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Abstract 

 Microbiome analysis is garnering much interest with benefits including improved 

treatment options, enhanced capabilities for personalized medicine, greater understanding of 

the human body, and contributions to ecological study. Data from these communities of 

bacteria, viruses, and fungi are feature rich, sparse, and have sample sizes not appreciably 

larger than the feature space, making analysis challenging and necessitating a coordinated 

approach utilizing multiple techniques alongside domain expertise. This thesis provides an 

overview and comparative analysis of these methods, with a case study on cirrhosis and hepatic 

encephalopathy demonstrating a selection of methods. Approaches are considered in a 

medically motivated context where relationships between microbes in the human body and 

diseases or conditions are of primary interest, with additional objectives being the identification 

of how microbes influence each other and how these influences relate to the diseases and 

conditions being studied. These analysis methods are partitioned into three categories: 

univariate statistical methods, classifier-based methods, and joint analysis methods. Univariate 

statistical methods provide results corresponding to how much a single variable or feature 

differs between groups in the data. Classifier-based approaches can be generalized as those 

where a classification model with microbe abundance as inputs and disease states as outputs is 

used, resulting in a predictive model which is then analyzed to learn about the data. The joint 

analysis category corresponds to techniques which specifically target relationships between 

microbes and compare those relationships among subpopulations within the data. Despite 

significant differences between these categories and the individual methods, each has 

strengths and weaknesses and plays an important role in microbiome analysis.   
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Chapter 1: Introduction 

 The study of microbes inhabiting the human body represents a new frontier in medicine 

with anticipated benefits in personalized medicine, pulmonology, and obstetrics among others 

[1]–[3]. Multiple microbial communities are present in various parts of the body, with different 

areas containing their own microbiomes (e.g. intestine, lungs, skin, mouth). Despite not 

consisting of human cells, the microbes are essential for the proper function of the human 

body. A multitude of factors including diseases, diet, medication, and genetics can affect the 

compositions of the various microbiomes throughout a person [4], [5]. Numerous techniques 

have been employed to investigate the relationships between these factors and microbiome 

composition, ranging from simple diversity comparisons to metagenomic studies involving the 

genetic makeup of the microbes present [6]. Efforts utilizing a combination of univariate 

statistical methods, supervised and unsupervised learning techniques, and other multivariate or 

joint analysis approaches are necessary to tackle the challenges presented by microbiome data 

which is often feature rich and sparse with limited sample sizes [7].  

 The development of techniques and procedures for microbiome analysis presents a 

unique challenge with a wide variety of potential benefits, both short and long term. Including 

microbiome analysis as a standard component of disease study can allow for a more detailed 

understanding of the underlying mechanisms and potentially result in improvements to existing 

treatment protocols. Additionally, microbial information may provide more details on the long-

term effects of current medications and therapies. Precision medicine appears to also be a 

promising beneficiary of improvements to microbiome study due to the personalized nature of 
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the microbiome. With improved collection and sequencing capabilities contributing to an 

increase in available microbiome data, it is more important than ever to understand and be 

informed about the methods available to analyze microbiomes and their connections to 

diseases.  In conjunction with the aforementioned medical advances enabled by improved 

microbiome analysis techniques, other scientific fields involving microbiome study may benefit 

from such work.  

 Analysis methods used for microbiome study can be separated into three general 

categories: univariate statistical methods, classifier-based methods, and joint analysis methods 

focused on microbe-to-microbe relationships. Univariate statistical methods involve the 

comparison of distributions of a single variable or feature among two or more subpopulations 

to determine how much they differ. Classifier-based approaches involve models designed to 

predict disease state based on microbe abundance, which are then analyzed to identify 

patterns in the data and important microbes. Joint analysis methods are those which 

specifically target relationships between microbes and provide insight through the comparison 

of these relationships across disease states. Variations among these microbe-to-microbe 

connections can then be interpreted to provide insights about the data and any underlying 

patterns. Despite significant differences in complexity between these categories and the 

individual methods, each has strengths and weaknesses and plays an important role in 

microbiome analysis.  

 This thesis describes and compares methods useful for the study of microbiomes and is 

structured in three main parts: background pertaining to microbiome study, discussion of 
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analysis methods, and a case study illustrating the application of a selection of methods. The 

overview and discussion of analysis methods is partitioned into three chapters addressing the 

univariate, classifier-based, and joint analysis methods. After these chapters the case study is 

presented on the study of liver disease and accompanying brain condition, cirrhosis and hepatic 

encephalopathy.   
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Chapter 2: Microbiome study background 

A human microbiome is a community or ecosystem of bacteria present in a specific part 

of the body. Microbiomes throughout the body are contributors to various functions including 

immune response, digestion, and brain function [8], [9]. These communities are constantly 

changing depending on the state of the host body (e.g. age, medical conditions) as well as 

environmental factors such as diet and medicine [9]. Microbiomes within a single person are 

not homogeneous as evidenced by findings that microbial communities from the same physical 

regions in different people are more similar than those from different regions within a single 

person [10]. Some commonly studied human microbiomes are the gut, mouth, genitals, skin, 

airway, placenta, and eye with most recent studies focusing on the gut [11]. This chapter 

addresses why microbiome study is important, basics of the initial steps for microbiome 

composition measurement, and key aspects of the data.  

2.1 Benefits of microbiome study 

The human body contains more microbes than it does human cells, with ratios ranging 

from 1.3:1 all the way to 2.3:1 [12].  These microbes are spread across various microbiomes 

throughout the body, including the digestive tract, skin, eyes, and lungs [11]. Although they 

may not genetically be part of the body, these microbiomes play a critical role in many 

functions and processes including ones related to illness and disease. 

Expanding the study of diseases to include effects on the microbiome can enable a more 

thorough understanding of how certain diseases work, and eventually how treatments can be 

improved. Studies of the lung microbiome have suggested that certain microbes in the airway 



5 
 

may contribute to breathing difficulties by causing inflammation [13]. Huang suggests that this 

type of information allows for the development of new therapies that may treat asthma by 

altering the composition of related microbiomes. Similarly, the gut microbiome has been 

identified as a potential factor related to type 2 diabetes, with some changes to microbe 

abundance already being observed when existing treatment procedures are used [14]. One 

instance of this discussed by Brunkwall and Orho-Melander is the drug metformin which results 

in discernable alterations to the microbiome composition, related to both its desired 

therapeutic effects as well as adverse side effects [14]. Going further, changing the balance 

between microbes through alternative therapies shows some promise but requires a clear 

understanding of how the microbiome affects the body’s normal functions, disease related 

functions, and other microbes.  

 In addition to the development of general therapies, a deeper understanding of the 

microbes present in humans can enable new techniques and treatments from the field of 

precision or personalized medicine. Even when considering a single disease or condition, it is 

generally understood that the same treatment may not be equally successful among all 

patients. One of the factors which appears to have an effect in determining which treatment 

options may work for certain patients is the composition of relevant microbiomes. 

Understanding how microbes interact with the immune system and respond to various 

therapies is necessary for accurate personalized medicine recommendations. For example, high 

levels of certain bacteria (Ruminococcus obeum and Roseburia intestinalis) correspond to 

patients who do not respond to certain cancer treatments, while the presence of other species 

(Bifidobacterium longum) relates to more positive outcomes [15]. Further delving into the 
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concepts of precision medicine, the constantly changing nature of microbiomes means that 

even for a single patient, analyzing the current state of their microbiota can allow for the 

determination of whether or not a particular treatment option will be likely to succeed at that 

time [16]. Kuntz and Gilbert assert that these insights may even be realized as patient-specific 

dosing that is dependent on metabolic processes supported by their microbiome as drug 

tolerance and effectiveness are some of the aspects which have already been linked to microbe 

levels [16].  

