as 1|ri, qi|Cmax, can be described as follows. Assuming

all parameters are integers, let J = {1, 2, ..., n} be a set of n jobs to be scheduled on

a single machine without preemption. For each job i ∈ J , let ri be the release time

(or head) to represent the time when job i becomes available, pi be the processing

time on the machine, and qi be the delivery time (or tail). A solution is given by a

sequence of all the jobs in J , which is also called a schedule. Given a schedule of jobs

S, let si(S) denote the starting time of job i in S. The completion time ci(S) of job

i in S is given by ci(S) := si(S) + pi. Then the objective is to find a schedule S that

minimizes the makespan Cmax(S) := maxi∈J{ci(S) + qi}, i.e., the time by which all

11

jobs are delivered. For the remainder of the dissertation, when the context is clear, we

simplify the notation to si, ci and Cmax, respectively.

It has been shown that 1|ri, qi|Cmax is NP-complete in the strong sense [20]. Nu-

merous studies have been done to solve the problem exactly [6, 29, 26, 13] while others

investigate heuristics for the problem [24, 36].

Carlier [13] formulates an efficient branch-and-bound algorithm, Car. The algo-

rithm allows the presence of standard precedence constraints

si + pi ≤ sj for some pairs of jobs (i, j) ∈ J ′ ⊂ J × J with i 6= j. (3.1)

Between jobs i and j, constraint (3.1) means job i is to precede job j by setting the

starting time of job j to be at or after the completion time of job i.

Some work has been done to improve the lower bound used in Car. In particular,

Pan and Shi [35] presents a new lower bound based on the minimum makespan of a

selected subset of jobs. Gharbi and Labidi [21] presents more lower bound algorithms

that improve the preemptive schedule lower bound used in Car. Finally, Briand et al.

[11] presents an integer linear programming (ILP) formulation.

Dauzere-Peres and Lasserre [16] introduces a new type of precedence constraint for

the problem, namely:

si + lij ≤ sj for some pairs of jobs (i, j) ∈ J ′ ⊂ J × J with i 6= j (3.2)

where lij ∈ Z+
0 satisfies lij ≥ pi. Note that (3.2) is a generalized version of (3.1), as

job j can only start after lij − pi time has passed since the completion time of job i.

When that delay is 0, the two constraints are equivalent. Constraint (3.2) is referred

to as the Delayed Precedence Constraint (DPC), with 1|ri, qi, dpc|Cmax denoting this

version of the one-machine problem. 1|ri, qi, dpc|Cmax is a better representation of

12

the one-machine scheduling problem in a multiple machine system such as job shop

scheduling [16, 7] than 1|ri, qi|Cmax. Algorithms for a multiple machine system can

then take advantage of 1|ri, qi, dpc|Cmax to find better solutions.

Unlike 1|ri, qi|Cmax, when DPC constraints are present, it is possible for a released

job to not start immediately after the previous job in the schedule is processed due

to the delay constraint. Balas et al. [7] shows that in such a situation, the branching

scheme in Car does not work. The authors then present a branch-and-bound algorithm,

Bal, that adds a new branching scheme for situations in which the scheme in Car does

not work. Bal operates the same way as Car on instances without DPC, however.

Computational experiments in several studies have shown Car and Bal to be effec-

tive in practice. Carlier [13] uses Car to solve 1|ri, qi|Cmax instances with up to 1000

jobs, and Balas et al. [7] uses Bal to solve 1|ri, qi|Cmax instances of 100 jobs. All test

instances are randomly generated. The number of nodes explored by Car and Bal

to solve an instance of 1|ri, qi|Cmax or 1|ri, qi, dpc|Cmax rarely exceeds the number of

jobs to be scheduled, which is not often seen on branch-and-bound algorithms where

the number of nodes explored is often substantially higher. Sadykov and Lazarev [37]

uses a different scheme to generate 1|ri, qi|Cmax instances up to 300 jobs. For all prob-

lem sizes tested, the average running time of Car remains consistent with the results

reported in Carlier [13] and Balas et al. [7] (well within 1 second in all cases).

Several other branch-and-bound algorithms, including one proposed by McMahon

and Florian [29] and one using constraint programming, were tested in Sadykov and

Lazarev [37] for 1|ri, qi|Cmax, but no algorithm was shown to be superior to Car on all

problem sizes.

Pan and Shi [35] generates 500000 instances of 1|ri, qi|Cmax using the same method

as Carlier [13] and demonstrates that the 101 instances unsolved within 2 minutes by

Car can be solved within 2 minutes by the algorithm proposed in the paper. However,

13

Pan and Shi [35] does not provide an average performance comparison with Car.

Gharbi and Labidi [21] uses the same method as in Pan and Shi [35] to generate

221 instances that are unsolved within 2 minutes by Car. The authors show that their

best method averages 5 seconds to solve these instances, but do not report results for

the average performance of their method over all generated instances.

Briand et al. [11] shows that solving the ILP formulation requires about 1/3 of the

running time of Car on selected groups of instances. However, the average running

time of solving the ILP formulation on all instances of the same size is shown to be

comparable to Car with problem sizes up to 700 jobs, and up to 2 to 70 times slower

than Car with problem sizes of 1000 to 3100 jobs.

To the best of our knowledge, both Car and Bal are still considered state-of-the-art

algorithms for the two problems.

Due to the efficiency of Car and Bal, both variants of the one-machine scheduling

problem are important building blocks in developing algorithms for more complex

problems such as the job shop scheduling problem [13, 7, 35, 21], as the construction

of schedules for each machine in a multiple machine problem can often be represented

by 1|ri, qi|Cmax or 1|ri, qi, dpc|Cmax. The problems are also useful in real-life industrial

applications as shown in Sourirajan and Uzsoy [40], where 1|ri, qi, dpc|Cmax is used to

represent a manufacturing process. Furthermore, algorithms that solve 1|ri, qi|Cmax

also solve a scheduling problem with release dates, due dates and a maximum lateness

objective, which is equivalent to 1|ri, qi|Cmax [36].

The main contributions of this work are two improvements that works for both Car

and Bal: (1) a modification of its Longest Tail Heuristic (LTH) which is used to gen-

erate feasible schedules, and (2) an alternative search strategy, cyclic best-first search

(CBFS), which is used to select the next node to explore in the branch-and-bound

search tree. When the two proposed ideas are integrated in Car, the computational

14

results show significant performance advantage in both running time and the number

of nodes explored on a large number of instances; when the ideas are integrated in

Bal, the average reduction in running time and the number of nodes explored is not as

substantial but still evident, which could be attributed to the lower bound algorithm

not able to take DPCs into account. In both cases, the improved algorithms have an

order of magnitude improvement in running time and the number of nodes explored

on selected groups of challenging instances.

The rest of the chapter is organized as follows. Because Bal solves 1|ri, qi|Cmax

instances the same way as Car, we will use Bal to represent both algorithms for the

remainder of this chapter. Section 3.2 presents additional notation and provides an

overview of Bal. Section 3.3 states and analyzes the heuristic used to generate a

feasible schedule in Bal. A new heuristic is then proposed based on the discussion

of the existing one. In Section 3.4 the behavior of BFS with different tie-breaking

rules for node selection in the one-machine problem search tree is demonstrated and

the cyclic best-first search strategy is presented as an alternative to BFS. Section

3.5 reports computational results that demonstrate the effectiveness of the algorithm.

Conclusions and future research directions are outlined in Section 3.6.

3.2 Balas’ Branch-and-Bound Algorithm

This section describes Bal for 1|ri, qi, dpc|Cmax after introducing some additional no-

tation. Let l be a node in the search tree. Then, for each job i ∈ J , define:

πl(i) := {j ∈ J : j is required to precede i in node l},

σl(i) := {j ∈ J : j is required to follow i in node l}.

15

For a node l in the search tree, πl(i) and σl(i) store the corresponding precedence

constraints (including the branching decisions leading to that node). Note that if job i

precedes job j, then because of (3.2), ri+lij ≤ rj can be assumed to hold. If the current

rj violates this inequality, we can set rj := ri + lij without changing the structure of

the problem. Thus, πl(i) and σl(i) can be used to strengthen the head and tail of jobs

before node l is explored.

o

2

5

1

3

6

4

t

r2

r5

r1

r3

r6

r4

p2 + q2
p5 + q5

p1 + q1

p3 + q3

p6 + q6

p4 + q4

l25

l51

l13

l36

l64

Figure 3.1: Graph Representation of a Schedule

We briefly describe the graph representation of a feasible schedule for the one-

machine scheduling problem as it provides some useful insights for later discussion.

Let a schedule S be a feasible solution at node l in the search tree. Then the solution

can be represented by a directed graph G(S) := (N,E). Vertex set N consists of all

jobs in J , a start o and a sink t, such that N = J ∪ {o} ∪ {t}. The edge set E(S) is

defined as

E(S) := {eoi|i ∈ J} ∪ {eit|i ∈ J} ∪ {eij|i, j ∈ J, job i precedes job j in S},

16

where eoj has weight rj, eit has weight pi + qi and eij has weight lij. If i ∈ πl(j), then

the weight of the edge eij is lij as in (3.2). If i /∈ πl(j), then lij := pi.

The length of the longest path (or paths, as there could be more than one) from o

to t is the makespan Cmax. We call such paths the critical paths for a schedule. Critical

paths play a key role in Bal. Figure 3.1 shows a graph representation of a schedule

with 6 jobs. Edges between vertices not scheduled next to each other are not shown

to simplify the image. A critical path {eo1, e13, e36, e6t} is marked in the graph with

heavy lines.

Let I be a critical path of G(S), given by

I := {eoi1 , ei1i2 , ..., eipt},

where JI := {i1, i2, ..., ip} ⊆ J . For I to be a critical path, si1 = ri1 must be true. If

ri1 < si1 , some job i0 scheduled before job i1 must have ri0 +li0i1 = si1 > ri1 . Otherwise,

job i1 could start before si1 . In this case, I ′ := (I\eoi1)∪ {eoi0 , ei0i1} would be a longer

path than I, which contradicts I being a critical path.

Note that if ri0 + li0i1 = ri1 for some job i0 scheduled before job i1, then I ′ :=

(I\eoi1) ∪ {eoi0 , ei0i1} is also a critical path. For the branching scheme of Bal to work,

it is necessary that no such I ′ exists [13] and no additional job can be added to a

critical path. Therefore, for all jobs i scheduled before the first job i1 in a critical path

I, the inequality

ri + lii1 < si1 (3.3)

must hold. From here on, when discussing critical paths, we assume that they satisfy

(3.3).

Bal is described in Algorithm 2. At each iteration, Bal generates a feasible schedule

S with LTH (line 6). A post processing procedure (line 7) is called to reduce the number

17

Algorithm 2: Balas’ Branch-and-Bound algorithm
1 Let L be an empty list that stores active nodes. Insert original problem into L
2 Ĉ =∞
3 while L 6= ∅ :
4 Select a node l from L to explore
5 Update heads and tails of all jobs based on precedence constraints
6 Obtain a feasible schedule S by LTH
7 Postprocess schedule S
8 if there is any tail changes in postprocessing : go to 6
9 if No branching can be done from S :

10 if C(S) < Ĉ : Update current best solution by setting Ĉ = C(S)
11 else if strong branching condition is satisfied :
12 Generate l1, l2 with strong branching rule
13 Insert l1, l2 into L
14 else:
15 Generate l1, l2 with weak branching rule
16 Insert l1, l2 into L
17 Remove l from L

18 Return Ĉ

of critical paths that has to be examined by the branching scheme. The branching

scheme (from line 9 to line 16) is then applied to S to examine the critical paths and

determine how new nodes are created. For additional details of Algorithm 2, see Balas

et al. [7].

3.3 The Heuristic

We first examine the Longest Tail Heuristic (LTH) in line 6 of Algorithm 2. At each

iteration of LTH, the job with the longest tail is chosen from the set of available jobs to

be scheduled, until all jobs have been scheduled. At any iteration, a job is considered

available if it is released and all its predecessors are already scheduled. This is repeated

until all jobs have been scheduled. In this section, we first present LTH proposed by

Balas et al. [7] and derive a bound for the solution of LTH on 1|ri, qi, dpc|Cmax instances.

18

Then, we describe in detail a modified version of LTH.

3.3.1 Longest Tail Heuristic

The LTH used in Bal takes into account DPCs by updating the heads of all successors

of a job when that job is scheduled, and the pseudo-code is presented in Algorithm 3.

Algorithm 3: Longest Tail Heuristic
1 Let S := {i ∈ J : i has been scheduled}
2 Set τ := 0, S := ∅, C := 0, r′i := ri, ∀ i ∈ J
3 while S 6= J :
4 Set Q := {i ∈ J \ S | π(i) ⊆ S}
5 if r′i ≤ τ for some i ∈ Q :
6 Set k := arg maxi∈Q{qi | r′i ≤ τ}
7 else:
8 Set k := arg maxi∈Q{qi | r′i = minj∈Q r

′
j}

9 Set sk := max{τ, r′k}, S := S ∪ {k}, τ := sk + pk
10 for each j ∈ σ(k) :
11 Set r′j := max{r′j, sk + lkj}
12 if τ + qk > C : Set C := τ + qk
13 Return C

In Algorithm 3, the return value C represents the makespan of the schedule ob-

tained. Note that r′i represents the updated head of job i during scheduling. This is

different from line 5 in Algorithm 2, which is done before LTH. Note also that π(i) and

σ(i) are used to represent the precedence constraints in current problem when the node

is not specified.

Theoretical bounds on the solution of LTH for 1|ri, qi|Cmax have been reported. Kise

and Uno [24] provides a bound of C/C∗ ≤ 2−3/(P−1), where C∗ represents the optimal

makespan and P =
∑

i∈J pi. The worst-case performance can be achieved through a

two-job example: suppose r1 = 0, r2 = 1, p1 = PC − 1, p2 = 1, q1 = 0 and q2 = PC − 1,

for some PC > 1. Then LTH gives the schedule {1, 2} with makespan C = 2PC − 1,

while the optimal schedule is {2, 1} with makespan C∗ = PC + 1. Moreover, Potts [36]

19

derives several bounds that relate to the heads and tails of particular jobs, such as

C − C∗ ≤ qip . (3.4)

Recall that ip is the last job in a critical path I. However, the inequality in (3.4) is

based on the condition

rk ≥ si1 , for all k ∈ JI , (3.5)

which follows from the requirement on critical paths. Since critical paths must satisfy

(3.3), the machine must be idle for some time before si1 . Thus, job k would be scheduled

before job i1 by LTH if rk < si1 . When DPCs are present, LTH can only guarantee

r′k ≥ si1 , for all k ∈ JI . (3.6)

Therefore, we derive a weaker bound for LTH on 1|ri, qi, dpc|Cmax, given in Lemma 3.1.

Lemma 3.1. For the makespan C and a critical path I from the solution of LTH on

1|ri, qi, dpc|Cmax, the following statements must be true:

(i) if (3.5) holds for all k ∈ JI , then the bound (3.4) remains valid.

(ii) if (3.5) does not hold for all k ∈ JI , then the bound is

C − C∗ ≤ ri1 + qip − rk∗ , (3.7)

where k∗ = arg mink∈JI rk.

Proof. A lower bound for the length of a path I in S is

h(I) = min
k∈JI

rk +
∑
k∈JI

pk + min
k∈JI

qk.

20

The makespan C of a path I can be represented by

C = ri1 +
∑
k∈JI

pk + qip . (3.8)

Since I is a critical path for schedule S, then the following inequality must hold for

the optimal makespan C∗

C∗ ≥ h(I). (3.9)

For case (i), inequality (3.5) holds, which implies that ri1 = mink∈JI rk. Therefore,

(3.9) leaves

C∗ ≥ h(I) ≥ ri1 +
∑
k∈JI

pk. (3.10)

Combining (3.10) with (3.8) leads to C − C∗ ≤ qip .

For case (ii), because k∗ = arg mink∈JI rk, we can replace ri1 with rk∗ in (3.10) to

get

C∗ ≥ h(I) ≥ rk∗ +
∑
k∈JI

pk. (3.11)

Combining (3.11) with (3.8) leads to C − C∗ ≤ ri1 + qip − rk∗ , which completes the

proof. �

3.3.2 A Modified Longest Tail Heuristic

LTH favors jobs with long tails by selecting from all available jobs the one with the

longest tail. However, the set of jobs available for scheduling can be expanded to

include some jobs that have not yet been released (but have all predecessors scheduled),

assuming one is willing to introduce some idle time in the sequence. Algorithm 4

presents the approach. Because the new heuristic is a modification of LTH, we will call

it Modified Longest Tail Heuristic or MLTH for short.

21

Algorithm 4: Modified Longest Tail Heuristic
1 Set τ := 0, S := ∅, C := 0, r′i := ri, ∀ i ∈ J
2 # acquire initial schedule
3 while S 6= J :
4 Set Q := {i ∈ J \ S | π(i) ⊆ S}
5 Set k := arg maxi∈Q{qi | r′i ≤ τ}
6 Set l := arg mini∈Q{r′i | r′i > τ}
7 if ql > qk :
8 Set τ := r′l
9 for each j ∈ σ(k) :

10 Set r′j := max{r′j, τ + lkj}
11 Set S := S ∪ {k}, τ := τ + pk
12 Compute makespan C and si, r′i, ∀ i ∈ J of schedule S
13 # reschedule jobs in initial schedule
14 if Schedule S is not valid for branching :
15 Reschedule jobs in S
16 Return C

MLTH consists of two parts. The first part, from line 2 to line 12 of Algorithm 4,

constructs a feasible schedule S, favoring jobs with long tails; S is called the initial

schedule. The second part of Algorithm 4 (after line 13) ensures that the schedule S

satisfies the inequality (3.6), which we will discuss in Section 3.3.3.

In Algorithm 3, τ represents the current time (the completion time of the last

scheduled job). At each iteration, τ is used to determine whether a job is available; τ

gets updated after a job is scheduled. In Algorithm 4, τ again represents the current

time and is used to identify the set of jobs that are available (line 5), but τ may be

updated without scheduling a job. Specifically, given job k as the job with the longest

tail among all released jobs (line 5) and job l as the next job to be released (line 6), if

ql > qk, we update τ := r′l (line 8) instead of not changing the value of τ . Let τ0 be τ

prior to the update. Then in the next iteration, more jobs may be considered released

with a larger time counter τ = r′l + pk, instead of τ = τ0 + pk. Therefore, the job with

the longest tail is selected from a larger set of jobs. As jobs are scheduled, τ can be

22

updated repeatedly in line 8, leading to additional jobs being considered for scheduling

next. Once the initial schedule is completed, we can then compute the starting time

si and update the release time r′i for each job i ∈ J and the makespan C (line 12).

3.3.3 Rescheduling Delayed Jobs

Algorithm 4 includes unreleased jobs when choosing the job to be scheduled next (line

5). In an iteration, an unreleased job iu can be scheduled by MLTH before a released job

ik because qiu > qik . As a result, the initial schedule we obtained in MLTH may contain

job ik ∈ JI in a critical path I such that (3.6) is not satisfied. We will refer to job

ik as a delayed job. Note that delayed jobs will not appear in LTH. More importantly,

the branching scheme of Bal requires (3.6) to hold (See Balas et al. [7]). Therefore,

delayed jobs must be handled before the schedule can be used in branching.

The issue is addressed by the second part of Algorithm 4. Line 14 checks for the

presence of delayed jobs in the initial schedule S. Every delayed job ik ∈ JI in the

initial schedule S is rescheduled as follows.

• Step 1. Find a pair of jobs j1 and j2 such that the completion time cj1 of job j1

is strictly less than the starting time sj2(S) of job j2 with r′ik < sj2(S). We can

insert job ik between any pair of jobs j1 and j2. However, recall the requirement

on critical paths in (3.3), which means that we can set job j1 to be the job before

job i1 and set job j2 := i1. If job i1 is the first job in schedule S, then set job

j1 := o.

• Step 2. Schedule job ik between jobs j1 and j2. Let the new schedule be S ′. Then

set the starting time sik(S ′) := sj1(S) + pj1 if sj1(S) + pj1 ≥ r′ik and sik(S ′) := r′ik

otherwise.

The rescheduling steps are repeated until no delayed job can be found in any critical

23

path. Then the schedule would be valid for the branching process. The procedure,

termed rescheduling (Algorithm 4, line 15), is outlined in Algorithm 5.

Algorithm 5: Rescheduling Procedure
1 Given initial schedule S
2 while there exists a delayed job ik in some critical path I of S with jobs

JI = {i1, i2, ..., ip} :
3 if job i1 is the first job in S : Set j1 := o
4 else: Set j1 to be the job before i1
5 Schedule job ik after job j1 and before i1
6 Update the schedule S, the makespan C and si(S), r′i, ∀ i ∈ J
7 Return C

Properties of the rescheduling procedure are given in Theorem 3.2.

Theorem 3.2. The following statements are true for rescheduling a delayed job ik in

a critical path I for schedule S with makespan C:

(1) there always exists a pair of jobs j1 and j2 between which job ik can be inserted;

(2) let S ′ be the schedule after rescheduling job ik and λ := si1(S) − sik(S ′) . Then

the makespan C ′ of S ′ is bounded by

max{C − pik , C − λ} ≤ C ′ ≤ max{C,C + pik − λ}.

Proof. (1) follows directly from the restriction on critical paths. For the remainder of

this proof, we will substitute job j2 with job i1.

For (2), suppose I ′ := {eoi′1 , ei′1i′2 , ..., ei′nt} is a critical path for the new schedule S ′.

