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ABSTRACT

Flexible, yet interpretable, models for the second-order temporal structure are

needed in scientific analyses of high-dimensional data. The thesis develops a

structured time-indexed covariance model for non-stationary time-series data

by decomposing them into sparse spatial and temporally smooth components.

Traditionally, time-indexed covariance models without structure require a large

sample size to be estimable. While the covariances factorization results in both

domain interpretability and ease of estimation from the statistical perspective,

the resulting optimization problem used to estimate the model components

is non-convex. We design an optimization scheme with a carefully tailored

spectral initialization, combined with iteratively refined alternating projected

gradient descent. We prove a linear convergence rate for the proposed descent

scheme and establish sample complexity guarantees for the estimator. As a

motivating example, we consider the neuroscience application of estimation of

dynamic brain connectivity. Empirical results using simulated and real brain

imaging data illustrate that our approach improves time-varying covariance

estimation as compared to baselines.
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CHAPTER 1

INTRODUCTION

Dynamic covariances appear prominently in the analysis of non-stationary

time series data and provide fundamental insights into complex systems.

Dynamic covariance models are used in applications ranging from compu-

tational finance and economics [1, 2] to epidemiology [3] and neuroscience

[4, 5]. This thesis is motivated by the need to study dynamic Functional brain

Network Connectivity (dFNC), which has been applied to the scientific study

of cognition [6], and human behavior [7, 8], among other scientific and clinical

questions. Estimation of dynamic covariance matrices is challenging since

the number of parameters to estimate is O(TP 2), where T is the temporal

length and P is the data dimension, while only data from N subjects are

available, with N � P , even possibly N = 1, as is the case in many scientific

experiments.

Parsimonious models that leverage structure underlying complex data are

frequently used to deal with data scarcity. For example, [9] used structural

penalty functions and [10, 11] used constraint sets when estimating model

parameters, while [12] incorporated structural priors for probabilistic models.

In this thesis, we estimate dynamic covariance matrices that are temporally

smooth, spatially sparse, and low-rank, which is motivated by the study of

dynamic functional brain network connectivity where collected time-series

data exhibit such structures in the second moment [5, 13]. We use a factor

model to encode the low-rank structure and further, restrict the factors to

convex or non-convex constraint sets. The sparse spatial structure is imposed

via iterative hard-thresholding and the smooth temporal structure via a

temporal kernel projection.

Taken together, the optimization program used to estimate the dynamic

covariance model is non-convex. With non-convex optimization, there is a risk

of only finding a local optimum; however, there is growing evidence that for

certain structured problems, convergence to the global optimum is guaranteed
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Figure 1.1: Top: An illustration of sample covariance of brain time-series
signals. The static covariance assumes that the samples are i.i.d. across time.
Bottom: An illustration of sliding window sample covariance. Each
covariance matrix is computed by taking the average of the sample
covariances within a window.

under suitable regularity conditions and initialization [14, 15, 16]. That is, if

the distance between the initialization point and the optimal point is bounded

within a ball of finite radius, then we can use the local regularity conditions

to ensure the convergence. Moreover, estimates obtained through non-convex

optimization are faster to compute and have better statistical performance

[17, 18, 19]. Encouraged by the above line of work, we propose a two-stage

procedure for estimating the dynamic covariance model. In the first stage,

we use a spectral method to initialize our estimate, which is subsequently

refined in the second stage using projected gradient descent.

1.1 A Motivating Example and Limitations

One application of dynamic covariances estimations is the study of dynamic

functional brain network connectivity. We will begin by introducing the

background of functional connectivity and then discuss the “dynamic” version

in the following paragraph. The functional connectivity of brain networks
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represents temporal connections between different brain regions. Apart from

the structural connectivity that studies anatomical brain structures, the

functional connectivity is based upon fluctuations of signals generated by

brain networks. Since we could not directly observe the signals in our brains,

we rely on measurement protocols such as ElectroEncephaloGraphy (EEG)

and functional Magnetic Resonance Imaging (fMRI). However, these protocols

are notoriously known to be noisy, impeding us from recovering the right

brain networks. To resolve this dilemma, we resort to statistical analysis:

conduct a series of brain network experiments and summarize the frequency of

particular events. A classical approach to measuring the connectivity between

two brain regions is to extract a sequence of time-series data and compute

the sample covariance is shown in the top of Figure 1.1. This approach is

based on the implicit assumption that the data points are independent and

identically distributed (i.i.d.) across time. If the assumption is correct, the

sample covariance has a desirable property that it would converge to the

population covariance as the number of data points goes to infinity. The

i.i.d assumption, which implies that the measured signals are stationary, does

not hold in the real-world setting. In fact, brain networks exhibit highly

complex dynamics and are considered non-stationary, leading to the study

of dynamic functional connectivity. An adaptive approach to estimate the

dynamic functional connectivity is to compute the sliding window covariance

matrix. The idea is as follows; we look at ∆ samples ahead time t and ∆

samples after time t to compute the covariance at time t and then compute the

average of the sample covariance within this window. As we will see shortly,

the choice of the window length 2∆ + 1 is tricky, and improper selection

results in spurious fluctuations [20]. The following example is reproduced

from the work [20].

Let us first assume that the functional connectivity pattern of brain regions

x and y change over time. The sequence temporal random signals we detect

from both regions are x(t) =
√

2 cos(2πft + θx) and y(t) =
√

2 cos(2πft +

θy) cos(2πf0t), where the phases are two independent random variables that

follow identical uniform distribution U([−π, π]). Here x(t) is a stationary

signal and y(t) is a non-stationary signal. The equation of the sliding-window

covariance at time t is Cxy(t) = 1
w

sin(πf0w)
sin(πf0)

cos(2πf0t), where w is the window

length. As we see the result from Figure 1.2 that when we change window

length, the covariance value changes. This would lead to spurious fluctuations

3



Figure 1.2: Top left: The blue dashed line on the left figure denotes the
time at t = 60 and the shaded area denotes the sliding-window covering area.
Top right: The covariance of x and y at t = 60 where x-axis denotes the
sliding window length. Bottom left: Repeat the same process from t = 60
to t = 120 with sampling interval equals 2. Bottom right: This shows (1)
different window length leads to different Cxy and (2) same window length at
different positions t have different Cxy.
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of estimations and bias in interpretations. An naive solution to address this

problem is to compute the instantaneous sample covariance, and yet this

would lead to poor estimates because of the small sample size at each time

point.

Given the examples addressed above, we see that it is challenging to

estimate the covariance without any model structures and purely relying

on random measurements. Alternatively, we could improve estimates by

imposing structures on covariances. Our goal is to recover the ground truth,

presented at the end of the thesis, if the covariance matrices are low-rank.

1.2 Related Work

We focus on two main categories of prior work that are closely related to this

work, namely factor models and the autoregressive model class. The factor

model class constructs latent factors to capture the spatial and temporal struc-

tures, which implicitly imposes the low-rank structure. One common approach

to model the temporal structure is by introducing latent kernel-regularized

factors (or Gaussian process priors) [21, 22, 23, 24]. Other structures, such

as sparsity and group sparsity, can also be encouraged by selecting proper

priors [25]. The problem of estimating the probabilistic hierarchical models is

that the underlying posterior distributions are often intractable, and existing

inference methods are computationally demanding. Another closely related

method is dictionary learning [26], which encodes data as the product of

the temporal component and spatial component. On the other hand, the

autoregressive model [2, 27, 28] encodes the temporal structure by modeling

the current data point as linear combinations of previous data points and

additional noise. The linear coefficients are encapsulated in the matrix, often

referred to as the transition matrix. The kernel-smoothing estimator (KSE)

[29] is an autoregressive-based model whose covariances are approximated by

kernel-weighted functions. Moreover, building structured transition matrices

has shown to improve the computation efficiency as well as the prediction

accuracy [30, 31]. Other standard approaches which are popular in neuro-

science uses are the sliding window (SW) [20, 32, 33] and the hidden Markov

model (HMM) [5]. Although structured dynamic covariance estimation is

a long-standing problem in neuroscience, to the best of our knowledge, ex-
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isting methods have focused exclusively on the probabilistic models, and

optimization and statistical properties have rarely been studied.

1.3 Contributions of Thesis

This thesis proposes a non-convex optimization scheme for estimating dynamic

structured covariances along with the theoretical analysis.

• We prove the linear convergence of the proposed algorithm to the global

optimum up to a finite statistical error.

• We propose and prove the sample complexity of the spectral initial-

ization using the Davis-Kahan sinΘ theorem [34], Bernstein matrix

concentration inequality, and the Corant-Fischer min-max theorem.

• We show in experiments that our model can successfully recover the

temporal smoothness and detect temporal change induced by task

activation.
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CHAPTER 2

PROPOSED MODEL

2.1 Problem Statement and Notation

Consider an experiment with N subjects, where for each subject we collect

T observations recorded at times t = 1, 2, . . . , T . For a subject n at time

t we observe x
(n)
t ∈ RP , which is independent and mean zero. The sample

matrix for a subject is denoted as X(n) = [x
(n)
1 , . . . ,x

(n)
T ] ∈ RP×T . Let

SN,t = 1
N

∑N
n=1 x

(n)
t x

(n)>
t be the sample covariance of N subjects at time t.