 Looking towards existing treatments, the long-term effects of current medicines are not 

always fully understood or known. Antibiotics are interesting to study from this perspective, as 

they are expected to have a direct impact on the viability of certain microbes. Studies have 

shown that the composition of the microbiome is impacted by antibiotics which may have been 

taken years prior, including increases in the observed levels of antibiotic-resistant genes [17]. 

Analyzing how the microbiome changes over time after certain treatments can help cultivate a 

more thorough understanding of how those treatments may alter the long-term health of the 

patient.   

 Complementing the treatment related benefits discussed above, improvements to 

collection and measurement techniques call for the development and expansion of microbiome 

analysis methods. One of the most commonly used methods is built around the sequencing of 

16S genes and allows for the characterization of the entire microbiome from a sample [5]. As 

measurement techniques continue to evolve and develop, it is important to have analysis 
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methods which can cope with and comprehend the large number of microbes detected – 

sometimes up to five times the number of samples present in the data [7].  

 Lastly, methodologies designed for the analysis of human microbiomes from a medical 

perspective may be useful in additional fields where microbiomes are present. These additional 

areas of study include analyses on how the oceans are changing and what impacts we can 

expect from climate change. As an example, scientists are studying how different coral 

environments and their microbiomes respond to increases in the temperature and acidity of 

the oceans [18]. Soil analysis is another area of study where the microbiome is being looked at 

as a key source of information. Researchers have found that microbe communities in Alaskan 

soil have certain antibiotic resistance properties [19]. Others are working to analyze the 

microbiomes present in the atmosphere as well as animals [20], [21]. As techniques are 

developed to address the difficulties present in analyzing human microbiomes, the sharing of 

these techniques outside of the medical world can enable advancements in other areas of 

microbiome investigation.  

 As discussed in this section, there are many reasons to be excited about the evolution of 

microbiome analysis methods in different fields. A strong understanding of the human 

microbiome is critical to gain a more complete picture of how the body reacts to sickness and 

medicine. This expanded understanding will enable progress in the medical field from 

improvements in the understanding of diseases and existing treatments to the development of 

entirely new therapies. It also supports the field of personalized or precision medicine and 
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makes use of the vast amount of data becoming available through new collection and 

preliminary analysis methods.  

2.2 Data overview 

To facilitate analysis, samples are taken from patients using a variety of methods 

depending on the microbiome being studied and then processed to determine the composition 

of the microbial community. As discussed by Morgan and Huttenhower, there are multiple 

processing methods which support the identification of microbes grouped by taxonomy, known 

as operational taxonomical units (OTUs) [22]. The most commonly used methods to generate 

OTU-based abundance data from patient samples are based on sequencing of marker genes 

such as 16S rRNA [23]. These OTUs are considered the features in relative abundance datasets.  

Once the OTUs have been identified, the microbiome composition data is structured 

into a relative abundance representation. Table 1 shows the format of a simple relative 

abundance table with sample identifiers in the first column, and subsequent columns 

containing relative abundance values for each OTU. The condensed table corresponds to a 

hypothetical dataset comprised of N OTUs and M samples. It is important to note that relative 

abundance values do not directly correspond to measured concentrations of the microbes. 

Instead they represent the proportion of the total microbes present in the sample which are a 

part of that taxonomical unit. Due to the values representing a proportion, the sum of relative 

abundance values from a single sample is one. To support more complex or disease-specific 

analysis, columns which contain clinical data or disease severity information may be added.  
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Table 1 Relative Abundance Data Format 

 <OTU 1 Name> … <OTU N Name> 

Sample 1 <Value> … <Value> 

… … … … 

Sample M <Value> … <Value> 

 

 One challenging aspect of the relative abundance data gathered from microbiomes is 

the large numbers of features relative to the sample size [7]. The numbers of samples and 

features (OTUs) for several human microbiome datasets are shown in Table 2. This multiplicity 

results in increased difficulty when analyzing the data as it becomes more likely for features to 

be unimportant or redundant [24].  

Table 2 Sample and OTU Counts for Multiple Microbiome Datasets [7], [25] 

Dataset Total Number of Samples Number of OTUs 

Costello Body Habitats 622 2741 

Costello Skin Sites 401 2227 

Costello Subject 144 1592 

Fierer Subject 101 565 

Fierer Subject x Hand 101 565 

Saboo Cirrhosis/HE 761 149 

 

 Although datasets such as those mentioned above contain many unique OTUs, the 

relative abundance tables often contain many zeros. Many of the OTUs identified appear only 

in a small subset of the samples [7], which compounds the previously discussed difficulties 

relating to the sample size and large feature space. This can be seen in Figure 1, generated from 

data used in the cirrhosis and hepatic encephalopathy case study.  
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Figure 1 Histogram of nonzero occurrence rates among features 

 The nature of microbiomes as more than just a collection of organisms significantly 

complicates this field of study and how data is analyzed. In actuality, the microbiome must be 

viewed as an entire ecosystem which includes both bacteria and host cells [26]. To effectively 

study any ecosystem, it is critical to acknowledge the interactions or relationships between 

components of that ecosystem and how different organisms within the environment affect 

each other [27]. As different methods for microbiome data analysis are evaluated, these 

challenges must be taken into consideration when identifying the positive and negative aspects 

of each approach.  
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Chapter 3: Univariate analysis 

 The methods described in this chapter allow for the comparison of sample populations 

to determine the probability that they have been taken from the same underlying population. 

In other words, these tests determine if two or more sample populations are significantly 

different from each other. As univariate methods, they are designed to be used for the 

comparison of distributions in one variable. When considering commonly used univariate 

approaches, the two distinctions which appear are whether the test is parametric and whether 

it is limited to two sample populations. Table 3 shows how the four methods discussed in this 

chapter compare in these two categories.  

Table 3 Comparison of Univariate Methods 

 Parametric Non-parametric 

Two populations T-test Wilcoxon 

More than two populations Analysis of variance (ANOVA) Kruskal-Wallis 

 

 The primary difference between parametric and non-parametric testing methods is that 

parametric tests require certain assumptions to be true about the distributions being studied. 

The parameters in a parametric test refer to the parameters of the population distribution, 

which implies the need to identify the distribution present before comparing samples. Although 

the selection of parameters adds complexity and requires assumptions, parametric tests tend 

to provide greater statistical power [28]. As a result, successful selection between parametric 

and non-parametric tests depends on a good understanding of the data and how well it satisfies 

the proposed assumptions.  
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3.1 Univariate methods 

 The t test is a two-sample parametric test used to determine if there is a significant 

difference between two populations. The primary assumption required for this test is that the 

distributions of the variable being compared are normal. Both directional and non-directional 

variants exist, and the choice between them depends on how much information is known about 

the variable and what type of testing hypothesis is desired. The generated t score statistic 

represents the distance between the two sample means in terms of standard deviation, with an 

additional factor to account for sample size. From this generated statistic a p value can be 

determined, which represents the probability of obtaining the observed data or something 

more extreme given that the null hypothesis and assumptions about population normality are 

true.  

 Analysis of variance, or ANOVA, testing expands parametric testing methods to studies 

with more than two sample distributions. Extending the normality assumption from the t test 

method, ANOVA’s normality assumption is that the variable being compared is normally 

distributed in each sample being compared. The F statistic generated is the analog to the t 

statistic generated by the t test. When interpreting results from ANOVA testing, this computed 

F statistic is compared to a critical F value corresponding to a preselected alpha value. 