Then the new makespan C ′ can be represented by information on job i′n,

C ′ = sin(S ′) + pin + qin .

24

This means that we can use the change in starting time (of the last job in a critical

path) from S to S ′ to determine the new makespan. The starting time change can

be categorized into two cases after rescheduling job ik. We will discuss these cases

separately.

• Case 1. If λ ≥ pik , then inserting job ik between jobs j1 and i1 will not change

the starting time of any other job before job ik in S. Starting time si(S) for a

job i after job ik will not increase. Since no job has greater starting time in S ′

than in S, we have C ′ ≤ C.

Note that for MLTH, qik−1
≥ qik must be true, where ik−1 is the last job processed

by the machine in I before job ik. Then

sik(S ′) + pik + qik < sik−1
(S ′) + qik−1

≤ C ′ (3.12)

must hold. This means that job ik cannot be the last job of a critical path

in S ′. For all other jobs, the starting time can be reduced by at most pik as

the processing time of job ik in S is freed by rescheduling. This implies that

C ′ ≥ C − pik . Therefore, C ′ is bounded by C − pik ≤ C ′ ≤ C.

• Case 2. If λ < pik , then the starting time of jobs between jobs i1 and ik is

increased by pik − λ. Inequality (3.12) still holds, which means that job ik is

still not the last job in a critical path in S ′. The starting times of jobs after job

ik can become larger, smaller or stay the same. In particular, the starting time

can increase by pik − λ, if a job has predecessors between job i1 and ik and the

starting time of that job is increased by pik − λ in S ′. The starting time can also

decrease by at most λ for the same reason as in Case 1. Therefore, C ′ is bounded

by C − λ ≤ C ′ ≤ C + pik − λ.

25

Combining these two cases gives the desired inequality. �

Theorem 3.2 guarantees that a delayed job can be rescheduled, and bounds the

makespan of the schedule after one rescheduling procedure. Note that once no ad-

ditional rescheduling is needed, the resulting schedule satisfies (3.6), and the bound

in Lemma 3.1 holds. Assessing whether MLTH will terminate in a finite number of

rescheduling steps is needed as well. Ideally, each rescheduling effort will reduce the

number of delayed jobs in the schedule or at least will not create new delayed jobs.

However, this cannot be guaranteed. First, job ik after rescheduling may still be a

delayed job if job ik is part of a critical path I ′ in S ′. Second, jobs after job ik in

S may also become delayed jobs. For instance, let jobs j1 and j2 be scheduled after

job ik in S, where sj1(S) = rj1 and a DPC exists between jobs ik and j2 such that

sik(S) + likj2 > rj1 so job j2 is scheduled after job j1 in S. Let job j1 be the first job of

a critical path that includes job j2. After rescheduling, if the new updated head of job

j2 satisfies r′j2 = sik(S ′) + likj2 < rj1 , and jobs j1 and j2 are still part of a critical path

that starts with job j1, then job j2 becomes a delayed job.

However, the rescheduling procedure will terminate in O(n2) number of reschedules

as the following theorem shows.

Theorem 3.3. Algorithm 5 will generate a schedule with no delayed job after at most

O(n2) number of iterations.

Proof. The rescheduling procedure can be viewed as placing a delayed job before some

jobs with a larger head. Note that a schedule that is ordered by head ri in ascending

order does not have any delayed jobs, and rescheduling procedures can be viewed as

steps in a sorting algorithm to create the ascending order by the head of each job. Each

rescheduling can at least swap the position between a delayed job and its immediate

predecessor in a schedule, which resembles a step in the Bubble Sort algorithm. Because

26

the Bubble Sort algorithm has a worst case performance of O(n2), equivalently it takes

at most O(n2) rescheduling steps (where n is the number of jobs to schedule) to obtain

a schedule with jobs sorted in ascending order by head. After this number of iterations,

it is guaranteed that no delayed job exists in the schedule. �

3.4 Search Strategy

The second aspect of our algorithm that differs from Bal is the search strategy (line

4 in Algorithm 2). For a given search tree, the search strategy guides the branch-

and-bound algorithm to the next node to explore. In Bal, the best-first search (BFS)

strategy is used to select the node with the smallest lower bound to explore. However,

we have observed that for many instances of 1|ri, qi|Cmax and 1|ri, qi, dpc|Cmax, a large

portion of the search tree shares the same lower bound which is obtained by solving the

preemptive version of 1|ri, qi|Cmax (DPC are treated as standard precedence constraints

in the preemptive version).

Given a search tree where all the nodes share the same lower bound, if a last-in-first-

out (LIFO) tie-breaking rule is applied with BFS and the right child is always created

after the left child, then BFS selects the right child node that was just created as long

as there is one, similar to depth-first search. On the other hand, if a first-in-first-out

(FIFO) tie-breaking rule is applied with BFS, the search strategy explores all nodes at

the same depth before any nodes at greater depth, similar to breath-first search.

In a search tree for 1|ri, qi|Cmax or 1|ri, qi, dpc|Cmax instance with a large number

of nodes sharing a lower bound, the last-in-first-out (LIFO) tie-breaking rule allows

BFS to choose nodes deep in the search tree quickly while the opposite is true for BFS

with the FIFO rule. In our computational experiments, BFS with the LIFO rule has

been observed to have substantially better running time and number of iteration than

27

BFS with the FIFO rule, which suggests that it may be beneficial to reach deep in the

search tree early.

However, the intensity (the amount of time spent exploring the same region of the

search space) of BFS with LIFO can lead to long searches without finding an optimal

solution.

Consider then the CBFS-depth strategy. In contrast to BFS with LIFO, by choosing

a node from different subsets of unexplored nodes at each iteration, the search is more

diversified. At the same time, by cycling through contours based on depth levels of the

search tree, CBFS-depth also retains some intensity in the search that makes BFS with

LIFO effective. Therefore, we chose CBFS-depth in our branch-and-bound algorithm.

3.5 Computational Results

We create a branch-and-bound algorithm by integrating MLTH and the CBFS-depth

strategy with Bal. The resulting algorithm, referred to as LDepth, can be applied

to both 1|ri, qi|Cmax and 1|ri, qi, dpc|Cmax. We also create two additional branch-and-

bound algorithms for comparison: BalDepth which uses LTH and CBFS-depth, and

LBFS which uses MLTH and BFS. These algorithms can be used to distinguish the in-

dividual performance benefits of using MLTH and CBFS-depth. Randomly generated

instances are used to test the performance of these algorithms with Bal. In this sec-

tion, we explain several implementation details of the algorithms and how instances

are generated. We then compare the computational results of all algorithms.

3.5.1 Implementation Details and Problem Generation

Our implementation of LDepth and LBFS uses both LTH and MLTH to find a feasible

schedule. At each node, the makespan of the initial schedule of MLTH is compared

28

with the makespan of the schedule generated by LTH. If the schedule generated by

LTH has smaller makespan, then that schedule will be used in branching. On the other

hand, when the initial schedule from MLTH has smaller makespan, the algorithm applies

the rescheduling procedure to any delayed jobs in critical paths. The makespan after

rescheduling is compared against the makespan of the schedule generated by LTH again.

The schedule with smaller makespan is used in branching. In our computational results,

MLTH found a smaller makespan than LTH more than 50% of the time (Tables A.1 and

A.2). Note that the LIFO tie-breaking rule is used for search strategies in all three

algorithms.

Test instances (with and without DPCs) are randomly generated using the same

scheme used in Balas et al. [7]. Let n be the number of jobs. Set the release time ri to be

ri ∼ DU(1, rmax), the processing time pi to be pi ∼ DU(1, pmax), and the delivery time

qi to be qi ∼ DU(1, qmax), where DU(a, b) denotes the discrete uniform distribution

from a to b. For all instances, pmax = 50 is used. Set rmax = qmax = 1
50
nkpmax, where

k is a coefficient.

For generating DPCs, with probability p a precedence constraint will be generated

between jobs i and job j, with delay lij ∼ DU(1, 1
50
nkpmax). If lij ≤ pi, the delay is

reset with lij = lij + pi, as suggested by Balas et al. [7].

The algorithms are implemented in C++ as single thread operations and all compu-

tational experiments were performed on a desktop machine with an Intel Core i5-7600K

3.8GHz quad-core processor and 8 GB of available memory. The implementation ter-

minates if the running time reaches 3600 seconds.

Additionally, we refer to one iteration of the algorithm as each time either LTH

or MLTH needs to be applied to a node, which either leads to further branching or

an optimal solution for the node. Because the most time-consuming aspects of the

algorithm (finding feasible solutions and branching) are included in each iteration, we

29

believe iterations to be a better indicator of performance than the number of nodes

in the search tree as used in Balas et al. [7] and Carlier [13]. In our experiments, we

observed that the number of nodes in a search tree is close to 2 times the number of

iterations, as most nodes lead to branching. Therefore, the number of nodes in the

search trees are not reported separately in this section. The implementation terminates

if the number of iteration exceeds 100,000.

3.5.2 Instances without DPC

The four algorithms were first run on 1|ri, qi|Cmax. For each combination of n and k,

1000 instances were generated. The results are reported in Tables 3.1, 3.2 and 3.3.

Table 3.1: Standard 1|ri, qi|Cmax instances, k = 15

Parameters Algorithm
No. of instances solved within No. Iter

Unsol Avg. Iter Avg. Time
< 10 < 100 < 1000 < 10000 Sol

n = 50

Bal 411 982 983 988 991 9 12.2 5.5
BalDepth 409 981 983 988 991 9 12.2 4.0
LBFS 853 989 992 995 997 3 4.2 2.9
LDepth 855 988 992 995 997 3 4.1 2.9

n = 100

Bal 263 992 993 993 995 5 21.0 17.3
BalDepth 263 992 993 993 995 5 21.0 14.5
LBFS 835 994 995 996 996 4 5.0 4.2
LDepth 835 994 995 996 996 4 5.0 4.7

n = 200

Bal 208 992 995 996 996 4 30.7 69.1
BalDepth 208 992 995 996 996 4 30.7 66.1
LBFS 906 996 998 998 998 2 3.7 5.4
LDepth 906 996 998 998 998 2 3.7 5.6

n = 500

Bal 195 999 999 999 1000 0 33.3 407.5
BalDepth 195 858 999 999 1000 0 33.4 408.5
LBFS 996 999 1000 1000 1000 0 1.6 5.8
LDepth 996 999 1000 1000 1000 0 1.6 6.5

n = 1000

Bal 198 878 998 998 998 2 31.9 1626.1
BalDepth 198 878 998 998 998 2 31.9 1532.7
LBFS 995 998 998 998 998 2 1.7 13.5
LDepth 995 998 998 998 998 2 1.7 18.5

30

Table 3.2: Standard 1|ri, qi|Cmax instances, k = 20

Parameters Algorithm
No. of instances solved within No. Iter

Unsol Avg. Iter Avg. Time
< 10 < 100 < 1000 < 10000 Sol

n = 50

Bal 492 981 987 990 993 7 11.3 3.8
BalDepth 493 981 987 990 993 7 11.3 3.0
LBFS 985 992 995 996 998 2 2.1 1.6
LDepth 985 992 995 996 998 2 2.1 1.7

n = 100

Bal 242 999 999 999 999 1 14.9 11.5
BalDepth 242 999 999 999 999 1 14.9 9.3
LBFS 998 999 999 999 999 1 1.5 1.2
LDepth 998 999 999 999 999 1 1.5 1.3

n = 200

Bal 215 999 999 999 999 1 22.9 49.5
BalDepth 215 999 999 999 999 1 22.9 48.7
LBFS 998 1000 1000 1000 1000 0 1.4 1.5
LDepth 998 1000 1000 1000 1000 0 1.4 1.9

n = 500

Bal 207 906 999 999 999 1 29.6 349.1
BalDepth 207 906 999 999 999 1 29.5 347.8
LBFS 999 1000 1000 1000 1000 0 1.4 4.0
LDepth 999 1000 1000 1000 1000 0 1.4 4.8

n = 1000

Bal 207 869 999 999 999 1 32.2 1622.3
BalDepth 207 869 999 999 999 1 32.2 1566.3
LBFS 1000 1000 1000 1000 1000 0 1.2 5.6
LDepth 1000 1000 1000 1000 1000 0 1.2 6.9

Table 3.3: Standard 1|ri, qi|Cmax instances, k = 25

Parameters Algorithm
No. of instances solved within No. Iter

Unsol Avg. Iter Avg. Time
< 10 < 100 < 1000 < 10000 Sol

n = 50

Bal 930 994 997 998 999 1 5.1 2.0
BalDepth 930 934 997 998 999 1 5.1 1.4
LBFS 996 997 999 999 1000 0 1.5 1.1
LDepth 996 997 999 999 1000 0 1.5 1.2

n = 100

Bal 748 995 996 999 999 1 6.9 4.5
BalDepth 748 995 996 999 999 1 6.9 3.2
LBFS 998 998 999 999 999 1 1.5 1.2
LDepth 998 998 999 999 999 1 1.5 1.2

(continued on next page)

31

Table 3.3: Standard 1|ri, qi|Cmax instances, k = 25 (continued)

Parameters Algorithm
No. of instances solved within No. Iter

Unsol Avg. Iter Avg. Time
< 10 < 100 < 1000 < 10000 Sol

n = 200

Bal 627 1000 1000 1000 1000 0 7.8 13.8
BalDepth 627 1000 1000 1000 1000 0 7.8 12.7
LBFS 1000 1000 1000 1000 1000 0 1.3 1.2
LDepth 1000 1000 1000 1000 1000 0 1.3 1.6

n = 500

Bal 428 997 998 998 998 2 11.9 125.8
BalDepth 428 997 998 998 998 2 11.9 126.4
LBFS 999 999 999 999 999 1 1.3 2.8
LDepth 999 999 999 999 999 1 1.3 3.2

n = 1000

Bal 394 1000 1000 1000 1000 0 13.8 609.7
BalDepth 394 1000 1000 1000 1000 0 13.7 573.8
LBFS 1000 1000 1000 1000 1000 0 1.2 5.4
LDepth 1000 1000 1000 1000 1000 0 1.2 7.0

Instances are grouped by the number of iterations needed to solve them. Tables

3.1, 3.2 and 3.3 report the number of instances in each group for each combination of

parameters. For example, each entry in the third column shows how many instances

the corresponding algorithm solves within 10 iterations; each entry in the forth column

shows how many instances are solved within 100 iterations, and so forth. The “Sol”

column contains the number of instances that are solved by an algorithm within the

time and iteration limits and the “Unsol” column contains the number of instances not

solved by an algorithm within the given limits. Finally, the last two columns record the

shifted geometric mean of the iteration counts using a shift of 10 (see Achterberg and

Wunderling [2]) and the shifted geometric mean of the running time (in milliseconds)

also using a shift of 10. The shifted geometric mean x̄ for a set of numbers x1, x2, ..., xn

is defined as

x̄ =

(
n∏
i=1

(xi + s)

) 1
n

− s,

where s is the shift.

32

Note that if a problem is not solved (either by reaching the iteration or time limit)

by an algorithm, the iteration number and running time when the algorithm stopped is

used when taking the mean, which introduces a bias against the algorithm with fewer

unsolved instances. Because the number of unsolved instances is small relative to the

overall number of instances, the impact is not significant. If an algorithm terminates

due to reaching either iteration limit or time limit on an instance, the ratio between

running time and the number of iterations approximately follows the ratio between

the average running time and the number of iterations of the corresponding group of

instances. In addition, running times less than one millisecond are rounded up to one

millisecond.

The performance of Bal is similar to what has been reported in previous studies

[13, 37]. The majority of the instances can be solved within 100 iterations and the

mean iteration numbers are low. However, instances where Bal required 1000 or more

iterations to solve appear in all combinations of parameters.

It can be observed that LDepth solved more instances and also solved them in fewer

iterations than Bal, as the majority of the instances are solved within 10 iterations.

Moreover, for large n (n = 500, 1000), the advantage of LDepth becomes more promi-

nent, particularly with regard to the mean running time. However, the reduction in

the number of iterations and running time can mostly be attributed to MLTH as there

is little difference between the performance of LBFS and LDepth or between the perfor-

mance of Bal and BalDepth. The reduction is substantial if comparing LBFS or LDepth

with Bal or BalDepth.

For further comparison between Bal and LDepth, instances that can be solved

within one second by both algorithms are discarded. For the remaining 2341 out of

15000 instances, the comparison results are reported in Table 3.4.

33

Table 3.4: Selected instances, Standard 1|ri, qi|Cmax

LDepth Bal

Bracket Instances Unsol Unsol Faster Slower Time Iter

All 2341 16 35 6 2320 535.4 25.5
[1, 3600] 2326 1 20 6 2320 565.6 33.4
[10, 3600] 108 1 20 2 106 1842.1 97.3
[100, 3600] 10 1 8 1 9 28618.8 3487.3

Table 3.4 groups the instances by running time. In column 1, the label “All” denotes

the set of all 2341 instances not discarded. The label “[t, 3600]” denotes the subset of

“All” instances for which at least one of the two algorithms requires t seconds or more

to solve, and at least one of the two algorithms is able to solve. Column 2 reports the

number of instances in each subset. Column 3 reports the number of unsolved instances

in each subset for LDepth. Columns 4 to 8 report the results for Bal. Column 4 is

the number of unsolved instances. Columns 5 and 6 report the number of instances

that Bal solved faster and slower than LDepth, respectively. If one algorithm solves

an instance and the other does not, then the former algorithm is considered to be

faster than the other on this instance. Columns 7 and 8 report the ratio of the shifted

geometric mean in running time and iteration between Bal and LDepth. Similar to

how unsolved instances are handled in previous tables, the iteration and running time

when the algorithm terminates are used for those instances.

It can be observed that LDepth has a clear advantage over Bal. Out of the 2326

instances solved by at least one of the two algorithms (the row of “[1, 3600]”), 2320

instances were solved by LDepth faster than Bal. In particular, Bal used on average

33.4 times the number of iterations and 565.6 times the running time than LDepth

on these 2326 instances. There are also 15 instances that cannot be solved by either

algorithm. In all 15 instances, both algorithms found solutions with the same makespan

when they terminated.

34

3.5.3 Instances with DPC

The four algorithms were then run on 1|ri, qi, dpc|Cmax. For each combination of n, k,

and p, 1000 instances were generated. The results are reported in Table 3.5 and 3.6.

We also experimented on instances generated with p > 0.02 as shown in Balas et al.

[7] but all algorithms performed similarly and most instances were solved within 10

iterations. Therefore, those instances are omitted.

Tables 3.5 and 3.6 are organized the same way as Tables 3.1, 3.2 and 3.3. The

performance of Bal in most instances is similar to what has been shown in Balas et al.

[7].

Table 3.5: 1|ri, qi, dpc|Cmax instances, k = 10

Parameters Algorithm
No. of instances solved within No. Iter

Unsol Avg. Iter Avg. Time
< 10 < 100 < 1000 < 10000 Sol

n = 50,

p = 0.01

Bal 122 951 959 965 966 34 28.5 14.8
BalDepth 122 948 964 970 971 29 27.5 17.2
LBFS 521 958 966 972 974 26 15.9 9.9
LDepth 523 955 972 979 980 20 15.0 9.2

n = 50,

p = 0.02

Bal 457 984 985 986 989 11 13.3 6.0
BalDepth 457 983 987 988 990 10 13.2 7.2
LBFS 819 990 990 991 992 8 6.3 3.2
LDepth 830 991 993 994 994 6 6.1 3.2

n = 100,

p = 0.01

Bal 265 996 996 996 996 4 14.5 13.9
BalDepth 265 996 996 996 996 4 14.5 15.0
LBFS 816 998 998 998 998 2 5.2 4.3
LDepth 816 998 998 998 998 2 5.2 4.8

n = 100,

p = 0.02

Bal 942 1000 1000 1000 1000 0 4.7 4.2
BalDepth 943 1000 1000 1000 1000 0 4.7 4.1
LBFS 980 1000 1000 1000 1000 0 3.1 2.2
LDepth 980 1000 1000 1000 1000 0 3.1 3.0

35

Table 3.6: 1|ri, qi, dpc|Cmax instances, k = 15

Parameters Algorithm
No. of instances solved within No. Iter

Unsol Avg. Iter Avg. Time
< 10 < 100 < 1000 < 10000 Sol

n = 50,

p = 0.01

Bal 548 925 996 996 997 3 9.6 3.6
BalDepth 548 994 996 996 997 3 9.6 4.5
LBFS 925 999 1000 1000 1000 0 3.1 1.4
LDepth 925 1000 1000 1000 1000 0 3.1 2.1

n = 50,

p = 0.02

Bal 917 996 997 998 999 1 5.0 1.9
BalDepth 916 996 997 998 999 1 5.0 2.4
LBFS 972 999 999 999 1000 0 2.7 1.2
LDepth 972 999 999 999 1000 0 2.7 1.5

n = 100,

p = 0.01

Bal 875 1000 1000 1000 1000 0 5.2 4.0
BalDepth 875 1000 1000 1000 1000 0 5.2 3.6
LBFS 980 1000 1000 1000 1000 0 2.5 1.5
LDepth 980 1000 1000 1000 1000 0 2.5 2.3

n = 100,

p = 0.02

Bal 992 1000 1000 1000 1000 0 3.1 2.8
BalDepth 992 1000 1000 1000 1000 0 3.1 2.4
LBFS 997 1000 1000 1000 1000 0 2.1 1.4
LDepth 997 1000 1000 1000 1000 0 2.1 2.1

It can be observed that LDepth solved more instances and solved more instances

quickly than Bal, though the difference between LDepth and Bal in mean iteration and

running time is less prominent than the difference reported in Section 3.5.2. However,

CBFS-depth contributes more to the overall performance gain than on instances with-

out DPCs as some instances are solved with BalDepth but not Bal, and LDepth but

not LBFS when n = 50 and k = 10.

