
c� 2020 AmirEmad Ghassami

CAUSAL DISCOVERY BEYOND MARKOV EQUIVALENCE

BY

AMIREMAD GHASSAMI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Adjunct Associate Professor Negar Kiyavash, Chair
Assistant Professor Sanmi Koyejo
Associate Professor Maxim Raginsky
Professor Rayadurgam Srikant
Associate Professor Kun Zhang, Carnegie Mellon University

ABSTRACT

The focus of the dissertation is on learning causal diagrams beyond Markov equivalence. The

baseline assumptions in causal structure learning are the acyclicity of the underlying struc-

ture and causal su�ciency, which requires that there are no unobserved confounder variables

in the system. Under these assumptions, conditional independence relationships contain all

the information in the distribution that can be used for structure learning. Therefore, the

causal diagram can be identified only up to Markov equivalence, which is the set of structures

reflecting the same conditional independence relationships. Hence, for many ground truth

structures, the direction of a large portion of the edges will remain unidentified. Hence,

in order to learn the structure beyond Markov equivalence, generating or having access to

extra joint distributions from the perturbed causal system is required. There are two main

scenarios for acquiring the extra joint distributions. The first and main scenario is when an

experimenter is directly performing a sequence of interventions on subsets of the variables of

the system to generate interventional distributions. We refer to the task of causal discovery

from such interventional data as interventional causal structure learning. In this setting,

the key question is determining which variables should be intervened on to gain the most

information. This is the first focus of this dissertation. The second scenario for acquiring the

extra joint distributions is when a subset of causal mechanisms, and consequently the joint

distribution of the system, have varied or evolved due to reasons beyond the control of the

experimenter. In this case, it is not even a priori known to the experimenter which causal

mechanisms have varied. We refer to the task of causal discovery from such multi-domain

data as multi-domain causal structure learning. In this setup the main question is how one

can take the most advantage of the changes across domains for the task of causal discovery.

This is the second focus of this dissertation.

Next, we consider cases under which conditional independency may not reflect all the

information in the distribution that can be used to identify the underlying structure. One

such case is when cycles are allowed in the underlying structure. Unfortunately, a suitable

characterization for equivalence for the case of cyclic directed graphs has been unknown so

ii

far. The third focus of this dissertation is on bridging the gap between cyclic and acyclic

directed graphs by introducing a general approach for equivalence characterization and struc-

ture learning. Another case in which conditional independency may not reflect all the in-

formation in the distribution is when there are extra assumptions on the generating causal

modules. A seminal result in this direction is that a linear model with non-Gaussian exoge-

nous variables is uniquely identifiable. As the forth focus of this dissertation, we consider

this setup, yet go one step further and allow for violation of causal su�ciency, and investigate

how this generalization a↵ects the identifiability.

iii

To my parents and my sister, for their love and support.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my adviser, Prof. Negar Kiyavash. I would like

to thank her for all her guidance while carrying out this work, for the freedom she gave me

in choosing my research style, and her unequivocal support in all academic aspects. She

was always available to give me advice and profoundly shaped my way of thinking about

research, academia and life. I do not have words to express my gratitude to her.

No less am I indebted to Prof. Kun Zhang. During two visits that I had to Carnegie

Mellon University, he shaped my thoughts about the field of causal inference and discovery.

While working on research problems together, he pointed me in directions and led the project

in a way that I do not think I would have reached on my own. Also, as anyone how knows

Kun will agree, he is one of the nicest people one can ever meet.

I would like to thank my doctoral committee, Profs. Negar Kiyavash, Sanmi Koyejo,

Maxim Raginsky, Rayadurgam Srikant, and Kun Zhang, as well as my great collaborators

and friends Prof. Saber Salehkaleybar, Prof. Elias Bareinboim, Alan Yang, and Biwei Huang

for their help and contributions to this dissertation.

I am in debt to the wonderful teachers that I had at UIUC, especially the following:

Prof. Bruce Hajek, who formed the foundation of my knowledge of probability theory;

Prof. Yihong Wu, who taught me how I should think about information theory; Prof.

Rayadurgam Srikant, who taught me several topics such as optimization, game theory, and

queueing theory; Prof. Xiaochun Li, who taught me real analysis; Prof. Jozsef Balogh,

who taught me combinatorial mathematics and in general combinatorial thinking; and Prof.

Maxim Raginsky, who taught me statistical learning theory.

I would also like to thank my wonderful friends at UIUC, especially Corinne Soutar, James

Schmidt, Massi Amrouche, and Erman Gungor, who made my stay in Champaign-Urbana

such a memorable and enjoyable experience.

I would also like to thank the great sta↵ and managers of Café Kopi in downtown Cham-

paign. A big part of developing the ideas and preparation of this dissertation was done in

the calm environment of this amazing co↵ee shop.

Last but certainly not least, I would like to thank my parents and my sister for their love

and support.

v

TABLE OF CONTENTS

PUBLICATIONS ON WHICH THE DISSERTATION IS BASED ix

CHAPTER 1 INTRODUCTION . 1
1.1 Causal Discovery Beyond Markov Equivalence 3

CHAPTER 2 PRELIMINARIES . 6
2.1 Graphical Notation and Terminology . 6
2.2 Causal Bayesian Networks . 7

CHAPTER 3 INTERVENTIONAL CAUSAL STRUCTURE LEARNING 13
3.1 Related Works . 17
3.2 Problem Description . 18
3.3 Experiment Design for Tree Structures . 21
3.4 Experiment Design for General Structures 28
3.5 Improved Greedy Algorithm . 37
3.6 Evaluation Results . 39
3.7 Conclusion . 45

CHAPTER 4 MULTI-DOMAIN CAUSAL STRUCTURE LEARNING 47
4.1 Problem Description . 49
4.2 Regression-Based Multi-Domain Causal Structure Learning 51
4.3 LiNGAM-Based Multi-Domain Causal Structure Learning 57
4.4 General Multi-Domain Causal Structure Learning 61
4.5 Minimal Change Multi-Domain Causal Structure Learning 64
4.6 Evaluation Results . 68
4.7 Conclusion . 72

CHAPTER 5 CYCLIC CAUSAL DIAGRAMS . 75
5.1 Distribution Equivalence . 77
5.2 Characterizing Equivalence . 79
5.3 Graphical Characterization of Equivalence 84
5.4 Learning Directed Graphs from Data . 86
5.5 Experiments . 89
5.6 Conclusion . 92

vi

CHAPTER 6 LINEAR NON-GAUSSIAN CAUSAL MODELS IN THE PRES-
ENCE OF LATENT CONFOUNDERS . 93
6.1 Problem Definition . 96
6.2 Identifying Causal Orders among Observed Variables 99
6.3 Identifying Total Causal E↵ects among Observed Variables 103
6.4 Experiments . 106
6.5 Conclusion . 111

APPENDIX A APPENDIX OF CHAPTER 3 . 113
A.1 Example of Comparison with the Influence Maximization Problem 113
A.2 Proof of Lemma 3 . 113
A.3 Proof of Lemma 5 . 114
A.4 Proof of Lemma 6 . 114
A.5 Proof of Proposition 1 . 115
A.6 Proof of Theorem 1 . 116
A.7 Proof of Proposition 2 . 116
A.8 Proof of Proposition 3 . 117
A.9 Proof of Lemma 7 . 118
A.10 Proof of Theorem 2 . 123
A.11 Proof of Proposition 4 . 123
A.12 Proof of Theorem 3 . 124
A.13 Proof of Corollary 1 . 126
A.14 Proof of Theorem 4 . 126
A.15 Proof of Theorem 5 . 128
A.16 Proof of Proposition 5 . 130

APPENDIX B APPENDIX OF CHAPTER 4 . 131
B.1 Proof of Theorem 6 . 131
B.2 Proof of Theorem 7 . 132
B.3 Proof of Theorem 9 . 133
B.4 Proof of Theorem 10 . 133
B.5 An Example For Requirement of considering both orders ⇡X,�1 and ⇡X,�2

in Algorithm 10 . 134
B.6 Proof of Theorem 11 . 135

APPENDIX C APPENDIX OF CHAPTER 5 . 136
C.1 Proof of Proposition 6 . 136
C.2 Proof of Proposition 7 . 136
C.3 Proof of Proposition 8 . 137
C.4 Proof of Theorem 12 . 138
C.5 Proof of Proposition 9 . 144
C.6 Proof of Proposition 10 . 144
C.7 Proof of Proposition 11 . 145

vii

C.8 Proof of Proposition 12 . 146
C.9 Proof of Corollary 2 . 147
C.10 Proof of Theorem 13 . 147
C.11 Proof of Corollary 3 . 149
C.12 Proof of Proposition 13 . 150
C.13 Proof of Proposition 14 . 150
C.14 Proof of Theorem 14 . 150
C.15 Algorithm for Enumerating Members of a Distribution Equivalence Class

and Determining the Equivalence of Two Structures 151
C.16 Virtual Edge Search Operator . 154
C.17 Score Decomposability . 156
C.18 E↵ect of Sample Size on the Performance . 158

APPENDIX D APPENDIX OF CHAPTER 6 . 159
D.1 Proof of Lemma 10 . 159
D.2 Proof of Lemma 11 . 159
D.3 Proof of Theorem 15 . 160
D.4 Proof of Lemma 12 . 161
D.5 Proof of Theorem 16 . 161
D.6 Proof of Corollary 4 . 163
D.7 An Example of Non-Identifiability of Total Causal E↵ects 163
D.8 Proof of Lemma 13 . 165
D.9 Proof of Theorem 17 . 165
D.10 Proof of Theorem 18 . 166

REFERENCES . 167

viii

PUBLICATIONS ON WHICH THE DISSERTATION
IS BASED

• A. Ghassami, S. Salehkaleybar, and N. Kiyavash, “Interventional Experiment Design

for Causal Structure Learning,” arXiv preprint arXiv:1910.05651.

• A. Ghassami, S. Salehkaleybar, B. Huang, N. Kiyavash, and K. Zhang, “Multi-Domain

Causal Structure Learning,” under preparation.

• A. Ghassami, A.Yang, N. Kiyavash, and K. Zhang, “Characterizing Distribution Equiv-

alence for Cyclic and Acyclic Directed Graphs,” Proceedings of the International Con-

ference on Machine Learning (ICML), 2020.

• S. Salehkaleybar, A. Ghassami, N. Kiyavash, and K. Zhang, “Learning Linear Non-

Gaussian Causal Models in the Presence of Latent Variables,” Journal of Machine

Learning Research (JMLR), 2020.

• A. Ghassami, S. Salehkaleybar, N. Kiyavash, and K. Zhang, “Counting and Sampling

from Markov Equivalent DAGs Using Clique Trees,” Proceedings of the Association

for the Advancement of Artificial Intelligence (AAAI), 2019.

• A. Ghassami, N. Kiyavash, B. Huang, and K. Zhang, “Multi-Domain Causal Struc-

ture Learning in Linear Systems,” Proceedings of the Advances in Neural Information

Processing Systems (NeurIPS), 2018.

• A. Ghassami, S. Salehkaleybar, N. Kiyavash, and E. Bareinboim, “Budgeted Experi-

ment Design for Causal Structure Learning,” Proceedings of the International Confer-

ence on Machine Learning (ICML), 2018.

• A. Ghassami, S. Salehkaleybar, N. Kiyavash, and K. Zhang. “Learning Causal Struc-

tures Using Regression Invariance,” Proceedings of the Advances in Neural Information

Processing Systems (NIPS), 2017.

ix

CHAPTER 1

INTRODUCTION

Since the dawn of modern science, a predominant theme in scientific research in various areas

such as biology, sociology, medicine, etc., has been centered on discovering and understanding

the causal relationships among components of the systems under study. This great interest

in learning the causal relations is primarily in pursuit of two fundamental goals:

First and foremost, a natural desire of human beings is to explain di↵erent phenomena

around them. Whether it is a question regarding why the sun rises at a certain time, or what

leads to happiness in life, the curious mind is constantly searching for satisfactory answers.

Yet, it is of course not possible to find such answers and fully comprehend a phenomenon

without knowing the direct causes leading to that. The knowledge regarding the causal

relations provides us with the ability to explain and describe di↵erent phenomena regarding

the system and to provide answers to “why” and “how” questions.

The second aim is to acquire the ability to estimate properties related to an unseen dis-

tribution. The standard statistical inference discusses the task of estimating features of the

distribution from which the data is gathered. Causal inference goes one step further and

aims to estimate features of the distribution after changes. It provides us with the abil-

ity to predict the consequences of changes and interventions in a system. We may have

never observed any samples from the intervened system; however, the knowledge regarding

causal modules enables us to predict the output of the system after any variations to the

causes. Examples of this ability include predicting the future state of the market based

on the changes and events that occurred today in the economic world, and predicting the

consequences of enforcing a law by the government. This ultimately enables us to design

actions and intervene in the system in a specific way to drive it to a desired state (i.e., to

control it). Causal inference also provides us with the ability to provide answers to “what

if” questions, which is known as counterfactual reasoning. This is again beyond the realm of

the abilities of the common current AI, as it requires reasoning regarding a setup from which

the machine has no observations. This ability is the driving force for creativity, innovation

and invention and is the resource that enables us to imagine unseen events and objects such

1

as mythical creatures.

One of the most prominent approaches for modeling and representing causal relationships

among variables in a system is to use a structural causal model. For a given set of endogenous

variables V = {X1, ..., Xp}, a structural causal model consists of a set of equations of the

form Xi = fi(Pa(Xi), Ni), 1 i p, where Pa(Xi) ✓ V \ {Xi} denotes the set of direct

causes of variable Xi with respect to V , and Ni is the exogenous variable corresponding

to Xi, representing noise or disturbance. Note that the equations in a structural causal

model should be understood as generating mechanisms. A structural causal model induces

a distribution PV on the endogenous variables. Consider the directed graph generated by

drawing a directed edge from each element of Pa(Xi) to Xi, for all i 2 [p]. The resulting

directed graph G is called the causal diagram. The task of learning the causal diagram from

data is referred to as causal structure learning, or causal discovery.

One of the main classes of the methods for causal structure learning is constraint-based

methods. These methods are based on using the conditional independencies in the data

distribution: The causal digram G represents certain disconnectivities among the variables of

the system, called d-separations (defined in Chapter 2), and the distribution PV represents

certain conditional independencies among the variables. Under some assumptions (explained

in detail in Chapter 2), there is a one-to-one correspondence between the d-separations and

conditional independencies. That is, a set of variables XS d-separates variables X1 and X2 in

the causal digram if and only if X1 is independent of X2 conditioned on variables XS. This is

one of the main links connecting the graphical world and statistical world, which enables us to

learn the causal graph over the variables from data gathered from those variables. However,

for a set of d-separation relationships, the directed graph representing those d-separations is

not in general unique. For instance, all three graphs X1 ! X2 ! X3, X1 X2 ! X3 and

X1 X2 X3 indicate that X2 d-separates X1 from X3. Such diagrams that represent the

same d-separation relations are called Markov equivalent, and the set of Markov equivalent

graphs form a Markov equivalence class. There are several constraint-based algorithms for

di↵erent assumptions on the system such as whether or not the underlying causal structure

is acyclic, or whether or not there are any latent variables in the system [1, 2].

Another main class of methods for causal structure learning is the score-based methods

(e.g., [3, 4]). Score-based methods focus on finding a structure which maximizes a score

function, which mainly includes the likelihood function and a regularization term. There are

also methods called hybrid methods (such as [5]) which aim to combine the advantages of

the constraint-based and score-based methods.

2

There is another point of view towards causal structure learning which is focused on study-

ing constraints on the generating causal modules, i.e., the fi functions in the structural causal

model, which lead to identifiability. For instance, it is shown that under assumptions on the

underlying data generating processes, such as considering linear models with non-Gaussian

exogenous variables [6, 7], or assuming specific types of non-linearity on the causal modules

[8, 9, 10], in the population dataset, along with some extra assumptions, the underlying

causal diagram can be identified uniquely.

1.1 Causal Discovery Beyond Markov Equivalence

First, we consider the case that the causal diagram is acyclic, i.e., it is a directed acyclic

graph (DAG), and we have the causal su�ciency assumption which implies that there are

no latent confounders (latent variables with more than two observed e↵ect variables) in the

system. These are usually the baseline assumptions used for causal structure learning. In this

case, conditional independence relationships contain all the information in the distribution

that can be used for structure learning. Therefore, the causal diagram can be identified only

up to Markov equivalence, and hence, for many ground truth structures, the direction of a

large portion of the edges will remain unidentified. Hence, in order to learn the structure

beyond Markov equivalence, generating or having access to extra joint distributions from the

perturbed causal system is required. There are two main scenarios for acquiring the extra

joint distributions:

• The first and main scenario is when an experimenter is directly performing a sequence

of interventions on subsets of the variables of the system to generate interventional

distributions. We refer to the task of causal discovery from such interventional data

as the interventional causal structure learning. In this setting, the key question is

determining which variables should be intervened on to gain the most information.

This is our focus in Chapter 3. We address this question by casting the problem

of finding the best intervention target set as an optimization problem which seeks to

maximize the number of causal relationships identified as a result of the interventions.

We consider the problem in both the worst-case and the average-case settings. We

demonstrate that the problem of intervention design can be cast as a sub-modular set

function optimization problem and hence is e�ciently solvable in its most general form.

• Although performing interventional experiments is the gold standard for causal dis-

3

covery, in many applications, intervening on certain variables in the system may be

expensive, unethical, impossible, or even undefined. The second scenario for acquiring

the extra joint distributions is when a subset of causal mechanisms, and consequently

the joint distribution of the system have varied or evolved due to reasons beyond the

control of the experimenter. In many real-life systems, the data generating distribution

may vary over time, or the dataset could come from di↵erent domains and hence, not

follow a single distribution. In this case, the experimenter is usually not even aware of

which causal mechanisms have varied. While such data is usually problematic in sta-

tistical analysis, this property can be leveraged for the purpose of causal discovery. We

refer to the task of causal discovery from such multi-domain data as the multi-domain

causal structure learning. In this setup the main question is how can one take the most

advantage of the changes across domains for the task of causal discovery. This is our

focus in Chapter 4. We propose several e�cient algorithms for this task.

Next, we consider cases under which conditional independency may not reflect all the

information in the distribution that can be used to identify the underlying structure. The

dominant cases are when (1) cycles are allowed in the structure, (2) causal su�ciency is

violated, (3) there are extra assumptions on the generating causal modules.

Consider the case that the causal diagram may contain cycles. Most real-life causal systems

contain feedback loops, since feedback is generally required to stabilize the system and

improve performance in the presence of noise. Hence, the causal directed graph corresponding

to such systems will be cyclic. In this case, in general, Markov equivalence is not the extent

of identifiability: When cycles are allowed, conditional independence may not be a suitable

notion for equivalence of two structures, as it does not reflect all the information in the

distribution that is useful for identification of the underlying structure. That is, it is possible

that two graphs can be distinguishable from observational data even though they are in the

same Markov equivalence class. Unfortunately, a suitable characterization for equivalence for

the case of cyclic directed graphs has been unknown so far. With the goal of bridging the gap

between cyclic and acyclic directed graphs, in Chapter 5, we introduce a general approach

for equivalence characterization and structure learning, capable of dealing with cycles in

a causal model. We present a general, unified notion of equivalence based on the set of

distributions that the directed graphs are able to generate. We propose an algebraic and

graphical characterization of the equivalence of two directed graphs, be they cyclic or acyclic.

Furthermore we propose a score-based method for structure learning from observational data

with local search, where we show that the proposed score asymptotically achieves the extent

4

of identifiability.

As mentioned earlier, another point of view towards causal structure learning is focusing on

constraints on the generating causal modules. A seminal result in this direction is that under

the assumptions of acyclicity and no latent confounders, a linear model with non-Gaussian

exogenous variables is uniquely identifiable [6]. In Chapter 6, we focus on the same setup,

yet go one step further and relax the assumption of no latent confounders. One of the main

challenges in causal discovery is accounting for variables in the system from which we have

no observations. For instance, latent confounders can lead to estimating spurious causal

relations. It is often explicitly assumed that there are no latent confounders in the systems

to avoid complications caused by those variables. Unfortunately, this assumption does not

hold true in many settings. We consider learning causal diagrams from observational data

generated by linear non-Gaussian causal models with latent variables. Despite the fact that

the causal structure in general is not fully identifiable in the presence of latent variables, we

show that the causal order among the observed variables is still identifiable. We also provide

necessary and su�cient graphical conditions under which the number of latent variables is

uniquely identifiable.

Table 1.1 summarizes how each chapter of this dissertation addresses the problem of causal

discovery beyond Markov equivalence.

Table 1.1: How each chapter goes beyond Markov equivalence.

Use more than Allow for Allow for latent Use causal module
one distribution cycles confounders identifiability constraints

Chapter 3 3
Chapter 4 3
Chapter 5 3
Chapter 6 3 3

5

CHAPTER 2

PRELIMINARIES

In this chapter we briefly review concepts and classical results from the fields of graph theory,

graphical models and causal structure learning, needed in the rest of the dissertation. For

the definitions in this chapter, we mainly follow [11], [1], and [12].

2.1 Graphical Notation and Terminology

A graph G is a pair G = (V (G), E(G)), where V (G) is a finite set of vertices and E(G),

the set of edges, is a subset of (V ⇥ V) \ {(a, a) : a 2 V }. If for an edge (a, b) 2 E(G) its

opposite edge, i.e., (b, a), also belongs to E(G) then this edges is called an undirected edge,

and we write a� b 2 G. If for an edge (a, b) 2 E(G), we have (b, a) 62 E(G), then this edge

is called a directed edge, and we write a! b 2 G. In this case, vertex a is called a parent of

vertex b and b is called a child of a. The set of parents and children of vertex a are denoted

by Pa(a) and Ch(a), respectively. For vertex a, the set of vertices b such that (a, b) 2 E(G)

or (b, a) 2 E(G) is called the set of neighbors of a, and is denoted by N(a). A graph is

called directed if all of its edges are directed, and is called undirected if all of its edges are

undirected. A vertex is called root if all of its neighbors are its children, and is called sink

if all of its neighbors are its parents. An undirected graph Gs, for which V (Gs) = V (G)

and E(Gs) = E(G) [{(a, b) : (b, a) 2 E(G)} is called the skeleton of G. For a subset of

vertices A ✓ V (G) the induced subgraph of G on A is the graph G[A] := (A, E[A]), where

E[A] := E(G) \ (A⇥ A).

A sequence of distinct vertices (a1, a2, ..., am) is called a path from a1 to am if for 1 i
m � 1, (ai, ai+1) 2 E(G), and is called a quasi-path from a1 to am if for 1 i m � 1,

(ai, ai+1) 2 E(G) or (ai+1, ai) 2 E(G). A sequence of vertices (a1, a2, ..., am = a1), in which

all vertices except the first vertex are distinct, is called a cycle if for 1 i m � 1,

(ai, ai+1) 2 E(G). If all the edges on a path or cycle are directed, then it is called a directed

path or cycle. If at least one directed and one undirected edge belongs to a path or cycle,

6

then it is called partially directed. Vertices which have a directed path from (to) vertex a are

called the descendants (ancestors) of a, denoted by Des(a) (Anc(a)). Any vertex is assumed

to be an ancestor and descendant of itself. A directed acyclic graph (DAG) is a directed

graph with no directed cycles. A chord of a cycle is an edge not in the cycle whose endpoints

are in the cycle. A hole in a graph is a cycle of length at least 4 having no chords. A graph

is chordal if it has no holes. A graph is called a chain graph if it contains no directed or

partially directed cycles. After removing all directed edges of a chain graph, the components

of the remaining undirected graph are called the chain components of the chain graph.