Improvements and extensions have been proposed to ANOVA which allow it to be used more 

generally and address distributions beyond just the normal [29].  

 The non-parametric Wilcoxon test is used to compare two sample populations like the t 

test, but without the need for assumptions such as normal distributions within each sample. 
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This allows it to be used more broadly and even in cases where data is not numerical, as long as 

ordering of the data is still possible [28]. Similarly to the t test, a p value is generated which can 

then be used to determine if there is a significant difference between the two sample 

distributions. There are however some concerns with this method, particularly in terms of 

sensitivity to changes in variance and skew of the data [30]. Even with these concerns, the 

Wilcoxon test does provide results that compare favorably with other univariate methods in 

some situations such as data with large errors [31].  

 The Kruskal-Wallis test extends the Wilcoxon test in much the same way as ANOVA 

methods extend t testing to multiple variables. Using the same core concept of focusing on rank 

within the total set of data, this test avoids the assumption that the target variable is normally 

distributed. One important limitation of the Kruskal-Wallis method is that it detects differences 

based on the center of the distributions, and does not discern differences in spread or shape 

very well [32]. Despite these drawbacks, its ability to detect shifts between sample distributions 

combined with the lack of assumptions make it useful [33], [34].  

3.2 Univariate methods in the context of microbiome study 

 Due to their ease of use and straightforward concepts, univariate methods are used 

extensively in a number of fields. Often they are the starting point for analysis, as determining if 

differences or changes to a variable are significant between groups allows for more informed 

selection of additional analysis or experiments to perform. The closely linked area of genetic 

studies utilizes them for both preliminary and central analysis [35], [36]. Many microbiome 

studies rely on these techniques as a core part of data analysis, with a large focus on 
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determining whether significant differences in the abundance of certain microbes or groups of 

microbes are present when comparing healthy patients with those who have medical 

conditions [11], [37], [38].  

 Despite their extensive use as a part of microbiome study, there are several limitations 

which qualify their use in this field. The primary concern with univariate statistical methods is 

that they do not provide much information on interactions between microbes. Similarly, the 

combined effects of changes to groups of microbes may be missed unless efforts are taken to 

combine these methods with multivariate techniques. There are also concerns about 

compatibility between common univariate methods and relative abundance data due to 

independence assumptions which are violated due to relative abundance values from one 

sample being normalized to a sum of one [37]. Additionally, the need for statistical testing to be 

performed across more than one variable introduces issues related to multiple testing, 

requiring adjustments to significance and error values [39]. Univariate methods are useful for 

microbiome study, but it is important to consider them alongside more complex methods to 

ensure that statistical results reflect the full picture and that required assumptions are being 

satisfied.  
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Chapter 4: Classifier-based analysis 

4.1 Considering classifier-based approaches 

 As the primary goal when studying human microbiomes is to identify key aspects of the 

different features in the data, it may seem strange to consider classifiers which are usually used 

for the purpose of assigning labels or classes to new data based on known information from 

training data. Although this standard application of classifiers results in a predictive model 

which does not directly support the analysis of microbes within an ecosystem, interpreting it as 

a descriptive model allows for a more sophisticated understanding of the microbiome. By 

analyzing the model implicitly generated by the classifier, scientists can identify connections 

between the classes (e.g. disease, gender) being assigned and specific features (microbes or 

OTUs) from the dataset.  

 Classifiers also may be able to directly address some of the challenges identified earlier 

with respect to number of features and the sparse nature of microbiome relative abundance 

data. Utilizing classification methods that provide information on which features have a greater 

impact on the final label determination enables comparisons between these microbes and 

identification of the most interesting microbes for further study. Even without specific details 

about the precise influence each feature or microbe may have, providing a guideline of which 

aspects of the microbiome to focus on allows for more informed experiment design.  

 An additional attribute of classifiers which enables deeper insights when applied to 

microbiome study is that many classifiers allow for some degree of interaction between 

features. This means that the characteristics of certain microbe-to-microbe relationships may 
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be encoded in the classification model. While it may not always be possible to extract these 

characteristics explicitly, any feature importance information that is generated will implicitly 

consider the relationships between microbes mentioned earlier.  

 Classifiers have proved useful both within and outside of the microbiome analysis field 

in the past, which suggests that they are a viable category of methods that should be 

considered [7]. Within the area of microbiome study, some classifier-based analysis methods 

have been integrated as a part of the QIIME 2 platform to make the process more streamlined 

[40]. Looking beyond the scope of microbiomes, they have also been used with microarray data 

on gene expression levels [41], [42]. The following section describes and assesses popular 

classification techniques in the context of microbiome study.  

4.2 Classification methods 

 The techniques discussed in this section utilize a supervised learning approach where 

training data – with class labels – is used to generate a model. The model then predicts the class 

of unlabeled test data. These methods are considered supervised as they rely on the use of 

labeled training data as opposed to unsupervised approaches, such as clustering, where labels 

are not used. An overview of the technique as well as a discussion of how well the method 

addresses the challenges specific to microbiome analysis are provided for each classifier. 

Although not every classification approach can be discussed here, the selected ones are 

commonly used within the data science community.  
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4.2.1 K nearest neighbor 

 The k nearest neighbor (KNN) classifier assigns labels to test data based on the labels of 

the k nearest members of the training dataset. As such, it does not generate a model to 

represent the system being analyzed – the entirety of the test data can be considered the 

model. A visual example of the KNN classifier is shown in Figure 2 with colors representing the 

classes and circles for each point in the training data. The background color corresponds to the 

predicted class for test data at that location. Although the overall concept is straightforward, 

complications arise when attempting to select the optimal value for the k parameter [43].  

 

Figure 2 Example of k nearest neighbor classifier 

 To address the difficulty in determining the ideal value for k, several methods have been 

studied. One proposed approach is to perform the classification task multiple times with 

varying k values, and then combine the results to determine a final predicted label [44]. Taking 

a different approach, the concept of weighting the contributions from each neighbor based on 

distance has been introduced to reduce the sensitivity of KNN to the selected k value [45]. 

Attempts to select the k value based on the test data values have also shown improved 

classification accuracy when compared to the standard approach [46].  
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 The k nearest neighbor method has seen significant success across a variety of fields and 

is still evolving. Although it often provides a high level of classification accuracy, this method 

requires a significant amount of care when selecting a k value and distance metric. The large 

number of zeros present in microbiome data, as discussed in section 2.3, may result in 

mismatches unless additional feature selection methods are used in conjunction with this 

approach and the distance metric is selected carefully. Additionally, the lack of a distinct model 

being generated limits the amount of information that can be extracted about how microbes 

interact with each other and the health conditions being studied. Even with these limitations, a 

KNN classifier may be useful as a preliminary step to identify high-level patterns and provide an 

accuracy benchmark for other classification methods used in microbiome analysis.  

4.2.2 Support vector machines 

 Support vector machines (SVMs) are similar to the k nearest neighbor approach in that 

the end goal is a division of the feature space into regions corresponding to the classification 

labels. This is accomplished by attempting to find a hyperplane which separates the training 

data by class. As real-world data is often not separable, soft margin methods – which penalize 

but still allow for some misclassification of training data – are used [47]. One key difference 

between the SVM and KNN techniques is that SVM uses an analytical process to identify 

smooth boundaries between these regions while KNN does not perform analysis beyond 

inspecting the neighbors. This difference can be seen when comparing Figure 3 with Figure 2 in 

terms of edge smoothness and isolated pockets within larger regions. Although the original 

SVM method is designed for binary classification tasks, it has been extended to work for 
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multiclass problems via multiple binary classifiers with each class having its own in/out classifier 

[48], [49].  