Similar to Section 3.5.2, instances that can be solved by both Bal and LDepth

within one second are discarded, which leaves 67 instances. The comparison results

are reported in Table 3.7.

Table 3.7 is organized the same way as Table 3.4. Out of the 67 instances, 27 cannot

be solved by either algorithm. LDepth solved 25 instances unsolved by Bal, and solved

11 instances in fewer iterations than Bal. Bal only solved 1 instance unsolved by

36

LDepth, and solved 3 instances in fewer iterations. Out of the 40 instances solved by

at least one of the two algorithms (the row of “[1, 3600]”), Bal used on average 336.9

times the number of iterations and 301.2 times the running time than LDepth.

Table 3.7: Selected instances, 1|ri, qi, dpc|Cmax

LDepth Bal

Bracket Instances Unsol Unsol Faster Slower Time Iter

All 67 28 53 4 36 25.7 31.1
[1, 3600] 40 1 26 4 36 301.2 336.9
[10, 3600] 32 1 26 1 31 887.1 988.9
[100, 3600] 2 0 2 0 2 6884.5 5085.2

Moreover, out of the 27 instances that cannot be solved by either algorithm, LDepth

found strictly better feasible solutions than Bal in 15 instances, and both algorithms

found solutions with the same makespan in the other 12 instances.

Table 3.8: Selected instances, 1|ri, qi, dpc|Cmax

LDepth LBFS

Bracket Instances Unsol Unsol Faster Slower Time Iter

All 47 28 36 3 16 3.4 3.5
[1, 3600] 19 0 8 3 16 20.3 24.7

We can also compare LDepth and LBFS in the same way and the results are shown

in Table 3.8, organized in the same way as in 3.7. There are a total of 8 instances

that LDepth solves and LBFS does not and 8 other instances that LDepth is faster than

LBFS.

3.6 Conclusion and Future Work

This chapter presents an improved branch-and-bound algorithm (LDepth) based on the

Bal algorithm of Balas et al. [7]. MLTH is proposed based on the existing longest tail

37

heuristic LTH to generate feasible schedules, and a rescheduling process is presented to

make sure that schedules created by MLTH are valid in the branching process. Both

LTH and MLTH are used in LDepth to generate good feasible solutions. The behavior

of BFS with both FIFO and LIFO tie-breaking rules on the one-machine scheduling

problem is discussed and the cyclic best-first search strategy with the depth contour

(CBFS-depth) is presented for LDepth to balance the diversity and intensity of the

search. Computational results are reported showing that LDepth outperforms Bal

on both 1|ri, qi|Cmax and 1|ri, qi, dpc|Cmax. On a number of instances, an order of

magnitude improvement is observed in terms of iteration number and running time of

the algorithm.

There are a number of directions that future research on this subject can take.

First, the one-machine problem discussed in this chapter appears in the Shifting Bot-

tleneck, SB, method (Adams et al. [3]) that solves the job shop scheduling problem

approximately as subproblems. Balas et al. [7] has shown that using Bal to solve

1|ri, qi, dpc|Cmax leads to better performance of SB over other methods solving job shop

scheduling problem. Future work can examine the performance of SB with LDepth.

Different methods for updating heads and tails in 1|ri, qi|Cmax have been proposed,

such as the edge-finding technique (see Baptiste et al. [8]). A branching scheme that

allows better progress than Bal when conditions for the branching scheme in Car are

not satisfied, is possible. Research can be performed to find ways to discover new

methods for the one-machine scheduling problem.

Future research can introduce better lower bound methods into the algorithm. In

particular, the lower bound method proposed in Pan and Shi [35] can be incorporated

to further improve performance. Additionally, this lower bound could potentially be

adopted to solve 1|ri, qi, dpc|Cmax in addition to 1|ri, qi|Cmax.

38

Chapter 4

The Number of Nodes Explored by

CBFS

4.1 Introduction

In Chapter 3, we have observed that the numbers of nodes explored to prove optimality

can be smaller than BFS on the problems 1|ri, qi|Cmax and 1|ri, qi, dpc|Cmax. In fact,

in the B&B algorithms proposed using CBFS-depth [23, 38, 39, 32], the numbers of

nodes explored to prove optimality is frequently smaller than that of BFS.

On the other hand, CBFS-depth is known to explore no less number of nodes than

BFS on some other problems [33, 34]. To keep the analysis independent of specific

problems, we will use the number of nodes explored to prove optimality to represent the

performance of the search strategies. The reasons for the variation in the performance

of CBFS-depth in comparison to BFS on different problems have not been studied

further. In this chapter, our goal is then to investigate the performance variation by

looking into the characteristics of a search tree (not specific to any particular problem)

that can lead to CBFS-depth exploring fewer nodes than BFS to prove optimality.

39

The study of the performances of search strategies regarding the number of nodes

explored in general terms has been done for DFS and BFS. Vempaty et al. [42] studies

the time and space complexity of search strategies including BFS and DFS on a tree

model where nodes with the same costs are in the same depth level. The cost of a

node can be considered as a lower bound used as µLB by BFS and the solution value

if the node is a solution. As a result, once a solution is found, only nodes in smaller

depth levels have to be explored. Each node in the same depth level is assumed to

have the same probability (referred to as solution density) of being a solution. Given a

factor on the number of child nodes that can be generated from a parent node, as well

as the solution densities (probabilities of the nodes containing the optimal solution),

the authors discuss the expected number of nodes to be explored by different search

strategies. Zhang and Korf [46] proposes a random search tree model with random

non-negative edge costs (the cost of a node is the sum of the costs of edges on the

path to reach the node) and variable branching factor to study the expected number

of nodes to be explored to prove optimality of the two search strategies. In more

recent years, studies on search strategies have focused on computational experiments

[28, 1]. Although Bourgeois et al. [10] studies the average-case performance of BFS on

a maximum independent set problem.

In terms of CBFS-depth, Morrison et al. [34] shows that the worst-case performance

in terms of the number of explored nodes of CBFS-depth is significantly worse than

that of BFS. Despite the worst-case performance, the authors suggest that the reason

for CBFS-depth strategy exploring fewer nodes than BFS on some problems is that,

by grouping nodes into different contours, it can be used to distinguish nodes with

the same µ value which are not distinguished by BFS. In particular, we expand on

this idea and seek to answer the following question: if the assumption of the absence

of ties in measure-of-best function is not met, and BFS cannot be proven to explore

40

the smallest number of nodes of any search strategy, can CBFS-depth explore fewer

nodes than BFS given some characteristics of the measure-of-best function values of

the nodes in the search tree.

To facilitate the investigation, we first propose a search tree model that allows

control over the distribution of nodes with different measure-of-best function value,

and the average-case performance (the expected number of nodes explored to prove

optimality) are measured on the search trees. Then the observations based on the

results from the search tree model can be tested on optimization problems.

Let B&B-CD denote a B&B algorithm with the CBFS-depth strategy and B&B-BFS

denote a B&B algorithm with the BFS strategy, and let the measure-of-best function

return a lower bound for each node. First, we present assumptions of the B&B al-

gorithm and the search tree model that are necessary for our analysis. Second, the

search tree model is presented. Third, we study the average number of nodes explored

by both B&B-BFS and B&B-CD on search trees generated using the proposed model to

determine the scenarios in which B&B-CD explores fewer nodes than B&B-BFS. Finally

we test the effectiveness and the limitation of the conclusions from generated search

trees on several problems.

The rest of this chapter is organized as follows. In Section 4.2, assumptions nec-

essary for our analysis on the B&B algorithm and the associated search trees are

presented, and a search tree model is proposed. In Section 4.3 we propose a way to

estimate the expected number of nodes explored by B&B-CD on the search tree model.

In section 4.4, numerical results of applying B&B-BFS and B&B-CD on the search trees

generated using the proposed model are presented. The impact of nodes with different

lower bounds on the performance of B&B-BFS and B&B-CD is discussed and tested on

several problems, including a scheduling problem and some mixed integer program-

ming (MIP) problems. Section 4.5 concludes the chapter and briefly discusses future

41

research possibilities.

4.2 Assumptions and Search Tree Definition

Morrison et al. [34] provides a worst-case bound for the number of nodes generated

by CBFS in comparison to the number of nodes explored by BFS, which we restate in

Theorem 4.1.

Theorem 4.1. Assume that µ is an admissible measure-of-best function (i.e. provides

a valid lower bound for the region of the solution space represented by a node) for a

B&B algorithm that does not use dominance relations, and assume that there does not

exist any pair of nodes l, l′ for which µ(l) = µ(l′). Furthermore, assume that there is

exactly one optimal solution in X, and let l1, l2, . . . , lt be the sequence of nodes explored

by BFS using µ. Then for a fixed labeling function κ, CBFS generates children at

no more than t times the number of contours that are non-empty during at least one

iteration of the B&B algorithm.

Theorem 4.1 is too conservative to predict the performance of CBFS in practice.

In the case of CBFS-depth, the number of non-empty contours can be as large as the

maximum depth level of the search tree. Moreover, the assumption that all nodes

have distinct lower bound values is rarely satisfied. Therefore, instead of analyzing the

worst-case performance in general, given a set of search trees, we are interested in the

average number of nodes explored to prove optimality by B&B-BFS and B&B-CD, as it

may better reflect the effectiveness of the search strategies in practice.

In this section we propose a search tree model that we can use to randomly generate

search trees on which to apply B&B-BFS and B&B-CD. We can also provide an estimation

of the expected number of nodes explored given a search tree model as well. However,

assumptions have to be made for the B&B algorithm and the search tree model to

42

emphases the aspect of the search tree that can lead to difference in the performance

between B&B-BFS and B&B-CD.

Assumption 4.2. The measure-of-best function used in CBFS-depth and BFS is µLB(l) :=

fLB(l) for a node l.

Assumption 4.3. The only pruning strategy used is pruning a node l when either

fLB(l) ≥ Ẑ, f ∗RL(l) ≥ Ẑ, or the relaxation solution is feasible to the original problem.

We assume no relaxation is infeasible, so no pruning can be done by infeasibility.

Assumption 4.4. The branching is binary (i.e., exactly two child nodes are generated

when branching).

Assumptions 4.2, 4.3 and 4.4 restrict the complexity of the B&B algorithms to

concentrate on the difference in search strategies. In particular, Assumptions 4.2 and

4.3 indicate that all nodes with fLB < Z∗ have to be explored by any search strategy.

Therefore, the number of nodes with fLB ≥ Z∗ that a search strategy has to explore

determines its performance.

When Assumptions 4.2 and 4.3 hold, we can make the following observation on the

number of nodes explored by B&B-CD and B&B-BFS on a search tree.

Theorem 4.5. Given Assumptions 4.2 and 4.3, on a search tree where optimal solu-

tions are found on nodes with fLB < Z∗, B&B-BFS explores no more nodes than B&B-CD.

Proof. Under Assumptions 4.2 and 4.3, once an optimal solution is found, there is no

need to explore nodes with fLB ≥ Z∗. As a result, because B&B-BFS explores all nodes

with fLB < Z∗ before any nodes with fLB = Z∗, if an optimal solution can be obtained

by exploring some nodes with fLB < Z∗, then B&B-BFS will not explore any node with

fLB ≥ Z∗. Because nodes with fLB < Z∗ must be explored by any search strategy,

B&B-BFS explores no more nodes than B&B-CD. �

43

On the other hand, if no solutions are found by exploring nodes with fLB < Z∗,

then B&B-BFS may explore more nodes with fLB = Z∗ than the number of nodes

with fLB ≥ Z∗ explored by B&B-CD to find an optimal solution. Therefore, based on

Theorem 4.5, if B&B-CD explores fewer nodes than B&B-BFS on a search tree, solutions

in this search tree can only be found by exploring nodes with fLB = Z∗.

Let ECD be the expected number of nodes explored to prove optimality by B&B-CD

and EBFS be the expected number of nodes explored to prove optimality by B&B-BFS.

Since we are interested in the characteristics of the search trees where ECD < EBFS is

possible, we have the following assumption on search trees.

Assumption 4.6. Optimal solutions can only be found by exploring nodes with fLB =

Z∗.

Finally, the following assumptions limit the variability in a search tree that needs

to be accounted for in the comparison between search strategies.

Assumption 4.7. Feasible solutions are only found in the maximum depth level.

Assumption 4.8. Suboptimal solutions cannot be used for pruning.

If Assumptions 4.7 and 4.8 hold, then there are no suboptimal feasible solutions

to the original problem to be found in any depth level except in the maximum depth

level and no way to prune any nodes with fLB > Z∗ until an optimal solution is found.

As such, there is no need to distinguish between nodes whose lower bounds are greater

than Z∗. Thus, the search tree can be viewed to have only three types of nodes based

on the lower bound: nodes with fLB < Z∗, nodes with fLB = Z∗ and nodes with

fLB > Z∗. The assumptions also guarantee a complete binary tree, so that we know

the exact number of nodes in each depth level during each cycle prior to the discovery

of an optimal solution.

44

Note that B&B-BFS does not explore any nodes with fLB > Z∗ and hence does

not benefit from having suboptimal feasible solutions that may be used to prune some

nodes with fLB > Z∗. On the other hand, if some nodes with fLB > Z∗ are pruned,

it is less likely that B&B-CD examines a depth level that only has unprocessed nodes

with fLB > Z∗. Therefore, B&B-CD can potentially explore fewer nodes if suboptimal

solutions can be used for pruning.

We are now ready to define the search tree model on which to analyze the perfor-

mance of B&B-CD and B&B-BFS. We will refer to the nodes with fLB < Z∗ as L-type

nodes, the nodes with fLB = Z∗ as E-type nodes and the nodes with fLB > Z∗ as

G-type nodes.

Definition 4.9. Let T (d, p, q, r) be a set of search trees determined by the following

parameters:

• d is the maximum depth of the search tree.

• p is the probability of an E-type node producing an optimal solution in depth level

d.

• qi := qi−1 is the probability that an L-type node in depth level i = 1, 2, . . . , d − 1

produces f ∗RL < Z∗.

• ri := rd−i is the probability that an L-type or an E-type node in depth level

i = 1, 2, . . . , d− 1 produces f ∗RL > Z∗.

• By Assumption 4.8, all nodes in depth level d have either an optimal solution or

a suboptimal solution. Therefore, in depth level d, an E-type node has probability

1− p to produce f ∗RL > Z∗ and all L-type and G-type nodes produce f ∗RL > Z∗.

We also make the following comments:

45

• The root node lroot is considered an L-type node.

• Since the relaxation of an L-type node in depth level i = 1, 2, . . . , d− 1 has three

possibilities: f ∗RL < Z∗, f ∗RL = Z∗ or f ∗RL > Z∗, the choice of q and r are only

valid when the following inequality

qi + ri ≤ 1 (4.1)

is satisfied for all i = 1, 2, . . . , d− 1.

• An L-type node in depth level i has probability 1 − qi − ri to produce f ∗RL = Z∗.

An E-type node in depth level i has probability 1− ri to produce f ∗RL = Z∗.

• An E-type node in depth level i has probability 0 to produce f ∗RL < Z∗, and a

G-type node has probability 0 to produce f ∗RL ≤ Z∗.

4.3 Estimate ECD

Before we apply B&B algorithms on the search trees from T (d, p, q, r), we first present

an estimation of ECD on those search trees. This also provides theoretical information

on the performance of CBFS-depth when we test it against BFS in Section 4.4.1.

Before finding an optimal solution, B&B-CD examines each depth level that still has

unprocessed nodes in each cycle. For example, in the first cycle, all depth levels have

unprocessed nodes. In the second cycle, all depth levels except the first level (root

node level) have unprocessed nodes. Then if no optimal solution is found, contour i

has unprocessed nodes in the first 2i−1 cycles.

The number of nodes explored in the kth cycle is d− dlog2 ke, where dlog2 ke is the

smallest integer greater than or equal to log2 k and represents the number of depth

46

levels that no longer have any unprocessed nodes in the kth cycle. Let Dj be the

number of nodes that have been explored in the first j cycles. Then Dj can be written

as

Dj :=

j∑
k=1

(d− dlog2 ke) . (4.2)

Let ECD := E
(1)
CD + E

(2)
CD where E(1)

CD and E
(2)
CD are the expected number of nodes

explored by B&B-CD to find an optimal solution and the expected number of nodes

explored after an optimal solution is found, respectively. Theorem 4.10 provides an

expression of E(1)
CD.

Theorem 4.10. Let the probability of exploring a node with an optimal solution in

depth level d during cycle j be ρj. In particular, let ρ2d−1 = 1 as the algorithm termi-

nates after the last unprocessed node in the search tree is explored. Then

E
(1)
CD =

2d−1−1∑
j=1

(
Djρj

j−1∏
k=1

(1− ρk)

)
. (4.3)

Proof. The first j cycles explore Dj nodes in total. The probability that the node

explored in depth level d in the first cycle produces an optimal solution is ρ1. The

probability that the node explored in depth level d in the ith cycle produces an optimal

solution is ρj
∏j−1

k=1(1 − ρk). The probability that all the nodes in the search tree are

explored is ρ2d−1

∏2d−1−1
k=1 (1 − ρk). Given the number of nodes explored in previous

cycles in (4.2) and the probabilities of finding an optimal solution in each cycle, we can

derive the expectation as (4.3). �

4.3.1 The probabilities of selecting an E-type node

The probability ρi is the product of p and the probability of an E-type node being

selected in depth level d cycle j. In particular, we want to know the probability that

47

level d has no L-type nodes and at least one E-type node in cycle j, for all valid j. As

a result, it is necessary to know the probability of each combination of different types

of nodes in depth level i cycle j − 1, as well as the probability of each combination of

different types of nodes in depth level i− 1 cycle j for all valid pairs of i and j.

Let N i,j
L , N i,j

E and N i,j
G be the number of unprocessed nodes of L-type, E-type,

and G-type respectively, in depth level i cycle j when a node is to be selected from

the depth level. Then the probability τi,j,l,e,g := P (N i,j
L = l, N i,j

E = e,N i,j
G = g) is the

probability that there are l unprocessed L-type nodes, e unprocessed E-type nodes and

g unprocessed G-type nodes in depth level i cycle j when a node is to be selected.

The number of nodes of each type in depth level i cycle j depends on the number

of nodes of each type in depth level i cycle j − 1 and the child nodes added to depth

level i cycle j after exploration of a node in cycle j − 1. There can either be no node

added to depth level i cycle j, or two nodes that can be L-type, E-type or G-type. For

instance, if there are two L-type nodes added to depth level i cycle j, in order to have

exactly l unprocessed L-type nodes, e unprocessed E-type nodes and g unprocessed

G-type nodes in depth level i cycle j means that there must be exactly l − 1 L-type

nodes in depth level i cycle j − 1, assuming l − 1 > 0, and the number of E-type and

G-type nodes unchanged (one L-type nodes is selected for exploration in depth level i

cycle j − 1).

Conditioning on this observation, the probability τi,j,l,e,g can be written as

τi,j,l,e,g = P
(
N i,j−1
L = l + 1, N i,j−1

E = e,N i,j−1
G = g|Ai−1,j0

)
∗ P

(
Ai−1,j0

)
+ P

(
N i,j−1
L = l − 1, N i,j−1

E = e,N i,j−1
G = g|Ai−1,jL

)
∗ P

(
Ai−1,jL

)
+ P

(
N i,j−1
L = l + 1, N i,j−1

E = e− 2, N i,j−1
G = g|Ai−1,jE

)
∗ P

(
Ai−1,jE

)
+ P

(
N i,j−1
L = l + 1, N i,j−1

E = e,N i,j−1
G = g − 2|Ai−1,jG

)
∗ P

(
Ai−1,jG

)
,

(4.4)

48

where Ai−1,j0 is the event that there are no child node is generated in depth level i− 1

cycle j. Similarly, Ai−1,jL , Ai−1,jE and Ai−1,jG are the events that the child nodes generated

in depth level i − 1 cycle j is of L-type, E-type, and G-type, respectively. Note that

the equation does not work for the edge cases with l, e, g ≤ 1. However, the edge cases

are covered when we estimate the value of τi,j,l,e,g with τ̂i,j,l,e,g in Appendix B.

The event of a particular combination of nodes occurring in depth level i cycle j−1

and the event of a particular combination of nodes occurring in depth level i−1 cycle j

are not independent. For example, given a partial search tree in which 2 L-type nodes

are generated for depth level 3 cycle 1, the nodes in depth level 2 must both be L-type

nodes as well, which also implies that an L-type node is selected in depth level 2 cycle

2. Then the probability of getting two new E-type nodes in depth level 3 in cycle 2

is different from when we do not know which type of node is selected in depth level 2

cycle 2.

Finding the probability of getting an E-type node in depth level d cycle j requires

keeping track of the probabilities of all possible combinations of nodes in previous

levels, which would be impractical for trees of reasonable sizes.