2.2 Causal Bayesian Networks

A Bayesian network is a probabilistic graphical model representing statistical independencies

among a set of variables via a DAG. This type of graphical model is of particular interest in

many applications, such as pattern recognition, epidemiology, and econometrics, due to its

power in facilitating e�cient statistical inference. A Bayesian network is formally defined as

follows:

Definition 1 (Bayesian Network). Let G = (V, E) be a DAG on a set of random variables

V = {X1, ..., Xp}, and PV be the joint distribution of V .1 The pair (G, PV) is called a

Bayesian network if each variable in G is independent of its non-descendants given its parents

according to PV (referred to as local Markov property).

Based on Definition 1, in a Bayesian network (G, PV), the joint distribution PV can be

factorized as follows:

PV =
Y

Xi2V

PXi|Pa(Xi),

where Pa(X) denotes the set of the parents of variable X in G.

Definition 2 (d-separation). In a DAG G, a quasi-path is said to be blocked by a subset of

vertices XS, S ✓ [p], if

1. the quasi-path contains an induced subgraph of form Xa ! Xc ! Xb or Xa Xc ! Xb

such that Xc is in XS, or

2. the quasi-path contains an induced subgraph of form Xa ! Xc Xb such that Xc is

not in XS and no descendant of Xc is in XS.

1In the sequel, we will refer to variables and their corresponding vertices in the graph interchangeably.

7

For any two variables Xi and Xj and a subset of variables XS, we say XS d-separates Xi

from Xj, denoted by (Xi d-sep Xj|XS), if XS blocks every quasi-path from Xi to Xj on G.

Consider Bayesian network (G, PV). Let I(PV) represent the set of all conditional in-

dependence relationships in PV , and I(G) represent the set of all d-separations in G. By

definition, distribution PV satisfies the local Markov property with respect to G. As shown

in [13], this implies that every conditional dependency in PV is reflected in d-separations in

G, referred to as Global Markov property. However, there may be conditional independen-

cies in PV which are not reflected in G. If there is a one-to-one correspondence between the

element of I(G) and I(PV), then G is called a perfect I-map for distribution PV . Therefore,

the following extra condition is needed:

Definition 3 (Faithfulness condition). The distribution PV is faithful to structure G if for

any two variables Xi, Xj, and any subset of variables XS ✓ V , we have

(Xi d-sep Xj|XS) 2 I(G) if (Xi ? Xj|XS) 2 I(PV).

For the task of learning a Bayesian network representing a given distribution, it is common

in the literature to assume the given distribution satisfies Markov and faithfulness conditions

with respect to a DAG [14], as in this case, data can be used to learn a DAG reflecting

precisely the conditional independencies in the data.

The directed edges in a perfect I-map does not necessarily imply causation. For instance,

for a joint distribution PV on variables V = {X1, X2, X3}, such that I(PV) = {(X1 ?
X3|X2)}, all three DAGs G1 : X1 ! X2 ! X3, G2 : X1 X2 ! X3, and G3 : X1 X2
X3 are perfect I-maps. Nevertheless, the ubiquity of DAG models in statistical applications

stems primarily from their causal interpretation [11]. The goal in the field of causal structure

learning (also known as causal discovery) is to learn a directed graph over the variables in

the system, V , in which a directed edge Xi ! Xj implies that Xi is a direct cause of Xj

with respect to the set V . We use the language of structural causal models proposed in [11]

to formalize this notion.

For a given set of endogenous variables V = {X1, ..., Xp}, a structural causal model consists

of a set of equations of the form

Xi = fi(Pa(Xi), Ni), 1 i p, (2.1)

where Pa(Xi) ✓ V \ {Xi} denotes the set of direct causes of variable Xi, and Ni is the

exogenous variable corresponding to Xi, representing noise or disturbance. The equation in

8

(2.1) should be understood as a generating mechanism, and sometimes the notation Xi
fi(Pa(Xi), Ni) is used.

Consider the directed graph generated by drawing a directed edge from each element of

Pa(Xi) to Xi, for all i 2 [p]. The resulting directed graph G is called the causal diagram. If

the causal diagram is acyclic and the exogenous variables are jointly independent, then the

model induces a distribution PV on the endogenous variables that satisfies the local Markov

property with respect to G [15]. Therefore, the pair (G, PV) is a Bayesian network referred

to as causal Bayesian network. In Chapters 3, 4 and 6, we assume that the causal diagram

is always a DAG. We extend our models to allow for cycles in Chapter 5.

2.2.1 Linear Structural Causal Model

In Chapters 4, 5, and 6, we consider a linear structural causal model over p endogenous

variables V = {X1, ..., Xp}, with Gaussian exogenous variables in Chapters 4 and 5, and

with non-Gaussian exogenous variables in Chapter 6. For i 2 [p], variable Xi is generated

by the following mechanism:

Xi =
pX

j=1

Bj,iXj + Ni.

Non-zero entries Bj,i correspond to direct causes of Xi. Let X := [X1 · · ·Xp]>. The model

can be represented in matrix form as

X = B>X + N, (2.2)

where, B is a p ⇥ p weighted adjacency matrix of G, with Bj,i as its (j, i)-th entry, and

N = [N1 · · ·Np]>. If the underlying structure is a DAG, rows and columns of B can be

permuted to make it a strictly upper triangular matrix. Also, if the system is causally

su�cient, that is, the exogenous variables do not have latent confounders (common causes),

the elements of N are jointly independent. Since we can always center the data, without loss

of generality, we assume that N , and hence, X is zero-mean. Hence, for a causally su�cient

system with Gaussian exogenous variables, the noise vector N is distributed according to the

normal distribution N (0, ⌦), where ⌦ is a p⇥ p diagonal matrix with ⌦i,i = �2
i

= Var(Ni).

Therefore, the system can be fully described by parameters in B and ⌦. This model induces

a distribution PV on the endogenous variables. The model in (2.2) could be also represented

9

as

X = A>N, (2.3)

where A = (I � B)�1. This implies that each variable Xi 2 V can be written as a linear

combination of the exogenous noises in the system.

Note that the linear Gaussian model is one of the most problematic models in the literature

of causal discovery, due to the symmetries in this model. In fact, in a structural causal model

with additive noise of form Xi = f(Xj) + Ni, if the noise variable Ni is non-Gaussian [6],

or if the generating function is non-linear (with some mild conditions) [8], the direction of

causal influence can be identified from a single observational distribution.

2.2.2 Markov Equivalence

Definition 4. Directed graphs G1 and G2 are independence equivalent (I-equivalent), also

known as Markov equivalent, if I(G1) = I(G2).

The notion of Markov equivalence is not restricted to acyclic graphs; however, almost all

the literature focuses on the case of DAGs. Below is some of the main concepts and results

related to Markov equivalent DAGs.

The authors of [16] proposed a graphical test for Markov equivalence among DAGs: Define

a v-structure of graph G as a triple of vertices (a, b, c), with induced subgraph a ! c b.

Markov equivalence can be tested as follows:

Lemma 1 (Verma and Pearl [16]). Two DAGs are Markov equivalent if and only if they

have the same skeleton and v-structures.

For a given DAG G, the Markov equivalence class (MEC) of G is defined as

MEC(G) = {G0 : G0 is DAG, and I(G0) = I(G)}.

That is, the set of all DAGs, which are Markov equivalent with G. MEC(G) can be uniquely

represented by a graph G̃ = (V (G̃), E(G̃)), called the essential graph corresponding to

MEC(G), for which V (G̃) = V (G), and

E(G̃) =
[

G02MEC(G)

E(G0).

10

!"

!#

!$

!%

!&
'(

!"

!#

!$

!%

!&
!"

!#

!$

!%

!&

!"

!#

!$

!%

!&
!"

!#

!$

!%

!&

!"

!#

!$

!%

!&
!"

!#

!$

!%

!&

!"

!#

!$

!%

!&
!"

!#

!$

!%

!&

Figure 2.1: Example of the members and the essential graph corresponding to a MEC.

In other words, an essential graph has the same vertices and skeleton as its members of

the corresponding MEC, the directed edges are those that have the same direction in all

members of the class [12]. See Figure 2.1 for an example of all the elements of a MEC and

the essential graph corresponding to the MEC. With a slight abuse of notation, we denote

the MEC corresponding to essential graph G̃ by MEC(G̃). Essential graphs are also referred

to as completed partially directed acyclic graphs (CPDAGs) [4], and maximally oriented

graphs [17]. [12] proposed a graphical criterion for characterizing an essential graph. They

showed that an essential graph is a chain graph in which every chain component is chordal.

As a corollary of Lemma 1, for an essential graph G, no DAG in MEC(G) can contain a

v-structure in the subgraphs corresponding to chain components of G. In order to obtain

the essential graph from observational data, one can first learn the skeleton and v-structures

of the underlying DAG using conditional independence tests, and then apply the Meek rules

[17] to learn the direction of the rest of the directed edges of the essential graph in polynomial

time. The Markov and faithfulness assumptions guarantee that the essential graph can be

learned from the population dataset.

The authors of [18] observed that the orientation for one chain component does not a↵ect

the orientations for other components. Therefore, each chain component can be considered

as an essential graph independent of the other components. We call such an essential graph

an undirected connected essential graph (UCEG). Note that a UCEG G̃ is chordal and no

DAGs in its corresponding equivalence class MEC(G̃) is allowed to have any v-structures.

Each DAG in MEC(G̃) has exactly one root variable:

Lemma 2. Any v-structure-free connected DAG has exactly one root variable.

See [19] for a proof.

11

Suppose a joint distribution satisfying Markov and faithfulness conditions to the ground

truth causal DAG G⇤ is given, and we have no latent variables. Without any assumptions

on the type of the functions or the distribution of the exogenous variables in the underlying

structural causal model in (2.1), the ground truth causal DAG can be identified only up to

its Markov equivalence [1, 11]. Hence, the direction of all the edges in the chain components

of the essential graph corresponding to MEC(G⇤) will remain unresolved. In order to go

beyond Markov equivalence and di↵erentiate among the causal structures within a MEC, we

focus on two scenarios: Performing interventional experiments, and having access to more

than one joint distribution generated from the causal system, which are the focus of Chapters

3 and 4, respectively.

12

CHAPTER 3

INTERVENTIONAL CAUSAL STRUCTURE
LEARNING

Performing interventions is the gold standard for causal structure learning. In interven-

tional causal structure learning, a set of interventions is performed, each on a subset of

the variables of the system, and subsequently data is collected from the intervened system.

An intervention on a variable X varies the conditional distribution of X given its direct

causes. It can also make variable X completely independent of its causes. The information

obtained from an intervention depends on the type of the performed intervention, as well

as the size of the intervention (i.e., the number of the target variables), and the location of

the targets of the intervention in the underlying causal DAG. An interventional experiment

is comprised of a sequence of interventions with di↵erent target sets. It can be adaptive, in

which each intervention in the sequence is designed based on the information obtained from

previous interventions, or non-adaptive, in which all the interventions in the sequence are

designed before any data is collected. There are two main questions regarding the design of

interventional experiments for structure learning:

1. What is the smallest required number of interventions in order to fully learn the un-

derlying causal graph?

2. For a fixed number of interventions (budget), what portion of the causal graph is

learnable?

The first problem has been addressed in the literature under di↵erent assumptions [20,

21, 18, 22]. Specifically, [20] provided the worst case bounds on the number of required

interventions for di↵erent types of interventions. The second question mentioned above has

received less attention and we address this question herein. We consider a setup in which

given a budget k, we design k interventions non-adaptively. The setup that we present here

can be interpreted as an extension of the adaptive experiment design, in which interventions

are designed in batches of size k; i.e., setting k = 1, reduces the setup to the standard

adaptive experiment design. Our main contributions are summarized as follows:

13

• We cast the problem of finding the best intervention target set as an optimization

problem which aims to maximize the experiment gain. The gain is defined as the

number of edges whose directions are identified due to the performed interventions.

We consider the optimization of the worst-case gain, as well as the average gain.

• We start the investigation of the optimization problems by considering the case that

the underlying causal structure is a tree. For this case, we present an e�cient exact

algorithm for the worst-case gain setup, as well as an approximate algorithm for the

average gain setup. The latter is based on proving that the objective function for the

average gain setup is a monotonically increasing and submodular set function.

• We extend the approximate algorithm to the case of general causal DAGs. In this

case, besides the design of interventions, calculating the objective function is also

challenging. We propose an e�cient exact calculator as well as an unbiased and a fast

heuristic estimator for this task. Convergence analysis is provided for the unbiased

estimator.

The material in this chapter is taken from [23, 24, 25].

Interventional Structure Learning

We assume that the causal diagram is a DAG and there are no latent confounders in the

system. As mentioned in Chapter 2, in general, from a single joint distribution over a set of

variables, the ground truth causal structure can be identified up to Markov equivalence. An

interventional experiment is the process of perturbing the causal system to generate extra

joint distributions over the variables to enable the experimenter to improve the identifiability

either merely from the new interventional distributions, or from comparing the original and

interventional distributions.

Interventions are generally divided into two types of hard interventions and soft interven-

tions. In a hard intervention on a variable X, all the influences on X are removed and a

new value or distribution is forced on X, while in a soft intervention on X, this variable will

still be influenced by its original causes after the intervention. Below, we provide a formal

definition of an intervention, in which we mainly follow [20].

Consider a causal Bayesian network (G, PV) on a set of variables V = {X1, ..., Xp} with

observational joint distribution PV . Let XT be the subset of V that are subject to interven-

tion, called the intervention target set, and for i 2 T , let Wi be the intervention variable

14

corresponding to Xi. Intervention variables are jointly independent, are not influenced by

any of the variables in the system, and for all i 2 T , Wi directly influences only Xi. A

passive observation is considered to be an intervention with empty target set.

Definition 5 (Hard Intervention). A hard intervention I = (XT , WT) on XT , for all i 2 T

breaks the causal influence from Pa(Xi) to Xi, i.e., makes Xi independent of Pa(Xi), and sets

the intervention variable Wi as the only direct cause of Xi. For all i 2 T , Wi determines the

distribution of Xi, that is, in the factorized joint distribution, replaces the term PXi|Pa(Xi) with

P (I)
Xi

. In the language of structural causal model, I = (XT , WT) replaces Xi = fi(Pa(Xi), Ni)

with Xi = f (I)
i

(Wi, Ni), for all i 2 T . Graphically, for all i 2 T , it removes the directed edges

from Pa(Xi) to Xi, and sets the intervention variable Wi as the only parent of Xi to form

the interventional graph G(I).

Intervention I changes the joint distribution of XT and all variables in the system for

which an element of XT is a direct or indirect cause, and results in an interventional joint

distribution P (I)
V

. The resulting interventional joint distribution can be factorized as follows:

P (I)
V

=
Y

Xi2XT

P (I)
Xi

Y

Xi2V \XT

PXi|Pa(Xi).

As a specific example of a hard intervention, one can choose Wi to have the same support

as the support of Xi, and forces random values of Wi to Xi via Xi = Wi. Hard intervention

or its variations are also referred to as surgical interventions [11], ideal interventions [1],

independent interventions [26], and structural interventions [20] in the literature.

Definition 6 (Soft Intervention). A soft intervention I = (XT , WT) on XT , for all i 2 T

adds the intervention variable Wi as an extra direct cause to Xi. For all i 2 T , Wi directly

influences the distribution of Xi, that is, in the factorized joint distribution, replaces the term

PXi|Pa(Xi) with P (I)
Xi|Pa(Xi)

, where PXi|Pa(Xi) 6= P (I)
Xi|Pa(Xi)

. In the language of structural causal

model, I = (XT , WT) replaces Xi = fi(Pa(Xi), Ni) with Xi = f (I)
i

(Pa(Xi), Wi, Ni), for all

i 2 T . Graphically, for all i 2 T , it adds the intervention variable Wi as a parent of Xi to

form the interventional graph G(I).

The resulting interventional joint distribution can be factorized as follows:

P (I)
V

=
Y

Xi2XT

P (I)
Xi|Pa(Xi)

Y

Xi2V \XT

PXi|Pa(Xi).

15

Soft intervention or its variations are also referred to as dependent interventions [26], and

parametric interventions [20] in the literature.

In his dissertation, Eberhardt provided a more general definition of intervention than

what we presented here [20]. Compared to Eberhardt’s definition, we do not allow the

intervention variables to be confounded by the variables in the system. Also, we do not

allow one intervention variable to influence more than one variable of the system, i.e., in

our setup simultaneous intervention on two variables require two independent intervention

variables.

Neither hard nor soft intervention can be considered as the more general notion of in-

tervention, and either of them can be more practical depending on the application. For

instance, in a medical study on the e↵ect of alcohol on blood pressure, if the target variable

is the amount of alcohol consumption, it is often feasible to assign a certain value to this

variable regardless of other factors which may influence it. However, if the target is the

blood pressure, it is not feasible to remove all the other causes of this target variable, yet the

value of one of the known causes can be perturbed. In fact, performing a soft intervention is

often more challenging [20]. This is due to the fact that any change in the system may lead

to removing a subset of the other causes of the target variable.

For an intervention I, the cardinality of the intervention target set, i.e., |T |, is referred to

as the size of the intervention I. An intervention is called singleton if it has size equal to

one. We define an experiment of size k as a sequence of k interventions E = {I1, ..., Ik}. An

experiment is called adaptive if in the sequence of interventions, the information obtained

from the previous interventions is used to design the next one, otherwise it is called non-

adaptive, in which the intervention sequence is determined before any interventional data

is collected. A non-adaptive experiment gives the experimenter the ability to perform the

interventions in parallel without the need to wait for the result of one intervention to choose

the next one. For example, in the study of gene regulatory networks (GRNs), when the

GRN of all cells are the same, interventions can be performed simultaneously on di↵erent

cells. Furthermore, as observed in [27], in the worst case, no adaptive experiment design can

reduce the number of interventions required for structure learning.

The authors of [28] and [29] extended the notion of Markov equivalence to the interven-

tional case. For an experiment E , DAGs G1 and G2 are interventional Markov equivalent

if G(I)
1 and G(I)

2 are Markov equivalent for all I 2 E . Based on this notion of equivalence,

interventional Markov equivalence class and interventional essential graph are defined similar

to the observational case.

16

The rest of the chapter is organized as follows: After a brief review of related works

in Section 3.1, a formal description of the problem setup is presented in Section 3.2. The

proposed experiment design approach for tree causal structures and general causal structures

are presented in Sections 3.3 and 3.4, respectively. A variation of the general greedy algorithm

through lazy evaluations is presented in Section 3.5. Using synthetic and real data, the

proposed methods are evaluated in Section 3.6; and finally, our concluding remarks are

presented in Section 3.7.

3.1 Related Works

A formal definition and the details of the utilization of interventions for the task of causal

discovery is provided by [11] and [1]. Especially, [11] used the concept of atomic intervention,

in which the intervened variable is forced to one particular value rather than a non-degenerate

distribution, that is, Xi = xi, for some value xi in the support of random variable Xi. Works

including [20, 21, 18, 22] address the problem of finding the smallest number of interventions

required for fully identifying the causal structure. [20] provided the worst case bounds on the

number of required interventions for di↵erent types of interventions. [30] drew connections

between causality and known separating system constructions. [21] conjectured regarding

the number of interventions with targets of unbounded size su�cient and in the worst case

necessary for fully identifying a causal model. The conjecture was proved in [31] where the

authors provided an algorithm that finds such a set of interventions in polynomial time. The

problem of intervention design with interventions of unbounded size is also addressed in the

case that each variable has a certain cost to intervene on [32, 33].

Note that the aforementioned works mostly assume that the cardinality of the interventions

could be as large as half of the order of the graph, which may render the applicability of

the results infeasible for some applications. [22] considered the problem of learning a causal

graph when intervention sizes are bounded by some parameter and provided a lower bound

on the number of required interventions for adaptive algorithms. We focus on a setup

with singleton interventions, i.e., interventions of size 1. As will be explained in Section

3.2, this setup is suitable for the applications that certain variables cannot be randomized

simultaneously, and also maximizes the gain obtained from the performed randomizations.

There are other works focused on singleton interventions as well [34, 18, 31]. [34] showed

that N�1 experiments su�ce to determine the causal relations among N > 2 variables when

each experiment randomizes at most one variable. [18] proposed an adaptive algorithm to

17

minimize the uncertainty of candidate structures based on the minimax and the maximum

entropy criteria. [31] provided a greedy adaptive approach that maximizes the number of

orientable edges based on a minimax optimization.

The problem of interventional causal structure learning is also considered in the causally

insu�cient systems (i.e., with latent confounders) [35]. There also exist works that con-

sider the problem of adaptive intervention design using a Bayesian framework, in which a

distribution over possible structures and their associated parameters is maintained [36, 37].

Recently, [38] proposed a method based on optimal Bayesian experimental design in which

the expected of a utility function is maximized in each round of experiments according to

the current belief and they provided a tractable solution with an approximation guarantee

based on sub-modularity.

One less usual connection to the problem of interventional structure learning when we

are limited to a budget of k vertices to intervene on, is with the literature concerned with

the influence maximization problem. The goal in the influence maximization problem is to

find k vertices (seeds) in a given network such that under a specified influence model, the

expected number of vertices influenced by the seeds is maximized [39, 40, 41]. Besides the

interpretative di↵erences, an important distinction between the two problems is that in the

influence maximization problem, the goal is to spread the influence to the vertices of the

graph, while in budgeted experiment design problem, the goal is to pick the initial k vertices

in a way that leads to discovering the orientation of as many edges as possible. Therefore,

the optimal solution to these two problems for a given graph can be quite di↵erent (see

Appendix A for an example).

3.2 Problem Description

We study the problem of causal structure learning over a set of p endogenous variables

V = {X1, ..., Xp}, with ground truth causal structure G⇤ using interventions. We assume

that the causal diagram is acyclic, i.e., it is a DAG, and we have the causal su�ciency

assumption which implies that there are no latent confounders in the system. Similar to

[18], [22], and [32], we consider the case that observational data is available and hence,

the interventions can be designed based on the output of an initial passive observational

stage. This implies that on the population dataset, we design the interventions with side

information about the MEC of the ground truth causal structure.

We consider a setup in which we are given a budget of k interventions, and we design

18

the interventions with the goal of discovering the direction of as many edges as possible in

the causal graph. Interventions are designed non-adaptively, that is, each intervention is

performed regardless of the information gained from the other interventions. Note that an

adaptive experiment design is a special case of our problem: In an adaptive setup, given the

information deduced from the collected data, the next intervention is designed. Therefore,

this setup is equivalent to ours when k = 1. Equivalently, our setup could be considered as

an extension of adaptive experiment design when the interventions are design in batches of

size k.