We assume that the population covariance has the following structure

E[SN,t] = Σ?
t + Et = V? diag(a?t )V

?> + Et, ∀t ∈ [T ] (2.1)

where Σ?
t is at most rank K and Et is a noise matrix. In the factorization of

Σ?
t , we assume that the spatial components V? = [v?1, . . . ,v

?
K ] ∈ RP×K are

time-invariant and orthogonal to each other, while the temporal components

A? = [a?1, . . . , a
?
T ] = [ã?1, . . . , ã

?
K ]> ∈ RK×T are time-dependent. We assume

that the columns of V? are sparse and belong to the set CV? = {v ∈ RP :

‖v‖0 ≤ s?, ‖v‖2 = 1}, while the rows of A? are smooth and bounded, and

belong to the set CA? = {ã ∈ RT : b ≤ ãi ≤ c, ã>G−1ã ≤ γ?}, where 0 ≤ b < c

and G is a T × T positive definite kernel matrix. Moreover, Gi,j = κ(i, j)

and κ(·, ·) is the kernel metric. These structures are based on the assumption

that data are spatially sparse and temporally smooth as shown in Figure 2.1.

Under the model in (2.1), we estimate V and A from samples {X(n)}n∈[N ]

by minimizing the following objective

min fN(Z) = min
V∈CV
A∈CA

1

T

T∑
t=1

1

2
‖SN,t −V diag(at)V

>‖2
F (2.2)

where Z = [V>,A]>. Although fN is non-convex with respect to Z, the loss

7



Figure 2.1: Upper left: Example of dynamic covariances. Upper right:
The smooth temporal coefficients ãk associated with corresponding vk.
Bottom: The sparse spatial components vk.

`N,t(Σt) = 1
2
‖SN,t −Σt‖2

F is µ-strongly convex and L-smooth with respect to

the product Σt = V diag(at)V
>, where in this case µ = L = 1. Notice that

in the optimization problem (2.2), we do not enforce the columns of V to be

orthogonal and yet, with proper initialization, our algorithm will output V

with nearly orthogonal columns. This is because V will be close to V?, whose

columns are orthogonal, under some columnwise permutation. To impose

the structures onto V and A, we project columns of V to CV = {v ∈ RP :

‖v‖0 ≤ s, ‖v‖2 = 1}, where s > s∗ and rows of A to CA = CA? .

Since there is more than one factorization for each covariance, that is,

Σ = V diag(a)V> can also be factorized as VRR> diag(a1)RR>V>, where

R is permutation matrix, we use the follow metric to evaluate the distance

between Z> = [V> A]> and Z?> = [V?> A?]>.

Definition 1. The distance between Z and Z? is defined as

dist2(Z,Z?) =

T∑
t=1

min
Rt∈P(K)

{
‖V−V?Rt‖2F+‖ diag(at)−R>t diag(a?t )Rt‖2F

}
(2.3)

where P(K) 3 Rt is the set of K × K permutation matrices and diag(·) :

RT → RT×T converts a T -dimensional vector to a T×T diagonal matrix. This

metric is commonly used in matrix factorization problems, where P(K) is

replaced by the set of rotation matrices. Here, we limit the set of matrices to be

permutation matrix because R> diag(at)R should also be a diagonal matrix.

Throughout the thesis, we sometimes write d2(Zt,Z
?
t ) as minRt∈P(K) ‖V −

V?Rt‖2
F + ‖ diag(at) − R>t diag(a?t )Rt‖2

F , where Zt = [V> diag(at)]
> and

Z?
t = [V?> diag(a?t )]

>.
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In many high-dimensional statistical problems, we allow a small statistical

error [35]. Thus, if the algorithm converges to the stationary point, it may

deviate away from the global optimum up to finite multiple of the statistical

error. In this thesis, we define the statistical error as follows.

Definition 2.

εstat = sup
‖∆t‖=1∆t∈Ξ(2K,2s+s?)

〈∇`N,t(Σ?
t ),∆t〉 (2.4)

where Ξ(2K, 2s+s?) = {Σ ∈ RP×P : rank(Σ) ≤ 2K, ‖vk‖0 ≤ 2s+s?, ‖vk‖1 =

1 ∀k ∈ [2K]}. Here we restrict the differences of the estimation updates and

the optimal solutions to lie within the constraint set Ξ. The statistical error

describes the geometric landscape around the optimum: it quantifies the

gradient magnitude of the empirical loss function `N,t ∀t ∈ [T ] in the vicinity

of the population optimal Σ?
t ∀t ∈ [T ] and implicitly depends on the sample

size as discussed later in Chapter 3.

2.2 Proposed Algorithm

The objective (2.2) is non-convex, which implies that there may exist multiple

local optima; however, convergence close to global optimum can be guaranteed

through careful initialization, proper learning rate selection, subject to local

regularity conditions. To this end, our algorithm consists of two parts: spectral

initialization and local iterative refinement.

2.2.1 Spectral Initialization

By large sample theory, the sample covariance will converge to the population

covariance. Thus, V and A estimated via eigendecompositions of {SN,t}t∈[T ]

will be close to V? and A?, respectively, as the number of sample N increases.

Although large sample sizes are not considered practical in many scientific

experiments, we exploit the structure of the ground truth matrices {Σ?
t}t∈[T ],

which share the same underlying eigensubspace, to aggregate the effective

sample size. As Algorithm 1 shows, we sum the sample covariance across

time and employ a joint eigendecomposition to estimate the initial value
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of V, denoted as V0. In the following step, the initial estimate of the

temporal coefficient A, denoted as A0, is estimated by projecting {SN,t}t∈[T ]

to the estimated subspace V0. We will analyze the sample complexity of this

initialization method in Chapter 4.

Algorithm 1: Spectral Initialization

Input: Data sequences:{X(n)}n∈[N ], number of components K
Output: Initial spatial components V0, initial temporal component

A0

MN =
∑T

t=1
1
N

∑N
n=1 x

(n)
t x

(n)>
t

Σ,U← Eigendecomposition(MN)
V0 = [v0

1,v
0
2, . . . ,v

0
k]← top K eigenvectors of U

for t = 1, 2, . . . , T do

SN,t = 1
N

∑n
n=1 x

(n)
t x

(n)>
t

for k = 1, 2, . . . , K do
a0
k,t ← v0>

k SN,tv
0
k

end

end
A0 = [a0

k,t]
return V0,A0

2.2.2 Local Refinement

After initialization, we iteratively refine estimates of V and A via alternating

minimization, as shown in Algorithm 2, where η denotes the step size. We scale

down the step size for V by T to balance the scale of the gradient as T increases.

We enforce the sparse structure of V, and smooth structure of A via projection

to constraint sets CV and CA, respectively. Although CV is a non-convex

constraint set, projection to this set can be computed efficiently by picking the

top-s largest entries in magnitude and then projecting the constructed vector

to the unit sphere. The proof and the expansion coefficient ρ induced by

projecting to non-convex set CV are presented in Appendix A.1. In general, the

value of ρ depends on the difference of sparsity levels s−s? and the initialization

distance. On the other hand, projection to CA can be solved efficiently

via convex programming. In practice, we use an alternating projection

method projecting to two convex sets {ã ∈ RT : b ≤ ãi ≤ c ∀i ∈ [T ]} and

{ã ∈ RT : ã>G−1ã ≤ γ}. By von-Neumann’s theorem [11], alternating

10



projection to convex sets will converge to their intersection; hence it does

not affect the main analysis. Additionally, choosing a proper step size is

important when solving non-convex problems as the estimates can escape the

local region if the step is too large. We will discuss the selection of step size

in Chapter 4.

Algorithm 2: Dynamic Covariance Learning

Input: Data sequences {X(n)}n∈[N ], number of components K,
tolerance ε

Output: Spatial Dictionary V, Temporal Dictionary A
V0,A0 ←Spectral Initialization

(
{X(n)}Nn=1

)
for t = 1, 2, . . . , T do

SN,t ← 1
N

∑N
n=1 xtx

>
t

end
while |fN(Zi−1)| − fN(Zi−2)| > ε do

Âi ← Ai−1 − η
(

1
T
Wi−1

)
Ai ← Project rows of Âi to CA
V̂i ←
Vi−1− η

T

(
2
T

∑T
t=1(Vi−1 diag(ai−1

t )Vi−1> − SN,t)V
i−1 diag(ai−1

t )
)

Vi ← Project columns of V̂i to CV
end

Wi−1 = [wk,t], wk,t = vi−1>
k (Vi−1 diag(ai−1t )Vi−1> − SN,t)v

i−1
k

11



CHAPTER 3

CONVERGENCE ANALYSIS

This chapter discusses the convergence of the proposed algorithm. The proof

is an extension of the Factored Gradient Descent (FGD) [14, 36, 37] analysis.

We begin by stating the underlying assumptions, followed by the main results

and the sketch of proofs.

3.1 Assumptions

Assumption A:

The initial estimate of {Z0
t}Tt=1 is required to to satisfy

d2(Z0
t ,Z

?
t ) ≤ 2r2, ∀t ∈ [T ] (3.1)

and

r2 ≤ min

(
Lµ

4ξ2(L+ µ)2

1

(4 + c2)
, 1

)
(3.2)

where ξ2 = mint∈[T ]

(
1

σK(Σ?
t )

)2

+
(

1 + 3 c
σK(Σ?

t )

)2

Assumption B:

The step size satisfies

η ≤ min
t∈[T ]

T

64(L+ µ)‖Z0
t‖2

2

(3.3)

Note that the step size depends on the initial estimate but remains constant

throughout the training.

12



Assumption C:

The choices of η and ρ satisfy the inequality

β = ρ

(
1− ηLµ

2Tξ2(L+ µ)

)
< 1 (3.4)

Moreover, Lemma A.3 shows that ρ ≤ 1
1−r

(
1 + 2

√
s?√

s−s?