If independence between combinations of different types of nodes in depth level i

cycle j − 1 and depth level i − 1 cycle j is assumed, the probability of selecting an

E-type node in depth level i cycle j, which we refer to as τ̂i,j,l,e,g, can be estimated with

τ̂i,j,l,e,g = τ̂i,j−1,l+1,e,g ∗ P
(
Ai−1,j0

)
+ τ̂i,j−1,l−1,e,g ∗ P

(
Ai−1,jL

)
+ τ̂i,j,l+1,e−2,g ∗ P

(
Ai−1,jE

)
+ τ̂i,j,l+1,e,g−2 ∗ P

(
Ai−1,jG

)
(4.5)

The probabilities obtained in this way do not lead to the correct expectation ECD,

49

but as we will show, on randomly generated search trees from T (d, p, q, r) with the

parameters that we have tested, the probabilities lead to close estimations of ECD. We

will use Ê(1)
CD to represent this estimation.

The detail of computing τ̂i,j,l,e,g can be found in Appendix B. Once the values of

τ̂i,j,l,e,g are obtained for all i, j, l, e and g, we can estimate the probability ρj to be

ρj = p
(
τ̂d,j,0,∗,∗ − τ̂d,j,0,0,gd,jmax

)
(4.6)

where gd,jmax is the maximum number of unprocessed nodes in depth level d cycle j, and

τ̂d,j,0,∗,∗ is the probability that l = 0 in depth level d cycle j. We can compute the value

of Ê(1)
CD once we substitute (4.6) in Theorem 4.10.

4.3.2 Estimate E(2)
CD

Once an optimal solution is obtained, any unprocessed L-type nodes have to be ex-

plored. Therefore, we need to calculate the expected number of L-type nodes after an

optimal solution is found.

Only L-type nodes can have f ∗RL < Z∗ and generate L-type child nodes. The

expected number of L-type nodes in the search tree, which we refer to as EQ, can then

be written as

EQ = 1 +
d∑
i=2

2i−1
i−1∏
j=1

qj. (4.7)

The estimated probability of selecting an L-type node in depth level i cycle j can

be written as

P̂ (N i,j
L > 0) = 1− τ̂i,j,0,∗,∗. (4.8)

We can estimate the expected number of L-type nodes selected before an optimal

solution is found, by adding the probabilities P̂ (N i,j
L > 0) for all i and j before iteration

50

Ê
(1)
CD. In particular, we can find the number of cycles Ncycle it takes to explore Ê(1)

CD

nodes, and use the following formula to obtain an estimate of E(2)
CD, which we refer to

as Ê(2)
CD:

Ê
(2)
CD = EQ −

Ncycle∑
j=1

d∑
i=dlog2 je+1

P̂ (N i,j
L > 0). (4.9)

Combining the values of Ê(1)
CD and Ê(2)

CD lead to an estimate of the expectation ECD,

which we refer to as ÊCD.

4.4 Numerical Experiments

In this section, we first compare the average number of nodes explored by B&B-BFS and

B&B-CD on search trees randomly generated based on the tree model in Definition 4.9.

The implications of the performance difference between the two search strategies are

discussed. Moreover, the one machine scheduling problem 1|ri, qi|Cmax and some MIP

problems are used to demonstrate how the analysis on the randomly generated search

trees can be used to evaluate whether B&B-CD may be able to outperform B&B-BFS.

An important aspect of the search strategies BFS and CBFS-depth that is not

specified yet is the tie-breaking rules. On one hand, the tie-breaking rule does not

affect the performance of CBFS-depth on the random search trees we defined as the

probabilities are the same in each depth level where tie-breaking is needed. On the

other hand, the tie-breaking rule can affect the number of E-type nodes that BFS has

to explore based on Assumptions 4.3 and 4.6.

It can be observed that, given a search tree of nodes with the same fLB, BFS with

First-In-First-Out (FIFO) tie breaking rule behaves like breadth first search, and BFS

with Last-In-First-Out (LIFO) tie breaking rule behaves like DFS. As a result, both

rules have the advantages and disadvantages of the search strategies they resemble. For

51

BFS to not be affected by these potential extreme behaviors, we choose the arbitrary

tie-breaking rule for B&B-BFS in our experiments.

All numerical experiments were done on a Desktop with an Intel Core i7 3.6GHz

quad core processor and 16GB of RAM; all implementations were written in C++.

4.4.1 Randomly generated search trees

We first applied B&B-BFS and B&B-CD on randomly generated search trees from T (d, p, q, r).

For each node in depth level i < d of the search tree, its relaxation solution f ∗RL

was determined with the following rules: with probability qi, let f ∗RL := Z∗ − 1; with

probability ri, let f ∗RL := Z∗ + 1; otherwise, let f ∗RL := Z∗. In the maximum depth

level of the search tree, if a node does not produce an optimal solution, then it has a

suboptimal solution with objective value Z∗ + 2 so that finding such a solution does

not allow for pruning other nodes from the search tree, as required by Assumption 4.8.

Let d = 12 and p = 0.05. We test pairs of q and r in the range between 0.1

and 1 that satisfy inequality (4.1). For each valid pair of q and r, 1000 instances

are generated. Because the number of E-type nodes in the maximum depth level is

limited, in rare occasions there can be no node in the generated search with an optimal

solution, in which case all nodes in the search will have to be explored before the

algorithm terminates. We will indicate the combinations of parameters in which this

occurs.

52

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

0

200

400

600

800

1000

1200

N
um

be
r

of
 N

od
es

Average Number of Nodes Explored (r=0.3)

B&B-BFS
B&B-CD
Expectation B&B-CD

Figure 4.1: Comparison of B&B-BFS, B&B-CD and CBFS-depth expectation by q

Figure 4.1 shows the average number of nodes explored by B&B-BFS and B&B-CD as

well as the estimation ÊCD as q varies with r = 0.3 fixed. When q is small, B&B-CD

is consistently better than B&B-BFS. As q becomes larger, B&B-CD eventually explores

more nodes on average than B&B-BFS.

On the other hand, the estimation never deviates far from the average results from

simulation which shows that the probabilities we calculated should be close to the true

probabilities on a randomly generated search tree t ∈ T (d, p, q, r). In Appendix C,

we present a comparison of the computed probability of selecting an E-type node in

depth level d cycle j against the proportion of the search trees in the simulation in

which an E-type node is explored in depth level d cycle j. The results indicate that

the estimation does not stray away from the proportions obtained in the simulation.

Figure 4.2 shows how the probabilities of selecting an E-type node in depth level d

53

for each cycle (as we calculated) changes as q changes. As q grows, B&B-CD has decreas-

ing probabilities of selecting an E-type node in early cycles. Therefore, B&B-CD needs

to take additional cycles to find an optimal solution. It then becomes a disadvantage

that each cycle has to go through all depth levels that are not empty yet as the only

remaining nodes in some levels may be of E-type or G-type. It explains the reason

that B&B-CD explores more nodes than B&B-BFS when q is large.

0 50 100 150 200 250 300

Cycle No.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Probabilities of Selecting Node With f
LB

 = Z* Each Cycle (r = 0.3)

q = 0.9
q = 0.93
q = 0.96
q = 0.5

Figure 4.2: Probabilities of selecting E-type nodes in level d during each cycle (r = 0.3)

Figure 4.3 shows the average number of nodes explored by B&B-BFS and B&B-CD

as well as the estimation ÊCD when r changes and q = 0.5. Similar to the previous

comparison, B&B-CD consistently explores fewer nodes than B&B-BFS when r is small.

The sharp increase in average number of nodes explored when r = 0.8 can be attributed

to many search trees not having any node with an optimal solution of Z∗ which leads

to all 4095 nodes in the search trees explored. When taking the average of all instances

where an optimal solution of Z∗ is found, we find that the average number of nodes

54

explored by B&B-BFS is 190.2 while the average number of nodes explored by B&B-CD is

225.0. It is consistent with our previous discussion that, with large r, B&B-BFS explores

fewer nodes than B&B-CD. B&B-CD cycles through all non-empty depth levels and is more

likely to explore many G-type nodes with large r.

On the other hand, the estimation remains accurate and the probabilities we cal-

culated should be close to the true probabilities on any particular search tree t ∈

T (d, p, q, r).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 N

od
es

Average Number of Nodes Explored (q=0.5)

B&B-BFS
B&B-CD
Expectation B&B-CD

Figure 4.3: Comparison of B&B-BFS, B&B-CD and CBFS-depth expectation by r

Figure 4.4 shows how the probabilities of selecting an E-type node in depth level d

each cycle (as we calculated) changes as r changes. The increase of r leads to smaller

probabilities of selecting an E-type node in all cycles. As a result, G-type nodes are

more likely to be selected in early cycles with large r, which also makes B&B-CD less

effective than B&B-BFS when r is small.

55

0 50 100 150 200 250 300

Cycle No.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y

Probabilities of Selecting Node With f
LB

 = Z* Each Cycle (q = 0.5)

r = 0.6
r = 0.7
r = 0.8

Figure 4.4: Probabilities of selecting E-type nodes in level d during each cycle (q = 0.5)

We choose to show the results of the search strategies with r = 0.3 and q = 0.5 as

they are representative of the behavior we have observed in other pairs of q and r. In

summary, when the number of E-type nodes is high in the regions of the search tree

where optimal solutions can be found, B&B-CD may explore fewer nodes than B&B-BFS.

4.4.2 One machine scheduling problem

Chapter 3 shows that the search trees of instances of 1|ri, qi, dpc|Cmax often contain

a large number of E-type nodes, and uses CBFS-depth as the search strategy for the

proposed algorithm. For convenience, in the context of the one machine scheduling

problem discussed in this chapter, we will use B&B-CD to represent the B&B algorithm

LDepth, and B&B-BFS to represent LBFS. With the algorithms, we can investigate the

search trees and see if the observations from generated search trees remain useful.

We generate 2000 instances of the problem (details on problem generation can be

56

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Log Multiplier (Base 2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n

of
 P

ro
bl

em
s

S
ol

ve
d

Performance Profile: E-type Node Percentage less than 50%

B&B-BFS
B&B-CD

(a) E-type node percentage less than 50%

0 1 2 3 4 5 6 7 8 9 10

Log Multiplier (Base 2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 P
ro

bl
em

s
S

ol
ve

d

Performance Profile: E-type Node Percentage at least 50%

B&B-BFS
B&B-CD

(b) E-type node percentage more than 50%

Figure 4.5: Performance profiles from the one machine scheduling problems

found in Section 3.5.1) where 1000 instances are generated with n = 50, k = 10 and

p = 0.01, and 1000 instances are generated with n = 50, k = 10 and p = 0.02. The

arbitrary tie-breaking rule is used following our previous experiments. We set the time

limit to 3600 seconds and number of nodes explored limit to 100000. Since most of the

instances are solved with a few nodes explored, to better demonstrate the difference in

performance between the search strategies, we only use instances that take at least 0.1

second to solve and are solved by at least one of the two algorithms, which results in

311 instances.

Figure 4.5 shows the performance profile [18] of B&B-CD and B&B-BFS on the 311

instances using the number of nodes explored as metric. A performance profile plots

the fraction of instances (y-axis) solved by B&B-BFS and B&B-CD within a given multiple

(x-axis) of the fastest one. A higher line to the left side of the plot indicates the ability

to solve more instances faster (better efficiency) and a higher line to the right side

indicates the ability to solve more instances (robustness). For all profiles presented,

the log of the multiplier is used on the x-axis.

The instances are divided into two groups based on the percentage of E-type nodes

in the generated search tree. The percentage is computed using the generated search

57

trees from B&B-BFS, since we are interested to see if the percentage of E-type nodes

can be used as an indicator for the performance of B&B-CD.

First, there are 6 instances on which less than 50% of the generated nodes are E-type

nodes in Figure 4.5a. On these instances B&B-BFS explores fewer nodes than B&B-CD in

5 of them. Based on the performance profile, B&B-CD is not as efficient as B&B-BFS on

these instances. On the other hand, Figure 4.5b shows the performance profile of the

algorithms on 305 instances on which at least 50% of the generated nodes are E-type

nodes. There are 240 instances where B&B-CD explores fewer nodes than B&B-BFS and

it can be observed that B&B-CD performs substantially better than B&B-BFS in terms of

number of nodes explored on these instances. The results comply with our observation

on the generated search trees, that B&B-CD is more likely to outperform B&B-BFS when

the proportion of E-type nodes is high.

We have also experimented with our estimated expectation. The assumptions for

the generated search trees are difficult to satisfy as there is no obvious maximum depth

level and there are suboptimal solutions. But it would be interesting to see if, given

just the information about the search trees generated with B&B-BFS, there exists a

realistic scenario where the estimated expected number of nodes explored by B&B-CD

is smaller than the average number of nodes explored by B&B-BFS.

We took all instances in which more than 50% of the nodes generated by B&B-BFS

are E-type nodes and the average depth level is 7, the average proportion of L-type

nodes is 0.003 and the average proportion of G-type nodes is 0.05. We then set d = 7,

qi = 0.003 and ri = 0.05 for i = 2, 3, . . . , 6 while setting q1 = 1 and r1 = 0.

Figure 4.6 shows the change of the estimated expectation as the probability p

changes as well as the actual average number of nodes explored by both search strate-

gies. The solid line represents the average number of nodes explored by B&B-BFS over

all selected instances and the dash line represents the average number of nodes explored

58

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
p

10

20

30

40

50

60

70

N
um

be
r

of
 N

od
es

Expected and Average Number of Nodes Explored

B&B-BFS
B&B-CD
Expectation B&B-CD

Figure 4.6: Expected and Average Number of Nodes Explored

by B&B-CD. The dotted line represents the estimated expectation. Note that we see the

expectation become smaller than the average number of nodes explored by B&B-BFS

for p ≥ 0.2. It is an indication that a reasonable p value, B&B-CD can explore fewer

nodes than B&B-BFS on average, and we should try using B&B-CD on this problem.

4.4.3 Mixed integer programming problems

We also tested both BFS and CBFS-depth on 87 MIP problems from the MIPLIB 2010

library [25] “benchmark” instances with CPLEX 12.8 in a similar way as in Morrison

et al. [34]. In the context of solving MIP problems, we use B&B-CD to represent CPLEX

with CBFS-depth and B&B-BFS to represent CPLEX with BFS. Search strategies were

implemented using callback functions, which disabled the parallel search and dynamic

search options; to further isolate the effect of search strategies, advanced start methods

and cut generation were disabled. A 3600 seconds time limit is imposed on all problems.

However, given the complex nature of the solving process in CPLEX, it remains difficult

to represent the impact of the proportion of E-type nodes alone on the performance

of B&B-CD and B&B-BFS. Therefore, we only use one instance from the “benchmark”

instances to demonstrate that impact.

59

In particular, on problem “lectsched-4-obj”, B&B-BFS fails to find the optimal solu-

tion within 1 hour while B&B-CD is able to solve the problem in 7.71 seconds. With

the optimal solution we found by using B&B-CD, we examined the search tree after

1-hour search of B&B-BFS. A total of 880258 nodes are created, with 4 L-type nodes,

832440 E-type nodes and 47814 G-type nodes. This supports previous observations

that B&B-CD may be a better choice than B&B-BFS on a search tree with a large number

of E-type nodes.

It should be noted that there are several other problems where B&B-CD outper-

forms B&B-BFS, but there are only a few E-type nodes in those search trees created by

B&B-BFS. One advantage of using CBFS-depth that is not discussed in this chapter is

that by exploring nodes deep in a search tree early, B&B-CD may find a feasible solution

earlier than B&B-BFS, which may spend a long time exploring the nodes in the middle

of a search tree [34]. Finding feasible solutions early may help some pruning rules in

CPLEX to prune additional nodes including some L-type nodes. We will discuss this

advantage of CBFS more in Chapter 5.

4.4.4 Discussions

Given that BFS is used in a B&B algorithm, the observations in this section is useful to

determine if an alternative choice, CBFS-depth, may result in fewer number of nodes

explored.

The assumptions we have for the algorithm and search trees in order to analyze

the performance of both search strategies on the generated search trees are difficult to

satisfy in practice. However, the experiments provide valuable information regarding

the relation between the distribution of different types of nodes in search trees and

the performance of the search strategies. As our experiments with the one machine

scheduling problem show, there is a clear distinction in the distribution of different

60

types of nodes in the search trees between the instances where B&B-CD outperforms

B&B-BFS and the instances where B&B-CD does not. The distribution of E-type nodes

in the search trees serves as an indicator of whether B&B-CD has potential to outperform

B&B-BFS.

Similar to the one machine scheduling problem, we have observed that the search

trees generated by the same B&B algorithm on many instances of the same problem

group, such as the Simple Assembly Line Balancing problem, can have similar distri-

bution of E-type nodes in the search trees that B&B-CD can take advantage of [38].

Therefore, given a problem instance where B&B-BFS proves optimality but does

not perform well, we can check if the optimal solutions come from E-type nodes and

check if the portion of E-type nodes in the search tree is large. When the answers to

both questions are positive, we can experiment with B&B-CD on the instance, or similar

instances of the same problem group.

On the other hand, on a problem instance where B&B-BFS cannot prove optimality,

we can still experiment with B&B-CD if a large portion of the search tree has the same

fLB. If the fLB for the instance is tight (i.e., all the nodes with the same fLB are

E-type nodes) and optimal solutions can only be produced from E-type nodes, B&B-CD

can still outperform B&B-BFS.

4.5 Conclusion And Future Work

In this chapter, a search tree model for B&B algorithms based on the distribution of

nodes with different lower bounds is proposed so that we can use randomly generated

search trees to study the performance of search strategies CBFS-depth and BFS in

terms of the number of nodes explored to prove optimality. We first showed that,

without sophisticated pruning rules beyond the lower bound, optimal solutions must

61

come from nodes with fLB = Z∗ in order for CBFS-depth to have an opportunity to

explore fewer nodes than BFS. An estimation of the expected number of nodes explored

by CBFS-depth based on the parameters of the search tree is proposed. Generated

search trees and several problems are used to demonstrate the search tree conditions

under which CBFS-depth is a better choice than BFS. In particular, the results show

that one key to the success of CBFS-depth is the large number of nodes with fLB = Z∗

on the levels where an optimal solution may exist.

The analysis in this chapter aims to inform future research work on the performance

of search strategies like CBFS-depth. We have discussed the performance of B&B-CD

and B&B-BFS under the assumptions presented in Section 4.2. When some of the as-

sumptions are relaxed, more research can be done to determine how the performance of

the search strategies change. With the numerical experiments in the previous section,

we have already observed that B&B-CD may still outperform B&B-BFS when the distri-

bution of different types of nodes in the search trees are not in favor of CBFS-depth.

We can examine the impacts of having additional pruning rules, having suboptimal so-

lutions, or having multiple depth levels in which optimal solutions are possible. These

analyses will be valuable to guide the selection of search strategies or the construction

of new search strategies in B&B algorithms for particular problems.

62

Chapter 5

CBFS in the Close-enough Traveling

Salesman Problem

5.1 Introduction

The traveling salesman problem (TSP) is a well known and well studied optimization

problem. In its basic form, TSP finds a shortest Hamiltonian cycle (a closed loop that

visits all the vertices exactly once) in a complete and undirected graph G = (V,E)

where V represents a set of vertices and E the set of edges connecting the vertices

[5]. The length of each edge eij where i, j ∈ V is given by some distance function

dist : V × V → R+.

The close-enough traveling salesman problem (CETSP) is a generalization of the

traveling salesman problem (TSP) where, instead of visiting each vertex v ∈ V , the

salesman must visit a specific region that contains a vertex v ∈ V . The region that

has to be visited for a vertex v is called a covering region N(v) of that vertex, and

a covering region is considered visited (covered) if at least one point in the region is

visited. Given a depot v0 ∈ V , the objective of the problem is to find a tour with the

63

shortest distance traveled that visits the covering regions of all vertices that starts and

ends at the depot. The covering region of a vertex v is commonly defined as a circular

disk with radius r centered at v, and we will define covering region the same way in

this work. When the radii of all covering regions are zero, the problem is reduced to

a TSP. However, when the radii are not zero, the exact point in each covering region

that is visited by a tour has to be determined in addition to the sequence that the

covering regions are visited, which makes CETSP difficult to solve.

CETSP often arises when visiting a customer (vertex) does not necessarily mean

visiting the exact location of that customer. For example, a drone that tries to visit a

set of sensors to read the data only need to get close enough to each sensor to read its

data remotely.

A number of heuristics to solve CETSP have been proposed. In Gulczynski et al. [22]

and Dong et al. [19], a set of supernodes is found so that each covering region contains at

least one supernode, which is solved as a TSP to generate a feasible solution to CETSP.

The solution to TSP is then improved while maintaining feasibility to CETSP. Yuan

et al. [45] proposes a two-phase algorithm to decompose CETSP into a combinatorial

problem (which finds conventional TSP solution for the vertices without the covering

regions) and a continuous optimization problem (which improves the tour considering

the covering regions). In Mennell [30] and Mennell et al. [31], Steiner zones (overlaps

of covering regions) are used as a graph reduction method to reduce the number of

regions to consider. The authors also introduced a heuristic that first reduces CETSP

to a Generalized TSP (GTSP) by discretizing the covering regions and then solve

the GTSP with a genetic algorithm. Yang et al. [44] solves CETSP with arbitrary

neighborhoods with an algorithm based on particle swarm optimization and a genetic

algorithm. Finally, Wang et al. [43] proposes a heuristic that solves a set covering

problem to find an initial set of Steiner zones that can be used to create a feasible

64

solution to CETSP. A variable neighborhood search scheme is then used to improve

the feasible solution and select a different set of Steiner zones to solve for a new feasible

solution of CETSP. Using this scheme, the author manages to improve the quality of

feasible solutions on many benchmark problems.