After performing each intervention Ii, data is collected from interventional joint distribu-

tion P (Ii)
V

. Eventually, the observational data and the data gathered from interventions is

used for the final output of the procedure. We use the GIES algorithm [28] for this final

step.

We assume that all the interventions should be singleton, i.e., each intervention should

have size equal to one. This is beneficial since in some applications, the experimenter may

not be able to randomize certain variables simultaneously. Note that most of the literature

assume that the size of each intervention is larger than one, in some cases going as high as half

of the number of variables [27, 21, 31, 32]. Therefore, the set of k variables I = {XI1 , ..., XIk
}

contains all the information to describe the targets in the experiment, where XIi
is the single

variable intervened on in intervention Ii. We call the set I the target set of the experiment.

We denote the interventional MEC containing DAG G by I-MEC(G). Note that the passive

observational experiment is contained in the experiment set, i.e., I-MEC(G) contains all

graphs G0, such that G0 is Markov equivalent to G and G0(Ii) is Markov equivalent to G(Ii),

for all singleton interventions Ii, 1 i k. We have the following assumptions in this work:

Assumption 1. The ground truth causal structure G⇤ is a DAG and exogenous variables in

the structural causal model are jointly independent.

Assumption 2. The observational and interventional joint distributions satisfy Markov and

faithfulness conditions with respect to their corresponding observational and interventional

DAGs.

Assumption 3. The correct essential graph G̃⇤ can be learned from the initial observational

dataset.

Under Assumptions 1-3, we have the following result regarding the e↵ect of a singleton

intervention.

19

Lemma 3. Having the observational essential graph G̃⇤, a singleton intervention (hard or

soft) on variable Xi identifies the direction of all edges incident with Xi.

[27] and [18] provided the same result as in Lemma 3 with di↵erent proofs. Also, [27]

observed that given the essential graph resulted from the passive observational stage, a hard

intervention I allows orientating the undirected edge Xi �Xj if only one of Xi and Xj is in

the target set of I. If both Xi and Xj are targeted in the intervention, this intervention is

called a zero-information intervention for the pair {Xi, Xj}. Our setup in which |Ii| = 1, for

all i 2 {1, ..., k}, avoids such zero-information experiments. Therefore, another advantage

of forcing singleton interventions is that there will be no zero-information interventions in

the experiment and hence, we gain the most from each randomization. We note that a

zero-information intervention does not happen for the case of soft interventions:

Lemma 4. A sequence of k singleton soft interventions is equivalent to one soft intervention

of size k on the same targets.

Lemma 4 is a corollary of Theorem 2 of [42]. By Lemma 4, if the performed interventions

are soft, they can be done simultaneously as one soft intervention of size k, i.e., we can have

|E| = 1, and |I1| = k. Nevertheless, as mentioned earlier, soft interventions in general can

be more challenging to perform.

By Assumption 3, we assume that MEC(G⇤), and hence, its corresponding essential graph

G̃⇤ is attainable from the observational data. Let Gi 2 MEC(G⇤), and for experiment

with target set I, denote the interventional Markov equivalence class containing Gi and its

corresponding interventional essential graph by I-MEC(Gi) and G̃(I)
i

, respectively. Define

R(I, Gi) as the set of edges directed in G̃(I)
i

but not directed in G̃⇤, i.e., the set of edges

whose directions can be learned due to the experiment with target set I, if the ground truth

DAG were Gi. Note that R(I, G) is the same for all G 2 I-MEC(Gi). R(I, Gi) can be

obtained as follows: As seen in Lemma 3, from an experiment with target set I, one learns

the direction of all the edges incident with the vertices in I. Denote these directed edges by

A(I, Gi). (Clearly, the orientation of these edges depends on the ground truth DAG Gi, and

hence Gi is an input argument.) Meek rules [17] can then be applied to A(I, Gi) to obtain

extra edges oriented in G̃(I)
i

compared to G̃⇤ in polynomial time.

Define the gain of an experiment with target set I on ground truth structure Gi as

D(I, Gi) = |R(I, Gi)|, that is, the number of edges whose direction is discovered due to

the experiment, if the ground truth DAG were Gi. Since the ground truth DAG is initially

known only up to the elements of MEC(G⇤), and since there is no preference between the

20

members of MEC(G⇤), G⇤ is equally likely to be any of the DAGs in the class. Hence, the

expected number of the edges recovered through the experiment with target set I is

D(I) :=
1

|MEC(G⇤)|
X

Gi2MEC(G⇤)

D(I, Gi). (3.1)

We refer to D(I) as the average gain of the experiment with target set I. Thus, our problem

of interest can be formulated as finding intervention target set I ✓ V of cardinality k that

maximizes D(I):

max
I:I✓V

D(I) s.t. |I| = k. (3.2)

We refer to (3.2) as the average gain optimization problem. Optimization problem (3.2)

is challenging for two reasons: First, finding an optimal I requires a combinatorial search.

Second, even for a given set I, computing D(I) when the value of k or the cardinality of

the Markov equivalence class is large, can be computationally intractable. Note that the

cardinality of a MEC can be super-exponential in the number of vertices [43].

Alternatively, one can consider a minimax setup, and design the experiment for the worst-

case member of the equivalence class:

max
I:I✓V

min
Gi2MEC(G⇤)

D(I, Gi) s.t. |I| = k. (3.3)

We refer to (3.3) as the worst-case gain optimization problem. Optimization problem (3.3)

is studied by [31] for the case of k = 1. Here, we consider the challenges raised when k is

larger than 1 and a brute force search over all subsets of V of size k is not computationally

feasible. [18] have also considered a similar setup with singleton interventions with k = 1.

But their objective functions are di↵erent and they perform a brute force search to find the

optimum target.

In Section 3.3 we study optimization problems (3.2) and (3.3) for the case that the under-

lying causal structure is a tree, and we consider the general case in Section 3.4.

3.3 Experiment Design for Tree Structures

We start the investigation of optimization problems (3.2) and (3.3) by considering the case

that the underlying causal structure is a tree. For the obtained essential graph from the

observational stage, Let T̃1, ..., T̃R denote the induced subgraphs of the essential graph on

21

the non-trivial chain components. Note that by definition, each T̃r is a UCEG. As mentioned

in Chapter 2, orientations for one chain component of an essential graph does not a↵ect the

orientations for the other components. Thus, for a given number of interventions assigned to

one UCEG, the task of experiment design in that UCEG becomes independent from other

UCEGs.

Recall from Lemma 2 that for a given UCEG G̃, each DAG in MEC(G̃) has a unique root

variable. Here, since the DAG is a tree and should be v-structure-free, knowing the root

variable identifies the orientation of all the edges:

Lemma 5. For a tree UCEG T̃ , no two DAGs in MEC(T̃) have the same root variable, that

is, the location of the root variable identifies the direction of all the edges.

For a tree UCEG T̃r, 1 r R, and any variable X 2 V (T̃r), let TX

r
be the unique

directed tree in MEC(T̃r) with root variable X. Based on Lemmas 2 and 5, MEC(T̃r) =

{TX

r
: X 2 V (T̃r)}. Therefore, optimization problem (3.2) can be written as

max
I:I✓V

1

pu

RX

r=1

X

X2V (T̃r)

D(Ir, T
X

r
), s.t.

RX

r=1

|Ir| = k, (3.4)

where pu :=
P

R

r=1 |V (T̃r)|, and Ir is the set of intervened variables in chain component T̃r,

i.e., Ir := I \ V (T̃r). Furthermore, the optimization problem (3.3) can be written as

max
I:I✓V

min
{Xi1 ,··· ,XiR

}✓V

RX

r=1

D(Ir, T
Xir

r
) s.t.

RX

r=1

|Ir| = k

⌘ max
I:I✓V

RX

r=1

min
X2V (T̃r)

D(Ir, T
X

r
) s.t.

RX

r=1

|Ir| = k,

(3.5)

where the two optimization problems are equivalent due to the fact that orienting edges in

one UCEG does not a↵ect orientations of the edges in other UCEGs, and hence, minimization

on the root of UCEGs can be done separately.

Let {C1(Ir), ..., CJ(Ir)(Ir)} be the set of components of T̃r \ Ir, i.e., the components re-

sulting from removing vertices Ir and edges incident to them from T̃r, where J(Ir) is the

number of the resulted components. We have the following result regarding the calculation

of the gain D(Ir, TX

r
).

Lemma 6. For any X 2 V (T̃r) and experiment target set Ir ✓ V (T̃r), the gain D(Ir, TX

r
)

22

can be calculated as follows:

D(Ir, T
X

r
) =

8
<

:
|T̃r|� 1 X 2 Ir,

|T̃r|� |Cj(Ir)| X 2 Cj(Ir),

where |G| denotes the order (number of vertices) of G.

Using Lemma 6, the average gain of an experiment target set I can be calculated by the

following proposition:

Proposition 1. The average gain of an experiment target set I ✓ V is given as follows:

D(I) =
1

pu

RX

r=1

|T̃r|2 �
k

pu
� 1

pu

RX

r=1

J(Ir)X

j=1

|Cj(Ir)|2. (3.6)

Based on Lemma 6 and Proposition 1, the optimizer of the optimization problem (3.4)

can be found by solving

min
I:I✓V

RX

r=1

J(Ir)X

j=1

|Cj(Ir)|2, s.t.
RX

r=1

|Ir| = k. (3.7)

Also, we have

arg max
I:I✓V

RX

r=1

min
X2V (T̃r)

D(I, TX

r
), s.t.

RX

r=1

|Ir| = k

= arg max
I:I✓V

RX

r=1

min
1jJ(Ir)

|T̃r|� |Cj(Ir)|, s.t.
RX

r=1

|Ir| = k

= arg max
I:I✓V

RX

r=1

|T̃r|� max
1jJ(Ir)

|Cj(Ir)|, s.t.
RX

r=1

|Ir| = k

= arg max
I:I✓V

RX

r=1

� max
1jJ(Ir)

|Cj(Ir)|, s.t.
RX

r=1

|Ir| = k

= arg min
I:I✓V

RX

r=1

max
1jJ(Ir)

|Cj(Ir)|, s.t.
RX

r=1

|Ir| = k.

23

Hence, the optimizer of the optimization problem (3.5) can be found by solving

min
I:I✓V

RX

r=1

max
1jJ(Ir)

|Cj(Ir)|, s.t.
RX

r=1

|Ir| = k. (3.8)

Clearly, the optimization problems in (3.7) and (3.8) can be solved via a brute-force search

over all
�
p

k

�
target sets, which can be computationally intensive. In Subsections 3.3.1 and

3.3.2, we will introduce e�cient algorithms to address these optimization problems.

3.3.1 Optimizing the Worst-Case Gain in Tree Structures

We start with the optimization problem in (3.8). As mentioned before, for a fixed number of

intervention in UCEG T̃r, the task of experiment design in that UCEG becomes independent

of other UCEGs. Thus, we can formulate the optimization problem in (3.8) as follows:

min
(I1,...,IR):

P
R

r=1 |Ir|=k

RX

r=1

max
1jJ(Ir)

|Cj(Ir)|

⌘ min
(I1,...,IR):|Ir|=kr,

P
R

r=1 kr=k

RX

r=1

max
1jJ(Ir)

|Cj(Ir)|

⌘ min
(k1,...,kR):

P
R

r=1 kr=k

RX

r=1

min
Ir:|Ir|=kr

max
1jJ(Ir)

|Cj(Ir)|.

(3.9)

Herein, we first propose Algorithm 1 that solves for the minimax problem in the summation

in expression (3.9) for each given UCEG T̃r. That is, Algorithm 1 finds a set Ir in T̃r of size kr

such that after removing the variables in Ir, the maximum size of the remaining components

is minimized. Next, we will show that how Algorithm 1 can be utilized to obtain an optimum

solution of the problem in (3.9).

Algorithm 1 takes a UCEG T̃r and budget of intervention kr as inputs and returns the set

Îr that is a solution of the following minimax problem:

min
Ir:Ir✓V (T̃r)

max
1jJ(Ir)

|Cj(Ir)|, s.t. |Ir| = kr. (3.10)

In the main loop of Algorithm 1, each variable Xi 2 V (T̃r) is set as the starting point for

performing Depth-First Search (DFS) on T̃r. For a given threshold value mid, 1 mid
|T̃r|, the algorithm does the following. On the traversal of DFS, whenever all the descendants

24

Algorithm 1 Minimax Experiment Design for a UCEG

1: input: T̃r, kr.
2: for Xi 2 V (T̃r) do
3: L = 1, H = |T̃r|, T = T̃r

4: while bHc 6= bLc do
5: I = ;, mid = (L + H)/2
6: Perform DFS on T starting from Xi.
7: for Xj 2 V , when all variables in Desc(Xj) w.r.t. TXi

r
are visited in DFS

traversal, do
8: if |Desc(Xj)| > mid then
9: I = I [{Xj}
10: T = T \ Desc(Xj)
11: end if
12: end for
13: if |I| kr then
14: mid(Xi) = mid, I(Xi) = I
15: H = mid
16: else
17: L = mid
18: end if
19: end while
20: end for
21: Îr = I(arg minXi

mid(Xi))
22: output: Îr

of a variable Xj are visited, it decides to remove Xj and adds it to the set I (which is the

set of variables on which we will intervene), if not doing so results in having a component

with size larger than mid in the subtree rooted at Xj (lines 8-9). Note that after removing

Xj, for the rest of variables in the traversal, we do not consider the disconnected vertices

anymore. After checking all the variables in DFS, we see if our budget of intervention, i.e.,

kr, is enough for performing |I| interventions (line 13). We update the value for mid in

each loop using a binary search to find the minimum threshold that can be satisfied by the

budget. More specifically, if the number of interventions is less than the budget kr for a value

of mid, we narrow down our search space to [L, mid] (lines 13-15). Otherwise, we consider

the region [mid, H] (line 17). This procedure will be repeated for all possible choices of the

starting point of DFS and we choose the best I(X) as the output of the algorithm (line 21).

Theorem 1. Algorithm 1 returns the optimal solution of the optimization problem in (3.10).

Establishing an algorithm for solving the minimax problem in (3.10), we can utilize it to

25

solve the main optimization problem in (3.9). To this end, we show that the main problem

can be formulated as a multi-choice knapsack problem [44], and hence, it can be solved

e�ciently by existing algorithms [44] proposed for the multi-choice knapsack problem.

In order to find an optimal solution of (3.9), using Algorithm 1, we first obtain the optimal

value of objective function in (3.10) for every UCEG T̃r and any assigned budget kr = j,

where 0 j k, and denote the optimum value by Dr,j. Also, for each UCEG T̃r and

budget j, we define binary indicator variable xr,j, where xr,j = 1 if the budget assigned to

T̃r is equal to j, otherwise, xr,j = 0. Hence, optimization problem (3.9) can be reformulated

as follows:

min
RX

r=1

kX

j=0

Dr,jxr,j

s.t.
RX

r=1

kX

j=0

jxr,j k,

kX

j=0

xr,j = 1,

xr,j 2 {0, 1}, for all 1 r R, for all 0 j k.

(3.11)

The first condition ensures that the total number of interventions performed in all UCEGs is

less than or equal to budget k and the second condition specifies the number of interventions

assigned to each UCEG T̃r. Moreover, the sum
P

k

j=0 Dr,jxr,j in the objective function is

equal to Dr,j if xr,j = 1. In other words, this sum is equal to the optimal value of objective

function in (3.10) if kr = j. Thus, the objective function in (3.11) is equal to the one in

(3.9).

Regarding the time complexity of the proposed approach, we first run Algorithm 1 on each

UCEG for any budget in the range {0, ..., k}. The time complexity of Algorithm 1 is in the

order of O(p2 log p). This is due to the fact that DFS runs in time O(p) for a tree of order

p and for a fixed value of parameter H, the while loop in Algorithm 1 will run for log2(H)

times, which can be at most log p. Therefore, the time complexity of obtaining the optimal

value of objective function in (3.10) for all 1 r R and 1 kr k, is in the order of

O(p3k log p). Moreover, the time complexity of solving the multi-choice knapsack problem

is in the order of O(pk2). Hence, the total time complexity of the proposed approach would

be in the order of O(p3k log p).

26

3.3.2 Optimizing the Average Gain in Tree Structures

We now move to the problem of experiment design on tree structures for maximizing the

average gain presented in expression (3.6). Unlike the minimax case, in the case of maxi-

mizing the average gain, the objective function depends on both the maximum order of the

components, as well as how uniform the order of the components are. This fact makes the

design of the experiment target set more challenging in the average case. Unfortunately,

we do not have an e�cient exact algorithm for this case; however, we show that due to

submodularity of the objective function, an e�cient approximation algorithm for this case

can be obtained. We start by reviewing monotonicity and submodularity properties for a

set function.

Definition 7. A set function f : 2V ! R is monotonically increasing if for all sets I1 ✓
I2 ✓ V , we have

f(I1) f(I2).

Definition 8. A set function f : 2V ! R is submodular if for all subsets I1 ✓ I2 ✓ V and

all X 2 V \ I2,1

f(I1 [{X})� f(I1) � f(I2 [{X})� f(I2).

[45] showed that if f is a submodular and monotonically increasing set function with

f(;) = 0, then the set Î with |Î| = k found by a greedy algorithm satisfies

f(Î) � (1� 1

e
) max
I:|I|=k

f(I),

that is, the greedy algorithm is a (1� 1
e
)-approximation algorithm. In the following, we show

that the set function D defined in (3.6) is monotonically increasing and submodular, and

hence, since D(;) = 0, the greedy algorithm is a (1 � 1
e
)-approximation algorithm for the

maximization problem (3.2).

Proposition 2. For tree structures, the set function D defined in (3.6) is monotonically

increasing and submodular.

Our general greedy algorithm is presented in Algorithm 2. We define the marginal gain of

variable X when the previous chosen set is I as

�X(I) = D(I [{X})�D(I). (3.12)

1If f is monotonically increasing, X 2 V \ I2 relaxes to X 2 V .

27

Algorithm 2 General Greedy Algorithm
input: Essential graph from the observational stage, budget k.
initialize: I0 = ;
for i = 1 to k do

Xi = arg maxX2V \Ii�1 D(Ii�1 [{X})�D(Ii�1)
Ii = Ii�1 [{Xi}

end for
output: Î = Ik

The greedy algorithm iteratively adds a variable which has the largest marginal gain to the

target set until it runs out of budget. For any input set I, in order to calculate the value of

D(I), we use the equation in (3.6). Note that D(I) can be computed e�ciently from (3.6)

as it is just needed to obtain the size of resulted components after removing variables in I.

To do so, we can run DFS algorithm on each component. In each DFS call, the size of a

component is obtained by visiting the variables in it. Then, we will call DFS on the next

unvisited component until there is no unvisited variable in the essential graph. Therefore,

D(I) can be computed in O(p) since the total number of edges in all components is in the

order of O(p).

3.4 Experiment Design for General Structures

In this section we consider experiment design for the case of general structures, formulated in

optimization problem (3.2). We first generalize Proposition 2 by showing that the function

D defined in (3.1) is monotonically increasing and submodular.

Proposition 3. The set function D defined in (3.1) is monotonically increasing.

We use the following lemma in the proof of submodularity of the function D.

Lemma 7. Let I1 and I2 be arbitrary subsets of variables of a DAG G. We have

R(I1 [I2, G) = R(I1, G) [R(I2, G).

As mentioned in Section 3.2, from an experiment with target set I, one learns the direction

of all the edges incident with the vertices in I, denoted by A(I, G), and then the extra edges

in the interventional essential graph can be obtained by, say, using the Meek rules starting

from A(I, G). Lemma 7 implies that the set of resolved edges in the essential graph starting

28

from A(I1 [I2, G) is the same as the set of edges whose direction is resolved either in the

essential graph starting from A(I1, G) or in the essential graph starting from A(I2, G).

Theorem 2. The set function D defined in (3.1) is a submodular function.

Equipped with Proposition 3 and Theorem 2, we can again use Algorithm 2, to obtain

an (1 � 1
e
)-approximation of the optimal solution of optimization problem (3.2). However,

as mentioned in Section 3.2, another challenge regarding solving the optimization problem

(3.2) is the computational aspect of calculating D(I) for a given experiment target set I. In

Section 3.3, for the case of tree structures, for a given set I, we calculated the value of D(I)

e�ciently by applying DFS algorithm; yet this approach cannot be extended to the case

of general structures. In the following subsections, we propose e�cient methods for exact

calculation and estimation of D(I) for general structures.

Remark 1. As seen in the proof of Theorem 2, for DAG G and I ✓ V (G), the set function

D(I, G) is submodular. However, the minimum of submodular functions is not necessarily

submodular. Hence, Algorithm 2, is not necessarily a (1 � 1
e
)-approximation algorithm for

the case of worst-case gain in optimization problem (3.3).

3.4.1 Exact Calculation of D(I)

In this section, we show that a method for counting the number of elements in a MEC can be

used for calculating D(I). For an essential graph G̃, we define the size of its corresponding

MEC as the number of DAGs in the class and denote it by Size(G̃). Let {G̃1, ..., G̃R} be the

chain components of G̃. Size(G̃) can be calculated from the size of chain components using

the following equation [46, 18]:

Size(G̃) =
RY

r=1

Size(G̃r). (3.13)

Therefore, it su�ces to calculate the size of UCEGs G̃1, ..., G̃R.

Definition 9. Let G̃r be a UCEG. The X-rooted subclass of MEC(G̃r) is the set of all X-

rooted DAGs in MEC(G̃r). This subclass can be represented by the X-rooted graph G̃X

r
=

(V (G̃X

r
), E(G̃X

r
)), called the X-rooted essential graph, where V (G̃X

r
) = V (G̃r), and E(G̃X

r
) =

S
{E(G) : G 2 X-rooted subclass of MEC(G̃r)}.

29

(")

($) (%)

&'′

&'
)*

)+

)+

)*

),)-

)-),
)-),

(.) (/)

&'′′

)+

)*

)-),

)+

)*

),

Figure 3.1: Example of the counting and sampling approach.

For instance, for UCEG G̃ in Figure 3.1(a), G̃X1 and G̃X2 are depicted in Figures 3.1(b)

and 3.1(d), respectively.

Lemma 8 (He et al. [43]). Let G̃r be a UCEG. For any X 2 V (G̃r), the X-rooted subclass

is not empty and the set of all X-rooted subclasses partitions MEC(G̃r).

From Lemma 8 we have

Size(G̃r) =
X

X2V (G̃r)

Size(G̃X

r
). (3.14)

Therefore, using equations (3.13) and (3.14), we have

Size(G̃) =
RY

r=1

X

X2V (G̃r)

Size(G̃X

r
). (3.15)

G̃X

r
could be viewed as an essential graph, as it can be considered as an interventional

essential graph with target variable X, for which in the underlying DAG all of edges incident

to X are outgoing edges. Hence, the number of DAGs in its corresponding X-rooted subclass

can be calculated via equation (3.13). Therefore, using equation (3.15), Size(G̃) can be

obtained recursively: In each chain component, each variable is set as the root variable, and

in each chain component of each of the resulting rooted essential graphs, each variable is set

as the root, and this procedure is repeated until the resulting essential graph is a directed

graph and has no chain components.

