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ABSTRACT 

Volcanic activity may lead to potential volcanic eruptions, but it also provides critical 

information for understanding the physical processes within a volcanic system. Combining 

multiple observations and advanced physical models allows us to explore the response of the 

surrounding host rock to changes in the physical condition in a magmatic system. This work 

focuses on developing and applying a robust data-model fusion framework to investigate the 

mechanisms involved in volcanic unrest, such as deformation, failure, and pore fluid migration. 

First, using a series of tests based on the synthetic data, I optimize a data assimilation technique, 

Ensemble Kalman Filter (EnKF), to improve its performance in forecasting volcanic unrests with 

multiple geodetic observations. Then, the robustness of the EnKF is confirmed in application to 

the unrest and 2009 eruption of Kerinci volcano, Indonesia. To understand the effects of 

uncertain rheology on our model results, I conduct a systematic sensitivity study to determine the 

impact of rheology on the host-rock failure prediction. With a better understanding of the 

uncertainties in my models, I establish numerical models by integrating multiple observations to 

investigate the magma reservoir dynamics, crustal stress, failure-related seismicity, and 

hydrological interactions of two different magmatic systems, Laguna del Maule in the Andes, 

Chile, and Atka in the Aleutian, USA. In both systems, the pre-existing structures and pore fluids 

play critical roles in catalyzing seismicity, redistributing masses, and delaying/trigger eruptions. 
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CHAPTER 1: INTRODUCTION 

Volcanic unrest is defined as the deviated behavior of a volcano from its baseline or 

background (e.g., Phillipson et al., 2013; Acocella, 2014). Some unrest may lead to volcanic 

eruptions (e.g., Sparks, 2003; Moran et al., 2011), whereas often it does not (e.g., Biggs et al., 

2014). Understanding the mechanisms of volcanic unrest helps scientists to determine whether 

and when activity will be followed by an eruption. To quantify the stability of a volcanic system, 

we need to combine volcanic monitoring data such as geodesy (e.g., InSAR, GNSS) and 

seismology (e.g., broadband seismometer), with models including experimental, analytical, and 

numerical models (Sparks et al., 2012). Data assimilation techniques based on Bayesian Markov 

chain Monte Carlo method allow us to utilize volcanic monitoring data to obtain probabilistic 

estimates of model parameters, and to forecast future behavior. A recently developed, advanced 

data assimilation technique, Ensemble Kalman Filter (EnKF) (Evensen, 1994), has the power to 

handle highly nonlinear models, which has been widely used in hydrologic, physical 

oceanography, and climate modeling (e.g., vanLeeuwen and Evensen, 1996; Allen et al., 2003), 

and starts to show its potential in volcanology (Gregg and Pettijohn, 2016). 

The primary focus of this Ph.D. thesis is (1) developing a robust data assimilation 

technique for volcano modeling based on the EnKF, and (2) utilizing this technique to 

investigate the physical process, such as deformation, failure, pore fluid migration, and so on, 

during the volcanic unrest. Chapter 2 establishes a robust data assimilation workflow by a series 

of tests based on synthetic data, which optimizes the application of the EnKF in modeling 

complex volcanic deformation. In Chapter 3, I use a single type of observation, InSAR, from a 

real volcanic system to test the performance of the EnKF in exploring the volcanic unrest. Since, 
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in previous tests, the effects of uncertainties in the rock properties have not been discussed, In 

Chapter 4, I conduct a series of sensitivity tests to determine that under which condition the 

impact of the rheological uncertainties on failure prediction is not negligible. Therefore, In 

Chapters 5 and 6, model implementations based on inferred rheological structure from 

geophysical observation are used to investigate restless behaviors during periods of volcanic 

unrest for two different volcanic systems. The brief description and primary conclusions of each 

chapter are presented as follows. 

In Chapter 2, I establish a new 3-dimensional EnKF framework, which significantly 

expands the usage of this data assimilation method in volcanology (Zhan and Gregg, 2017). 

Then, I introduce an iterative EnKF algorithm to enhance the traditional EnKF framework, 

which is more effective in highly non-linear problems. Third, I add synthetic noise to both 

synthetic GPS and InSAR signals to test the ability of EnKF when dealing with more realistic 

data. Fourth, I simulate defects which are inevitable in real measurements such as gaps in data 

coverage and continuity. Finally, I conduct systematic sensitivity tests to exam the EnKF 

analysis results affected by prescribed model setup conditions. These tests not only provide 

information for using the EnKF analysis to enhance our modeling techniques but also give 

insights into data collection optimization. From these tests, I optimize the utilizing of the EnKF 

to improve its effectiveness and efficiency in assimilating multiple geodetic observations to 

forecast volcanic unrest. 

In Chapter 3, I apply the EnKF to investigate the surface deformation leading up to the 

2009 eruption of the Kerinci volcano, Central Sumatra along the Sunda Arc, Indonesia (Zhan et 

al., 2017). I use InSAR timeseries data during 2007-2011 from the ALOS-1 satellite to track the 

dynamics of a shallow magma storage system before and after the eruption. I apply a two-step 
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EnKF analysis to determine the two pressure sources which present an inflating shallow, 

spherical pressure source and a deflating, dike-like source feeding the shallower one. The 

ensemble mean values of the parameters are used to predict the stress state of the system leading 

up to the 2009 eruption. The stress model suggests that the shallow magma reservoir is close to 

the failure threshold prior to the 2009 eruption, which may explain the eruption.  

In Chapter 4, I conduct a series of sensitivity tests using 2-dimensional, axisymmetric 

models to evaluate the impact of the uncertainties in assumed rheological parameters (Zhan and 

Gregg, 2019). It is essential to understand whether significant uncertainties in rock properties 

will preclude the ability of models to predict reservoir failure before we can use date assimilation 

to forecast volcanic unrest. The tests show that predictions of the onset magma chamber failure 

are more sensitive to Young’s modulus than other elastic properties. Displacement at the onset of 

magma reservoir failure is not sensitive to variations in Young’s modulus for stiff host rocks 

(E>40 GPa). Longer precursory volcano-tectonic events may occur in weak host-rock (E <40 

GPa) due to well-developed Coulomb failure prior to dike propagation. 

In Chapter 5, I investigate the recent (2008-2017) restless behaviors at the Laguna del 

Maule (LdM) magmatic system, Chile, by integrating reservoir dynamics, crustal stress, and 

multiple observations (Zhan et al., 2019). I use a series of 3D FEM models to simulate the 

volcanic deformation of at LdM revealed by multi-band InSAR data. The model results are 

compared with seismic tomography, gravity, and magnetotelluric data to indicating the magma 

reservoir architecture. To explain the seismicity and gravity change data, I test the effects of a 

pre-existing weak zone (i.e., the Troncoso fault). The results illustrate that the permeability of the 

fault zone can increase due to an inflating magma reservoir, allowing pore fluid to inject into the 

dilatant places of the fault, then triggering earthquakes, and finally causing microgravity 
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changes. This “hydrofracturing” process may release some accumulated stress along the magma 

reservoir to delay potential eruptions. 

In Chapter 6, I investigate previous volcanic unrest (2006-2007) of the Atka volcanic 

center, Alaska, to evaluate whether the acceleration of uplift and seismicity triggered the phreatic 

eruption 5-km far away from focus of unrest. I use 3-D finite element models with data 

assimilation by the InSAR data to investigate the pressure source of the surface displacement, 

mechanism of the volcano-tectonic (VT) earthquakes, and triggering of the phreatic eruption. 

The results show that a migrating pressure source can best explain the surface deformation, 

indicating the melt connectivity in a magma reservoir dominated by crystal mush can evolve 

without a dramatic change in the overpressure of the magma reservoir. Further, the dilatancy in a 

pre-existing weak zone caused by the pressure source may open channels for pore fluid to inject 

into and to trigger VT earthquakes. Consequently, the water table may drop due to increased 

capability of the fault, to drain the crater lake at Korovin, and to trigger the phreatic eruption.1.1  

1.1 References 

Acocella V. (2014) Structural control on magmatism along divergent and convergent plate 

boundaries: Overview, model, problems. Earth-Science Reviews 136, 226–288. 

Allen J. I., Eknes M. and Evensen G. (2003) An Ensemble Kalman Filter with a complex marine 

ecosystem model: hindcasting phytoplankton in the Cretan Sea. Ann. Geophys. 21, 399–

411.  

Biggs J., Ebmeier S. K., Aspinall W. P., Lu Z., Pritchard M. E., Sparks R. S. J. and Mather T. A. 

(2014) Global link between deformation and volcanic eruption quantified by satellite 

imagery. Nature Communications 5, 1–7. 

Evensen G. (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using 
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Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162. 

Gregg P. M. and Pettijohn J. C. (2016) A multi-data stream assimilation framework for the 

assessment of volcanic unrest. Journal of Volcanology and Geothermal Research 309, 

63–77. 

Moran S. C., Newhall C. and Roman D. C. (2011) Failed magmatic eruptions: late-stage 

cessation of magma ascent. Bulletin of Volcanology 73, 115–122. 

Phillipson G., Sobradelo R. and Gottsmann J. (2013) Global volcanic unrest in the 21st century: 

An analysis of the first decade. Journal of Volcanology and Geothermal Research 264, 

183–196. 

Sparks R. S. J. (2003) Forecasting volcanic eruptions. Earth and Planetary Science Letters 210, 

1–15. 

Sparks R. S. J., Biggs J. and Neuberg J. W. (2012) Monitoring Volcanoes. Science 335, 1310–

1311. 

vanLeeuwen P. J. and Evensen G. (1996) Data assimilation and inverse methods in terms of a 

probabilistic formulation. Mon. Weather Rev. 124, 2898–2913. 

Zhan Y. and Gregg P. M. (2017) Data assimilation strategies for volcano geodesy. Journal of 

Volcanology and Geothermal Research 344, 13–25. 

Zhan Y. and Gregg P. M. (2019) How Accurately Can We Model Magma Reservoir Failure 

With Uncertainties in Host Rock Rheology? Journal of Geophysical Research: Solid 

Earth 124, 8030–8042. 

Zhan Y., Gregg P. M., Chaussard E. and Aoki Y. (2017) Sequential Assimilation of Volcanic 

Monitoring Data to Quantify Eruption Potential: Application to Kerinci Volcano, 
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Research: Solid Earth 124, 13547–13562. 
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CHAPTER 2: DATA ASSIMILATION STRATEGIES FOR VOLCANO GEODESY1 

Abstract 

Ground deformation observed using near-real time geodetic methods, such as InSAR and 

GPS, can provide critical information about the evolution of a magma chamber prior to volcanic 

eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of 

finite element models targeted at better understanding the connection between surface uplift 

associated with magma chamber pressurization and the potential for volcanic eruption. Robust 

model-data fusion techniques are necessary to take full advantage of the numerical models and 

the volcano monitoring observations currently available. In this study, we develop a 3D data 

assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine 

geodetic observations of surface deformation with geodynamic models to investigate volcanic 

unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become 

available to update geodynamic models of magma reservoir evolution. While the EnKF has been 

widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in 

its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to 

optimize the EnKF for volcano applications and on developing specific strategies for 

assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt 

well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that 

specific strategies can be adopted to enhance EnKF performance to improve model forecasts. 

Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of 

 

 
1 Published as: Zhan Y. and Gregg P. M. (2017) Data assimilation strategies for volcano geodesy. Journal of 

Volcanology and Geothermal Research 344, 13–25. 
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the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) 

the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS 

observations near the center of uplift improve the quality of model forecasts; (4) occasionally 

shifting continuous GPS stations to provide variability in the locations of observations results in 

better model predictions than utilizing fixed locations when the number of available instruments 

is limited; (5) spotty InSAR data coverage on the flanks of a volcano due to topographic shadows 

and/or atmospheric interference does not adversely impact the effectiveness of EnKF if the 

available coverage is > 50%; and (6) snow or glacial obstruction in the center of uplift can 

adversely impact EnKF forecasts. By utilizing these strategies, we conclude that the EnKF is an 

effective sequential model-data fusion technique for assimilating multiple geodetic observations 

to forecast volcanic activity at restless volcanoes.  

2.1 Introduction 

Assessing the unrest of volcanic systems around the world requires a multi-disciplinary 

approach that utilizes disparate datasets to analyze volcano observations. Over the past decades, 

significant effort has been expended to develop monitoring strategies to mitigate potential 

disasters for vulnerable populations living in the shadows of active volcanoes. Geodetic 

monitoring methods, including Global Positioning System (GPS) (e.g. Beauducel and Cornet, 

1999; Bevis and Foster, 2000; Bonforte and Puglisi, 2003, 2006; Rivet et al., 2014) and 

Interferometric Synthetic Aperture Radar (InSAR) (Massonnet and Feigl, 1998; Sigmundsson et 

al., 1999; Lu et al., 2000; Chaussard et al., 2013; Papoutsis et al., 2013; Pinel et al., 2014; Le 

Mével et al., 2015; Morales Rivera et al., 2015; Masterlark et al., 2016a), provide 4D surface 

deformation observations of volcanoes experiencing unrest, and give insight into the dynamic 

evolution of the magma systems below. Advancements in geodetic data collection and analysis 
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have shown the capability to detect volcano inflation and provide early warning of volcanic 

unrest sometimes years in advance of measurable seismicity (Lu et al., 2010; Chaussard and 

Amelung, 2012; Chaussard et al., 2013; Biggs et al., 2014).  

To analyze surface deformation observations, classic inversion and joint inversion strategies 

have been developed using analytical solutions such as the elastic Mogi (1958) model and its 

derivatives (McTigue, 1987; Massonnet and Feigl, 1998; M. Battaglia et al., 2003; M Battaglia et 

al., 2003; Nooner and Chadwick, 2009; Newman et al., 2012; Parks et al., 2015). To adapt static 

analytical approximations of volcano evolution into time-forward models, the evolution of static 

models can be solved as a function of time (Newman et al., 2006). Alternatively, time-dependent 

kinematic models can be used in a model-data fusion framework to provide the temporal 

variation (Desmarais and Segall, 2007; Anderson and Segall, 2013). The strength of analytical 

and kinematic solutions is that they provide first order solutions with relative computational ease. 

However, they are limited in their ability to solve complex multiphysics problems.  

Thermomechanical numerical models offer an additional means to decipher observations of 

deformation and investigate precursory signals for eruptions (e.g. Currenti et al., 2007; Gregg et 

al., 2012, 2013; Ronchin et al., 2013; Cannavò et al., 2015), and may be used to invert geodetic 

observations through optimization schemes (Carbone et al., 2007; Hickey et al., 2013). The 

integration of geodetic measurements into multiphysics dynamic models has been shown to 

provide advanced understanding of how highly non-linear volcano systems evolve in time 

(Cianetti et al., 2012; Gregg et al., 2013; Alparone et al., 2013; Hickey et al., 2015). While these 

inversion approaches work well for combining one or potentially two data streams with 

numerical models, they are static assessments of the system state and do not provide updates or 

forecasts. Unlike their kinematic modeling counter parts (e.g., Anderson and Segall, 2013), 
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robust time-sequential data assimilation strategies that link sophisticated numerical models with 

observations have not been widely used in volcano studies and must be developed to fully realize 

the potential of numerical modeling approaches. 

To work towards the goal of a multi-data stream forecasting method for volcanic 

application, Gregg and Pettijohn (2016) developed a 2D data assimilation framework based on 

the Ensemble Kalman Filter (EnKF) method (Fig. 2.1). Widely applied in hydrologic, physical 

oceanography, and climate modeling (vanLeeuwen and Evensen, 1996; Allen et al., 2003; 

Bertino et al., 2003; Brusdal et al., 2003; Natvik and Evensen, 2003; Lisaeter et al., 2007; 

Skjervheim et al., 2007; Evensen, 2009a, 2009b; Seiler et al., 2010; Wilson et al., 2010; Wilson 

and Özkan-Haller, 2012; Wilson et al., 2014), the EnKF has been shown to be a powerful 

forecasting tool for assimilating highly disparate observations into complex dynamic models. 

The EnKF method has proven to be a more efficient and computationally economical approach 

than the traditional Kalman Filter (Kalman, 1960) and the Extended Kalman Filter (Schmidt, 

1966) because the covariance matrix in the EnKF analysis is estimated using a Markov Chain 

Monte Carlo (MCMC) approach allowing for updates of both the model state and model 

parameters concurrently (Evensen, 2003, 2009a). The MCMC approach utilized by the EnKF has 

a proven track record (Evensen, 2003, 2009a) for performing well with highly nonlinear systems 

where the traditional Kalman Filter and pseudo non-linear Extended Kalman Filter may perform 

suboptimally (Julier et al., 2000). Furthermore, the ensemble based method enables users to swap 

in model advancements without making major adjustments to the data assimilation procedure 

(Evensen, 2003, 2009a). By assimilating surface deformation data, the EnKF is able to swiftly 

update the parameters for the magma reservoir by matching new measurements with the 

numerical model forecasting (Gregg and Pettijohn, 2016).  
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Although this study focuses on utilizing synthetic data to explore the usage of the Ensemble 

Kalman Filter in volcanology, it offers several critical advancements over the implementation of 

Gregg and Pettijohn (2016). First, we establish a new 3-dimensional EnKF framework, which 

significantly expands the use of this data assimilation method in volcanology. The ability to 

assimilate data into a 3D models is critical for analyzing the inherent 3D nature of volcanic 

systems, such as asymmetric magma reservoirs, topography, faults, and host rock heterogeneities 

(e.g. Cannavò et al., 2015; Hickey et al., 2015). Second, this study introduces an important 

improvement in the EnKF algorithm itself. As an enhancement to the traditional EnKF 

framework (Evensen, 2003, 2009a; Gregg and Pettijohn, 2016), we develop and apply an 

iterative EnKF algorithm, which, as we illustrate, is more effective in highly non-linear problems 

such as volcanic unrest. Third, instead of using idealized synthetic data (Gregg and Pettijohn, 

2016), we add synthetic noise to both synthetic GPS and InSAR signals. Testing more realistic 

error models (e.g. Mao et al., 1999; Williams et al., 2004; Lohman and Simons, 2005; Fattahi 

and Amelung, 2015) allows us optimize the EnKF analysis more wisely, test whether this 

strategy will be able to effectively analyze real data in the future. Fourth, in addition to utilizing 

more realistic noise models to mimic real data errors, we also simulate defects which are 

inevitable in real measurements such as gaps in data coverage and continuity. These tests not 

only provide information for using the EnKF analysis to enhance our modeling techniques, but 

also give insights into data collection optimization. Finally, this study conducts systematic 

sensitivity tests to exam the EnKF analysis results affected by prescribed model setup conditions 

such as the number of ensemble members, the number of iterations, and the initial guess of 

model parameters in order to improve the EnKF performance while minimizing computational 

costs. 
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2.2 Methods 

2.2.1 Magma reservoir finite element model  

We use a 3D viscoelastic finite element model (FEM) to create a time series of surface 

deformation to provide synthetic GPS and InSAR datasets for the data assimilation. The 

numerical approach was modified after previous 2D and 3D finite element models for magma 

reservoirs (Grosfils, 2007; Del Negro et al., 2009; Gregg et al., 2012, 2013; Gregg and Pettijohn, 

2015; Grosfils et al., 2015). The crust surrounding a magma reservoir is simulated by a box with 

a spherical void, which is loaded from within to create an inflating volume change, ∆𝑉 (Fig. 2.2). 

The size of the box is 60 𝑘𝑚 × 60 𝑘𝑚 × 20 𝑘𝑚, consistent with the common scale of terrestrial 

volcanic systems (Gregg and Pettijohn, 2016). The sides and bottom of the box are defined by 

roller boundary conditions. A constant gravity (g = 9.8 m/s2) and an initial isostatic stress are 

balanced to maintain the lithostatic state of the system (Fig. 2.2b): 

𝜎1
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎2

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜎3
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜌𝑔𝑧                (2.1) 

where 𝜎𝑘
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial principle stress, z is the depth, and 𝜌 = 2700𝑘𝑔/𝑚3 is the density of 

the host rocks. 

COMSOL Multiphysics 5.1○R  is utilized to calculate the model mesh. The mesh grids are 

coarse within the outer domain far away from the volcano and refined in the inner box close to 

the center of the magma chamber (Fig. 2.2a). We apply a linear viscoelastic stress-strain relation 

with Maxwell model to calculate stress and strain resulting from an applied load, following: 

휀̇ ∝
𝜎

𝜂
+

�̇�

𝐺
       (2.2) 

where 휀̇ is strain rate, 𝜎 is stress, �̇� is stress rate, 𝜂 and 𝐺 are constants. The viscosity 𝜂 is 

defined as 2 × 1016 𝑃𝑎 ∙ 𝑠 and the shear modulus is defined by 𝐺 = 𝐸 2(1 + 𝜈)⁄ , where the 

Young’s modules E is 75 GPa and Poisson ratio 𝜈 is 0.25. The material properties are defined to 
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simulate synthetic terrestrial volcano. However, future data assimilation efforts on natural 

systems will allow for estimating variations in material properties from geophysical observations 

such as tomography. 

The predicted surface deformation from the 3D numerical approach is consistent with the 

viscoelastic analytical solution of Gregg et al. (2012) modified from Del Negro et al. (2009) (Fig. 

2.3). The volume changes ∆𝑉, due to the expansion of the magma reservoir, is defined as a 

function of time (Fig. 2.2b). During the first and the third year, continuous inflation mimics 

possible magma injection. The inflation ceases in the second year approximating a volcanically 

silent period between injections. 

2.2.2 Synthetic data 

The synthetic data created by the FEM described in section 2.2.1 are utilized to 

systematically investigate the performance of the EnKF. The synthetic datasets, including single 

component line of sight (LOS) “InSAR”, and multi-component “GPS”, are calculated based on 

defined parameters (Table 2.1), which the EnKF analysis attempts to find.  

The synthetic InSAR LOS data are created by calculating the surface deformation difference 

between two sequential time steps, collected every 60 days in a 10 km × 10 km grid with a 

lateral resolution of 20 m. All the synthetic LOS data are composed of both signal and noise 

(Fig. 2.4a). We followed Lohman and Simons (2005) to create synthetic distance-correlated 

noise, nc, which exhibits a power law behavior mainly correlated to atmospheric structures 

(Agram and Simons, 2015; Fattahi and Amelung, 2015). The distance-correlated noise, nc is 

derived from a predetermined covariance matrix, Cd (Lohman and Simons, 2005): 

𝐶𝑑
𝑖𝑗

= 𝑒−𝐿𝑖𝑗 𝐿𝑐⁄       (2.3) 

𝑛𝑐 = ℒ × 𝑛𝑛      (2.4) 
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where 𝐿𝑖𝑗  is distance between the ith and jth points, and 𝐿𝑐 is the window size. ℒ is the lower 

triangular matrix derived from Cd by Cholesky decomposition, and 𝑛𝑛 is the uncorrelated noise 

matrix. Although many previous studies revealed that other factors like topography also 

contribute to the LOS delay (e.g. Jónsson et al., 2002; Emardson et al., 2003), we neglect those 

effects and only consider a spatially stationary and isotropic noise model, since the purpose of 

this paper is discussing the performance of the Ensemble Kalman Filter.  

Applying the full “InSAR” dataset is prohibitively computationally expensive as full 

resolution interferograms contain more than one million points. Therefore, we reduce the InSAR 

sampling points from ~106 to ~800 (Fig. 2.4d), through a root-mean-square-error (RMSE) based 

quadtree algorithm (e.g., Jónsson et al., 2002).  

The synthetic GPS observations are collected every day at 20 synthetic GPS stations whose 

locations are shown in the supporting information in Zhan and Gregg (2017). The “GPS” data 

are composed of three components east-west, north-south, and up-down. The three components 

are directly interpolated from the finite element model output. In addition, we add noise to the 

signal to create a more realistic synthetic GPS data. We utilize a combination of white and 

flicker noise model (e.g. Zhang et al., 1997; Mao et al., 1999; Williams et al., 2004; Dmitrieva et 

al., 2015) as the uncertainty of the “GPS” data. Since he uncertainty of the up-down component 

is obvious higher than other two components (Mao et al., 1999), we assume 1 mm/yr of 

uncertainty in the horizontal components and 5 mm/yr in vertical one (Fig. 2.4c). Before the 

synthetic data are utilized in EnKF analysis, the full signal, with noise, is smoothed by a low pass 

filter (Fig. 2.4c). 

2.2.3 Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) is a data assimilation method built upon the traditional 

Kalman Filter (KF) approach (Kalman, 1960). The EnKF utilizes a Markov chain of Monte 
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Carlo (MCMC) method to solve the time evolution of the probability density function of the 

model. This update overcomes the limitations of the Kalman Filter and Extended Kalman Filter 

methods, such as computational expensive, storage issues, and poor performance with highly 

nonlinear problems (Evensen, 2009). We follow the EnKF analysis scheme described by 

Evensen (2003) and Gregg and Pettijohn (2016) (Fig. 2.1), which we briefly describe below.  

The forecast ensemble members 𝜓𝑖 ∈ ℝ𝑁𝑑𝑖𝑚, composed by both parameters and solutions, 

are stored in 

𝑨 = (𝜓1, 𝜓2, ⋯ , 𝜓𝑁𝑒𝑛𝑠) ∈ ℝ𝑁𝑑𝑖𝑚×𝑁𝑒𝑛𝑠,         (2.5) 

where 𝑁𝑑𝑖𝑚 is the number of the parameters and measurements and 𝑁𝑒𝑛𝑠 is the number of 

ensemble members. In the first step, the initial ensemble members are calculated based on an 

initial guess of the model parameters. For the magma reservoir models in this study, unknown 

parameters include the geometry, location, and volume change, while the rheological properties 

of the host rock are assumed. Thus, an initial parameter space is built by Monte Carlo methods to 

derive the initial solution space according to the equation of the Mogi (1958) model.  

The ensemble perturbation matrix is defined as 

𝑨′ = 𝑨(𝑰 − 𝟏𝑁𝑒𝑛𝑠 ),          (2.6) 

where 𝑰 is an 𝑁𝑒𝑛𝑠 × 𝑁𝑒𝑛𝑠 identity matrix and 𝟏𝑁𝑒𝑛𝑠 ∈ ℝ𝑁𝑒𝑛𝑠 ×𝑁𝑒𝑛𝑠  is a matrix where every 

element equals to  1/𝑁𝑒𝑛𝑠. 

The covariance matrix is calculated by:  

𝑷𝑒 =
𝑨′(𝑨′)

𝑇

𝑁𝑒𝑛𝑠−1
.          (2.7) 

The EnKF analysis requires measurements to update the model parameters. In this study, 

we apply the synthetic observations generated by the FEM described in section 2.2.1. The 

measurements 𝑑 with their perturbation 𝛿𝑑𝑗 are given as:  
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𝑑𝑗 = 𝑑 + 𝛿𝑑𝑗,             (2.8) 

where we assume 10 % random perturbation for the measurements. The measurement matrix is 

then defined as 

𝑫 = (𝑑1, 𝑑2, ⋯ , 𝑑𝑁𝑚𝑒𝑠) ∈  ℝ𝑁𝑚𝑒𝑠×𝑁𝑒𝑛𝑠,           (2.9) 

and the ensembles of measurement perturbations, δd, is: 

𝜹𝒅 = (𝛿𝑑1, 𝛿𝑑2, ⋯ , 𝛿𝑑𝑁𝑒𝑛𝑠),            (2.10) 

from which the covariance matrix for measurements, 𝑹𝑒, is represented by: 

𝑹𝑒 =
𝜹𝒅(𝜹𝒅)𝑇

𝑁𝑒𝑛𝑠−1
.       (2.11) 

Finally, the EnKF analysis step combines the models and data to provide a matrix of updated 

model parameters: 

𝑨𝑎 = 𝑨 + 𝑷𝑒𝑯𝑇(𝑯𝑷𝑒𝑯𝑇 + 𝑹𝑒)−1(𝑫 − 𝑯𝑨),            (2.12) 

where 𝑯 is the mapping matrix linking the forecast ensemble and the measurements. The EnKF 

scheme calculates this equation when a new observation becomes available. The size of the 

parameter space (𝛤𝑝) is computed at the end of each step, to ensure that catastrophic divergence 

has not occurred (Evensen, 2003, 2009a; Gregg and Pettijohn, 2016).  

Two critical updates are developed from the method introduced in Gregg and Pettijohn 

(2016). First, the EnKF scheme is adapted into 3D by expanding the matrixes to accommodate 

data and model outputs in the third dimension. Second, additional iterations of the EnKF analysis 

equation (2.12) are applied before progressing to the next time step. These iterations take 

advantage of the available observations in the present step and analyze the ensembles from the 

previous iteration.  

2.2.4 Sensitivity tests and performance evaluation 

Ideally, after several EnKF analysis steps, the parameter space and the solution space 
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should shrink significantly and reproduce the parameters assumed in the synthetic model. In 

reality, the observations are limited both spatially and temporally and may impact the ability of 

the EnKF to converge onto a solution. A series of systematic tests are developed to test the 

performance of the EnKF, which allows us to develop strategies to improve the application of 

EnKF. 

The sensitivity tests (Table 2.2) include strategies not only for testing the effect of the EnKF 

setup, such as: (1) the number of ensembles; (2) intra-EnKF iterations between observational 

time steps; (3) minimum tolerance for the size of the parameter space; and (4) initial parameter 

values, but also for optimizing data collection and use, including: (5) the location of GPS 

stations; (6) the number of GPS stations; (7) the temporal continuity of the GPS data stream; and 

(8) the spatial coverage of InSAR.  

The performance of the EnKF analysis is quantified by two values. First, the Root Mean 

Squared Error (RMSE) provides the fit between the model-predicted surface displacement and 

the synthetic observations (Gregg and Pettijohn, 2016). Second, the parameter misfit 𝛿𝑝, a 

dimensionless value defined as 

𝛿𝑝(𝑡) = ∑ (
𝑍𝑖

𝑡−𝑍𝑖
𝑎

�̂�
)

2
𝑁𝑝𝑎𝑟
𝑖=1  ,               (2.13) 

where 𝑍𝑖
𝑡 is an assumed parameter used for producing the synthetic data, 𝑍𝑖

𝑎 is the 

corresponding parameter from the EnKF analysis, and �̂� are the assumed values used to scale the 

equation to a dimensionless quantity (for horizontal location of the source �̂� = 10 km as the half 

length of the study area). When calculating the misfit, we combine the radius, 𝑅, and the 

overpressure, ∆𝑃, expressing them by the volume change ∆𝑉, since the radius and overpressure 

are hard to be determined separately in the Mogi (1958) model. In addition, the nature of 

overpressure is still unclear. According to the Mogi (1958) model, the term ∆𝑃𝑎3 in the Equation 
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(2.3) and (2.4) has a linear relationship with the volume change ∆𝑉, as  

∆𝑉 =
∆𝑃∙𝑉

𝐾
=

4𝜋∆𝑃𝑎3

3𝐾
,      (2.14) 

where 𝐾 is the bulk modulus, and the volume change, ∆𝑉, is small compared to the total volume, 

𝑉. 