In terms of exact approaches, there have only been a few. Behdani and Smith [9]

proposes a few mixed integer programming formulations based on different discretiza-

tion schemes of the covering regions. The most efficient formulation is a two-stage one

that first identifies the order in which the covering regions are visited and then opti-

mizes the corresponding tour. The authors developed 240 test instances with between

7 to 21 vertices, but were unable to prove optimality on them. A different discretiza-

tion scheme is proposed in Carrabs et al. [14] which results in tighter upper and lower

bounds for the same instances.

Coutinho et al. [15] proposes a branch-and-bound (B&B) algorithm to solve this

problem, which we will refer to as Cout. In this algorithm, each node in the search tree

represents a subset of vertices in a fixed sequence and branching is done by inserting a

not-yet-sequenced vertex into all possible places of the existing sequence. Given a fixed

sequence, a second-order cone program (SOCP) is solved to produce the optimal tour

length for that sequence. Two branching variable selection schemes are proposed for

instances with constant and arbitrary radii on all covering regions, respectively. The

authors suggest Best First Search (BFS) as the search strategy for node selection as

it outperforms other search strategies (Depth First Search and Breadth First Search)

they have examined. In particular, BFS selects from all unexplored nodes the one with

the smallest lower bound. Cout was able to solve all instances developed in Behdani

and Smith [9] as well as some large instances with up to 1000 vertices introduced in

Mennell [30] depending on the covering region radii.

In this chapter, we present an improved version of Cout. In particular, we propose

65

a new search strategy derived from the cyclic best first search (CBFS) framework [34]

which we will refer to as CBFS-CV that takes advantage of the information obtained

in the search. Moreover, we propose a branching vertex selection scheme that unifies

the two used in Cout. Additional improvement measures for the efficiency of Cout

are also discussed, including avoiding redundant computation, improving the quality

of obtained feasible solutions, reducing the space needed for storing unexplored nodes

as well as improving the implementation of the algorithm. The result of all improve-

ment measures is demonstrated with numerical experiments, where solved instances

are solved with less running time and space requirement, and new best known feasible

solutions are found on several instances not yet solved.

The chapter is organized as follows. Section 5.2 describes CETSP and Cout in more

details. Section 5.3 discusses the new search strategy used to replace BFS in the B&B

algorithm. Further improvement measures are presented in Section 5.4. In Section 5.5,

numerical results are presented to show the benefit of the improvement. In Section 5.6,

conclusion and future research directions are discussed.

5.2 Preliminaries

5.2.1 Problem description

In this chapter, we define the CETSP in two-dimensional (2D) or three-dimensional

(3D) Euclidean space and the Euclidean distance is used as the distance function. Let

V = {v0, v1, ..., vn} be a set of vertices with v0 being the depot. Each vertex vi for i 6= 0

has a disk (ball if defined in 3D space) centered at vi with radius ri. The objective

of the problem is to construct the shortest tour that starts and ends at v0 and visits

all covering regions. The shortest tour is obtained by finding the sequence of points

66

P = (p0, pk1 , pk2 ..., pkn) that forms the tour where each point pki in P is a point in

the covering region N(vki) of vertex vki ∈ V . We call the points in P turning points.

The sequence of points P also corresponds to a sequence S = (v0, vk1 , vk2 , ..., vkn) that

represents an ordering of the vertices in V .

-5 0 5 10 15 20 25 30 35 40 45
-5

0

5

10

15

20

25
CETSP tour example

Depot

2

3

4
5

6 7

8
9

10

11

12

13

Figure 5.1: Example of a feasible solution to a CETSP instance

Figure 5.1 shows an example of a feasible solution to a 2D CETSP instance. The

covering region associated with each vertex are the circles, and the asterisks represent

the intersection of the tour with each region. Note that the turning point for a given

vertex v can be a single point (e.g. for covering region 2) or an infinite number of

points (e.g. for covering region 4) as long as it is a point in the covering region N(v)

that is also on the path of the tour.

5.2.2 A B&B algorithm

Let T ∗(S) be an optimal tour that visits the covering regions N(v) for v ∈ S in the

ordering of a sequence S. Given a sequence S of some vertices, the problem of finding

67

T ∗(S) can be formulated and solved efficiently as a second-order cone programming

(SOCP) problem (more details about the SOCP problem can be found in [15]).

Since a vertex is considered visited if the tour intersects with its covering region, a

tour T ∗(S) can cover more vertices than the ones in S. Then a sequence S that leads

to a feasible tour of CETSP T ∗(S) may not contain all vertices in V . We will refer to

a sequence not necessarily containing all vertices in V as a partial sequence.

An algorithm can be created to find an optimal solution of the CETSP with vertices

V by constructing partial sequences with the vertices in V and finding the respective

shortest tour until all partial sequences that lead to feasible tours to CETSP have been

checked. This is the idea behind Cout.

Pseudocode of the algorithm Cout is presented in Algorithm 6. The algorithm

begins by selecting three vertices (including the depot) as the initial partial sequence

Sroot. An SOCP problem based on Sroot is solved to obtain the tour T ∗(Sroot). The

algorithm then computes the set of vertices that are not covered by the tour. If all

vertices are covered, the tour is optimal to the original problem and the algorithm

terminates. If not all vertices are covered, the length of the partial tour D(T ∗(Sroot)) is

a lower bound to the optimal tour. The initial partial sequence is added to the search

tree as the root node.

Subsequently, in each iteration, a partial tour S is selected to be explored. An

uncovered vertex v is selected as the branching vertex (more details in Section 5.4.1).

The vertex v is then inserted after the ith vertex in S for i = 1, 2, ..., |S| to create

new partial sequences Si (the first vertex must be the depot). Before adding a new

partial sequence Si to the search tree, an SOCP problem is solved to obtain T ∗(Si)

and the set of vertices not covered by T ∗(Si) is computed. If all vertices are covered,

T ∗(Si) is also a feasible tour to the original problem and we can check if the tour length

D(T ∗(Si)) is better than the current incumbent solution value which will be referred

68

to as D̂. If not all vertices are covered by T ∗(Si), the partial sequence is added to the

search tree. Pruning is done by removing any partial sequence S in the search tree

with D(T ∗(S)) ≥ D̂.

Since each node in the branch-and-bound search tree of Cout is associated with a

partial sequence, we will also use node to refer to a partial sequence S. We say a node

is explored if branching is done from the node or the node is pruned without branching.

Algorithm 6: Cout
1 Build an initial partial sequence Sroot with 3 vertices
2 Solve an SOCP problem based on Sroot for an optimal tour T ∗(Sroot) with

length D(T ∗(Sroot))
3 Determine the vertices that are not covered by the tour
4 if all vertices are covered : Return D(T ∗(Sroot))

5 else: D̂ := M where M is larger than any tour length or a known feasible
solution

6 Let L be an empty list that stores unexplored partial sequences. Insert Sroot
into L

7 while L 6= ∅ :
8 Select a partial sequence S from L to explore
9 Select a uncovered vertex v to be inserted into the partial sequence

10 Generate Si for i = 1, 2, ..., |S| by inserting vertex v after the ith vertex in S
11 for each partial sequence Si :
12 Solve an SOCP problem based on the sequence Si for an optimal tour

T ∗(Si) with length D(T ∗(Si))

13 if D(T ∗(Si)) ≥ D̂ : Continue
14 Determine the vertices that are not covered by T ∗(Si)
15 if all vertices are covered :
16 if D̂ > D(T ∗(Si)) : set D̂ = D(T ∗(Si))
17 else: Insert Si into L
18 Remove S from L

19 Return D̂

69

5.3 Search strategy

A search strategy is used to select a node to explore in each iteration of the B&B

algorithm (Line 8 of Algorithm 6). Coutinho et al. [15] tests depth first search (DFS),

breadth first search (BrFS) and best first search (BFS) with Cout. In particular, BFS

selects the node with the smallest lower bound to be explored each iteration. Formally,

BFS can be defined as selecting a node with the smallest value of some measure-of-best

function µ. For this problem, the function µ is the length of the optimal SOCP solution

tour of a sequence and it can be written as

µ(S) := D (T ∗ (S)) . (5.1)

BFS using a lower bound as a measure-of-best function has the advantage that it will

not select a node with lower bound worse than the optimal tour length, which other

search strategies tested cannot guarantee. Based on numerical experiments, Coutinho

et al. [15] suggests that BFS outperforms both DFS and BrFS in terms of running time

to prove optimality and chooses BFS as the search strategy for Cout.

Note that (5.1) is not a strong lower bound, and a partial sequence that is shorter

than another partial sequence is likely to have a smaller lower bound as well. As a

result, BFS has two disadvantages when used in Cout. First, BFS does not find feasible

solutions early. Due to the weak lower bound, nodes with shorter partial sequences are

often selected before the nodes with longer sequences. Since Cout constructs sequences

by adding one vertex at a time, it can take a very long time for the algorithm to explore

all the nodes with shorter sequences before exploring a sequence with enough vertices

to result in a tour that is feasible for the original problem. If the algorithm terminates

early, the search may not be able provide any feasible solution.

70

The benefit of finding feasible solutions early is not only so that when the algorithm

terminates prematurely, there are at least feasible solutions that can be used. More

importantly, the algorithm finds the child node tour and checks its the feasibility when

the child node is generated (line 14 of Algorithm 6). If a good or optimal solution is

found early, a child node may be pruned without getting checked and some compu-

tational cost can be saved. If solutions are not found, BFS cannot take advantage of

this.

Second, BFS stores all unexplored nodes in memory. The number of nodes that

has to be stored can increase exponentially as the problem size grows. There can be a

large number of the nodes in the search tree with small lower bound, due to the way

Cout constructs partial sequences as described in the first disadvantage. Since Cout

only prunes unexplored nodes with lower bound, the number of unexplored nodes that

has to be stored can be very large even for a medium sized problem, especially with the

weak lower bound used. Additionally, because BFS generally does not find any feasible

solutions early, even nodes with lower bound larger than the optimal tour length are

stored for a long time.

Due to the complexity of the problem, we are not able to provide a better lower

bound algorithm for the partial sequences. Therefore, we choose to address the disad-

vantages of BFS by using a different search strategy.

5.3.1 Contour based on covered vertices

We first consider CBFS-depth. The problems where CBFS-depth is effective share

some similarities with CETSP: solutions are often deep in the search tree in which

case BFS has to take a long time to reach any of them. However, there is no good

lower bound algorithm for the nodes or good pruning strategy beyond lower bound in

CETSP, which would make CBFS-depth even more effective compared with BFS. Our

71

numerical results suggest that CBFS-depth finds good feasible solutions regularly on a

number of instances.

Moreover, unlike BFS, CBFS-depth does not explore nodes with the smallest lower

bound successively. Since it is more likely for nodes with small lower bound to gener-

ate child nodes that cannot be pruned immediately and have to be stored for explo-

ration later, with the same number of iterations, BFS can generate a larger number

of unexplored nodes than CBFS-depth, which leads to BFS needing more space than

CBFS-depth.

A better labeling function than κdepth should be one that guides the search to find

good feasible solution faster while not exploring too many nodes with lower bound

greater than the optimal solution (the nodes that will not be explored by BFS). Since

the number of vertices covered by adding one vertex to the search tree can be very

different depending on the position of the insertion, there can be significant difference

in quality between nodes in the same level. Therefore, compared with depth in the

search tree, the number of covered vertices by the tour T ∗(S) may a better indicator

of how close a given node S is to a feasible solution.

Therefore, we use the number of covered vertices as the contour labeling function.

In particular, given a sequence S, the value of the labeling function κcv(S) is the number

of vertices that are covered by the tour T ∗(S) as written in (5.2)

κcv(S) = The number of vertices covered by T ∗(S). (5.2)

This search strategy will be referred to as CBFS-CV and the algorithm Cout using

CBFS-CV will be referred to as Cout-CBFS.

Our experience suggests that CBFS-CV outperforms CBFS-depth in most instances

primarily by finding feasible or optimal solutions faster than CBFS-depth, which results

72

in better pruning early in the search and less nodes with lower bound greater or equal

to the optimal solution being explored. The space advantage over BFS is still valid as

well for the same reason as CBFS-depth.

We will show in Section 5.5 that the benefit of CBFS-CV with κcv can be demon-

strated by numerical experiments.

5.4 Further improvement

All methods discussed in this section can be applied to both 2D and 3D CETSP

instances.

5.4.1 Branching vertex selection

The branching vertex selection used in Cout differs depending on the radii of the

covering regions. When the radii are constant, for a given sequence S and tour T ∗ (S),

the algorithm computes the smallest distance from each vertex to all edges in the tour,

represented by d̂v for vertex v, and pick the vertex with the largest distance to be

the node inserted into the tour. For example, in Figure 5.2a, the smallest distance

from both uncovered vertices 1 and 2 are to the edge between covering region 3 and 4,

represented as d̂1 and d̂2 respectively. Since d̂1 > d̂2, the algorithm will pick vertex 1

to be the next branching vertex.

On the other hand, when radius of covering regions are arbitrary, Cout uses a

different branching variable selection method. For each vertex v, the algorithm finds

the smallest value of d̃v = ẽv1 + ẽv2 − eij where eij is the length of the edge from vertex

i to vertex j, and ẽv1 + ẽv2 is the shortest sum of distances from a point on the covering

region of v to the end points of the edge from vertex i to vertex j. Then the vertex

with the largest d̃ value is the branching vertex. For example, in Figure 5.2b, since

73

3

4

0

1

2

(a) Constant radii

3

4

0

1

2

(b) Arbitrary radii

Figure 5.2: Branching variable selection methods

d̃2 > d̃1, vertex 2 is the branching vertex.

We propose a simple change to the scheme that uses the value d̂′v = d̂v − rv which

is the difference between the distance d̂v and the radius of the corresponding covering

region. This is the same scheme as the one in Cout when the instance has constant

radii, and a slightly different one from Cout when the radii are arbitrary. We will show

in Section 5.5 that this brings a substantial improvement to the performance of the

B&B algorithms on instances with arbitrary radii.

5.4.2 Reduce the number of vertex coverage checks

The process of checking the feasibility of an optimal tour of a partial sequence (line

14 of Algorithm 6) involves checking whether all vertices not in the partial sequence

is covered by the corresponding optimal tour. To correctly check the coverage of a

vertex by a tour, it is necessary to check the covering region of the vertex against each

edge in the tour to see if intersection occurs. However, since a child node is a partial

sequence that differs from the partial sequence of its direct parent node by a single

vertex inserted into the sequence, most of the turning points associated with vertices

74

far from the inserting position may not change from a parent node to a child node.

Let a child sequence be created by inserting some vertex after the kth vertex in

the parent sequence. Then a vertex in the parent sequence is said to be a steps away

from the inserting position for some non-negative integer a, if it is covered by an edge

starting from the (k − a)th vertex in the optimal parent sequence tour.

Given the observation that most turning points in the tour do not change from

a parent node to a child node, we can reduce the number of coverage checks by the

following method: if a vertex not in the sequence is covered by an edge of the optimal

tour of the parent node more than a steps from the inserting position in the current

child node sequence, we assume that it is still covered.

Note that it is possible for such a vertex to not be covered by a tour when we

assume it is, as the tour may change substantially from a parent node to a child node.

Therefore, when the check indicates that all nodes are covered by the current tour,

an additional check is set to confirm coverage of all vertices not in the sequence. The

child node can be inserted back into the search tree, if it turns out that not all vertices

are actually covered. This does not affect the ability of the B&B algorithm to prove

optimality, since the child nodes inserted back into the tree now have correct coverage

information.

On the other hand, if a vertex not in the sequence is covered by an edge of the

optimal tour of the parent node no more than a steps away from the inserting position,

we can check its covering region against only the edges close to the inserting position.

If it is still covered, we do not need to check it against other edges; but if it is not

covered by the edges we checked, we can then check the covering region against all

other edges in the current tour.

After some testing, we determined that a can be set to 1, which resulted in notice-

able reduction in the number of vertices to check while not causing significant increase

75

in the chance of a coverage error (which will lead to more number of nodes explored).

5.4.3 Find better feasible solutions

The quality of the feasible solutions found is another aspect of the algorithm that can

be improved. Given a feasible solution to a CETSP, the tour T must intersect with the

covering regions of all vertices for at least one point. Therefore, we can obtain a set

of points consisting of one intersecting point per covering region, which can be used to

construct a conventional TSP. Then we have the following lemma.

Lemma 5.1. If an optimal tour T ∗C for the constructed TSP is shorter than T , then

that tour is a better feasible solution to the CETSP. Furthermore, if we then solve an

SOCP problem constructed with the optimal sequence S∗C of the TSP, the resulting tour

will be at least as short as T ∗C.

Proof. Since the TSP is constructed using an intersecting point of each covering region,

any feasible solution to the TSP is a feasible solution to the CETSP. If T ∗C is shorter

than T , it must be a better feasible solution to the CETSP than T .

Since the tour T ∗C is only a feasible solution for the CETSP with the sequence S∗C ,

optimal solution to the SOCP problem, which is the optimal tour of the sequence S∗C

for the CETSP, will be at least as good as the optimal solution to the TSP. �

Lemma 5.1 suggests that we can potentially find better feasible solutions to the

CETSP by constructing and solving a TSP based on an existing feasible solution to

the CETSP, and solve an SOCP problem to obtain another feasible solution to the

CETSP. The process can be repeated with a new set of intersecting points based on

the optimal tour for the SOCP problem, until no better tour for the TSP based on the

intersecting points can be found.

76

For this improvement to work efficiently, we used Concorde [4] as it is considered to

be the state-of-the-art for solving symmetric TSP [12]. Since Concorde takes integer

distance value, we multiply all distances by 100000 and round to integer values. Since

we are only interested in the sequences produced by Concorde, the loss of precision

caused by rounding is not going to affect the CETSP tour length.

Note that the choice of the intersecting points can affect the symmetric TSP so-

lution. For our algorithm, we used the first intersecting points with the tour for each

covering region belonging to vertices that are not in the partial sequence. For the

vertices that are in the partial sequence, the corresponding turning points are used.

5.4.4 Improve lower bound

A major issue that affects both Cout and Cout-CBFS is the space needed to store

the unexplored nodes. On problems that require exploring a large number of partial

sequences, the number of unexplored nodes can increase exponentially. Therefore, a

probing method is used to further reduce the number of unexplored nodes that needs

to be stored at any given moment during the search.

In particular, given a node S selected for exploration, we first apply a limited BFS

search with that node as the root. There can be two outcomes from the short search:

either the search terminates with the entire subtree rooted at S explored, or the search

terminates with some nodes on the subtree rooted at S still unexplored. If the first

scenario occurs, the current node can be pruned. When the second scenario occurs, we

first tried to simply take the still unexplored nodes generated and insert them back into

the original search tree. However, it turned out that this also generated unexplored

nodes too rapidly and was unable to address the space constraint issue. We then

determined that the best approach is to keep some information (on vertex coverage

and the SOCP solution) about each node generated during the search so that when

77

the same nodes are regenerated outside of the brief search, the stored information can

be used to avoid repeated computation. We will refer to this method as a look-ahead

search, or LAS for short.

5.5 Numerical experiments

All experiments are done on a computer with a 4.1GHz CPU and 12G of available

memory and the implementation runs on a single thread. A time limit of 14400 seconds

and a space limit of 8G memory usage are applied on each run of the algorithms.

The problem instances are obtained from Mennell [30] since the instances from

Behdani and Smith [9] are already solved easily by Cout in Coutinho et al. [15]. The

difficulty of each instance is associated with overlap ratio, which is defined as the

ratio between the mean of all radii and the largest size of the rectangle that involves all

covering regions. When overlap ratio is small, the mean radius is small and the CETSP

approaches a TSP. Coutinho et al. [15] shows that the problems are more difficult to

solve for Cout as overlap ratio becomes smaller.

The 62 instances provided in Mennell [30] includes: 28 instances (the instances with

“d493”, “dsj1000”, “kroD100”, “lin318”, “pcb442”, “rat195” and “rd400” in the names) are

derived from 7 conventional instances from TSPLIB, denoted as TSPLIB instances;

14 instances with “team” and “bonus” in the names are from Gulczynski et al. [22],

denoted as Team instances; 20 instances are generated by Mennell [30], denoted as

Geometric instances.

All 20 Geometric instances are all constant radii instances, as the radii of covering

regions in the same problem are the same. However, the overlap ratio varies from

instance to instance. We say that these instances have constant radii and varied overlap

ratios. There are 7 Team instances that also have constant radii and varied overlap

78

ratios. The other 7 Team instances are arbitrary radii instances, as the radii of covering

regions in the same problem are different. Out of the 28 TSPLIB instances, 7 are

arbitrary radii instances. The other 21 are constant radii instances divided into three

sets that have the same overlap ratio within each set. The overlap ratios are 0.02, 0.1,

and 0.3. We say that these instances have constant radii and constant overlap ratios.

Both the Team and the TSPLIB instances have 2D and 3D versions while the

Geometric instances only have 2D version. There exist best known feasible solution

values for all these problems from previous work [15, 43].

5.5.1 Implementation details

The original implementation of Cout is done in C++ and we obtained the code from

the original authors. Note that, in addition to incorporating the changes mentioned

in previous sections, we have improved the efficiency of the implementation of the

algorithm Cout as well. In fact, the most significant improvement from the results

reported in Coutinho et al. [15] is from the improvement of the implementation, as it

yields running times that are often one half or one quarter of the original code.