)
. β is the contraction

coefficient of the distance metric dist2(Z,Z?) carried throughout iterations.

Assumption D:

The square of the statistical error satisfies the following inequality

ε2
stat ≤ 2Tr2 Lµ

3ρη(L+ µ)
(3.5)

Assumption A ensures that the distance of initiate estimates and the global

solutions are bounded within the ball of radius
√

2r. In general, to achieve the

inequality, we need enough samples. The minimum sample size required could

be estimated by computing concentration inequality and will be discussed in

detail in Chapter 4. For most non-convex optimization problems, a careful

choice of step size is required to constrain the estimates within the ball [14]. To

obtain β < 1, we need to leverage between the choice of η and ρ. With r fixed,

ρ increases as the sparsity level s increases. A small η will lead to the choice

of a small ρ, which could be achieved by increasing the sparsity level s. Lastly,

Assumption D ensures that the estimates do not escape the local region of the

initial ball. Note that εstat ≤ maxt ‖∇`t(Σ?
t )‖2 = maxt ‖Σ?

t − SN,t‖, which

depends on the given samples. One sufficient condition to hold the inequality

is 2TLµ
3ρη(L+µ)

≥ 1, and Assumption A is satisfied. In general, 2TLµ
3ρη(L+µ)

≥ 1 is

immediately satisfied given Assumptions B and C hold. In the case where the

inequality is invalid, we can increase the sample size N so that the statistical

error εstat is small.

3.2 Main Results and Proof Sketches

Given that Assumptions A-D hold, we are ready to state the following result.

13



Theorem 3.1 (Linear Convergence). Assume that Assumptions A-D are

satisfied. Furthermore, the step size ηV for V is η
T

and the step size ηA for

at ∀t ∈ [T ] is η. With the fact that `N,t ∀t ∈ [T ] is µ-strongly convex and L

smooth with respect to Σt ∀t ∈ [T ], then

β dist2(Z,Z?) + ρη
3(L+ µ)

Lµ
ε2
stat ≥ dist2(Z+,Z?) (3.6)

where Z denotes the estimation of the current step and Z+ denotes the

estimation of the following step.

The Theorem 3.1 shows that with proper initialization the distance metric

converges up to the statistical error scaled by the constant ρη 3(L+µ)
Lµ

. This

also implies that fN(Z) converges close to fN(Z?) as the following corollary

states.

Corollary 3.1.1. Assume the setting is the same as Theorem 3.1, then after

i iterations, we have

T∑
t=1

‖Σi
t −Σ?

t‖2
F ≤ 2Q2

(
βi dist(Z0,Z?) + ρη

3(L+ µ)

Lµ
ε2
stat

)
(3.7)

where Q = maxt
1
2
‖Zi

t‖2
2 + ‖Z?

t‖2, is bounded.

Corollary 3.1.1 shows the linear convergence up to the statistical error.

The main proof consists of two steps. We begin with showing the following

Lemma.

Lemma 3.1. Suppose Assumption A holds. The step size ηV for V is η
T

and the step size ηA for at ∀t ∈ [T ] is η. Let η ≤ mint
T

32(L+µ)‖Zt‖22
, then

β dist2(Z,Z?) + ρη 3(L+µ)
Lµ

ε2
stat ≥ dist2(Z+,Z?).

The proof is given in Appendix B.1. Note that the step size is dependent

on the current estimate of Z. The next step is to find a constant upper bound

for η.

Lemma 3.2. Given that the Assumption A holds, the step size in Assumption

B satisfies η ≤ mint
T

32(L+µ)‖Zt‖22
.

The proof will be presented in Appendix B.2. Combining two lemmas,

along with the Assumptions A-D, we can conclude the Theorem 3.1.
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CHAPTER 4

SPECTRAL INITIALIZATION

In this chapter, we will discuss the underlying sample complexity to satisfy

Assumption A. The main tools used in the proof are the Davis-Kahan sinΘ

theorem [34, 38], Bernstein matrix concentration inequality, and the Corant-

Fischer min-max theorem. We will first give a brief overview of these theorems

and then proceed to state the main result.

4.1 Background Knowledge of Main Theorems

In this section, we will introduce two main theorems used in the proof of

sample complexity: Davis-Kahan sin Θ theorem [34, 38] and Corant-Fischer

min-max theorem. The former theorem is used to bound the distance of the

initiate V0 and the ground truth V?. The later is used to bound the distance

of initial A0 and the ground truth A?.

4.1.1 Davis-Kahan sin Θ Theorem

Consider two P -dimensional subspace spanned by columns of the orthogonal

matrices V̂ and V?, respectively. Note that given a particular subspace,

it could be represented by more than one set of orthonormal vectors. For

example, consider the xy-plane of a three dimensional space, both the or-

thonormal set
{

[1 0 0]>, [0 1 0]>
}

and
{

[ 1√
2

1√
2

0]>, [−1√
2

1√
2

0]>
}

spanned the

same subspace. To measure the distance between two subspace, on the other

hand, we can measure the difference between the two projection operators to

the subspace. Note that the projection operator to a subspace is unique and

is the outer product of the orthogonal matrix. The distance of two projection

operators is written as, ‖V̂V̂> −V?V?>‖F . To upper bound the distance

‖V̂V̂> −V?V?>‖F we use the Davis-Kahan sin Θ theorem stated as follows.
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Lemma 4.1 (Davis-Kahan sin Θ theorem, adapted from [38]).

Let M? =
∑T

t=1 Σ?
t and M =

∑T
t=1 SN,t. V? is the matrix whose columns

are top-K eigenvectors of M?, and V̂ is the matrix whose columns are the

top-K eigenvectors of M̂. The corresponding eigenvalues of V? are ‖ã?1‖1 ≥
. . . ≥ ‖ã?K‖1 > ‖ã?K+1‖1 ≥ . . . ≥ ‖ã?P‖1. Assume that the eigengap ‖ã?K‖1 −
‖ã?K+1‖1 = g > 0 is bounded away from zero. Then

‖V̂V̂> −V?V?>‖F ≤
2
√
K

g
‖M̂−M?‖2 (4.1)

Note that the theorem required an eigengap between the K-th and K+1-th

component.

4.1.2 Courant-Fischer min-max Theorem

Courant-Fischer min-max theorem is a useful theorem when considering the

perturbation of eigenvalues. It states that Rayleigh–Ritz quotient, RM(v) =
〈Mv,v〉
〈v,v〉 , ∀v ∈ RP/{0} lies between the smallest eigenvalue and the largest

eigenvalue of M. Moreover, we could use the same scheme to show the

following property.

Lemma 4.2 (Corollary of Courant-Fischer min-max Theorem). Let V =

[v1,v2, . . . ,vK ] ∈ RP×K, where P ≥ K, have orthonormal columns. Assume

µk = v>k Σvk ∀k ∈ [K] and µ1 ≥ . . . ≥ µK. Let eigenvalues of Σ be

λ1 ≥ . . . ≥ λK , then λi ≥ µi i = 1, 2, . . . , K.

4.2 Main Results and Proof Sketches

From Assumption A, we know that the initialization distance is bounded

by 2Tr2. It suffices to show that ‖V0 − V?Rt‖2
F ≤ r2 ∀t ∈ [T ] and

‖ diag(a0
t ) − R> dist(a?t )R‖2

F ≤ r2 ∀t ∈ [T ]. Then, we use this idea to

show the Theorem 4.1.

Theorem 4.1 (Sample Bound of Spectral Initialization). Consider N inde-

pendent zero mean samples X(1), . . . ,X(N) ∈ RP×T . Suppose that ‖x(n)
t ‖2 ≤

c ∀n ∈ [N ], t ∈ [T ]. Let M =
∑T

t=1 SN,t and M? =
∑T

t=1 Σ?
t . Assume

columns of V? ∈ RP×K are top-K eigenvectors of M? with corresponding

16



eigenvalues ‖ã?1‖1 ≥ . . . ≥ ‖ã?K‖1 and the eigengap of K and K + 1 com-

ponents is ‖ã?K‖1 − ‖ã?K+1‖1 = g > 0. Let Z0> = [V0>A0]> be the matrix

obtained via initialization method and ζ = 8KT
g2

∑T
t=1 ‖Σ?

t‖2
2 + 2K. Then,

∀δ > 0, dist2(Z0,Z?) ≤ 2Tr2 with probability at least 1− 2Tδ, if

N ≥ max

(
−

10Kc2(‖ã?1‖1 + gr√
5K

)

(gr)2
log

Tδ

4P
,−

2ζc2(‖ã?1‖1 + r√
ζ
)

r2
log

δ

4P

)
(4.2)

The complete proof is presented C.1 and is consisted of three steps. The first

step is to bound ‖V0−V?R‖F in terms of ‖M0−M?‖2 by Davis-Kahan sinΘ

theorem [34]. The second step is to use Courant-Fischer min-max theorem

to bound
∑T

t=1 ‖ diag(a0
t )−R>t diag(a?t )Rt‖F in terms of

∑T
t=1 ‖SN,t −Σ?

t‖2.

Finally, we can estimate the sample complexity by applying Bernstein matrix

concentration inequality to ‖M0 −M?‖2 and
∑T

t=1 ‖SN,t −Σ?
t‖2.