2.3 Testing strategies for EnKF implementation  

2.3.1 Variations in the number of ensembles and intra-EnKF iterations 

While the EnKF is computationally much less expensive than the tranditional Kalman Filter 

and Extended Kalman Filter techniques, the ensemble-based approach can be very taxing when 

utilized with large finite element models (e.g., Gregg and Pettijohn, 2016). As such, it is critical 

to efficiently set up the EnKF in a way that optimizes the computational usage with quantifiable 

gains in EnKF performance. The largest increase in computation time and storage during EnKF 

analysis occurs from increasing the number of ensembles. Since each 3D FEM may take on the 

order of hours to complete and require tens of gigabytes of data storage, adding 100-1000 

ensembles may prove computationally prohibitive. Alternatively, intra-EnKF iterations are very 

swift and require no additional storage because no additional FEM calculations are needed to 

iterate on the EnKF analysis step (equation 2.12), which can be performed in ~10’s of seconds to 

minutes. 

The first suite of synthetic tests investigates the effects of the number of ensembles and 

number of intra-EnKF iterations to determine which EnKF setup results in the most optimal 

model convergence and provides a better EnKF prediction most efficiently. Tests of the number 

of ensembles consist of five EnKF analyses with prescribed 𝑁𝑒𝑛𝑠 ranging from 50 to 1000 

(Table 2.2). Results indicate that, for 𝑁𝑒𝑛𝑠 ≥ 100, the number of ensembles has little effect on 

the calculated normalized RMSE of the displacement field (Fig. 2.5a) when using InSAR data. 
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The parameter misfits of the models with < 100 ensemble members are significantly high, (Fig. 

2.5b), but EnKF runs with > 100 ensembles exhibit obvious advantages. However, the EnKF 

result does not significantly improve as the ensemble sizes are increased well beyond 100. As 

discussed below in Section 2.4.1, these findings are in agreement with previous tests that indicate 

ensemble numbers as low as 100 may be sufficient for model convergence (Evensen, 2003). An 

important caveat to this finding is that for natural data, larger ensemble sizes may be necessary to 

track the dynamic system. When this approach is applied to real data, it will be important to re-

test the impact of ensemble number on model convergence. For the GPS data tests, the number 

of ensembles does not affect the EnKF performance at all when we have > 50 ensembles. Since 

the number of measurement at each time step for the GPS data is at least an order less than the 

ensemble numbers, parameter space with 50 ensembles may already be large enough for the 

EnKF to obtain a good parameter estimation through a few measurements. 

EnKF performance is drastically improved by incorporating an iterative EnKF analysis in 

between available data time steps when using temporally sparse data sets. As illustrated in Fig. 

2.5c and d, a sudden drop in both the normalized RMSE and parameter misfit is found when 

additional iterations are applied using InSAR data; However, the improvement of the EnKF’s 

performance is appears to plateau when the number of iterations exceeds 10. On the other hand, 

there does not appear to be a gain in performance when applying an iterative EnKF analysis to 

assimilate the GPS data. The temporally dense nature of the 1000 time-step continuous GPS data 

stream seems to be more than adequate for the EnKF to converge, and any additional iterations 

do not offer significant improvements to the analysis.  

2.3.2 Catastrophic filter divergence tolerance 

To avoid catastrophic filter divergence, a tolerance parameter, 𝛤𝑝, is set to restrict the 

minimum standard deviation of the parameter distributions determined during the EnKF analysis 
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(Table 2.2). Both results of the synthetic tests using InSAR and GPS data show that a lower 

threshold of minimum parameter space make the EnKF perform better (Fig. 2.5). The similar 

pattern also occurs in the RMSEs, where higher tolerance means higher RMSEs and higher 

standard deviations of the RMSE (Fig. 2.5e). 

2.3.3 Initial parameter values 

When working with a natural volcanic system, investigators may have a priori information 

about the location and extent of the magma system. However, typically, initial assessment of 

unrest from geodetic observations is conducted without any prior knowledge about the source of 

deformation. Since, the EnKF analysis requires an initial guess of the parameter space to create 

the initial ensemble suite, it is critical to understand the impact of the initial parameter 

distribution on model performance. As such, we test the impact of different initial parameter 

suites on the EnKF by varying, first, the average value of depth of the magma reservoir, and, 

second, the range of the depth (Table 2.2). Our tests indicate that, for our synthetic InSAR or 

GPS data, the initial assumptions have little effect on the EnKF RMSEs and the parameter 

misfits (Fig. 2.6). All tests illustrate similar RMSEs (~2 %) and parameter misfits, regardless of 

the initial parameter assumptions. This finding provides reassurance for using the EnKF 

approach to investigate geodetic observations at systems with little or no prior information. 

2.3.4 Geodetic data coverage and quality 

In the previous sections, we tested the setup and workflow of the EnKF approach and found 

that the greatest enhancement to EnKF performance comes from conducting intra-EnKF 

iterations between observation time steps to improve the filter convergence on temporally sparse 

data sets. We also illustrated that EnKF performance is relatively insensitive to the number of 

ensembles and the initial parameter distributions. The previous experiments were all conducted 

using optimal data coverage, and as can be expected, the quality of the observational inputs 
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directly affects the performance of the EnKF analysis. The goal of the next series of synthetic 

tests is to determine which observations provide better constraints for the EnKF analysis. We 

conduct four tests to consider both the spatial and temporal distribution of GPS and InSAR 

observations and devise strategies for future data collection and assimilation efforts. In the 

following tests, the parameter misfits are utilized to indicate the quality of the results, since the 

RMSEs are heavily biased by the variations in data distribution. 

InSAR coverage 

InSAR is a powerful tool for observing the onset of unrest at previously dormant volcanoes 

(Massonnet and Feigl, 1998; Lu et al., 2000; Chaussard et al., 2013; Pinel et al., 2014; 

Masterlark et al., 2016b). The source estimation using InSAR data can provide important context 

for future data collection efforts including a signal to optimize data collection strategies. 

However, the lack of InSAR data coverage may adversely impact its assimilation and the 

performance of the EnKF. In the InSAR coverage test, we consider two potential gaps in InSAR 

data (1) a topographic shadow zone restricting observations in a region of a volcano due to a 

volcanic edifice, and (2) a circular shadow in the center of volcano deformation created by snow 

or ice cover.  

In the topographic shadow test, the InSAR measurements are masked over a fraction of the 

volcano, ranging from 12.5% to 87.5%. The results indicate that the parameter misfits with more 

extensive InSAR data coverage are lower than models utilizing masked InSAR coverage (Fig. 

2.7d). This is particularly noticeable in predictions of the horizontal location of the magma 

reservoir, which is not well constrained in models with extensive InSAR LOS shadows. This 

effect illustrates that the percentage of InSAR data coverage affects the quality of the EnKF 

analysis. Our numerical tests indicate that as coverage decreases < 50% EnKF performance is 
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adversely impacted and parameter values are not as well constrained. Similarly, restricting data 

coverage at the center of the volcano due to snow cover will not significantly impact EnKF 

performance. However less snow coverage enhances the ability of the EnKF to tracking the 

correct reservoir depth, which is similar to the results observed in the GPS distance tests in the 

next section. 

Overall, InSAR data are quite robust, providing excellent observational inputs for the 

EnKF, even with sparse temporal observations (e.g., Gregg and Pettijohn, 2016) and spatial 

limitations. In the next section, limitations posed by GPS data are investigated to determine how 

best to optimize on-the-ground deformation observations. 

GPS Station Availability 

 

While InSAR data tend to be spatially rich, providing extensive coverage for a region 

surrounding a volcano, GPS data may provide rich temporal information in discrete locations. 

The initial “optimal” locations of the 20 GPS stations used in the previous sensitivity tests are 

shown in the supporting material in Zhan and Gregg (2017). However, typically, volcanoes may 

only be instrumented by a few stations and often times may only have data available from yearly 

campaigns. In our first synthetic test, we look specifically at the limitations posed by station 

availability and seek to address the situation where only a few instruments are available for data 

collection. In the model tests, at each time step four GPS stations are removed randomly, until 

only the four GPS stations remain. The test shows that the misfits gradually increase with the 

decreasing number of GPS stations, and the calculated parameters significantly deviate from the 

synthetic values when more than half of the GPS stations are removed (Fig. 2.7b). As illustrated 

in Fig. 2.7b, as the number of continuous stations is reduced to 4 or less, there is significant 

increase in the parameter misfit. In a real-world data collection effort, one may take this result to 
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indicate that having only four continuous stations may be prohibitive for efficient use of the 

EnKF. However, as we will show in the following section, strategies such as episodically 

moving instruments to occupy a larger range of locations can significantly enhance GPS data 

collection when station availability is limited. 

GPS data continuity 

 

In the previous section, we illustrated the impact of data scarcity on the ability of the EnKF 

to accurately predict parameter values. Another potential limitation of GPS is the loss of station 

functionality during deployment, which may result in prolonged gaps in the GPS data stream. To 

mimic this situation, we conduct a test in which random GPS stations (from 1 station and 16 

stations concurrently) switch off (Table 2.2) to create “gaps” in our synthetic data. The misfit 

plot shows that data discontinuities do not significantly impact the EnKF’s ability find the 

assumed parameters (Fig. 2.7c). Although leaving only four GPS stations working at a given 

time makes EnKF lost, the performance using eight active GPS stations each time step, but 

moving them effectively is as good as using all station. Effectively, if only a limited number of 

GPS instruments are available, they will provide a similar EnKF performance as having a larger 

number of operational instruments as long as the stations are episodically moved to occupy more 

sites around the region of unrest. Of course, moving permanent stations is unrealistic, so 

supplementing a low number of permanent stations with campaign station observations from a 

variety of locations may be an effective strategy for improving model performance. 

GPS station locations 

 

The previous section focused on the number of GPS station locations necessary to provide a 

robust data stream for the EnKF. It is also important to optimize the locations of the installed 

GPS stations. In particular, when establishing permanent, continuous stations near a restless 



24 

 

volcano, potential risks may prohibit installation at the center of deformation. In this section, a 

series of tests are conducted to illustrate the impact of installing GPS stations further away from 

the loci of unrest. In other words, the distance between the first GPS station and the center of 

deformation is varied from 0.5 km to 4.5 km (Table 2.2). The results show that the EnKF 

performs much better when the GPS stations are closer to the volcano (Fig. 2.7a), and indicate 

that having a deformation signal at the center of uplift can greatly improve model fit. 

2.4 Discussion 

2.4.1 Optimizing the EnKF setup 

One of the advantages of using the Ensemble Kalman Filter (EnKF) is computational 

economy, which is greatly improved over other data assimilation methods, such as the traditional 

Kalman Filter or the Extended Kalman Filter (Evensen, 2009a; Gregg and Pettijohn, 2016). 

However, when a larger ensemble space is introduced, the computational cost is greatly 

increased since each ensemble requires an independent model solution. In this study, we use the 

analytical solution from Mogi (1958) to calculate the forecast ensembles, which is 

computationally swift. However, a finite element approach as used by Gregg and Pettijohn 

(2016) will take upwards of 20 hours for an EnKF analysis with 100 ensembles run for 100 days, 

in 2D and several days to run in 3D. 

Our synthetic tests using either InSAR or GPS data indicate that the EnKF performance is 

considerably enhanced when using 100 ensemble over using only 50 ensembles. This suggests, 

at least in this simple volcano reservoir modeling with less than ten unknown parameters, a 

minimum value of 50 ensemble members (Evensen, 2009a) is sufficient. Utilizing fewer FEMs 

in the ensemble greatly reduces the computational cost, especially as more sophisticated 

reservoir models are applied (Simakin and Ghassemi, 2010; Gregg et al., 2012; Ronchin et al., 

2013; de Silva and Gregg, 2014; Cannavò et al., 2015). However, when applying the EnKF to 
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natural data sets in future investigations, it will be important to establish a critical minimum 

value for the number of ensembles, which may vary from system to system depending on the 

unrest dynamics. 

Compared to increasing the number of ensembles, utilizing additional iterations between 

data assimilation time steps when applying InSAR data is a far more economical way to improve 

the EnKF performance. Usually, an InSAR image contains about 1000 measurement points even 

after down-sampling. Therefore, the EnKF requires more iterations to converge on a solution. 

However, the GPS measurements are far less than InSAR, and one iteration may be enough. The 

iteration test in Section 2.3.1 indicates that the RMSEs and parameter misfits are greatly reduced, 

even if only one additional iteration is introduced (Fig. 2.5c and d). The cost of applying more 

iterations can be estimated by the equation (2.12), which is ~𝑁𝑑𝑖𝑚 × 𝑁𝑒𝑛𝑠2 (Evensen, 2003). 

Assuming we apply 100 ensembles and have 1000 measurements at every step, the 

computational costs of calculating A is around the order of 107. If we use a linear elastic finite 

element model, which takes the topography into account, to calculate the forecasting ensemble 

and we assume the finite element mesh creates 105 nodes and corresponding degrees of freedom, 

which is 10 times more than the synthetic model in this study. The computational cost is more 

than 1010 for every ensemble per step, which is three orders of magnitude greater than applying 

one additional iteration. In summary, applying several more iterations between time steps is a 

much more efficient way to improve the EnKF analysis and is doable with far less computational 

cost. 

2.4.2 Does a better initial guess lead to a better solution? 

As opposed to other data assimilation methods such as genetic algorithms (Barth, 1992), the 

EnKF requires a presumption of the initial parameter distributions to produce the initial 

ensembles created by a Monte Carlo method (Evensen, 2009a). Parameters such as location and 
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geometry of a magma reservoir are not well constrained unless additional geophysical 

observations or a priori information are available. However, the precise structure beneath many 

restless volcanoes, for example the volcanoes in the Sunda Arc of Indonesia, are still unknown 

(Chaussard and Amelung, 2014). The lack of certainty for the source parameters of the observed 

surface deformation might be problematic for creating an initial guess of the parameters for the 

magma reservoir. Furthermore, some parameters such as volume changes and pressure changes 

in the magma reservoir cannot be directly measured. 

Fortunately, synthetic tests of varying the initial parameter guesses indicate that the 

distribution of the initial parameters has little to no effect on the value of the updated parameters 

after several steps of EnKF analysis (Fig. 2.6). Therefore, although the initial guess for the 

modeling parameters is needed in the EnKF analysis, a better guess of the model parameters does 

not necessarily lead to a better EnKF performance, meaning that the stability of this scheme is 

parametrically unconditional. 

2.4.3 Improving data assimilation with better data 

How the measurements affect the predictive performance of data assimilation schemes is of 

great concern to geodesists, since model predictions must be optimized with spatially and 

temporally limited data sets. This is especially pertinent for the collection of continuous GPS 

data, which requires that GPS station locations to be chosen, instrumented, and maintained; this 

costs time, money, and the inherent risk of installing a GPS station close to an active volcano. 

From the GPS location synthetic test, we conclude that the closer a GPS station is to the loci of 

deformation, the better the EnKF performance (Fig. 2.7a). However, to determine how close a 

GPS station needs to be installed, multiple EnKF experiments can be run on existing data to 

determine the critical distance for establishing a GPS station.  

Just as instrument location is critical for constraining the evolution of a magma chamber, 
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the number of available instruments is also key. Given the financial considerations of installing 

and maintaining GPS stations, optimizing station location with number of instruments can be 

critical for providing optimal data coverage. As one might expect, our synthetic tests indicate 

that having fewer GPS stations results in larger misfits in the EnKF analysis (Fig. 2.7b). Credible 

results are not achieved with < 8 GPS stations (Fig. 2.7b), unless the stations are occasionally 

relocated to different places, which is indicated by the GPS temporal continuity test (Fig. 2.7c). 

In Figure 2.7c, we find that even if only 8 GPS stations are working at a given time, the EnKF 

analysis can provide as accurate of a result as a model with 20 continuous GPS stations. 

Therefore, if only a limited number of campaign GPS instruments are available, shifting them 

between several locations to provide discontinuous data for multiple locations is a better way to 

provide constrains for data assimilation, than to keep them steady in one location to provide 

continuous data. 

InSAR measurements are routinely affected by the snow, ice, and atmospheric interference, 

and/or topography which can limit the coverage over a study area (Massonnet and Feigl, 1998). 

Especially in a volcano study, a topographically high volcano edifice may result in an InSAR 

LOS shadow and limit InSAR data coverage on one side of a volcano (Chaussard and Amelung, 

2012; Chaussard et al., 2013). Our synthetic tests of InSAR data coverage (Fig. 2.7d), indicate 

that EnKF performance is seldom affected by the coverage of the InSAR data. However, in this 

axisymmetric, synthetic study the percentage of the study area not coved by InSAR measurement 

is offset by information provided by InSAR coverage from other sections of the volcano, similar 

to what was observed in the 2D EnKF applications (Gregg and Pettijohn, 2016). On the other 

hand, if the data are missing from a significant region of the volcano, due to snow or atmospheric 

artifacts, the EnKF derived parameters will not be well constrained (Fig. 2.7d).  
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Compared to the InSAR data, GPS data create better predictions on the evolution of the 

magma volume change. However, the EnKF can find the assumed parameters in fewer steps 

using InSAR data than using GPS data when applying iterative analysis. The joint assimilation of 

GPS and InSAR data provides the best estimation of the parameters of the magma reservoir 

(Gregg and Pettijohn, 2016) especially when the abundant data are supplied (Fig. 2.8). 

Furthermore, applying data assimilation with present data also provides information for future 

data collection. For example, establishing GPS stations in the area where InSAR data in not 

available will help to constrain estimations of a magma reservoir’s location (Fig. 2.8). 

Ultimately, one of the advantages to the EnKF approach is that it allows investigators to test 

data collection schemes and optimize future efforts at active volcanoes. InSAR can be used to set 

the stage for on-the-ground observations, which will in turn enhance future InSAR data 

collection efforts. While this particular investigation focuses on ground deformation and 

geodesy, the results provided by InSAR and GPS data assimilation will also inform additional 

geophysical data collection efforts such as gravity, tomography, and magnetotellurics. 

2.4.4 The issue of non-uniqueness 

The EnKF analysis sometimes results in poor performance due to the issue of non-

uniqueness when a complicated system is being described by an over simplified model (Evensen, 

2009a; Baehr et al., 2010; Jafarpour and Tarrahi, 2011). For the case of a deforming volcano, 

magma reservoir evolution is a highly non-unique problem and the same surface displacement 

may be generated by multiple combinations of reservoir location, geometry, and overpressure 

according to equations (2.3) and (2.4) (Gregg and Pettijohn, 2016). This issue is particularly 

pronounced when using the elegant, but simple Mogi elastic model. Enlarging the size of the 

parameter space is a way to produce more parametric combinations and give the EnKF more 

options for optimization (Fig. 2.5e and f); however, this will not solve the problem of 
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distinguishing which combination is the true solution. 

An alternative approach is to combine two or more parameters in the Mogi (1958) model 

into one, as we did in this study, replacing reservoir radius and overpressure with volume 

change. During the tests, the predicted volume change, ∆𝑉, is more consistent with the exact 

value in the synthetic model, while the radius or overpressure are not as close to the assumed 

value as the volume change (Fig. 2.8), since there are numerous non-unique combination of 

overpressure and radius that satisfy a certain volume change. 

In future efforts, more types of measurements and more sophisticated models should be 

introduced to provide additional constrains on the overpressure or geometrical properties of the 

source of unrest. Additional geophysical observations such as tomography (Burnett et al., 1989; 

Day et al., 2001; Lees, 2007; Stankiewicz et al., 2010) may provide important constraints on 

magma chamber radius. In other words, assimilating geophysical observations that constrain the 

geometry of the magmatic system will allow future EnKF investigations to infer the magma 

storage evolution. 

2.5 Conclusions 

Developing data assimilation strategies to incorporate the vast array of volcano monitoring 

data sets into increasingly more sophisticated geodynamics models is critical for future efforts to 

assess volcanic unrest. Fields such as climate science, hydrology, and physical oceanography 

have long used statistical data assimilation approaches to provide forecasts and model updates 

from large disparate datasets (e.g. Julier et al., 2000; Bertino et al., 2003; Julier et al., 2004; 

Evensen, 2003, 2009a, 2009b; Dumedah et al., 2011; Dumedah, 2012). In an effort to build a 

data assimilation framework for volcano applications, we have developed the widely used 

Ensemble Kalman Filter (EnKF) sequential data assimilation method in 3D and conducted a 
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series of sensitivity tests using synthetic observations of surface deformation. The sensitivity 

tests give us insights into how to improve the EnKF performance for volcano applications and 

optimize both the data assimilation strategy and future data collection efforts. 

The results of our sensitivity tests reveal that one may greatly improve the data assimilation 

efficiency with little computational expense by utilizing additional EnKF analysis iterations 

between observations time steps. Alternatively, we find that increasing the number of ensemble 

members to more than 100, the computational costs of which is at least 1000 times more than 

using an intra-EnKF iteration strategy, does not provide a significant gain in model convergence. 

Another great advantage of the EnKF method is that the stability of the EnKF method does not 

depend on the initial parameter guess. Specifically, tests of the impact of the initial parameter 

guess indicate that the parameter assumption is unconditional and that the accuracy of the initial 

guess has no impact on the EnKF performance. 

Tests of data collection strategies provide guidance for future data collection efforts. In 

particular, tests for where the most proximal GPS station must be placed to provide sufficient 

data coverage encourage geodesists to establish the GPS station closer to the volcano uplift 

center. Furthermore, if the availability of GPS equipment is limited, shifting instruments between 

several locations to record discontinuous data provides a better data stream for data assimilation 

than installing a small number of stations at fixed locations. Finally, InSAR data gaps due to 

atmospheric noise, snow cover, or topography shadows may not significantly impact its 

effectiveness, unless major portions of the volcano are masked. 
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2.6 Figures and Tables 

 

 

Figure 2.1 Illustration of the data assimilation strategy for magma reservoir modeling. The 

example model shows the predicted surface deformation (top surface) and von Mises stress (at 

depth) due to a magma chamber volume change of 0.003 km3.  The Ensemble Kalman Filter 

(EnKF) approach is modified from Gregg and Pettijohn (2016). (A) The initial ensemble of 

models is produced, including model uncertainties. The forecast ensemble (B) is sequentially 

derived from forward integration of the initial suite of models. (C) Data utilized in this 

implementation include InSAR and/or GPS, but could also include additional such as gravity, 

seismicity, and tomography.  (D) When new data are available, an EnKF analysis is conducted to 

update the model parameters (E) and change the trajectory of the model. The updated model 

parameters are then used to create a new forecast ensemble. 
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Figure 2.2 Finite Element Model (FEM) setup used to produce the synthetic InSAR and GPS 

data sets. (a) The 3D model is finely meshed near the magma reservoir and coarsens at distance 

away from the center of the expanding magma chamber. (b) The boundary conditions of the 

model follow Gregg et al. (2012) and are adapted for the 3D implementation. Roller, zero normal 

displacement, conditions are applied on the sides and bottom of the model, a free surface is 

assumed at the top of the model, and a pressure boundary condition is applied along the magma 

chamber to produce the volume change shown in the inset. The grey scale illustrates the 

magnitude of the isostatic stress due to gravitational loading. The line AA’ is used for the 

displacements benchmark provided in Figure 2.3. 
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Figure 2.3 Benchmarks for surface displacement predicted by the 3D model. Vertical motion in 

shown in black and horizontal motion in red. We compare the 3D viscoelastic numerical solution 

provided by COMSOL, solid lines, with the viscoelastic analytical solution, circles (equation [1] 

in Gregg et al., 2012).  
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Figure 2.4 Synthetic datasets produced by the FEM setup illustrated in Figure 2.2. (a) Synthetic 

InSAR observations of vertical displacement with a distance-correlated noise. (b) Quadtree 

partition of InSAR data based on root mean square algorithm (Jónsson et al., 2002). (c) Time 

series of three displacement components for the GPS station at (0, 0). The solid black lines 

represent the signal of surface deformation from the FEM model. The red dots are the GPS 

signal which has been perturbed by white and flicker noise. The green dashed lines show the 

filtered data used in the EnKF analysis.  
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Figure 2.5 Sensitivity tests to investigate the effect of the EnKF setup using synthetic InSAR 

data. (a) and (b) the number of ensembles is varied from 50 to 1000. (a) The calculated 

normalized RMSE indicates that variations in 𝑁𝑒𝑛𝑠 has very little impact on the ability of the 

EnKF to match the observed surface discplacement. (b) The parameter misfit (in log) illustrates a 

slightly better fit at higher numbers of ensembles. (c) and (d) the number of intra-EnKF iterations 

are tested. The calculated normalized RMSE (c) and the parameter misfit (d) both illustrate that 

the additional of intra-EnKF iterations can significantly improve the model fit. However, this 

effect is maximized at 10 intra-EnKF iterations. (e) and (f) test variations in the minimum 

tolerance of the EnKF parameter standard deviation used to compose the EnKF ensembles. 

While variations in tolerance appear to have a minimal impact in the EnKF’s ability to match the 

surface deformation signal (e), there is a much greater impact on the predicted parameter values. 

The solid lines in color show the mean values of the normalized root mean square errors 

(RMSE*) or parameter misfits (𝜎𝑃) in log scale. The shadows are the standard deviations.  
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Figure 2.6 Sensitivity tests for variations in the initial distribution of magma reservoir depth 

using synthetic InSAR data. (a) Normalized RMSEs of the displacement field for tests 

considering different average values of magma reservoir depth, and (c) for tests considering 

different ranges of magma reservoir depth. (b) Parameter misfits for the “average value” tests, 

and (d) parameter misfits for “range” tests. The solid lines in color show the mean values of the 

normalized root mean square errors (RMSE*) or parameter misfits (𝜎𝑃) in log scale. The 

shadows are the standard deviations. 
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Figure 2.7 Parameter misfits for sensitivity tests investigating strategies for utilizing spotty GPS 

and InSAR data. (a) Variations in the distance between the nearest GPS station, GPS-1 (Fig. 

2.4a), and the center of uplift. (b) Variation in the total number of available GPS stations. (c) 

Variations in the number of GPS stations, which do not work at each time step. (d) Fraction of 

the region surrounding the center of volcanic uplift where InSAR data are not available. The 

solid lines in color show the mean value of the parameter misfits (𝜎𝑃) in log scale(𝜎𝑃) in log 

scale. 
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Figure 2.8 The parameter estimation of a joint InSAR and GPS data assimilation. The EnKF 

analysis uses 100 ensembles with 10 iterations. The minimum tolerance for parameter space is 

20 %. The synthetic GPS station locations are shown at Fig. 2.4, where the distance of GPS-1 is 

0.5 km. The red solid lines with shadows show the estimation of the parameters by EnKF 

analysis, and the black solid lines represent the parameters assumed in the synthetic model. It 

costs only about 100 days for the EnKF to capture the assumed values. Although, the EnKF is 

unable to find the real radius due to non-uniqueness, the EnKF is able to find the evolution of the 

volume changes within the magma reservoir. 
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Table 2.1 Notations. 

Symbol Description 

𝑨 Forecast ensemble matrix 

𝑨′ Ensemble perturbation matrix 

𝑨𝑎 EnKF analysis matrix 

𝑷𝑒 Covariance matrix for model perturbation 

𝑹𝑒 Covariance matrix for measurement perturbation 

𝑫 Measurement matrix 

𝜹𝒅 Measurement perturbation matrix 

𝑯 Mapping matrix 

𝛤𝑝 Parameter space tolerance 

Nens Number of ensembles 

Npar Number of parameters 

Nmes Number of measurements 

Ndim Number of parameters adding with measurements 

𝑍𝑖
𝑡 Assumed parameter (i) for synthetic 

𝑍𝑖
𝑎 EnKF updated parameter (i) 

t Time 

dP Source overpressure 

dV Source volume change 

𝜈 Poisson ratio 

E Young’s modulus 

G Shear modulus 

휀 ̇ Strain rate 

�̇� Stress rate 

𝜂 Viscosity 

𝜌 Density 

𝜎 Stress 
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Table 2.2 Parameters used for the synthetic model. 

Parameter Value 

Chamber location in X (m) 0 

Chamber location in Y (m) 0 

Chamber depth (m) 3000 

Chamber Radius (m) 500 

Maximum volume change (km3) 0.005 
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CHAPTER 3: SEQUENTIAL ASSIMILATION OF VOLCANIC MONITORING DATA 

TO QUANTIFY ERUPTION POTENTIAL: APPLICATION TO KERINCI VOLCANO, 

SUMATRA2 

Abstract 

Quantifying the eruption potential of a restless volcano requires the ability to model 

parameters such as overpressure and calculate the host rock stress state as the system evolves. A 

critical challenge is developing a model-data fusion framework to take advantage of 

observational data and provide updates of the volcanic system through time. The Ensemble 

Kalman Filter (EnKF) uses a Monte Carlo approach to assimilate volcanic monitoring data and 

update models of volcanic unrest, providing time-varying estimates of overpressure and stress. 

Although the EnKF has been proven effective to forecast volcanic deformation using synthetic 

InSAR and GPS data, until now, it has not been applied to assimilate data from an active 

volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 

explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to 

simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to 

predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal 

on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central 

uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock 

stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the host rock 

around the shallow magma reservoir is trending towards tensile failure prior to 2009, which may 
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be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant 

promise for future applications to forecasting the eruption potential of restless volcanoes and 

hind-cast the triggering mechanisms of observed eruptions. 

3.1 Introduction 

Volcanic unrest observations including surface deformation, seismicity, gas emissions or 

fumarole activity may or may not indicate that a system is trending towards eruption (Biggs et 

al., 2014). Understanding the dynamics of the underlying magma reservoirs is crucial for 

volcanologists to link volcanic unrest signals to eruption potential. A key challenge is to take full 

advantage of monitoring data to update and optimize dynamic models of the magma storage 

systems (Mogi, 1958; McTigue, 1987; Yang et al., 1988; Battaglia et al., 2003; Currenti et al., 

2007; Nooner and Chadwick, 2009; Cianetti et al., 2012; Gregg et al., 2012; Newman et al., 

2012; Gregg et al., 2013; Ronchin et al., 2013; Cannavò et al., 2015; Parks et al., 2015). Model-

data fusion techniques are necessary to provide statistically robust estimations of volcano 

evolution during periods of unrest. Classically, volcanic activity has been evaluated using static 

inversions (Battaglia et al., 2003; Newman et al., 2012; Parks et al., 2015), finite element model 

optimizations (Hickey et al., 2015), model-data comparison (Le Mével et al., 2016). Most 

inversion techniques provide an important snap shot into the state of volcanic unrest, but are 

limited in their forecasting ability. Fewer studies use time-evolving inversions from the InSAR 

data, which successfully provide a quantitative model to explain the dynamics of the magma 

storage system (e.g. Pagli et al., 2012). However, this approach is limited to regions where SAR 

data is widely available and consistent and continuous acquisitions are guaranteed. Furthermore, 

this method requires separated steps to determine the chamber geometry and the time-dependent 

loading, which requires that the storage geometry is relatively stable. More recently, Kalman 
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filter statistical data assimilation approaches such as the Extended Kalman Filter (EKF) 

(Schmidt, 1966; Julier et al., 2000) and unscented Kalman filter (UKF) (Fournier et al., 2009) 

have been used to provide temporal models of volcanic evolution. However, EKF and UKF are 

computationally expensive and intractable for use with finite element models. 