Two aspects of the implementation improvement have the most substantial impact

to the performance. First, the process of checking whether a vertex is covered by

the optimal tour of a partial sequence is optimized. In addition to the improvement

discussed in Section 5.4.2, we made additional changes to reduce the redundant com-

putation. Second, since the SOCP problems for the child nodes of the same parent has

a large number of constraints in common, we reduced the number of constraints that

have to be created for each SOCP problem by reusing as many constraints from the

previous SOCP problem as possible. Moreover, there are other improvement steps, in-

cluding using more suitable data structures for node storage and retrieval and reducing

communication overhead between functions, which also contribute to the improvement

79

in running time.

Table 5.1: Implementation improvement comparison

Cout-Orig Cout

Instance Running Time SOCP Time Running Time SOCP Time

d493 27.964 12.066 12.516 10.162

dsj1000 8839.783 2361.181 2123.764 1774.360

kroD100 1.381 0.976 0.847 0.770

lin318 6349.202 2393.808 2038.748 1814.157

rat195 11.526 7.169 5.937 5.469

Let Cout-Orig represent the original implementation of Cout and let Cout represent

the improved implementation of the original algorithm. Figure 5.1 shows the results of

the implementation improvement on the constant radius instances from the TSPLIB

Instances set with overlap ratio 0.1 that can be solved to optimality by both Cout-Orig

and Cout. As can be seen, the implementation improvement have substantially reduced

the overall running time (columns “Running Time”) as well as the total SOCP solution

time (columns “SOCP Time”).

For the remainder of this section, if not specified otherwise, all variations of Cout

experimented are using the improved implementation. We are going to test 3 variations

of Cout to show the affect of the changes we have proposed in this chapter. It includes

the following: Cout, Cout plus the changes discussed in Sections 5.4.1, 5.4.2, and 5.4.3

called Cout+, Cout-CBFS plus the changes in Sections 5.4.1, 5.4.2, and 5.4.3 called

Cout-CBFS+, and Cout-CBFS+ with the addition of LAS discussed in Section 5.4.4

called Cout-CBFS-LAS+. LAS is implemented with a time limit of 0.5 second.

80

5.5.2 Problems with feasible solutions

In this section, we will first present the results of applying the B&B algorithms on the

62 2D instances with best known feasible solution values. Then, we will present the

results of applying the B&B algorithms on 42 3D instances (Geometric instances do

not have 3D variants) with best known feasible solution values.

Table 5.2 presents the results of all algorithms on 62 2D instances. The column

“Instance” contains the name of the instances, and the column “Known” contains the

best known feasible solution for each instance in the literature. The column “UB”

contains the best upper bound (incumbent solution) found during the search. If it is

marked by -, it means no feasible solution better than the best known solution is found.

If the number in column “UB” is marked by *, it means that the corresponding instance

is solved to optimality; if the number in column “UB” is bold, then that solution is the

best feasible solution found compared with all algorithms and the best known solution.

The column “LB” contains the best lower bound when the algorithm terminates. The

columns “Time” are the running times for each algorithm (the ones marked with *

corresponds to instances that are solved to optimality) and the columns “Unexp” are

the maximum number of unexplored nodes that each algorithm has to store.

On instances that can be solved optimally, both Cout+ and Cout-CBFS+ outperform

Cout on most instances in terms of running time. The advantage is more substantial on

problems that take more than a few seconds to solve, and an instance chaoSingleDep

can be solved by Cout+ and Cout-CBFS+ but not by Cout. The new branching vertex

selection scheme makes Cout+ and Cout-CBFS+ use substantially less time to prove

optimality than Cout on instances with arbitrary radii. The instances chaoSingleDep

and kroD100rdmRad are solved to optimality for the first time. Cout-CBFS+ matches

the performance with the two algorithms using BFS on most instances but the max-

81

imum number of unexplored nodes that Cout-CBFS+ has to store is substantially less

than the maximum number stored by the two algorithms using BFS. In terms of

Cout-CBFS-LAS+, although it is slower than other algorithms tested on most of the

solved instances (i.e., chaoSingleDep is not solved by Cout-CBFS-LAS+), it also needs

to store substantially fewer unexplored nodes than any other algorithms.

On instances that cannot be solved optimally, new best known feasible solutions

are found for a number of instances by Cout-CBFS+ or Cout-CBFS-LAS+: bonus1000,

bubbles4, team3_300, pcb442 (overlap ratio 0.1), rd400 (overlap ratio 0.1), d493rdmRad,

lin318rdmRad and team2_200rdmRad. On the other hand, algorithms using CBFS-CV

terminate with worse lower bounds than the BFS variations, as CBFS-CV does not

selects the node with the minimum global lower bound to explore every iteration.

Table 5.3 presents the results of all algorithms on 42 3D instances. The column

notations are the same as the ones in Table 5.2. On instances that can be solved

optimally, Cout+ still runs faster than Cout on many instances, e.g. lin318 with

overlap ratio 0.1. However, on instance team6_500, the running time for Cout+ and

Cout-CBFS+ is noticeably worse than Cout, which may be attributed to coverage check

reduction discussed in Chapter 5.4.2 not effective. On instance team2_200, Cout-CBFS+

takes more time to run than both Cout+ and Cout, which can happen if CBFS cannot

find good feasible solutions early in the search and explore a number of nodes with

lower bound greater than the optimal solution. However, on other instances that are

solved optimally, Cout-CBFS+ matches the running time of Cout+ while stores fewer

unexplored nodes. Cout-CBFS-LAS+ runs slower than Cout-CBFS+, but stores even

fewer nodes, similar to the results on 2D instances.

There is only one instance with arbitrary radii that is solved optimally, and the

new branching vertex selection scheme improves the running time substantially similar

to the benefit shown in 2D instances.

82

On instances that cannot be solved optimally, new best known feasible solutions

are found for a number of instances by Cout-CBFS+ or Cout-CBFS-LAS+: team1_100,

pcb442 (overlap ratio 0.1), rat195 (overlap ratio 0.1), rd400 (overlap ratio 0.3),

dsj1000rdmRad, kroD100rdmRad, lin318rdmRad, pcb442rdmRad, team1_100rdmRad,

team3_300rdmRad and team5_499rdmRad.

83

Table 5.2: Results on 62 2D instances with known feasible solution

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance Known UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

Constant radii, varied overlap ratios

bonus1000 402.47 - 356.24 1315.95 203775 - 356.22 907.53 203169 377.79 352.11 2745.38 199248 377.66 355.42 14400.11 107815

bubbles1 349.13 349.13* 349.13 0.06 6 349.13* 349.13 0.08 6 349.13* 349.13 0.06 6 349.13* 349.13 0.08 1

bubbles2 428.28 428.28* 428.28 0.13 11 428.28* 428.28 0.12 11 428.28* 428.28 0.13 7 428.28* 428.28 0.11 1

bubbles3 530.73 529.95* 529.95 72.85 755 529.95* 529.95 69.66 755 529.95* 529.95 76.53 213 529.95* 529.95 84.86 93

bubbles4 825.33 - 693.92 5442.00 1330915 - 693.87 4118.88 1323365 807.69 678.41 14400.02 1242369 802.96 676.19 14400.03 271920

bubbles5 1062.34 - 852.77 3016.59 1039115 - 852.72 2189.10 1034982 - 825.58 6245.84 1033571 - 830.58 14400.28 416668

bubbles6 1263.68 - 992.84 2443.30 852616 - 992.79 1736.78 849274 - 960.25 4721.64 781313 - 970.98 14400.11 436838

bubbles7 1639.33 - 1118.81 2006.14 652933 - 1118.73 1415.39 650087 - 1059.15 4565.80 639049 - 1089.16 14400.05 620791

bubbles8 1972.99 - 1245.88 2057.09 600362 - 1245.69 1427.54 598761 - 1161.51 4279.41 552561 - 1194.89 10292.67 553000

bubbles9 2330.31 - 1367.00 1987.34 520949 - 1366.92 1396.47 519740 - 1248.17 4058.03 436761 - 1291.95 7377.86 424284

chaoSingleDep 1022.88 - 1022.49 14400.01 304505 1022.88* 1022.88 12839.94 303960 1022.88* 1022.88 13384.27 256619 - 1009.36 14400.06 47157

concentricCircles1 53.16 53.16* 53.16 3.29 87 53.16* 53.16 3.05 87 53.16* 53.16 3.14 96 53.16* 53.16 3.19 26

concentricCircles2 153.13 - 152.09 14400.01 318702 - 152.29 14400.01 318702 - 150.81 14400.02 258426 - 148.69 14400.05 56129

concentricCircles3 271.08 - 251.42 14400.00 2055751 - 251.52 14400.02 2115260 - 245.82 14400.02 1004596 - 243.29 14400.06 197843

concentricCircles4 454.46 - 369.28 7330.04 3371765 - 369.27 6887.36 3369164 - 349.78 14400.05 2065545 - 346.74 14400.28 328018

concentricCircles5 645.38 - 466.58 4927.82 2237200 - 466.62 4246.31 2223187 - 441.41 12562.47 2088163 - 439.61 14400.13 482283

rotatingDiamonds1 32.39 32.39* 32.39 0.05 5 32.39* 32.39 0.05 5 32.39* 32.39 0.03 5 32.39* 32.39 0.06 1

rotatingDiamonds2 140.48 140.48* 140.48 331.62 9941 140.48* 140.48 329.97 9979 140.48* 140.48 338.19 8592 140.48* 140.48 405.77 1994

rotatingDiamonds3 380.88 - 353.85 6120.85 1405182 - 353.83 5426.24 1400553 - 347.34 6929.06 1356812 - 342.74 14400.05 224873

rotatingDiamonds4 770.66 - 594.10 2303.83 951366 - 594.10 1951.97 951608 - 568.43 3867.34 851440 - 574.37 14400.44 467060

rotatingDiamonds5 1510.75 - 1096.71 1586.34 465355 - 1096.54 1335.25 463865 - 1031.63 1615.11 412614 - 1047.41 11266.34 421404

team1_100 307.34 307.34* 307.34 4.36 47 307.34* 307.34 4.31 47 307.34* 307.34 4.22 28 307.34* 307.34 4.20 22

team2_200 246.68 246.68* 246.68 0.21 3 246.68* 246.68 0.25 3 246.68* 246.68 0.19 3 246.68* 246.68 0.22 1

team3_300 465.80 - 453.07 8701.68 755329 - 453.03 7659.66 751100 461.89 451.15 14400.08 586906 461.89 443.95 14400.03 89883

team4_400 680.21 - 505.22 2101.84 667652 - 505.21 1576.95 666558 - 486.02 2798.80 649460 - 495.26 14400.34 509682

team5_499 702.82 - 523.60 2667.32 681211 - 523.58 2047.25 679609 - 503.08 3514.72 595536 - 510.19 14400.20 488475

team6_500 225.22 225.22* 225.22 0.33 3 225.22* 225.22 0.32 3 225.22* 225.22 0.30 3 225.22* 225.22 0.31 1

Constant radii, constant overlap ratios

overlap ratio: 0.02

(continued on next page)

84

Table 5.2: Results on 62 2D instances with known feasible solution (continued)

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance Known UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

d493 202.79 - 145.97 2281.72 672196 - 146.01 2020.00 686051 - 141.92 2223.64 577988 - 143.85 14400.12 563001

dsj1000 935.74 - 554.18 1813.90 346984 - 554.15 1624.13 346362 - 522.50 2085.00 290840 - 533.05 6758.35 293136

kroD100 159.04 - 146.50 14400.03 2960628 - 146.45 14400.00 2904668 - 141.33 14400.08 1156966 - 139.66 14400.30 200763

lin318 2842.32 - 1998.34 2850.10 1042255 - 1998.27 2785.78 1040645 - 1899.03 4140.97 955241 - 1929.76 14400.01 630980

pcb442 323.03 - 186.24 2836.97 871721 - 186.23 2264.58 870278 - 173.43 4464.92 673057 - 177.77 12525.34 707190

rat195 158.79 - 109.04 3841.56 1667957 - 109.04 3477.34 1663434 - 104.09 7572.78 1482668 - 104.67 14400.16 611527

rd400 1033.41 - 568.90 2986.97 956641 - 568.89 2354.85 955634 - 524.21 4464.77 763688 - 538.70 13560.61 820826

overlap ratio: 0.10

d493 101.73 100.72* 100.72 12.52 988 100.72* 100.72 12.57 988 100.72* 100.72 11.69 170 100.72* 100.72 15.44 123

dsj1000 376.10 373.76* 373.76 2123.76 74533 373.76* 373.76 1965.24 74533 373.76* 373.76 1925.67 8032 373.76* 373.76 2326.51 2884

kroD100 89.67 89.67* 89.67 0.85 28 89.67* 89.67 0.88 28 89.67* 89.67 0.84 20 89.67* 89.67 0.88 12

lin318 1408.48 1394.63* 1394.63 2038.75 129652 1394.63* 1394.63 1844.84 129652 1394.63* 1394.63 1940.69 20889 1394.63* 1394.63 2782.77 6624

pcb442 147.24 - 137.29 2341.25 454212 - 137.28 1819.64 452046 144.07 136.23 3245.20 445709 144.23 136.66 14400.39 181841

rat195 68.08 67.99* 67.99 5.94 362 67.99* 67.99 5.84 362 67.99* 67.99 6.55 89 67.99* 67.99 7.74 56

rd400 466.10 - 433.23 3103.74 586236 - 433.22 2491.76 584097 450.57 430.93 11196.91 561624 455.52 428.85 14400.40 163729

overlap ratio: 0.30

d493 69.76 69.76* 69.76 0.26 1 69.76* 69.76 0.28 1 69.76* 69.76 0.28 1 69.76* 69.76 0.28 1

dsj1000 199.95 199.95* 199.95 0.56 3 199.95* 199.95 0.58 3 199.95* 199.95 0.58 3 199.95* 199.95 0.57 1

kroD100 58.54 58.54* 58.54 0.06 1 58.54* 58.54 0.06 1 58.54* 58.54 0.05 1 58.54* 58.54 0.06 1

lin318 765.96 765.96* 765.96 0.18 2 765.96* 765.96 0.18 2 765.96* 765.96 0.19 2 765.96* 765.96 0.18 1

pcb442 83.54 83.54* 83.54 0.23 1 83.54* 83.54 0.24 1 83.54* 83.54 0.23 1 83.54* 83.54 0.23 1

rat195 45.70 45.70* 45.70 0.11 1 45.70* 45.70 0.10 1 45.70* 45.70 0.11 1 45.70* 45.70 0.11 1

rd400 224.84 224.84* 224.84 0.22 3 224.84* 224.84 0.23 3 224.84* 224.84 0.23 3 224.84* 224.84 0.24 1

Arbitrary radii

bonus1000rdmRad 938.27 - 496.51 1363.44 275492 - 500.81 858.39 266014 - 461.30 1256.86 231815 - 477.77 4476.59 206194

d493rdmRad 135.02 - 125.05 2077.08 411955 - 129.56 2975.97 404738 134.23 128.72 14400.02 401074 134.23 127.77 14400.19 96578

dsj1000rdmRad 625.25 - 499.70 876.46 205481 - 532.40 693.73 203285 - 518.81 1056.77 202560 - 532.42 10436.77 184177

kroD100rdmRad 141.83 - 139.20 14400.02 715118 141.83* 141.83 6338.82 83787 141.83* 141.83 6120.88 70872 141.83* 141.83 8313.14 15535

lin318rdmRad 2079.49 - 1805.37 2621.18 716930 - 1864.67 2253.45 709420 2066.02 1832.63 5520.84 703327 2070.63 1833.08 14400.36 229422

pcb442rdmRad 221.16 - 174.54 1650.51 558556 - 178.47 946.92 530495 - 171.69 1859.34 492301 - 176.81 14400.48 365522

(continued on next page)

85

Table 5.2: Results on 62 2D instances with known feasible solution (continued)

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance Known UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

rat195rdmRad 68.22 68.22* 68.22 1.76 34 68.22* 68.22 1.04 23 68.22* 68.22 0.98 14 68.22* 68.22 0.98 10

rd400rdmRad 1252.38 - 575.06 3942.87 958997 - 588.88 2772.94 987333 - 536.54 6738.34 893980 - 553.06 14400.48 951916

team1_100rdmRad 388.54 388.54* 388.54 112.97 2680 388.54* 388.54 44.43 1061 388.54* 388.54 42.94 878 388.54* 388.54 42.47 360

team2_200rdmRad 622.74 - 490.87 3338.85 1310359 - 513.47 2715.08 1261478 621.19 495.17 12562.73 1267737 - 494.33 14400.47 352445

team3_300rdmRad 378.09 378.09* 378.09 191.32 3667 378.09* 378.09 47.97 988 378.09* 378.09 45.23 844 378.09* 378.09 45.63 295

team4_400rdmRad 1006.71 - 551.87 3684.85 963167 - 571.78 2558.49 966018 - 529.69 4214.30 757191 - 547.05 14400.08 739075

team5_499rdmRad 446.19 446.19* 446.19 6546.41 51720 446.19* 446.19 1221.78 11228 446.19* 446.19 1139.97 9076 446.19* 446.19 1572.73 2786

team6_500rdmRad 621.99 - 483.63 1418.04 439814 - 500.95 882.52 427255 - 485.49 2193.78 420733 - 496.85 14400.03 374064

Table 5.3: Results on 42 3D instances with known feasible solution

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance Known UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

Constant radii, varied overlap ratios

bonus1000 941.35 - 464.71 1426.75 284088 - 464.68 1104.93 283244 - 416.90 1371.69 223019 - 429.70 3481.25 194021

team1_100 820.73 - 708.29 6989.10 3336890 - 708.27 6212.88 3332300 816.29 677.03 14400.11 1556800 - 671.27 14400.33 282951

team2_200 283.24 273.38* 273.38 193.70 18729 273.38* 273.38 177.43 18849 273.38* 273.38 210.75 2500 273.38* 273.38 318.34 1093

team3_300 1484.41 - 771.77 3709.33 1378619 - 771.68 3095.16 1371321 - 704.15 4153.81 1058775 - 722.53 14400.09 762488

team4_400 753.81 - 510.07 2852.53 854309 - 510.05 2291.01 852793 - 483.57 5701.18 705017 - 493.56 14400.30 705283

team5_499 1924.53 - 714.33 4439.16 957412 - 714.32 2871.58 956861 - 603.65 9196.08 794176 - 627.92 13654.23 950626

team6_500 236.96 230.92* 230.92 0.35 29 230.92* 230.92 1.00 29 230.92* 230.92 1.06 16 230.92* 230.92 1.06 2

Constant radii, constant overlap ratios

overlap ratio: 0.02

d493 1353.14 - 474.93 5350.33 998896 - 474.92 3729.49 998279 - 424.64 14206.02 885531 - 439.09 14401.38 902556

dsj1000 3147.87 - 753.30 3342.78 484561 - 753.25 2770.16 483792 - 580.97 8497.03 395579 - 589.41 9713.30 460953

kroD100 202.02 - 152.19 10050.02 4063111 - 152.23 8777.73 4122139 - 143.07 14400.01 1836422 - 143.10 14400.33 457850

lin318 3044.27 - 2010.22 4227.02 1288664 - 2010.09 5075.60 1284165 - 1883.51 6737.13 1053590 - 1912.36 14400.34 673976

pcb442 404.49 - 187.35 3779.17 876138 - 187.34 3912.85 873018 - 170.21 8948.84 842552 - 176.25 13612.45 955347

(continued on next page)

86

Table 5.3: Results on 42 3D instances with known feasible solution (continued)

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance Known UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

rat195 291.26 - 129.13 5564.59 1967434 - 129.13 4231.57 1966577 - 115.91 13900.16 2051876 - 117.93 14400.64 948587

rd400 3218.20 - 879.05 4316.09 1073228 - 879.63 5094.65 1099461 - 704.19 14401.57 1036363 - 705.42 14400.03 1036443

overlap ratio: 0.10

d493 665.06 - 420.43 2566.57 680911 - 420.42 2092.57 679661 - 409.12 3258.50 594782 - 415.87 14400.06 568853

dsj1000 1021.25 - 593.62 1448.00 298311 - 593.58 1171.75 297452 - 535.44 1462.67 232405 - 552.22 3815.59 204303

kroD100 91.67 91.66* 91.66 3.17 53 91.66* 91.66 3.16 53 91.66* 91.66 3.24 39 91.66* 91.66 3.44 23

lin318 1443.43 1398.50* 1398.50 3657.72 355089 1398.50* 1398.50 3140.94 355089 1398.50* 1398.50 3076.22 28284 1398.50* 1398.50 3906.84 7044

pcb442 154.81 - 137.53 2030.41 467254 - 137.52 1498.71 464318 144.60 136.95 4148.57 454146 143.99 137.33 14400.05 167109

rat195 112.40 - 89.07 3521.02 1277433 - 89.06 3246.07 1271169 99.47 87.58 14400.05 941532 99.46 87.09 14400.08 190802

rd400 1552.72 - 756.72 3150.70 990697 - 756.66 3138.68 987085 - 679.36 4828.32 729710 - 708.18 12105.27 765429

overlap ratio: 0.30

d493 335.59 325.21* 325.21 8.48 1366 325.21* 325.21 7.36 1366 325.21* 325.21 9.02 180 325.21* 325.21 10.88 105

dsj1000 270.40 267.75* 267.75 4.10 326 267.75* 267.75 4.32 310 267.75* 267.75 5.62 183 267.75* 267.75 4.91 31

kroD100 58.93 58.93* 58.93 0.06 1 58.93* 58.93 0.06 1 58.93* 58.93 0.05 1 58.93* 58.93 0.06 1

lin318 766.83 766.83* 766.83 0.20 2 766.83* 766.83 0.17 2 766.83* 766.83 0.19 2 766.83* 766.83 0.19 1

pcb442 83.72 83.72* 83.72 0.27 1 83.72* 83.72 0.27 1 83.72* 83.72 0.24 1 83.72* 83.72 0.23 1

rat195 47.89 47.89* 47.89 0.11 1 47.89* 47.89 0.12 1 47.89* 47.89 0.11 1 47.89* 47.89 0.09 1

rd400 539.95 - 450.76 2112.50 468581 - 450.77 1480.89 484005 452.16 451.16 14400.03 307612 452.17 450.95 14400.08 61323