Step 1: Recall that our estimates of {Σt}Tt=1 share same V and columns

of the initiate estimate V0 are orthogonal by construction.1 Consequently,

we can look at the distance ‖V0 −V?R‖F as the distance between the two

eigensubspaces: the eigensubspace spanned by V0 and the eigensubspace

spanned by V?. To upper bound ‖V0 −V?R‖F , we can first apply Davis-

Kahan sinΘ theorem [34] to upper bound ‖V0V0> − V?V?>‖2
F . Then we

could apply Lemma 5.4 in [39] to obtain the following bound minR ‖V0 −
VR‖2

F ≤ 1
2(
√

2−1)
‖V0V0> −V?V?>‖2

F , where V0 is the initial estimate of V

by spectral initialization. Of particular note is that the theorem required

an eigengap g > 0 between the K-th and K + 1-th component, which is a

general assumption in retrieval of maximum eigenvectors problems [40].

Step 2: Now, we proceed to bound
∑T

t=1 ‖ diag(a0
t )−R>t diag(a?t )Rt‖ with

the Courant-Fischer min-max theorem. The idea of the proof is that the

minimum ‖ diag(a0
t )−R>t diag(a?t )Rt‖F ∀t ∈ [T ] over all possible permutation

matrices is upper bounded by the case 1 that entries of a?t ∀t ∈ [T ] are

permuted to match the order of a0
t ∀t ∈ [T ] in magnitude. Then, we can

further apply the Courant-Fischer min-max theorem to upper bound the

case 1. We begin with a warm-up example by considering the case of single

component and then generalize it to multiple components.

Proposition 4.1 (Bound on perturbed eigenvalue mismatch). Let v ∈ RP ,

λi(·) denotes the i-th largest eigenvalue, Σ be a P ×P real symmetric positive

1Note that columns of V refined by Algorithm 2 are not necessary orthogonal but
remain unit norm.
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semi-definite matrix, and Σ̃ = Σ + E, where E is a symmetric positive

semi-definite perturbed matrix. Then

|v>Σ̃v − λi(Σ)|2 ≤ 2
(
‖Σ‖F‖2vv> − v?iv

?>
i ‖2

2 + λ2
1(E)

)
(4.3)

Proof. Let v?i be the i-th eigenvector of Σ corresponding to i-th largest

eigenvalue. Then

|v>Σ̃v − v?>i Σv?i |2 = |v>Σv − v?>i Σv?i + v>Ev|2

=
∣∣Tr
(
Σvv> −Σv?iv

?>
i + Evv>

)∣∣2
≤ 2

(∣∣〈Σ,vv> − v?iv
?>
i 〉
∣∣2 + λ2

1(E)
)

≤ 2
(
‖Σ‖2

F‖vv> − v?iv
?>
i ‖2

2 + λ2
1(E)

)
(4.4)

Lemma 4.3 (Bound on perturbed eigenvalues mismatch). Let Σ be a positive

semi-definite symmetric matrix . Let V = [v1,v1, . . . ,v
0
K ] ∈ RP×K has

orthonormal columns and µk = v>k Σ?vk ∀i ∈ [K]. Without loss of generosity,

assume µ1 ≥ . . . ≥ µK. Σ? has eigenvalues λ?1 > λ?2 ≥ . . . ≥ λ?K with

corresponding eigenvectors v?1, . . . ,v
?
K. Let Σ = Σ? + E, where E is a

symmetric perturbation matrix. λi(·) denotes the i-th largest eigenvalue of

the matrix, and σR(·) represents the permutation function belonging to the

set S(K) with corresponding permutation matrix R ∈ P(K), then

min
σR(·)∈S(K)

k∑
k=1

|v>k Σvk − λσR(k)(Σ
?)|2

≤ 2

(
‖Σ?‖2

F‖VV> −V?V?>‖2
2 +

K∑
k=1

λ2
k(E)

)
(4.5)

The complete proof will be presented in Appendix C.3. For each t ∈ [T ], we

could write ‖ diag(a0
t )−R>t diag(a?t )Rt‖2

F as
∑k

k=1 |v0>
k SN,tv

0
k−λσRt (k)(Σ

?)|2.

Bounding Equation (4.5) and result of Step 1 by Bernstein matrix inequality,

we complete the sketch of proof.
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CHAPTER 5

EXPERIMENTS

We verify the proposed algorithm with both simulated and real data. In the

simulation data, we evaluate the recovery with the distance metric dist(Z,Z?)

and compare the average log-Euclidean metric with other methods. For real

data, since the ground truth is unknown, we focus on the interpretability of

the model. To this end, we think the motor task fMRI is a good fit because

the onset activation of particular task could be served as the reference to

evaluate activities of brain regions. We use the Matérn five-half kernel as the

smoothing kernel for all the simulations and tasks on real data. Empirically,

we find that tuning the length scale of the kernel is more effective than tuning

the hyperparameter γ in terms of producing the smooth weights.

5.1 Simulations

We test the algorithm with a variety of temporal dynamics. We compare our

algorithm with sliding window PCA (SWPCA), hidden Markov model (HMM),

autoregressive HMM (ARHMM), and sparse dictionary learning [41]. Results

are averaged over 20 trials. We generate samples from the Gaussian distri-

bution: x
(n)
t ∼ N (0,Σ?

t + σI) ∀n ∈ [N ], t ∈ [T ], where Σ?
t =

∑K
k=1 a

?
k,tv

?
kv

?>
k

and σI is the additive noise.

5.1.1 Simulation 1

The ground truth of {ã?k}Kk=1 and {v?kv?>k }Kk=1 are shown on the left of Fig-

ure 5.1. In Figure 5.1, we test our algorithm under noiseless setting and

evaluate the recovery using the distance metric dist2(Z,Z?). We use Matérn

five-half kernel matrix with amplitude = 2 and length scale = 200. The

sparsity level of the spatial components is s = 7 and the kernel norm of the
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Figure 5.1: Covariance recovery, K = 4, P = 20, T = 50. Left: The
simulation ground truth. Center: The recovery. Right: The simulation
result with different number of subjects. As we increase the sample size, the
initialization distance decreases.

Figure 5.2: Tasks with different temporal structures, K = 4, P = 16, T = 50.
Ground truth is shown in Figure 5.3. Left: The temporal components are
the same as Figure 5.1. Center: The temporal components are sine waves.
Right: The temporal components are square waves.

temporal components is no greater than 0.1. Furthermore, the learning rate

is 1e− 4. Here, we select b = 0 and c = 4.

5.1.2 Simulation 2

In Figure 5.2, we compare the algorithm with other methods with noisy

data, where σ = 0.5. Since some of the baselines do not return factorized

estimates, we cannot use the distance dist2(Z,Z?) for evaluation. Instead,

we use the average log-Euclidean metric [42]: 1
T

∑T
t=1 ‖ log(Σt)− log(Σ?

t )‖F ,

where log(Σt) = Ut log(Λt)U
>
t and U is the eigenvector matrix, and Λ is the

diagonal eigenvalue matrix of Σt. In practice, we truncate the zero eigenvalue

and only compute the log of the non-zero eigenvalue so maintain stability of

the evaluation.
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Figure 5.3: Left: Synthetic sine waves. Center: Synthetic square waves.
Right: Synthetic components.

Figure 5.4: left: The average LERM of three tasks and the shaded area
denotes the variance. K = 4, P = 16, T = 50, and the noise variance
σ = 0.05. Right: The running time of the tasks averaged over 10 trials.

5.1.3 Simulation 3

We compare the proposed algorithm with the Bayesian structure learning [22]

(BSL). Note that the model structures of both work are similar, but different in

optimization schemes. Our work uses alternating projecting gradient descent,

where BSL uses variational inference [43]. The simulation results indicate that

two work yields comparable results, but our method is more computationally

efficient than the counterpart. In the following experiment, we evaluate the

average LERM distance of proposed method by taking the average of 20 trails.

For the BSL method. We sample 20 samples from the posterior distribution

and then compute the mean of the average LERM. Moreover, the evaluation

of running time is computed by taking average of 10 trials on both methods.

We test two models on three tasks, the mixing waveform, sine waveform, and

the square waveform.
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Figure 5.5: Top (temporal diagram): The dashed line denotes the task
activation time, and the blue line denotes the estimated temporal weights.
Bottom (connectome): The corresponding brain connectivity pattern of
the task above. The red line denotes positive connectivity and the blue line
denotes negative connectivity.

5.2 Experiment on Task fMRI

We use the Human Connectome Project (HCP) [44] motor task fMRI prepos-

sessed data [45] to validate the algorithm. The data are consisted of five tasks:

right hand tapping, left foot tapping, tongue wagging, right foot tapping, and

left hand tapping. The training data compose of N = 20 subjects, T = 284,

and P = 375. During the session, each task is activated twice, the goal is

to analyze the responding brain region and the temporal fluctuation when

certain task is activated.

In experiment, we choose K = 15 and the result is shown in Figure 5.5,

where the sparsity level s = 54 and γ = 1.0. To interpret the model, we

compute the correlation of each weight ãk,∀k ∈ [K] with the onset task

activation time (see the black dashed line in the top of Figure 5.5), and select

the component that has highest correlation value compared with other tasks.
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Figure 5.6: The activation map.

Table 5.1: The correlation of the components with task activation.

Task Rank of the correlation (order from largest to smallest)

Right Hand Tapping 9 0 6 5 3 2 14 13 12 11 10 7 1 4 8
Left Foot Tapping 9 4 6 2 14 13 12 11 10 3 1 0 5 7 8
Tongue Wagging 4 1 2 7 14 13 12 11 10 3 9 8 0 5 6

Right Foot Tapping 8 7 6 14 13 12 11 10 3 2 4 1 5 0 9
Left Hand Tapping 8 7 5 3 1 2 6 14 13 12 11 10 0 4 9

The result indicates that the proposed algorithm can separate and identify

the components of each task. We train the HCP motor task dataset with

200 epochs, learning rate 1.0, and the Matérn five-half kernel matrix with

amplitude 2 length scale 5. We then select the best matches component of

each task by computing the Pearson correlation of the temporal components

with the activation map of the tasks, shown in Figure 5.6. The result is shown

in Table 5.1.