The Monte Carlo based Ensemble Kalman Filter (EnKF) successfully circumvents 

linearization issues and computational costs inherent to other Kalman filter approaches (Evensen, 

1994). The EnKF has been widely applied and has proven effective for multi-data stream data 

assimilation in hydrology, physical oceanography, and climatology (vanLeeuwen and Evensen, 

1996; Allen et al., 2003; Bertino et al., 2003; Evensen, 2003; Lisaeter et al., 2007; Skjervheim et 

al., 2007; Wilson et al., 2010). Gregg and Pettijohn (2016) first applied the EnKF in volcanology 

by conducting a series of 2D elliptical magma chamber tests to assimilate synthetic InSAR 

(Interferometric Synthetic Aperture Radar) and/or GPS data into a thermomechanical finite 

element model (FEM). Zhan and Gregg (2017) further establishes a 3D EnKF workflow to 

update a Mogi source (Mogi, 1958) using synthetic data and illustrates that the EnKF is a robust 

method even where data are limited. Bato et al. (2017) provides an additional synthetic test of the 

EnKF to track the migration of magma between two sources based on synthetic InSAR and/or 

GNSS data. Although these three synthetic tests indicate great potential, until now the EnKF has 

not been utilized to analyze volcano deformation from a natural system.  

In this study, the EnKF is used to assimilate InSAR time series data (Chaussard et al., 

2013; Chaussard and Amelung, 2012) from Kerinci volcano in Indonesia to investigate the 

surface deformation associated with the evolution of an upper crustal magma storage system 

leading up to its 2009 eruption. Kerinci volcano, located in Central Sumatra along the Sunda 

(Indonesia) Arc (Fig. 3.1), has had 32 confirmed eruptions (VEI = 1~2) since 1838, and three 
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recent eruptions, including the 2009/04/01 - 2009/06/19 eruption, the 2016/03/31 - 2016/08/09 

eruption, and the 2016/11/15 - 2016/11/21 eruption (Global Volcanism Program, 2009), but also 

has more than 50,000 people living within 20 km distance around it. Previously analyzed 2007-

2011 InSAR time series data from the ALOS-1 satellite (Chaussard and Amelung, 2012; 

Chaussard et al., 2013) provide an excellent opportunity to test the application of the EnKF in 

tracking the dynamics of a shallow magma storage system before and after an eruption. We 

apply a two-step EnKF analysis with a two-source magma storage system which models a 

deflating, dike-like spheroid feeding an inflating shallow, spherical magma chamber. InSAR data 

are assimilated as they would have become available if distributed in semi-real time following 

acquisition and provide model parameter updates. Finally, best-fit model parameters are used to 

calculate the predicted stress state of the system leading up to the 2009 eruption. 

3.2 Methods 

3.2.1 InSAR data 

SAR data were acquired between 2008/1 to 2011/11 by the Japanese Space Exploration 

Agency ALOS-1 satellite (Chaussard et al., 2013; Chaussard and Amelung, 2012). The 

displacement time series with 14 epochs is calculated using the small baseline subset (SBAS) 

from the InSAR data (Chaussard et al., 2013; Chaussard and Amelung, 2012) (Fig. 3.1). To 

reduce the random atmospheric noise (Hanssen, 2001; Li et al., 2005), we filter the time series 

data spatially with a low pass median filter. The InSAR time-series dataset with a 15-m 

resolution contains more than 150,000 pixels for each time slice when we set the study area as a 

6 km by 6 km square centered on the volcano. It is therefore computationally prohibitive to 

assimilate data from the entire InSAR database. A QuadTree algorithm based on root-mean-

square-error of the displacement values is applied to reduce the number of samples for each 
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epoch of InSAR data from ~150,000 to ~800 (Jónsson et al., 2002; Lohman and Simons, 2005; 

Simons et al., 2002; Zhan and Gregg, 2017) (Fig. 3.2a), further reducing the short wavelength 

random atmospheric noise.  

We use the Ensemble Kalman Filter (EnKF) data assimilation method to find the best-fit 

storage model for the Kerinci volcano. The EnKF uses a Markov chain of Monte Carlo (MCMC) 

approach to estimate the covariance matrix in the Kalman filter. The EnKF overcomes the 

limitations of the Kalman Filter and Extended Kalman Filter methods, such as computational 

expense, storage issues, and poor performance with highly nonlinear problems (Evensen, 2009). 

We follow the EnKF analysis scheme described by Zhan and Gregg (2017) to obtain the magma 

storage models. The initial ensemble of models is constructed according to the initial guess of the 

parameters (Table 3.1), based on which the forecast ensemble is obtained. At time tk when new 

data (InSAR time series data) is available, an EnKF analysis is conducted to update the model 

parameters and change the trajectory of the model. The updated model parameters are then used 

to create a new forecast ensemble, which will be assimilated at tk+1 when another epoch of 

InSAR time series data is available. Effectively, the EnKF provides a temporal inversion that 

captures the system’s dynamics through time. The final output of the EnKF can be used to 

investigate the system state at the time of the last observation, and can be propagated forward in 

time to provide a system forecast. The EnKF dynamic inversion strategy has proved robust, even 

when the InSAR data have a topographic shadow masking the flank of the volcano edifice (Zhan 

and Gregg, 2017). The ensemble parameters in this implementation of the EnKF analysis is 

chosen based on previous synthetic tests (Zhan and Gregg, 2017) (Table 3.1). 

3.2.2 Magma storage model 

The InSAR time series reveals uplift entered at the summit of the volcano and two 
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subsiding areas located on the NE and SW flanks. To simulate both the uplift and subsidence 

signals, we combine an inflating spherical source with a deflating dike-like source located at an 

angle beneath the chamber to form an upper crustal magma storage system (Gudmundsson, 

2006; Chaussard et al., 2013) beneath Kerinci (Fig. 3.1) and calculate the elastic response of the 

country rock (Table 3.2). The deformation pattern can also be created by other sources. For 

example, the two-peak pattern of the subsiding signal can be approximated using two deflating 

sills beneath the NE and SW side of the volcano edifice. However, it is unlikely that three 

magma sources would develop so close to each other while remaining separate and stable 

thermally. On the contrast, the single deflating dike-like source at depth feeding a shallow 

magma reservoir is more reasonable.  

We use McTigue’s analytical approach (McTigue, 1987) to produce the displacement at 

the center due to a shallow inflating sphere. We reproduce the two-peak subsidence with a 

deflating near vertical oblate spheroid (Yang et al., 1988; Dzurisin, 2006), with a high ratio of its 

long and short axes (~10), acting as a dike-like source. The center of the Kerinci volcano is 

located on the dilatational Siulak segment of the Great Sumatra Fault (Bellier and Sébrier, 1994; 

Sieh and Natawidjaja, 2000). Therefore, we assume a near vertical, NW-SE striking dike-like 

source guided by the preexisting stress field of the Great Sumatra Fault (Pasquare and Tibaldi, 

2003; Gudmundsson, 2006; Tibaldi, 2015). 

3.2.3 Two-step data assimilation 

Tracking both the upper spherical and lower dike-like source introduces too many 

parameters for the EnKF to obtain unique solutions. Thus, a two-step EnKF analysis is used to 

track the two sources separately. First, the EnKF estimates the subsidence generated by a 

deflating dike using the Yang et al.’s model (Yang et al., 1988) (Fig. 3.2b). During this step, the 
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uplift signal is masked from the InSAR data, and is treated as missing data. The Yang et al.’s 

model (Yang et al., 1988) requires eight independent parameters beside the Young’s Modulus 

and Poisson’s ratio, including the x, y and z coordinates, long and short axis, plunging direction 

and dipping angle, the overpressure of the spheroid. As many parameters may cause strong non-

uniqueness during the EnKF analysis (Zhan and Gregg, 2017), we assume that the location of the 

center of the dike is 5 km beneath the summit of the volcano, and it is striking NW-SE aligned 

with the Great Sumatran Fault system (Table 3.1). The residual displacement is calculated by 

subtracting the predicted subsidence from the corresponding InSAR data time step (Fig. 3.2d). At 

the second step, the EnKF analysis (initial parameters listed in Table 3.1) tracks the inflating 

spherical source using the McTigue’s model (Fig. 3.2e) to reproduce the uplift signal in the 

residual displacement obtained from Step 1. A combination of both the deeper deflating dike-like 

spheroid model and the shallower inflating spherical model produces a modeled displacement, 

which closely matches the observed pattern of central uplift and flank subsidence (Fig. 3.2c). 

Finally, the two models are combined to produce the total displacement. The misfit is the 

difference between the modeled displacement from the combined model and the measured 

displacement from the InSAR time series (Fig. 3.2f).  

3.2.4 Stress and Coulomb failure calculation 

To calculate the stress field of the country rock around the magma storage, we follow the 

benchmarked strategy of Zhan and Gregg (2017). Elastic finite element models are established 

with the parameters estimated by the two-step EnKF analysis and then solved for by 

COMSOL5.2. The maximum and minimum principle stresses at the top of the chamber are 

calculated for failure determination. The application of the Coulomb failure criterion follows the 

same strategy as previous studies (Gregg et al., 2012; Grosfils, 2007) (Table 3.2). 
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3.3 Results 

3.3.1 Volcanic deformation 

 Down-sampled InSAR time series data (Fig. 3.3a and d) reveal two deformation signals 

at Kerinci Volcano, an uplifting signal centered on the summit and a subsiding signal on the NE 

and SW flanks. Both signals are consistent in temporal and spatial domains, suggesting they are 

not associated with atmospheric delay and should be treated as deformation (Fig. 3.3 and Fig. 

3.4). Prior to the April 2009 eruption, the volcano experienced a continuous uplift at a maximum 

rate of ~4 cm/yr (Fig. 3.4a), while the NE and SW flanks subsided at a much lower rate of <1 

cm/yr (Fig. 3.4b and c). At the time of the eruption, the center and flanks of the volcano went 

through a rapid subsidence (Fig. 3.3a and d and Fig. 3.4), reflecting withdrawal of magma from 

the storage system. After the eruption, central uplift recommenced while deformation of the NE 

and SW flanks ceased (Fig. 3.4). The deformation centered on the summit has a short 

wavelength, indicating a shallow source, while a deep source is more likely to create a long 

wavelength subsidence deformation signal. The symmetrical shape of the central uplift strongly 

suggests an inflating spherical source, while the two-peak pattern of the subsidence suggests a 

deflating dike-liked source.  

A two-step data assimilation approach (Fig. 3.2) is implemented to track the surface 

deformation created by a shallow, inflating spherical source (McTigue, 1987) and a deeper, 

deflating dike-like (oblate spheroid) source (Yang et al., 1988). The two-sources model 

reproduces both the observed central uplift signal and the subsidence signal on the flank (Fig. 

3.3e). Model errors are < 1 cm in most regions and are < 0.5 cm at the center of the volcano (Fig. 

3.3c and f). A comparison of the deformation time-series and the model predictions confirms that 

the two-step model is able to track the observed deformation within uncertainty (Fig. 3.4). We 

further calculate the L2 norm of the displacement to illustrate the total misfit between the forecast 
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models and the data. The L2 norm error estimation is the sum of the square of the differences 

between the model values and the measurement values, which also considers the size of the quad 

created during QuadTree down-sampling. Normalized L2 norms of both the spherical source and 

tilted dike-like source decrease through time as more InSAR data are assimilated (Fig. 3.5). The 

L2 norm of the spherical source is overall significantly lower than for the tilted dike-like source, 

indicating that the spherical chamber model reproduces more accurately the uplift at the center of 

the volcano compared to the flank subsidence. The L2 norms of the spherical source decreases 

rapidly after several InSAR assimilations and become static until the eruption (Fig. 3.5b). The 

low displacement errors (Fig. 3.3 and Fig. 3.4) and observed convergence in the L2 norms (Fig. 

3.5) suggest that the two-sources combination of a shallower inflating chamber and a deeper 

deflating dike-like source is a good representation of the storage system at Kerinci and their 

volume changes due to the magma transport explains the deformation associated with the 2009 

eruption. 

3.3.2 Magma source parameters 

The EnKF provides evolving estimates of the model parameters for the dike-like spheroid 

and shallow spherical chamber as new SAR observations are assimilated (Fig. 3.6; the detailed 

values of the parameter estimation are listed in the supplementary table 1 and 2). We focus on 

EnKF’s predictions of the evolution of over-pressurization and volume of the shallow chamber 

to investigate eruption precursors. The negative overpressure of the dike-like source is consistent 

with deflation of this deep source, but its rapid change is suspicious (Fig. 3.6e). It is difficult to 

constrain the depth of the center of the dike-like spheroid with the InSAR subsiding signal alone. 

To constrain the depth of the dike, we conduct a series of tests to model the deflating signal. 

Results indicate that a dike deeper than 7 km cannot produce the deformation signal revealed by 
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the InSAR data. Alternatively, a dike shallower than 3 km may overlap with the inflating magma 

chamber. As such, the depth to the center of the dike should be in a range of 3 to 7 km. 

Therefore, we assume the dike center is at a depth of 5 km. Furthermore, a 2-km uncertainty in 

the depth will not affect the result significantly for a near vertical dike. Due to the uncertainty in 

the deeper deflating source, this study instead focuses on the host rock stress evolution 

surrounding the shallow inflation source.  

The second step of the data assimilation estimates the evolution of the shallow inflating 

source. The model converges after two to three time steps (05/2008-07/2008), when the standard 

deviation of the parameters and the L2 norms of the model significantly decrease (Fig. 3.6 and 

Fig. 3.5b). After the model parameters stabilize at July 2008, the EnKF estimates that the 

shallow inflating source shoaled from 4.43 (±0.19) km to 3.99 (±0.05) km (depth-to-center) 

beneath the summit prior to the eruption, and after the eruption the shallow source migrated 

northward 0.46 (±0.2) km and shoaled to ~1.12 (±0.1) km depth (Fig. 3.6a, b, and c). While this 

outcome provides a robust estimation of the migration of the pressure source, the variation 

through the time likely indicates magma migration in the magma storage system (through dikes 

or conduits), rather than the movement of a void chamber. However, the spherical chamber 

model provides a first-order approximation of the deformation source location through time. The 

EnKF predicts that the radius of the shallow chamber is 2.27 (±0.01) km (Fig. 3.6d), which is 

likely too large given its shallow depth (See Supplemental Tables). However, trade-offs exists 

between overpressure and radius due to the non-uniqueness of the analytical model (Zhan and 

Gregg, 2017). To account for the non-uniqueness of the model, overpressure and radius are 

combined to calculate the volume evolution (Fig. 3.6f). The volume of the shallow chamber 

increases at a rate of 5.33 (±0.10) 105 (±0.04) m3/yr (Table 3.3) throughout the pre-eruptive 
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time period, reaching its maximum just prior to the eruption. The volume of the dike-like source 

decreases (1.22 (±0.04) 105 m3/yr) during the same time period (Fig. 3.6f). During the eruption 

period, both sources experience substantial deflation resulting in a strong subsiding signal 

observed in the InSAR data (Fig. 3.1). After the eruption, the deeper source returns to a steady 

state, while the shallower chamber continues to inflate at a much smaller rate (0.57 (±0.15) 105 

m3/yr) than prior to the eruption. Given that the shape of the post-eruption inflation curve does 

not mimic a typical viscoelastic roll-off, it likely indicates a slow recharge stage of the next 

eruption cycle which culminated in the 2016 eruption. 

3.4 Discussion 

3.4.1 Magmatic system evolution at Kerinci  

Based on the converged parameter estimation and the displacement agreement between 

the EnKF predictions and InSAR observations, we propose that the upper crustal magma 

transport-storage system of Kerinci is comprised of a shallow, spherical chamber at a depth of ~4 

km connected by a dike system below to a possible lower crustal reservoir (Fig. 3.1 and Fig. 3.7a 

and b). The dike-like source may have developed aligned with the Great Sumatran Fault 

(Pasquare and Tibaldi, 2003; Gudmundsson, 2006; Tibaldi, 2015). Alternatively, other source 

combinations can also create the displacement pattern shown by the InSAR, such as inflating and 

deflating sills, and connected chambers. However, to model the two-peak pattern of the 

subsiding signal without an inclined feeder dike, at least two deflating chambers or sills would 

need to flank either side of the central inflating source, which is unlikely. Additionally, the 

preexisting faults beneath the volcano may provide an ideal path for magma transport (Tibaldi, 

2015).  

The coincident volume changes of the dike-like source and the chamber imply magma 
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migration between these sources. Prior to the 2009 eruption, the volume of the shallow chamber 

continuously increased indicating possible magma injection (Lister and Kerr, 1991; Mogi, 1958) 

and/or differentiation (Tait et al., 1989). In the meantime, the volume of the dike-like spheroid 

decreased (Fig. 3.6f), indicating that the dike-like source may only act as a pathway for magma 

to ascent from a lower reservoir (e.g. MASH zone; Hildreth and Moorbath, 1988), as suggested 

by seismic tomography (Collings et al., 2012; Koulakov et al., 2007). Following the eruption, the 

volumes of both the dike-like spheroid and the chamber decrease drastically, but because of the 

lack of data in the first months after the eruption, we cannot determine how fast this subsidence 

occurred. The volume loss is most likely related to the erupting steam-, ash-, and cinder-bearing 

plumes recorded in April 2009 (Global Volcanism Program, 2009). The total volume loss of the 

two-sources system is ~1.6106 m3, which is consistent with volume estimates for the April 2009 

eruption (VEI = 1) (Global Volcanism Program, 2009).  

Although the misfits between the surface displacement model and the InSAR data are 

small (Fig. 3.3), some locations show higher misfits (up to 1.5 cm), especially in the subsiding 

areas to the SW. The minimal misfit at the volcano center confirms that the model accurately 

captures the parameters of the shallower spherical chamber. On the other hand, the misfit in the 

subsiding areas suggests a bias that could be due to lithospheric heterogenesis (Zhan et al., 2016) 

or could be associated with atmospheric noise in the data. We focus our discussion on the 

dynamics of the shallower chamber, as it is better constrained and the eruption is largely 

controlled by overpressure and failure of the rock surrounding it. 

3.4.2 Overpressure and stress evolution prior to the 2009 eruption 

A central paradigm in volcanology is that eruption is triggered when the overpressure 

within an expanding magma chamber exceeds the strength of the surrounding rock. 
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Unfortunately, analytical models such as Mogi (1958) and McTigue (1987) are limited in their 

ability to provide reliable overpressure predictions, because the calculations are inherently non-

unique. As previously discussed, this non-uniqueness makes it difficult for the EnKF to reconcile 

estimations of radius and overpressure. The magma system parameters estimated by the EnKF 

are used in combination with a series of finite element models with different combinations of 

radius and overpressure to predict the stress field of the country rock prior to and directly 

following the 2009 eruption. Calculations of stress evolution are focused at the top of the magma 

chamber where confining pressures are lowest and tensile failure is most likely (Grosfils, 2007). 

Additionally, the 2009 eruption fed from a central vent further indicating failure at the top of the 

magma reservoir.  

We utilize the benchmarked COMSOL Finite Element Model (FEM) approach for a 

pressurized sphere in 3D (Del Negro et al., 2009; Gregg et al., 2012; Zhan and Gregg, 2017) to 

perform a series of tests for magma chamber radius values of 100 m to 2,500 m and their 

corresponding overpressures (Fig. 3.7). Of particular interest is whether the magma chamber is in 

a stable configuration or in a state of tensile failure, potentially indicating imminent eruption.  

Figure 3.7 illustrates the tradeoff between overpressure and radius required to produce 

the same surface deformation given the optimal EnKF magma chamber depth-to-center 

estimation. Model configurations that result in either tensile failure or Mohr-Coulomb failure are 

shown. The most striking outcome of these tests is the clear correlation between chamber radius 

and failure. As the radius increases, the minimum principal stresses also increase, while the 

maximum shear stresses are significantly reduced due to decreasing overpressure (Fig. 3.7 and 

Fig. 3.8c and d). This indicates that systems with smaller magma chamber radii are more likely 

to fail, given the same volume change. This finding has been previously indicated by other 
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researchers (Grosfils, 2007; Gregg et al., 2012) and further indicates the need for an independent 

assessment of magma reservoir size.  

The predicted overpressure prior to the eruption is at least two times higher than during 

and after the eruption (Fig. 3.7) due to the depressurization of the system during the eruption. 

The models predict that a magma chamber with a radius of 500 m will experience tensile failure 

(Fig. 3.8c), potentially leading to an eruption. The model also predicts no tensile failure after the 

eruption if the chamber size is not greatly reduced (Fig. 3.8d); the total estimated volume loss of 

the chamber is less than 1%. Similarly, Mohr-Coulomb failure calculated in the host rock prior to 

eruption is more extensive than after the eruption (Fig. 3.7 and Fig. 3.8); however, while failure 

is predicted in both instances, the orientation and mode of failure may not be optimal for 

catalyzing eruption (Grosfils, 2007). Due to the non-uniqueness issue, radius estimates may be 

unreasonably large (Fig.6) and an analysis of the system’s stress state assuming a variety of 

radii-overpressure combinations is necessary to investigate the possibility of an eruption. Future 

work using data assimilation with displacement and seismicity data may provide stronger 

constraints on the stress evolution, helping to decipher the dynamics of the magma storage 

system. 

The L2 norm evolution provides additional insights to aid eruption prediction. Since the 

EnKF analysis updates the model based on the previous time steps, a sudden increase of the L2 

norm (Fig. 3.5b) means that the pre-eruption model is no longer able to reproduce the observed 

deformation, suggesting a sudden change of the magma storage system. Volume change due to 

magma withdrawal, opening of fractures and dikes (Lister and Kerr, 1991), and alterations of 

country rock’s rheology due to temperature evolution (Annen and Sparks, 2002) could explain 

this change. Some of these transitions may occur just prior to eruptions and are captured by 
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InSAR and/or GPS. Therefore, the L2 norms provides useful information for characterization of 

unrest. 

3.4.3 Near real-time data assimilation with InSAR data 

The advantage of SAR observations is that they offer a high spatial resolution, which 

provides a broad view of the region surrounding the magma system. The EnKF analysis is able 

to efficiently track surface deformation from the down-sampled InSAR time series of Kerinci 

(Fig. 3.3). Prior to the 2009 eruption, the InSAR-ALOS time-series repeat interval is 46 days, 

providing observations of continuous uplift. The models become unconstrained just prior to and 

immediately following the eruption (gray shaded area in Fig. 3.5) due to the gap in acquisitions. 

As EnKF is able to update deformation models in near real-time, getting access to SAR data in 

near-real time could lead to usage of these data to provide early warning of eruption. 

Additionally, higher temporal repeatability of the SAR systems could lead to improved 

constraints of the magmatic systems worldwide and of their temporal evolution.  

In this EnKF study, 200 models are used in the forecasting ensembles adding up to more 

than 1000 iterations. However, the computational expense is less than 3 minutes to finish the 

calculation on a workstation (3.2 GHz Intel Core i5). Although the EnKF is slightly longer than 

other inversion techniques (e.g. Pagli et al., 2012), it provides huge flexibility for incorporating a 

wide range of observations from deformation to seismicity, and from heat flow to geochemistry. 

The primary limitation of this study is the analytical models used. The analytical approach is 

ideal for decreasing the computational expense of calculating a large population of ensembles; 

however the models are oversimplified. In the future, more realistic physics-based models and 

finite element models will take the place of the analytical models to allow researchers to explore 

more realistic deformation based on other geophysical observations from tomography, gravity, 
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and/or magnetotellurics. Coupling solid mechanics with the fluid dynamics (Le Mével et al., 

2016), the evolution of the magma storage systems will be closely related to the magma flux 

inferred from geological records, instead of the enigmatic and oversimplified overpressure. In the 

case of a finite element approach, the computational expense is far more significant and a 

supercomputer is necessary to conduct the Monte Carlo suites for the data assimilation. Future 

efforts are necessary to optimize the EnKF approach for the use of more sophisticated and 

computationally expensive models (Gregg and Pettijohn, 2016). 

3.5 Conclusions 

A two-step EnKF data assimilation provides a shallow chamber connect to a deep dike-

like source as the most likely model to explain the surface displacement around the 2009 

eruption of the Kerinci volcano revealed by the InSAR data. The Yang et al. (1989) model is 

used to mimic a deep, deflating dike-like source, which can explain the subsiding signal on the 

flanks of the volcano. At the meantime, a shallow spherical source (McTigue, 1988) is built to 

reproduce the central uplift. The parameters with highest likelihood are applied to reconstruct the 

stresses around the magma chamber utilizing a benchmarked finite element model. The stress 

model suggests that the shallow magma reservoir is most likely to fail prior to 2009, which may 

explain the eruption. Our results illustrate the great potential of the EnKF data assimilation as a 

technique to explore the dynamic evolution of the magma storage system, giving insight into the 

eruption forecasting of restless volcanoes. 
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3.6 Figures and Tables 

 

Figure 3.1 Location and tectonic setting of Kerinci volcano. More than 10% of active volcanoes 

on the Earth are distributed along the Sunda arc (McCaffrey, 2009), due to subduction of the 

Australian Plate beneath the Sunda Plate. The oblique subduction results in the right lateral Great 

Sumatran Fault, which is the northeastern boundary of the forearc plate (McCaffrey, 2009). 

Blue-red color maps show the InSAR time series data at 2009/1/5 and 2010/1/8. The numbers in 

the circles indicate locations used in Fig. 3.4. The left bottom insert is a sketch section (not to 

scale) showing the tectonic setting of the Kerinci volcano and the box highlights that the shallow 

magma chamber may be fed by dikes associated with the Great Sumatran Fault as magma may 

take the advantage of the pre-existing fractures to ascend from depth (Chaussard and Amelung, 

2012; Muksin et al., 2013). The geometry of the magmatic system illustrates the dike and 

reservoir model used to explain the InSAR data.  
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Figure 3.2 Workflow of the two-step data assimilation with the downsampled InSAR data.  
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Figure 3.3 Comparison between the QuadTree down-sampled InSAR time series (a and d) and 

the EnKF data assimilation results (b and e), before (top row) and after (bottom row) the 2009 

eruption. (b) and (e) show the best fit two-sources model obtained from the EnKF data 

assimilation and (c) and (f) show the misfit between the EnKF prediction and the InSAR data.  
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Figure 3.4 2008- 2011 displacement measured by the InSAR time series (dash line) compared to 

the displacement produced by the best fit combined EnKF model (full line and filled blue area). 

The numbers at the left-top corners correspond to the sampling locations shown on Figure 3.1. 

The blue shaded regions show the standard deviations of the ensembles. The black solid line 

indicates the time of the 2009/1/11 eruption of Kerinci, and the gray shaded region highlights the 

gap in SAR acquisitions. 
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Figure 3.5 Normalized L2 norm comparing the misfit between the EnKF data assimilation 

results and the InSAR data. (a) L2 norm for the first step EnKF, which uses a dike-like source to 

track the subsiding signal. (b) L2 norm for the second step of the EnKF, which uses McTigue’s 

model (McTigue, 1987) of an inflating spherical source to track the uplifting signal. The blue 

solid lines and the blue shaded regions are the mean and standard deviations respectively of the 

L2 norms of the 200 models in the ensembles.  
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Figure 3.6 EnKF parameter estimations for the spherical (red lines) and dike-shaped (blue lines) 

sources. The EnKF predictions start to converge after three epochs of InSAR time series data are 

assimilated. The x- and y-location in (a) and (b) are the horizontal distances between the 

deformation sources and the center of the volcano. The colored solid lines and shaded areas 

indicate the ensemble means and standard deviations respectively. The colored circle symbols 

indicate the estimated parameters of the best-fit model from each ensemble at each time step. 

The black dashed lines indicate time steps when InSAR data were assimilated. Notice the upper 

and lower part of (e) have different scales of the Y-axis. 
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Figure 3.7 The relationship between the assumed overpressure of the chamber and its 

corresponding radius before (solid line) and after (dashed line) the 2009 eruption of Kerinci 

Volcano. The overpressure and the radius cannot be uniquely determined due to the nature of the 

deformation source. Colored symbols indicate that the type of the failure predicted at the top of 

the magma chamber is controlled by the combination of the overpressure and the radius. Blue 

triangles indicate a stress state where no failure is calculated. Green circles indicate a situation 

where only Coulomb failure is predicted. The orange squares indicate a stress state in which 

tensile failure is predicted. Figure 3.8 provides an illustration of this approach. 
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Figure 3.8 3D illustrations of the best fit models estimated by EnKF before (a) and after (b) the 

2009 eruption. (c) and (d) show the estimated Mohr’s circle for the country rock (Grosfils, 2007; 

Gregg et al., 2012) directly above the top of the spherical chamber. The predicted stress is 

sensitive to the radius size, which tradeoffs with the depth of the top of the chamber. Red shaded 

regions in (c) and (d) shows the Coulomb-failure envelop (Table. A1. C = 25 MPa, φ = 25° 

(Grosfils, 2007)). The gray shaded region (σn < 0) indicates when the system is in tension. 

Tensile failure may indicate dike initiation away from the magma chamber and immanent 

eruption. 
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Table 3.1 Parameters of the Ensemble Kalman Filter. 

Name Value 

Number of ensembles* 200 

Iterations* 40 

Parameter space tolerance* 30% 

Initial parameters for dike-like source: 

X-location* 0 km 

Y-location* 0 km 

Depth* 5 km 

Short axis 0.1 ~ 2 km 

Long axis / Short axis ratio* 10 

Overpressure -10 ~ 10 MPa 

Short axial plunge direction* 45° 

Short axial dip angle 0 ~ 90° 

Initial parameters for spherical source: 

X-location -10 ~ 10 km 

Y-location -10 ~ 10 km 

Depth 0.1 ~ 5 km 

Radius 0.1 ~ 2 km 

Overpressure -10 ~ 10 MPa 

Note: Parameters with * are constant during the EnKF analysis. 