Arbitrary radii

bonus1000rdmRad 2689.41 - 573.36 2262.53 342657 - 612.78 1458.82 339795 - 486.80 3809.02 279132 - 468.84 4358.30 263705

d493rdmRad 761.07 - 436.96 1928.30 575283 - 444.04 1469.96 571860 - 427.71 3254.33 549361 - 436.52 12577.25 548975

dsj1000rdmRad 2074.84 - 680.45 1262.06 266737 - 704.03 812.75 265904 1863.36 622.25 1708.36 219512 1854.62 649.56 3545.89 190900

kroD100rdmRad 171.57 - 141.50 8812.96 3208345 - 150.28 10757.80 3125805 170.45 144.83 14400.02 1367174 171.08 143.15 14400.16 256696

lin318rdmRad 2189.43 - 1798.96 2168.43 718183 - 1856.27 1645.60 716217 2112.19 1825.87 10128.30 708096 2115.60 1825.35 14400.31 223856

pcb442rdmRad 258.40 - 175.89 1720.89 588912 - 180.15 901.65 578218 247.35 171.18 6294.70 543704 243.36 176.05 14400.81 366541

rat195rdmRad 84.47 82.10* 82.10 253.21 18308 82.10* 82.10 76.00 2710 82.10* 82.10 83.98 2201 82.10* 82.10 76.89 342

rd400rdmRad 3592.60 - 886.58 5625.26 1070428 - 896.19 5355.85 1077255 - 679.03 14400.51 769343 - 689.45 14400.22 928931

team1_100rdmRad 907.59 - 749.99 7262.76 3575899 - 764.37 5637.32 3399981 904.47 725.96 14400.12 1841884 - 716.63 14400.06 329303

team2_200rdmRad 1055.95 - 533.51 5376.88 1993918 - 553.84 3631.39 1931010 - 507.36 7395.64 1545275 - 516.92 14400.19 803425

(continued on next page)

87

Table 5.3: Results on 42 3D instances with known feasible solution (continued)

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance Known UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

team3_300rdmRad 1053.38 - 673.09 1855.88 770647 - 695.58 1339.38 755865 1009.72 655.81 3482.02 744912 1016.51 671.48 14400.02 461812

team4_400rdmRad 1276.90 - 553.54 3663.95 918157 - 575.32 2634.09 918596 - 520.22 8643.83 916999 - 541.50 14400.78 990125

team5_499rdmRad 840.48 - 589.56 1091.24 419857 - 605.46 741.88 417135 808.25 578.62 2256.96 414475 798.70 597.54 13845.83 380562

team6_500rdmRad 1076.35 - 503.12 1772.04 566822 - 529.74 1177.96 551044 - 486.65 2967.41 467703 - 507.34 8415.55 452690

88

5.5.3 Problems without feasible solutions

Coutinho et al. [15] demonstrates the impact of the overlap ratio by changing the

overlap ratio on the TSPLIB instances (the ones with constant radii). Since all covering

regions have the same radius, to obtain an instance with a particular overlap ratio λ,

the radius on the new instance is the radius of the instance with overlap ratio 0.02

multiplied by λ/0.02. In particular, Coutinho et al. [15] examined overlap ratio from

0.1 to 0.3 for 4 of the TSPLIB 2D instances.

In this section, we examine a total of 56 2D instances based on all 7 TSPLIB

instances with overlap ratios 0.04, 0.06, 0.08, 0.12, 0.14, 0.16, 0.18 and 0.2. Not only are

we interested to see the relation between solvability and overlap ratio on all 7 TSPLIB

instances, more importantly, we can observe the performance of CBFS-CV and BFS

when there is no best known solution to provide initial pruning for the algorithm, since

best known solutions are not discussed in previous works on these instances.

Table 5.4 presents the results of all algorithms on the 56 instances. The column

notations are the same as the ones in Table 5.2 with the exception that there is no

column with best known solutions.

There are 4 instances, kroD100 (overlap ratio 0.04), d493 (overlap ratio 0.08),

dsj1000 (overlap ratio 0.08) and rd400 (overlap ratio 0.14), where Cout-CBFS+ and

Cout-CBFS-LAS+ are able to prove optimality while Cout and Cout+ cannot. Further-

more, on instances not solved to optimality by any algorithms, Cout-CBFS+ is the only

one that can provide feasible solutions to all of them when it terminates.

As indicated in Coutinho et al. [15], as the overlap ratio increases, the problems

become easier to solve. However, note that for pcb442, which is not examined with

different overlap ratios in Coutinho et al. [15], the running time to prove optimality

increases when overlap ratio increases from 0.16 to 0.18.

89

Table 5.4: Results on 56 instances with constant radii with no known feasible solution

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

Constant radii, constant overlap ratios

overlap ratio: 0.04

d493 - 133.30 1691.86 533076 - 133.29 1394.10 531037 156.77 131.29 3074.83 490816 155.96 132.49 14400.35 356004

dsj1000 - 508.09 1210.81 266176 - 508.07 980.28 265465 705.62 490.64 2015.38 239368 690.10 497.86 7326.91 218037

kroD100 - 127.22 5296.53 2487785 - 127.23 5243.76 2497457 127.76* 127.76 8182.13 58766 127.76* 127.76 12866.79 15344

lin318 - 1836.76 2374.71 909457 - 1836.70 2017.16 907275 2271.69 1788.11 8151.77 804251 2268.98 1792.81 14400.41 356839

pcb442 - 172.40 1903.07 625307 - 172.39 1458.06 624251 278.70 162.69 3397.38 566048 245.52 167.70 14400.53 466314

rat195 - 97.40 2964.63 1310988 - 97.40 2422.22 1308211 118.07 94.75 14400.19 1193669 120.87 94.75 14400.49 387916

rd400 - 530.60 2166.68 739035 - 530.58 1678.87 737757 840.76 499.16 4980.11 657334 887.80 507.50 12495.78 639163

overlap ratio: 0.06

d493 - 121.18 1295.59 424728 - 121.17 962.76 422671 127.23 121.22 3914.94 416429 127.66 121.16 14400.25 170358

dsj1000 - 462.12 927.77 214072 - 462.10 654.31 213399 495.33 465.28 4076.11 206389 493.73 467.38 14400.27 113036

kroD100 109.35* 109.35 513.93 243954 109.35* 109.35 500.29 243990 109.35* 109.35 450.09 3373 109.35* 109.35 632.33 1117

lin318 - 1679.82 1907.35 740725 - 1679.75 1469.38 738141 1829.59 1673.77 12110.44 734242 1840.44 1662.58 14400.00 191641

pcb442 - 159.59 1650.71 584395 - 159.58 1232.92 582917 223.51 154.84 1683.97 500682 194.05 158.19 14400.19 385629

rat195 - 86.21 2669.71 1194684 - 86.21 2101.54 1189943 92.89 85.72 14400.03 848779 92.98 85.05 14400.23 144044

rd400 - 496.01 1859.90 652711 - 495.99 1395.67 651795 659.27 476.12 5145.25 631544 666.50 484.41 14400.04 532965

overlap ratio: 0.08

d493 - 110.20 1528.22 402345 - 110.19 908.11 400029 110.64* 110.64 8546.50 52089 110.64* 110.64 12378.57 22743

dsj1000 - 415.73 852.05 200574 - 415.72 553.08 199952 420.69* 420.69 8514.69 39975 420.69* 420.69 12043.41 11901

kroD100 96.90* 96.90 8.97 4938 96.90* 96.90 9.10 4938 96.90* 96.90 8.75 258 96.90* 96.90 19.76 387

lin318 - 1535.86 1741.38 703042 - 1535.81 1326.30 699684 1568.14 1547.61 14400.03 407421 1568.14 1537.18 14400.29 76506

pcb442 - 147.30 1440.67 519032 - 147.29 1017.45 515956 167.28 145.69 2456.55 484623 165.71 146.98 14400.20 278659

rat195 - 75.92 2658.77 1151349 - 75.92 2034.74 1143496 76.72 76.24 14400.02 238720 76.72 75.89 14400.00 55275

rd400 - 462.26 1690.21 618218 - 462.24 1246.74 616237 535.22 454.90 7104.89 605281 535.26 456.64 14400.09 272860

overlap ratio: 0.12

d493 94.42* 94.42 1.24 341 94.42* 94.42 1.85 341 94.42* 94.42 1.80 212 94.42* 94.42 1.50 72

dsj1000 336.34* 336.34 321.31 72160 336.34* 336.34 203.63 72142 336.34* 336.34 204.44 7122 336.34* 336.34 306.82 1818

kroD100 85.26* 85.26 0.46 201 85.26* 85.26 0.49 201 85.26* 85.26 0.52 87 85.26* 85.26 0.51 1

lin318 1249.01* 1249.01 467.39 137741 1249.01* 1249.01 357.01 90816 1249.01* 1249.01 338.59 3189 1249.01* 1249.01 434.61 1393

(continued on next page)

90

Table 5.4: Results on 56 instances with constant radii with no known feasible solution (continued)

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

pcb442 - 125.94 1211.99 440458 - 125.93 799.71 438566 135.02 125.63 2216.06 435527 132.34 125.92 14400.50 199123

rat195 64.90* 64.90 0.12 16 64.90* 64.90 0.32 16 64.90* 64.90 0.64 129 64.90* 64.90 0.35 1

rd400 - 396.44 1386.20 508988 - 396.42 930.67 505634 403.98 401.23 14400.13 352836 403.98 399.26 14400.31 72517

overlap ratio: 0.14

d493 90.01* 90.01 0.39 58 90.01* 90.01 0.88 58 90.01* 90.01 1.50 65 90.01* 90.01 0.87 2

dsj1000 309.20* 309.20 36.73 6406 309.20* 309.20 25.02 5150 309.20* 309.20 45.17 2400 309.20* 309.20 55.33 368

kroD100 81.67* 81.67 0.06 7 81.67* 81.67 0.09 7 81.67* 81.67 0.13 43 81.67* 81.67 0.09 1

lin318 1131.29* 1131.29 106.34 26420 1131.29* 1131.29 76.83 23896 1131.29* 1131.29 75.02 1007 1131.29* 1131.29 120.94 735

pcb442 - 116.86 1192.28 434833 - 116.86 757.91 432891 118.28 117.39 6695.34 426840 118.47 117.21 14400.39 101638

rat195 62.54* 62.54 0.10 1 62.54* 62.54 0.16 1 62.54* 62.54 0.17 1 62.54* 62.54 0.17 1

rd400 - 365.65 1428.31 471820 - 365.65 913.41 469228 366.59* 366.59 6358.88 27903 366.59* 366.59 8821.00 9356

overlap ratio: 0.16

d493 86.93* 86.93 0.29 16 86.93* 86.93 0.56 16 86.93* 86.93 2.58 41 86.93* 86.93 0.50 1

dsj1000 285.90* 285.90 5.94 1807 285.90* 285.90 5.74 990 285.90* 285.90 6.42 891 285.90* 285.90 15.95 236

kroD100 78.55* 78.55 0.07 7 78.55* 78.55 0.37 7 78.55* 78.55 0.28 14 78.55* 78.55 0.30 1

lin318 1039.72* 1039.72 17.61 2374 1039.72* 1039.72 15.74 1809 1039.72* 1039.72 16.58 282 1039.72* 1039.72 28.53 102

pcb442 108.82* 108.82 1091.22 263109 108.82* 108.82 830.18 262532 108.82* 108.82 795.53 7426 108.82* 108.82 1006.55 2126

rat195 60.29* 60.29 0.10 1 60.29* 60.29 0.18 1 60.29* 60.29 0.11 1 60.29* 60.29 0.18 1

rd400 335.11* 335.11 513.50 35588 335.11* 335.11 447.99 35588 335.11* 335.11 468.58 3204 335.11* 335.11 592.97 1558

overlap ratio: 0.18

d493 84.38* 84.38 0.27 7 84.38* 84.38 0.97 7 84.38* 84.38 3.09 7 84.38* 84.38 0.95 1

dsj1000 265.28* 265.28 3.11 742 265.28* 265.28 3.75 297 265.28* 265.28 4.73 543 265.28* 265.28 3.66 26

kroD100 75.51* 75.51 0.07 7 75.51* 75.51 0.09 7 75.51* 75.51 0.13 34 75.51* 75.51 0.10 1

lin318 978.27* 978.27 0.19 16 978.27* 978.27 0.32 16 978.27* 978.27 1.38 119 978.27* 978.27 0.34 1

pcb442 102.32* 102.32 1652.86 32330 102.32* 102.32 1481.48 31996 102.32* 102.32 1569.19 16653 102.32* 102.32 1941.64 5072

rat195 58.08* 58.08 0.10 1 58.08* 58.08 0.18 1 58.08* 58.08 0.14 1 58.08* 58.08 0.17 1

rd400 306.62* 306.62 6.49 2610 306.62* 306.62 4.73 2610 306.62* 306.62 6.84 392 306.62* 306.62 12.19 196

overlap ratio: 0.20

d493 81.86* 81.86 0.27 7 81.86* 81.86 1.65 7 81.86* 81.86 2.03 4 81.86* 81.86 1.89 1

(continued on next page)

91

Table 5.4: Results on 56 instances with constant radii with no known feasible solution (continued)

Cout Cout+ Cout-CBFS+ Cout-CBFS-LAS+

Instance UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp UB LB Time Unexp

dsj1000 251.68* 251.68 0.85 106 251.68* 251.68 1.22 106 251.68* 251.68 1.64 381 251.68* 251.68 1.29 7

kroD100 72.54* 72.54 0.06 4 72.54* 72.54 0.10 4 72.54* 72.54 0.11 27 72.54* 72.54 0.09 1

lin318 937.84* 937.84 0.18 4 937.84* 937.84 0.32 4 937.84* 937.84 0.34 4 937.84* 937.84 0.36 1

pcb442 97.99* 97.99 0.47 84 97.99* 97.99 0.83 84 97.99* 97.99 1.19 268 97.99* 97.99 0.89 4

rat195 55.91* 55.91 0.11 1 55.91* 55.91 0.21 1 55.91* 55.91 0.20 1 55.91* 55.91 0.25 1

rd400 285.99* 285.99 4.63 1969 285.99* 285.99 3.90 1913 285.99* 285.99 6.63 219 285.99* 285.99 7.44 108

92

5.5.4 Discussion

There are several observations we can make based on the numerical experiments in this

section.

First, the new branching vertex selection scheme simplifies the algorithm by having

a single scheme for both constant radii and arbitrary radii instances. For the arbitrary

radii instances, where the new scheme may select different vertices from the scheme

in the original Cout, the new scheme outperforms the original one in terms of running

time in tested instances.

Second, the two improvement methods discussed in Sections 5.4.2 and 5.4.3 help

further improve the running time of the algorithm. Since BFS focuses on improving

the lower bound and only finds solutions very late in the search, the reduction in vertex

coverage check discussed in Section 5.4.2 is the main reason for the improvement when

comparing Cout+ with Cout.

On Cout-CBFS+ and Cout-CBFS-LAS+, the feasible solution improvement method

discussed in Section 5.4.3 can reduce the running time on instances where the best

known solution value is not optimal. By improving the quality of feasible solutions

found, it helps to reduce the number of nodes with lower bound no less than the

optimal solution the CBFS-CV selects for exploration. However, since the number of

nodes that must be explored (with lower bound less than the optimal solution value)

is often very large, the reduction in vertex coverage check is still very important in

reducing the running time of the algorithms.

Third, although CBFS-CV does not lead to substantial reduction in running time

compared with BFS, the benefit of CBFS-CV is obvious. Cout-CBFS+ stores fewer

(sometimes significantly fewer) unexplored nodes than Cout+, while frequently finding

good feasible solutions early in the search. However, if improving the global lower

93

bound is the priority, BFS is a better choice than CBFS-CV.

Finally, LAS can be very useful when space constraints are important, at the ex-

pense of longer running times.

5.6 Conclusion and future research

In this chapter, we presented an improved version of Cout, originally developed by

Coutinho et al. [15], to solve the CETSP. A new variation of CBFS is proposed for

Cout to address the disadvantages of BFS used in Cout. A branching vertex selec-

tion scheme that works for both the constant radii and arbitrary radii instances is

presented. Additionally, we proposed methods to reduce computational workload and

improve solution quality. Finally, the implementation of Cout by the original authors

is improved.

The improved algorithm is tested on a set of 160 instances in total (104 instances

with known feasible solutions and 56 instances without). Overall, it shows that the

improved algorithm is comparable or slightly better on most instances that can be

solved to optimality while using less space for node storage. On the instances where

optimality cannot be proven due to time or space constraints, the improved algorithm

tends to find better feasible solutions. On instances with arbitrary radii, the new

branching vertex selection scheme outperforms Cout and a previously unsolved instance

is solved to optimality for the first time. Additionally, since the improved algorithm can

find good feasible solutions quickly, which reduces the number of nodes that has to be

stored and maintained, when a good feasible solution is not provided at the beginning

of the search, the improved algorithm solves more problems to optimality than Cout.

One future research direction is finding algorithms that can be used to compute

good lower bounds to the problem, given some partial sequences. For the algorithms

94

in this chapter, a significant percentage of the iterations are processing partial sequences

that do not lead to optimal or even good solutions. A better lower bound algorithm

would reduce the number of iterations substantially which also reduces the number of

nodes to store, removing an obstacle that prevents B&B algorithms from solving larger

problems.

95

Chapter 6

Conclusion

In this dissertation, we study the CBFS strategy in B&B algorithms by applying vari-

ants of it to B&B algorithms for specific problems as well as by investigating some

underlying conditions of the search tree that allows a CBFS variant, CBFS-depth, to

explore fewer nodes than BFS to prove optimality in a B&B algorithm. We find that

CBFS can be very effective, given the right contour labeling function for the right

problem.

We first apply a known CBFS variant, CBFS-depth on a one machine schedul-

ing problem with release and delivery times with the minimum makespan objective

(1|ri, qi, dpc|Cmax) and a more generalized version of the problem with delayed prece-

dence constraints (1|ri, qi, dpc|Cmax). In addition to the use of CBFS-depth as search

strategy, we also propose a modified version of the heuristic LTH. In the new heuristic

MLTH, we allow some jobs that are not yet released to be considered for scheduling as we

build a feasible sequence for the problem. A rescheduling process is presented to make

sure that schedules created by MLTH are valid in the branching process. The behavior

of BFS with both FIFO and LIFO tie-breaking rules on the problem is discussed as

well as the reason for choosing CBFS-depth. In particular, we show that CBFS-depth

96

can be better at balancing the diversity and intensity of the search. Computational

results are reported showing that LDepth, which includes both MLTH and CBFS-depth

outperforms Bal on both 1|ri, qi|Cmax and 1|ri, qi, dpc|Cmax. We show that for the in-

stances of 1|ri, qi|Cmax, MLTH contributes to the order of magnitude improvement over

the state-of-the-art algorithm. On instances of 1|ri, qi, dpc|Cmax, the heuristic also im-

proves the running time and the number of nodes explored from the original algorithm,

but CBFS-depth helps when solving some instances that cannot be solved with BFS,

with or without MLTH.

We then examine the performance of CBFS-depth in a non-problem-specific manner

by studying the conditions of the search trees on which CBFS-depth explores fewer

nodes than BFS to prove optimality. We first showed that, without sophisticated

pruning rules beyond the lower bound, optimal solutions must come from nodes with

fLB = Z∗ in order for CBFS-depth to have an opportunity to explore fewer nodes than

BFS. Based on the observation, we present a set of assumptions that aim to distinguish

only three types of nodes in the search tree based on the relation between their lower

bounds and the optimal solution value. In particular, the E-type, L-type and G-type

nodes. A search tree model for B&B algorithms based on the distribution of the three

types of nodes with different lower bounds is proposed so that we can use randomly

generated search trees to study the performance of search strategies CBFS-depth and

BFS in terms of the number of nodes explored to prove optimality. An estimation

of the expected number of nodes explored by CBFS-depth based on the parameters

of the search tree is proposed. Generated search trees and several problems are used

to demonstrate the search tree conditions under which CBFS-depth is a better choice

than BFS. In particular, the results show that one key to the success of CBFS-depth is

the large number of nodes with fLB = Z∗ on the levels where an optimal solution may

exist. We then justify the observation with problem instances from 1|ri, qi, dpc|Cmax

97

discussed in the previous chapter as well as the MIPLIB library.

Finally, we present another scenario where a variant of CBFS can be a better search

strategy than BFS by applying CBFS-CV to a B&B algorithm for CETSP. In particu-

lar, we show that even if CBFS does not explore fewer nodes than BFS, it can still be a

better choice of search strategy given the right labeling function and problem. We im-

prove a B&B algorithm proposed by Coutinho et al. [15] by using CBFS-CV and other

methods that reduce computational workload and improve solution quality. We discuss

the problem structure, specifically the weak lower bound and the lack of sophisticated

pruning methods, that allow CBFS-CV to have two advantages over BFS: it requires

less memory for storing unexplored nodes, and it finds good solutions substantially

earlier than BFS in the search, which is confirmed than by our computational exper-

iments. On problem instances that can be solved, CBFS-CV does not explore many

more nodes than BFS and is mostly comparable with BFS in terms of running time

with substantially fewer nodes to store. On problem instances that cannot be solved

with the given time and space limit, CBFS-CV has the clear advantage of obtaining

feasible solutions, sometimes better than the best known feasible solutions found by

other heuristics, before termination while BFS terminates without finding any solution.