 

Figure 3 Example of support vector machine 

 The main decision to be made when using an SVM is kernel choice. Commonly used 

kernels include linear, polynomial, and radial basis function although other options are 

sometimes employed [50]. The kernel choice problem is well studied with more automated 

methods being developed. Utilizing information about the dataset characteristics allows for 

kernels to be selected on a case by case basis without trial and error, as different kernel 

functions have been shown to be optimal for different datasets [50]. This process has been 

enhanced by the combination of kernels, resulting in the SVM method becoming increasingly 

flexible to different data patterns [51].  

 When considering SVMs for the task of microbiome analysis, one thing which stands out 

is the lack of feature selection in the process. Given that unimportant features can inhibit SVM 

performance, the optimal way to use one may be to pair it with a separate feature reduction 

method [7]. In the related field of microarray studies, SVMs with automatic kernel selection 
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have generated encouraging results which suggests that they may be useful for microbiome 

study [52].  

4.2.3 Random forest classifier 

 Random forest classifiers fall into the category of ensemble methods, where multiple 

classification models are created and then combined to generate a final model. In this case, the 

independent classification models are trees which represent a series of decisions based on 

different thresholds in the features. When implemented normally, the feature and value used 

to split at each level of the tree are selected using a greedy approach where the most 

discerning splits are used. When modifying this structure to generate the individual trees in a 

random forest classifier, the features available for the decision at each level are a randomly 

selected subset of all the features in the dataset. This allows for different trees to be generated, 

making it more likely that the model considers features which are sorted out by the greedy 

regression tree approach.  

 When assessing the benefits and drawbacks of random forest classifiers in the context 

of microbiome analysis, it is useful to see how they have been used in adjacent fields. In the 

field of gene expression study using microarray data, the random forest approach generated 

similar prediction accuracy and improved feature reduction when evaluated against 

comparable methods [53]. Two major benefits of the random forest approach when applied to 

microbiome data are that it allows for multiple features to jointly affect classification and 

produces feature importance results [54]. Feature importance provides insight into what is 

otherwise a complicated multi-tree model as it allows for the ranking of features based on their 
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importance for successful classification. Although these values do not directly represent 

statistical information like the results from principal component analysis might, they still allow 

for comparisons between features. As random forests can identify important features and 

implicitly handle relationships between these features, they are well-suited to the challenges 

and goals of microbiome analysis.   
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Chapter 5: Joint analysis 

5.1 Considering joint analysis methods 

 Despite the merits of the univariate and classification-based approaches discussed in 

the previous two chapters, they do not address some of the challenges identified in the study of 

microbiome data. In particular, these methods do not provide concrete information on how 

different microbes interact with and affect one another. This limitation is especially problematic 

as it has been shown that microbes have very significant effects on each other which can in turn 

affect the humans they inhabit [26]. Although some of the classification-based approaches 

allow for features to influence the ways in which other features impact the analysis results, 

they do not focus on comparing these feature to feature relationships. While the classification 

and univariate approaches may provide some information on which features are most 

important or have significant changes between disease groups, not knowing how these features 

are connected within the microbiome limits the degree of understanding that can be achieved. 

Gathering information on the connections between features in the data and comparing this 

information across multiple subpopulations can provide additional insight on how those groups 

differ and allow for analyses to utilize relationships between microbes.  

 These concerns can be tackled using joint analysis techniques which focus on 

interactions between features and provide quantifiable information on these interactions as a 

part of their results. By viewing the microbiome as a community instead of a collection of 

organisms which operate independently, researchers in the medical field will have an additional 

layer of information which can be utilized to design additional studies and experiments. As 
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microbiome composition plays an important role in the proper function of many parts of the 

human body, understanding the processes by which these compositions change in connection 

with different medical conditions and symptoms allows for a more accurate understanding of 

the underlying disease mechanisms. Relationships between microbes which may be uncovered 

through the employment of joint analysis techniques include varying degrees of symbiotic and 

competitive interactions.  

 Going one step further, certain joint analysis approaches can assist with the 

identification of joint probability distributions connecting microbe relationships and 

interactions with disease states in a probabilistic manner. As a result, doctors and researchers 

may be able to shift away from threshold-based techniques such as searching for elevated or 

depressed levels of certain key microbes and towards the recognition of patterns or 

abnormalities among multiple microbes viewed together. The consideration of joint 

distributions may also assist in the identification of patterns corresponding to groups of 

patients with distinct underlying characteristics who may have contrasting outcomes from the 

same treatments. Although not every joint analysis approach leads to a joint probability 

distribution, they do answer many of the same questions about the data and support progress 

toward the goal of identifying the joint probability distribution.  

5.2 Joint analysis methods 

 The techniques discussed in this section are centered around understanding how 

different features within the data influence each other and jointly affect the medical conditions 

being studied. When considering the approaches described below it is important to consider 
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what assumptions or requirements are present with each method and how they relate to the 

challenges described in section 2.3. The methods also provide different types of information, so 

selecting the most appropriate procedure for a particular investigation or analysis necessitates 

a clear understanding of both the desired information as well as what results can be obtained 

using each technique.  

5.2.1 Correlation studies 

 The most basic correlation studies are those which compute the correlation coefficients 

for pairs of features in the dataset. The primary goal of simple two-feature correlation analysis 

is to extract information about the relationship between each pair of features, with a  positive 

correlation coefficient indicating that when the value of one feature increases the other feature 

also tends to increase. In contrast, a negative correlation coefficient indicates that as the value 

of one feature increases the value of the other feature decreases. The absolute value indicates 

the strength of this association, with a zero correlation coefficient corresponding to a pair of 

features with no association. Although they are often considered together, both linear and non-

linear correlation coefficients can be used depending on the data characteristics.  

 When considering linear correlation measures, the Pearson correlation coefficient is a 

commonly used approach. The results obtained from linear methods such as the Pearson 

coefficient must be interpreted carefully to avoid coming to unsupported conclusions. More 

specifically, a low linear correlation does not guarantee that two features are not correlated as 

these approaches only analyze the data for linear associations [55]. Thus, it makes the most 
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sense to use this method alongside other non-linear approaches to ensure that important 

connections between features are not being missed.  

 Among non-linear correlation measures, the spearman coefficient is often used. As it is 

a rank-based method, a linear relationship between feature values is not required for strongly 

correlated features to be identified. By transforming the data from values which may not be 

linearly correlated into ranks which will always be linearly correlated if the variables are 

correlated, this method allows for linear correlation measures to then be used on the 

transformed data to determine non-linear correlation [56]. A similar approach can be taken 

which results in a subset of correlation methods based on nonlinear data transformations. 

These methods involve the transformation of nonlinear data into a space where the 

relationships are more linear, and then applying the Pearson linear correlation method 

discussed earlier [57]. As a whole, nonlinear methods allow for a broader application of 

correlation studies but require additional care when determining the optimal transformations 

or methods for a particular dataset.  

 Although the correlation analysis approaches discussed up to this point have been 

utilized in a variety of fields, they are constrained by the limitation of only being able to 

compare two features at a time. To allow for correlation studies to provide an understanding of 

the data based on multiple variables, multiple correlation techniques can be used. The general 

approach of this method is to perform a regression analysis for each feature in the data with 

the individual feature as the dependent variable and the remaining features as the independent 

variables, and compute the correlation between the predicted and actual values of that feature 
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[58]. From a statistical perspective, the computed multiple correlation corresponds to the 

proportion of the predicted feature’s variance which is explained by the other features [59]. 