 

 

  



77 

 

Table 3.2 Physical properties for calculating the analytical models and the Coulomb failure. 

Name Symbol Value Reference 

Young’s modulus E 75 GPa (Gregg and Pettijohn, 2016) 

Poisson’s ratio ν 0.25 (Gregg and Pettijohn, 2016) 

Friction angle φ 25° (Grosfils, 2007) 

Cohesion C 25 MPa (Grosfils, 2007) 
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Table 3.3 Flux rates (105 m3/yr) of the sources from the EnKF data assimilation. 

Source Prior to 2009/01/05 2009/01/05 to 2010/01/08 After 2010/01/08 

Dike-like source -1.22 (±0.04) -6.22 (±0.04) 0.12 (±0.07) 

Spherical source 5.33 (±0.10) -8.83 (±0.11) 0.57 (±0.13) 
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CHAPTER 4: HOW ACCURATELY CAN WE MODEL MAGMA RESERVOIR 

FAILURE WITH UNCERTAINTIES IN HOST-ROCK RHEOLOGY?3 

Abstract 

Forecasting the onset of a volcanic eruption from a closed system requires understanding 

its stress state and failure potential, which can be investigated through numerical modeling. 

However, the lack of constraints on model parameters, especially rheology, may substantially 

impair the accuracy of failure forecasts. Therefore, it is essential to know whether large 

variations and uncertainties in rock properties will preclude the ability of models to predict 

reservoir failure. A series of 2-dimensional, axisymmetric models are used to investigate 

sensitivities of brittle failure initiation to assumed rock properties. The numerical experiments 

indicate that the deformation and overpressure at failure onset simulated by elastic models will 

be much lower than the viscoelastic models, when the timescale of pressurization exceeds the 

viscoelastic relaxation time of the host-rock. Poisson’s ratio and internal friction angle have 

much less effect on failure forecasts than Young’s modulus. Variations in Young’s modulus 

significantly affect the prediction of surface deformation before failure onset when Young’s 

modulus is <40 GPa. Longer precursory volcano-tectonic events may occur in weak host-rock (E 

<40 GPa) due to well-developed Coulomb failure prior to dike propagation. Thus, combining 

surface deformation with seismicity may enhance the accuracy of eruption forecast in these 

situations. Compared to large and oblate magma systems, small and prolate systems create far 

less surface-uplift prior to failure initiation, suggesting frequent measurements are necessary. 

 

 
3 Published as: Zhan Y. and Gregg P. M. (2019) How Accurately Can We Model Magma Reservoir Failure with 

Uncertainties in Host Rock Rheology? Journal of Geophysical Research: Solid Earth 124, 8030–8042. 
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4.1 Introduction 

Ground deformation is one of the most widely used methods to evaluate and forecast 

volcanic unrest (Sparks, 2003). Geodetic monitoring methods, including Global Navigation 

Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) provide 

temporal surface deformation observations of active volcanoes and a glimpse into the evolution 

of the underlying magmatic system. Geodetic data alone cannot uniquely constrain some 

important parameters of magma reservoirs, like size or overpressure (e.g., Segall, 2019). The 

architecture and evolution of a magma reservoir may be better interpreted by combining multiple 

geophysical observations, such as seismology, gravity, and magnetotellurics. However, a good 

knowledge of reservoir geometry and deformation history does not ensure an accurate eruption 

forecast. Substantial surface inflation may not indicate the propensity of volcano eruption (e.g., 

Biggs et al., 2014; Biggs & Pritchard, 2017).  

Numerical volcano models provide important evaluations of ground deformation signals 

using stress calculations and failure predictions, which are essential to give insight into the 

dynamic evolution of magma systems (e.g., Grosfils, 2007; Albino et al., 2010; Gerbault et al., 

2012, 2018; Gregg et al., 2012, 2013; Hickey & Gottsmann, 2014; Hickey et al., 2015). 

Furthermore, the recent development of sequential data assimilation approaches provides near 

real-time estimates of overpressure and stress state of magmatic systems, which is a promising 

step towards forecasting volcanic unrest with advanced observations (e.g., Gregg & Pettijohn, 

2016; Bato et al., 2017, 2018; Zhan & Gregg, 2017; Zhan et al., 2017; Gregg et al., 2018; 

Albright et al., 2019). However, before an accurate forecast can be conducted, we need to 

understand the sensitivity of model results to different model parameters in a magmatic system, 

such as geometry, initial stress state, and rock properties. Among them, the effect of chamber 

geometry has been systematically studied by previous investigations (e.g., Mogi, 1958; Yang et 
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al., 1988; Segall, 2019), and the initial stress is controlled by many factors such as the 

deformation history and tectonics, which is beyond the scope of this paper. We focus our current 

effort on evaluating the impact of rock rheology, which is an important factor in magma system 

models, and is not well constrained. 

Rock properties for different volcanoes can be distinct. For example, the Young’s modulus 

inferred by static loading is no more than 1 GPa for Merapi volcano (Beauducel et al., 2000), 

while the Young’s modulus is greater than 40 GPa for volcanoes in Iceland (Grapenthin et al., 

2006). Even for one volcano, rock properties inferred by different approaches may not be 

consistent. Dynamic Young’s modulus calculated using seismic methods can be significantly 

higher than static Young’s modulus determined by laboratory rock tests and geodetic modeling. 

For example, dynamic Young’s modulus of the crust in Mt. Etna inferred by P-wave velocity can 

reach 100 GPa (e.g., Currenti et al., 2007), while laboratory rock tests show that Young’s 

modulus of a basaltic samples from Mt. Etna is < 30 GPa (Heap et al., 2010). Additionally, 

Young’s modulus and Poisson’s ratio can be modified by ~30% during repeating loading and 

unloading (Heap et al., 2010). Similarly, the viscosity of the crust varies from 1015 to 1021 𝑃𝑎 ∙ 𝑠 

depending on the composition and temperature (e.g., Newman et al., 2001). Considering that a 

systematic discussion on the effects of rock property on modeling is still absent, this study aims 

to test the effect of varying rock properties on modeling brittle failure around a magma reservoir.  

In this paper, we conduct a series of sensitivity tests using 2-dimensional, axisymmetric 

models to evaluate the impact of the uncertainties in assumed rheological parameters. First, we 

use viscoelastic models to evaluate the sensitivities of Critical Maximum Surface Uplift (CMSU) 

and overpressure before brittle failure onset to a variety of rheological parameters, such as 

viscosity, Young’s modulus, and loading rate. Then, a series of elastic models are used to test the 
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effects of Young’s modulus, Poisson’s ratio, internal friction angle, and tensile strength on the 

CMSU and critical overpressure. The effects of these parameters are evaluated under different 

geometrical conditions including depth, size, and shape of the magma body. Of particular interest 

in this investigation is whether large variations and uncertainties preclude the ability of models to 

predict failure of a magma reservoir. Here we only consider the homogenous rock property to 

quantify the uncertainties from the varying values of rock properties. Heterogeneity in those 

properties is also important (e.g., De Natale & Pingue, 1996; Masterlark, 2007) and should be 

studied systematically in the future.  

4.2 Methods 

4.2.1 Model setup 

We use 2-dimensional, axisymmetric models (Fig. 4.1a) solved by finite element code 

COMSOL Multiphysics 5.3 to simulate the surface deformation and failure of the host-rock due 

to an inflating magma body with an applied overpressure (OP; e.g., Gregg at al., 2012, 2013). 

Overpressure is assumed along the boundary of the magma body as a force in excesses of the 

lithostatic stress. Roller boundary conditions are defined at the side and bottom of the model. 

Gravity is loaded as a body force, which is balanced by an initial hydrostatic stress (i.e., 𝜎1 =

𝜎2 = 𝜎3 = 𝜌𝑔𝑧) prior to the addition of overpressure along the boundary of the spheroid (Fig. 

4.1a).  

4.2.2 Rupture of the magma chamber 

We use the Coulomb failure criterion (Eq. 4.1) and the tensile failure criterion (Eq. 4.2) to 

calculate failure in the host rocks due to overpressure loading. Coulomb failure or tensile failure 

is triggered, when: 

𝜎1−𝜎3

2
cos 𝜙 −

𝜎1+𝜎3

2 
tan 𝜙 − 𝐶0 > 0                (4.1) 
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or 

−𝜎3 − 𝑇0 > 0,                (4.2) 

where 𝜙 is the internal friction angle, 𝐶0 and 𝑇0 are the rock’s cohesion and tensile strength, and 

𝜎1 and 𝜎3 are maximum and minimum principal stresses (Table 4.1).  

Previous rock experiments have shown a uniform, linear relationship between uniaxial 

compressive strength (UCS) and Young’s modulus for worldwide andesites, basalt, tuff, and 

sandstone (e.g., 𝑈𝐶𝑆 = 2.28 + 4.11 𝐸 by Bradford et al., 1998; 𝑈𝐶𝑆 = 1.65 + 5.88 𝐸 by Dinçer 

et al., 2004). The uniaxial compressive strength is further defined by Hoek (1990) as: 

𝑈𝐶𝑆 =  
2𝐶0 cos 𝜙

(1−sin 𝜙)
 .                           (4.3) 

Therefore, the cohesion of the rock is a linear function of Young’s modulus at any given internal 

friction angle. The internal friction angle of the rock ranges from 15° to 35° (Byerlee, 1978). 

Combining the empirical equation of UCS (Braford et al., 1998; Dinçer et al., 2004) and 

Equation (3), we can express the cohesion of rock as a function of Young’s modulus (Fig. A.1a). 

The relationship between cohesion and Young’s modulus using different empirical equations and 

friction is in the same order (Fig. A.1a). We use the empirical equation by Bradford et al. (1998) 

and the friction angle as 35° assuming rock cohesion: 

𝐶0 = 𝐸 × 10−3 .     (4.4) 

The tensile strength of the rock is usually 1/10 of its UCS (e.g., Jaeger et al., 2007). Therefore, 

we assume the tensile strength is approximately given by (Fig. A.1b) 

 𝑇0 = 𝐸 × 0.4 × 10−3,    (4.5) 

where 𝐸 is the Young’s modulus applied in the model. When a magma chamber is inflating, 

failure tends to initiate at (1) the vertex of an oblate spheroid, and (2) near the surface of the 

model space above the magma chamber (Fig. A.2). Then, the failure region expands and 
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connects to form through-going failure (Fig. A.2). This stage is highly path-dependent, which 

means the distribution of previous failure and weakness will impact generation of new fractures. 

Additionally, the propagation of fractures may accommodate the transport of magma if the 

stresses are properly oriented (i.e., dike propagation coinciding with mode-I failure). The 

predicted overpressure at which the through-going failure has formed (Fig. A.2) may be greatly 

overestimated, if the accumulated damage in host-rocks is not taken into consideration. In this 

study, we focus on failure initiated along the magma chamber, representing chamber rupture 

(Fig. 4.1b). We calculate the overpressure and the maximum surface uplift (i.e., the maximum 

vertical surface displacement directly above the source center) of a volcano at its initial rupture 

as a function of the Critical Maximum Surface Uplift (CMSU). Brittle failure of rock is generally 

thought to trigger high-frequency or “volcano- tectonic” (VT) earthquakes (e.g., Roman and 

Cashman, 2006). In practice, CMSU can infer how much precursory deformation can be 

observed before the onset of VT earthquakes.  

4.2.3 Calculation of CMSU and critical overpressure 

The viscous effect is tested by a series of viscoelastic models which employ a standard 

linear solid rheology (after Del Negro et al., 2009). In the viscoelastic tests, viscosity varies from 

1015 to 1021 𝑃𝑎 ∙ 𝑠 (Newman et al., 2001) and different overpressure loading rates are assumed 

from 50 MPa per day to 50 MPa per 100,000 days representing unrest episodes from single-day-

scale to hundred-year-scale (Table 4.1). Each viscous model is loaded by a constant overpressure 

rate from an equilibrium stress state. The loading process has been evenly divided into 50 steps 

until the overpressure reaches 50 MPa. We choose 50 MPa as a terminal overpressure to ensure 

the failure occurrence. Using Eq. 4.1 and 4.2, we can determine at which step failure has been 

initiated along the chamber wall. Therefore, the overpressure and CMSU at that step are the 

critical overpressure and CMSU. The viscous tests aim to show whether and when host rock 
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viscosity will impact failure initiation. 

In the elastic tests, the Young’s modulus varies from 5 GPa to 80 GPa, covering the range 

in uncertainty for upper crustal rocks (e.g., Aggistalis et al., 1996; Dinçer et al., 2004). Although 

a significantly low Young’s modulus (E<1 GPa) has been observed at Merapi volcano (e.g., 

Beauducel et al., 2000), it may present the effect of an unconsolidated edifice material, which is 

too low to represent the average upper crust. We also test three Poisson’s ratios from 0.15 to 0.35 

(Christensen, 1996; Gercek, 2007) and three internal friction angles from 15° to 35° (Byerlee, 

1978). The parameters and variables used in the models are shown in Table 4.1. For elastic tests, 

we use an approach method to calculate the CMSU and critical overpressure. First, we model the 

stress field with an initial overpressure (i.e., 50 MPa, but not important). Then, we calculate 

residual strengths along the chamber wall, which are defined by the left-hand sides (LHS) of Eq. 

4.1 and 4.2. In the next iteration, we either increase or decrease the overpressure to reduce the 

residual. We iterate this process until absolute residual strength of any point along the chamber 

wall is < 5% of the rock cohesion or tensile strength. It usually takes less than 10 iterations to 

approach the critical overpressure and CMSU at failure onset. In all tests, the critical 

overpressure and CMSU for both tensile and Coulomb failure are calculated to determine which 

type failure occurs first. 

All models are assumed to be homogeneous and isotropic to simplify the calculation. More 

sophisticated models with temperature dependent rheology and pre-existing features will be 

tested in future investigations. However, this simple approach is capable of providing a 

meaningful evaluation of when uncertainties in elastic moduli overwhelm a model’s ability to 

predict the failure of a magmatic system.  
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4.3 Results 

4.3.1 The viscous effect 

We calculate the Critical Maximum Surface Uplift (CMSU) prior to the presence of the 

initial tensile or Coulomb failure for the models with different viscosities and Young’s moduli 

(Fig. A.3 and A4). Since the loading rate is important in viscoelastic models, we test rates from 

50 MPa / day to 50 MPa / 100,000 day to mimic a wide range of replenishment rates for magma 

chambers. In general, when the loading rate is low enough, the CMSUs calculated by the 

viscoelastic models start to deviate from the elastic models. Higher CMSUs are expected in 

viscous models compared to elastic models, if the characteristic time of loading (i.e., the time-

span for the chamber to be pressurized to 50 MPa) is larger than the viscoelastic relaxation time 

(Fig. A.3). Models with higher viscosity (η>1019 𝑃𝑎 ∙ 𝑠) tend to behave elastically creating the 

same CMSU as the elastic model even if the loading rate is as low as 50 MPa per 10 years (Fig. 

A.3). We argue that the viscous effect can be neglected if the CMSU prior to failure calculated 

by a viscoelastic model equals the elastic model with the same elastic moduli (Fig. A.3). The 

deviation of the CMSU by a viscoelastic model from an elastic model is controlled by the 

relaxation time of host-rock and the characteristic time of loading (Fig. 4.2). When the 

characteristic time is significantly longer than the relaxation time of the model, the viscous effect 

cannot be neglected (Fig. 4.2). A rock with lower Young’s modulus or higher viscosity has a 

longer relaxation time, which is more likely to behave elastically under the same loading rate. 

Both viscoelastic and elastic models predict the same critical overpressure prior to failure onset 

at a given Young’s modulus, indicating that the overpressure is independent of the viscosity and 

loading rate (Fig. A.4). The critical overpressure is only controlled by the Young’s modulus and 

rock strength. 



95 

 

4.3.2 Elastic properties 

According to the viscoelastic tests, a linear elastic model is appropriate in cases when the 

loading time span from zero overpressure to reservoir failure is shorter than the relaxation time 

(i.e., high loading rate, > 50 MPa / 10 year). Therefore, in these conditions, the elastic moduli 

and brittle failure parameters become critical for forecasting failure onset. To further examine the 

effects of other rock properties, we conduct a series of elastic tests on Young’s modulus, rock 

strength which is determined by Young’s modulus, Poisson’s ratio, and internal friction angle. In 

particular, the depth, radius, and aspect ratio of the chamber are varied to provide a broad view 

of the failure predictions (Table 4.2; Fig. A.5).  

Geodetic data recording the pattern of surface deformation can constrain depth and aspect 

ratio of the magma chamber. For example, a deeper chamber exhibits a longer wavelength signal 

(Fig. A.5a) as illustrated elegantly by the Mogi (1958) model. The horizontal displacement is 

more sensitive to the aspect ratio (e.g., Dieterich and Decker, 1975; Yang et al., 1988; Fig. 

A.5d), the vertical displacement patterns of the models with different aspect ratios are similar. 

Parameters like radius or total volume of the chamber cannot be constrained by the deformation 

patterns alone (Fig. A.5b). 

Given the same size and shape of a chamber (Elastic Test 1), deeper magma bodies generate 

lower CMSU before failure onset than shallower magma bodies (Fig. 4.3a). Although a deeper 

chamber requires a higher overpressure to fail due to the more substantial confining pressure 

(Fig. 4.3b), the higher overpressure generates less detectable surface deformation. Deeper 

chambers also have a smaller range of CMSU for different Young’s moduli. The range of CMSU 

for a chamber below 7 km is less than 0.3 m, even if Young’s modulus of crust varies from 20 

GPa to 80 GPa, indicating that variation in Young’s modulus has a less of an effect on the 

accuracy of the failure forecast. Similar to the depth-dependent results, weaker host-rock 



96 

 

generates a greater CMSU prior to failure onset. At a given depth, the variability in predicted 

CMSU and critical overpressure significantly decreases when Young’s modulus is greater than 

40 GPa, suggesting that host-rock deformation is no longer sensitive to Young’s modulus once 

the host-rock is strong enough (Fig. 4.3). The models with different Poisson’s ratio from 0.15 to 

0.35 have similar CMSUs and critical overpressures before failure onset (Fig. 4.3). Therefore, 

the brittle failure of the magma chamber is much more sensitive to Young’s modulus than to 

Poisson’s ratio. Like Poisson’s ratio, the internal friction angle has less effect on the CMSU 

before brittle failure for stiffer host-rocks (Fig. 4.4), especially when the chamber is deep. 

However, for the soft host-rock (E = 5 GPa), the variation in CMSU or overpressure due to the 

internal friction angle is still large even for a deep chamber, indicating an accurate estimation in 

rock properties for weak host-rock is crucial to failure prediction (Fig. 4.4).  

 For the chambers located at the same depth (Elastic Test 2), smaller chambers fail with 

lower CMSUs due to the higher overpressures needed to generate surface deformation (Fig. 

4.5a). The size of the chamber also magnifies the range of the CMSU caused by the Young’s 

modulus, suggesting that the behavior of large magmatic systems is strongly dependent on rock 

properties whereas smaller chambers (R1 < 1 km) may be less sensitive (Fig. 4.5a). The 

overarching control on failure onset appears to be overpressure. Regardless of the assumed 

chamber geometry, the overpressure magnitude is similar at the moment of failure onset for a 

given Young’s modulus (Fig. 4.5b). All of the models in Elastic Test 2 have the same magma 

chamber aspect ratio (R1/R2), which leads to the same pattern of near-field stress concentration 

regardless of the scales of the model. Like Elastic Test 1, the Poisson’s ratio (Fig. 4.5) and 

internal friction angle (Fig. A.6a and b) has little impact on the brittle failure.  

In Elastic Test 1, larger overpressures are necessary for deeper chambers to create the same 
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amount of surface uplift, while the overpressure and size of the chamber is not distinguishable in 

Elastic Test 2. A deep magma chamber can also generate the same magnitude of surface uplift as 

the shallower chambers by enlarging the chamber instead of accumulating overpressure, but the 

wavelength will vary (Fig. A.7; Elastic Test 3). Unlike Elastic Test 1, a deep and large chamber 

creates larger CMSU than a shallow and small chamber (Fig. A.7c). The range of the CMSU also 

increases with increasing depth and size. A greater overpressure is needed to initiate failure in 

models with deeper and larger chambers, simply due to higher confining pressure (Fig. A.7d). 

The aspect ratio of an oblate spheroidal chamber with the same volume has less impact on 

the CMSU than the depth and radius (Elastic Test 4; Fig. 4.6a). A prolate (conduit-like) chamber 

has lower CMSU at failure, and its aspect ratio has far less effects on the CMSU compared to an 

oblate chamber. When the magma body is sill-like, the CMSU decrease slightly with growing 

aspect ratio. The CMSU is much less sensitive to aspect ratios than to depth (Fig. 4.3 and 4.4) 

and radius (Fig. 4.5) at least for oblate chambers. However, the variability of the overpressures 

required to initiate failure is quite large (Fig. 4.6b). A highly-oblate chamber (R1/R2 = 5) requires 

less than 25 MPa to initiate failure, while this value rises to 150 MPa for a spherical chamber 

whose aspect ratio is one (Fig. 4.6b). The critical overpressure falls back to 40 MPa when the 

chamber becomes prolate. Notably, the extremely high overpressure for the spherical chamber 

does not create a significant uplift, suggesting the stability of the whole system is sensitive to 

aspect ratio. Although a perfectly spherical chamber has the greatest stability, it is unlikely to 

exist in natural settings. 

In all elastic tests (Figs. 3-6), Young’s modulus shows the most significant effect on the 

development of brittle failure. The stiffer (Young’s modulus > 40 GPa) and stronger (C0 > 40 

MPa and T0 > 16 MPa) the host-rock (e.g., intact granite, diorite, and metamorphic rocks; Perras 
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& Diederichs, 2014) is assumed to be, the more likely that tensile failure will initiate around the 

chamber boundary first, while models with a weak host rock favor Coulomb failure at the 

chamber wall. Because a higher cohesion is expected in stronger rocks, making their Coulomb 

failure envelope more difficult to reach (Fig. 4.7). Additionally, deeper chambers prefer 

Coulomb failure as the first failure onset, since tensile failure is harder to initiate due to the high 

confining pressure at depth. 

Although laboratory rock tests indicate that tensile strength of rocks ranges from ~1 to ~20 

MPa, in natural conditions, the host-rock may be fractured, causing its tensile strength greatly 

decreased. We compare the CMSU and critical overpressure of the models assuming T0 = E 

/2500 to the models with T0 = 0 (Fig. A.8). The results show that using zero tensile strength 

makes slightly lower CMSU at tensile failure onset, indicating CMSU is not sensitive to tensile 

strength (Fig. A.8). The critical overpressure of the models with T0 = 0 is constant for each 

model with the same geometry but different Young’s modulus, indicating that the critical 

overpressure for tensile failure is independent of Young’s modulus. 

4.4 Discussion 

4.4.1 Uncertainty derived from rock properties 

The results of the viscoelastic tests indicate that the overpressure at failure onset is 

independent of the viscosity of the host-rock (Fig. A.4) and is only determined by its elastic 

moduli. A higher overpressure is needed to trigger failure in a stiffer and stronger system (Fig. 

A.4 and Fig. 4.3-4.6). Whether or not the viscosity of the host-rock will impact the brittle failure 

forecast is determined by viscoelastic relaxation time of the crust (Fig. 4.2). The CMSU at failure 

onset for a particular elastic model will be lower than the viscous model with the same elastic 

moduli, only if the time scale of the pressurization episode is longer than the viscous relaxation 

time. Therefore, knowing the relaxation time of the system as well as the over-pressurizing rate 
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is useful to determine if the model needs to take viscosity into consideration. Models with higher 

viscosities and lower Young’s moduli have longer relaxation times. For a cold crust with a 

viscosity larger than 1020 𝑃𝑎 ∙ 𝑠, an elastic model is sufficient to simulate the deformation and 

failure if the replenishment prior to the failure is < 100 years. For a quartz-bearing crust at 350°C 

(Newman et al., 2001), the crust will still behave elastically if the replenishment episode lasts no 

more than several years. For a rhyolite close to the solidus, the viscous effect cannot be neglected 

if it takes more than one day to build overpressure to fail the host-rock (Fig. 4.2). The 

overpressures required for all viscoelastic models to initiate failure along the chamber wall are 

the same as the elastic models with the same elastic moduli (Fig. A.4), since the brittle failure of 

the rocks is only controlled by its strength and current stress state. 

Among Young’s modulus, Poisson’s ratio, internal friction angle and tensile strength, 

Young’s modulus plays the most important role in the displacement at brittle failure onset. All 

tests conducted indicate that a lower Young’s modulus results in greater surface deformation 

(i.e., CMSU) before the host-rock starts to fail, even if the host-rock has lower compressive and 

tensile strengths (Fig. 4.3-4.6). The difference in CMSU between the stiffest and weakest rocks 

is largely dependent on the location and geometry of the magma body. This difference can be as 

great as several meters if the magma body is large and shallow (Fig. 4.3a and 4.5a). The 

accuracy of the failure forecast for a system with a low Young’s modulus is tenuous without 

constraining the elastic properties. However, the sensitivity of the CMSU to Young’s modulus 

decreases with increasing Young’s modulus, especially when assuming a proportional rock 

strength (Aggistalis et al., 1996; Dinçer et al., 2004). The elastic properties of the host-rock are 

determined by the composition and depth. Generally, the Young’s modulus of the upper crust 

increases with depth from ~10 GPa at the surface to ~50 GPa around 2~3 km, and up to ~100 
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GPa below 5~6 km (e.g., Gudmundsson, 1988). The uncertainty of Poisson’s ratio does not 

significantly impact the CMSU (Fig. 4.3, 4.5, and 4.6). Poisson’s ratio of the upper crust is more 

well constrained than Young’s modulus (Christensen, 1996). A poor constraint on internal 

friction angle will introduce large uncertainties when the Young’s modulus is < 5 GPa (Fig. 4.4). 

Therefore, if the magma body is near the surface or in the volcanic edifice, where the Young’s 

modulus is low, the uncertainty in its material properties will be problematic for forecasting 

failure initiation. This limitation may be overcome by conducting rock tests on samples from the 

volcano, since the near surface samples may represent the host-rock for a shallow magma body. 

But laboratory test results can only be scaled up to represent in-situ/outcrop scale host-rocks, if 

the host-rock is not strongly fractured. On the other hand, for a deep magma body, the 

uncertainty introduced by elastic moduli is negligible compared to the uncertainties derived from 

other factors such as depth (Fig. 4.3) and radius (Fig. 4.4). 

4.4.2 Geometrical considerations for geodetic observations 

The magnitude of the surface deformation before the onset of host-rock failure (CMSU) is 

strongly affected by the depth (Fig. 4.3 and 4.4), size (Fig. 4.5), and shape (Fig. 4.6) of the 

magma body. Under the same overpressure, a deep, small, or prolate magma chamber is limited 

in the magnitude of vertical surface displacement it can promote before its failure. For example, 

the conduit inflation of Colima volcano created only ~4 cm uplift no earlier than 11 days prior to 

the 2013 explosive eruption (Salzer et al., 2014). While, an oblate source under Sierra Negra 

volcano, Galápagos created ~5 m vertical displacement from 1992 until its 2005 eruption 

(Chadwick et al., 2006). Beside the absolute magnitude of vertical displacement, the rate of 

displacement is also important. For volcanoes with small CMSUs, slow deformation rates can 

ensure their precursory deformation being captured by weekly or monthly geodetic measurement 

such as InSAR (e.g., Lohman & Simons, 2005; Pinel et al., 2014). 
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Among all of the geometric uncertainties, the error introduced by the inaccurate estimation 

of a magma system’s size has the greatest effect on producing a failure forecast. Unlike depth 

and aspect ratio, size and overpressure of a magma body can hardly be distinguished from one 

another by geodetic observations alone (e.g., Mogi, 1958). Therefore, additional constraints on 

the dimensions of the magma plumbing system are necessary, such as seismic tomography, 

gravity, and/or magnetotellurics.  

4.4.3 Failure and VT-earthquakes 

Volcano-Tectonic (VT) earthquakes can be triggered by the brittle failure of the host-rock. 

A combination of seismicity and geodesy gives insight into both stress field and deformation 

field which increases the accuracy of forecasting volcanic unrest (e.g., Lengliné et al., 2008, 

Carrier et al., 2015). Our models show that, when the overpressure of the magma chamber 

increases gradually, stronger host-rock favors the initiation tensile failure (Fig. 4.8), while 

weaker host-rock favors Coulomb failure and the generation of shear fractures first. In the weak 

host rock case, more overpressure is needed to open tensional cracks for dikes, even though the 

occurrence of the shear fractures will greatly reduce the tensile strength of the rock (Fig. 4.7a). 

Therefore, during the period between Coulomb failure onset and tensile failure onset, the 

earthquake swarms are only generated by shear fractures, indicating that seismicity should be 

dominated by high-frequency (VT) events. Once tensile failure is initiated, it is very likely 

followed by dike propagation and possible eruption (White & McCausland, 2016). During dike 

propagation, earthquakes can be triggered by both brittle failure of host-rocks (Roman & 

Cashman, 2006), and magma/volatile movement in the dike, indicating low-frequency 

earthquakes may be observed (McNutt, 2005). Since Coulomb failure does not open a pathway 

for magma to move to the surface, volcanoes triggering Coulomb failure first may experience a 

longer period of seismic unrest until tensile failure is initiated. The numerical results show that 
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shallow magma chambers surrounded by stronger host-rock favor tensile failure as their initial 

failure type, indicating those systems are likely to erupt without triggering a lot of VT 

earthquakes, if the speed of dike propagation is fast enough. For example, the 2008 Okmok 

eruption was preceded by less than 5 hours of seismicity (Larsen et al., 2009), which may be 

related with dike propagation after tensile failure initiated. 