Note that in this procedure, after setting each variable as the root, we observe the direc-

tions that the edges in the rooted essential graph acquire. That is, it has the property that

30

we explicitly monitor the performed orientations in the given essential graph. The approach

that we present in the following for calculating and estimating the value of D(I) requires

this property. Therefore, methods for calculation of the size of the MEC which are based on

explicit functions of the parameters of the structure cannot be used in our approach. For

instance, [43] showed that there are five types of MECs whose sizes can be formulated as

functions of the number of vertices; e.g., for a tree UCEG of order p, the size of the MEC

is p � 1. We have proposed an e�cient counting approach with our desired property of

monitoring the performed orientations in [24], where the counting is performed based on the

clique tree representation of the essential graph.

Example 1. Assume the UCEG in Figure 3.1(a) is the given essential graph.

Setting vertex X1 as the root of G̃ (by symmetry, X4 is similar), in the rooted essential

graph G̃X1, the directed edges are X1 ! X2, X1 ! X3, X2 ! X4, and X3 ! X4. This

rooted essential graph is shown in Figure 3.1(b), which has a single chain component G̃0,

(Figure 3.1(c)). Setting vertex X2 as the root of G̃0 (by symmetry, X3 is similar), in the

rooted essential graph G̃0X2, the directed edge is X2 ! X3. This results in a directed graph,

thus, Size(G̃0X2) = 1. Similarly, Size(G̃0X3) = 1. Therefore, using equation (3.14), we have

Size(G̃X1) = Size(G̃0X2) + Size(G̃0X3) = 2. Similarly, we have Size(G̃X4) = 2.

Setting vertex X2 as the root of G̃ (by symmetry, X3 is similar), in the rooted essential

graph G̃X2, the directed edges are X2 ! X1, X2 ! X3, and X2 ! X4. This rooted essential

graph is shown in Figure 3.1(d), which has a single chain component G̃00, (Figure 3.1(e)).

Setting vertex X1 as the root of G̃00, in the rooted essential graph G̃00X1, the directed edges

are X1 ! X3 and X3 ! X4. This results in a directed graph, thus, Size(G̃00X1) = 1.

Similarly, Size(G̃00X3) = 1 and Size(G̃00X4) = 1. Therefore, using equation (3.14), we have

Size(G̃X2) = Size(G̃00X1) + Size(G̃00X3) + Size(G̃00X4) = 3. Similarly, we have Size(G̃X3) = 3.

Finally, using equation (3.14), we obtain that Size(G̃) =
P

i
Size(G̃Xi) = 10.

Now consider the task of counting the number of elements of a MEC(G̃) in the presence

of prior knowledge regarding the direction of a subset of the undirected edges of the es-

sential graph. We present the available prior knowledge in the form of a hypothesis graph

H = (V (H), E(H)), which is the same as G̃, yet the orientation of the edges correspond-

ing to the prior knowledge are determined as well. For essential graph G̃, let SizeH(G̃)

denote the number of the elements of MEC(G̃), which are consistent with hypothesis H,

i.e., SizeH(G̃) = |{G : G 2 MEC(G̃), E(G) ✓ E(H)}|. Similar to equation (3.13), we have

SizeH(G̃) =
Q

R

r=1 SizeH(G̃r). Also, akin to equation (3.14), for chain component of G̃, we

31

Algorithm 3 Counting with Prior Knowledge

input Essential graph G̃, Hypothesis graph H.
output Counter(G̃, H)

function Counter(G̃, H):
if G̃ is a directed graph then return 1.
else

for each chain component G̃r of G̃ do
for X 2 V (G̃r) do

if E(G̃X

r
) ✓ E(H) then Size(G̃X

r
) = Counter(G̃X

r
, H) else Size(G̃X

r
) = 0 end

if
end for
Size(G̃r) =

P
X
Size(G̃X

r
)

end forreturn
Q

r
Size(G̃r)

end if

have SizeH(G̃r) =
P

X2V (G̃r)
SizeH(G̃X

r
). Therefore, in order to extend the counting ap-

proach to the case of having prior knowledge, every time that a variable is chosen as the

root of a UCEG, we check if the resulting oriented edges belong to E(H). If this is not the

case, for X-rooted essential graph G̃X , we return Size(G̃X) = 0. This guarantees that any

DAG considered in the counting will be consistent with the hypothesis H. See Algorithm

3 for a pseudo-code of the proposed counting approach with prior knowledge. If H = G̃ it

implies that we have no prior knowledge, and the algorithm outputs Size(G̃). Note that the

ability of checking the consistency of the oriented edges with the hypothesis is the reason

that we stated earlier that the property of monitoring the performed orientations in the given

essential graph is required in our approach.

Proposition 4. For a given essential graph with maximum vertex degree �, the computa-

tional complexity of Algorithm 3 is O(p�+2).

We now demonstrate how the approach of counting with prior knowledge can be utilized

for the task of calculating D(I). Recall that for an experiment target set I and DAG

Gi 2 MEC(G⇤), the set R(I, Gi), i.e., the set of edges directed in G̃(I)
i

but not directed in

G̃⇤, only depends on the I-MEC that Gi belongs to. Also, recall that the I-MEC that Gi

belongs to only depends on A(I, Gi), which is the directed edges in Gi incident to vertices in

I. Therefore, all DAGs G 2 MEC(G⇤) that have the same set A(I, G) lead to the same value

for D(I, G). Therefore, one can partition the members of MEC(G⇤) with respect to their set

A(I, G), and then, consider the set A(I, G) as prior knowledge and use the aforementioned

32

counting approach to count the number of DAGs in each partition of MEC(G⇤).

Formally, let H be the set of hypothesis graphs, in which each element H has a distinct

configuration for A(I, G). If the maximum degree of the graph is �, cardinality of H is

at most 2k�, and hence, it does not grow with p. For a given hypothesis graph H, let

G̃H = {G : G 2 MEC(G⇤), E(G) ✓ E(H)} denote the set of members of the MEC(G⇤),

which are consistent with hypothesis H. Note that this set is in fact an interventional MEC.

Using the set H, we can write the expression of D(I) as follows.

D(I) =
1

Size(G̃⇤)

X

Gi2MEC(G⇤)

D(I, Gi)

=
1

Size(G̃⇤)

X

H2H

X

Gi2G̃H

D(I, Gi)

=
X

H2H

SizeH(G̃⇤)

Size(G̃⇤)
D(I, Gi),

(3.16)

where in the last summation, Gi 2 G̃H . Therefore, we only need to calculate at most 2k�

values instead of considering all elements of MEC(G⇤), which reduces the complexity from

super-exponential to constant in p.

Eventually, in order to design the experiment, we use the proposed calculator of D in a

greedy algorithm. We term this approach the Greedy Intervention Design (GrID).

3.4.2 Unbiased D(I) Estimator

The computational complexity of the approach presented in Subsection 3.4.1 for exact cal-

culation of D(I) is exponential in the intervention budget k. Hence, it may not be com-

putationally tractable for large values of k. For this scenario, we propose running Monte

Carlo simulations of the intervention model for su�ciently large number of times to obtain

an accurate estimation of D(I). To this end, we need a uniform sampler for generating

random DAGs from MEC(G⇤). We present such a sampler, which is based on the counting

method presented in Subsection 3.4.1. The main idea is that in a UCEG, we choose a vertex

as the root according to the portion of members of the corresponding MEC which have that

vertex as the root, i.e., in UCEG G̃, vertex X should be picked as the root with probabil-

ity Size(G̃X)/Size(G̃). The pseudo-code of the proposed sampler is presented in function

UnifSamp in Algorithm 4, in which we use function Counter from Algorithm 3.

33

Algorithm 4 Unbiased D(I) Estimator

input: Essential graph G̃ with chain components {G̃1, ..., G̃R}, target set I, and N .

initialize: [MEC = ;
for i = 1 to N do

Generate sample DAG Gi = UnifSamp(G̃)
[MEC = [MEC]Gi

end for
output: D̂(I) = 1

N

P
Gi2

\MEC
D(I, Gi)

function UnifSamp(G̃)
initialize: G = {G̃1, ..., G̃R}
while G 6= ; do

Pick an element G̃r 2 G, and update G = G \ G̃r.

Set X 2 V (G̃r) as the root with probability Counter(G̃X
r ,G̃

X
r)

Counter(G̃r,G̃r)
.

Add the directed edges of G̃X

r
to G̃

G = G [{chain components of G̃X

r
}

end whilereturn G̃.

Example 2. For the UCEG in Figure 3.1(a), as observed in Example 1, Size(G̃X1) =

Size(G̃X4) = 2, Size(G̃X2) = Size(G̃X3) = 3, and hence, Size(G̃) = 10. Therefore,

we set vertices X1, X2, X3, and X4 as the root with probabilities 2/10, 3/10, 3/10,

and 2/10, respectively. Suppose X2 is chosen as the root. Then as seen in Example 1,

Size(G00X1) = Size(G00X3) = Size(G00X4) = 1. Therefore, in G00, we set either of the vertices

as the root with equal probability to obtain the final DAG.

Theorem 3. The sampler in Algorithm 4 is uniform.

As a corollary of Proposition 4, for bounded degree graphs, the proposed sampler runs in

polynomial time.

Corollary 1. For a given essential graph with maximum vertex degree �, the computational

complexity of the uniform sampler in Algorithm 4 is O(p�+2).

Equipped with the uniform sampler in Algorithm 4, in order to estimate the value of D(I),

we generate N DAGs from MEC(G⇤). The generated DAGs are kept in a multiset [MEC, in

which repetition is allowed. Finally, we calculate the estimated value D̂(I) on [MEC instead

of MEC(G⇤) as follows.

D̂(I) =
1

|[MEC |

X

Gi2
\MEC

D(I, Gi).

34

The pseudo-code of our estimator is presented in Algorithm 4. In the pseudo-code, operator

] indicates the multiset addition.

The estimation obtained from the aforementioned approach is an unbiased estimation of

D(I), i.e., E[D̂(I)] = D(I). To show the unbiasedness, suppose Gi is a random generated

DAG in the uniform sampler. We have

E[D̂(I)] =
1

N

X

Gi2
\MEC

E[D(I, Gi)]

=
1

N
· N

X

G
0
i
2MEC(G⇤)

P (Gi = G0
i
)D(I, G0

i
)

=
1

|MEC(G⇤)|
X

G
0
i
2MEC(G⇤)

D(I, G0
i
) = D(I).

Eventually, in order to design the experiment, we use the estimator D̂ in a greedy algo-

rithm. We term this approach the Random Greedy Intervention Design (Ran-GrID).

We generated 100 random UCEGs of order p 2 {10, 20, 30}, with r ⇥
�
p

2

�
edges, where

parameter 0 r 1 controls the graph density. For this experiment, we picked r = 0.2.

In each graph, we selected two variables randomly to intervene on. We obtained the exact

D(I) using equation (3.16). Furthermore, for a given sample size N , we estimated D(I) using

Algorithm 4 and obtained empirical standard deviation of the normalized error (SDNE) over

all graphs with the same size, defined as SD(|D(I)�D̂(I)|/D(I)). Figure 3.2 depicts SDNE

versus the number of samples. As can be seen, SDNE becomes fairly low for sample sizes

greater than 40. Next, we formalize our observation regarding convergence and consider the

required cardinality of the set [MEC to obtain a desired accuracy in estimating D(I). We

use Cherno↵ bound for this purpose.

Theorem 4. Let Ā(G̃) denote the set of undirected edges of G̃. For the estimator in Al-

gorithm 4, given experiment target set I and ✏, � > 0, if N = |[MEC | > |Ā(G̃)|(2+✏)
✏2

ln(2
�
),

then

D(I)(1� ✏) < D̂(I) < D(I)(1 + ✏),

with probability larger than 1� �.

For any ✏0 > 0, for su�ciently large sample size, the Ran-GrID method provides us with

a (1� 1
e
� ✏0)-approximation of the optimal value with high probability, as formalized in the

following theorem.

35

10 20 30 40 50
Sample size (N)

0.05

0.1

0.15

0.2

0.25

SD
N

E

p=10
p=20
p=30

Figure 3.2: Standard deviation of the normalized error versus the sample size.

Theorem 5. For any ✏0, �0 > 0, let ✏ = ✏
0

4k and � = �
0

4k2 . If for any experiment target set I,
D(I)(1� ✏) < D̂(I) < D(I)(1 + ✏) with probability larger than 1� �, then Algorithm 2 is a

(1� 1
e
� ✏0)-approximation algorithm with probability larger than 1� �0.

3.4.3 Fast D(I) Estimator

Recall that the computational complexity of the uniform sampler in Algorithm 4 is O(p�+2),

which will be intractable when the input graph has many vertices with large degrees. In

this subsection, we propose another sampler, which is more suitable for graphs with large

maximum degree. Although this sampler is not uniform, our extensive experimental results

confirm that its sampling distribution is very close to uniform. We use this sampler in an

estimator for D(I) similar to the one in Algorithm 4.

The pseudo-code of the proposed estimator is presented in Algorithm 5. In this estimator,

for the given essential graph G̃, we generate N DAGs from the MEC of G⇤ as follows: We

consider all subsets of size 3 from V (G̃) in a uniformly random order (achieved by uniformly

shu✏ing the labels of elements of V). For each subset {Xi, Xj, Xk}, we orient the undirected

edges among {Xi, Xj, Xk} independently according to a Bernoulli(1/2) distribution. If the

resulting orientation on the induced subgraph on {Xi, Xj, Xk} is a directed cycle or a new

v-structure, which was not in G̃, we redo the orienting. We keep checking all the subsets

of size 3 until the induced subgraph on all of them are directed and none of them is a new

v-structure, which did not exist in G̃, or a directed cycle.

Proposition 5. Each generated DAG Gi in the sampler FastSamp in Algorithm 5 belongs

to the Markov equivalence class of G⇤.

We generated 100 random UCEGs of order p 2 {20, 30, ..., 60} with r ⇥
�
p

2

�
edges, where

36

Algorithm 5 Fast D(I) Estimator

input: Essential graph G̃ with chain components {G̃1, ..., G̃R}, target set I, and N .

initialize: [MEC = ;
for i = 1 to N do

Generate sample DAG Gi = FastSamp(G̃)
[MEC = [MEC]Gi

end for
output: D̂(I) = 1

N

P
Gi2

\MEC
D(I, Gi)

function FastSamp(G̃)
Uniformly shu✏e the order of the elements of V (G̃).
while the induced subgraph on any subset of size 3 of the variables is not directed, or a
directed cycle, or a v-structure which was not in G̃ do

for all {Xi, Xj, Xk} ✓ V (G̃) do
Orient the undirected edges among {Xi, Xj, Xk} independently according to

Bern(12) until it becomes a directed structure which is not a directed cycle or a v-structure

which was not in G̃.
end for

end whilereturn G̃.

parameter 0 r 1 controls the graph density. Table 3.1 shows a comparison between

the run time of the fast sampler in Algorithm 5, denoted by Tf , compared to the run time

of the uniform sampler in Algorithm 4, denoted by Tu, for random essential graphs with

di↵erent orders. As can be seen, the run time ratio Tu/Tf increases as the order of the

graphs increases.

3.5 Improved Greedy Algorithm

We exploit the submodularity of function D to implement an accelerated variant of the

General Greedy Algorithm through lazy evaluations, originally proposed by [47].2 In each

round of the General Greedy Algorithm, we check the marginal gain �X(I) for all remaining

vertices in V \I. Note that as a consequence of submodularity of function D, the set function

�X is monotonically decreasing. The main idea of the Improved Greedy Algorithm is to take

advantage of this property to avoid checking all the variables in each round of the algorithm.

More specifically, suppose for vertices X1 and X2, in the i-th round of the algorithm we

2There are improved versions of this algorithm in the literature [48].

37

Table 3.1: Average run time (in seconds) for the uniform sampler and the fast sampler.

p : 20 30 40 50 60
Tu 0.50 2.26 6.65 19.55 55.59

r = 0.2 Tf 0.018 0.055 0.163 0.3 0.63
Tu/Tf 28.41 41.09 40.67 65.17 88.24

Tu 0.51 2.27 7.56 25.46 59.21
r = 0.25 Tf 0.0218 0.06 0.1686 0.35 0.66

Tu/Tf 23.40 37.83 44.84 72.74 89.71

have obtained marginal gains �X1(Ii) > �X2(Ii). If in the (i + 1)-th round, we calculate

�X1(Ii+1) and observe that �X1(Ii+1) > �X2(Ii), from monotonic decreasing property of

function �X , we can conclude that �X1(Ii+1) > �X2(Ii+1), and hence, there is no need to

calculate �X2(Ii+1).

Improved Greedy Algorithm is presented in Algorithm 6. The idea can be formalized as

follows: We define a profit parameter pro
X

for each variable X and initialize the value for

all variables with 1. Moreover, we define an update flag upd
X

for all variables, which will

be set to false at the beginning of every round of the algorithm, and will be switched to

true if we update pro
X

with the value of the marginal gain of vertex X. In each round, the

algorithm picks vertex X 2 V \I with the largest profit, updates its profit with the value of

the marginal gain of X, and sets upd
X

to true. This process is repeated until the vertex with

the largest profit is already updated, i.e., its update flag is true. Then we add this vertex

to I and end the round. For example, if in a round, the vertex X has the highest profit and

after updating the profit of this vertex, pro
X

is still larger than all the other profits, we do

not need to evaluate the marginal gain of any other vertex and we add X to I.

The correctness of the Improved Greedy Algorithm follows directly from submodularity

of function D. Theorem 5 holds for Algorithm 6 as well, that is, for any ✏0 > 0, Improved

Greedy Algorithm provides us with a (1� 1
e
� ✏0)-approximation of the optimal value. This

algorithm can lead to orders of magnitude performance speedup, as shown by [40].

38

Algorithm 6 Improved Greedy Algorithm
input: Essential graph from the observational stage, budget k.
initialize: I0 = ;, and pro

X
=1, 8X 2 V .

for i = 1 to k do
upd

X
= false, 8X 2 V \Ii�1

while true do
X⇤ = arg maxX2V \Ii�1 proX
if upd

X⇤ then
Ii = Ii�1 [{X⇤}
break;

else
pro

X⇤ = D(Ii�1 [{X⇤})�D(Ii�1)
upd

X⇤ = true
end if

end while
end for
output: Î = Ik

3.6 Evaluation Results

3.6.1 Tree Structures

We evaluated the performance of Algorithm 1 and the Ran-GrID approach on synthetic

tree structures. As shown in Section 3.3, Algorithm 1 is optimum for the worst-case gain

optimization problem. We observed that this algorithm also has a good performance on

the average gain optimization problem. To see this, we generated random trees based on

Barabási-Albert model [49, 50], and bounded degree model created according to Galton-

Watson branching process [50]. For both models we considered uniform distribution for the

location of the root of the tree. Each generated tree was considered as a UCEG.

We considered an oracle experimental settings in evaluating the algorithms which can be

seen as infinite sample case, in the absence of estimation errors. In particular, we assumed

that the true essential graph is available as the input. Moreover, each intervention on a

variable reveals the orientations of edges incident with that variable. As the performance

measure, we consider the ratio of the number of edges whose directions are discovered as the

result of interventions.

We generated 100 instances of random trees based on Barabási-Albert model and bounded

degree model. Figure 3.3 depicts the average discovered edge ratio of Algorithm 1, Ran-GrID,

39

Figure 3.3: The discovered edge ratio of Algorithm 1, Ran-GrID, and the optimal solution
with respect to the intervention budget with p = 20 (first row) and with respect to the
order of the tree with k = 3 (second row). In the first column (parts (a) and (c)), the trees
are generated based on Barabási-Albert model and in the second column (parts (b) and
(d)), the trees are constructed according to the bounded degree model.

and the optimal solution for the average gain case versus budget and graph order. As can

be seen, in both models, the performance of the proposed algorithm is close to the optimal

solution.

3.6.2 General Structures

We evaluated the performance of the Ran-GrID algorithm for the case of general structures

on synthetic and real graphs. We compared the performance of Ran-GrID with two naive

approaches: 1. Rand: Selecting experiment target set randomly, 2. MaxDeg: Sorting the list

of variables based on the number of undirected edges connected to them in descending order

and picking the first k variables from the sorted list as the experiment target set. We studied

40

the performance of the algorithms on two models of random graphs, namely, Erdös-Rényi

graphs and random chordal graphs, described below:

• Erdös-Rényi graphs: In this model, we first generate the skeleton of the graph by

drawing an edge between any pair of vertices with a predefined probability. Then, we

construct a DAG over this skeleton based on a random permutation of vertices.

• Random chordal graphs: The essential graphs of DAGs constructed from Erdös-Rényi

graphs might not have large chain components. Thus, we generate random chordal

graphs and consider them as a UCEG. To do so, we use randomly chosen perfect

elimination ordering (PEO)3 of the vertices to generate our underlying chordal graphs

[31, 22]. For each graph, we pick a random ordering of the vertices. Starting from the

vertex X with the highest order, we connect all the vertices with lower order to X with

probability inversely proportional to the order of X. Then, we connect all the parents

of X with directed edges, where each directed edge is oriented from the parent with

the lower order to the parent with the higher order. In order to make sure that the

generated graph will be connected, if vertex X is not connected to any of the vertices

with the lower order, we pick one of them uniformly at random and set it as the parent

of X.

We considered two experimental settings in evaluating the algorithms which we call oracle

case and sample case. In the oracle case, which can be seen as infinite sample case, we

execute algorithms in the absence of estimation errors. In particular, we assume that the true

essential graph is available as the input. Moreover, each intervention on a variable reveals

the orientations of edges incident with that variable. In the sample case, data is drawn

based on a linear structural causal model with Gaussian exogenous variables. In this model,

it is just needed to specify the weight of directed edges and variance of exogenous variables.

Here, we drew edge weights from a uniform distribution in the range [�1.5,�0.5][[0.5, 1.5]

and exogenous variable variances from a uniform distribution in the range [0.01, 0.2]. By

intervening on a variable, we removed incoming edges to it and drew the samples of its

exogenous variable from normal distribution N (2, 0.2).

Oracle case: In the oracle case, as a performance measure, we consider the ratio of the

number of edges whose directions are discovered merely as a result of interventions, i.e.,

D(I, G⇤) to the number of edges whose directions were not resolved from the observational

3A perfect elimination ordering {X1, X2, ..., Xp} on the vertices of an undirected chordal graph is such
that for all i, the induced neighborhood of Xi on the subgraph formed by {X1, X2, ..., Xi�1} is a clique.

41

1 2 3 4 5
Budget (k)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

is
co

ve
re

d
ed

ge
 ra

tio
(a)

MaxDeg
Rand
Ran-GrID (Fast sampler)
Ran-GrID (Unbiased sampler)

10 15 20 25 30
Graph order (p)

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

co
ve

re
d

ed
ge

 ra
tio

(b)

MaxDeg
Rand
Ran-GrID (Fast sampler)
Ran-GrID (Unbiased sampler)

1 2 3 4 5
Budget (k)

0.5

0.6

0.7

0.8

0.9

1

D
is

co
ve

re
d

ed
ge

 ra
tio

(c)

r = 0.15
r = 0.20
r = 0.25
r = 0.30

Figure 3.4: Discovered edge ratio versus (a) budget for p = 20, (b) graph orders for k = 3,
(c) budget for p = 20 and di↵erent densities in the random chordal graphs.