In most cases, the neural activities are combinations of multiple components

rather than single components. Therefore, for each task, we select the top

three components listed in Table 5.1 and plot the connectivity in Figure 5.7.
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Figure 5.7: The covariance of each task with the highest three components
listed in Table 5.1.
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CHAPTER 6

DISCUSSION AND CONCLUSION

This thesis proposes a non-convex framework for estimating structured

dynamic covariances. The sparse structure is imposed by iterative hard-

thresholding, and the smooth structure is imposed by projection to the kernel

space. We propose a novel spectral initialization scheme to aggregate the sam-

ple size under the assumption of shared spatial structures. While this method

improves the initial estimates of spatial components, it does not benefit the

initial estimated temporal components. Empirically, we find that good initial

spatial estimates will lead to better estimates of temporal components. The

underlying sample complexity of the spectral initialization is being shown

as well. We consider the worst case of the sample complexity and do not

take the estimate’s structures into account. The sample complexity may be

improved by considering the distance after projecting the initial estimates

to the constraint sets CA and CV. Additionally, we have shown, up to the

statistical error, the algorithm converges linearly to the global optimum.

Our analysis adopts from [14] and extends to estimating structured dynamic

matrices. We utilize a new factorization scheme V diag atV
> to incorporate

the temporal structure, which is different than [14] that uses the factorization

scheme UU>. We verify the proposed algorithm on both simulations and

real data. Our results outperform several methods and recover the temporal

dynamics of simulated data. We further compare the Bayesian counterpart

and shows that our algorithm has comparable performance with the Bayesian

method but converges much faster. Our method converges in O(10−1) seconds

while the Bayesian method converges in O(102) seconds. Finally, we use our

model to interpret the temporal and spatial correlation between brain regions

of motor task fMRI data. The result shows that our model is able to denoise

the data and shows distinct activations corresponding to different tasks.
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APPENDIX A

PROJECTION TO CV AND CA

A.1 Projection to CV

Let CV = {x ∈ RP : ‖x‖0 ≤ s, ‖x‖2 = 1}. We want to solve the following

problem

arg min
x∈CV

‖vk − x‖2
2 (A.1)

Let S(x) = {i : xi 6= 0} be the support of x. Given a support E ⊂ [P ], let xE

be a vector whose i-th entry are

{
xi i ∈ E
0 i 6∈ E

. The projection of vk given a

support E is

d(E) = min
x
‖vk − x‖2

2

subject to S(x) ⊆ E, ‖x‖2 = 1 (A.2)

d(E) = min
x
‖vk‖2

2 + ‖x‖2
2 − 2〈x,vk〉

= ‖vk‖2
2 + 1− 2 max

x
〈x,vk〉

= ‖vk‖2
2 + 1− 2‖vk,E‖2 (A.3)

Therefore, (A.1) is equivalent as

arg min
E:|E|≤s

d(E) = arg max
E:|E|≤s

‖vk,E‖2 (A.4)

This could be solved by finding the top-s entries of vk in magnitude, which

has computational complexity O(P logP ), and then normalize to unit norm.
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A.1.1 Expansion Coefficient of Projection to CV
Lemma A.1. Assume that ‖v−v?‖2

2 ≤ r,where r < 1, ‖v?‖2 = 1, ‖v‖2 ≤ 1.

Then h‖v − v?‖2
2 ≥ ‖ v

‖v‖ − v?‖2
2, where h ≤ 1

1−r .

Proof. By expanding r2 ≥ ‖v − v?‖2
2, and using the property ‖v‖2 ≥ 1− r,

we can obtain v · v? ≥ 1 − r > 0. Since h‖v − v?‖2
2 − ‖ v

‖v‖2 − v?‖2
2 can

be written as (h‖v‖2
2 + h− 2) + 2v · v?

(
1
‖v‖2 − h

)
, it suffices to show that

h‖v‖2
2 + h− 2 ≥ 0 and 1

‖v‖2 − h ≥ 0.

1.

h ≤ 1

‖v‖2

≤ 1

1− r
(A.5)

2.

h‖v‖2
2 + h− 2 ≥ h(1− r)2 + h− 2

(a)
≥ (1− r) +

1

1− r
− 2 =

1

1− r
− r − 1 > 0 (A.6)

(a) We can obtain the inequality by plugging Equation (A.5).

Therefore, we can conclude that h ≤ 1
1−r .

Lemma A.2 (Lemma 4.1 in [46]). Let v? ∈ RP be a sparse vector such that

‖v?‖0 ≤ s?, and Hs(·) : RP → RP be the hard thresholding operator. Given

s > s?, for any vector v ∈ RP , we have

‖Hs(v)− v?‖2
2 ≤ (1 +

2
√
s?√

s− s?
)‖v − v?‖2

2 (A.7)

Lemma A.3. Assume that ‖v−v?‖2 ≤ r and ‖v?‖0 ≤ s?. Let the projection

operator to the set CV defined in Section A.1 be ΠCV : RP → RP , then

‖ΠCV(v)− v?‖2
2 ≤ ρ‖v − v?‖2

2 (A.8)

where ρ ≤ 1
1−r

(
1 + 2

√
s?√

s−s?

)
.

Proof. Combining Lemma A.1 and A.2, we arrive at the above conclusion.
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A.2 Projection to CA

To project to the convex set CA, we use alternating projection methods.

Step 1: Project ãk to the hypercube [b, c]T

Step 2: Project to the ellipsoid by solving the following constrained

optimization problem.

arg min
y

‖ãk − y‖2
2

subject to

y>G−1y ≤ γ (A.9)

Let G−1 = PΣPT , where P is unitary matrix, ũk = P>ãk, and z = P>y.

Since P is unitary, ‖ãk−y‖2
2 = ‖P>(ãk−y)‖2

2 = ‖ũk−z‖2
2. This optimization

function is equivalent to the following

arg min
z
‖ũk − z‖2

2

subject to

z>Σz ≤ γ (A.10)

Now, let w = Σ
1
2 z. Then, we could rewrite the objective function (A.10) as

arg min
w

‖ũk −Σ−
1
2 w‖2

2

subject to

w>w ≤ γ (A.11)

Let the corresponding Lagrangian function be L(w, λ) = ‖ũk −Σ−
1
2 w‖2

2 +

λ(w>w − γ). ∇wL = 0 implies that w = (λI + Σ−1)−1Σ−
1
2 ũk. By KKT,

if ã>k G−1ãk ≤ γ, then y∗ = ãk. Otherwise, w>w = γ. This implies that∑
t

ũ2k,tσi

(1+λσi)2
= γ, where σi is the i-th diagonal entry of the matrix Σ. Using

the second-order Taylor expansion, we could write
∑

t

ũ2k,tσi

(1+λσi)2
= γ as

3λ2
∑

σ3
t ũ

2
k,t − 2λ

∑
σ2
t (ũk,t)

2 +
∑

σt(ũk,t)
2 − γ = 0 (A.12)

Then, finding λ is equivalent as finding the roots of the above polynomial

function. Then plug λ into y = PΣ−1(λI + Σ−1)−1P>ãk.
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Step 3: If the projection does not satisfy the box constraints, then repeat

Step 1 and Step 2 until a feasible point is found.

In practice, we find that most of the time, one iteration of alternating

projections already satisfies both constraint.
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APPENDIX B

PROOF OF THEOREM 3.1

B.1 Proof of Lemma 3.1

Preliminaries

1.

∇V fN(V,A) =
2

T

T∑
t=1

∇`N,t(V diag(at)V
>)V diag(at)

=
2

T

T∑
t=1

∇`N,t(Σt)V diag(at) (B.1)

2.

〈∇V fN(V,A),V −V?R〉 =
2

T

T∑
t=1

〈∇`N,t(Σt)V diag(at),V −V?R〉

=
2

T

T∑
t=1

〈∇`N,t(Σt),V diag(at)V
> −V?R diag(at)V

>〉 (B.2)

3.

∇atfN(V,A) =
1

T
d̂iag

(
V>∇`N,t(Σt)V

)
∈ RK ∀t ∈ [T ] (B.3)

d̂iag : RK×K → RK extracts the diagonal entries and vectorize them

4.

〈diag(∇at`N,t), diag(at)−R> diag(a?t )R〉

=
1

T
〈V>∇`N,t(Σt)V, diag(at)−R> diag(a?t )R〉
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=
1

T
〈∇`N,t(Σt),V diag(at)V

> −VR> diag(a?t )RV>〉 ∀t ∈ [T ]

(B.4)

Proof. Let

Z =

[
V

A>

]
Z+ =

[
V+

A+>

]
Z? =

[
V?

A?>

]

dist2(Z+,Z?)