4.4.4 Limitations 

Forecasting eruptions by modeling failure as an instantaneous response to the host rock 

stress state has three main limitations. First, the relationship between failure and eruptions is 

unclear. Through-going failure which connects the magma chamber to the surface has been 

indicated as a potential catalyst of caldera formation eruptions (e.g., Gregg et al., 2012, 2013; 

Cabaniss et al., 2018). However, large caldera eruption cycles may be much longer than 

thousands of years, far outside of the time scales in this investigation. When forecasting 

eruptions of a system with much shorter eruption cycles, the effect of diking events cannot be 

neglected. Dikes may be solidified and trapped depending on their temperature and viscosity 

(e.g., Delaney & Pollard, 1982; Rubin, 1995; Maccaferri et al., 2011), laying huge uncertainties 

between failure initiations and the ability of magma to propagate to the surface and erupt. The 

second shortcoming in the current models is the lack of changes in the rock properties due to 

failure accumulation. In this study, we focus on the initiation of the failure controlled by the pre-

failure stress state, which is more predictable than the stress state evolution during failure 

propagation. Failure introduces localization of weakness in the host-rock and is usually 

anisotropic (e.g., Heap et al., 2010). The first two limitations may be overcome by applying 

dynamic failure propagation models, which are widely used in hydrofracturing studies (e.g., 

Camacho & Ortiz, 1996; Fu et al., 2013). However, numerical models of dike propagation may 

be more complicated than hydrofracturing due to the multiphase nature of propagating magma. 
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Another limitation is the use of homogeneous rock properties, since rock properties vary with 

depth and temperature, and are also affected by pre-existing structures.  A final limitation of 

these models, which is also fundamental to most volcano modeling approaches, is the lack of 

knowledge of the initial state. In the presented approach, it is assumed that there is no stress 

accumulation prior to the observed inflation of the magma chamber. The assumption of an intact 

host-rock in equilibrium before precursory deformation may greatly impact model forecasts in 

many systems. Studying multiple volcanic eruption cycles may help to eliminate the effect of the 

unknown initial state. Furthermore, healing of the host-rock is another important factor, 

especially under the conditions such as high temperature, confining pressure, and repeated 

loading (e.g., Batzle et al., 1980; Fredrich & Wong, 1986; Smith et al., 2009). Future efforts 

should focus particular care to evaluate the impact of the pre-deformation stress condition on 

forecasts of system unrest and eruption potential. 

4.5 Conclusion 

A suite of numerical experiments was implemented to answer what is the effect of 

variations in rock properties on modeled overpressure and critical maximum surface uplift 

(CMSU) at failure onset along the wall of magma chambers. Model results indicate that, in most 

of cases, the predicted overpressure and CMSU at failure onset is sensitive to rock properties, 

which means without knowing rock properties can impair the accuracy of failure modeling. 

The overpressure of the magma chamber at failure onset is affected by the elastic properties 

and strength of the host-rock. Neglecting the viscous effect results in lower CMSU predictions 

than the calculated CMSU if the time scale of pressurization is longer than the relaxation time of 

the crust. The CMSU before failure onset is much more sensitive to Young’s modulus than to 

Poisson’s ratio or internal friction angle, especially when the Young’s modulus of the host-rock 
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is < 20 GPa. The accuracy of host-rock stability estimates for a deep (> 5 km), small (half-width 

< 1 km) or prolate magma chamber are less likely to be impaired by the uncertainty from rock 

properties than by other uncertainties such as geometry. To forecast the unrest of small and/or 

prolate magma systems, frequent observations are necessary to record the subtle, and often rapid, 

precursory deformation prior to eruption. However, for shallow, large, or sill-like magma bodies, 

significant surface deformation may be observed prior to host rock failure initiation. Magma 

chambers surrounded by a weak host-rock (Young’s modulus < 20 GPa) will continue to inflate 

after triggering Coulomb failure until tensile failure is initiated and dike propagation can be 

catalyzed. Therefore, prolonged earthquake swarms associated with Coulomb failure may be 

observed, providing extra information for eruption forecast. 
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4.6 Figures and Tables 

 

Figure 4.1 Model setup and failure onset. (a) The 2-dimensional axial symmetric model (20 x 20 

km). The left boundary is the axis of symmetry. The right and bottom boundaries are defined as 

roller-type boundary condition. The magma body is represented by an elliptical void along which 

an overpressure (OP = pressure in excess of the lithostatic pressure) boundary condition is 

applied. The mesh size of the model ranges from ~100 m around the chamber to ~1000 m near 

the right and bottom edges. (b) The failure distribution for a model with a Young’s modulus of 

50 GPa when the surface uplift is 3 m. The Critical Maximum Surface Uplift (CMSU) is the 

calucated uplift when the chamber wall rupture is initiated, and is much lower than 3 m. The 

shaded red area indicates Coulomb failure, while the hatched region indicates tensile failure. 
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Figure 4.2 The relaxation times for the viscoelastic models. If the time span of pressurization 

prior to rupture of the magma chamber’s wall is shorter than the relaxation time, the viscous 

effect can be neglected. The Critical Maximum Surface Deformation (CMSU; Fig. A.3) 

calculated by a viscoelastic model is larger than the CMSU calculated by an elastic model with 

the same Young’s modulus. The viscosity of the crust at different conditions are taken from 

Newman et al. (2001). 
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Figure 4.3 The effects of Young’s modulus and Poisson’s ratio on brittle failure with variations 

in the source depth to center (Elastic Test 1). A constant internal friction angle (φ = 25°) is 

assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with different magma 

chamber depths. The CMSU is the maximum value of the surface uplift that can be observed before 

any failure is initiated around the magma chamber. (b) The corresponding overpressures of the 

magma chamber when failure occurs. The shape of the marker indicates the Poisson’s ratio of the 

model. The filled or open marker shows the case that the initial failure is tensile or Coulomb, 

respectively, same as Figs 4-6. The color represents the assumed Young’s Modulus of the host, 

rock same as Figs 4-6. 
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Figure 4.4 The effects of Young’s modulus and internal friction angle on Coulomb failure with 

variations in the source depth to center (Elastic Test 1). A constant Poisson’s ratio (ν = 0.25) is 

assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with different sizes of 

magma chamber. (b) The corresponding overpressures of the magma chamber when failure 

occurs. The shape of the marker indicates the internal friction angle of the model. 
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Figure 4.5 The effects of Young’s modulus and Poisson’s ratio on brittle failure with variations 

in the chamber size as described by the half-width (Elastic Test 2). A constant internal friction 

angle (φ = 25°) is assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with 

different size of magma chamber. R1 is the length of the long axis of the magma chamber, which 

is three times longer than the short axis. (b) The corresponding overpressures of the magma 

chamber when failure occurs. The shape of the marker indicates the Poisson’s ratio of the model. 
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Figure 4.6 The effects of Young’s modulus and Poisson’s ratio on brittle failure with variations 

in the chamber aspect ratio (Elastic Test 4). A constant internal friction angle (φ = 25°) is 

assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with different shapes of 

the magma chamber. The sensitivity of the CMSU to the aspect ratio is noticeably decreased 

when the magma body is conduit-like (R1/R2 < 1). (b) The corresponding overpressures of the 

magma chamber when failure occurs. The shape of the marker indicates the Poisson’s ratio of the 

model. 
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Figure 4.7 Mohr circle diagrams illustrating that the initial failure type is controlled by host-rock 

stiffness and strength. The Mohr circles represent of the stress state at the tip of the chamber in 

Model Dp2 (Table 4.2; Depth = 3 km, R1 = 1.5 km, and R2 = 0.5 km) as shown in the inserted 

plot. (a) For the host-rock with relatively low Young’s Modulus (E = 20 GPa) and cohesion (20 

MPa), the Mohr circle increases and touches the Coulomb failure envelop first. (b) The high 

cohesion (80 MPa) of the stronger rock (E = 80 GPa) allows the Mohr circle to reach tensile 

failure first. 
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Figure 4.8 The overpressure required to initiate tensile failure compared to the overpressure 

required to initiate Coulomb failure (OPTensile – OPCoulomb) for models with different chamber 

depths (a) and half-widths (b). (a) and (b) show the results from models with internal friction = 

25° and Poisson’s ration = 0.25 in Elastic Test 1 and Elastic Test 2. If the difference in 

overpressure for the two types of failure is positive, tensile failure will occur after Coulomb 

failure is triggered. In this case, it is expected that shear fractures will develop generating 

earthquake swarms during a relatively long period prior to the onset of tensile failure and magma 

propagation. On the other hand, if the difference in overpressure is negative, Coulomb failure 

will not be triggered prior to dike propagation.  
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Table 4.1 Model variables and parameters 

 

  

Name Description 

D Depth to the center of the magma chamber (-1, -3, -5, -9 km) 

R1 Half-width of the chamber (variable; km) 

R2 Half-height of the chamber (variable; km) 

OP Overpressure - pressure excess the lithostatic pressure (variable; MPa) 

d(OP)/dt Overpressure loading rate for viscous tests 

(5 × 101, 5 × 100, 5 × 10−1, 5 × 10−2, 5 × 10−3, 5 × 10−4 𝑀𝑃𝑎/𝑑𝑎𝑦)  

η Viscosity (2× 1015, 2 × 1017, 2 × 1019, 2 × 1021 𝑃𝑎 ∙ 𝑠) 

E Young’s Modulus (5, 20, 40, 60, 80 GPa) 

ν Poisson’s ratio (0.15, 0.25, 0.35) 

ρ Density of the host-rock (2700 kg/m3) 

g Gravitational acceleration (9.8 m/s2) 

C0 Cohesion of the host-rock (E / 1000; MPa) 

T0 Tensile strength of the host-rock (C0 / 2.5; MPa) 

φ Internal friction angle of the host-rock (15° ~ 35°) 

σ1 Maximum principal stress (variable; MPa) 

σ3 Minimum principal stress (variable; MPa) 

CMSU Critical maximum surface uplift (variable; m) 
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Table 4.2 Geometric parameters and model notation 

 

  

Model No. Depth-to-center D (km) Half-width R1 (km) Aspect ratio R1/R2 

Viscous Test -3 1.5 3 

Elastic Elastic Test 1 

(Depth) 

   

Dp1 -1 1.5 3 

Dp2 -3 1.5 3 

Dp3 -5 1.5 3 

Dp4 -7 1.5 3 

Dp5 -9 1.5 3 

Elastic Elastic Test 2 

(Size) 

   

Rd1 -3 0.5 3 

Rd2 -3 1.0 3 

Rd3 -3 1.5 3 

Rd4 -3 2.0 3 

Rd5 -3 2.5 3 

Elastic Elastic Test 3 

(Depth + Size) 

   

DR1 -1 0.74 3 

DR2 -2 1.15 3 

DR3 -3 1.50 3 

DR4 -4 1.81 3 

DR5 -5 2.09 3 

Elastic Elastic Test 4 

(Aspect Ratio) 

   

L1 -3 1.04 1 

L2 -3 1.31 2 

L3 -3 1.50 3 

L4 -3 1.65 4 

L5 -3 1.78 5 

H2 -3 0.83 1/2 

H3 -3 0.72 1/3 

H4 -3 0.66 1/4 
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CHAPTER 5: INTEGRATING RESERVOIR DYNAMICS, CRUSTAL STRESS, AND 

GEOPHYSICAL OBSERVATIONS OF THE LAGUNA DEL MAULE MAGMATIC 

SYSTEM BY FEM MODELS AND DATA ASSIMILATION4 

Abstract 

The Laguna del Maule (LdM) volcanic field is a large rhyolitic magmatic system in the 

Chilean Andes, which has exhibited frequent eruptions during the past 20 ka. Rapid surface 

uplift (>20 cm/yr) has been observed since 2007 accompanied by localized earthquake swarms 

and micro-gravity changes, indicating the inflating magma reservoir may interact with a pre-

existing weak zone (i.e., Troncoso fault). In this investigation, we model the magma reservoir by 

data assimilation with InSAR data. The reservoir geometry is comparable to the magma body 

inferred by seismic tomography, magnetotelluric, and gravity studies. The models also suggest 

that a weak zone, which has little effect on surface displacement, is important as a fluid transport 

channel to promote earthquakes and microgravity changes. In particular, concentrated dilatancy 

within the weak zone facilitates the microfracture formation during reservoir inflation. High-

pressure fluid can inject into the weak zone from the magma reservoir to trigger earthquakes, and 

further migrate upwards to create positive gravity changes by occupying unsaturated storages. 

The pore pressure will then decrease, halting the seismicity swarm until the next cycle. This 

“hydrofracturing” process may release some accumulated stress along the magma reservoir 

delaying an eventual eruption in turn. Besides, the resultant models are propagated forward in 

time to evaluate potential stress trajectories for future unrest. 

 

 
4 Published as Zhan Y., Gregg P. M., Mével H. L., Miller C. A. and Cardona C. (2019) Integrating Reservoir 

Dynamics, Crustal Stress, and Geophysical Observations of the Laguna del Maule Magmatic System by FEM 

Models and Data Assimilation. Journal of Geophysical Research: Solid Earth 124, 13547–13562. 
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5.1 Introduction 

Large silicic volcanoes can play host to devastating explosive eruptions that pose 

significant regional and global hazards (Rymer et al., 2005; Self & Blake, 2008). The unrest 

phase of large silicic systems can often be prolonged and highly variable from system to system 

(Hill, 1984; Newhall & Dzurisin, 1989; Lowenstern et al., 2006; Sparks et al., 2012). During an 

unrest episode, multiple physical and chemical processes are involved reflecting complicated 

interactions between magma reservoir, hydrothermal system, and even regional tectonics (Bacon, 

1985; Newhall & Dzurisin, 1989; Hutchison et al., 2016). However, not all unrest episodes are 

followed by eruptions (Tilling, 2008; Moran et al., 2011; Trasatti et al., 2011; Sparks et al., 

2012). Understanding the mechanism and evolution of volcanic unrest is one of the great 

challenges in volcanology, and it is critical for deciphering the behavior of an active volcano and 

forecasting the onset of devastating eruptions (Acocella, 2014).  

The Laguna del Maule (LdM) volcanic field in the Southern Volcanic Zone of the Andes, 

is a large rhyolitic magmatic system formed at least 1.5 Ma ago with numerous rhyolitic 

eruptions during the past 20 ka (Fig. 5.1a; Hildreth et al., 2010; Singer et al., 2014, 2018; 

Andersen et al., 2017, 2018). A significant uplift rate (> 20 cm/yr), attributed to an inflating 

magma reservoir has been observed since 2007 revealed by Interferometric Synthetic Aperture 

Radar (InSAR) and Global Navigation Satellite System (GNSS) data (Fig. 5.1b; Fournier et al., 

2010; Feigl et al., 2014; Le Mével et al., 2015). A variety of geophysical methods have been 

applied to evaluate the location and architecture of the LdM magma system (Fig. 5.1b), including 

gravity (Miller et al., 2017a), magnetotellurics (MT; Cordell et al., 2018), and seismic 

tomography (Wespestad et al., 2019). Additionally, recent microgravity (Miller et al., 2017b) and 

seismicity (Cardona et al., 2018) investigations suggest that fluid migration coinciding with the 

Troncoso fault zone may be interacting with the magma reservoir during the recent unrest 
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episode. However, the potential hydrothermal system is not visible through any hydrothermal 

surface activities (Andersen et al., 2018) or ground deformation (Le Mével et al., 2015). A 

unifying model that links the unrest observations of rapid surface deformation, seismicity, and 

microgravity change is needed to evaluate the evolution of the magma system and its potential 

for eruption. Therefore, the Laguna del Maule volcanic field provides an excellent location to 

test numerical models for synthesizing a variety of observations to investigate the unrest of a 

large silicic magmatic system. 

Numerical modeling techniques such as finite element method (FEM) and discrete 

element method are commonly used to study the volcanic deformation and crustal dynamics. 

Previous efforts and model development provide a framework for evaluating additional 

complexities in (1) magma system geometry (e.g. Trasatti et al., 2003; Fukushima et al., 2005; 

Ronchin et al., 2013; Hickey et al., 2015), (2) rheological heterogeneities (e.g. Currenti et al., 

2007; Masterlark, 2007; Long & Grosfils, 2009; Manconi et al., 2010; Gregg et al., 2012, 2013; 

Charco & Galán del Sastre, 2014; Masterlark et al., 2016), (3) inelastic behavior (e.g. Jellinek & 

DePaolo, 2003; Del Negro et al., 2009; Gregg et al., 2012, 2013; Segall, 2016), (4) gravitational 

loading (e.g. Grosfils, 2007; van Wyk de Vries & Matela, 1998), (5) failure propagation (e.g. 

Gerbault et al., 2012, 2018), (6) thermal and hydrothermal effects (e.g.Fournier & Chardot, 2012; 

Gregg et al., 2012, 2013; Hickey et al., 2015), and (7) interaction with recharging magma (e.g. 

Le Mével et al., 2016; Gregg et al., 2018; Segall Paul, 2019). The recently collected datasets 

(geodesy, seismology, gravity, and MT) at LdM allow us to constrain an advanced model. 

Therefore, we focus on the use of numerical models to consider the interplay between modeled 

thermal structure, gravitational loading, rheological heterogeneity, and rock failure to link the 
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variety of observations and better understand the complicated magmatic system of the LdM 

volcanic field.   

In this study, a series of 3D FEM models are applied to simulate the volcanic deformation 

of the LdM volcanic field inferred by geodetic data. Further, calculations based on the FEM 

models are applied to interpret other geophysical data such as gravity and seismicity. First, a 

best-fit magma reservoir geometry is determined using statistical data assimilation to evaluate 

the InSAR observations. The best-fit geometry inferred by the geodetic data is then compared 

with seismic tomography, gravity, and magnetotelluric data. Second, the overpressure of the 

magma reservoir is calculated based on the best-fit geometry and the observed deformation 

trajectory derived from InSAR and GNSS (Le Mével et al., 2015). Third, the effects of a pre-

exiting weak zone (i.e., the Troncoso fault) on the volcanic deformation is tested. Fourth, failure 

development in the host-rock is calculated to illustrate that an increase in pore fluid is necessary 

to explain the observed seismicity and gravity change. Fifth, the modeled stress and strain state is 

evaluated to investigate a hydrofracturing process with fluid migration to further explain the 

seismicity and microgravity change. Finally, by developing a comprehensive understanding of 

the magmatic-hydrothermal system, the current and future unrest trajectory of the LdM volcanic 

field is evaluated. 

5.2 Magma body architecture 

5.2.1 InSAR data 

InSAR data are used to constrain the geometry of the magma reservoir pressure source. 

Five InSAR tracks are analyzed by GMTSAR (Sandwell et al., 2011), including two ALOS 

tracks (112 and 113) and three Terrasar-X tracks (111, 119, and 28), covering different time 

intervals between 2007 and 2016. The LOS displacement time series of each track is calculated 

following a small-baseline subset technique (Berardino et al., 2002) as implemented in the 
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Generic InSAR Analysis Toolbox (GIAnT; Agram et al., 2012). The stratified tropospheric 

artefacts are estimated using the PyAPS (Jolivet et al., 2011, Agram et al., 2012) module 

implementing interferometric phase delay corrections from the ERA-interim weather model 

(available from European Center for Medium-Range Weather Forecast). Other potential sources 

of uncertainties in the InSAR signal include orbital errors and ionospheric delays which are not 

accounted for in this study but cannot be responsible for the observed fringe pattern (Feigl et al., 

2014). 

The location and geometry of the large silicic magma reservoir in LdM have not changed 

significantly during the past decade according to the InSAR data spanning 2007 to 2016. We, 

therefore, normalize all five InSAR velocity maps to their maximum values keeping the 

information of deformation patterns only. Since these five normalized maps are in different 

InSAR looking angles, the geometry of the magma reservoir can be well constrained. The 

normalized velocity maps are further down-sampled to 500±50 sampling points by the quadtree 

algorithm (Zhan & Gregg, 2017) to feed the data assimilation (Section 5.2.3). 

5.2.2 Physical models of the Laguna del Maule magmatic system 

The physical models of the LdM magmatic system are built and calculated using 

COMSOL Multiphysics 5.3. The ellipsoid magma reservoir model has been well benchmarked 

with analytical solutions (e.g., Gregg et al., 2012; Zhan and Gregg, 2017). We model the crust of 

the study area using a 100x100x30 km box (Fig. 5.2a) centered at the Laguna del Maule lake 

(36.058°S, 70.492°W). No InSAR evidence supports the existence of multiple deformation 

centers. The magma chamber is treated as one pressurized spheroid described by location (X, Y, 

and Z), size (R1 and R2), dip direction (φ), and dip angle (θ), whose set up is similar to Yang et 

al (1988)’s ellipsoid analytical model. A data assimilation framework, described in Section 5.2.3, 

is used to determine the geometric parameters of the magma body. A roller-type boundary 
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condition is defined at the bottom and lateral edges of the box. Gravity is included as a 

prescribed body force, and the system is assumed to be in lithostatic equilibrium. An 

overpressure (OP) in excess of the lithostatic pressure is defined along the boundary of the 

spheroid to create the inflation. The overpressure is estimated from observed surface uplift at 

GPS-MAU2 using the best-fit geometry of the magma chamber in Section 5.3.  

The rheology of the model is governed by the linear elastic equation. The Young’s 

modulus (ETd) is temperature and depth dependent. We assume the Young’s modulus decreases 

by more than 50% near the magma chamber due to the rising temperature (Smith et al., 2009). 

An exponential smoothing function is used to estimate the Young’s modulus (ETd) such that: 

𝑬𝑻𝒅 = 𝑬𝒅 ∗ [𝟏 −
𝟏

𝟐
∗ 𝐞𝐱𝐩 (

𝑻

𝑻𝒄
−

𝒛

𝑻𝒄
∗

𝒅𝑻

𝒅𝒛
− 𝟏)].   (5.1) 

The temperature (T) is calculated considering the heat conduction of an 850 °C (Tc) magma body 

(Singer et al., 2014) in the crust with a high geothermal gradient (Currie & Hyndman, 2006, 

dT/dz = 30 °C/km; Fig. 5.2b). The thermal conductivity (𝑲𝒄) and specific heat capacity (𝑪𝒑) are 

assumed constants for simplification, which are not important as we assume the model reaches 

thermal equilibrium. The far-field Young’s modulus without a hot magma reservoir is assumed 

to vary as a function of depth inferred by the seismic velocity models in this region (Bohm et al., 

2002; Ciccotti, & Mulargia, 2004; Cardona et al., 2018; Fig. B.1), which is defined as: 

𝑬𝒅 = 𝑫𝟏 ∗ 𝒛𝟐 + 𝑫𝟐 ∗ 𝒛 + 𝑫𝟑     (5.2) 

The constants and variables in Equation (5.1) and (5.2) are listed in the Table B.1 and B.2. 

Although the Young’s modulus is varied, the first stage of the modeling approach does not 

consider pre-existing weak zones. The strategy of modeling a weak zone is discussed in Section 

5.4. 
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5.2.3 Magma body geometry estimation by data assimilation 

We use the Ensemble Kalman Filter (EnKF) data assimilation method to determine the 

magma body geometry and pressurization. The EnKF solves the Bayesian update problem using 

a Monte Carlo method (Evensen, 2003). We follow the same strategy developed in previous 

studies using the EnKF method to model volcanic deformation (Fig. 5.3; Gregg & Pettijohn, 

2015; Zhan & Gregg, 2017; Zhan et al., 2017; Bato et al., 2017, 2018; Albright et al., 2019). The 

EnKF analysis updates the physical model (𝑨𝒂) by: 

𝑨𝒂 = 𝑨 + 𝑷𝒆𝑯𝑻(𝑯𝑷𝒆𝑯𝑻 + 𝑹𝒆)−𝟏(𝑫 − 𝑯𝑨),               (5.3) 

where 𝐴 is a matrix containing the parameters and states of all ensemble models whose 

covariance matrix is 𝑃𝑒. In this study, the parameters in 𝐴 matrix are the geometry parameters 

describing the magma body (Fig. 5.2a), and the number of the ensemble models is 256. The 

model states are the calculated surface deformation. 𝐷 is a matrix of perturbed measurements 

whose covariance matrix is 𝑅𝑒, and 𝐻 is the mapping matrix (Evensen, 2003). The observation in 

the 𝐷 matrix is the down-sampled InSAR data. At each iteration, four ensemble models are 

assigned to run on one physical CPU on the Bluewater Supercomputer and total of 64 CPUs are 

used (Fig. B.2). The results start to converge after 20 iterations, and the overall calculation takes 

~8 hours to complete all 100 iterations. 

The geometry of the magma body is determined by the EnKF using the normalized 

InSAR velocity maps as input data (Fig. 5.3a). An ellipsoid pressure source reproduces the 

deformation patterns revealed by InSAR (Fig. 5.3b). The overall misfits between data and 

models are less than 10% and are even less where the ground has uplifted significantly in the 

central part of the LdM volcano field (Fig. 5.3c). Negative misfit values show residuals in the 

area of uplift to the SW of the basin (Fig. 5.3c) and could be attributed to localized deformation 
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(subsidence) and/or orbital artefacts not taken into account by the simple pressurized ellipsoid 

model.  

The ellipsoid pressure source parameters from the 256 EnKF ensembles exhibit a 

Gaussian distribution (Fig. B.3). The final iteration shows that the pressure source is an oblate 

ellipsoid slightly dipping to the West (268±6°) by 16±3°. The center of the ellipsoid is located 

4.78±0.08 km below the surface near GPS station MAU2 (X = -3.23±0.16 km and Y = -

0.84±0.16 km). The half-height of the ellipsoid is 1.46±0.03 km and the half-width is 5.43±0.14 

km. The mean parameter values are used to build the best-fit model of the pressure source (Fig. 

5.4). Since in the first stage, the numerical modeling does not incorporate a fault zone. The best-

fit model is named as Model-NF (No Fault).  

5.2.4 Comparison with other observations  

The magma reservoir model provides a geometry comparable to previous sill models 

(Fig. 5.1b) inferred by the InSAR and GNSS data (Feigl et al., 2014; Le Mével et al., 2015). 

Both the sill model determined by previous inversions and our best-fit model which is a highly 

oblate ellipsoid create a similar deformation pattern. The center of our ellipsoid model offsets the 

center of the previously determined sill model by < 1 km (Fig. 5.1b), and the dipping direction of 

the ellipsoid is also similar (i.e., dipping SW by a low angle <20°).  The ellipsoid chamber is 

larger than the previous determined sill source, since to create similar deformation pattern 

spherical sources usually need to be larger than a rectangular source (e.g., Okada, 1985; Yang et 

al., 1988). 

The location of our best-fit model agrees with the region of low shear wave velocity 

(low-Vs) (Wespestad et al., 2019) and also overlaps with the low-density zone inferred by 

gravity data analyses (Miller et al., 2017a).  The low-Vs body is roughly a NE-SW elongated 

ellipsoid dipping to the West (Wespestad et al., 2019), overlapping the west part of our pressure 
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source (Fig. 5.4).  The center of the low-density body and the low-Vs body are offset by 3-4 

kilometers. The lower part of the low-density body is overlapping with the central part of our 

model (Fig. 5.4). The magnetotelluric (MT) data shows no obvious electric conductors at the 

location of the pressure source, low-Vs zone, or low-density zone (Cordell et al., 2018; Fig. B.4). 

A large conductor C3 (Fig. B.4) is present at depth beneath our modeled pressure source, which 

may represent a deeper recharging process (Anderson et al., 2018). To the south of the conductor 

C3, a weak conductor along the trace of the Troncoso fault is recognizable from 1.2 km to 5 km, 

indicating the fault may contain low resistivity fluids. 

The inconsistency in the magma reservoir geometries from the different geophysical 

methods likely results from the complexity of the magma reservoir itself. Petrological and 

geochemical evidence suggests that the magma reservoir at LdM is a heterogenous crystal-mush 

that is predominantly a crystal-rich magma with some portions of high melt fraction (Hildreth et 

al., 2010; Singer et al., 2014; Andersen et al., 2017, 2018). Due to the heterogeneity of the 

magma reservoir, the physical properties can vary significantly spatially. Each geophysical 

method is sensitive to one or several physical properties and may only image a part of the 

crystal-mush. For example, about 9% melt fraction is needed to create 15% shear wave anomaly 

(Flinders & Shen, 2017), while very little melt fraction (~2%) is needed to wet grain boundaries 

and provide connectivity for a crystal-mush to share the same pressure (Zhu et al., 2011). As 

such, calculated pressure sources derived from geodetic data may be larger than the extent of 

low-Vs bodies. Similarly, a small fraction of melt (~2%), which significantly increases electric 

resistivity if connected, will not necessarily result in a lower density or lower seismic velocity. 

Future studies are necessary to explore geophysical observations of magma reservoirs from a 

heterogenous, crystal-mush perspective. 
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5.3 Overpressure evolution and extrapolation 

The normalized InSAR data constrains the geometry of the magma pressure source where 

overpressure is defined as the pressure above lithostatic along the assumed magma chamber 

boundary. InSAR data are assimilated to calculate a best-fit magma reservoir model (Model-NF; 

Fig. 5.4).  The overpressure history of the magma body is then determined to reproduce the 

modeled displacement at GPS-MAU2 (Fig. 5.5; Le Mével et al., 2015; Singer et al., 2018). To 

further forecast the possible behavior of the LdM magmatic system in the next decade, the 

overpressure evolution is extrapolated using both a linear and cubic trend (Fig. 5.5). The linear 

and cubic trajectories represent two end-member conditions, which are (a) a constant or 

gradually decreasing mass flux into the magma reservoir, and (b) an increasing mass flux (Gregg 

et al., 2018). Actually, the cubic trend is an extreme case which can hardly happen in a real 

magmatic system.  

Based on the best-fit model (Model-NF), the overpressure is calculated to create the same 

amount of uplift at GPS-MAU2 as the results in the previous studies (Le Mével et al., 2015; 

Singer et al., 2018). The uplift at MAU2 from 2007 to 2016 is about 2.1 m. The overpressure 

required to create the surface uplift is about 6.3 MPa according to the best-fit geometry. To test 

the stability of the magma body in the future, we extrapolate the overpressure after 2016 by both 

linear trend and cubic trend (Fig. 5.5). The failure of host-rock will be discussed in the Section 

5.5. 

5.4 Effect of the Troncoso fault on surface deformation  

5.4.1 Adding weak zone to the best-fit model 

Although there is no observable surface displacement associated with regional faulting 

(Fournier et al., 2010; Feigl et al., 2014; Le Mével et al., 2015), previous research indicates a 

pre-existing weak zone associated with the Troncoso fault may play a role in triggering 
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seismicity and gravity changes (Cardona et al., 2018; Miller et al., 2017b).  To further discuss the 

effect of the Troncoso fault on the pressurization of the magmatic system, the fault is 

incorporated into the model as a vertical thin slat embedded in the host-rock (Fig. 5.2a). The 

magma reservoir and the overpressure serve as the initial model stress state for the fault models. 