1 2 3 4 5
Budget (k)

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

co
ve

re
d

ed
ge

 ra
tio

(a)

MaxDeg
Rand
Ran-GrID

10 20 30 40 50
Graph order (p)

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

MaxDeg
Rand
Ran-GrID

1 2 3 4 5
Budget (k)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
(c)

r=0.15
r=0.2
r=0.25
r=0.3

Figure 3.5: Discovered edge ratio versus (a) budget for p = 20, (b) graph orders for k = 3,
(c) budget for p = 20 and di↵erent densities in Erdös-Rényi graphs.

data. Note that due to our specific graph generating approach in random chordal graphs,

the orientation of none of the edges is learned from the observational data.

We generated 100 instances of chordal DAGs of order p = 20 and considered both the

fast sampler and the unbiased sampler for Ran-GrID algorithm. Figure 3.4(a) depicts the

discovered edge ratio with respect to the budget k. As seen in this figure, three interventions

su�ces to discover the direction of more than 90% of the edges. Further, to investigate the

e↵ect of the order of the graph on the performance of the proposed algorithm and two naive

approaches, we evaluated the discovered edge ratio for budget k = 3 on graphs with order

p 2 {10, 15, 20, 25, 30} in Figure 3.4(b). As can be seen in the figure, the discovered edge

ratio for the proposed approach is greater than 91% for all orders. The performance of Rand

approach degrades dramatically as p increases. Moreover, MaxDeg approach has even lower

performance than Rand approach. Furthermore, from Figure 3.4(a-b), Ran-GrID with fast

sampler has the similar performance to the one with unbiased sampler. Thus, in the rest

of this section, we consider only Ran-GrID with fast sampler. We also studied the e↵ect of

42

1 2 3 4 5
Budget (k)

0.1

0.2

0.3

0.4

0.5

0.6
SH

D
/e

dg
e

(a)
MaxDeg
Rand
Ran-GrID

10 15 20 25 30
Graph order (p)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SH
D

/e
dg

e

(b)
MaxDeg
Rand
Ran-GrID

Figure 3.6: SHD per edge of true graph versus (a) budget for p = 20 and (b) graph orders
for k = 3 in random chordal graphs.

graph density on the performance of proposed algorithm. Let parameter r be the ratio of

average number of edges to
�
p

2

�
. The discovered edge ratio for chordal DAGs of order 20

versus budget for di↵erent densities is depicted in Figure 3.4(c).

Next, we generated 100 instances of Erdös-Rényi graphs and repeated the same experi-

ments explained above. Note that in this case, the direction of some of the edges may be

discovered in the observational essential graph. Experiment results are given in Figure 3.5.

As can be seen, Ran-GrID approach has the best performance and MaxDeg is close to it.

Moreover, the discovered edge ratio is higher for denser graphs.

Furthermore, to compare the performance of the proposed algorithm with the optimal

solution, we generated 100 instances of chordal DAGs of order p = 10 and performed a

brute force search to find the optimal solution for budget k = 2. The discovered edge ratio

was 0.9 and 0.916 for our proposed algorithm and the optimal solution, respectively. For

the aforementioned setting, the running time of the proposed approach on a machine with

Intel Core i7 processor and 16 GB of RAM was 216 seconds while the one of the brute force

approach was greater than 6000 seconds.

Sample case: In this part, we first generated 104 samples of observational data and fed

them as the input to the GES algorithm [4] to obtain an estimation of the essential graph. It

is noteworthy that the essential graph might be di↵erent from the true essential graph due

to finite samples. Then, we generated 104 samples of interventional data for each experiment

and gave the collection of all observational and interventional data to GIES algorithm [28] to

43

1 2 3 4 5
Budget (k)

0

0.05

0.1

0.15

0.2

0.25
SH

D
/e

dg
e

(a)
MaxDeg
Rand
Ran-GrID

10 15 20 25 30
Graph order (p)

0

0.05

0.1

0.15

0.2

SH
D

/e
dg

e

(b)

MaxDeg
Rand
Ran-GrID

Figure 3.7: SHD per edge of true graph versus (a) budget for p = 20 and (b) graph orders
for k = 3 in Erdös-Rényi graphs.

get the final output. We considered structural Hamming distance (SHD) as the performance

metric, which measures the di↵erences of the output graph and the true causal graph. Let

B and B̂ be the binary adjacency matrices of the ground truth causal DAG and the output

of an algorithm, respectively. SHD is defined as follows:

SHD(B, B̂) :=
X

1i<jp

1[(Bij 6= B̂ij) _ (Bji 6= B̂ji)],

where 1[·] is the indicator function. If the output of GES and the output of GIES after

performing experiments are too di↵erent, one might exclude these instances in computing

SHD since the essential graph obtained from observational data has too many errors.

In Figure 3.6(a), SHD per edges of true graph is illustrated versus the budget for p = 20. As

can be seen, Ran-GRID outperforms other methods and it can fairly learn the true causal

graph after five interventions. In Figure 3.6(b), SHD per edges of true graph is depicted

versus the graph order for k = 3. Again, Ran-GRID has the best performance and SHD per

edge increases by increasing the graph order. Next, we performed the same experiment for

Erdös-Rényi graphs where the average degree of vertices is set to 3. The results are given

in Figure 3.7. It can be seen that Ran-GRID performs better than other methods for any

budget or graph order.

44

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
0

0.2

0.4

0.6

0.8

1

D
is

co
ve

re
d

ed
ge

 ra
tio

Figure 3.8: Discovered edge ratio in five GRNs from DREAM 3 challenge.

Real Graphs

We evaluated the performance of Ran-GrID in gene regulatory networks (GRN). GRN is a

collection of biological regulators that interact with each other. In GRN, the transcription

factors are the main players to activate genes. The interactions between transcription factors

and regulated genes in a species genome can be presented by a directed graph. In this graph,

links are drawn whenever a transcription factor regulates a gene’s expression. Moreover, some

of vertices have both functions, i.e., are both transcription factor and regulated gene.

We considered GRNs in “DREAM 3 In Silico Network” challenge, conducted in 2008 [51].

The networks in this challenge were extracted from known biological interaction networks.

Since we know the true causal structures in these GRNs, we can obtain Ess(G⇤) and give it

as an input to the proposed algorithm. Figure 3.8 depicts the discovered edge ratio in five

networks extracted from GRNs of E-coli and yeast bacteria with budget k = 5. The order of

each network is 100. As can be seen, the discovered edge ratio is at least 0.65 in all GRNs.

3.7 Conclusion

Without any assumptions on the causal modules, from observational data, a causal DAG

can be learned only up to its Markov equivalence class, and hence, the direction of a large

portion of the edges may be remained unidentified. In this case, it is common to perform

interventions on a subset of the variables and use the resulting interventional distributions

to improve the identifiability. Here, a natural question is on which variables one should

45

perform the intervention to gain the most from that intervention. We considered a setup

in which the experimenter is limited to a budget k for the number of interventions and

the interventions should be designed non-adaptively. This setup can be considered as an

extension to the customary adaptive design, in which only one intervention is designed at a

time. For large values of k a brute force search may not be feasible and e�cient strategies for

designing the interventions are required. We cast the problem as an optimization problem

which aims to maximize the number of edges whose directions are identified due to the

performed interventions. Here, both worst-case gain and average gain optimization can be

considered. We first focused on the case that the underlying causal structure is a tree. For

this case, we proposed an e�cient exact algorithm for the worst-case gain setup, and an

approximate algorithm for the average gain setup. The proposed approach for the average

gain setup was based on our result that the objective function of the optimization in this case

is monotonically increasing and submodular. In our synthetic simulations on di↵erent tree

generation models, we observed that the proposed optimal algorithm for the worst-case gain

also had a very high performance for the average gain. We then showed that the proposed

approach for the average gain setup can be extended to the case of general causal structures.

However, in this case, besides the design of interventions, calculating the objective function

of the optimization problem is also challenging. This is due to the fact that the number

of the members of a Markov equivalence class can potentially be super exponential in the

number of the variables. We propose an e�cient exact calculator for the objective function

as well as two estimators. All these methods are based on a proposed method for counting

and uniform sampling from the members of a Markov equivalence class. We evaluate the

proposed methods using synthetic as well as real data.

Providing an exact algorithm for the average gain setup, designing interventions for the

worst-case gain setup for general causal structures, and considering the problem when the

variables of the system can have latent confounders are among the directions that can be

considered as future work.

46

CHAPTER 4

MULTI-DOMAIN CAUSAL STRUCTURE
LEARNING

Although interventional experiments are the gold standard for causal discovery, in many

applications, intervening on certain variables in the system may be expensive, unethical,

impossible, or even undefined. For example, changing the course of the planets to study

the tides is impossible, forcing people to smoke to study the influence of smoking on health

is unethical, modifying the placement of ads on web pages to optimize revenue may be

expensive.1 However, in many real life systems, the data generating distribution may vary

over time, or the dataset may be gathered from di↵erent domains and hence not follow a single

distribution [52, 53, 54, 55, 56]. While such data is usually problematic in statistical analysis

and causes restrictions on the learning power, this property can be leveraged for the purpose

of causal discovery, which is our focus herein. This is because of the coupling relationship

between causal modeling and distribution change, i.e., the causal model constrains how the

data distribution may change. Therefore, changes in the distribution help us distinguish

the causal modules in the model. We refer to the task of causal discovery from such multi-

domain data as the multi-domain causal structure learning. Note that in this setting, we do

not intervene in or perturb the system and merely utilize the observational data gathered

from di↵erent domains. In this setup the main question is how to take the most advantage

of the changes across domains for the task of causal discovery.

Unlike the case of interventional causal structure learning, in multi-domain causal structure

learning, the experimenter is usually not aware of the location of the changes. Also, the

experimenter does not have access to the source of randomization (intervention variable).

Therefore, the causal discovery cannot be done by performing conditional independence tests

which directly involve the randomization sources. For instance, if in causal structure X ! Y ,

variables X and Y both vary, leading to interventional graph WX ! X ! Y WY , we

cannot perform conditional independence tests including WX and WY . In this case, either

a surrogate variable, representing change of the domain, should be used (albeit if several

1Examples are borrowed from the introduction of NIPS 2013 Workshop on Causality.

47

domains are available), or the structure learning should be done based on comparing the

distributions in di↵erent domains. Furthermore, the changes in the multi-domain setup

usually do not completely make the manipulated variable independent of its original parents,

i.e., they are not equivalent to hard interventions defined in Definition 5.

There are relatively few works on multi-domain causal structure learning. The authors

of [53] introduced mechanism change at a focal variable X as the change of the conditional

distribution of X, and assumed that the marginals of all descendants of the focal variable

vary. Based on this assumption, they proposed an algorithm that given a sequence of mech-

anism changes, finds a causal order consistent with changes in the marginals. Naturally this

approach requires access to enough samples to test each variable for marginal distribution

change. Invariant prediction method [54] is another approach for utilizing multi-domain data,

which utilizes di↵erent domains to estimate the set of predictors of a target variable. In that

work, it is assumed that the exogenous noise of the target variable does not vary across the

domains. In fact, the method crucially relies on this assumption as it adds variables to the

estimated predictors set only if they are necessary to keep the distribution of the target vari-

able’s noise fixed. This framework may output a set which does not contain all the parents

of the target variable. Additionally, the optimal predictor set (output of the algorithm) is

not necessarily unique. The authors of [55] used surrogate variables to represent the domain,

and using this extra variable, proposed a two-step method to first learn the skeleton and

then the direction of some edges in the structure using conditional independence tests. They

proposed a constraint-based procedure to detect variables whose local mechanisms change

and recover the skeleton of the causal structure over observed variables. They presented a

method to determine causal orientations by making use of independent changes in the data

distribution implied by the underlying causal model, benefiting from information carried by

changing distributions. Due to the generality of the model, this method may require a high

number of samples.

We focus on multi-domain causal structure learning in a linear Gaussian structural causal

model. As mentioned in Section 2.2.1, this setup can be represented by the matrix equation

X = B>X + N , where B is the weighted adjacency matrix, and the noise vector N is

distributed according to the normal distribution N (0, ⌦). Therefore, the system can be fully

described by parameters in B and ⌦, which can vary across domains. We study this setup

in two cases:

• Case 1. Only ⌦ varies across domains.

• Case 2. Both B and ⌦ can vary across domains.

48

We present e�cient approaches to exploit changes across domains for causal structure learn-

ing. The proposed methods are based on the principle of independent changes (Definition

11), which states that although the cause and the e↵ect variables are dependent, under

causal su�ciency, the mechanism that generates the cause variable changes independently

of the mechanism that generates the e↵ect variable across domains. The same principle was

used in [55] for utilizing non-stationary or heterogeneous data for causal structure learning.

However, since that work considers a non-parametric approach, it is restricted to general

independence tests among distributions, which may not have high e�ciency.

For Case 1, we first propose a regression-based causal structure learning approach called

Reg-MD in Section 4.2. This method directly utilizes the invariance of the functional rela-

tions of the variables to their direct causes across a set of domains. We show that Reg-MD

is a sound and complete structure learning method and has the capability of learning the

structure to the same extent as if the location of the changes across the domains were known

and the changes were performed by the experimenter. In Section 4.3, we discuss the connec-

tion between the setup in Case 1 and the LiNGAM method, which is a well-known causal

structure learning method in the literature [6]. We propose the LiNGAM-MD method which

uses the multi-domain data to form a linear non-Gaussian model over variables to render

using the LiNGAM method possible.

For Case 2, we propose the Gen-MD method in Section 4.4, which directly uses the prin-

ciple of independent changes. Gen-MD is a score-based approach which aims to minimize

the dependency among the estimated causal modules in the system. We present a polyno-

mial algorithm for implementing the Gen-MD method. We note that invariance is a special

case of the condition of independent changes, as a constant is independent of any variable.

Therefore, the idea of Gen-MD can be applied to the case of the existence of invariant pa-

rameters across domains. We propose a score-based method called MC-MD for this goal in

Section 4.5, and provide an e�cient polynomial implementation for that. MC-MD is capable

of identifying causal directions from as few as two domains. We evaluate our four proposed

methods in Section 4.6 on synthetic and real datasets.

The material in this chapter is taken from [57, 58].

4.1 Problem Description

We consider a linear structural causal model over p endogenous variables V = {X1, ..., Xp},
with Gaussian exogenous variables defined in Section 2.2.1. We assume that the correspond-

49

ing causal diagram G is a DAG. Therefore, as mentioned in Section 2.2.1, the weighted

adjacency matrix of G, denoted by B, can be assumed to be a strictly upper triangular ma-

trix. Since the underlying structure is a DAG, rows and columns of B can be permuted for

this condition to be satisfied. Also, we assume that the system is causally su�cient, that is,

the exogenous variables do not have latent confounders (common causes). This implies that

the elements of N are jointly independent. Since we can always center the data, without loss

of generality, we assume that N , and hence, X is zero-mean. Hence, the noise vector N is

distributed according to the normal distribution N (0, ⌦), where ⌦ is a p⇥p diagonal matrix

with ⌦i,i = �2
i

= Var(Ni). Therefore, the system can be fully described by parameters in B

and ⌦. This model induces a distribution PV on the endogenous variables.

We consider a multi-domain setup in which observational data from variables in d domains

D = {D(1), ..., D(d)} is given. For any of the parameters and variables we use the superscript

(i) to denote that parameter or variable in domain D(i). Matrices B and ⌦ may vary across

any two domains.

Consider an ordering (i.e., a permutation) of a set of variables. An ordering on a set

of variables and a DAG on those variables are consistent if in the ordering, every variable

appears after its parents. Note that given the skeleton of a DAG, a consistent ordering

determines the direction of all the edges of the DAG uniquely; however, there may be more

than one ordering consistent with a given DAG. For example, for the DAG W ! X ! Y
Z, orderings (W, Z, X, Y), (W, X, Z, Y), and (Z, W, X, Y) are consistent.

Definition 10 (Causal Order). An ordering on the variables is called causal if it is consistent

with the ground truth causal DAG.

Since the skeleton of the causal DAG can be identified from observational data from a

single domain, the main challenge in causal structure learning is to find a causal order.

4.1.1 Principle of Independent Changes

In a structural causal model, each variable Xi is generated by its corresponding causal module,

which is comprised of the function fi and the exogenous variable Ni, takes the direct causes

of Xi as the input, and outputs Xi.2 Let �i be the set of parameters (possibly infinite)

describing the function fi and the distribution of the exogenous variable Ni corresponding

2In the probabilistic formulation, the causal module corresponding to Xi is defined as the conditional
distribution PXi|Pa(Xi).

50

!"!# (%#, '#)
Γ# Γ" !"!#

Module 1 Module 2

(%", '")

Figure 4.1: Example of causal modules.

to Xi. For instance, Figure 4.1 demonstrates a system comprised of only two variables

X1 and X2, where X1 is the direct cause of X2. If the system is linear, �1 = {�2
1}, and

�2 = {B1,2, �2
2}.

As mentioned earlier, we assume that the system is causally su�cient, that is, the endoge-

nous variables do not have latent confounders. This implies that the causal modules should

change independently across the domains: When the joint distribution of a causally su�cient

system changes, that is the sets �i are changing, they should change independently. If �i

and �j, are changing dependently, by Reichenbach’s common cause principle [59], it implies

that they have a latent common cause U . In this case, U will also be a latent common cause

of Xi and Xj which violates causal su�ciency. We formalize this characteristic as follows.

Definition 11 (Principle of Independent Changes (PIC)). In a causally su�cient system, the

causal modules, as well as their included parameters, change independently across domains.

The principle of independent changes can be viewed as a realization of the modularity

property of causal systems [11], and as the dynamic counterpart of the principle of indepen-

dent mechanisms, which states that causal modules are algorithmically independent [60, 61],

or the exogeneity property of the causal system [62].

4.2 Regression-Based Multi-Domain Causal Structure Learning

We start the investigation of the problem of multi-domain causal structure learning under

the assumption that the functional relationships of the variables to their direct causes across

the domains are invariant. This implies the invariance of coe�cients in the special case of

linear structural causal model. This assumption is formally stated in the following.

Assumption 4. The causal coe�cients, i.e., the matrix B is invariant across the domains.

The motivation behind this assumption is the belief that variation of the functional part

in a causal generating mechanism should be rarer than variation of a noise variable in the

51

(a)

X1

(b)

X2 X1 X2 X3

Figure 4.2: Simple examples of identifiable structures using the proposed approach.

system. This assumption is in line with the setup of covariate shift which is a standard

assumption in the field of transfer learning [63]. Despite the invariance of the matrix B,

the matrix ⌦ may vary across any two domains. Note that by PIC, the variances of the

exogenous noises, i.e., �2
i
’s, change independently across domains. We denote the set of

variables whose corresponding exogenous variable have varied across domains D(i), D(j) 2 D
by �ij, and call it the target set across domains D(i) and D(j). The set �ij can contain all

the variables in V .

We present a regression-based causal structure learning approach for utilizing the invari-

ances of the causal coe�cients across the domains. The main idea in our proposed approach

is to utilize the change of the regression coe�cients, resulting from the changes across the

domains, to distinguish causal directions. Using regression-based methods for structure

learning is not new in the literature [64, 65, 66]. Regression-based methods have seen to

be in general more robust and lead to lower estimation errors. We have the following extra

assumption required for our approach:

Assumption 5. We have one domain as the base domain, from which we learn the essential

graph over the variables. We assume that the distribution in this domain satisfies Markov

and faithfulness assumptions with respect to the underlying causal DAG G⇤, and the correct

essential graph G̃⇤ can be learned from the base domain.

To illustrate the idea of our regression-based approach, we use two simple examples shown

in Figure 4.2. We consider having two domains and in the figure, change of an exogenous

variable across the two domains is denoted by a flash sign over its corresponding endogenous

variable.

Example 3. Consider the structure in Figure 4.2(a), with structural equations X1 = N1,

and X2 = aX1 + N2, where N1 ⇠ N (0, �2
1) and N2 ⇠ N (0, �2

2) are independent zero-

mean Gaussian exogenous variables. The exogenous variable of both X1 and X2 are varied

52

across the domains, i.e., �12 = {X1, X2}. Denoting the regression coe�cient resulting from

regressing Xi on Xj by �i|j, we have

�2|1 =
Cov(X1, X2)

Cov(X1)
= a,

and

�1|2 =
Cov(X1, X2)

Cov(X2)
=

a�2
1

a2�2
1 + �2

2

.

Therefore, �2|1 will be the same in both domains, while �(1)
1|2 = �(2)

1|2 if (�2
1)

(1)/(�2
2)

(1) =

(�2
1)

(2)/(�2
2)

(2). Therefore, based on PIC, �1|2 remains unvaried across domains with Lebesgue

measure zero. Hence, the regression coe�cient resulting from regressing the cause variable

on the e↵ect variable varies across the two domains, while the regression coe�cient from

regressing the e↵ect variable on the cause variable remains the same. Therefore, the cause

is distinguishable from the e↵ect. Note that structures X1 ! X2 and X2 ! X1 are in the

same Markov equivalence class and hence, not distinguishable using only one distribution.

Remark 2. In Example 3, note that if �2
1 and �2

2 change dependently, yet �2
1/�

2
2 in two

domains are not equal, we still can identify the causal direction. Hence, PIC is in gen-

eral stronger than what we actually require for the identification approach presented in this

Section.

Example 4. As another example, consider the structure in Figure 4.2(b). Suppose the

exogenous variable of X1 is varied across the two domains, i.e., �12 = {X1}. Similar to

Example 3, it can be shown that �1|2 varies across the two domains with probability one,

while �2|1 remains the same. This implies that the edge between X1 and X2 is from the

former to the later. Similarly, �2|3 varies across the two domains with probability one, while

�3|2 remains the same. This implies that X2 is the parent of X3. Therefore, the structure in

Figure 4.2(b) is distinguishable from the other structures in its Markov equivalence class.

We now present the Regression-based Multi-Domain causal structure learning method

(Reg-MD). Reg-MD takes an essential graph over the set of variables V = {X1, ..., Xp}, and

observational data from domains D = {D(1), ..., D(d)} as the input and returns a graph which

is the same as the input essential graph with extra identified edge directions added to it. For

every pair of domains {D(i), D(j)}, Reg-MD performs three steps:

S1. Find the change locations (targets), i.e., �ij.

53

S2. Learn the direction of all edges incident to targets and add them to the input essential

graph.

S3. Apply the Meek rules to the resulted graph from Step 2.

We first define our required notation and then explain each step in detail.

Definition 12. For variable Xk and subset of variables XS, �k|S denotes the regression

coe�cient vector resulting from regressing Xk on XS. and �2
k|S

= Var(Xk � �>k|SXS), i.e.,

the variance of the residual of regressing Xk on XS.

Step 1. In order to implement Step 1 of Reg-MD, we need a method to find the targets of

the changes. We have the following result for this aim.

Theorem 6. For a pair of domains (D(i), D(j)), variable Xk 2 V is a change target across

the two domains almost surely if and only if

(�2
k|S

)(i) 6= (�2
k|S

)(j) 8XS ✓ N(Xk).