=
T∑
t=1

min
R+
t

‖V+ −V?R+>
t ‖2

F + ‖ diag(a+
t )−R+>

t diag(a?t )R
+
t ‖2

F

(a)
≤

T∑
t=1

‖V+ −V?Rt‖2
F + ‖ diag(a+

t )−R>t diag(a?t )Rt‖2
F

=
T∑
t=1

‖ΠCV(V − ηV∇V fN)−V?Rt‖2
F

+
T∑
t=1

‖ diag (ΠCA(at − ηA∇at`N,t))−R>t diag(a?t )Rt‖2
F

(b)
≤ ρ

T∑
t=1

{
‖V − ηV∇V fN −V?Rt‖2

F

+ ‖ diag(at)− diag(ηA∇at`N,t)−R>t diag(a?t )Rt‖2
F

}
(c)
= ρ dist2(Z,Z?) +

η2ρ

T 2

T∑
t=1

‖∇vfN‖2
F︸ ︷︷ ︸

B1

+ η2ρ
T∑
t=1

‖ diag(∇at`N,t)‖2
F︸ ︷︷ ︸

B2

− 2ρη

T

T∑
t=1

〈∇vfN ,V −VRt〉︸ ︷︷ ︸
A1

− 2ρη
T∑
t=1

〈diag(∇at`N,t), diag(at)−R>t diag(a?t )Rt︸ ︷︷ ︸
A2

〉 (B.5)

(a) Rt is the optimal solution in previous step. (b) Assume that the V? lies

in the constraint set CV, by the Lemma A.2, we could obtain the above upper

bound. By the non-expansive property of projection to convex sets we could
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obtain the upper bound of the second term. Since we can select ρ ≥ 1, we

could further multiply the second term by ρ. (c) By the assumption that

ηV = η
T

and ηA = η, we get the above equality.

B1 =
η2ρ

T 2

T∑
t=1

∥∥∥∥∥ 2

T

T∑
t′=1

∇`N,t′(Σt′)V diag(at′)

∥∥∥∥∥
2

F

=
η2ρ

T

∥∥∥∥∥ 2

T

T∑
t′=1

∇`N,t′(Σt′)V diag(at′)

∥∥∥∥∥
2

F

(a)
≤ 4ρη2

T 2

T∑
t=1

‖∇N,t(Σt)V diag(at)‖2
F

=
4ρη2

T 2

T∑
t=1

‖ (∇`N,t(Σt)−∇`N,t(Σ?
t ) +∇`N,t(Σ?

t )) V diag(at)‖2
F

≤ 4ρη2

T 2

T∑
t=1

‖ (∇`N,t(Σt)−∇`N,t(Σ?
t ) +∇`N,t(Σ?

t )) ‖2
F‖V diag(at)‖2

2

(b)
≤ 8ρη2

T 2

T∑
t=1

(
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F + ε2

stat

)
‖V‖2

2‖ diag(at)‖2
2 (B.6)

(a) The ineqaulity is obtained by Cauchy-Schwarz inequality. (b) We arrive

at the following inequality by the fact that ‖∇`N,t(Σ)t‖F ≤ εstat.

B2 =
ρη2

T 2

T∑
t=1

∥∥∥d̂iag(V>∇N,t(Σt)V)
∥∥∥2

2

≤ ρη2

T 2

T∑
t=1

‖V>∇`N,t(Σt)V‖2
F

≤ ρη2

T 2

T∑
t=1

‖∇`N,t(Σt)‖2
F‖VV>‖2

2

=
ρη2

T 2

T∑
t=1

‖∇`N,t(Σt)−∇`N,t(Σ?
t ) +∇`N,t(Σ?

t )‖2
F‖V‖2

2‖V‖2
2

≤2ρη2

T 2

T∑
t=1

(
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F + ε2

stat

)
‖V‖2

2‖V‖2
2 (B.7)

B = B1 +B2
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(a)
≤ 4ρη2

T 2

T∑
t=1

(
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F + ε2

stat

) (
4‖ diag(at)‖2

2 + ‖V‖2
2

)
(b)
≤ 16ρη2

T 2

T∑
t=1

(
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F + ε2

stat

) (
‖ diag(at)‖2

2 + ‖V‖2
2

)
=

16ρη2

T 2

T∑
t=1

(
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F + ε2

stat

)
‖Zt‖2

2

(a) This is because ‖V‖2 = ‖V−V?+V?‖2 ≤ ‖V−V?‖F +‖V?‖2 ≤ r+1 ≤ 2.

(b) We can upper bound the equation by the fact that ρ ≥ 1.

A = A1 + A2

(a)
=

4ρη

T

T∑
t=1

〈∇`N,t(Σt)V diag(at),V −V?Rt〉

+
2ρη

T

T∑
t=1

〈V>∇`N,t(Σt)V, diag(at)−R>t diag(a?t )Rt〉

=
4ρη

T

T∑
t=1

〈∇`N,t(Σt),V diag(at)V
> −V?Rt diag(at)V

>〉

+
2ρη

T

T∑
t=1

〈∇`N,t(Σt),V diag(at)V
> −VR>t diag(a?t )RtV

>〉

=
2ρη

T

T∑
t=1

〈∇`N,t(Σt)−∇`N,t(Σ?
t ),Σt −Σ?

t 〉︸ ︷︷ ︸
(A11)

+
2ρη

T

T∑
t=1

〈∇`N,t(Σ?
t ),Σt −Σ?

t 〉︸ ︷︷ ︸
(A12)

+
4ρη

T

T∑
t=1

〈∇`N,t(Σt), (

∆V︷ ︸︸ ︷
V −V?Rt)

∆at︷ ︸︸ ︷
(diag(at)−R>t diag(a?t )Rt) V>〉︸ ︷︷ ︸

(A13)

+
2ρη

T

T∑
t=1

〈∇`N,t(Σt),

∆V︷ ︸︸ ︷
(V −V?Rt) diag(a?t )R

∆V>︷ ︸︸ ︷
(V −V?Rt)

>〉︸ ︷︷ ︸
(A14)

(B.8)

(a) A1 = 2ρη
T

∑T
t=1〈

2
T

∑T
t′=1∇N,t′(Σt′)V diag(at′),V −V?Rt〉. Without loss
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of generality, we assume that {Rt}t∈T are the same across t, then with little

abuse of notation A1 = 4ρη
T

∑T
t=1〈∇N,t(Σt)V diag(at),V −V?Rt〉.

By Theorem 2.1.12 in [47], we could obtain the following lower bound of

A11

A11 ≥ 2ρη

T

T∑
t=1

(
Lµ

L+ µ
‖Σt −Σ?

t‖2
F +

1

L+ µ
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F

)
(B.9)

A12 ≥ −2ρη

T

T∑
t=1

|〈∇`N,t(Σ?
t ),Σt −Σ?

t 〉|

≥ −2ρη

T

T∑
t=1

εstat‖Σt −Σ?
t‖F ≥ −

2ρη

T

T∑
t=1

ε2
stat

2e1

+
e1

2
‖Σt −Σ?

t‖2
F

(B.10)

The inequlity is obtained by Young’s inequality, where e1 > 0.

A13 ≥ −4ρη

T

T∑
t=1

|〈∇`N,t(Σt),∆V∆atV
>〉|

≥ −4ρη

T

T∑
t=1

{
|〈∇`N,t(Σ?

t )V∆at,∆V〉|

+ |〈(∇`N,t(Σt)−∇`N,t(Σ?
t )) V∆at,∆V〉|

}
≥ −4ρη

T

T∑
t=1

‖∇`N,t(Σ?
t )V∆at‖F‖∆V‖F

+ ‖ (∇`N,t(Σt)−∇`N,t(Σ?
t )) V∆at‖F‖∆V‖F

≥ −4ρη

T

T∑
t=1

(εstat + ‖∇`N,t(Σt)−∇`N,t(Σ?
t )‖F )‖V‖2‖∆at‖F‖∆V‖F

(a)
≥ −4ρη

T

T∑
t=1

(εstat + ‖∇`N,t(Σt)−∇`N,t(Σ?
t )‖)d2(Zt,Z

?
t )

(b)
≥ −4ρη

T

T∑
t=1

1

e2

(
ε2
stat + ‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F

)
− 4ρη

T
e2

T∑
t=1

r2d2(Zt,Z
?
t ) (B.11)
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(a) ‖V‖2‖∆at‖F‖∆V‖F ≤ 2‖∆at‖F‖∆V‖F , because ‖V‖2 ≤ 1+r ≤ 2. Note

that 2‖∆V‖F‖∆at‖F ≤ d2(Zt,Z
?
t ), and therefore ‖V‖2‖∆at‖F‖∆V‖F ≤

d2(Zt,Z
?
t ). (b) This is by Young’s inequality, where e2 > 0. Further-

more, we have (εstat + ‖∇`N,t(Σt)−∇`N,t(Σ)?t‖F )2 ≤ 2(ε2
stat + ‖∇`N,t(Σt)−

∇`N,t(Σ)?t‖2
F ), and d2(Zt,Z

?
t ) ≤ 2r2.

A14 ≥ −2ρη

T

T∑
t=1

|〈∇`N,t(Σt),∆V diag(a?t )R∆V>〉|

≥ −2ρη

T

T∑
t=1

(εstat + ‖∇`N,t(Σt)−∇`N,t(Σ?
t )‖)‖ diag(a?t )‖2‖∆V‖2

F

(a)
≥ −2ρη

T

T∑
t=1

1

e3

(ε2
stat + ‖∇`N,t(Σt)

−∇`N,t(Σ?
t )‖2

F )− 2ρη

T

T∑
t=1

1

2
e3c

2r2d2(Zt,Z
?
t ) (B.12)

(a) This is by Young’s inequality, where e3 > 0. Furthermore, we have

‖a?t‖2 ≤ c and ‖∆V‖2
F ≤ r‖∆V‖F and ‖∆V‖2

F ≤ d2(Zt,Z
?
t ).