The trace of the fault follows the strike of the canyon to the SW of lake and is also inferred by 

the observed seismicity (Fig. 5.1a). The strike of the fault in the model coordinate system is 

defined as  

𝒀 =
𝟐𝟎

𝟏𝟕
(𝑿 − 𝟏𝟖) + 𝟐𝟎   (𝒊𝒇 − 𝟑𝟎 < 𝑿 < −𝑫𝒇)  (𝒌𝒎),  (5.4) 

where 𝑫𝒇 is the distance between the NE end of the fault and the center of model, whose value is 

tested in the models. Combinations of the different fault parameters are varied to investigate their 

effects on the surface deformation pattern (Fig. 5.6). The Young’s modulus within the fault zone 

is assumed to be proportional to its surrounding host rock. The ratio of Young’s modulus 

between the fault and the host-rock is defined as (
𝑬𝒇

𝑬𝒓
) and is varied to test the sensitivity of the 

model results to the chosen ratio. In addition, the thickness (𝑾𝒇) and depth (𝑯𝒇) of the fault zone 

are tested (Fig. 5.2a).  

5.4.2 Fault parameter constraints derived from synthetic tests 

A series of synthetic models are run with the varying fault setups to create a predicted 

deformation signal for an interferogram of ALOS data (unit vector = [-0.6242, -0.1851, 0.7590]) 

spanning three years from 2007 to 2010. Since the observed satellite data (Fig. 5.6c) show line-

of-sight fringe offset associated with the fault zone is less than 500 m, any model which creates 

significant fringe offsets larger than 500 m due to the addition of a mechanically weak zone can 

be ruled out. 

The perturbation of the surface displacement shows different sensitivities to different 
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fault parameters. The assumed Young’s moduli and fault zone widths have the greatest impact 

on the predicted surface deformation. When Young’s modulus of the fault is 20% lower than that 

of the surrounding host-rock, the fringes of synthetic interferograms are significantly offset (Fig. 

5.6a). Therefore, Young’s modulus of the fault should be 20-100% of the surrounding rock. A 

similar decoupling effect can be also observed when the width of the fault zone is increased (Fig. 

5.6a), suggesting the fault zone must be < 200 meters. However, the synthetic interferograms are 

not sensitive to the assumed depths and distance-to-center of the fault (Fig. 5.6b). For Young’s 

modulus and fault zone width, the parameters of Model-E5W1 (
𝑬𝒇

𝑬𝒓
 = 1/5, 𝑾𝒇 = 100 m) are 

chosen in the further tests of stress, failure, and pore fluid. This model represents an end member 

in which the weak zone can have the maximum effect on stress field but still fit the surface 

deformation observations. Since the InSAR data cannot constrain depth and distance-to-center of 

the fault, we assume Hf is 7 km and D is 0 km (Model-H7D0; same as Model-E5W1), according 

to the distribution of earthquakes (Fig. 5.7). 

5.5 Failure of the host-rock without pore fluid 

5.5.1 Failure criterion   

Similar to Zhan and Gregg (2019), host-rock failure initiates as the overpressure of the 

magma reservoir is increased. The occurrence of Coulomb failure or tensile failure can be 

predicted by 

𝝉 > 𝑪𝟎 𝐜𝐨𝐬 𝝓𝒊 + 𝝈𝒏 𝐬𝐢𝐧 𝝓𝒊,     (5.5) 

or 

−𝝈𝟑 > 𝑻𝟎,      (5.6) 

where 𝜎𝑛 and 𝜏 are the normal and maximum shear stresses. The internal friction angle is 

assumed to be a constant (ϕi = 25°; Grosfils, 2007) and its variation does not have a large effect 
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on forecasts of failure compared to geometry, Young’s modulus, and rock strength (Zhan and 

Gregg, 2019). 𝐶0 and 𝑇0 are the rock’s cohesion and tensile strength which are proportional to its 

Young’s modulus (Aggistalis et al., 1996; Dinçer et al., 2004), such that the cohesion is defined 

as:  

𝐶0 = 𝐸 × 5 × 10−4 and 𝑇0 =  𝐸 × 10−4.   (5.7)  

 

5.5.2 Failure prediction 

  Failure is calculated in four tests, including: (1) a model without a weak fault zone 

(Model-NF, described above) with a linear overpressure (OP) trajectory (Fig. 5.7a); (2) a model 

with a fault zone (Model-E5W1) with a linear OP trajectory (Fig. 5.7b); (3) a model without a 

fault zone with a cubic OP trajectory (Fig. 5.7c); and (4) a model with a fault zone with a cubic 

OP trajectory (Fig. 5.7d). For all of the models, both the Coulomb failure and tensile failure are 

more likely to initiate at the surface above the magma reservoir due to a lower confining pressure 

at the shallow depth. Using a linear overpressure buildup, the magma reservoir is not predicted to 

fail in the next 20 years for both the models with and without a fault zone (Fig. 5.7a and b). 

When a cubic overpressure buildup is assumed, the magma reservoir experiences tensile failures 

around 2025 when the overpressure exceeds 21 MPa, regardless of the presence of a weak fault 

zone (Fig. 5.7c and d). The initial point of tensile failure always happens at the NE edge of the 

magma reservoir, since it is closer to the surface and under lower confining pressure (Fig. B.5). 

In 2030, through-going Mohr-Coulomb failure is predicted to connect the chamber edge and the 

surface of the model when the overpressure excesses 50 MPa (Fig. 5.7d). Failure can initiate 

earlier if the stress derived from previous eruption cycles is not totally released. However, we 

suggest that the initial stress prior to 2007 is not significant, although 62-m uplift has been 

accumulated over 9,400 years (Singer et al., 2018). If the total deformation is composed of 
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similar rapid-uplift events as observed during the 2007-present unrest, more than 15 rapid-uplift 

episodes are needed to create the total deformation signal. The recurrence interval would be 

more than 600 years (Singer et al., 2018), which is long enough for the stress associated with the 

uplift event to relax since the maximum relaxation time for a warm crust (~350°C) is about 100 

years (Zhan and Gregg, 2019). 

  Besides, the structure of Young’s modulus used in the models will also affect the failure 

forecasts. If we underestimate the Young’s modulus, the real overpressure to create the same 

surface deformation will be higher than the model prediction (Zhan and Gregg, 2019). Our 

model predicts higher Vp and Vs than the regional velocity models above 5 km (Fig. B.1), which 

rules out the possibility of a significant underestimation of the Young’s modulus. If we 

overestimate the Young’s modulus, the real overpressure will be lower than the model, which 

means the failure will be even less likely to occur. The assumption of Poisson’s ratio may also 

introduce bias in the model. However, Poisson’s ratio has a much smaller effect on forecasting 

failure than Young’s modulus (Zhan and Gregg, 2019). 

5.5.3 Effect of the Troncoso fault on failure development 

  The pre-existing weak zone generates two opposing effects on failure accumulation. On 

one hand, the low Young’s modulus of the weak zone leads to low shear stress concentration 

(Fig. B.6), prohibiting failure development. On the other hand, the weak zone exhibits a low rock 

strength, facilitating failure development. At a shallow depth (< ~2 km), the effect of rock 

strength is dominant. More failure is generated inside the weak zone (Fig. 5.7b). At deeper levels 

(> 2 km), the low stress concentration of the weak zone keeps rocks from failing (Fig. 5.7d). 

However, the existence of the pre-existing weak zone does not motivate failure near the SW edge 

of the magma reservoir, but instead makes failure harder to generate. Therefore, under dry rock 
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conditions modeled here, the weak zone created by the Troncoso fault does not appear to be the 

reason for the observed seismicity. 

5.6 Effects of the pore fluid on predicted seismicity and gravity  

5.6.1 A pore pressure catalyst for seismicity 

From previous discussion, we find failure difficult to generate near the SW edge of the 

magma reservoir where earthquake swarms were frequently observed during 2011-2015 

(Cardona et al., 2018; Fig. 5.7a). Miller et al. (2017b) suggest a possible hydrofracturing event 

inferred by microgravity change may explain the earthquake swarms. MT data also indicate that 

the Troncoso fault zone is one of the weak conductors, indicating fluids may be present in the 

fault zone (Fig. B.3; Cordell et al., 2018). To investigate this mechanism, we calculate the pore 

pressure required to trigger the rock failure to investigate whether the pore fluid can trigger the 

earthquakes in this region.  

The minimum pore pressure required to initiate Coulomb failure (𝑃𝑤
𝐶) and tensile failure 

(𝑃𝑤
𝑇) is calculated by Terzaghi (1951) equations: 

𝑃𝑤
𝐶 = 𝜎𝑛 − (𝜏 − 𝐶0

𝑓
cos 𝜙𝑖)/ sin 𝜙𝑖,    (5.8) 

𝑃𝑤
𝑇 = 𝑇0

𝑓
+ 𝜎3,      (5.9) 

where 𝐶0
𝑓
  and 𝑇0

𝑓
 are cohesion and tensile strength of the fault zone, whose values are 

much lower than the surrounding host-rocks. Two models with different cohesion and tensile 

strength are tested. The first model is a “crack sliding” model with zero cohesion. The cracks 

within the fault start to slide when the pore pressure is high enough (Fig. 5.8a). In this model, 

only crack sliding can happen, which is similar to Coulomb failure. The second model is the 

“weak cohesion” model, where the cohesion (𝐶0
𝑓
) is ~ 1 MPa and the tensile strength (𝑇0

𝑓
)  is ~ 

0.2 MPa (Fig. 5.8b) assuming Young’s modulus and rock strengths of the fault zone follow the 
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relationship described by equation (7). In this model, tensile failure and Coulomb failure can 

happen in different parts of the model depending on the stress states. 

For both the “crack sliding” model and “weak cohesion” model, the pore pressure required 

to initiate failures increases with depth from near 0 MPa at the surface to about 200 MPa at a 

depth of 7 km (Fig 8a and b). The pore pressure is about 160 MPa at the average depth of the 

earthquake swarms. The pore pressure is mainly controlled by the normal stresses (Fig. B.5) 

which is consistent with the lithostatic stress and much higher than the maximum shear stresses 

(𝝉) (Fig. B.6). In the “crack sliding” model, the increasing pore pressure triggers a Coulomb type 

failure (Fig. 5.8a). While, in the “weak cohesion” model, the Coulomb failure is triggered around 

the chamber edge and near the surface (Fig. 5.8b), where the maximum shear stresses are 

roughly larger than the cohesion of the fault zone. For the most part of the “weak cohesion” 

model, only tensile failure can be triggered with an increasing pore pressure. The observed 

failure along the surface of the model (“Already failed” zone in Fig. 5.8a & b) can be generated 

with zero pore pressure due to inflation of the magma reservoir and a low least compressional 

stress. However, this subsurface failure zone is not associated with earthquakes, likely because 

the models neglect the effect of topography. Laguna del Maule lake has a low elevation 

compared to the surrounding area. The flat surface assumption in our models can lead to an 

underestimation of the least compressional stress (McTigue and Mei, 1981), which drives the 

Mohr circle closer to the failure envelope (Fig. 5.8). 

5.6.2 “Hydrofracturing” process 

From the pore pressure calculation, we know that the pore pressure must be > ~160 MPa to 

trigger the earthquakes near the SW edge of the magma reservoir. This “hydrofracturing” process 

can only occur when two requirements are fulfilled at the same time. First, the pore fluid must be 

injected into the region where the seismicity is observed. Second, the pore pressure must reach 
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160 MPa to trigger earthquakes. We argue that the pore fluid may be directly generated by the 

differentiation of the magma in the reservoir or transported from a deeper source (e.g., electric 

conductor C4 in Fig. B.3; Cordell et al., 2018). Therefore, the pore fluid may experience the 

pressure from the magma reservoir, which can be equal to or larger than the minimum pore 

pressure required, even if the pressure is diffused. However, why does the pore fluid inject 

laterally to trigger the seismicity next to the SW edge of the magma chamber?  

To explain the diffusion pattern of the pore fluid, we calculate the volumetric strain of the 

fault zone (Fig. 5.8c). The predicted volumetric strains due to a pressurized magma chamber are 

favored to accumulated within the fault zone (Fig. B.7) since the fault zone is more deformable. 

The fractured rock near the surface above the chamber exhibits the highest volumetric strain 

increment (Fig. 5.8c). The SW edge of magma chamber also concentrates positive volumetric 

strain, while the roof of the magma chamber is dominated by negative volumetric strain. In this 

study, we are using linear elasticity but with lower Young’s moduli and higher Poisson’s ratio to 

simulate the behavior of the fault zone. In reality, the fault zone should behave inelastically. The 

volumetric strain increment may approximately represent the opening or connection of 

microfractures, which will cause a permeability increase. However, the roof of the magma 

reservoir is experiencing a decrease in volumetric strain indicating the closure of microfractures 

and a reduction in permeability. Therefore, the fluid is more likely to inject laterally into the 

fractured rock with higher permeability to the SW edge of the reservoir. 

The pore pressure at the SW edge of the reservoir should be equal to the pressure of the 

magma which is the sum of lithostatic pressure and magma overpressure. Since the pore pressure 

required to initiate the crack sliding model is lower than the lithostatic pressure, seismicity can 

be triggered near the SW edge of the chamber. The pore pressure of the fault decreases away 
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from the magma reservoir due to diffusion (e.g. Talwani & Acree, 1985; Scholz, 2019) and/or 

the drop of the permeability where the fault zone is no longer dilatant (Mitchell & Faulkner, 

2008; Zhang et al., 2008). Therefore, earthquakes at a distance from the magma reservoir cannot 

be triggered. However shallower earthquakes are also observed (Cardona et al., 2018), which 

indicates the fluid may also inject upward. This observation agrees with the volumetric strain 

calculation, since more “dilatancy” occurs at the shallow depth with the fault zone (Fig. 5.8c), 

which is also consistent with a shallow high electric-conductivity area (C2 in Fig. B.4; Cordell et 

al., 2018). Although the pore pressure will decrease at distance from the reservoir, the pore 

pressure required to trigger earthquakes is also much lower at shallow depth. Therefore, 

shallower earthquakes can still be triggered during the upward injection of the fluid. 

In addition, we calculate the principal stress directions of the fault zone (Fig. 5.8d) to 

predict the focal mechanism of the earthquakes. North-South trending extension is dominant at 

the lower part of the fault southwest to the magma reservoir (Fig. 5.8d), which is consistent with 

both direction and location of the focal mechanism observations for well-located VT events 

(Figure 9 in Cardona et al., 2018). 

5.6.3 Microgravity changes due to fluid migration 

From the discussion above, we suggest that pore fluid migration triggered the observed 

earthquake swarms. We further suggest that the pore fluid originates from the magma reservoir 

where it is first injected laterally into the dilatant part of the fault zone at the SW edge of the 

magma chamber, and then diffuses upward to a shallow dilatant zone. The movement of the fluid 

is mainly caused by the increasing connectivity of cracks and pores during magma reservoir 

induced deformation. Therefore, filling newly connected unsaturated cracks and pores with fluid 

will affect the density of the rock generating an observable gravity change at surface.  



142 

 

Positive microgravity changes (up to 0.1 mGal) have been observed at the NE end of 

Troncoso fault between 2014 and 2015, which has been previously explained by fluid injection 

into pre-existing pores at a shallow storage (Miller et al., 2017b). To test this idea, we assume the 

density of the fault which experiences volumetric strain increment will increase due to fluid 

injection. The gravity change is generated based on the modeled density increment, which is 

compared to the microgravity observation (Miller et al., 2017b). The density structure of the 

model is discretized into a grid of finite prisms (50x50x100 m) to calculate the overall 

gravitational potential and therefore the gravity change (Blakely, 1995). 

We assume that the fluid is water-dominated with a density of 1 g/cm3. We have modeled 

four density distributions as different functions of the volumetric strain. The first model assumes 

that the hydrothermal brine fills 10% of the pore space where the volumetric strains are positive 

(Fig. 5.9e). This model creates a significant gravity anomaly (Fig. 5.9a), which is much greater 

than the observation (Miller et al., 2017b), suggesting that this model overestimate the density 

increment due to fluid injection. In addition, the location of the largest gravity change is offset 

southwest compared to the observation. The second model assumes a threshold volumetric strain 

(0.01% in this study) is required to connect the unsaturated pores. Therefore, only the fault zone 

exhibiting the volumetric strain greater than this value will have a uniform density increment of 

0.1 g/cm3, which also represents a 10% porosity occupation same as the first model (Fig. 5.9f). 

This model also shows a gravity change focused along the fault (Fig. 5.9b). The first two models 

assume that fluid can inject into the unoccupied pores even near the surface. This shallow gravity 

source makes the wavelength of the gravity anomaly too small. Considering the shallow pores 

may already be saturated with fluid or some impermeable layers may prevent the new injection, a 

third model based on the second model is investigated assuming the density does not increase in 
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the shallow model space above -1 km (Fig. 5.9g). This model predicts a gravity anomaly that is 

less than 0.1 mGal along the Troncoso fault and its distribution is similar to the observations 

(Miller et al., 2017b). A fourth model is run assuming a ramp function between density 

increment and volumetric strain (𝒅𝝆 = 𝟓𝟎𝟎 𝜺𝑽  [
𝒈

𝒄𝒎𝟑] , 𝒊𝒇 𝜺𝑽 < 𝟎. 𝟎𝟐%;  𝒅𝝆 = 𝟎. 𝟏 [
𝒈

𝒄𝒎𝟑] ,

𝒊𝒇 𝜺𝑽 ≥ 𝟎. 𝟎𝟐%), and no fluid injection above -1 km (Fig. 5.9h). The gravity anomaly calculated 

by this model is similar to the third model (Fig. 5.9d), consistent with the positive gravity change 

on the southwest side of the Laguna del Maule lake. All models have limitations in reproducing 

any gravity changes on the north or east side of the lake where gravity variations may indicate 

other hydrological processes. 

In summary, the inflating magma body promotes dilatancy in some part of the pre-

existing weak zone (Fig. 5.8c) by increasing the connectivity of the pre-existing pores or cracks 

or generating new micro-fractures (Fig. 5.10a). A high-pressure fluid from the magma reservoir 

injects into the dilatant fault zone triggering seismicity (Fig. 5.10b). The unsaturated rock in the 

fault zone is filled with the fluid (e.g., hydrothermal brine) to generate a positive micro-gravity 

change (Fig. 5.10c). In this study, we think the fluid is generated from the magma reservoir, 

which migrates laterally into the dilatant zone (Fig. 5.10a), and then moved upward along the 

dilatant zone to shallower depths (Fig. 5.10c). However, we cannot rule out that the fluid present 

in the shallower dilatant zone may come from other sources (e.g., groundwater). We suggest that 

crack opening or connection in the pre-existing weak zone due to the inflation of the magma 

body is the key to trigger fluid migration, earthquake swarms, and gravity change. 

5.6.4 Pore fluid: lubricant to eruption or not? 

From the failure calculation with zero pore pressure, we know that the magma reservoir 

is likely to remain stable until the overpressure exceeds 20 MPa. Even if the magma reservoir is 
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recharged at an increasing mass flux causing the overpressure to increase cubically, the magma 

chamber will not rupture until 2025 (Fig. 5.5 and 5.7), although we don’t think the overpressure 

will follow the cubic trajectory, since the surface uplift has started to decelerate since 2016 

according to the InSAR data (Singer et al., 2018). In addition, stress is more difficult to 

accumulate in a weak zone, which hinders the occurrence of host-rock failure, the effect of 

which is to make the magma reservoir more stable. On the other hand, the pre-existing fault can 

act as a channel for the pore fluid to trigger failure and, therefore, earthquake swarms. Thus, 

whether the pre-existing weak zone makes the system stable or unstable is not intuitive. 

According to our model, the triggering effect of the seismicity and gravity increment is 

the injection of pore fluid, which is motivated by the dilatancy of the fault zone. The dilatancy is 

derived from the inflation of the magma reservoir. Therefore, higher inflation rate of the magma 

reservoir creates a higher surface deformation rate, and, at the same time, more earthquakes and 

a greater microgravity increment. However, we have not found any correlation among the rate of 

surface uplift (Le Mével et al., 2015), the accumulative energy of the VT earthquake swarms 

(Cardona et al., 2018), and microgravity change (Miller et al., 2017), which suggests that the 

interaction between the magma reservoir and the hydrology of fractured rocks is complicated. 

Currently, there is no evidence to indicate that the VT earthquake and fluid migration have a 

significant feedback on the magma reservoir. Actually, the release of stresses during the 

earthquake swarms may delay the rupture of the SW edge of the magma reservoir. Extended 

model forecasts indicate that eruption may occur at the NE edge of the chamber, when a through-

going failure is triggered (Fig. 7d). 
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5.7 Conclusions 

The best-fit magma reservoir to explain the prolonged surface deformation from 5 InSAR 

tracks from 2007 to 2016 is an oblate ellipsoid centered at a depth of ~5 km beneath the west 

LdM lake, which is dipping west at a low angle. The ellipsoid reservoir derived from the 

pressure source overlaps with tomography and gravity data but is larger than other models, 

indicating the overpressure may be shared throughout the crystal-mush zone making up the LdM 

magma system, even where the melt fraction is low. The overpressure of the magma reservoir 

calculated by InSAR and GNSS data assimilation has increased by 6.3 MPa from 2007 to 2016. 

Our models indicate that the host rock surrounding the magma reservoir will not fail under this 

overpressure even if a pre-existing weak zone is introduced. The parameters of the pre-existing 

weak zone such as stiffness, thickness, depth, and length are tested to recreate the observations. 

A weak zone with a stiffness 20% lower than the surrounding rock, or a weak zone wider than 

200 meters will not reproduce the InSAR deformation observations. By maximizing the effects 

of the weak zone on the stresses and strains within the constraints of the observations, we 

investigate the possibility that the Troncoso fault is a facilitator for pore fluid injection, 

seismicity, and gravity change. Calculated stress and strain along the fault illustrate that the 

dilatant regions of the fault enable high-pressure fluid to inject triggering earthquake swarms. 

Furthermore, fluid injection into the porous media due to the dilatancy creates gravity change in 

line with observations. Fortunately, this “hydrofracturing” process may release some 

accumulated stress along the magma reservoir delaying eruption. 
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5.8 Figures 

 

Figure 5.1 (a) Location of Laguna del Maule volcanic field. The shaded colors show the 

distribution of two episodes of postglacial silicic magmatism (Singer et al., 2018). The star 

indicates the 2011-2015 VT earthquake swarms located along the Troncoso fault; the dominant 

focal mechanism of the earthquakes is N-S trending extension (Cardona et al., 2018). (b) Results 

from previous geophysical investigations. The red and blue shaded regions outline the low S-

wave velocity body (Wespestad et al., 2019) and the low-density body (Miller et al., 2017a) 

shallower than 7 km below surface. The green ellipse outlines the area where gravity changes 

<0.1 mGal during 2014 (Miller et al., 2017b) are recorded. The surface uplift revealed by InSAR 

data has been modeled by a sill (Feigl et al., 2014) and an ellipsoid (this study) indicated by the 

dashed rectangle and circle respectively.  
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Figure 5.2 FEM model setup. (a) The host-rock of the Laguna del Maule magmatic system is 

modeled using an elastic solid domain. The magma body is a pressurized, oblate ellipsoid. The 

Troncoso fault is modeled using a thin vertical slat. The trend of the fault follows the 

morphological trace of the valley in Figure 5.1a. (b) and (c) are cross-sections of temperature and 

Young’s modulus. In the second stage of modeling (described in Section 5.4) the Young’s 

modulus is further reduced along the Troncoso fault to approximate a weak zone.  
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Figure 5.3 Comparison between InSAR data and modeled deformation. Averaged InSAR LOS 

velocity maps during the time spans are down-sampled using a quadtree algorithm and 

normalized by their maximum values. The second column shows the best-fit LOS velocity 

calculated by the EnKF. The third column shows the misfits between modeling results and the 

data. Each row shows a different InSAR track labeled with its time period and LOS direction as 

(E, N, U). 
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Figure 5.4 3D view of the calculated pressure source (green region) in comparison with the low 

S-wave velocity body (red region) and low-density body (blue region). 
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Figure 5.5 Surface uplift and overpressure as a function of time. The magma body geometry is 

from the best-fit model by data assimilation. The overpressure is recovered by reproducing the 

calculated uplift (2007~2017) at the GPS station MAU2 modeled by Le Mével et al. (2015) and 

Singer et al. (2018). The forecasted overpressure trajectory is generated by extending the data-

constrained overpressure either linearly or cubically. The host-rock surrounding the magma 

chamber is going to fail when the overpressure is about 22 MPa. 
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Figure 5.6 The predicted LOS displacements (ALOS-T112) from 2007 to 2010 are calculated by 

the interaction of the best-fit pressure source and a pre-existing weak zone as the Troncoso fault. 

The effect of the Troncoso fault on the surface displacement can be explored. (a) The model with 

a wide (Wf > 200 m) and weak (Efault < 1/5 Ehost-rock) fault zone creates a significant offset (> 500 

m) of LOS fringes crossing the fault. (b) The magnitude of fringe offsets from the models with 

different depths and extensions of fault has a much narrower range than the models with 

different widths and Young’s moduli of fault. (c) The InSAR data from Le Mével (2016) shows 

no significant fringe offset (> 500 m) crossing the fault. Black stars highlight the models used to 

calculate the failure in the Section 5.5. 
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Figure 5.7 Predicted failure evolution under different model settings. (a) and (b) show the failure 

in the model with a linear overpressure buildup without or with the effect of the pre-existing 

weak zone. (c) and (d) are results from the model under a cubic overpressure buildup without or 

with the weak zone. For the fault model, the width, depth and distance-to-center of the fault zone 

is 100 m, 7 km, and 0 km. The fault zone has 1/5 of the surrounding Young’s modulus (Model-

E5W1). The location of the cross-sections is shown in Fig. 5.2. 
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Figure 5.8 The stresses and strains in the fault zone of the Model-E5W1. (a) The minimum pore 

pressure required to trigger failures by a “crack sliding” model. (b) The minimum pore pressure 

required to trigger failures by a “weak cohesion” model. In (a) and (b), the area for Coulomb 

failure is shown as blue contours. Tensile failure is shown as purples. The black areas are failed 

area under dry condition. (c) The volumetric strain. (d) The direction of the minimum principle 

stress. The colored stars show the stress direction from the focal mechanism of the well-located 

VT events (Cardona et al., 2018). The location of the cross-sections is shown in Fig. 5.2. 
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Figure 5.9 Modeled gravity change (a-d) created by corresponding density structures (e-f). The 

density changes are derived from fluid injection assumed based on the volumetric strains (εV). (a, 

e) Density increased by 100 g/cm3 uniformly where εV > 0. (b, f) Density increased by 100 g/cm3 

uniformly where εV > 0.01%. (c, g) Density increased by 100 g/cm3 uniformly where εV > 0.01% 

but Z < -1 km. (d, h) Density increased by at most 100 g/cm3 where εV ≥ 0.02% but also 

proportion to the εV. The squares show the observed gravity changes during 2014-2015 (Miller et 

al., 2017b). 
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Figure 5.10 A 3D cartoon illustrating the interaction between the magma reservoir and 

hydrothermal system. (a) Microfractures open or get connected due to the inflation of the magma 

chamber. (b) A high-pressure fluid from the magma reservoir then injects into the dilatant fault 

zone triggering seismicity. (c) The fluid moves to unsaturated shallow storages to create a 

positive gravity anomaly, and the pore pressure will decrease after that to stop the seismic swarm 

until the next cycle. 
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CHAPTER 6: MODELING MAGMA SYSTEM EVOLUTION DURING 2006-2007 

VOLCANIC UNREST OF ATKA VOLCANIC CENTER, ALASKA5 

Abstract 

Surface deformation and seismicity coupled with advanced physics-based models, provide 

critical information to better understand the dynamics of volcanic unrest. During 2006-2007, > 

80 mm/yr uplift was observed at the central Atka volcanic center, Alaska, by InSAR, coinciding 

with an increasing seismicity rate. At 2006/11/25, a phreatic eruption was observed at the 

Korovin volcano, 5-km north to the central Atka after drainage of its crater lake a month before 

the eruption. We use 3-D finite element models with data assimilation by the InSAR data to 

investigate (1) pressure source of the surface displacement, (2) mechanism of the volcano-

tectonic (VT) earthquakes, and (3) triggering of the phreatic eruption. The Ensemble Kalman 

Filter tests show that a NE-tilted, oblate, ellipsoidal pressure source may migrate and rotate 

upward during 2006/6-2006/11 to create the surface deformation. A pre-existing weak zone, the 

Amlia-Amukta fault, may serve as a channel for pore fluid to inject into and to trigger the 

seismicity. Both spatial and temporal evolutions of the VT earthquakes are correlated to the fault 

dilatancy, leading to fracture-dominated increase of permeability and pore fluid injection. The 

drop in the water table at Atka is likely due to the generation of a large sink (~105 m3) for water 

within the pre-existing weak zone, causing lake drainage at the crater of Korovin by October 19, 

2006. Consequently, the phreatic eruption of the Korovin volcano can be triggered. 

  

 

 
5 Submitted to JGR solid earth as: Zhan Y., Gregg P. M., and Lu Z. Modeling magma system evolution during 2006-

2007 volcanic unrest of Atka volcanic center, Alaska.  
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6.1 Introduction 

Volcanic unrest is defined when the behavior of a volcano deviates from its baseline or 

background (e.g., Phillipson et al., 2013; Acocella, 2014), which may lead to and provide critical 

warnings for potential volcanic eruptions (e.g., Sparks, 2003; Moran et al., 2011; Phillipson et 

al., 2013). To determine whether and when an eruption will follow unrest, we need to understand 

the geophysical, geodetic, and geochemical processes occurring during the volcanic unrest. 

Recent developments in volcanic monitoring by geodesy (e.g., InSAR, GNSS) and seismology 

(e.g., broadband seismometer) allow us to explore the host-rock responses to the changes of 

physical condition in a magmatic system (Sparks et al., 2012). While the mechanism controlling 

the physical processes during volcanic unrest can hardly be understood without the supports 

from experimental, analytical, and numerical models (e.g., Mogi, 1958; McTigue, 1987; Yang et 

al., 1988; Masterlark, 2007; Grosfils, 2007; Del Negro et al., 2009; Manconi et al., 2010; 

Gerbault, 2012; Fournier & Chardot, 2012; Gregg et al., 2013; Segall, 2013; Currenti et al., 

2007; Charco & Galán del Sastre, 2014; Hickey et al., 2015; Le Mével et al., 2016; Zhan & 

Gregg, 2019). Besides, data assimilation techniques based on Bayesian Markov chain Monte 

Carlo method allow us to utilize volcanic monitoring data to obtain probabilistic estimates of 

model parameters, and further to forecast future behavior (e.g., Anderson & Segall, 2013; Segall, 

2013; Gregg & Pettijohn, 2016; Bato et al., 2017; Zhan & Gregg, 2017; Albright et al., 2019). 