Based on Theorem 6, for any variable Xk, we search for a set XS ✓ N(Xk) for which the

variance of Xk � �>k|SXS remains fixed across domains D(i) and D(j) by testing the following

null hypothesis:

H ij

0,k,S : E[(X(i)
k
� (�(i)

k|S
)>X(i)

S
)2] = E[(X(j)

k
� (�(j)

k|S
)>X(j)

S
)2].

In order to test the above null hypothesis, we can compute the variance of X(i)
k
� (�(i)

k|S
)>X(i)

S

in D(i) and X(j)
k
� (�(j)

k|S
)>X(j)

S
in D(j) and test whether these variances are equal using an

F -test. If the p-value of the test for the set XS is less than ↵/(p ⇥ 2�), then we will reject

the null hypothesis H ij

0,k,S, where � is the maximum degree of the causal graph. If we reject

all hypothesis tests H ij

0,k,S for all XS ✓ N(Xk), then we will add Xk to set �ij. Since we are

performing at most p ⇥ 2� (for each variable, at most 2� tests), we can obtain the set �ij

with total probability of false-rejection less than ↵.

Step 2. In order to implement Step 2 of Reg-MD, we need a method to learn the direction

of all the edges incident to each of the targets. We have the following result for this aim.

Theorem 7. For a pair of domains (D(i), D(j)) with target set �ij, for every target variable

Xk 2 �ij, Pa(Xk) is almost surely the maximal set XS ✓ N(Xk), for which �(i)
k|S

= �(j)
k|S

.

54

Algorithm 7 Reg-MD

input: Essential graph G̃, observational data over V in domains D = {D(1), ..., D(d)}
for each pair of domains (D(i), D(j)) do

Obtain �ij (Theorem 6)
Orient all edges incident to variables in �ij in graph G̃ (Theorem 7)

end for
Apply the Meek rules to G̃
output: G̃

Based on Theorem 7, for any variable Xk whose exogenous variable has changed across

domains D(i) and D(j), we find the maximal subset of its neighbors XS for which the regres-

sion coe�cient of regressing Xk on XS is the same in two domains. We orient the edges from

XS to Xk towards Xk and for the rest of the incident edges incident to Xk, we orient them

outward from Xk.

Step 3. After identifying the direction of the edges incident to the targets, one can apply

the Meek rules [17] to potentially learn the direction of some extra edges. These are the

edges which if directed in the other direction, will create a cycle or a v-structure which does

not exist in the observational essential graph.

The pseudo-code of the Reg-MD algorithm is presented in Algorithm 7. In this algorithm,

for each pair of domains, we first find the target set using Theorem 6, and then orient all the

edges incident to the variables in the target set using Theorem 7. At the end, Meek rules

are applied to the partially directed graph.

Remark 3. In interventional causal structure learning approaches, the experimenter inter-

venes on a subset of variables. Under some conditions on the type of the interventions, she

can learn the direction of the edges incident to the targets of the interventions, and then she

can apply the Meek rules. Our results in Theorems 6 and 7 show that what we learn via Reg-

MD is the same as the identification level resulted from an interventional causal structure

learning approach. This is despite the constraint that here we do not utilize any concepts

surrogating the values of the interventions to enable us performing statistical tests (such as

conditional independence test) on those values.

4.2.1 Completeness of Reg-MD

Based on Theorems 6 and 7, the proposed Reg-MD approach is sound, but is it complete?

That is, is Reg-MD capable of extracting all the information in the domains related to the

55

task of structure learning? For instance, one may wonder that one can get more information

about the ground truth structure by investigating the changes in regression coe�cients of

all variables (i.e., also considering the ones which are not a target of change) on all possible

subsets of the rest of the variables. To answer this question, we first define the alteration

DAG.

Definition 13. The alteration DAG corresponding to the domain set D = {D(1), ..., D(d)}
is the same DAG as the ground truth DAG with alteration variable Ak augmented to it as a

parent of Xk, for all Xk 2 �ij, for all i, j 2 [d].

The information in the set of domains can be interpreted as observational data coming

from one domain generated by the alteration graph. This can be realized by interpreting

each alteration variable as a switch which determines specific values for the parameters

of the causal module of its corresponding endogenous variable. Therefore, we have one

observational domain from the alteration DAG, in which we know the direction of edges

incident to the alteration variables.

Consider the hypothetical scenario in which the alteration DAG is the ground truth struc-

ture and alteration variables are normal endogenous variables in the system from which we

have observational data similar to the rest of the endogenous variables, and we know the

direction of edges incident to the alteration variables. It is known that Markov equivalence is

the extent of identifiability for DAGs from observational linear Gaussian data. That is, using

any other type of statistical tests besides conditional independence tests will not improve

identifiability (see Chapter 5). Therefore, the essential graph corresponding to the alteration

graph is the extent of learnability. Reg-MD already identifies the DAG to the same level

as this hypothetical scenario and hence, it extracts all the available information related to

structure learning. The above argument concludes in the following result.

Theorem 8. The Reg-MD algorithm is complete.

Example 5. Suppose we have observational data from the DAG in Figure 4.3(a) in two

domains D(1) and D(2), where across the domains we have �12 = {X1}. The corresponding

alteration DAG is depicted in Figure 4.3(b) in which alteration variable A1 is added to the

original DAG as a parent of X1. Figure 4.3(c) shows the identifiable structure from this

multi-domain data, which is also the output of the Reg-MD algorithm.

56

X1

X3

X2

(a)

X1

X3

X2

(b)

X1

X3

X2

(c)

A1

Figure 4.3: Graphs related to Example 5.

4.3 LiNGAM-Based Multi-Domain Causal Structure Learning

Under Assumption 4, one can also utilize the LiNGAM approach for the task of multi-domain

causal structure learning: [6] proposed a non-Gaussian version of the linear structural causal

model in expression (2.2), known as linear non-Gaussian acyclic model (LiNGAM), in which

exogenous variables Ni are assumed to be non-Gaussian. LiNGAM is proven to be uniquely

identifiable, i.e., the weighted adjacency matrix B can be uniquely identified based on a

single observational distribution. The identifiability of LiNGAM is based on the use of the

concept of independence component analysis (ICA), which is a non-Gaussian variant of factor

analysis [67, 68].

4.3.1 ICA and Identifiability of LiNGAM

For observational variables {X1, ..., Xp}, the ICA model is defined as

X = A>S, (4.1)

where S := [S1 · · ·Sp]> is a vector of jointly independent non-Gaussian component (also

called source) variables, and the p ⇥ p matrix A is called the mixing matrix. That is, each

observation variable Xi is obtained by a linear mixture of the component variables. The

mixing matrix is assumed to be of full column rank.

The main result in ICA is that the mixing matrix can be identified up to permutation,

scaling, and sign of the rows. Thus, the mixing matrix identified by ICA, denoted by AICA

57

satisfies

AICA = DPA,

where, P is an unknown permutation matrix, and D is an unknown scaling and sign matrix.

The most common method in ICA approach is to estimate the matrix W := A�1, known

as the separating matrix, via minimizing the dependencies among the estimated components

Ŝ = W>

ICA
X, where WICA is the estimation of W . The separating matrix is identifiable up

to permutation, scaling, and sign of the columns, that is,

WICA = WDP.

As seen in expression (2.3), a linear structural causal model can be represented in the

same form as the ICA model in expression (4.1). Therefore, if the elements of the vector N

in (2.3) are non-Gaussian, this equation is exactly representing the ICA model. Therefore,

considering (I � B) serving as the separating matrix, as explained above, ICA approaches

are capable of identifying (I �B) up to permutation, scaling, and sign. However, LiNGAM

enjoys another condition that B is a strictly upper triangular matrix. This property can be

utilized for unique identifiability of the model.

As mentioned above, ICA can return WICA = (I � B)DP . Here, unlike the general case,

the correct permutation matrix P can be determined since (I � B)D contains no zeros on

the diagonal, and the correct scale and sign matrix D can be determined due to the unity

on the diagonal of (I � B). A possible estimator would be as follows [6], which we explain

assuming having access to population data:

1. Apply an ICA algorithm to the data and estimate the separating matrix WICA.

2. Permute the columns of WICA and obtain the unique matrix WICAP�1, in which the

diagonal elements are non-zero.

3. Divide each row of WICAP�1 by its corresponding diagonal element to obtain WICAP�1D�1

with all ones on the diagonal.

4. BLiNGAM = I �WICAP�1D�1.

5. Output a causal order from BLiNGAM .

We refer the reader to [6, 69] for detail about the statistical and computational concerns

regarding dealing with finite data.

58

4.3.2 Applying the LiNGAM method to Multi-Domain Data

We now present the LiNGAM-based Multi-Domain causal structure learning method (LiNGAM-

MD). Suppose a causal order on the variables, denoted by ⇡, is given. We denote the esti-

mated weighted adjacency matrix and exogenous variance matrix corresponding to the given

ordering ⇡ by B̂⇡ and ⌦̂⇡, respectively. For each domain, we estimate the regression coe�-

cients and the variance of the exogenous variable of each variable Xi on all the variables Xj

with ⇡�1(Xj) < ⇡�1(Xi), i.e., all the variables, which precede Xi in the given order. More

formally, for any domain D(i),

(B̂⇡)
(i)
j,k

= the entry in �(i)
⇡(k)|{⇡(1),...,⇡(k�1)} corresponding to ⇡(j), (4.2)

and

(⌦̂⇡)
(i)
k,k

= (�2
⇡(k)|{⇡(1),...,⇡(k�1)})

(i), (4.3)

for all k 2 [p], and j 2 [k� 1], where, �2
i|S

= Var(Xi� �>i|SXS).3 Therefore, in a linear struc-

tural causal model, given the causal order on the variables, the structure (more specifically,

the weighted adjacency matrix) can be estimated. Therefore, it remain to estimate a causal

order. In the following, we show that having data from su�ciently many domains, we can

form a LiNGAM from the multi-domain data and hence estimate a causal order.

For every index i 2 [p], we denote the variance of the endogenous variable Xi by 2
i
, and

the variance of the exogenous variable Ni by �2
i
. In equation (2.3) denote the i-th column

of the matrix A by ↵i. We have

 2
i

= Var(↵>
i
N)

= ↵>
i
⌦↵i

= (↵i � ↵i)
>�2 = (↵�2

i
)>�,

where, the operator � denotes the Hadamard product and � is a column vector of size p

with �2
i

as the i-th entry. Therefore, we have

 = (A�2)>�, (4.4)

where, is a column vector of size p with 2
i

as the i-th entry.

3Note that the estimated matrices B̂ for all causal orders are equal up to permutation. Same for estimated
matrices ⌦̂.

59

Algorithm 8 LiNGAM-MD

input: Observational data over V in domains D = {D(1), ..., D(d)}
Estimate (2

j
)(i) for all j 2 [p], i 2 [d]

Give (i), i 2 [d] as the input to LiNGAM algorithm to obtain a causal order ⇡̂c over
{X1, ..., Xp}
Estimate (B̂⇡̂c

)(i)
j,k

by expression (4.2), k 2 [p], j 2 [k � 1], i 2 [d]

Bj,k = 1
d

P
d

i=1(B̂⇡̂c
)(i)
j,k

, j 2 [p], k 2 [p]
output: B

Now, consider a multi-domain setup with d domains and consider the values of variances

�(i), 1 i d as d samples from the random vector � in (4.4). Due to PIC, the entries of � are

jointly independent random variables. Also, since they are the values of variances, they are

non-Gaussian. Hence, equation (4.4) satisfies the requirements of the ICA model. Moreover,

the matrix A�2 is upper triangular and has all ones on the main diagonal. Therefore, the

LiNGAM method can be used to learn a causal order over the variables. Hence, we use

the following approach to identify the weighted adjacency matrix B: We first estimate the

variances of the variables in all domains. Then we use the LiNGAM method to estimate

a causal order ⇡̂c over the variables. Then in each domain D(i), we regress each variable

Xk on all variables before it in the causal order according to expression (4.2) to estimate

coe�cients (B̂⇡̂c
)(i)
j,k

, 1 j < k. Finally, we estimate Bj,k = 1
d

P
d

i=1(B̂⇡̂c
)(i)
j,k

, j 2 [p], k 2 [p].

The pseudo-code of the LiNGAM-MD algorithm is presented in Algorithm 8.

Remark 4. An alternative way to use LiNGAM is to simply apply it to the pooled data

from all the domains: Since matrix B is assumed to be invariant, the pooled data will be a

linear model with the same adjacency matrix as matrix B. In this model, the distribution

of an exogenous variable of a targeted variable is the distribution of pooled data from more

than one Gaussian distribution, and hence will not be Gaussian anymore. The issue with

this approach compared to LiNGAM-MD is that if the variances of the exogenous variable of

a targeted variable in the domains are close to each other, the resulting pooled distribution

will still be approximately Gaussian. We have provided a comparison of this baseline use of

LiNGAM versus our proposed LiNGAM-MD method in Section 5.5.

Remark 5 (Comparison of LiNGAM-MD and Reg-MD). As mentioned above, in the LiNGAM-

MD method, the estimations of the parameters in domains serve as samples from their cor-

responding random variables. Therefore, LiNGAM-MD requires several domains to have an

acceptable performance, while ReG-MD can learn the causal relation between two variables

60

with as few as two domains. Also, LiNGAM-MD requires PIC to hold, while as mentioned

in Remark 2, there are cases in which Reg-MD works under conditions weaker than PIC. On

the other hand, LiNGAM-MD does not require Assumption 5, i.e., it does not require the

estimation of the essential graph, and it does not require the faithfulness assumption.

4.4 General Multi-Domain Causal Structure Learning

In this section we relax Assumption 4 and consider the problem of multi-domain causal

structure learning when all entries of matrices B and ⌦ can change across the domains.

To introduce our methodology, we consider a causally su�cient system comprised of two

dependent variables X1 and X2. Observational data for variables X1 and X2, or in the

asymptotic case, the joint distributions of X1 and X2, in d domains D = {D(1), · · · , D(d)}
is given. The goal is to discover the causal direction between X1 and X2. We denote

the ground truth cause variable by XC 2 {X1, X2} and the ground truth e↵ect variable by

XE 2 {X1, X2}\{XC}. The relationship between XC and XE in domain D(i) 2 D is denoted

as follows.

domain D(i): XC = N (i)
C

, XE = a(i)XC + N (i)
E

,

where N (i)
C

and N (i)
E

are independent exogenous variables with variances (�2
C
)(i) and (�2

E
)(i),

respectively. In general, all three parameters of the model, i.e., the variances of the exogenous

variables and the causal coe�cient can vary across the domains. For our parametric model

of interest, �2
C

corresponds to the causal module corresponding to the cause variable, while

a and �2
E

correspond to the causal module corresponding to the e↵ect variables. Therefore,

PIC implies that �2
C

changes independently of the pair (a, �2
E
) across the domains. Note

that in general, �2
E

need not be independent of a, as they both correspond to the mechanism

generating the e↵ect.

Recall that �2|1 denotes the linear regression coe�cient obtained from regressing X2 on

X1, and �2
2|1 = Var(X2 � �>2|1X1), i.e., the variance of the residual of regressing X2 on X1.

For the causal direction, we have

�2
C|;

= �2
C
, �E|C =

Cov(XC , XE)

Cov(XC)
= a, �2

E|C
= �2

E
. (4.5)

61

For the reverse direction, we have

�2
E|;

= a2�2
C

+ �2
E
, �C|E =

Cov(XC , XE)

Cov(XE)
=

a�2
C

a2�2
C

+ �2
E

,

�2
C|E

= Var(NC �
a�2

C

a2�2
C

+ �2
E

(aNC + NE)) =
�2
C
�2
E

a2�2
C

+ �2
E

.

(4.6)

For any parameter � 2 {�2
C|;

, �E|C , �2
E|C

, �2
E|;

, �C|E, �2
C|E

}, let �(i) denote the value of

this parameter in domain D(i), 1 i d. Consider {�(1), · · · , �(d)} as samples from random

variable �. As stated earlier, according to PIC, �2
C|;

= �2
C

is independent form (�E|C , �2
E|C

) =

(a, �2
E
), while as we can see from the expressions in (4.6), such independence does not hold in

general in the reverse direction. For instance, if a and �2
E

are both fixed, an increase in �2
E|;

always leads to an increase in �C|E and �2
C|E

. Therefore, we propose our causal discovery

method as follows:

To test whether X1 is the cause of X2, we test the independence between �2
1|; and

(�2|1, �2
2|1). If �2

1|; and (�2|1, �2
2|1) are independent but the counterpart in the reverse direction

is not, X1 is considered as the cause variable and X2 the e↵ect variable. More specifically,

for order ⇡ = (i, j) 2 {(1, 2), (2, 1)}, let �⇡(2) = {|�j|i|, �2
j|i
}, and define the causal order

indicator

T⇡(D) :=
X

�2�⇡(2)

I(�, �2
i|;

),

where any standard non-parametric measure of dependence I(·, ·), such as mutual informa-

tion, can be used (alternatively, one can use a test of statistical independence, such as the

kernel-based method in [70]). Therefore, for inferring the causal relation between X1 and

X2, we calculate T(1,2)(D) and T(2,1)(D) and pick the direction which has the smaller value,

i.e.,

⇡̂c = arg min
⇡2{(1,2),(2,1)}

T⇡(D).

Although checking for independence is su�cient for discovering causal relation, in general

performing a non-parametric independence test may not be e�cient. This may be specially

problematic as in many applications the number of domains is small. In [58], we showed

that the parametric structure of our model can be exploited to devise an e�cient indepen-

dence test, which only performs first-order statistical test (i.e., regarding the mean) on the

boundaries of the support of the variables.

62

Algorithm 9 Gen-MD

input: Observational data over V in domains D = {D(1), ..., D(d)}, initial order ⇡init over
V
initiation: ⇡̂c = ;.
while |⇡init| 6= 0 do

for X 2 ⇡init do
Form ⇡X,�1

Estimate the elements in �⇡X,�1(k) defined in (4.7) for all 1 k |⇡init|
Q(X) = Q⇡X,�1(k) defined in (4.8) for k = |⇡init|

end for
Xlast = arg minX2⇡init

Q(X)
⇡̂c = concatenate(Xlast, ⇡̂c), remove Xlast from ⇡init

end while
Estimate (B̂⇡̂c

)(i)
j,k

by expression (4.2), k 2 [p], j 2 [k � 1], i 2 [d]

output: (B̂⇡̂c
)(i), i 2 [d]

4.4.1 Causal Discovery for More than Two Variables

In this subsection, we present the General Multi-Domain causal structure learning method

(Gen-MD), which extends the proposed method to the case of having more than two vari-

ables. As stated in Section 4.3, in a linear structural causal model, given the causal order on

the variables, the structure (more specifically, the weighted adjacency matrix) can be easily

estimated by regressing each variable on variables that precede it in the order. Therefore, it

remain to estimate a causal order. In the following we present our approach for estimating

a causal order on the variables.

According to PIC, elements in each column of B + ⌦ should be jointly independent of

elements in any other column, as they correspond to distinct causal modules. Therefore,

we can set a metric for measuring dependencies, and orders that obtain the minimum value

are causal orders. More specifically, for a given order ⇡ on variables, let B̂⇡ and ⌦̂⇡ be the

outputs of regression, defined in expressions (4.2) and (4.3). We define

�⇡(k) := {|(B̂⇡)j,k|, (⌦̂⇡)k,k; 1 j k � 1}, 1 k p. (4.7)

Also, we define

Q⇡(k) :=
X

�2�⇡(k)

k�1X

l=1

X

�̃2�⇡(l)

I(�, �̃), 1 k p, (4.8)

where I(·, ·) is again any standard measure for dependence. We define the causal order

63

indicator as

T⇡(D) :=
pX

n=2

Q⇡(n).

Hence, one can estimate the causal order as follows.

⇡̂c = arg min
⇡

T⇡(D).

Therefore, in low dimensions, the causal order can be found by exhaustive search over all

orders. However, this is infeasible for large dimensions, as the number of orders increases

super-exponentially with the number of variables. Therefore, in the following we propose an

alternative e�cient method for implementing Gen-MD.

The pseudo-code of the proposed approach is presented in Algorithm 9. The main idea is

that in each round, we find one variable which is the last in the causal order and remove it

from the list, until all the variables are ordered. The algorithm starts with a random initial

order ⇡init on all variables. In each round, for each variable X 2 ⇡init, it forms the order

⇡X,�1, which is the same as ⇡init with X being moved to the end of the order, and calculates

the quantity Q(X), which shows the amount of dependency between parameters of the causal

module of X and all the other estimated parameters when X is moved to the last position

in ⇡init. After calculating the quantity Q(X) for all variables in ⇡init, the variable Xlast that

has the lowest value for this quantity is concatenated to the left side of our estimated order

⇡̂c, and is removed from ⇡init. This procedure is continued until all the variables are moved

to ⇡̂c.

4.5 Minimal Change Multi-Domain Causal Structure Learning

Invariance is a special case of the condition of independent changes, as a constant is in-

dependent of any variable. Therefore, the idea of the Gen-MD method can be applied to

the case of existence of invariant parameters across domains. The advantage is that in this

case, fewer domains are required to identify the causal directions. There are few other works

exploiting invariance for the sake of causal discovery as well. Specifically, [54] assumes that

the exogenous variable for a specific target variable in the system does not vary across the

domains, and [66] consider the case that when learning the causal direction between two

variables, the variance of the exogenous variable of at least one of them is invariant. In this

section, we give a unification and generalization of the perspectives of those previous works,

64

which also generalizes Assumption 4 in our Reg-MD and LiNGAM-MD methods.

To introduce our methodology, we again consider the system in Section 4.4 comprised

of two dependent variables X1 and X2. We show that in this system, two domains are

generally su�cient to identify the causal direction. We require the following assumption on

the invariant parameters.

Assumption 6. For any pair of domains D(i) and D(j), if any of the parameters in the

reverse direction presented in (4.6) (i.e., �2
E|;

, �C|E, or �2
C|E

) are invariant across the do-

mains, then the value of all the parameters of the system involved in their expressions (i.e.,

�2
C
, a, and �2

E
) are equal in the two domains.

Assumption 6 is mild in the sense that it only rules out a 2-dimensional subspace of a

3-dimensional space. Therefore, considering Lebesgue measure on the 3-dimensional space,

we are only ruling out a measure-zero subset. This assumptions can be seen as particular

realizations of the faithfulness assumption [1].

Since invariance is a special case of independent changes, based on PIC, change in one

causal module does not force any changes in another causal module, i.e., a change in, say,

�2
C|;

, will not enforce any changes on �E|C or �2
E|C

. However, in the reverse direction, as it

can be seen from equations in (4.5) and (4.6), if any of the variables a, �2
C
, and �2

E
varies

across two domains, by Assumption 6, all three variables �2
E|;

, �C|E, and �2
C|E

will change.

Therefore, under Assumption 6, compared to the direction from e↵ect to cause, fewer or an

equal number of changes are required in the causal direction to explain the variation in the

joint distribution. Therefore, we propose our causal discovery method as follows.