A ≥ 2ρη

T

T∑
t=1

(
Lµ

L+ µ
− e1

2
)‖Σt −Σ?

t‖2
F

− 4ρηe2

T

T∑
t=1

r2d2(Zt,Z
?
t )−

ρηe3

T
c2r2

T∑
t=1

dist2(Zt,Z
?
t )

− 2ρη

T
ε2
stat

T∑
t=1

(
1

2e1

+
2

e2

+
1

e3

)

+
2ρη

T

T∑
t=1

(
1

L+ µ
− 2

e2

− 1

e3

)
‖∇`N,t(Σt)−∇`N,t(Σ?

t )‖2
F (B.13)

Combining A and B we get

A−B ≥ ρη

T

T∑
t=1

(
2
Lµ

L+ µ
− e1

)
︸ ︷︷ ︸

C1

‖Σt −Σ?
t‖2
F

− ρ

T
ε2
stat

T∑
t=1

(
η

e1

+
4η

e2

+
2η

e3

+ 16
η2

T
‖Zt‖2

2

)
︸ ︷︷ ︸

C2
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+
ρ

T

T∑
t=1

(
2η

L+ µ
− 4η

e2

− 2η

e3

− 16
η2

T
‖Zt‖2

2

)
︸ ︷︷ ︸

C3

‖∇`N,t(Σt)−∇`N,t(Σ?
t )‖2

F

− ηρ

T

(
4e2 + e3c

2
)
r2 dist2(Z,Z?) (B.14)

where e1, e2 > 0. Now, we choose e1 = Lµ
2(L+µ)

e2 = 4(L + µ), e3 = 4(L +

µ). Now, C1 = 3Lµ
2(L+µ)

and C3 is η
2(L+µ)

− 16η
2

T
‖Zt‖2

2. We want C3 to be

nonegative so that we could drop this term, we require η ≤ mint
T

32(L+µ)‖Zt‖22
.

By Lemma B.1, and therefore we can conclude that Lµ
L+µ

∑T
t=1 ‖Σt −Σ?

t‖2
F ≥

Lµ
(L+µ)ξ2

dist2(Z,Z?). If r2 ≤ Lµ
4(L+µ)2(4+c2)ξ2

, then

A−B ≥ ρη

T

Lµ

2ξ2(L+ µ)
dist2(Z,Z?)

− ε2
stat

ρη

T

T∑
t=1

(
2(L+ µ)

Lµ
+

3

2(L+ µ)
+ 16

η

T
‖Zt‖2

2

)
︸ ︷︷ ︸

D1

(B.15)

D1
(a)
≤ ρηε2

stat

(
2(L+ µ)

Lµ
+

3

2(L+ µ)
+

1

2(L+ µ)

)
≤ ρη

3(L+ µ)

Lµ
ε2
stat

(B.16)

(a) By η ≤ mint
T

32(L+µ)‖Zt‖22
.

Plugging Equation (B.15) into Equation (B.5), we can obtain the following

ρ

(
1− ηLµ

2Tξ2(L+ µ)

)
︸ ︷︷ ︸

β

dist2(Z,Z?) + ρη
3(L+ µ)

Lµ
ε2
stat ≥ dist2(Z+,Z?) (B.17)

Here completes the proof.

B.2 Proof of Lemma 3.2

Proof.

‖Zt‖2 =

∥∥∥∥∥
[

V

diag(at)

]
−

[
V?Rt

R>t diag(a?t )Rt

]
+

[
V?Rt

R>t diag(a?t )Rt

]∥∥∥∥∥
2
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≤

∥∥∥∥∥
[

V

diag(at)

]
−

[
V?Rt

R>t diag(a?t )Rt

]∥∥∥∥∥
2

+ ‖Z?
t‖2

≤
√

2r + ‖Z?
t‖2

(a)
≤
√

2σK(Σ?
t )

8
+ ‖Z?

t‖2

(b)
≤
√

2 + 8

8
‖Z?

t‖2 (B.18)

(a) r ≤ σK(Σ?
t )
√
Lµ

2(L+µ)
√

4+c2
√

1+(σK(Σ?
t )+3c)2

, where L = µ = 1 in our case. Using the

fact that
√
Lµ ≤ 1

2
(L + µ), we can obtain r ≤ σK(Σ?

t )

8
. (b) Since ‖Z?

t‖2 ≥
σK(Σ?

t ), we can obtain the inequlity.

‖Z0
t‖2 =

∥∥∥∥∥
[

V0

diag(a0
t )

]
−

[
V?Rt

R>t diag(at)Rt

]
+

[
V?Rt

R>t diag(at)Rt

]∥∥∥∥∥
2

≥ −

∥∥∥∥∥
[

V0

diag(a0
t )

]
−

[
V?Rt

R>t diag(a?t )Rt

]∥∥∥∥∥
2

+ ‖Z?
t‖2

≥−
√

2r + ‖Z?
t‖2

≥−
√

2σK(Σ?
t )

8
+ ‖Z?

t‖2

≥8−
√

2

8
‖Z?

t‖2 (B.19)

Combining Equations (B.18) and (B.19), we could obtain

‖Zt‖2 ≤
8 +
√

2

8−
√

2
‖Z0

t‖2 (B.20)

This implies that ‖Zt‖2
2 ≤ 2‖Z0

t‖2
2. Therefore

min
t

T

32(L+ µ)‖Zt‖2
2

≥ min
t

T

64(L+ µ)‖Z0
t‖2

2

(B.21)

η suffices to satisfy η ≤ mint
T

64(L+µ)‖Z0
t ‖22

.

37



B.3 Proof of Corollary 3.1.1

Proof.

‖Σi
t −Σ?

t‖F ≤ ‖(Vi diag(ait)−V? diag(a?t )R)R>V?>‖F
+ ‖Vi diag(ait)(V

i −V?R)>‖

≤
(
‖Vi‖2‖ diag(ait))‖2 + ‖ diag(a?t )‖2

)
‖V −V?R‖F

+ ‖Vi‖2‖ diag(ait)−R> diag(a?t )R‖F

≤
(

1

2
‖Zi

t‖2
2 + ‖ diag(a?t )‖2

)
‖V −V?R‖F

+ ‖Vi‖2‖ diag(ait)−R> diag(a?t )R‖F
≤ Q

(
‖V −V?R‖F + ‖ diag(ait)−R> diag(a?t )R‖F

)
(B.22)

where Q = maxt
1
2
‖Zi

t‖2
2 + ‖Z?

t‖2. Therefore

T∑
t=1

‖Σi
t −Σ?

t‖2
F ≤ 2Q2 dist2(Zi,Z?)

≤ 2Q2

(
βi dist2(Z0,Z?) + ρη

3(L+ µ)

Lµ
ε2
stat

)
(B.23)

B.4 Proof of Lemma B.1

First we show that the following inequality holds.

Lemma B.1.

dist2(Z,Z?) ≤ ξ2

T∑
t=1

‖Σt −Σ?
t‖2
F (B.24)

where ξ2 = mint∈[T ]

((
1

σK(Σ?
t )

)2

+
(

1 + 3 c
σK(Σ?

t )

)2
)

With Lemma B.1 in hand, we could rewrite
∑T

t=1 ‖Σt −Σ?
t‖2
F in terms of

the distance metric dist2(Z,Z?) and then show the contraction of dist2(Z,Z?)

through iterates.
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Proof.

‖Σt −Σ?
t‖F ≥ ‖V?R

(
diag(at)−R> diag(a?t )R

)
R>V?>‖F

− ‖V diag(at)V
> −V? diag(at)V

?>‖F
(a)
≥ ‖ diag(at)−R> diag(a?t )R‖F − c‖VV> −V?V?>‖F (B.25)

(a) V∗R is an unitary matrix. By the unitary invariance property of the

Frobenious norm, we have ‖V?R
(
diag(at)−R> diag(a?t )R

)
R>V?>‖F =

‖ diag(at)−R> diag(a?t )R‖F .

Equation (B.25) implies that ‖ diag(at)−R> diag(a?t )R‖F ≤ ‖Σt−Σ?
t‖F +

c‖VV> −V?V?>‖F . Furthermore

‖VV> −V?V?>‖F ≤ (‖V‖2 + ‖V?‖2)‖V −V?R‖F
(a)
≤ (2 + r)‖V −VR‖2

F (B.26)

(a) The inequlity is obtained by the fact that ‖V−V?‖2 ≤ r and ‖V?‖2 = 1.

By Lemma 3 in [48], we could obtain the following inequality

‖Σt −Σ?
t‖2
F ≥ σK(Σ?

t )‖V
√

diag(at)−V?
√

diag(at)?Rt‖2
F (B.27)

‖V
√

diag(at)−V?
√

diag(at)?Rt‖2
F =

K∑
k=1

∥∥∥∥√ak,tvk −√a?ψRt (k),tv
?
ψRt (k)

∥∥∥∥2

2

= σK(Σ?
t )

K∑
k=1

∥∥∥∥∥∥
√

ak,t
σK(Σ?

t )
vk −

√
a?ψRt (k),t

σK(Σ?
t )

v?ψRt (k)

∥∥∥∥∥∥
2

2

(a)
≥ σK(Σ?

t )
K∑
k=1

∥∥∥∥∥∥ΠCB

(√
ak,t

σK(Σ?
t )

vk

)
− ΠCB

√a?ψRt (k),t

σK(Σ?
t )

v?ψRt (k)

∥∥∥∥∥∥
2

2

(b)
= σK(Σ?

t )
K∑
k=1

∥∥∥vk − v?ψRt (k)

∥∥∥2

2
= σK(Σ?

t )‖V −V?Rt‖2
F (B.28)

where ΠCB denotes the projection to the unit norm ball, σK(Σ?
t ) denotes

the K-th largest singular value of Σ?
t , ψRt(·) denotes the permutation func-
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tion associated with the permutation matrix Rt
1. (a) The inequality is

obtained by the non-expansive property of projection to the convex set.