Combining surface deformation and seismicity data with advanced numerical models can 

provide us critical insights into the mechanism of the restless behavior of a volcanic system prior 

to its eruption. In particular, the volcano-tectonic (VT) earthquakes during volcanic unrest 

represent the brittle failure of the host-rock due to the changes in stress conditions, which should 

closely link to surface deformation (e.g., Segall et al., 2013; Zhan & Gregg, 2019). However, this 

linkage can be alerted due to crustal heterogeneity, hydrothermal systems, and other factors 
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(Zhan et al., 2019), which significantly varies from systems to systems (Roman & Cashman, 

2018). 

The Atka volcanic center is located at the northeast end of Atka island (Fig. 6.1a), which 

is the largest modern magmatic complex in the central Aleutian arc, with an estimated eruptive 

volume of ~200 km3 (Myers et al., 2002). The Atka complex belongs to an extended crust to the 

north of the Andreanof Block (Geist et al., 1987; Singer et al., 1992). Two faults, Amlia-Anukta 

(AA) fault, and Seguam fault, cut the Akta volcanic center. Although at Atka, the nature of the 

AA fault is unclear, the fault controls the distribution of the earthquakes (Power et al., 2019) 

(Fig. 6.1b). The youngest phase of volcanic activity in Atka began about 1-2 Ma ago (Myers et 

al., 2002), when the Atka volcano was once a large shield volcano, destroyed due to a caldera 

collapse eruption 300,000-500,000 years ago (Marsh, 1990). After that, four major volcanic 

cones (Korovin, Kliuchef, Sarichef and Konia) ringed around the Atka caldera, through a series 

of complicated magmatic processes, including melting, crystal fractionation, and magma mixing 

(Myers et al., 2002). The Korovin cone, the largest of the post-caldera edifices with a height of 

1.5 km and basal diameter of 7 km, is reported to be active with several confirmed eruptions (i.e., 

1976, 1987, 1998, 2006) and numerous fumarolic and hydrothermal activities during the past 200 

years (Lu & Dzurisin, 2014).  

During 2006/6-2007/1, an uplift with a rate > 80 mm/yr was observed at the center of 

Atka volcanic center (Fig.1a) by InSAR (Lu & Dzurisin, 2014), coinciding with an increased 

seismicity rate near the uplift center of deformation (Power et al., 2019) (Fig. 6.1b & Fig. 6.2). 

Simultaneously, increased fumarolic and hydrothermal activities occurred at the Korovin 

volcano, which located at 5-km north to the central uplift. The unrest in Korovin was followed 

by lake drainage at the crater of Korovin by October 19, 2006 (Neal et al., 2008) (Fig. 6.2). On 
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November 25, 2006, an eruption happened in the Korovin volcano. Although the satellite image 

shows there is a small amount of ash deposited near the vent of Korovin, they are very likely to 

be re-mobile ash during a phreatic eruption (Neal et al., 2008). Although the restless behavior of 

the Atka volcanic center has been recorded by the geodesy and seismology, the relationship 

between the surface deformation, seismicity, and eruption is still unclear. In particular, the key 

puzzle of the 2006-2007 volcanic unrest is whether the restless behavior occurring at the center 

of the Atka triggered the phreatic eruption at the Korovin volcano, which is 5-km away from the 

center. 

In this study, a series of 3-D finite element models are established to simulate the surface 

deformation revealed by the multi-temporal InSAR data from 1999/7 to 2007/7. The 

probabilistic estimation of the pressure source evolution is obtained by the Ensemble Kalman 

Filter data assimilation. The stress, strain, and failure of the crust are calculated to explore the 

interaction between the pressurized source and two pre-existing weak zones (i.e., Amlia-Amukta 

fault and Seguam fault). The fracturing and hydrous processes of the fault zone are inferred by 

the model to explain the spatial and temporal evolution of the volcano-tectonic (VT) earthquakes 

during the unrest. Finally, the 2006/11/25 phreatic eruption of the Korovin volcano is linked to 

the restless behavior at the Atka volcanic center by combining modeling and multiple 

observations. 

6.2 Pressure source evolution 

6.2.1 InSAR data 

We generated interferometric synthetic aperture radar (InSAR) images acquired by ERS-

2 or Envisat between mid-June and late October during 1999-2007 to ensure the InSAR 

coherence. The coherence is easy to lose due to seasonal snow and ice cover but maintained 

during or between summers (Lu & Dzurisin, 2014). We further used the multiple InSAR small 
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baseline subset (MSBAS) technique (Samsonov et al., 2013) to obtain the timeseries of surface 

deformation in both up-down and east-west components (Fig. C.1 and C.2). Each image in the 

timeseries is further down-sampled to about 2,500 data points by the quadtree partitioning (e.g., 

Zhan et al., 2019).  

6.2.2 Numerical model of the Atka volcanic system 

The setup of the numerical model of the Atka volcanic system is similar to the previous 

study in the Laguna del Maule volcano (Zhan et al., 2019). The finite element models are built 

and solved using COMSOL Multiphysics 5.3a, which has been well benchmarked with analytical 

solutions (e.g., Gregg et al., 2012; Zhan & Gregg, 2017).  

The crust of the study area is modeled as a 100 × 100 × 30 km box (Fig. 6.3) centered at 

the Atka volcanic field (51.331°N, 174.139°W). The Global Multi-Resolution Topography Data 

(Ryan et al., 2009) is used to build the surface elevation of the model. A pressurized spheroid 

within the box is used to create the surface deformation at the center of the Atka island. The 

geometry of the spheroid is defined by its location (X, Y, and Z), half-height (a), half-width (b), 

angle between b axis and z-direction (θ), and azimuth of b axis (φ) (Fig. 6.3), similar to Yang et 

al. (1988)’s ellipsoid analytical model. The bottom and lateral edges of the crustal model are 

defined as a roller-type boundary condition. The model is loaded into two steps. First, the model 

is loaded by a gravitational body force and a surface water pressure (𝜌𝑤𝑔ℎ𝑤) to calculate the 

initial stress. The initial stress is departing from the lithostatic stress near the surface with 

topography (McTigue & Mei, 1981). Second, a pressure excess to the initial pressure along the 

boundary of the ellipsoid is loaded, named as overpressure (OP). The deformation during the 

second step represents the response of the host-rock to the pressure source, which is used in data 

assimilation with the InSAR data. 
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The model is assumed as a linear elasticity with temperature and depth-dependent 

Young’s modulus (𝐸𝑡𝑑) and a constant Poisson’s ratio (ν), since Poisson’s ratio has much less 

impact on the model results than Young’s modulus (Zhan and Gregg, 2019). Similar to Zhan et 

al. (2019), Young’s modulus is a function of both depth and temperature, which is defined by 

𝐸𝑇𝑑 = 𝛽𝑇 𝐸𝑑,      (6.1) 

where Ed is far-field Young’s modulus without a heated magma reservoir.  𝛽𝑇 is a 

temperature-controlled coefficient defined as 

𝛽𝑇 = 1 −
1

2
𝑒𝑥𝑝 (

𝑇

𝑇𝑐
 −

𝑧

𝑇𝑐

𝑑𝑇

𝑑𝑧
− 1),      (6.2) 

since an approximately 50% decrease in Young’s modulus is observed at the silicic rock 

close to its solidus (Smith et al., 2009).  The temperature of the magma reservoir, Tc,  is 850°C, 

considering a silicic crystal mush may underlay the center of Atka (Myers et al., 2002). The 

geothermal gradient, dT/dz is 30 °C/km (Currie & Hyndman, 2006). 

The far-field Young’s modulus Ed is defined by 

𝐸𝑑 = −0.0125 𝑧2 − 1.25 𝑧 + 40.25,    (6.3) 

which is consistent to the seismic velocity profiles in the adjacent area (Fliedner & 

Klemperer, 1999), considering the relationship between dynamic and static Young's modulus 

(Starzec, 1999; Ciccotti & Mulargia, 2004) (Fig. C.3). The constants and variables in the 

equations are listed in Table S1 and Table S2.  

6.2.3 Model parameter estimation by Ensemble Kalman Filter 

The pressure source generating the ground deformation is determined by the Ensemble 

Kalman Filter (EnKF) workflow for volcanoes as the previous studies (Zhan & Gregg, 2017). 

The EnKF analysis updates the model states by solving the Bayesian problem using a Monte 
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Carlo method (Evensen, 2003). A matrix containing all the model parameters and results can be 

updated by:  

𝑨𝒊+𝟏 = 𝑨𝒊 + 𝑿𝒊𝑯
𝑻(𝑯𝑿𝒊𝑯

𝑻 + 𝑹𝒊)
−𝟏(𝑴𝒊 − 𝑯𝑨𝒊),                (6.4)  

where 𝑨𝒊+𝟏 is updated ensemble by the EnKF analysis,  𝑨𝒊 is a forecasting ensemble by 

the numerical models,  𝑿𝒊 is the covariance matrix of 𝑨𝒊, 𝑴𝒊 is perturbed measurements whose 

covariance matrix is 𝑹𝒊, and 𝑯 is the coordinating matrix (Evensen, 2003). In this study, the 

results from the numerical models are East-West and Up-Down components of surface 

displacement (Fig. 6.4), which will be assimilated in each step when the corresponding InSAR 

timeseries data is available. The parameters solved by the EnKF analysis (Fig. 6.5) are the 

geometric parameters of the pressure source (X, Y, Z, a, b, θ, φ), and the overpressure (OP). The 

numbers of ensemble members (i.e., numerical models) and intra-step iterations are set as 100 

and 5 to reach maximum efficiency.  

In this study, three EnKF tests are conducted with different model settings or data usages. 

In Model I, the pressure source is an ellipsoid with a fixed, upright “a” axis (θ = 90° in Fig. 6.3). 

In Model II, the ellipsoid is allowed to rotate freely. In Model III, the ellipsoid is allowed to 

rotate freely, but the model is constrained by a masked InSAR data, where the displacement 

around Korovin volcano is not used in the data assimilation (Fig. C.4). 

6.2.4 Volcanic deformation and pressure source 

The InSAR data shows the surface deformation at the Atka center accelerated from ~5 

mm/yr to ~80 mm/yr in June 2006 when the volcanic unrest started (Fig. 6.2a and c). Then, the 

rate of uplift at the center dropped to ~10 mm/yr in September 2006 until the 2006/11/25 

eruption (Fig. 6.2c). There was an uplift of ~40 mm occurring at the Atka center within six 

months after the eruption (Fig. 6.2c). After that, the rate of uplift was back to the background 
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level (<5 mm/yr). However, we have no information on surface deformation from 2006/11/14 to 

2007/6/12 due to the lack of coherent InSAR acquisition. 

The center of the uplift locates ~3-km west of Kliuchef near the central Atka volcanic 

center (Fig. 6.4 and Fig. C.4). An uplift of ~40 mm was observed during both the 6-month time 

interval before and after the eruption (Fig. 6.4d). However, the East-West component of the 

surface deformation is inconsistent with the Up-down component (Fig. 6.4c). During the 6-

month interval before the eruption (2006/7/8-2006/11/14), the East-West deformation was 

negligible (Fig. 6.4c), indicating minor lateral inflation. During the 6-month interval after the 

eruption (2006/11/14-2007/7/28), a 40-mm west-warding and a 20-mm east-warding 

displacement were observed respectively at the west and east Atka island (Fig. 6.4c). 

Our numerical models reproduce the surface deformation revealed by the InSAR 

timeseries (Fig. 6.2a and c, Fig. 6.4c and d) using the EnKF data assimilation. The mean values 

and standard deviations of the parameter estimations from three tests (i.e., Model I, II, and III) 

are calculated (Fig. 6.5). The parameter estimations from Model II and III are almost identical 

(Fig. 6.5), indicating the local deformation near the Korovin volcano does not affect the pressure 

source determination. At the beginning of the unrest (2006/6), the pressure source by Model I is 

sill-like ellipsoid located 4-km west of Kliuchef (Fig. 6.6a), and at a depth of 7 km (b.s.l.). While 

Models II and III suggest a dike-like source centered at 6-km west of Kliuchef (Fig. 6.6a) with a 

depth of ~6 km (b.s.l.). At 2006/11/14, prior to the eruption, the pressure source from Model I 

has moved ~1-km upward and ~1-km eastward since the beginning of the unrest (Fig. 6.6b). 

Meanwhile, Model II and III (Fig. 6.6b) show the pressure source, an oblate ellipsoid, was 

rotating to be more horizontal with an angle of ~50° during the unrest (2006/6-2006/11). Prior to 

the eruption, the center of the pressure source from Model II or III was located 4-km west of 
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Kliuchef with a depth of 5 km (b.s.l.) (Fig. 6.5b), which is shallower than the beginning of the 

unrest. At 2007/7/28, eight months after the eruption, all models indicate the pressure source is a 

sill-like ellipsoid located 3-km west of Kliuchef with a depth of 5.5 km (b.s.l.) (Fig. 6.6c). 

The overpressure of Model I mimicked the evolution of the surface uplift, exhibiting a 

rapid increasing (from ~3 MPa to ~10 MPa) during the unrest (2006/6-2006/11) (Fig. 6.5e). The 

overpressure of Model II or III has increased slightly (from ~6.5 MPa to ~8 MPa) during the 

unrest. The surface uplift is mainly due to the migration of the pressure source. 

We favor Model II and III, since they can better explain the pattern of surface 

deformation, especially the East-West component (Fig. 6.4 and Fig. C.4). The East-West 

component deformation during the volcanic unrest (2006/6-2006/11) exhibits strongly 

asymmetric where the east-ward motion is larger than the west-ward motion by at least two times 

(Fig. 6.4c). The models with ellipsoids which can rotate freely (i.e., Model II and III) are able to 

reproduce this asymmetric deformation pattern by tilting the pressure source (Fig. 6.6a and b). 

Model I with an upright “a” axis can only create symmetric deformation pattern (Fig. 6.6), 

leading larger misfits of the surface deformation (Fig. 6.4 and Fig. C.4), and, therefore, larger L2 

norm error (Zhan & Gregg, 2017) compared to Model II and III (Fig. 6.5i).  

6.2.5 Implication on magma reservoir 

By data assimilation with the InSAR timeseries data, we find the pressure source to 

create the ground deformation was moving and rotating during the volcanic unrest (Fig. 6.6). 

There are three possible explanations. The first hypothesis is that the migration of pressure is due 

to the transportation of magma or hydrothermal fluid through dike propagation (e.g., Mastin & 

Pollard, 1988). This hypothesis can be quickly ruled out since the moving direction of the 

pressure source is perpendicular to the direction of the long axis of the ellipsoid. Dikes favor 

propagating parallelly to the long axis of a magma body. In addition, there is no corresponding 
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VT earthquake associated with the diking or dike-related brittle failing process (Roman & 

Cashman, 2006). On the contrary, most VT events occurred along the Amlia-Amukta fault 

during the unrest (Fig. 6.1b and Fig. 6.6b). The fault can serve as a pre-existing weak zone to 

facilitate dike propagation. However, the surface deformation pattern rules out the displacement 

of the fault, indicating the pressure source is not controlled by the fault. 

The second hypothesis is that the magma or fluid can transport through some pre-existing 

channels or conduits (e.g., Bonaccorso & Davis, 1999) to create a moving pressure source. 

However, the pressure source is moving laterally with a ~30° rotation, which can hardly be 

explained by magma or fluid moving along a straight channel or conduit. In addition, even if the 

fluid is moving through a complicated channel system, we still have difficulty in explaining why 

the magma does not take advantage of the pre-existing weak zone, the Amlia-Amukta fault. 

Besides, seismic tremors are usually triggered during fluid migration (e.g., Yamamoto et al., 

2002). No evidence shows the number of tremor events is increasing during the unrest (Fig. 6.2). 

We favor the third hypothesis that the pressure source migration is due to the changes in 

the connectivity of the magma reservoir dominated by a crystal mush. Previous studies by 

petrology and geochemistry indicated that the Atka volcanic field is supplied by a series of poor 

communicating, but adjacent magma bodies (e.g., Myers et al., 2002). The magma reservoir of 

Atka is likely to comprise interleaved lenses of melt, partially molten crystal mushes, or solid 

material (Cashman & Giordano, 2014). The pressure source of Atka, however, is not necessary a 

single body filled with melt. A pressure source can be an interconnected network with a small 

proportion of melt or fluid since ~2% of melt or fluid can provide enough connectivity for a 

crystal mush to share the pressure (Zhu et al., 2011). The ellipsoidal pressure source inferred by 

the InSAR data (Fig. 6.6) can be a smoothed image of such an interconnected network with a 
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small amount of melt or fluid. Therefore, the connectivity of this network can be changed during 

the deformation of the magma reservoir. Even with a negligible migration of magma or fluid, the 

distribution of pressurized magma can change dramatically to create an effect that the pressure 

source is moving rapidly. In this study, the ellipsoid is an approximation of the pressurized 

magma body. While, in nature, the pressurized part of the magma reservoir can be irregular, 

which cannot be constrained by surface deformation data alone. 

6.3 Stress and failure development 

6.3.1 Failure criteria 

To explain how ground motion and seismicity can link to each other, we evaluate stress 

and failure development associated with the host-rock deformation due to the pressure source. 

We calculate the stresses of the Atka host-rock using the pressure source defined by the mean 

values of the estimated parameters (Fig. 6.5). We use Coulomb and tensile failure criteria to 

predict whether shear or tensile failure can happen in the host-rock. To quantify the likelihood of 

failure occurring, we calculate the “stress to failure” (e.g., Zhan and Gregg, 2019), which is 

defined as the distance of the Mohr circle to the Coulomb or tensile failure envelope (Fig. 6.7a 

and b). The stress to Coulomb failure (CF) and tensile failure (TF) are given by 

𝐶𝐹 = 𝜏 − 𝐶0 cos 𝜙𝑖 − 𝜎𝑛 sin 𝜙𝑖 ,    (6.5) 

and 

𝑇𝐹 = 𝜎3 + 𝜎𝑇,     (6.6) 

where 𝜏, 𝜎𝑛, and 𝜎3 are the maximum shear stress, normal stress, and least principal stress 

(positive for compression). Similar to Zhan et al. (2019), the internal friction angle (𝜙𝑖) is 25°, 

cohesion (𝐶0) is 𝐸 × 5 × 10−4, and tensile strength (𝜎𝑇) is 𝐸 × 10−4. 
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6.3.2 Overpressure to generate host-rock failure 

The failure calculation shows that there is no failure occurring in the host-rock by 

2006/11/14 (Fig. 6.7c and d). The overpressures calculated by the EnKF are less than 10 MPa 

(Fig. 6.5e) to create an 80-mm surface uplift (Fig. 6.2). At least 30 MPa is needed for any model 

to generate Coulomb failure along the boundary of the pressure source (Fig. 6.7c). Such an 

overpressure will create at least 300-mm surface uplift, which is larger than the observation by at 

least three times. 

Therefore, we argue that the host-rock failure due to a pressurized magma reservoir is 

hard to explain the volcano-tectonic earthquake during the volcanic unrest in this area. First, the 

overpressure prior to the eruption is much less than the overpressure required to initiate failure in 

the host-rock. Besides, the distribution of failure, if triggered, is not consistent with the 

earthquakes (Fig. C.5). The host-rock surrounding the pressure source can generate widespread 

failure, only if the overpressure is greater than 100 MPa, which is less likely in a natural system. 

Even if the magma reservoir can be pressurized to >100 MPa, the failure happens mainly 

surrounding the pressure source or near the surface above the pressure source (Fig. C.5), which 

has no consistency with the distribution of the VT events (Fig. 6.6).  

6.4 Effects of the pre-existing weak zones 

We need an alternative explanation to link the surface deformation and VT events 

occurring during the unrest. A previous study in Laguna del Maule shows that a pre-existing 

weak fault, Troncoso fault, may serve as a channel for pore fluid (i.e., water or brine) to trigger 

“hydrofracturing” seismicity during the volcanic deformation (Zhan et al., 2019). By borrowing 

this idea, we are going to test whether the local fault zones (i.e., Amlia-Amukta fault and 

Seguam fault) can facilitate pore fluid to trigger the VT earthquakes. 
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6.4.1 Modeling pre-existing weak zone 

Similar to Zhan et al. (2019), we model the fault zone as a thin vertical slab (~100-1,000 

m) embedded in the host-rock (Fig. C.6). Within the fault zones, Young’s modulus is lower than 

the surrounding host-rock. The traces of the fault zones are defined after previous studies (Fig. 

6.1; e.g., Geist et al., 1987; Singer et al., 1992). We assume the Amlia-Amukta (AA) fault is an 

at least 10-km deep, nearly-vertical fault, according to the distribution of the earthquakes (Fig. 

6.6b). Since we have less constraint on the geometry of the Seguam fault at the Atka island, we 

assume it shares the same depth and dipping as the AA fault. In addition, the Seguam fault is > 7 

km away from the deformation center. In the later discussion, we find the volcanic deformation 

has negligible effects on the Seguam fault compared to the AA fault. 

To maximize the effects of the fault zones on the stress field, we need the fault zone to be 

as significant as possible, which can be achieved either by increasing the thickness of the fault or 

by decreasing Young’s modulus. However, as the fault becomes wider or weaker, it can strongly 

affect the surface deformation pattern. Similar to Zhan et al. (2019), we conduct a series of 

sensitivity tests to determine the relationships between the significance (i.e., thickness and 

weakness) of the fault zone and its perturbation to the pattern of surface deformation. We find 

that the faults with either a thickness greater than 500 m, or Young’s modulus lower than 50% of 

the surrounding host-rock will create a >10% perturbation of surface deformation, which can be 

observable in the InSAR data (Fig. C.7). This result is very similar to the study in Laguna del 

Maule (Zhan et al., 2019), where the magma reservoir is also next to the fault zone. Since there is 

no evidence showing the pattern of surface deformation is affected by any linear, fault-like 

structure, we argue that the fault zones should not be wider than 500 m and weaker than the 

surrounding rocks by more than 50%. 
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6.4.2 VT-earthquakes distribution 

In Laguna del Maule, some parts of the fault zone may experience dilatancy during the 

volcanic deformation due to the pressure source, which helps to increase the connectivity of the 

pre-existing fractures within the fault zone (Zhan et al., 2019). The earthquakes can be triggered 

due to pore pressure increment when some isolated or poor-connected fractures or pores are 

connected and filled with pore fluids. 

In this study, we calculate the volumetric strain evolution within the fault zones (Fig. 

C.8-C.11). We compare the change of volumetric strain of the Amlia-Amukta (AA) fault zone 

and the distribution of VT earthquakes occurring within a 2-km distance to the AA fault. We find 

that the VT earthquakes generally favor places with positive volumetric strain changes (Fig. C.8-

C.10). This correlation cannot be found before 2006/6 since the EnKF has not obtained 

convincing estimation of the pressure source, as the L2 norm error is high (Fig. 6.5i).  

The pattern of volumetric strain prior to and 6-month after the eruption experienced 

significant changes due to the migration of the pressure source (Fig. 6.8). At the same time, the 

distribution of the VT earthquake also shifted downward (Fig. 6.8), which is consistent with the 

volumetric strain changes. Among the three models, Model I, using the ellipsoid with a fixed “a” 

axis, only captures the downward shifting of the zone with positive strain changes (Fig. 6.8a). 

Model II and III with tilted ellipsoid, however, suggest that the place with volumetric increment 

in the fault extends deep in NE and shallow in SE, which coincides with the earthquake 

distribution (Fig. 6.8b and c). Compared to Model I, Model II and III have better performances 

not only in reproducing the surface displacement (Fig. 6.4), but also in explaining the earthquake 

distribution.  

For exploring the effects of Seguam fault, we calculate the volumetric strain evolution 

within the Seguam fault. The magnitude of volumetric strain change is 1-2 orders lower than the 
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AA fault (Fig. C.11), which is consistent with its much fewer VT events (Fig. 6.1b). The ML3.1 

earthquake in 2006/6/15 is probably associated with tectonic processes, for example, the 

clockwise rotation of the Andreanof Block (Fig. 6.1a). Therefore, the dilatancy of the AA fault 

due to volcanic deformation may create more connectivity for fluid (e.g., water) to inject into, 

which facilitates triggering the VT events. 

Alternative to the “hydrofracturing” mode as we have discussed above, the VT 

earthquakes can also be triggered due to a Coulomb stress change (CF) along the fault. Since the 

pressurized magma reservoir can directly change the local stress field, making some parts of the 

fault closer to failure. If there is initial stress accumulated crossing the fault, a small amount of 

stress change may trigger the slippage along the fault plane. To test this idea, we calculate the 

Coulomb stress change along the AA fault and Seguam fault. We assume the sliding friction 

angle (Φi) of the fault zone is as low as 15° (Collettini et al., 2009) to maximize the Coulomb 

stress change. No obvious correlation between the distribution of VT earthquakes and positive 

Coulomb stress change can be found (Fig. C.12-C.14). Therefore, we argue that the Coulomb 

stress is not the reason to trigger the VT events along the fault zone, although it may facilitate the 

failure initiation. In addition, the Coulomb stress change along the Seguam fault is much low 

than the AA fault (Fig. C.15), indicating that the magma reservoir dynamics have little effect on 

the Seguam fault. 

6.4.3 Energy released from the VT-earthquakes along the fault 

In addition to the spatial correlation between seismicity and fault dilatancy, we also find 

there is a temporal correlation between these two processes. We calculate the total volume 

change (Δ𝑉𝑡𝑜𝑡) of the AA fault at each InSAR acquisition time,  

Δ𝑉𝑡𝑜𝑡 = ∭ 𝜖𝑉𝑑𝑉
𝑉

0
,      (6.7) 
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where 𝜖𝑉  is volumetric strain, and 𝑉 is the total volume of the fault.  

We find that the total volume change of the AA fault (Δ𝑉𝑡𝑜𝑡), and the energy released 

from the VT earthquake within a 2-km-distance to the fault (𝐸𝑒𝑞) share a very similar evolution 

pattern (Fig. 6.9), if  the time series of Δ𝑉𝑡𝑜𝑡 and 𝐸𝑒𝑞  are normalized to their maximum values 

respectively. In particular, Model II and III have much better consistency with the observation 

than Model I, indicating the models with a better ability explaining the surface deformation are 

also good at explaining the seismicity. This phenomenon further confirms the linkage between 

the deformation and seismicity during the volcanic unrest. The consistencies between 𝐸𝑒𝑞  and 

Δ𝑉𝑡𝑜𝑡 (Fig. 6.9) can be expressed as 

𝐸𝑒𝑞 ≅ 𝛾1 Δ𝑉𝑡𝑜𝑡,     (6.8) 

where 𝛾1 is a constant which may be controlled by the structure of the system, but should be a 

constant. The linear relationship between 𝐸𝑒𝑞  and Δ𝑉𝑡𝑜𝑡 may be explained by the formation of 

the microfractures (Jaeger et al., 2007). If we only consider the opening of cracks (Mode I in 

fracture mechanics), the energy release 𝑑𝑄 due to the growth of a crack (length = 2𝑐, and 

thickness = 𝑡𝑐; Fig. C.16) by 𝑑𝑐 can be expressed by  

𝑑𝑄 =
2𝐾𝐼

2𝑡𝑐

𝐸′
𝑑𝑐      (6.9) 

where 𝐸′ is effective Young’s modulus of the fault zone. 𝐾𝐼 is the stress intensity factor given by 

𝐾𝐼 = 𝜎𝑡𝑖𝑝√𝜋𝑐,      (6.10) 

where 𝜎𝑡𝑖𝑝 is the stress at the tip of the crack, and 𝑐 is the half length of the crack. Therefore, the 

energy (𝑄) released by the opening of a single crack with a length of 𝑐 is given by 

𝑄 = ∫
2𝜋𝜎𝑡𝑖𝑝

2

𝐸′
𝑡𝑐 𝑑𝑐

𝑐

0
=

𝜋𝜎𝑡𝑖𝑝
2

𝐸′
𝑡𝑐𝑐2,    (6.11) 
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If we assume the crack is an elliptical cylinder, the volume of the crack opened during the 

fracturing is 𝜋𝑐2𝑡𝑐𝐴𝑐, where 𝐴𝑐  is the aspect ratio of the crack (Fig. C.16c). We further assume 

that the effective Young’s modulus of the fault is a constant. Besides, we can use the tensile 

strength of the rock to take place the stress at the crack tip, 𝜎𝑡𝑖𝑝, which can also be assumed as 

constant. If the aspect ratio of the crack 𝐴𝑐  is a constant during the crack growth, which means 

the crack growth is self-similar, the energy released by the earthquake can approximately be a 

linear function of the volume change due to opening of the crack.  

We calculate the total volume change by integrating the volumetric strain, which is in the 

elastic regime, while we use fracture mechanics to explain the energy release, which represents 

the inelastic behavior of rock. Although these two processes are based on two different theorems, 

we argue that the inelastic behavior of the fault in the microscale (i.e., fracture opening and 

growth) can perform like the elastic deformation in a large scale, if the pre-existing weakness is 

homogenous within the fault. In summary, the correlation between the energy released from the 

VT-earthquakes and total volume change of the fault suggests that the dilatancy of the fault (Fig. 

6.9a) may play an important role in the seismicity during the unrest. However, future studies are 

necessary to understand the details in fracturing processes during the volcanic unrest.   

6.5 2006 – 2007 Atka volcanic unrest and the eruption at Korovin 

By integrating the surface deformation modeling, stress and strain calculation, and 

seismicity observation, we suggest that the surface deformation and seismicity during the 

volcanic unrest are closely linked to each other. In particular, the pressure source may form due 

to magma/fluid injection to, or differentiation of a long-existing, complicated magma system 

(Myers et al., 2002) (Fig. 6.10a). The deformation of the mushy magma reservoir may change 

the connectivity of a pressurized magma network, causing the migration of the pressure source 
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(Fig. 6.6). At the same time, the pressure source may trigger the opening and growth of the 

fractures within the AA fault (Fig. 6.10b), leading to an increment in conductivity or 

permeability of the fault. The pore fluid may inject into the dilatant parts of the fault, decreasing 

the effective stress, and triggering the brittle failures (i.e., the VT earthquakes) (Fig. 6.10c). The 

pore fluid triggering the VT earthquakes is very likely to be water, considering there is an active 

hydrothermal system in this area (McGimsey et al., 2007, 2011; Neal et al., 2008). The dilatant 

fault may serve as a huge sink (in order of 105 𝑚3) for the underground water in Atka. The water 

table at Korovin may also drop due to water discharge (Fig. 6.10d), which is consistent with the 

observation of a lake drainage event starting between 2006/9 and 2006/10 (Neal et al., 2008). 

The subsidence near the Korovin vent may also associate with the drainage of the crater lake. 

Finally, the drop in the water table may trigger the phreatic eruption of Korovin. 

According to this study and previous study at the Laguna del Maule volcanic field (Zhan 

et al., 2019), we argue that pre-existing weak zone and pore fluid, such as water and brine from a 

hydrothermal system, may play a much more important role in volcanic unrest than previously 

thought. The “hydrofracturing” system is sensitive to the changes in physical conditions within a 

magma reservoir. Understanding such a process may help us forecast the volcanic eruptions by 

monitoring the restless behaviors beforehand. 