For order ⇡ = (i, j) 2 {(1, 2), (2, 1)}, let �MC

⇡
= {�2

i|;
, |�j|i|, �2

j|i
}. For any pair of domains

{D(i), D(j)}, let V (i,j)
⇡ :=

P
�2�MC

⇡

1[log �(i) 6= log �(j)]. This quantity counts the number of

members of �MC

⇡
that vary across domains D(i) and D(j). We define the causal direction

indicator

T MC

⇡
(D) :=

X

1i<jd

1[⇡ 62 arg min
⇡02{(1,2),(2,1)}

V (i,j)
⇡0],

where MC stands for minimal changes. T MC

⇡
(D) indicates in how many of the domain pairs,

⇡ has not been the order that requires minimum number of changes to explain the variation

in the joint distribution. Under Assumption 6, we have the following result.

Theorem 9. For a given dataset D, we have T MC

(C,E)(D) T MC

(E,C)(D). The inequality is strict

if there exists a pair of domains across which at least one and at most two of the parameters

�2
C
, a, and �2

E
varies.

65

Using Theorem 9, for inferring the causal relation between X1 and X2, we calculate

T MC

(1,2) (D) and T MC

(2,1) (D) and pick the direction which has the smaller value, i.e.,

⇡̂c 2 arg min
⇡2{(1,2),(2,1)}

T MC

⇡
(D).

4.5.1 Causal Discovery for More than Two Variables

In this subsection, we present the Minimal Change Multi-Domain causal structure learning

method (MC-MD), which extends the proposed method to the case of having more than two

variables. As stated in Sections 4.3 and 4.4, in order to learn the causal structure, we only

need to estimate a causal order over the variables. We will present our approach for this

goal in the following.

In order to generalize the method, we need the following assumption, which is the extension

of Assumption 6 for the case of having more than two variables.

Assumption 7. For any pair of domains D(i), D(j), for any variable X and set XS, if

(�2
X|S

)(i) = (�2
X|S

)(j) (or for an entry k, [(�X|S)(i)]k = [(�X|S)(j)]k), then the value of all the

parameters of the system involved in the expression of �2
X|S

(or [(�X|S)]k) are equal in the

two domains.

Roughly speaking, Assumption 7 for the linear structural causal model states that the

parameters of the model should not have been designed in a way that they cancel each other

out on correlations. Assumption 7 leads to the following principle, which is the counterpart

of PIC for the case of invariance.

Definition 14 (Principle of Minimal Changes (PMC)). Suppose Assumption 7 holds. Among

all orders, in a causal order, fewer or an equal number of parameter changes are required to

explain the variation in the joint distribution.

Therefore, we propose our causal discovery method as follows. For a given order ⇡ on

variables, let B̂⇡ and ⌦̂⇡ be the outputs of regression, defined in expressions (4.2) and (4.3).

We define

�MC

⇡
:= {|(B̂⇡)j,k|, (⌦̂⇡)k,k; 1 j k p}. (4.9)

For any pair of domains {D(i), D(j)}, let

V (i,j)
⇡

:=
X

�2�MC
⇡

1[log �(i) 6= log �(j)]. (4.10)

66

Algorithm 10 MC-MD

input: Observational data over V in domains D = {D(1), ..., D(d)}, initial order ⇡init over
V
initiation: ⇡̂c = ;.
while |⇡init| 6= 0 do

for X 2 ⇡init do
Form ⇧X = {⇡init, ⇡X,�1, ⇡X,�2}.
Estimate the elements in �MC

⇡
defined in (4.9) for p = |⇡init|, ⇡ 2 ⇧X

Obtain V (i,j)
⇡ defined in (4.10) for 1 i < j d, ⇡ 2 ⇧X

Obtain T MC

⇡
(D) defined in (4.11) for ⇡ 2 ⇧X

Update ⇡init = arg min⇡2⇧X
T MC

⇡
(D)

end for
⇡̂c = concatenate(⇡init(�1), ⇡̂c), remove ⇡init(�1) from ⇡init

end while
Estimate (B̂⇡̂c

)(i)
j,k

by expression (4.2), k 2 [p], j 2 [k � 1], i 2 [d]

output: (B̂⇡̂c
)(i), i 2 [d]

We define the MC causal order indicator as

T MC

⇡
(D) :=

X

1i<jd

1[⇡ 62 arg min
⇡0

V (i,j)
⇡0]. (4.11)

We have the following result similar to Theorem 9.

Theorem 10. Let ⇡c be a causal and ⇡0 be a non-causal order. For a given dataset D, we have

T MC

⇡c
(D) T MC

⇡0 (D). Also, there exist two parameters of the system �1 and �2 such that if

there exist two domains D(i), D(j) with �(i)1 = �(j)1 and �(i)2 6= �(j)2 , then T MC

⇡c
(D) < T MC

⇡0 (D).

Using Theorem 10, one can estimate the causal order as follows.

⇡̂c 2 arg min
⇡

T MC

⇡
(D).

Therefore, in low dimensions, the causal order can be found by exhaustive search over all

orders. However, this is infeasible for large dimensions. Therefore, in the following we

propose an alternative e�cient method for implementing MC-MD.

The pseudo-code of the proposed approach is presented in Algorithm 10. The main idea

is that in each round, we find one variable which is the last in the causal order and remove it

from the list, until all the variables are ordered. The algorithm starts with a random initial

order ⇡init on all variables. In each round, for each variable X 2 ⇡init, it forms 3 orders in set

67

⇧X : ⇡init which is the initial order, ⇡X,�1 which is the same as ⇡init with X being moved to

the last position, and ⇡X,�2 which is the same as ⇡init with X being moved to one before the

last position in the order.4 The algorithm then calculates the quantity T MC

⇡
(D) for each of

the three orders in ⇧X , and updates ⇡init to the element of ⇧X that has the minimum value

for this quantity. In the case of tie, we prioritize the orders as follows: ⇡init > ⇡X,�2 > ⇡X,�1.

This prioritization guarantees that after performing the aforementioned update of ⇡init for

all variables, the last variable in ⇡init, i.e., ⇡init(�1), will be a sink variable, in the subgraph

induced on variables in ⇡init. We concatenate ⇡init(�1) to the left side of our estimated order

⇡̂c and remove it from ⇡t. This procedure is continued until all the variables are moved to

⇡̂c.

Theorem 11. In each round of Algorithm 10, if Xs is a sink variable, then for all ⇡ 2 ⇧Xs
,

T MC

⇡Xs,�1
(D) T MC

⇡
(D). Also, for any of Xs’s parents, Xv, if there exists a pair of domains

across which at least one and at most two of variables Var(Xv), Bv,s, �2
s
varies, then at the

end of round, ⇡init(�1) will be a sink variable.

Remark 6. Finding independence in Algorithm 9 and invariance in in Algorithm 10 can

also be done from top to bottom of the causal order similar to the approach used in [64].

That is, in each round we can also find a variable with highest causal order as well.

4.6 Evaluation Results

4.6.1 Reg-MD

We generated 100 random chordal graphs of order p = 10. We generated data from a

linear Gaussian structural causal model with coe�cients drawn uniformly at random from

[�1.5,�0.5] [[0.5, 1.5], and the variance of each exogenous variable was drawn uniformly

at random from [1, 2]. For each variable of each structure, 105 samples were generated.

First, we considered a scenario in which we have two domains, where in the second domain,

the exogenous variable of |�12| variables were varied. The perturbed variables were chosen

uniformly at random.

Let B and B̂ be the binary adjacency matrices of the ground truth causal DAG and the

output of an algorithm, respectively. We define the structural hamming distance (SHD) as

4We have provided an example in the Appendix B to demonstrate why it is required to consider both
orders ⇡X,�1 and ⇡X,�2.

68

1 2 3 4 5
| 12|

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 S
H

D IP
Reg-MD

2 3 4 5 6
Number of domains

0.12

0.14

0.16

0.18

0.2

0.22

0.24

N
or

m
al

iz
ed

 S
H

D

k=0.2
k=0.3

Figure 4.4: Left: Comparison of the normalized SHD of Reg-MD algorithm and IP
algorithm. Right: The e↵ect of the number of domains on the identifiability power of
Reg-MD.

follows:

SHD(B, B̂) :=
X

1i<jp

1[(Bij 6= B̂ij) _ (Bji 6= B̂ji)],

where 1[·] is the indicator function. We also the define the normalized SHD as SHD divided

by
�
p

2

�
.

We compared the normalized SHD of Reg-MD algorithm with the invariant prediction (IP)

[54] in Figure 4.4. As can be seen, the normalized SHD of IP increases as the cardinality of

�12 increases. This is mainly due to the fact that in the IP approach, it is assumed that the

distribution of exogenous variable of the target variable should not change, which may be

violated by increasing |�12|. On the other hand, the normalized SHD of Reg-MD decreases

as the cardinality of �12 increases. This shows that the proposed algorithm can correctly

find the locations of changes across the two domains and use them to orient more edges for

larger |�12|.
Next we considered the e↵ect of the number of domains on the identifiability power of Reg-

MD. The result is shown in Figure 4.4, where the parameter k is the fraction of variables

which are varied between two consecutive domains.

4.6.2 LiNGAM-MD

We generated a random DAG of order p = 20 by first selecting a causal order for variables

and then connecting each pair of variables with probability 0.15. We generated data from a

69

(c)(b)(a) (d) (e)

Figure 4.5: Visualization of the estimated weighted adjacency matrix with respect to the
number of domains: (a) d = p + 10, (b) d = p + 20, (c) d = p + 30, (d) d = p + 40, and (e)
the ground truth.

0 10 20 30 40 50
Number of domains

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

0 10 20 30 40 50
Number of domains

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

IB
MC
HSIC
IB Confounder
MC Confounder
HSIC with Confounder

Figure 4.6: F1 score versus number of domains for model 1 on the left and model 2 on the
right.

linear Gaussian structural causal model with coe�cients drawn uniformly at random from

[�1.5,�0.5] [[0.5, 1.5] and fixed in all domains, and variance of each exogenous variable

in each domain was drawn uniformly at random from [1, 3]. For each variable, 105 samples

were generated in each domain. We estimated the weighted adjacency matrix based on the

proposed LiNGAM-MD approach, where we used DirectLiNGAM algorithm for finding a

causal order. The heat map of the resulting weighted adjacency matrix for di↵erent number

of domains is depicted in Figure 4.5. As can be seen, the recovered matrix converges to the

ground truth as the number of domains increases.

4.6.3 Gen-MD and MC-MD

We consider two models for generating the parameters of the system. In the first model,

the variances of the noises and the causal coe�cients follow the distributions Unif ([1,3])

and Unif ([-3,-0.5] [[0.5,3]), respectively. In the second model, with equal probability, they

70

2 10 20 30 40 50
Number of domains

0.5

0.6

0.7

0.8

0.9

1
F1

 sc
or

e
IB

p = 4 (complete)
p = 8 (complete)
p = 12 (complete)
p = 4 (sparse)
p = 8 (sparse)
p = 12 (sparse)

2 4 6 8 10 12 14 16
Number of variables

0.5

0.6

0.7

0.8

0.9

1

F1
 sc

or
e

IB

d = 10 (complete)
d = 20 (complete)
d = 50 (complete)
d = 10 (sparse)
d = 20 (sparse)
d = 50 (sparse)

2 10 20 30 40 50
Number of domains

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

MC

p = 4 (complete)
p = 8 (complete)
p = 12 (complete)
p = 4 (sparse)
p = 8 (sparse)
p = 12 (sparse)

2 4 6 8 10 12 14 16
Number of variables

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

MC

d = 10 (complete)
d = 20 (complete)
d = 50 (complete)
d = 10 (sparse)
d = 20 (sparse)
d = 50 (sparse)

2 10 20 30 40 50
Number of domains

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

HSIC
p = 4 (complete)
p = 8 (complete)
p = 12 (complete)
p = 4 (sparse)
p = 8 (sparse)
p = 12 (sparse)

2 4 6 8 10 12 14 16
Number of variables

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

HSIC
d = 10 (complete)
d = 20 (complete)
d = 50 (complete)
d = 10 (sparse)
d = 20 (sparse)
d = 50 (sparse)

2 10 20 30 40 50
Number of domains

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

LiNGAM
p = 4 (complete)
p = 8 (complete)
p = 12 (complete)
p = 4 (sparse)
p = 8 (sparse)
p = 12 (sparse)

2 4 6 8 10 12 14 16
Number of variables

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

LiNGAM

d = 2 (complete)
d = 10 (complete)
d = 20 (complete)
d = 50 (complete)
d = 2 (sparse)
d = 10 (sparse)
d = 20 (sparse)
d = 50 (sparse)

Figure 4.7: F1 score versus number of domains and number of variables.

either follow the aforementioned distributions, or are equal a fixed value. The number of

samples in each domain is 103. We have used the state-of-the-art HISC test [70] as our

non-parametric independence test. The performance of the proposed methods are depicted

in Figure 4.6. We have depicted the F1 score for each case. The IB method in this figure

is a parametric test for independence that we proposed in [58] and can be substituted for

the non-parametric HSIC test. As seen from the F1 score, the IB method performs better

than the MC method in the first model. However, if in an application we know that the

parameters are not likely to change much (as in model 2), the MC method also has high

performance. We also tested our proposed methods when a latent confounder was present

in the system.

More than Two Variables

We considered model 1 for generating the parameters of the system, with the number of

generated samples in each domain equal to 103. After identifying the causal ordering, we

then estimate the causal coe�cients B on each domain separately. We set a threshold ↵ = 0.1

on B from each session; if |Bi,j| is larger than ↵, then there is an edge from Xi to Xj. Then

if an edge appears in more than 80% of all sessions, we take this edge in the final graph. The

results are shown in Figure 4.7. All experiments are performed either on complete graphs

or on sparse graph generated from Erdos-Renyi model with parameter 0.3. In general, we

observed better performance on denser graphs. This is expected as having more parameters

71

CA3/DG

CA1

Sub

ERC

PHC

PRC

Figure 4.8: Learned structure on fMRI hippocampus data.

helps us in predicting the order. The IB and MC methods both showed high performance

in our simulations. We also compared the performance with LiNGAM Algorithm [6]. To do

so, we applied LiNGAM algorithm to the pooled data of all domains. As explained in [55],

LiNAGM failed to perform well on our multi-domain data.

fMRI Hippocampus Data

We applied our methods to fMRI hippocampus dataset [71], which contains signals from six

separate brain regions: perirhinal cortex (PRC), parahippocampal cortex (PHC), entorhinal

cortex (ERC), subiculum (Sub), CA1, and CA3/Dentate Gyrus (CA3) in the resting states

on the same person in 84 successive days. We used the anatomical connections [72, 55]

as a reference. We applied both MC and IB on this dataset. We investigated all possible

causal orders and found the one that minimizes the causal order indicator for MC and IB.

After identifying the causal ordering, we estimated the causal coe�cients B on each session

separately with threshold ↵ = 0.1, and if an edge appears in more than 60% of all sessions,

we took this edge in the final graph. The recovered causal graph between the six regions is

shown in Figure 4.8. The black edges indicate edges, which are identified by both MC and

IB methods. The blue edges are only identified by the MC method, and the orange edges are

only identified by the IB method. The edges in the anatomical ground truth are as follows:

PHC ! ERC, PRC ! ERC, ERC ! CA3/DG, CA3/DG ! CA1, CA1 ! Sub, Sub !
ERC, and ERC ! CA1.

4.7 Conclusion

Under the acyclicity and causal su�ciency assumptions, more than one distribution is needed

to learn the causal diagram beyond Markov equivalence. Although performing interventions

in the system is the main source to obtain extra distributions, intervening on certain variables

72

in the system may be expensive, unethical, or even undefined. Nevertheless, in many setups,

the data generating distribution may vary over time, or the dataset may be gathered from

di↵erent domains and hence, not follow a single distribution. We focused on causal structure

learning from such multi-domain observational data.

We proposed methods based on the principle that in a causally su�cient system, the causal

modules, as well as their included parameters, change independently across domains. We

study the problem in two cases:

• Case 1. Only ⌦ varies across domains.

• Case 2. Both B and ⌦ can vary across domains.

For Case 1: (1) We proposed a regression-based causal structure learning approach called

Reg-MD. This method directly utilizes the invariance of the functional relations of the vari-

ables to their direct causes across a set of domains. (2) We discussed the connection between

the setup in Case 1 and the LiNGAM method, and proposed the LiNGAM-MD method

which uses the multi-domain data to form a linear non-Gaussian model over variables to

render using the LiNGAM method possible.

For Case 2: (1) We proposed the Gen-MD method, which directly uses the principle of

independent changes. We presented a polynomial algorithm for implementing the Gen-MD

method. (2) Using the fact that invariance is a special case of the condition of independent

changes, we applied the idea of Gen-MD to the case of the existence of invariant parameters

across domains. We proposed a score-based method called MC-MD for this goal in, and

provided an e�cient polynomial implementation for that. MC-MD is capable of identifying

causal directions from as few as two domains. See Table 4.1 for a comparison of the four

proposed methods.

Table 4.1: Comparison of the four proposed multi-domain causal structure learning
methods.

Needs the Needs several Needs Needs
essential graph domains Assumption 4 Assumption 7

Reg-MD 3 3
LiNGAM-MD 3 3

Gen-MD 3
MC-MD 3

73

As future work, we consider devising regression-based methods that do not need the es-

sential graph, consider the case that the causal directions can flip across the domains, aim

for devising reliable statistical (conditional) independence tests for the setup, and consider

the case that latent confounders exist in the system.

74

CHAPTER 5

CYCLIC CAUSAL DIAGRAMS

Most real-life causal systems contain feedback loops, since feedback is generally required to

stabilize the system and improve performance in the presence of noise. Hence, the causal

directed graph (DG) corresponding to such systems will be cyclic [73, 74]. However, there

are relatively few works on learning structures that contain cycles. In many state-of-the-art

causal models, not only is feedback ignored, it is also explicitly assumed that there are no

cycles passing information among the considered quantities. Note that ignoring cycles in

structure learning can be very consequential. For instance, in Figure 5.1, if one uses a con-

ditional independence-based learning method designed for DAGs such as the PC algorithm

[1], in the absence of the dashed feedback loop the skeleton will be estimated correctly on

the population dataset and the directions for all edges into XS can be determined. However,

in the presence of the feedback loop, the output is a complete directed graph since no two

variables will be independent conditioned on any subset of the rest of the variables.

The discrimination against cyclic structures in the literature is primarily due to the sim-

plicity of working with acyclic models (see [73]) and the fact that in contrast to DAGs, there

exists no generally accepted characterization of statistical equivalence among cyclic struc-

tures in the literature. The main method for defining equivalence among DAGs is based on

the conditional independence (CI) relationships in the distributions that they imply. That

is, two DAGs are equivalent if and only if they imply the same CI relations. CI relationships

can be seen from statistical data, and the CI-based equivalence characterization for DAGs is

attractive because CI relationships contain all the information in the distribution that can

be used for structure learning under the assumption of causal su�ciency. However, when

causal su�ciency is violated or cycles are allowed in the structure, conditional independency

may not reflect all the information in the distribution that can be used to identify the un-

derlying structure. That is, the joint distribution may contain information that can be used

to distinguish among the members of a CI-based equivalence class, which is also known as a

Markov equivalence class. This means that it is possible for two graphs to be distinguishable

from observational data even though they are in the same Markov equivalence class. For

75

!" !#

!$

!%

!&

Figure 5.1: If we perform a conditional independence-based test designed for DAGs, in the
presence of the feedback loop, the output will be a complete directed graph.

more details, see [7] for the case of the violation of acyclicity and [75, 76] for the case of the

violation of causal su�ciency.

With the goal of bridging the gap between cyclic and acyclic DGs, in this chapter we

present a general characterization of equivalence for linear Gaussian DGs.1 In the case

of DAGs, our approach provides a novel alternative to the customary tests for Markov

equivalence. The proposed distribution equivalence characterization (Theorems 12 and 13)

not only is capable of characterizing equivalence beyond conditional independencies, but also

provides a simpler and more concise evaluation approach compared to [79]. We summarize

our contributions as follows.

• We present a general, unified notion of equivalence based on the set of distributions

that the directed graphs are able to generate (Section 5.1). In our proposed definition

of equivalence, two structures are equivalent if they can generate the same set of data

distributions.

• We propose an algebraic and graphical characterization of the equivalence of two DGs,

be they cyclic or acyclic, based on the so-called Givens rotations (Sections 5.2 and 5.3).

• We also propose a weaker notion of equivalence called quasi-equivalence, which we

show is the extent of identifiability from observational data (Section 5.4).

• We propose a score-based method for structure learning from observational data with

local search. We show that our score asymptotically achieves the extent of identifia-

bility (Section 5.4). To the best of our knowledge, this is the first local search method

capable of learning structures with cycles.

1Note that for non-linear cyclic SEMs, even the Markov property does not necessarily hold [73, 77, 78],
and hence, it is not clear if one can make general statements about the equivalence of structures regardless
of the involved equations.

76

The material in this chapter is taken from [80].

Related Work. [2, 79] proposed graphical constraints necessary and su�cient for Markov

equivalence for general cyclic DGs and proposed a constraint-based algorithm for learning

cyclic DGs. That algorithm was later extended to handle latent confounders and selection

bias [81]. [82, 83] also focused on structure learning based on CI relationships for possi-

bly cyclic and causally insu�cient data gathered from multiple domains that may contain

conflicting CI information. They proposed an approach based on an SAT or ASP solver.

Due to generality of their setup, the run time of this approach can be restricting. A similar

approach was proposed in [84] for the case of nonlinear functional relationships with an ex-

tended notion of graphical separation called �-separation. Also, [74] provided an algorithm

for learning linear models with cycles and confounders that deals with perfect interventions.

As mentioned earlier, having the assumption of non-Gaussian exogenous noises and specific

types of non-linearity may lead to unique identifiability in DAGs. This idea was also inves-

tigated for cyclic DGs. [7] proposed a method for learning DGs based on the ICA approach

for linear systems with non-Gaussian exogenous noises, and [10] investigated the case of

nonlinear causal mechanisms with additive noise.

To the best of our knowledge, there exists no work on learning cyclic linear Gaussian

models which utilizes the observational joint distribution itself rather than CI relationships

in the distribution.

5.1 Distribution Equivalence

We consider a linear structural causal model, explained in Section 2.2.1, over p observable

variables {Xi}pi=1. We assume that Bi,i = 0, for all i 2 [p], and elements of N are assumed to

be jointly Gaussian and independent. Since we can always center the data, without loss of

generality, we assume that N , and hence, X is zero-mean. Therefore, X ⇠ N (0, ⌃), where

⌃ is the covariance matrix of the joint Gaussian distribution on X, and su�ces to describe

the distribution of X. We assume that ⌃ is always invertible (the Lebesgue measure of non-

invertible matrices is zero). Therefore, equivalently the precision matrix ⇥ = ⌃�1 contains

all the information regarding the distribution of X. ⇥ can be written as

⇥ = (I � B)⌦�1(I � B)>, (5.1)

77

where ⌦ is a p⇥p diagonal matrix with ⌦i,i = �2
i

= Var(Ni). In the sequel, we use the terms

precision matrix and distribution interchangeably.