(b) Since ‖vk‖2, ‖v?k‖2 are 1 for all k ∈ [K], and
√

ak,t
σK(Σ?

t )
,
√

a?k,t
σK(Σ?

t )
are

greater than 1 for all k ∈ [K], t ∈ [T ], then ΠCB

(√
ak,t

σK(Σ?
t )

vk

)
= vk and

ΠCB

(√
a?
ψRt

(k),t

σK(Σ?
t )

v?ψRt (k)

)
= v?k for all k ∈ [K], t ∈ [T ].

Combining Equations (B.27) and (B.28), we can conclude that

‖V −V?R‖F ≤ min
t∈[T ]

1

σK(Σ?
t )
‖Σt −Σ?

t‖F (B.29)

Therefore

dist2(Z,Z?) =
T∑
t=1

min
Rt∈P(K)

‖V −V?Rt‖2
F + ‖ diag(at)−R>t diag(a?t )Rt‖2

F

≤ min
t∈[T ]

((
1

σK(Σ?
t )

)2

+

(
1 + (2 + r)

c

σK(Σ?
t )

)2
)

T∑
t=1

‖Σt −Σ?
t‖2
F

≤ min
t∈[T ]

((
1

σK(Σ?
t )

)2

+

(
1 + 3

c

σK(Σ?
t )

)2
)

T∑
t=1

‖Σt −Σ?
t‖2
F (B.30)

1Note that in Lemma 4.3 we use σR(·) to denote the permutation function with
corresponding permutation matrix R. Here we replace σR(·) with ψR(·) to distinguish
between the top-K singular value of the matrix σK(·).
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APPENDIX C

PROOF OF THEOREM 4.1

C.1 Proof of Theorem 4.1

Proof.

dist2(Z,Z?) = min
Rt∈P(K)
∀t∈[T ]

T∑
t=1

[
‖V −V?Rt‖2

F + ‖ diag(at)−R>t diag(a?t )Rt‖2
F

]
(a)
≤ T

2(
√

2− 1)
‖VV> −V?V?>‖2

F︸ ︷︷ ︸
S1

+ min
Rt∈P(K)
∀t∈[T ]

T∑
t=1

‖ diag(at)−R>t diag(a?t )Rt‖2
F

(b)
≤ S1 + 2

T∑
t=1

[
‖Σ?

t‖2
2‖‖VV> −V?V?>‖2

F + 2K‖SN,t −Σ?
t‖2

2

]
(c)
≤ 4KT

2(
√

2− 1)g2
‖M−M?‖2

2 +
8K

g2

T∑
t=1

‖Σ?
t‖2

2‖M−M?‖2
2

+ 2K
T∑
t=1

‖SN,t −Σ?
t‖2

2

(d)
≤ 5KT

g2
‖M−M?‖2

2 +

(
8K

g2
T

T∑
t=1

‖Σ?
t‖2

2 + 2K

)
T∑
t=1

‖SN,t −Σ?
t‖2

2 (C.1)

(a) By Lemma 5.4 in [39], (b) is by Lemma 4.3, (c) is by Davis-Kahan

sin θ theorem (see Lemma 4.1), and (d) is by Cauchy-Schwarz inequality,

‖M−M?‖2
2 = ‖

∑T
t=1 SN,t −Σt‖2

2 ≤ T
∑T

t=1 ‖SN,t −Σt‖2
2.
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Let ζ = 8K
g2
T
∑T

t=1 ‖Σ?
t‖2

2 + 2K

dist2(Z,Z?) ≤ 5KT

g2
‖M−M?‖2

2 + ζ
T∑
t=1

‖SN,t −Σ?
t‖2

2 ≤ 2Tr2 (C.2)

It suffices to show that 5KT
g2
‖M−M?‖2

2 ≤ Tr2 and ζ
∑T

t=1 ‖SN,t −Σ?
t‖2

2 ≤
Tr2.

P
{

5K

g2
‖M−M?‖2

2 ≥ r2

}
= P

{
‖M−M?‖2 ≥

gr√
5K

}
(a)
≤ 2P exp

(
−n(gr)2

10Kc2(‖M?‖2 + gr√
5K

)

)
= 2P exp

(
−n(gr)2

10Kc2(‖ã?1‖1 + gr√
5K

)

)
(C.3)

(a) is by Bernstein’s concentration inequality (Corollary 6.20 in [40]).

Similarly

P

{
ζ

T∑
t=1

‖SN,t −Σ?
t‖2

2 ≥ Tr2

}
= P

{
T∑
t=1

‖SN,t −Σ?
t‖2

2 ≥
Tr2

ζ

}

≤ P

{
T⋃
t=1

{
‖SN,t −Σ?

t‖2
2 ≥

r2

ζ

}}
≤

T∑
t=1

P
{
‖SN,t −Σ?

t‖2
2 ≥

r2

ζ

}
(a)
≤ 2P

T∑
t=1

exp

(
−nr2

2ζc2(‖Σ?
t‖2 + r√

ζ
)

)
(b)
≤ 2PT exp

(
−nr2

2ζc2(‖ã?1‖1 + r√
ζ
)

)
(C.4)

Both (a), (b) is by ‖Σ?
t‖2 ≤ ‖M?‖2 ≤ ‖ã?1‖1.

P
{

dist2(Z0,Z?) ≤ 2Tr2
}

≥ P

{{
5KT

g2
‖M−M?‖2

2 ≤ Tr2

}⋂{
ζ

T∑
t=1

‖SN,t −Σ?
t‖2

2 ≤ Tr2

}}

= 1− P

{{
5K

g2
‖M−M?‖2

2 ≥ r2

}⋃{
ζ

T∑
t=1

‖SN,t −Σ?
t‖2

2 ≥ Tr2

}}

≥ 1− 2P exp

(
−n(gr)2

10Kc2(‖ã?1‖1 + gr√
5K

)

)
︸ ︷︷ ︸

S2

− 2PT exp

(
−nr2

2ζc2(‖ã?1‖1 + r√
ζ
)

)
︸ ︷︷ ︸

S3

(C.5)
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Therefore, to obtain the lower bound of dist2(Z,Z?) ≤ 2Tr2 with probability

at least 1− 2Tδ, it suffices to find the sample bound such that S2 ≤ Tδ and

S3 ≤ Tδ. Therefore, the sample size has to be at least larger than

n ≥ max

(
−

10Kc2(‖ã?1‖1 + gr√
5K

)

(gr)2
log

Tδ

4P
,−

2ζc2(‖ã?1‖1 + r√
ζ
)

r2
log

δ

4P

)
(C.6)

C.2 Proof of Lemma 4.2

Proof. Let V↑i = span(v1, . . . ,vi) and V?↓i = span(v?i , . . . ,v
?
P ). Then, V↑i ∩

V?↓i 6= ∅ because dim(V↑i∪V?↓i) > P . We can rewrite µi as µi = minx∈V↑i
‖x‖=1

x>Σ?x

µi = min
x∈V↑i
‖x‖=1

x>Σ?x ≤ min
x∈V↑i∩V?↓i

‖x‖=1

x>Σ?x

≤ max
x∈V↑i∩V?↓i

‖x‖=1

x>Σ?x ≤ max
x∈V?↓i
‖x‖=1

x>Σ?x = λ?i (C.7)

C.3 Proof of Lemma 4.3

Proof. Let u and v be two vectors with norm 1.

min
σR(·)∈SP

K∑
k=1

|v>k Σvk − λσ(k)(Σ
?)|2

= min
σR(·)∈SP

K∑
k=1

|v>k Σ?vk + v>k Evk − λσ(k)(Σ
?)|2

≤ min
σR(·)∈SP

2
K∑
k=1

|µk − λσ(k)(Σ
?)|2 + 2

K∑
k=1

|v>k Evk|2

≤ 2
K∑
k=1

|λ?k − µk|2 + 2
K∑
k=1

|v>k Evk|2
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(a)
≤ 2

∣∣∣∣∣
K∑
k=1

(λ?k − µk)

∣∣∣∣∣
2

+ 2
K∑
k=1

∣∣v>k Evk
∣∣2

= 2|〈Σ,V?V?> −VV>〉|2 + 2
K∑
k=1

∣∣v>k Evk
∣∣2

≤ 2‖Σ‖2
2‖V?V?> −VV>‖2

F + 2
K∑
k=1

λ2
k(E) (C.8)

(a) The minimum of all permutation matrix is smaller than the permutation

of ordering the eigenvalues from largest to smallest. By Lemma 4.2, we know

that λ?k − µk ≥ 0, ∀k ∈ [K].
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APPENDIX D

FINDING PERMUTATION MATRICES

In the case where K is large, finding the permutation matrix becomes com-

putational expensive and requires searching for K factorial possible solutions.

In this case, we could relax the optimization problem (2.3) to the following

dist2(Z,Z?) =
T∑
t=1

min
Rt∈D(K)

{
‖V−V?Rt‖2

F + ‖ diag(at)−R>t diag(a?t )Rt‖2
F

}
(D.1)

where D(K) is the set of K × K doubly stochastic matrices. Note that

Equation (D.1) is a constrained convex optimization problem and could be

solved in polynomial time. After finding {Rt}t∈[T ], we could decompose the

doubly stochastic matrices to positive convex combinations of permutation

matrices by Birkhoff–von Neumann theorem. Then, we select the permutation

matrix with largest coefficient.
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