Despite the restriction of having to consider each variable once at a time, multiple correlation 

allows for the determination of which features are most dependent on or independent from 

the other features present.  

 Correlation methods are specifically designed to analyze the relationships between 

different features in a dataset, but they are limited in the type of information they can provide 

and require separate analyses for each feature being considered. In the context of microbiome 

study, the sum-to-one nature of relative abundance data complicates the usage of correlation-

based methods as it results in a slight negative bias of the computed correlation coefficients. 

Even with these concerns and difficulty generalizing results to a joint distribution, correlation 

techniques may still prove to be beneficial when utilized in conjunction with other analysis 

methods.  

5.2.2 Principal component analysis 

 Principal component analysis (PCA) is often considered as solely a feature reduction 

method; however, the compositions of the resulting principal components provide key insights 

into how the features in the data relate to each other. Studying the variable loadings computed 

by PCA allows for the identification of features which appear to vary together as well as how 

the scales of those variations compare. The computed loadings also facilitate enhanced 

interpretation of subsequent analyses on the dimensionally reduced data. This section 
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describes and discusses three variants of principal component analysis: the commonly used 

basic PCA, sparse PCA, and kernel-based PCA.  

 Basic principal component analysis generates principal components which are linear 

combinations of the features present in the data. Each principal component is created to 

explain as much of the remaining variance in the data as possible. This combined with the 

characteristic of all principal components being uncorrelated with each other allows for PCA to 

encode information about relationships between the features [60]. Moreover, the principal 

components are organized in descending order based on the amount of variance explained, 

which allows for their use as a dimensionality reduction tool. One key drawback of this 

approach is that principal components usually have nonzero coefficients for most of the 

variables, making it difficult to relate analysis of the principal components back to individual 

features in the data.  

 Methods with varying complexity have been used to limit the number of nonzero 

coefficients and thus perform implicit feature reduction in addition to the dimensionality 

reduction already expected from PCA [61], [62]. The added benefit of feature reduction via zero 

coefficients in this context is that the principal components become easier to interpret and 

connect to features in the data. One proposed method which accomplishes this task is sparse 

principal component analysis, where PCA is formatted as a regression problem and a lasso or 

elastic net is applied to generate a solution with a reduced number of nonzero coefficients [60]. 

In effect, nonzero values in the principal components are penalized to push the solution toward 

a sparse coefficient vector. When analyzing the results of sparse PCA, features which contribute 
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more to the variance can be easily identified by their nonzero coefficients and are candidates 

for inclusion in a reduced feature set. Additionally, differences between principal components 

in terms of the features used allow for subsequent analysis to be more directly connected to 

the original features.  

 One major limitation of the PCA and sparse PCA methods discussed above is that they 

are restricted to the computed principal components being linear combinations of the features. 

Kernel PCA has been developed to allow for the use of principal component analysis in 

situations where these relationships may not be linear. This method can be considered an 

extension of standard linear PCA methods via the addition of a transformation step. Kernels 

which map the original data to a new feature space are used before applying PCA methods to 

allow for the linearization of nonlinear relationships [63]. Thus, the choice of kernel determines 

what types  of nonlinear relationships are considered. This method of extending a linear 

analysis method through the use of kernels for transformation before performing the standard 

approach can also be seen in the area of correlation studies as discussed in section 5.2.1. 

Commonly used transformations include both Gaussian and polynomial kernels, with de-noising 

being an area where kernel PCA outperforms other methods [64], [65].  

 As a whole, principal component analysis is a powerful tool for both dimensionality 

reduction as well as the identification of influential features within a dataset. The sparse and 

kernel PCA techniques may be particularly useful when addressing the challenges of irrelevant 

features and complex relationships common in the context of relative abundance data collected 

from microbiomes. One major drawback however is the sensitivity of PCA-based methods to 
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outliers, although less sensitive techniques such as robust PCA have been introduced and used 

with success on outlier-prone biological data [66]. Despite this challenge, PCA has been used 

successfully in multiple studies within the field of microbiome analysis [67], [68]. As it does not 

always provide a complete picture of every aspect within the data and requires careful 

interpretation (especially for nonlinear analysis), it makes sense to utilize PCA’s dimensionality 

reduction and feature selection capabilities alongside other methods when analyzing 

microbiome data.  

5.2.3 Multivariate kernel density estimation 

 Kernel density estimation enables the estimation of an underlying distribution based on 

a set of samples. In contrast to univariate kernel density estimation which estimates the 

distribution of a single random variable, multivariate kernel density estimation generates an 

estimated joint probability distribution [69]. This is accomplished through the summation of 

multiple smoothed kernels with locations specified by the sample data points [70].  

The primary concerns with kernel density estimation are centered around the selection 

of appropriate kernels and kernel bandwidth values for the data [71]. Bandwidth selection is 

often based on targeting the minimization of mean integrated square error through both single-

step and iterative approaches, although alternate error calculations are also used [72]. Despite 

kernel choice being an aspect which must be considered, it has been shown that bandwidth 

selection has a much greater effect on the quality of the distribution estimate with larger than 

desired bandwidths resulting in oversimplification of the structure and bandwidths which are 

too small highlighting features that may not actually exist [73].  
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As an evolution of histograms, kernel density estimation allows for better understanding 

and visualization of a sample distribution without the potential for misleading representations 

resulting from variation in bin sizing and positioning. Kernel density estimation can be used to 

expose structural patterns in the data, leading to an enhanced understanding of how features 

relate to one another [74]. The true multivariate nature of this approach means that 

information pertaining to the underlying joint distribution of the data can be extracted, as 

opposed to methods limited to the analysis of two features at a time. Kernel density estimation 

may also be utilized for classification-based analysis through integration with existing 

techniques including Bayesian networks and decision trees [75]–[77]. Changes to the structure 

of the joint distributions can be observed through comparisons between the estimated 

distributions of different subpopulations within the data, allowing for the identification of 

changes in the interactions between microbes or other features.  

5.2.4 Graph-based approaches 

 As graph-based analysis techniques allow for the inclusion of information connecting 

the features present in a dataset, they are prime candidates for utilization as multivariate or 

joint analysis methods for microbiome data. One key limitation of graph-based methods is that 

determination of the graph structure often relies on domain knowledge in some way, although 

graph estimation models are an area of ongoing research [78], [79]. Of the many graph 

topologies and analysis methods available, this section describes two which have been 

employed for microbiome analysis: a network-based model and a split graph model.  
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 The network-based graph model as described in Naqvi et al. is comprised of nodes 

corresponding to each OTU within the dataset [80]. These nodes are then connected with edge 

weights assigned based on correlations between the features. Individual graphs are created for 

each subpopulation being studied, with the subsequent analysis focusing on similarities and 

differences between the generated graphs. Through modification of the edge weight 

computations such as using the frequency with which two microbes co-occur in nonzero 

abundance, it may also be possible to orient the graph towards the detection of patterns 

specific to the data or problem being studied.  

 Kim et al. identify the split graph model as a way to represent both interactions 

between microbes as well as the effects of external factors on the microbiome [81]. The graph 

is comprised of one group of nodes corresponding to all the microbes detected with a second 

group of nodes representing external factors. As some degree of interaction between the 

microbiomes in an ecosystem is expected, the first group (with microbe nodes) is fully 

connected with each edge representing microbe-to-microbe interactions or influence. 