This dissertation presents both the examples of using the CBFS strategy to improve

a B&B algorithm as well as the discussions on the reason behind the improvements.

It aims to provide a different approach in an aspect of the B&B algorithm that is

frequently overlooked, the search strategy. In particular, we demonstrate that, by

using CBFS variants, we can guide the search away from large numbers of nodes

that may not lead to good or optimal solutions. In the one machine problems, BFS

is unable to distinguish nodes with the same lower bound; in CETSP, BFS has no

capacity to move away from many nodes with small lower bounds, even though feasible

solutions cannot be derived from them. Therefore, any class of problems that has large

98

numbers of nodes that are unlikely to generate good solutions while the commonly used

search strategies such as BFS are unable to lead the search away from those nodes, are

candidates for CBFS variants. As observed by Morrison et al. [34], many scheduling

problems fit this description, which is why CBFS-depth has been used on a number of

them [23, 38, 39, 32]. However, as indicated with the use of a different CBFS variant

in Morrison et al. [33], as well as the use of CBFS-CV in CETSP, on many other

optimization problems that fit the description, a CBFS variant that takes advantage of

some problem-specific structure may result in better performance in terms of finding

solutions early.

The author will provide all codes used in the paper along with data and results to

interested readers and can be reached at zwd.kid@gmail.com.

99

zwd.kid@gmail.com

Bibliography

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technical University

of Berlin, 2007.

[2] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12

years of progress. In Facets of combinatorial optimization, pages 449–481. Springer,

2013.

[3] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job

shop scheduling. Management science, 34(3):391–401, 1988.

[4] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde. Available at:

http://www.math.uwaterloo.ca/tsp/concorde/index.html, 2003.

[5] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman

problem: a computational study. Princeton university press, 2006.

[6] K. R. Baker and Z. S. Su. Sequencing with due-dates and early start times to

minimize maximum tardiness. Naval Research Logistics Quarterly, 21(1):171–176,

1974.

[7] E. Balas, J. K. Lenstra, and A. Vazacopoulos. The one-machine problem with

delayed precedence constraints and its use in job shop scheduling. Management

Science, 41(1):94–109, 1995.

100

http://www.math.uwaterloo.ca/tsp/concorde/index.html

[8] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling: applying

constraint programming to scheduling problems, volume 39. Springer Science &

Business Media, 2012.

[9] B. Behdani and J. C. Smith. An integer-programming-based approach to the

close-enough traveling salesman problem. INFORMS Journal on Computing, 26

(3):415–432, 2014.

[10] Nicolas Bourgeois, R. Catellier, Tom Denat, and Vangelis Th. Paschos. Average-

case complexity of a branch-and-bound algorithm for maximum independent set,

under the G(n, p) random model. ArXiv, abs/1505.04969, 2015.

[11] C. Briand, S. Ourari, and B. Bouzouia. An efficient ilp formulation for the single

machine scheduling problem. RAIRO-Operations Research, 44(1):61–71, 2010.

[12] Leandro C. C. Install and run concorde with cplex. https://www.

leandro-coelho.com/install-and-run-concorde-with-cplex/, 2019.

[13] J. Carlier. The one-machine sequencing problem. European Journal of Operational

Research, 11(1):42–47, 1982.

[14] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso. A novel discretization

scheme for the close enough traveling salesman problem. Computers & Operations

Research, 78:163–171, 2017.

[15] W. P. Coutinho, R. Q. do Nascimento, A. A. Pessoa, and A. Subramanian. A

branch-and-bound algorithm for the close-enough traveling salesman problem. IN-

FORMS Journal on Computing, 28(4):752–765, 2016.

[16] S. Dauzere-Peres and J-B Lasserre. A modified shifting bottleneck procedure for

101

https://www.leandro-coelho.com/install-and-run-concorde-with-cplex/
https://www.leandro-coelho.com/install-and-run-concorde-with-cplex/

job-shop scheduling. The International Journal of Production Research, 31(4):

923–932, 1993.

[17] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality

of A*. Journal of the ACM, 32(3):505–536, 1985.

[18] E. Dolan and J. Moré. Benchmarking optimization software with performance

profiles. Mathematical programming, 91(2):201–213, 2002.

[19] J. Dong, N. Yang, and M. Chen. Heuristic approaches for a tsp variant: The auto-

matic meter reading shortest tour problem. In Extending the Horizons: Advances

in Computing, Optimization, and Decision Technologies, pages 145–163. Springer,

2007.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, New York, NY, USA, 1979.

[21] A. Gharbi and M. Labidi. Jackson’s semi-preemptive scheduling on a single ma-

chine. Computers & Operations Research, 37(12):2082–2088, 2010.

[22] D. J. Gulczynski, J. W. Heath, and C. C. Price. The close enough traveling

salesman problem: A discussion of several heuristics. In Perspectives in Operations

Research, pages 271–283. Springer, 2006.

[23] G. K. Kao, E. C. Sewell, and S. H. Jacobson. A branch, bound, and remember

algorithm for the 1|ri|
∑
ti scheduling problem. Journal of Scheduling, 12(2):163–

175, 2009.

[24] H. Kise and M. Uno. One-machine scheduling problems with earliest start and

due time constraints. Mem. Kyoto Tech. Univ. Sci. Tech, 27:25–34, 1978.

102

[25] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,

E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,

T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathe-

matical Programming Computation, 3(2):103–163, 2011.

[26] B. J. Lageweg, J. K. Lenstra, and A. R. Kan. Minimizing maximum lateness on one

machine: computational experience and some applications. Statistica Neerlandica,

30(1):25–41, 1976.

[27] A. H. Land and A. G. Doig. An automatic method for solving discrete program-

ming problems. Econometrics, 1960.

[28] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search

strategies for mixed integer programming. INFORMS Journal on Computing, 11

(2):173, 1999.

[29] G. McMahon and M. Florian. On scheduling with ready times and due dates to

minimize maximum lateness. Operations research, 23(3):475–482, 1975.

[30] W. Mennell. Heuristics for solving three routing problems: Close-enough traveling

salesman problem, close-enough vehicle routing problem, sequence-dependent team

orienteering problem. PhD thesis, 2009.

[31] W. Mennell, B. Golden, and E. Wasil. A steiner-zone heuristic for solving the

close-enough traveling salesman problem. In 2th INFORMS computing society

conference: operations research, computing, and homeland defense, 2011.

[32] D. R. Morrison, E. C. Sewell, and S. H. Jacobson. An application of the branch,

bound, and remember algorithm to a new simple assembly line balancing dataset.

European Journal of Operational Research, 236(2):403–409, 2014.

103

[33] D. R. Morrison, E. C. Sewell, and S. H. Jacobson. Solving the pricing problem

in a branch-and-price algorithm for graph coloring using zero-suppressed binary

decision diagrams. INFORMS Journal on Computing, 28(1):67–82, 2016.

[34] D. R. Morrison, J. J. Sauppe, W. Zhang, S. H. Jacobson, and E. C. Sewell. Cyclic

best first search: Using contours to guide branch-and-bound algorithms. Naval

Research Logistics (NRL), 64(1):64–82, 2017.

[35] Y. Pan and L. Shi. Branch-and-bound algorithms for solving hard instances of

the one-machine sequencing problem. European Journal of Operational Research,

168(3):1030–1039, 2006.

[36] C. N. Potts. Analysis of a heuristic for one machine sequencing with release dates

and delivery times. Operations Research, 28(6):1436–1441, 1980.

[37] R. Sadykov and A. Lazarev. Experimental comparison of branch-and-bound al-

gorithms for the 1|rj|lmax problem. In Proceedings of the seventh international

workshop MAPSP, volume 5, pages 239–41, 2005.

[38] E. C. Sewell and S. H. Jacobson. A branch, bound, and remember algorithm for

the simple assembly line balancing problem. INFORMS Journal on Computing,

24(3):433–442, 2012.

[39] E. C. Sewell, J. J. Sauppe, D. R. Morrison, S. H. Jacobson, and G. Kao. A

BB&R algorithm for minimizing total tardiness on a single machine with sequence

dependent setup times. Journal of Global Optimization, 54(4):791–812, Dec 2012.

[40] K. Sourirajan and R. Uzsoy. Hybrid decomposition heuristics for solving large-

scale scheduling problems in semiconductor wafer fabrication. Journal of Schedul-

ing, 10(1):41–65, 2007.

104

[41] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.

[42] N. R. Vempaty, V. Kumar, and R. E. Korf. Depth-first versus best-first search.

In AAAI, 1991.

[43] X. Wang, B. Golden, and E. Wasil. A steiner zone variable neighborhood search

heuristic for the close-enough traveling salesman problem. Computers & Opera-

tions Research, 101:200–219, 2019.

[44] Z. Yang, M. Q. Xiao, Y. W. Ge, D. L. Feng, L. Zhang, H. F. Song, and X. L. Tang.

A double-loop hybrid algorithm for the traveling salesman problem with arbitrary

neighbourhoods. European Journal of Operational Research, 265(1):65–80, 2018.

[45] B. Yuan, M. Orlowska, and S. Sadiq. On the optimal robot routing problem in

wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering,

19(9):1252–1261, 2007.

[46] W. Zhang and R. E. Korf. Performance of linear-space search algorithms. Artificial

Intelligence, 79(2):241–292, 1995.

[47] W. Zhang, J. J. Sauppe, and S. H. Jacobson. An improved branch-and-bound algo-

rithm for the one-machine problem and delayed precedence constraints variation.

Technical report, 2018.

[48] W. Zhang, J. J. Sauppe, and S. H. Jacobson. A branch-and-bound algorithm for

the close-enough traveling salesman problem. Technical report, 2020.

105

Appendix A

Additional Results: MLTH

The following tables are additional results on MLTH:

Table A.1: Ratio of MLTH used in all iterations on 1|ri, qi|Cmax instances

No. Jobs k = 15 k = 20 k = 25

n = 50 0.4760 0.8635 0.8179
n = 100 0.5890 0.8630 0.8605
n = 200 0.7397 0.8726 0.8675
n = 500 0.8646 0.8658 0.8792
n = 1000 0.8558 0.9204 0.8668

Table A.2: Ratio of MLTH used in all iterations on 1|ri, qi, dpc|Cmax instances

No. Jobs k = 10, p = 0.01 k = 10, p = 0.02 k = 15, p = 0.01 k = 15, p = 0.02

n = 50 0.4590 0.7268 0.7839 0.6763
n = 100 0.7536 0.6017 0.7086 0.5813

106

Table A.3: Percentage difference from optimal solutions on 1|ri, qi|Cmax instances

k = 15 k = 20 k = 25

No. Jobs LTH MLTH LTH MLTH LTH MLTH

n = 50 0.93% 0.67% 0.93% 0.21% 0.70% 0.15%
n = 100 0.54% 0.30% 0.45% 0.10% 0.35% 0.06%
n = 200 0.28% 0.11% 0.22% 0.04% 0.17% 0.03%
n = 500 0.12% 0.03% 0.08% 0.02% 0.07% 0.01%
n = 1000 0.05% 0.01% 0.04% 0.01% 0.03% 0.01%

Table A.4: Percentage difference from optimal solutions on 1|ri, qi, dpc|Cmax instances

k = 10, p = 0.01 k = 10, p = 0.02 k = 15, p = 0.01 k = 15, p = 0.02

No. Jobs LTH MLTH LTH MLTH LTH MLTH LTH MLTH

n = 50 2.73% 3.65% 2.03% 1.17% 1.40% 0.67% 0.85% 0.48%
n = 100 0.83% 0.46% 0.33% 0.26% 0.37% 0.21% 0.14% 0.11%

107

Appendix B

Compute τ̂i,j,l,e,g

Let the probabilities P̂ i,j
L , P̂ i,j

E and P̂ i,j
G be the estimated probabilities that an L-type,

an E-type and a G-type node is explored in depth level i cycle j. They can be expressed

using τ̂

P̂ i,j
L = 1− τ̂i,j,0,∗,∗

P̂ i,j
E = τ̂i,j,0,∗,∗ − τ̂i,j,0,0,gi,jmax

P̂ i,j
G = τ̂i,j,0,0,gi,jmax

,

where gi,jmax is the maximum number of unprocessed nodes in depth level i cycle j, and

τ̂i,j,0,∗,∗ is the estimated probability that N i,j
L = 0.

First, we discuss the situation when j = 1. Since there are no nodes in each depth

level before the first cycle, the probability of level i > 1 with 2 L-type, E-type and

108

G-type nodes can be written as

τ̂i,1,2,0,0 = P̂ i−1,1
L qi−1

τ̂i,1,0,2,0 = P̂ i−1,1
E (1− ri−1) + P̂ i−1,1

L (1− qi−1 − ri−1)

τ̂i,1,0,0,2 = P̂ i−1,1
G + (1− P̂ i−1,1

G)ri−1.

Second, we discuss the situation when i > 2 and 2 ≤ j ≤ 2i−2. For all depth levels

i > 2, if j ≤ 2i−2, the previous depth level i − 1 has at least one unprocessed node in

cycle j which leads to two new unprocessed nodes generated in depth level i. There

should be exactly j + 1 unprocessed nodes in depth level i cycle j before a node from

the depth level is selected and thus τi,j,l,e,g = 0 for any l + e+ g 6= j + 1.

We distinguish several different cases to calculate τ̂i,j,l,e,g, based on the values of l,

e and g. Since we know the number of nodes in depth level i cycle j is j + 1, only two

of l, g and e are needed to determine the combination of nodes. In particular, we use

the value of l and g to determine the cases, and the value of e is implied.

Case 1: l = 0 and g ≤ j − 2. Given l = 0, N i,j−1
L can be 0 or 1 in cycle j − 1 and

the new unprocessed nodes generated in the jth cycle in depth level i are not of L-type.

On the other hand, given g ≤ j − 2, N i,j−1
G can be g − 2 or g. If N i,j−1

G = g − 2, the

new unprocessed nodes generated in depth level i cycle j have to be G-type nodes. If

N i,j−1
G = g, the new nodes have to be E-type nodes.

Therefore, we have the following expression for τ̂i,j,0,e,g

τ̂i,j,0,e,g = (τ̂i,j−1,0,e−1,g + τ̂i,j−1,1,e−2,g)

·
(
P̂ i−1,j
E (1− ri−1) + P̂ i−1,j

L (1− qi−1 − ri−1)
)

+ τ̂i,j−1,0,e+1,l−2 ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
.

(B.1)

109

Case 2: l = 0 and g = j − 1. Given g = j − 1, N i,j−1
G can be j − 3, j − 1 and j. In

particular, there are j unprocessed nodes depth level i cycle j−1, and if all unprocessed

nodes are G-type nodes, one G-type node is explored. This case is otherwise the same

as Case 1. Therefore, we can write τ̂i,j,0,2,j−1 as

τ̂i,j,0,2,j−1 = (τ̂i,j−1,0,1,j−1 + τ̂i,j−1,1,0,j−1 + τ̂i,j−1,0,0,j)

·
(
P̂ i−1,j
E (1− ri−1) + P̂ i−1,j

L (1− qi−1 − ri−1)
)

+ τ̂i,j−1,0,3,j−3 ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
.

(B.2)

Case 3: l = 0 and g = j. Given g = j, N i,j−1
G can only be j− 2. Therefore, similar

to the scenario in Case 1 when N i,j−1
G = g − 2, we can write τ̂i,j,0,1,j as

τ̂i,j,0,1,j = τ̂i,j−1,0,2,j−2 ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
. (B.3)

Case 4: l = 0 and g = j + 1. Given g = j + 1, N i,j−1
G can be j − 1 and j. If

N i,j−1
G = j − 1, the new unprocessed nodes generated in depth level i cycle j must be

G-type nodes. If N i,j−1
G = j, a G-type node is explored in depth level i cycle j − 1 and

the new nodes should also be G-type nodes. We can write τ̂i,j,0,0,j+1 as

τ̂i,j,0,0,j+1 = (τ̂i,j−1,0,1,j−1 + τ̂i,j−1,1,0,j−1 + τ̂i,j−1,0,0,j) ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
.

(B.4)

Case 5: l = 1 and g ≤ j. Given l = 1, N i,j−1
L can only be 2. The new nodes

generated in depth level i cycle j are G-type nodes if N i,j−1
G = g− 2 and E-type nodes

110

if N i,j−1
G = g. We can write τ̂i,j,1,e,g as

τ̂i,j,1,e,g =τ̂i,j−1,2,e−2,g

·
(
P̂ i−1,j
E (1− ri−1) + P̂ i−1,j

L (1− qi−1 − ri−1)
)

+ τ̂i,j−1,2,e,g−2 ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
.

(B.5)

Case 6: l = 2 and g ≤ j − 1. Given l = 2, N i,j−1
L can be 0, 1 and 2. If l = 0 or 1,

the new nodes generated in depth level i cycle j have to be L-type nodes. Otherwise,

the generated nodes are G-type nodes if N i,j−1
G = g−2 and E-type nodes if N i,j−1

G = g.

We can write τ̂i,j,2,e,g as

τ̂i,j,2,e,g =τ̂i,j−1,3,e−2,g

·
(
P̂ i−1,j
E (1− ri−1) + P̂ i−1,j

L (1− qi−1 − ri−1)
)

+ (τ̂i,j−1,0,e+1,g + τ̂i,j−1,1,j−g−1,g) · P̂ i−1,j
L qi−1

+ τ̂i,j−1,3,e,g−2 ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
.

(B.6)

Case 7: l ≥ 2 and g ≤ j + 1− l. Since l ≥ 2, N i,j−1
L can be l − 1 and l + 1. Since

g ≤ j + 1− l, N i,j−1
G can be g − 2 or g. We can write τ̂i,j,l,e,g as

τ̂i,j,l,e,g =τ̂i,j−1,l+1,e−2,g

·
(
P̂ i−1,j
E (1− ri−1) + P̂ i−1,j

L (1− qi−1 − ri−1)
)

+ τ̂i,j−1,l−1,e,g · P̂ i−1,j
L qi−1

+ τ̂i,j−1,l+1,e,g−2 ·
(
P̂ i−1,j
G + (1− P̂ i−1,j

G)ri−1

)
.

(B.7)

Third, if 2i−2 < j ≤ 2i−1, there are 2i−1 − j + 1 nodes in depth level i cycle j. The

probability that an E-type node is selected in depth level i cycle j is the probability that

all L-type nodes in depth level i at cycle 2i−2 (the last cycle with new nodes generated

111

for depth level i) has been explored before the jth cycle and not all remaining nodes

are G-type nodes. This probability can then be expressed as

P̂ (N i,2i−2

L ≤ j − 2i−2, N i,2i−2

G ≤ 2i−1 − j) =

2i−1−j∑
m=0

j−2i−2∑
n=0

τ̂i,2i−2,n,2i−1−j+1−m−n,m. (B.8)

With all the values of i and j discussed, the values of τ̂i,j,l,e,g can be obtained

recursively.

112

Appendix C

Estimated Probability of E-type

Nodes Exploration in Depth Level d

We choose to show the comparison for q = 0.9, r = 0.3 and q = 0.5, r = 0.7 as they are

representative of the results for other pairs of q and r we tested in Section 4.4.1.

0 20 40 60 80 100 120 140
Cycle No.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

po
rt

io
n

of
 N

od
es

Proportion of Nodes Selected In Last Depth Level has fLB = Z* (q = 0.9, r = 0.3)

Simulation Proportion
Estimated Proportion

Figure C.1: Comparison of the estimated probability of E-type node exploration in
depth level d with simulation (q = 0.9, r = 0.3)

113

0 50 100 150 200 250 300 350 400 450 500
Cycle No.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

po
rt

io
n

of
 N

od
es

Proportion of Nodes Selected In Last Depth Level has fLB = Z* (q = 0.5, r = 0.7)

Simulation Proportion
Estimated Proportion

Figure C.2: Comparison of the estimated probability of E-type node exploration in
depth level d with simulation (q = 0.5, r = 0.7)

Figures C.1 and C.2 indicate that the estimated probability is close to the pro-

portions obtained in simulation results. Note that the estimation overestimates the

probability of E-type node exploration between cycles 20 and 40 in Figure C.1 and be-

tween cycles 100 and 200 in Figure C.2, which can explain the estimated expectation

being smaller shown in Figures 4.1 and 4.3.

114

	List of Figures
	List of Tables
	Introduction
	Outline

	Preliminaries
	B&B algorithm and cyclic best first search
	Labeling functions

	CBFS in the One-machine Scheduling Problem with Delayed Precedence Constraints
	Introduction
	Balas' Branch-and-Bound Algorithm
	The Heuristic
	Search Strategy
	Computational Results
	Conclusion and Future Work

	The Number of Nodes Explored by CBFS
	Introduction
	Assumptions and Search Tree Definition
	Estimate E_CD
	Numerical Experiments
	Conclusion And Future Work

	CBFS in the Close-enough Traveling Salesman Problem
	Introduction
	Preliminaries
	Search strategy
	Further improvement
	Numerical experiments
	Conclusion and future research

	Conclusion
	BIBLIOGRAPHY
	Additional Results: MLTH
	Compute τ_i,j,l,e,g
	Estimated Probability of E-type Nodes Exploration in Depth Level d