6.6 Conclusions 

Constrained by the InSAR timeseries data, our models show that a NE-tilted, oblate, 

ellipsoidal pressure source may generate the rapid uplift (~80 mm/yr) during the 2006-2007 

volcanic unrest at the Atka volcanic center. This pressure source migrated and rotated upward 

during 2006/6-2006/11 creating an asymmetric deformation pattern. The migration of the 

pressure source may be derived from deformation of the magma reservoir dominated by a crystal 
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mush, which changes the distribution of an interconnected melt network. In this scenario, only a 

little overpressure increment is needed to trigger the changes in melt connectivity within a crystal 

mush to generate remarkable surface deformation. To explain the volcano tectonic (VT) 

earthquakes at the Atka volcanic center, we calculate the stress and failure within the host-rock 

due to the source pressurization. However, no failure can be triggered according to the observed 

surface deformation and corresponding overpressure during the unrest. More than three time of 

current overpressure is needed to initiate the failure within the host-rock near the pressure source 

without considering the effect of pore pressure. Then, we test the hypothesis that a pre-existing 

weak zone, the Amulia-Amukta fault, may serve as a channel for pore fluid to inject into and to 

trigger the seismicity. The calculation of volume change within the fault suggests that the 

distribution of the seismicity is consistent to the dilatant parts of the fault. In addition, the energy 

released from the VT earthquakes along the fault is proportional to the volume increment of the 

fault during the unrest. The VT earthquakes may be triggered by pore fluid injections, which are 

associated with permeability increase due to opening and growth of the fractures within the fault 

during the volcanic deformation. We argue that the pore fluid may be water, since the Atka 

volcanic center exhibits frequent hydrothermal and fumarolic activities. A water discharge, in an 

order of 105 m3, in Atka may happen due to the injection of water into a pre-existing weak zone. 

The drop of water table might cause the drainage of the crater lake at Korovin by October 19, 

2006, finally triggering the phreatic eruption of the Korovin volcano at November 25, 2006. 
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6.7 Figures 

 

 

Figure 6.1 (a) The location of the Atka volcanic center (called Atka for simplification). Atka is 

located on an extended crust in the north of the Andreanof Block (After Geist et al., 1987; Singer 

et al., 1992). Atka is also at the junction of the Seguam and Amlia-Amukta faults. (b) The 

surface uplift from 2000/7/1 to 2006/11/14 revealed by the InSAR data. Volcano-tectonic (VT) 

earthquakes (Power et al., 2019) occurring between 2006/6/1 and 2007/1/1 are plotted as purple 

circles whose color and size represent depth and magnitude. The black squares are the location of 

seismometers. The black triangles show the locations of some major volcanoes at Atka. The red 

lines show the trace of two faults. The green line shows the location of the cross-section in 

Figure 6.10.  
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Figure 6.2 The time series of ground deformation and volcano-tectonic (VT) earthquakes from 

2000 to 2008. (a) Surface uplift histories at Atka center (near Kliuchef) and Korovin (Fig. 6.1b) 

revealed by InSAR data are shown as solid and dashed lines in black. Each black circle 

represents one InSAR time slice. The blue circles and diamonds are the surface deformation 

calculated by the numerical models (i.e., Model II) with data assimilation. The unrest events, 

including steam plumes, tremors, and lake drainage, are labeled as gray triangles, orange stars, 

and green squares (McGimsey et at., 2007, 2011; Neal et al., 2008). (b) The numbers of VT 

earthquakes per day are shown as orange bars. The blue line is the accumulated energy 

calculated by log10(Energy) = 11.8 + 1.5 M (Gutenberg, 1956). The inserted plot shows the 

accumulated energy from 2005 to 2018. (c) and (d) show the ground deformation and VT 

earthquakes from 2006 to 2008. The grey shadows highlight the volcanic unrest. The red lines 

illustrate the possible phreatic eruption. 
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Figure 6.3 The temperature and Young’s modulus of the numerical model. The pressure source 

for the ground deformation during the volcanic unrest is modeled by an ellipsoid. The center of 

the ellipsoid is at (X, Y, Z). The half-height and half-width of the ellipsoid are a and b. The 

dipping angle and direction of the half-width are θ and φ. The bottom and lateral edges are in the 

roller-type boundary condition. 
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Figure 6.4 Comparison between InSAR timeseries data and modeled surface displacement. (a) 

and (b) show the East-West and Up-Down components of surface displacement by the down-

sampled InSAR timeseries data on 2006/11/14. The black triangles represent the volcanos 

Korovin (Ko), Kliuchef (Kl), and Sarichef (Sa). The grey lines show the cross-sections in the 

figure (c) and (d). (c) and (d) are two cross-sections showing the comparison between InSAR and 

modeled displacement in East-West and Up-Down components. Different colors represent 

different InSAR time. In Model I (dotted lines), the pressure source is an ellipsoid with a fixed 

dipping angle (θ = 90° in Fig. 6.3). In Model II (thin solid lines), the dipping angle (θ) and 

direction (φ) are unfixed. Model III (dashed lines) has the same setup as Model II but is 

constrained by masked InSAR data (Fig. C.4). Thick solid lines are InSAR data. 
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Figure 6.5 Model state evolution by the EnKF. The parameter estimation of the pressure source 

for each InSAR acquisition includes (a) X-location, (b) Y-location, (c) Z-location, (d) half-

height, (e) overpressure, (f) ratio between half-width and half-height, (g) dipping angle of half-

width axis, and (h) dipping direction of the ellipsoid. (i) The L2 norm error of surface 

displacement (e.g., Zhan et al., 2017) shows the overall misfit between models and data. The 

colored circles are the mean values of the ensemble members, and the bars are the standard 

deviations. Different colors represent different models. Blue shows the model (Model I) with an 

upright “a” axis (θ = 90° in Fig. 6.3). Black shows the model (Model II) with a freely rotating 

ellipsoid. Red shows the model (Model III) constrained by masked InSAR data, where the 

displacement around Korovin volcano is not used in the data assimilation (Fig. C.4). 
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Figure 6.6 Geometry of the pressure sources at three different epochs of InSAR timeseries. (a) 

2006/7/8, the beginning of the volcanic unrest. (b) 2006/11/14, prior to the eruption. (c) 

2007/7/28, 7 months after the eruption. The colored ellipses are the projections of the pressure 

sources on the XY-, ZY-, and XZ-planes. The blue, green, and red pressure sources represent the 

ensemble averages of Model I, II, and III at the given times. The volcano-tectonic (VT) 

earthquakes within a range of 15 days before and after the InSAR epochs are plotted as black 

dots. 
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Figure 6.7 The potential of failure occurring at the boundary of the pressure source. (a) and (b) 

illustrate Coulomb and tensile failure criteria. The possibility of failure is expressed as “stress to 

failure” (CF and TF). Mohr circles defined by normal stress (σn) and shear stress 

(τ). Φi and C0 are the internal friction angle and cohesion for Coulomb failure. σT is the tensile 

strength. (c) The “stress to failure” varies with overpressure (c) and surface displacement (d). 

The colored solid or dotted lines represent the results from different models with different failure 

types. The black solid illustrate the initiation of failure along with the chamber. All plots are 

calculated by using the geometry of the best-fit pressure sources at 2006/11/14 in respect of 

different tests (i.e., Model I, II, and III). Different overpressures are used to test their relationship 

with the “stress to failure.” Therefore, the values of overpressure can be unreasonably high. Only 

the points with black circles show the overpressure (OP) constrained by the InSAR data on 

2006/11/14. 
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Figure 6.8 Volumetric strain changes within the Amlia-Amukta fault during a time period 

between different epochs of InSAR timeseries. (a), (c), and (e) show the strain changes during 

two InSAR epochs (2006/10/29 & 2006/11/14) prior to the eruption. (b), (d), and (f) show the 

strain changes between the time prior to the eruption (2006/11/14) and 6 months after the 

eruption (2007/6/12) due to the lack of InSAR acquisition. Different rows represent the results 

from different models. The grey and light blue ellipses are the projections of the pressure sources 

on the fault plane at the beginning and end of the time period. The VT earthquakes which occur 

within a 2-km-distance to the fault and during the time period are plotted as black dots. 
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Figure 6.9 Comparison between VT earthquake energy and fault dilatancy. Time series of total 

volume change (Δ𝑉𝑡𝑜𝑡) of the Amlia-Amukta (AA) fault calculated by ensemble models are 

shown as colored dots with error bars. The error bar represents the uncertainty of the ensemble 

models according to the displacement misfit (i.e., L2 norm error). The solid black line shows the 

accumulated energy releasing (𝐸𝑒𝑞) of the VT-earthquakes occurring within a 2-km-distance to 

the AA fault since 2005/1. In the plots, the time series of Δ𝑉𝑡𝑜𝑡 and 𝐸𝑒𝑞 are normalized by their 

maximum values respectively as shown in the parenthesis. 
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Figure 6.10 Cartoons illustrating the interaction between the magma reservoir and Amlia-

Amukta fault during the volcanic unrest and its implication to the 2006/11/25 eruption. (a) 

Before 2005-2007 volcanic unrest, the Atka volcanic center has developed a complicated upper 

crustal magma reservoir generating a series of Quaternary volcanic activities (Myers et al., 

2002). The magma reservoir is likely composed of a series of poor communicating magma body 

and crystal mush (modified after Myers et al., 2002). The Amlia-Amukta (AA) Fault is a pre-

existing weak zone with fractures and pores. (b) When the volcanic unrest begins around June 

2006, a pressure source due to possible melt/fluid injection or crystal fractionation generated 

surface deformation and the dilatancy in some parts of the AA fault, causing connectivity of the 

fault to increase. (c) The fluid (e.g., water or brine) can migrate into the fault zone where the 

permeability is increased. Pore pressure elevation can trigger the VT earthquakes around the AA 

fault zone. (d) Once the fluid is migrated into the fault zone, the crater lake at Korovin drained 

according to the report from USGS (Neal et al., 2008). A phreatic eruption may be triggered due 

to the drop of the water table.  
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Conclusions 

This Ph.D. thesis has three main conclusions. First, a robust data assimilation framework 

is critical to accelerating the understanding of physical processes during volcanic unrest.  With a 

powerful data assimilation framework, Models can be tested more effectively and efficiently, so 

that they can be rapidly updated and hybridized under the constraints of waves by waves of data 

tsunami nowadays. Second, although geodetic data provides crucial information of host-rock 

response to the physical condition changes during volcanic unrest, understanding the detailed 

mechanisms of a volcanic system cannot be accomplished without support from multi-

disciplinary observations, experiments, and models. In Chapters 5 and 6, complicated 

interactions between magma reservoir and a heterogenous host-rock with pre-existing fault zones 

is explored by integrating surface deformation, seismicity, gravity, and other observations 

through numerical modeling. Finally, by investigating the mechanisms of volcanic unrest in the 

Laguna del Maule and Atka volcanic centers, I find that pre-existing structures and pore fluids 

may play a more critical role in trajecting volcanic unrest than previously thought. Volcanic 

activity due to the response of a hydrothermal system is sensitive to the physical conditions and 

changes occurring in a magma reservoir. Understanding the reaction of a hydrothermal system 

may help us to better decipher early warning signals from a volcano. 

7.2 Future directions 

7.2.1 Forecasting volcanic unrest precursors 

Advanced physical models have shown their potential in forecasting whether, when, 

where, and how volcanic unrest may lead to an eruption (Zhan et al., 2017; Zhan and Gregg, 

2017; Zhan et al., 2019). In particular, surface deformation (Dzurisin, 2003) and volcano-
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tectonic (VT) earthquakes (Roman and Cashman, 2006) can reflect strain and stress evolution of 

the host-rock, which is driven by the pressure of a magma reservoir. Gas emission rates 

determined by magma decompression can also cause pore-pressure to change to trigger 

seismicity (Werner et al., 2008).  

However, in general cases, the mechanism of earthquake migration prior to eruptions and 

its relationship with precursory deformation and gas emission is still unclear (Roman and 

Cashman, 2018). Advanced physical models are needed to explore (1) deformation and stress 

buildup due to magma reservoir dynamics, (2) failure initiation due to stress or pore-pressure 

accumulation, (3) failure propagation due to progressive damage, (4) gas emission associated 

with pressure variation, and (5) fracture healing after volcanic unrest which affects the initial 

state for the next unrest cycle. 

7.2.2 Investigations of magma reservoir dynamics from a crystal mush perspective 

When the melt is generated deep within the Earth, some magma may be stored in a 

reservoir during its migration through the crust. Traditionally, a magma reservoir is described by 

the conceptual model in which solid host rocks surround a homogenous body of liquid magma 

(e.g., Tait et al., 1989). However, more evidence suggests that a magma reservoir is a 

heterogeneous crystal mush, which is a mixture of crystals, liquid, and gas (Sparks and Cashman, 

2017). The fraction of liquid melt can vary throughout the magma reservoir and gradually 

decrease at the transition to the host rock. Therefore, modeling a magma reservoir as a single 

domain controlled by one uniform constitutive law is potentially inadequate. The behavior of the 

magma varies depending on temperature, composition, crystallinity, bubble fraction, strain rate, 

and so on (Gonnermann and Manga, 2007).  From a highly heterogenous and dynamic crystal 

mush perspective, the traditional understanding of magma reservoir dynamics based on the 

“magma chamber” concept needs to be reconsidered. This paradigm shift is opening new 
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fundamental questions, such as (1) determining overpressure within a crystal mush, (2) 

investigating the brittle-ductile transition in a magma reservoir, (3) predicting the geophysical 

observations obtained from a mushy magma reservoir model (Magee et al., 2018). 
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APPENDIX A: SUPPLEMENTARY FILE FOR CHAPTER 4 

Enclosed are the Supplementary Figures A.1 to A.8 for “How accurately can we model 

magma reservoir failure with uncertainties in host-rock rheology?6” 

 

Figure A.1 Relationship between rock strength and Young’s modulus. (a) Cohesion as a function of Young’s 

modulus. Cohesion is defined as a function of uniaxial compressive strength (UCS) and internal friction angle (Eq. 

3). UCS can be empirically expressed by linear functions of Young’s modulus (Bradford et al., 1994; Dinçer et al., 

2004). To simplify the calculation, we assume cohesion is E/1000. (b) Tensile strength as a function of Young’s 

modulus, assuming tensile strength is UCS/10.  

  

 

 
6 Published as: Zhan Y. and Gregg P. M. (2019) How Accurately Can We Model Magma Reservoir Failure With 

Uncertainties in Host Rock Rheology? Journal of Geophysical Research: Solid Earth 124, 8030–8042. 



211 

 

 

Figure A.2 Failure evolution of the host-rock with low Young’s Modulus (a) and high Young’s Modulus (b). The 

shaded red area experiences Coulomb failure, while the hatched region indicates tensile failure. The maximum 

surface displacement (Disp.) and overpressure (OP) are listed for each step. 
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Figure A.3 Critical Maximum Surface Uplift (CMSU) vs. the time span for models with different Young’s moduli 

and viscosities to be pressurized by 50 MPa. The magma chamber depth = 3 km, R1 = 1.5 km, and R2 = 0.5 km. The 

host-rock Poisson’s ratio = 0.25 and internal friction = 25°. The red and black lines show the CMSU prior to 

Coulomb and tensile failure calculated by instantaneous elastic models. The circle symbols show the CMSU 

calculated by viscoelastic models. Blue lines indicate the viscoelastic relaxation times of the models. The CMSU 

calculated by viscoelastic models are much larger than the those resulting from the elastic models once the loading 

time span exceeds the relaxation times. 
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Figure A.4 Critical overpressure vs. the time span for models with different Young’s moduli and viscosities to be 

pressurized by 50 MPa. The magma chamber depth = 3 km, R1 = 1.5 km, and R2 = 0.5 km. The host-rock Poisson’s 

ratio = 0.25 and internal friction = 25°. The red and black lines indicate the critical overpressure prior to Coulomb 

and tensile failure calculated by elastic models. The circles show the critical overpressure calculated by viscoelastic 

models. The critical overpressures of the viscoelastic models are approximately the same as the elastic models 

regardless of the time span and viscosities.  
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Figure A.5 The model geometries and normalized surface displacements for all tests discussed in the main text 

(Table 1). For the surface displacement plots, the solid lines are vertical uplift and the dashed lines are horizontal 

displacement. The displacement of each model is normalized by its maximum uplift to highlight the variation in 

wavelength. 
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Figure A.6 The effects of Young’s modulus and internal friction angle on Coulomb failure with variations in radius 

(Test 2) and aspect ratio (Test 4). A constant Poisson’s ratio (ν = 0.25) is assumed. (a) The Critical Maximum 

Surface Uplift (CMSU) for models with different sizes of magma chamber. (b) The corresponding overpressures of 

the magma chamber when failure occurs. The shape of the marker indicates the internal friction angle of the model. 
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Figure A.7 Results of Test 3 (depth + size). (a) The size of the chamber increases with depth to create the same 

magnitude of surface uplift. (b) The wavelength of the deformation signal varies with depth, but the magnitude of 

vertical displacement is held constant. (c) The CMSU gradually increases with the depth and size of the chamber. 

(d) The corresponding critical overpressures of the magma chamber when failure occurs. The filled circle shows the 

case that the initial failure is tensile, while the open circle is for Coulomb failure. The color represents the Young’s 

Modulus of the host rock. 
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Figure A.8 The effects of tensile strength on tensile failure initiation with variations in (a & b) source depth to 

center (Elastic Test 1), (c & d) chamber size as described by the half-width (Elastic Test 2), and (e & f) chamber 

aspect ratio (Elastic Test 4). Circles represent tensile strength of the host-rock with E / 2500. Triangles represent 

tensile strength of 0. A constant internal friction angle (φ = 25°) and Poisson’s ratio (ν = 0.25) are assumed. The 

Critical Maximum Surface Uplift (CMSU; a, c, & e) is the maximum value of the surface uplift that is observed 

before tensile failure is initiated around the magma chamber. The critical overpressures at failure onset are shown in 

b, d, & f.  
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APPENDIX B: SUPPLEMENTARY FILE FOR CHAPTER 5 

Enclosed are the Supplementary Figures B.1 to B.7, and Table B.1 and B.2 for “Integrating 

reservoir dynamics, crustal stress, and geophysical observations of the Laguna del Maule 

magmatic system by FEM models and data assimilation7”. 

  

 

 
7 Published as: Zhan Y., Gregg P. M., Mével H. L., Miller C. A. and Cardona C. (2019) Integrating Reservoir 

Dynamics, Crustal Stress, and Geophysical Observations of the Laguna del Maule Magmatic System by FEM 

Models and Data Assimilation. Journal of Geophysical Research: Solid Earth 124, 13547–13562. 
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Figure B.1 Comparison of the seismic velocity model of this study and regional velocity models of Laguna del 

Maule (Bohm et al., 2002; Cardona et al., 2018). Vp and Vs in this model are calculated by assuming the Poisson’s 

ratio and density are constants (Table B.1). The dynamic Young’s modulus for calculating the seismic velocity is 

converted by the static far-field Young’s modulus (𝑬𝒅 in Eq. 5.2). We assume the ratio between the dynamic 

Young’s modulus and the static Young’s modulus is ~1.5 (Ciccotti & Mulargia, 2004). 
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Figure B.2 Workflow of the Ensemble Kalman Filter with the High-Performance Computing. 
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Figure B.3 Distributions and correlations of the ensemble parameters for the magma reservoir at the last iteration. 
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Figure B.4 Modeled resistivity maps by the magnetotelluric data (from Figure 3a-d of Cordell et al., 2018). 
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Figure B.5 Normal stresses at the end of 2016 for the models with the fault. Young’s modulus of the fault is 20% of 

the host rock. The width of the fault is 200 m. Model-H7D0 (label with a black star) is used for later calculation. 

  



224 

 

 

Figure B.6 Maximum shear stresses at the end of 2016 for the models with the fault. Young’s modulus of the fault 

is 20% of the host rock. The width of the fault is 200 m. Model-H7D0 (label with a black star) is used for later 

calculation. 
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Figure B.7 Volumetric strain at the end of 2016 for the models with the fault. Young’s modulus of the fault is 20% 

of the host rock. The width of the fault is 200 m. Model-H7D0 (label with a black star) is used for later calculation. 
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Table B.1 Model Parameters 

 

Parameter Description Value Unit 

𝐷1  Constant in Eq. (5.2) -0.0125 𝐺𝑃𝑎 ∙ 𝑘𝑚−2  

𝐷2  Constant in Eq. (5.2) -1.025 𝐺𝑃𝑎 ∙ 𝑘𝑚−1  

𝐷3  Constant in Eq. (5.2) 40.25 𝐺𝑃𝑎  

𝑇0  Surface temperature 0 °C 

𝑇𝑐  Magma body temperature 850 °C 

𝑑𝑇/𝑑𝑧  Geothermal gradient (𝑧 < 0) -30 °C / km 

𝐾𝑐  Thermal conductivity  3 𝑊 ∙ 𝑚−1 ∙ 𝐾−1  

𝐶𝑝  Specific heat capacity 1.25 𝑘𝐽 ∙ 𝑘𝑔−1 ∙ 𝐾−1  

𝜌  Density 2.7 × 103 𝑘𝑔 ∙ 𝑚−3  

𝜈  Poisson’s ratio 0.25 1 

𝜙𝑖   Internal friction angle 25 ° 

 

 

Table B.2 Variables 

 

Variable Description 

Magma body parameters 

(𝑋, 𝑌, 𝑍)  Location of the center of the magma body 

𝑅1  Half height of the magma chamber 

𝑅2  Half width of the magma chamber 

𝐴  Aspect ratio (𝑅2/𝑅1) 

𝜑  Dip direction (clockwise angle from North) 

𝜃  Dip angle 

𝑑𝑃  Overpressure (excess to lithostatic pressure) 

Fault zone parameters 

𝐷𝑓  Distance of the end fault to the center (0, 0) 

𝐻𝑓  Fault depth 

𝑊𝑓  Fault thickness 
𝐸𝑓

𝐸𝑟
  Ratio of the Young’s modulus between the fault and 

the host-rocks 

Stress, strain and failure of the host-rock 

𝐶0  Cohesion 

𝑇0  Tensile strength 

𝜎1  Maximum principal stresses 

𝜎3  Minimum principal stresses 

𝜎𝑛  Normal stress ((𝜎1 + 𝜎3)/2) 

𝜏  Maximum shear stress ((𝜎1 − 𝜎3)/2) 
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APPENDIX C: SUPPLEMENTARY FILE FOR CHAPTER 6 

Enclosed are the Supplementary Figures C.1 to C.16, and Table C.1 and C.2 for “Modeling 

magma system evolution during 2006-2007 volcanic unrest of Atka volcanic center, Alaska”. 

Figure C.1 Timeseries of the East-West component of surface displacement in the Atka volcanic center.  
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Figure C.2 Timeseries of the Up-Down component of surface displacement in the Atka volcanic center.   
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Figure C.3 Comparison of the seismic velocity model of this study and regional velocity models of Aleutian arc 

(Fliedner & Klemperer, 1999). Vp and Vs in this model are calculated by assuming the Poisson’s ratio and density 

are constants (Table 1). The dynamic Young’s modulus for calculating the seismic velocity is converted by the static 

far-field Young’s modulus (𝑬𝒅 in Eq. 5.3) (Starzec, 1999; Ciccotti & Mulargia, 2004). 
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Figure C.4 Comparison between InSAR timeseries data and modeled surface displacement at 2006/11/14. (a) East-

West component. (b) Up-down component. In Model I, the pressure source is an ellipsoid with a fixed dipping angle 

(θ = 90° in Fig. 6.3). In Model II, the dipping angle (θ) and direction (φ) are unfixed. Model III has the same setup 

as Model II but is constrained by masked InSAR data shown as the grey shaded rectangles. The black triangles 

represent volcanos, including Korovin (Ko), Kliuchef (Kl), and Sarichef (Sa). 

  



232 

 

 

Figure C.5 Evolution of the host-rock failure at extrapolated overpressure from 40 MPa to 200 MPa. The geometry 

of the pressure is from the mean values of the parameter estimations at 2006/11/14 prior to the eruption. Red and 

orange triangles indicate tensile and Coulomb failure. Grey ellipse is the pressure source. Green dots show the 

location of the volcano tectonic (VTs) earthquakes occurring during 2006/10/30-2006/11/29. The setting of the 

models is same to Fig. C.4. 
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Figure C.6 The setup of the model with two pre-existing weak zones. The Amlia-Amukta and Seguam faults are 

modeled as vertical slates with a depth of 10 km. Young’s modulus of the faults is lower than the surrounding host-

rock. The pressure source at 2006/11/14 obtained by data assimilation with InSAR is shown as a green ellipsoid. 

Other settings of the model with the faults are same as the model without the faults. 
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Figure C.7 The effect of the Amlia-Amukta (AA) fault on the surface deformation. The cool-warm colormap shows 

the difference in surface displacement between the models with the AA fault and the model without the fault (Model 

II) at 2006/11/24. Different fault thickness and weakness are tested to the impaction of the fault. 
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Figure C.8 Volumetric strain changes between two near InSAR acquisitions within the Amlia-Amukta fault by 

Model I (The mode with fixed dipping angles and directions). The warm color indicates the part of fault 

experiencing dilatancy during the period. Black dots are the volcano tectonic (VT) earthquakes occurring within a 2-

km distance to the fault during the period. The light blue shadow is the projection of the pressure source at the end 

of the period on the fault. 
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Figure C.9 Volumetric strain changes between two near InSAR acquisitions within the Amlia-Amukta fault by 

Model II (The mode with free dipping angles and directions). The warm color indicates the part of fault 

experiencing dilatancy during the period. Black dots are the volcano tectonic (VT) earthquakes occurring within a 2-

km distance to the fault during the period. The light blue shadow is the projection of the pressure source at the end 

of the period on the fault. 
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Figure C.10 Volumetric strain changes between two near InSAR acquisitions within the Amlia-Amukta fault by 

Model III (The mode with free dipping angles and directions, and masked InSAR data at Korovin). The warm color 

indicates the part of fault experiencing dilatancy during the period. Black dots are the volcano tectonic (VT) 

earthquakes occurring within a 2-km distance to the fault during the period. The light blue shadow is the projection 

of the pressure source at the end of the period on the fault. 

  



238 

 

 

Figure C.11 Volumetric strain changes between two near InSAR acquisitions within the Seguam fault by Model II 

(The mode with free dipping angles and directions). The warm color indicates the part of fault experiencing 

dilatancy during the period. 
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Figure C.12 Coulomb stress changes between two near InSAR acquisitions within the Amlia-Amukta fault by 

Model I (The mode with fixed dipping angles and directions). The warm color indicates the part of fault having a 

positive Coulomb stress change, which facilities the failure. Black dots are the volcano tectonic (VT) earthquakes 

occurring within a 2-km distance to the fault during the period. The light blue shadow is the projection of the 

pressure source at the end of the period on the fault. 
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Figure C.13 Coulomb stress changes between two near InSAR acquisitions within the Amlia-Amukta fault by 

Model II (The mode with free dipping angles and directions). The warm color indicates the part of fault having a 

positive Coulomb stress change, which facilities the failure. Black dots are the volcano tectonic (VT) earthquakes 

occurring within a 2-km distance to the fault during the period. The light blue shadow is the projection of the 

pressure source at the end of the period on the fault. 
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Figure C.14 Coulomb stress changes between two near InSAR acquisitions within the Amlia-Amukta fault by 

Model III (The mode with free dipping angles and directions, and masked InSAR data at Korovin). The warm color 

indicates the part of fault having a positive Coulomb stress change, which facilities the failure. Black dots are the 

volcano tectonic (VT) earthquakes occurring within a 2-km distance to the fault during the period. The light blue 

shadow is the projection of the pressure source at the end of the period on the fault. 
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Figure C.15 Coulomb stress changes between two near InSAR acquisitions within the Seguam fault by Model II 

(The mode with free dipping angles and directions). The warm color indicates the part of fault having a positive 

Coulomb stress change, which facilities the failure.  
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Figure C.16 A crack (a) extended under load (b) (after Jaeger et al., 2007). (c) Geometry of the crack.  
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Table C.1 Model Parameters 

 
Parameter Description Value Unit 

𝑇0  Surface temperature 0 °C 

𝑇𝑐  Magma body temperature 850 °C 

𝑑𝑇/𝑑𝑧  Geothermal gradient (𝑧 < 0) -30 °C / km 

𝐾𝑐  Thermal conductivity  3 𝑊 ∙ 𝑚−1 ∙ 𝐾−1  

𝐶𝑝  Specific heat capacity 1.25 𝑘𝐽 ∙ 𝑘𝑔−1 ∙ 𝐾−1  

𝜌  Density of rock 2.7 × 103 𝑘𝑔 ∙ 𝑚−3  

𝜌𝑤  Density of water 1.0 × 103 𝑘𝑔 ∙ 𝑚−3  

𝜈  Poisson’s ratio 0.25 1 

𝜙𝑖   Internal friction angle of host-rocks 25 ° 

𝜙𝑓   Internal friction angle of faults 15 ° 
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Table C.2 Variables 

 
Variable Description Unit 

(𝑋, 𝑌, 𝑍)  Location of the center of the magma body () 𝑚  

𝑎  Half height of the magma chamber 𝑚  

𝑏  Half width of the magma chamber 𝑚  

𝜑  Dip direction (clockwise angle from North) ° 

𝜃  Dip angle ° 

𝑂𝑃  Overpressure (excess to lithostatic pressure) 𝑃𝑎  

ETd Young’s modulus of host-rock 𝑃𝑎  

𝐸𝑑  Far-field Young’s modulus 𝑃𝑎  

𝑇  Temperature °𝐶  

𝑊𝑓  Fault thickness 𝑚  

𝐸𝑓

𝐸𝑟
  Ratio of the Young’s modulus between the fault and the host-rocks 1 

𝐶0  Cohesion 𝑃𝑎  

𝜎𝑇   Tensile strength 𝑃𝑎  

𝜎1  Maximum principal stresses 𝑃𝑎  

𝜎3  Minimum principal stresses 𝑃𝑎  

𝜎𝑛  Normal stress ((𝜎1 + 𝜎3)/2) 𝑃𝑎  

𝜏  Maximum shear stress ((𝜎1 − 𝜎3)/2) 𝑃𝑎  

𝜖𝑉  Volumetric strain 1 

Δ𝑉𝑡𝑜𝑡   Total volume change 𝑚3  

𝐸𝑒𝑞  Earthquake energy release 𝐽  
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