Connections between the two groups represent the effects of external factors on microbes 

within the microbiome. The assumption made at this stage is that each external factor only has 

a direct interaction with a subset of the microbes, thus domain knowledge must be used to 

determine the appropriate edges between external factor nodes and microbe nodes. The 

example presented by Kim et al. uses bacterial metabolic pathways encoded as KEGG orthologs 

for the external factors. Thus, the example uses microbe-pathway relationships contained 

within the KEGG dataset as the domain knowledge behind the split graph topography [82]. 



32 
 

Once graphs for each subpopulation have been created, their structures can be compared by 

analyzing differences in edge weights and identifying highly connected subgroups of nodes.  

 As a whole, graph-based methods incorporate microbe-to-microbe relationships very 

explicitly. By generating graphs individually for each subpopulation in the data and comparing 

them, structural differences and closely connected feature groups can be identified for 

additional study. Although it requires more extensive domain knowledge than other 

techniques, graph-based analysis has the potential to reveal useful patterns in the relationships 

between microbes.  
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Chapter 6: Case study: Cirrhosis and hepatic encephalopathy 

 This chapter demonstrates how some of the microbiome analysis techniques described 

in previous chapters can be used together to study a specific condition. A brief overview of 

cirrhosis and hepatic encephalopathy (HE) is provided, followed by details on the methods 

selected for this problem. Result are then presented, along with discussion and comparison of 

the methods used.  

6.1 Background 

 Liver cirrhosis is a condition in which a patient’s liver is damaged and accounts for over 

one million deaths each year [83]. This takes the form of scar tissue being present throughout 

the liver and can result in reduction in liver function, portal hypertension, and liver cancer [84]. 

The damage is permanent and if severe enough can make a transplant the only treatment 

option available although there are therapies used to slow disease progression. Common 

causes of liver cirrhosis include alcoholism, hepatitis C, and hepatitis B [84].  

Along with damage to the liver, some cirrhosis patients have an accumulation of toxins 

in the brain known as hepatic encephalopathy (referred to as HE) which negatively affects brain 

function but is reversible [85]. The widely accepted connection between cirrhosis and HE is that 

limited liver function allows certain compounds from the gut to enter the circulatory system, by 

which they travel to the brain and impair its functionality [86]. Estimates suggest that 30-45% of 

patients with cirrhosis develop hepatic encephalopathy [87]. Current treatments for HE include 

the medications lactulose and rifaximin with some patients undergoing surgery to add a shunt 

to route blood from abdominal organs around the liver [88], [89].  
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Although cirrhosis and hepatic encephalopathy primarily affect the liver and brain 

respectively, changes to the gut microbiome have been observed along with corresponding 

inflammation [90]. As the composition of the gut microbiome changes, conditions such as 

obesity, diabetes, and cardiovascular disease may occur [91]. With regard to HE specifically, the 

gut-brain axis has been identified as a potentially important factor as it involves communication 

and influence between the gut microbiome and the brain [92]. As both cirrhosis and hepatic 

encephalopathy have shown relation to the gut microbiome, analyzing and understanding 

changes to the microbiome’s composition can contribute to the development of new treatment 

methods and the improvement of existing ones.  

Recent studies have supported this connection between cirrhosis, HE, and the gut 

microbiome by identifying specific microbes which were observed to have either increased or 

reduced abundance [93]. These findings are supported by the successful use of certain 

antibiotics such as Rifaximin in hepatic encephalopathy treatment. Additionally, the gut-brain 

axis has been studied in the context of other diseases such as schizophrenia. Despite it being 

thought of as primarily a brain condition, certain bacteria have been identified that have a 

relation to the severity of a patient’s schizophrenia symptoms [94]. Fecal transplantation has 

been identified as a possible method to positively alter the gut microbiome; however, it is 

critical that the microbiome’s role in the condition being treated is well understood [95].   

The goal of this study is to identify microbes that are important in the context of 

cirrhosis and hepatic encephalopathy. Additionally, a comparison between male and female 

patients is desired as there are known to be differences in microbiome composition between 
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men and women [96]. This comparison includes identifying which microbes change the most as 

well as differences in how specific microbes change for each gender. A secondary goal is to 

detect groups of microbes which may work together or influence each other.  

6.2 Dataset characteristics 

 The data used in this study is from patients at Virginia Commonwealth University 

and McGuire VA Medical Center. Patients with infections, non-rifaximin antibiotic use, or 

probiotic use within the six weeks of the study were excluded, as were illegal drug users and 

those with alcohol use disorder, primary biliary cholangitis, autoimmune hepatitis, or primary 

sclerosing cholangitis [25].  

The data is derived from stool samples taken from patients categorized into four groups: 

healthy controls, cirrhosis without HE, HE being treated with Lactulose, and HE being treated 

with both Lactulose and Rifaximin. The Lactulose and Rifaximin categories were selected as 

Rifaximin is prescribed to patients with more severe cases of HE, meaning that the groups can 

be thought of as controls, cirrhosis without HE, HE, and more severe HE. After initial processing 

as described in section 2.3, the relative abundance data was generated. The dataset contains 

761 samples and 149 features, with each feature corresponding to an operational taxonomical 

unit (OTU) at the family level. This data is used for the analysis discussed in the remainder of 

this chapter. Each OTU has a four-part taxonomic identification name containing the phylum, 

class, order, and family, but they are referred to in this analysis by the family identifier.  
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6.3 Methods 

 There are three distinct portions of this analysis: a correlation study to search for 

relationships between features, a classification-based approach combined with statistical 

testing to determine the most interesting or important features from the data, and a principal 

component analysis incorporated with kernel density estimation to identify patterns in how the 

microbiome changes with disease severity. Each of the methods utilized includes separated 

analysis for men and women to allow for the identification of gender-specific patterns and 

differences. Not all approaches discussed in prior chapters are used, but techniques from each 

of the three categories play a role.  

 Before applying any of the aforementioned analysis methods, an initial feature selection 

step was performed to remove features which are not likely to provide useful information and 

may obscure the results. There are a number of such features due to the zero-inflated nature of 

microbiome abundance data, with many microbes having zero abundance values for a large 

proportion of the samples. The threshold used was 10 percent, meaning that only microbes 

which had non-zero abundance in at least 10 percent of men or 10 percent of women were 

included. In order to ensure that microbes responsible for key differences between genders 

were not being eliminated, only those below the 10 percent threshold in both gender 

subpopulations were removed. All analysis after this point utilizes only the features selected for 

inclusion through this process. Figure 4 illustrates the decision process for feature inclusion and 

exclusion.  
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Figure 4 Feature inclusion/exclusion decision diagram 

 The first analysis technique applied is a correlation study across the features in the 

dataset. The correlation coefficient for each pair of features is computed using both the 

Pearson and Spearman rank methods to allow for the identification of some nonlinear 

correlation. This process is repeated on the male and female subpopulations separately to 

determine if there are correlation patterns or groupings unique to either gender.   

 To identify the most important microbes present in the samples, a classification-based 

approach is taken to allow for the effects of multiple microbes to be considered. The overall 

classification goal is to predict, based on the microbiome composition data, which of the four 

groups identified in section 6.2 a patient belongs to. This problem is separated into the nine 

binary classification tasks shown in Table 4 with class 1 being the group with a less severe 

disease state.  
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Table 4 Classification Tasks 

Task Name Class 1 Class 2 

Control vs Cirrhosis Controls All cirrhosis patients 

Control vs Cirrhosis no HE Controls Cirrhosis patients without HE 

Control vs HE Controls HE patients 

Control vs HE-Lac Controls HE patients taking Lactulose 

Control vs HE-Rif Controls HE patients taking Rifaximin 

Cirrhosis no HE vs HE Cirrhosis patients without HE HE patients 

Cirrhosis no HE vs HE-Lac Cirrhosis patients without HE HE patients taking Lactulose 

Cirrhosis no HE vs HE-Rif Cirrhosis patients without HE HE patients taking Rifaximin 

HE-Lac vs HE-Rif HE patients taking Lactulose HE patients taking Rifaximin 

 

 Random forest classifiers, as described in section 4.2.3, are used to complete these tasks 

with a focus on the generated feature importance values. The microbes within each task with 

the greatest importance values correspond to those which are most useful in discerning 

between the classes. The random forest classifiers used for this step contain 21 trees with a 

maximum depth of 4. An 80-20 split of training and testing data is made with 30 iterations of 

Monte Carlo cross-validation. For each classification task and classifier, area under the curve 

(AUC) is calculated. These AUC values allow for comparisons to be made between classification 

tasks to determine which groups are most discernable based on gut microbiome composition. 

Once the most influential or interesting microbes are detected, Wilcoxon testing is applied to 

determine if there is a significant difference in the abundance of each of these microbes 

between disease classes. The originally unsigned feature importance values for each microbe 

are given signs based on whether the overall relative abundance is increasing or decreasing 

when going from the less severe to more severe disease class in the task. All of these random 

forest classification analyses are performed separately for men and women, after which the 
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lists of influential microbes are compared. At this stage it is possible to identify which microbes 

are specific to men or women with respect to the progression of cirrhosis and hepatic 

encephalopathy.  

 The final process utilized in this study is a combination of principal component analysis 

and kernel density estimation. First, principal component analysis is used to perform 

dimensionality reduction of the relative abundance data. The resulting variable loadings in the 

first two principal components are then employed to provide context for the analysis of the 

data after it is transformed into the two-dimensional principal component (PC) space. Once 

data is in the PC space, kernel density estimation with Gaussian kernels is applied to visualize 

the distributions within each disease class (controls, cirrhosis without HE, HE on Lactulose, and 

HE on Rifaximin) and identify any differences. This analysis is performed separately on the male 

and female subpopulations to facilitate comparisons, but the principal component analysis 

(PCA) is completed only once on the entire dataset. Doing so ensures that PCA and kernel 

density plots can be compared between genders as the axes represent the same linear 

combinations of input features. If the PCA computation step is conducted separately for men 

and women, the generated principal components will not correspond to the same variable 

loadings and cannot be compared.  

6.4 Results 

 As the initial feature reduction and analysis processes described in the previous section 

are conducted independently from each other, results will be presented separately for each 

one. As with section 6.3, the feature reduction will be discussed first, followed by the  
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correlation study. The random forest classifier and statistical testing will be presented next, 

with outcomes from the principal component analysis and kernel density estimation methods 

shared last.  

 The initial feature reduction step resulted in 29 features selected for inclusion in the 

analysis. Table 5 provides a list of these features along with the family level of each OTU.  

Table 5 Features Included in Analysis 

Bifidobacteriaceae Streptococcaceae Acidaminococcaceae 

Coriobacteriaceae Clostridiaceae Veillonellaceae 

Bacteroidaceae Clostridiales cluster IV Fusobacteriaceae 

various Bacteroidales Clostridiales cluster XI Sutterellaceae 

Porphyromonadaceae Clostridiales cluster XIII Desulfovibrionaceae 

Prevotellaceae Lachnospiraceae Enterobacteriaceae 

Rikenellaceae Peptococcaceae Pasteurellaceae 

Carnobacteriaceae Peptostreptococcaceae Synergistaceae 

Enterococcaceae Ruminococcaceae Verrucomicrobiaceae 

Lactobacillaceae Erysipelotrichaceae  

 

 Heatmaps illustrating the correlation coefficients for each pair of features are provided 

in Figures 5 and 6. As evidenced by the plots, most feature pairings have correlations close to 

zero, but there are a few areas of interest on the plots. Clostridiales cluster XI and 

Peptococcaceae have a high Pearson correlation suggesting a linear relationship between the 

two. Additionally, several negative correlations can be observed, primarily in the Spearman 

heatmaps although some negative Pearson coefficients are also shown. Based on these results, 

the cirrhosis and hepatic encephalopathy data used does not seem to have many features with 

very direct connections to each other.  
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Figure 5 Pearson correlation heatmaps for women and men 
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Figure 6 Spearman correlation heatmaps for women and men 
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 The classification performance results (area under the curve) for the random forest 

classifiers across the nine tasks in Table 4 for both men and women are presented in Table 6. As 

evidenced by the variation in AUC values, the classifier performs better for certain tasks than 

others. The classifier appears to perform better when predicting between control and patients 

with HE, as may be expected due to the drastic difference in disease severity. The classification 

performance results also suggest that there are differences in how the gut microbiomes of men 

and women are affected by cirrhosis and HE as ‘Control vs Cirrhosis,’ ‘Control vs Cirrhosis no 

HE,’ ‘Cirrhosis no HE vs HE,’ and ‘Cirrhosis no HE vs HE-Rif’ show strong gender differences.  

Table 6 AUC Values for Classification Tasks 

Task Name AUC (std. dev.) for 

Women 

AUC (std. dev.) for 

Men 

Control vs Cirrhosis 0.85 (0.06) 0.78 (0.05) 

Control vs Cirrhosis no HE 0.89 (0.06) 0.73 (0.06) 

Control vs HE 0.87 (0.08) 0.88 (0.03) 

Control vs HE-Lac 0.84 (0.09) 0.86 (0.07) 

Control vs HE-Rif 0.92 (0.08) 0.89 (0.02) 

Cirrhosis no HE vs HE 0.72 (0.12) 0.80 (0.04) 

Cirrhosis no HE vs HE-Lac 0.71 (0.10) 0.74 (0.06) 

Cirrhosis no HE vs HE-Rif 0.74 (0.10) 0.84 (0.05) 

HE-Lac vs HE-Rif 0.68 (0.12) 0.67 (0.10) 
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Figure 7 Signed feature importance heatmap for all classification tasks 

 The signed feature importance results for microbes which placed high in the feature 

importance list for any of the classification tasks are shown in Figure 7 with positive values 

indicating that the relative abundance of that microbe is generally greater in the more severely 

affected subpopulation and negative values indicating that the relative abundance of that 

microbe is generally lower in the more severely affected subpopulation. The primary purpose of 

this segmented heatmap is to facilitate the comparison of feature importance patterns 

between men and women. Some microbes which exhibit such differences include 

Lactobacillaceae, Acidaminococcaceae, and Bacteroidaceae having a greater importance for 

classification among women, Clostridiales cluster XIII and Porphyromonadaceae having a 

greater importance among men, and Erysipelotrichaceae showing differences in sign between 
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the genders. The classification tasks on the horizontal axis allow for the identification of which 

disease stages are most relevant for each microbe through a logical analysis of which tasks 

generated the greatest feature importance values. As an example, in men Rikenellaceae 

appears to be maximally relevant in tasks involving control or ‘no HE’ patients being compared 

to HE patients taking Rifaximin. Coriobacteriaceae is most important when classifying between 

HE patients on Lactulose and those on Rifaximin, indicating that it may be related to HE severity 

or could be an aspect of the microbiome being altered due to Rifaximin. These findings are 

corroborated by the relative abundance plots for Bacteroidaceae, Coriobacteriaceae, and 

Porphyromonadaceae in Figure 8.  

 

Figure 8 Relative abundances for select microbes 

 As a major goal of this project is exploration of the relationship between the gut 

microbiome and the brain, further statistical study is performed on this set of important 

microbes through the use of Wilcoxon tests between the healthy controls and patients with 

hepatic encephalopathy. Table 7 presents these computed p-values, separated by gender to 

allow for comparison. Although only microbes identified as important by the random forest 
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classifier were tested in this way, not all of them had significant differences with a threshold of 

5.00E-02. P-values which were above this threshold are colored orange to allow for easy 

identification. Some were significantly different in only one gender, supporting the idea that 

men and women are affected differently by cirrhosis and HE.  

Table 7 P-Values for HE vs Controls 

Microbes Women Men 

Enterobacteriaceae 8.00E-04 1.85E-03 

Veillonellaceae 3.86E-04 2.16E-05 

Lactobacillaceae 3.81E-06 9.20E-09 

Enterococcaceae 2.83E-03 4.42E-04 

Bifidobacteriaceae 1.53E-01 1.09E-01 

Peptostreptococcacceae 7.48E-01 1.33E-05 

Erysipelotrichaceae 1.6E-03 7.60E-04 

Clostridiaceae 1.82E-02 2.37E-04 

Streptoccaceae 4.79E-03 7.22E-01 

Sutterellaceae 8.56E-02 5.59E-01 

Carnobacteriaceae 5.14E-02 1.31E-03 

Acidaminococcceae 2.18E-05 4.49E-04 

Bacteroidaceae 2.14E-03 2.66E-01 

Porphyromonadaceae 3.02E-03 3.72E-07 

Coriobacteriaceae 3.94E-01 3.93E-08 

Clostridiales cluster IV 7.31E-03 1.92E-03 

Synergistaceae 5.48E-03 1.92E-04 

Peptococcaceae 1.75E-02 6.44E-02 

Lachnospiraceae 1.46E-04 1.12E-09 

Rikenellaceae 3.85E-08 3.64E-14 

Clostidiales cluster XIII 5.81E-05 1.56E-11 

Ruminococcaceae 1.33E-08 1.74E-15 

 

 Figure 9 provides an overview of the variance contributions from each principal 

component generated via PCA and the resulting transformed data. The left scatter plot gives an 
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overview of the data colored by gender while the right scatter plot shows the data colored 

based on the four disease classes described in section 6.2. These plots show a triangular 

pattern, with the spread of principal component 1 being larger at lower values for principal 

component 0. The scatter plot colored by disease class indicates that samples from patients 

with HE tend to have lower values for principal component 1, with some concentration in the 

bottom left corner with low values for both principal components.  

 

Figure 9 PCA results 
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Variable loadings for the first two principal components are shown in Figure 10. This 

plot by itself does not provide much information, but it outlines the composition of the 

principal components which allows for interpretation of subsequent analysis performed on the 

transformed data.  

Figure 10 PC0 and PC1 variable loadings 
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Once principal component analysis has been performed and the data has been 

transformed into the new two-dimensional space, kernel density estimation is applied to each 

of the eight disease-gender subpopulations as shown in Figure 11. It is apparent for both men 

and women that the distribution shifts towards negative values for both principal components 

as disease condition worsens – particularly once HE appears, as was suggested by the initial PCA 

scatter plots. While there appear to be men in the control subpopulation toward the top left 

corner, the only women who appear in this area are a small proportion of those with HE. Men 

also show higher densities when principal component zero values are low and principal 

component one values are near zero. Such distinctions between genders support the idea that 

cirrhosis and hepatic encephalopathy affect men and women in different ways. These changes 

can be put into the context of the microbes by combining the patterns apparent in the kernel 

density plots in Figure 11 with the variable loadings from Figure 10. Of particular interest is that 

the only way to significantly alter PC0 without affecting PC1 is through the reduction of 

Bacteroidaceae. This combined with the tendency for PC1 to be very low only when PC0 is also 

very low suggests that increases in abundance of the microbes with negative variable loadings 

for both principal components (e.g. Enterococcaceae, Lactobacillaceae, Enterobacteriaceae) 

may be somewhat dependent on decreases in Bacteroidaceae abundance. As evidenced by the 

earlier correlation analysis, this is not a straightforward relationship but may indicate that the 

presence of one microbe beyond a certain abundance level inhibits the ability of another 

microbe to replicate. Although the underlying biological processes cannot be explicitly 

identified, such results provide a starting point for targeted studies and experiments in the 

future.  
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Figure 11 Kernel density for all disease classes across men and women 
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6.5 Methods discussion 

 A variety of methods from all three groups discussed in earlier chapters were used in 

this analysis. Univariate statistical methods (Chapter 3) were used to compute the p-values 

which indicate how significant the differences between disease classes were for the microbes 

identified by the classifier as important. The random forest classifier utilized to determine 

feature importance and identify influential microbes for men and women separately is a 

classification method (Chapter 4) at work. Multivariate joint analysis methods (Chapter 5) 

present in the cirrhosis and HE analysis are correlation study, principal component analysis, and 

kernel density estimation.  

 Although some techniques provide more information than others, each has benefits and 

drawbacks which must be considered when deciding which ones are most appropriate for a 

given problem and its corresponding data. Consider kernel density estimation; it provides a 

great visualization of the different distributions present in the data; however, converting data 

with a large number of features into a two-dimensional space requires the use of additional 

methods. In this case principal component analysis was used, but alternate dimensionality 

reduction techniques may also be applicable. Consideration of the variable loadings generated 

by PCA also allowed for more in-depth interpretation of the kernel density plots. Similarly, the 

feature importance results from the random forest classifier are effective for the identification 

of features which are likely to be important to the condition being studied, but the Wilcoxon 

tests were needed to determine statistical significance. Careful selection of methods which 

complement each other enables a more complete analysis along with a broader understanding 
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of the information encoded within the data, which consequently generates more beneficial 

insights about the microbiome being studied.  
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Chapter 7: Conclusion 

 This thesis reviews multiple analysis methods across three categories which can be 

applied to microbiome data. Univariate methods provide concrete statistical information about 

individual features in the data but are not able to capture the important interactions between 

microbes. The classification-based approaches allow for a more complete understanding of the 

influence of each of the features present, by generating a predictive model and interpreting it 

as a descriptive model. The broad category of multivariate or joint analysis techniques 

facilitates a deeper understanding of how the microbes influence each other and their joint 

relationship with the diseases or conditions being studied. A selection of these techniques is 

employed as part of a study on cirrhosis and hepatic encephalopathy with additional analysis 

performed on the differences between men and women.   

Selection of the most appropriate techniques for a given problem is highly dependent 

on the nature of the data as well as the study’s objectives. Most analyses will warrant the 

application of multiple methods as each has its own advantages and limitations. As such, a 

thorough understanding of the domain being investigated is required. Collaboration between 

data scientists performing the analysis and domain experts is beneficial at each step in the 

process to ensure that results are reasonable and ensuing steps are designed to address the 

desired questions. The final component necessary for any microbiome analysis is an in-depth 

consultation with domain experts to assess the overall validity of results and determine how 
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the insights from the data should be translated into information relevant to the conditions and 

processes being studied.  

 The primary area of advancement in this space is the development of new methods and 

evolution of existing methods to more directly determine the joint distribution relating the 

abundances of the most influential microbes to the disease states identified for the condition 

being studied. The high likelihood of complex interactions between microbes combined with 

the unique nature of each microbiome and condition motivate the creation of flexible methods 

which are capable of identifying the aforementioned joint distributions. A secondary 

opportunity for extension of the work presented here is the sharing of techniques between 

researchers studying human microbiomes in a medical context and scientists studying 

microbiomes in nature.  
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