The most common notion of equivalence for DGs in the literature is independence equiv-

alence, also called Markov equivalence. This notion is defined in Section 2.2.2. When cycles

are permitted, defining equivalence of DGs based on CI relations that they represent is not

suitable, as CI relations do not reflect all the information in the distribution that can be used

for identification of the underlying structure; e.g., see [7]. That is, there exist DGs which

can be distinguished using observational data with probability one despite representing the

same CI relations.

Definition 15 (Distribution Set). The distribution set of structure G, denoted by ⇥(G), is

defined as
⇥(G) :={⇥ :⇥ = (I � B)⌦�1(I � B)>, for any (B, ⌦)

s.t. ⌦ 2 diag+ and supp(B) ✓ supp(BG)},

where diag+ is the set of diagonal matrices with positive diagonal entries, BG is the binary

adjacency matrix of G, and supp(B) = {(i, j) : Bij 6= 0}.

⇥(G) is the set of all precision matrices (equivalently, distributions) that can be generated

by G for di↵erent choices of exogenous noise variances and edge weights in G.

Definition 16 (Distribution Equivalence). DGs G1 and G2 are distribution equivalent, or

for short, equivalent, denoted by G1 ⌘ G2, if ⇥(G1) = ⇥(G2).

It is important to note that for DG G and distribution ⇥, having ⇥ 2 ⇥(G) does not

imply that all the constraints of ⇥, such as its conditional independencies, can be read o↵ of

G. For instance, a complete DAG does not represent any conditional d-separations, yet all

distributions are contained in its distribution set. This is due to the fact that the parameters

in B can be designed to represent certain extra constraints in the generated distribution.

As mentioned earlier, we can have a pair of DGs which are distinguishable using obser-

vational data despite having the same conditional d-separations. This is not the case for

DAGs. In fact, restricting the space of DGs to DAGs, Definitions 16 and 4 are equivalent.

Proposition 6. Two DAGs G1 and G2 are equivalent if and only if they are I-equivalent.

Therefore, one does not lose any information by caring only about I-equivalence when

dealing with acyclic structures. All proofs are provided in the Appendix C.

For general DGs, the graphical test for I-equivalence is known to be significantly more

complex [79] than the test for DAGs [16]. There are currently no known graphical conditions

for distribution equivalence. This is the goal of Section 5.3.

78

5.2 Characterizing Equivalence

In order to determine whether DGs G1 and G2 are equivalent, a baseline equivalence test

is as follows: We consider a distribution ⇥ 2 ⇥(G1) which results from a certain choice

of parameters of G1 in expression (5.1), i.e., a certain choice of exogenous noise variances

and edge weights. We then check whether there exists a choice of parameters for which

G2 generates ⇥. We then repeat the same procedure for G1, considering G2 as the original

generator. More specifically, for DG Gi, let Qi = (I � B)⌦�
1
2 for any choice of B such that

supp(B) ✓ supp(BGi
) for i 2 {1, 2}. For any choice of parameters of G1 that results in

distribution ⇥ = Q1Q>1 , we check if Q2Q>2 = ⇥ has real-valued solution, and vice versa.

Although this baseline equivalence test provides a systematic approach, it is tedious in many

cases to check for the existence of a solution. In the following, we propose an alternative

equivalence test based on rotations of Q.

Let vi be the i-th row of matrix Q. Therefore, ⇥ = QQ> is the Gramian matrix of the set

of vectors {v1, · · · vp}. The set of generating vectors of a Gramian matrix can be determined

up to isometry. That is, given Q1Q>1 = ⇥, we have Q2Q>2 = ⇥ if and only if Q2 = Q1U

for some orthogonal transformation U . Therefore, Q1 should be transformable to Q2 by a

rotation or an improper rotation (a rotation followed by a reflection).

In our problem of interest, for any parameterization of Q1 (resp. Q2) it is necessary to

check if there exists an orthogonal transformation of Q1 (resp. Q2) which can be generated

for some parameterization of Q2 (resp. Q1). Therefore, only the support of the matrix before

and after the orthogonal transformation matters. Hence, we only need to consider rotation

transformations. This can be formalized as follows: Let QG be BG with 1s on its diagonal,

i.e. QG := I + BG. This is the binary matrix that for all choices of parameters B and ⌦,

supp(Q) ✓ supp(QG).

Proposition 7. G1 ⌘ G2 if and only if for any choice of Q1, there exists rotation U (1) such

that supp(Q1U (1)) ✓ supp(QG2), and for any choice of Q2, there exists rotation U (2) such

that supp(Q2U (2)) ✓ supp(QG1).

To test the existence of a rotation required in Proposition 7, we propose utilizing a sequence

of a special type of planar rotations called Givens rotations [85].

Definition 17 (Givens rotation). A Givens rotation is a rotation in the plane spanned by

two coordinate axes. For a ✓-radian rotation in the (j, k) plane, the entries of the Givens

rotation matrix G(j, k, ✓) = [g]p⇥p in Rp are gi,i = 1 for i 62 {j, k}, gi,i = cos(✓) for i 2 {j, k},
and gk,j =�gj,k =� sin(✓), and the rest of the entries are zero.

79

Any rotation in Rp can be decomposed into a sequence of Givens rotations. Hence, in

Proposition 7, we need to find a sequence of Givens matrices and define U to be their

product. The advantage of this approach is that the e↵ect of a Givens rotation is easy to

track: The e↵ect of G(j, k, ✓) on a row vector v is as follows.

[v1 · · · vj · · · vk · · · vp]G(j, k, ✓) =

[v1 · · · cos(✓)vj+sin(✓)vk · · · �sin(✓)vj+cos(✓)vk · · · vp].
(5.2)

5.2.1 Support Rotation

As previously mentioned, since all choices of parameters in the structure need to be con-

sidered, it is necessary to determine the existence of a rotation that maps one support to

another. We define support matrix and support rotation as follows.

Definition 18 (Support matrix). For any matrix Q, its support matrix is a binary matrix

⇠ of the same size with entries in {0,⇥}, where ⇠i,j = ⇥ if Qi,j 6= 0 and ⇠i,j = 0 otherwise.

For directed graph G, we define its support matrix as support matrix of QG.

Givens rotations can be used to introduce zeros in a matrix, and hence, change its support.

Consider input matrix Q. Using expression (5.2), for any i, j 2 [p], Qi,j can be set to zero

using a Givens rotation in the (j, k) plane with angle ✓ = tan�1(�Qi,j/Qi,k). When zeroing

Qi,j, there may exist an index l such that Ql,j or Ql,k will also become zero. However, since

we consider all parameterizations of Q, we cannot take advantage of such accidental zeroings.

Definition 19 (Support Rotation). The support rotation A(i, j, k) is a transformation that

takes a support matrix ⇠ as the input and sets ⇠i,j to zero using a Givens rotation in the

(j, k) plane. The output is the support matrix of QG(j, k, tan�1(�Qi,j/Qi,k)), where Q 2
arg maxQ0 |supp(Q0G(j, k, tan�1(�Q0

i,j
/Q0

i,k
)))| such that the support matrix of Q0 is ⇠. Note

that G(j, k, tan�1(�Q0
ij
/Q0

i,k
)) is the Givens rotation in the (j, k) plane which zeros Q0

i,j
.

Note that due to (5.2), A(i, j, k) only a↵ects the j-th and k-th columns of the input. The

general e↵ect of support rotation A(i, j, k) is described in the following proposition.

Proposition 8. Support rotation A(i, j, k) can have three possible e↵ects on support matrix

⇠:

1. If ⇠i,j = 0, A(i, j, k) has no e↵ect.

80

× × × ×
0 × 0 ×
× × × 0
× 0 0 ×

#(1,3,1)
× × 0 ×
0 × 0 ×
× × × 0
× 0 × ×

× × × ×
0 × 0 ×
× × × 0
× 0 0 ×

#(2,4,1)
× × × ×
× × 0 0
0 × × ×
× 0 0 ×

Figure 5.2: An example of support rotation (Case 2, Prop. 8). Element ⇠i,j is in red, and
columns j and k are in blue.

2. If ⇠i,j = ⇥ and ⇠i,k = ⇥, A(i, j, k) makes ⇠i,j = 0, and for any l 2 [p] \ {i} such that at

least one of ⇠l,j and ⇠l,k is ⇥, A(i, j, k) makes ⇠l,j = ⇥ and ⇠l,k = ⇥. This is obtained

by an acute rotation.

3. If ⇠i,j = ⇥ and ⇠i,k = 0, A(i, j, k) switches columns j and k of ⇠. This is obtained by a

⇡/2 rotation.

Figure 5.2 visualizes an example of a support rotation. Observe that the following four

cases partition all the e↵ects that can be obtained from a support rotation A(i, j, k).

• Reduction. If ⇠i,j = ⇠i,k = ⇥ and ⇠l,j = ⇠l,k for all l 2 [p] \ {i}, then only ⇠i,j becomes

zero.

• Reversible acute rotation. If ⇠i,j = ⇠i,k = ⇥ and there exists a row i0 such that the

j-th and k-th columns di↵er only in that row, then ⇠i,j becomes zero and both ⇠i0,j and

⇠i0,k become ⇥.

• Irreversible acute rotation. If ⇠i,j = ⇠i,k = ⇥ and the j-th and k-th columns di↵er

in at least two rows, then ⇠i,j becomes zero and all entries on the j-th and k-th columns

become ⇥ on the rows on which they di↵ered.

• Column swap. If ⇠i,j = ⇥ and ⇠i,k = 0, then columns j and k are swapped.

Note that if ⇠ is transformed to ⇠0 via a reversible acute rotation A(i, j, k), and ⇠i0,j = 0, then

⇠0 can be mapped back to ⇠ via A(i0, j, k), hence the name reversible.

5.2.2 Characterizing Equivalence via Support Rotations

We give the following necessary and su�cient condition for distribution equivalence of two

structures using the introduced support operations. We show that irreversible acute rotations

81

are not needed for checking equivalence. Here, for two support matrices ⇠ and ⇠0, we say

⇠ ✓ ⇠0 if supp(⇠) ✓ supp(⇠0).

Theorem 12. Let ⇠1 and ⇠2 be the support matrices of DGs G1 and G2, respectively. G1 is

distribution equivalent to G2 if and only if there exists a sequence of reductions, reversible

acute rotations, and column swaps that maps ⇠1 to a subset of ⇠2, and a sequence that maps

⇠2 to a subset of ⇠1.

Theorem 12 converts the problem of determining the equivalence of two structures into

a search problem for two sequences of support rotations. We propose to use a depth-first

search algorithm that performs all column swaps at the end of the sequences. Due to space

constraints, the pseudo-code is presented in the Appendix C.

The following result is a nontrivial application of Theorem 12 regarding reversing cycles

in DGs.

Proposition 9 (Direction of Cycles). Suppose structure G1 contains a directed cycle C. Let

G2 be a structure that di↵ers from G1 in two ways. (1) The direction of cycle C is reversed

and (2) any variable pointing to Xi 2 C in G1 via an edge which is not part of C is, in G2,

pointing to the preceder of Xi in C in G1. In this case, G1 is distribution equivalent to G2.

(See Figure 5.3 for an example.)

[79] presented a result similar to Proposition 9 for the case of using CI relationships in

the data and concluded that “it is impossible to orient a cycle merely using CI informa-

tion.” Proposition 9 extends that result by concluding that it is impossible to orient a

cycle merely using observational data. The following proposition provides a necessary and

su�cient condition for equivalence.

Proposition 10. Consider DGs G1 and G2 with support matrices ⇠1 and ⇠2, respectively. If

every pair of columns of ⇠1 di↵er in more than one entry, then G1 ⌘ G2 if and only if the

columns of ⇠2 are a permutation of columns of ⇠1.

Example 6. In Figure 5.4, (a) G1 ⌘ G2, (b) G1 6⌘ G3, and (c) G1 ⌘ G4.

(a) shows that unlike DAGs, equivalent DGs do not need to have the same skeleton or the

same v-structures. To see G1 ⌘ G2, we note that

⇠1 =

2

64
⇥ ⇥ ⇥
0 ⇥ 0

0 ⇥ ⇥

3

75 A(1, 3, 1)
��������!

2

64
⇥ ⇥ 0

0 ⇥ 0

⇥ ⇥ ⇥

3

75 A(3, 1, 2)
��������!

2

64
⇥ ⇥ 0

⇥ ⇥ 0

0 ⇥ ⇥

3

75 ✓ ⇠2.

82

!" !#

!$

%#
!&

!" !#

!$

%$
!&

Figure 5.3: Example related to Proposition 9.

⇠2 =

2

64
⇥ ⇥ 0

⇥ ⇥ 0

0 ⇥ ⇥

3

75 A(2, 1, 2)
��������!

2

64
⇥ ⇥ 0

0 ⇥ 0

⇥ ⇥ ⇥

3

75 A(3, 1, 3)
��������!

2

64
⇥ ⇥ ⇥
0 ⇥ 0

0 ⇥ ⇥

3

75 ✓ ⇠1.

(b) follows from Proposition 10 since each pair of columns of ⇠3 di↵er in more than one

entry. For (c), we already have ⇠1 ✓ ⇠4. For the other direction,

⇠4 =

2

64
⇥ ⇥ ⇥
⇥ ⇥ 0

0 ⇥ ⇥

3

75 A(2, 1, 2)
��������!

2

64
⇥ ⇥ ⇥
0 ⇥ 0

⇥ ⇥ ⇥

3

75 A(3, 1, 3)
��������!

2

64
⇥ ⇥ ⇥
0 ⇥ 0

0 ⇥ ⇥

3

75 ✓ ⇠1.

As seen in Example 8, structures G1 and G4 in Figure 5.4 are distribution equivalent.

Therefore, the extra edge X2 ! X1 in G4 does not enable this structure to generate any

additional distributions. In this case, we say structure G4 is reducible. This idea is formalized

as follows.

Definition 20 (Reducibility). DG G is reducible if there exists G0 such that G ⌘ G0 and

E(G0) ⇢ E(G). In this case, we say edges in E(G) \E(G0) are reducible, and G is reducible

to G0.

Proposition 11. DG G with support matrix ⇠ is reducible if and only if there exists a

sequence of reversible acute rotations that enables us to apply a reduction to ⇠.

Proposition 11 implies the following necessary condition for reducibility.

Proposition 12. A DG with no 2-cycles is irreducible.

A 2-cycle is a cycle over only two variables, such as the cycle over X1 and X2 in G2 in

Figure 5.4. Propositions 11 and 12 lead to the following corollary regarding equivalence for

DAGs, which bridges our proposed approach with the classic characterization for equivalence

of DAGs.

83

!" !#

!$

!" !#

!$

!" !#

!$

!" !#

!$

%" %# %$ %&
Figure 5.4: DGs related to Example 6.

Corollary 2. DAGs G1 and G2 with support matrices ⇠1 and ⇠2 are equivalent if and only

if there exists a sequence of reversible acute rotations and column swaps that maps ⇠1 to a

subset of ⇠2, and one that maps ⇠2 to a subset of ⇠1.

5.3 Graphical Characterization of Equivalence

In this section, we present a graphical counterpart to Theorem 12 by providing graphical

counterparts to the rotations required by that Theorem.

Definition 21. For vertices X1 and X2, let P1 := Pa(X1)[{X1} and P2 := Pa(X2)[{X2},
where Pa(X) denotes the set of parents of vertex X. X1 and X2 are parent reducible if

P1 = P2 and parent exchangeable if |P14P2| = 1, where 4 is the symmetric di↵erence

operator, which identifies elements which are only in one of the sets.

The three rotations in Theorem 12 lead to the following graphical operations:

• Parent reduction. If Xj and Xk are parent reducible, any support rotation on

columns ⇠·,j and ⇠·,k which zeros a non-zero entry on those columns except ⇠j,j and ⇠k,k

removes the parent from Xj or Xk corresponding to the zeroed entry. We call this edge

removal a parent reduction. The support rotation in this case is of reduction rotation

type.

• Parent exchange. If Xj and Xk are parent exchangeable, by definition there exists

Xi such that Pj4Pk = {Xi}. In this case, any support rotation on columns ⇠·,j and ⇠·,k

which zeros a non-zero entry on those columns except ⇠j,j and ⇠k,k removes the parent

from Xj or Xk corresponding to the zeroed entry. Additionally, the missing edge from

Xi to Xj or Xk is added. We call this a parent exchange. The support rotation in this

case is of column swap or reversible acute rotation type.

84

!": !$:

!%: !&:

!': !(:

!): !*:

+" +'

+$

+(

+" +'

+$

+(
+" +'

+$

+(
+" +'

+$

+(

+" +'

+$

+(
+" +'

+$

+(

+" +'

+$

+(
+" +'

+$

+(

!,:

!"-:

+" +'

+$

+(

+" +'

+$

+(

Figure 5.5: Elements of a distribution equivalence class.

• Cycle reversion. A cycle reversion swaps the column of each member of a cycle C

with the column corresponding to its preceder in the cycle. This reverses the direction

of the cycle C and changes any edge outside of C connecting to an Xi 2 C in the

original DG to point instead to the preceder of Xi in C.

Note that in the graphical operations above, we exclude support rotations that lead to

zeroing a diagonal entry, since they do not have a graphical representation (by Def. 18).

Equipped with the graphical operations, we present a graphical counterpart to Theorem

12.

Theorem 13. G1 is distribution equivalent to G2 if and only if there exists a sequence of

parent reductions, parent exchanges, and cycle reversions that maps G1 to a subgraph of G2,

and a sequence that maps G2 to a subgraph of G1.

Example 7. Figure 5.5 shows the elements of a distribution equivalence class. Suppose G1

is the original structure. Cycle reversion on the cycle (X2, X4, X3, X2) results in G2, cycle

reversion on the cycle (X1, X3, X2, X4, X1) results in G3, parent exchange A(4, 1, 3) results

in G4, and parent exchange A(1, 3, 1) results in G8.

Remark 7. Given observational data from any of the structures in Figure 5.5, CI-based

structure learning methods such as CCD [2] may output a structure (for example G1 without

edges X4 ! X1) which is not distribution equivalent to the ground truth. This can be pre-

vented by leveraging other statistical information in the distribution beyond CI relationships.

We have the following corollary regarding equivalence for DAGs. The reasoning is the

same as in Corollary 2.

Corollary 3. DAGs G1 and G2 are equivalent if and only if there exists a sequence of parent

exchanges that maps G1 to G2, and one that maps G2 to G1.

85

5.4 Learning Directed Graphs from Data

Structure G imposes constraints on the entries of precision matrix ⇥. We will refer to such

constraints as the distributional constraints of G. Every distribution in ⇥(G) should satisfy

the distributional constraints of G. Clearly, two DGs are distribution equivalent if and only

if they have the same distributional constraints. We call a distributional constraint a hard

constraint if the set of the values satisfying that constraint is Lebesgue measure zero over

the space of the parameters involved in the constraint. For instance in DAGs, if Xi and Xj

are non-adjacent and have no common children, we have the hard constraint ⇥i,j = 0. We

denote the set of hard constraints of a DG G by H(G).

Recall that distribution equivalence of two structures G1 and G2 implies that any distri-

bution that can be generated by G1 can also be generated by G2, and vice versa. Therefore,

no distribution can help us distinguish between G1 and G2. However, in practice we usually

have access to only one distribution which is generated from a ground truth structure, and

it may be the case that this distribution can be generated by another structure which is not

equivalent to the ground truth. Therefore, finding the distribution equivalence class of the

ground truth structure from one distribution is in general not possible, and extra consider-

ations are required for the problem to be well defined. Below we will accordingly provide a

weaker notion of equivalence and show that the ground truth can be recovered up to this

equivalence.

The aforementioned issue also arises when learning DAGs and considering I-equivalence.

The most common approach to dealing with this issue in the literature is to assume that

the distribution is faithful to the ground truth structure. This requires a one-to-one corre-

spondence between the conditional d-separations of the ground truth structure and the CI

relationships in the distribution [1]. This is a sensible assumption from the perspective that

the Lebesgue measure of the parameters which lead to extra CIs in the generated distribution

is zero [86].

The case of general DGs is more complex since they can require other distributional

constraints besides CIs. In particular, we may have distributional constraints other than

hard constraints due to cycles. Hence, in this case the Lebesgue measure of the parameters

which lead to extra distributional constraints in the generated distribution is not necessarily

zero. This motivates the following weaker notion of equivalence for structure learning from

observational data.

Definition 22 (Quasi Equivalence). Let ✓G be the set of linearly independent parameters

86

needed to parameterize any distribution ⇥ 2 ⇥(G). For two DGs G1 and G2, let µ be

the Lebesgue measure defined over ✓G1 [✓G2. G1 and G2 are quasi equivalent, denoted by

G1
⇠= G2, if µ(✓G1 \ ✓G2) 6= 0.

Roughly speaking, two DGs are quasi equivalent if the set of distributions that they can

both generate has a non-zero Lebesgue measure. Note that Definition 22 implies that if DGs

G1 and G2 are quasi equivalent they share the same hard constraints. We have the following

assumption for structure learning, which is a generalization of faithfulness:

Definition 23 (Generalized faithfulness). A distribution ⇥ is generalized faithful (Gen-

faithful) to structure G if ⇥ satisfies a hard constraint if and only if 2 H(G).

Assumption 8. The generated distribution is Gen-faithful to the ground truth structure

G⇤, and for irreducible DG G⇤, if there exists a DG G such that H(G) ✓ H(G⇤) and

|E(G)| |E(G⇤)|, then H(G) = H(G⇤).

The following justifies the first part of Assumption 8:

Proposition 13. With respect to Lebesgue measure over ✓G, the set of distributions not

Gen-faithful to G is measure zero.

The second part of Assumption 8 requires that if the ground truth structure G⇤ has no

reducible edges and there exists another DG G that has only relaxed some of the hard

constraints of G⇤, then G must have more edges than G⇤. This is clearly the case for DAGs.

Proposition 14. Under Assumption 8, quasi equivalence is the extent of identifiability from

observational data.

5.4.1 Score-Based Structure Learning

We propose a score-based method for structure learning based on local search. Score-based

methods are well-established in the literature for learning DAGs. The predominant approach

is to maximize the regularized likelihood of the data by performing a greedy search over

all DAGs [3], equivalence classes of DAGs [4], or permutations of the variables [87, 88].

Also, works such as [89, 90, 91, 92, 93] specifically consider the problem of learning a linear

Gaussian acyclic model via penalized parameter estimation.

To the best of our knowledge, there are no existing score-based structure learning ap-

proaches for the cyclic linear Gaussian model. In light of our theory, we propose to use the

87

`0-regularized negative log likelihood function as the score, which is a standard choice of

the score in the literature of learning DAGs, and show that it is able to recover the quasi

equivalence class of the underlying DG. Let X be the n⇥ p data matrix. The `0-regularized

ML estimator solves the following unconstrained optimization problem:

min
G

min
(B,⌦):supp(B)✓supp(BG)

L(X : B, ⌦) + �kBk0, (5.3)

where

L(X :B, ⌦)=�n log(det(I�B))+
pX

i=1

n

2
log(�2

i
) +

1

2�2
i

kX·,i�XB·,ik22

is the negative log-likelihood of the data, kBk0 :=
P

i,j
1x 6=0(Bi,j), and similar to the BIC

score, we set � = 0.5 log n.

Remark 8. The estimator in (5.3) will never output a reducible DG, since removing re-

dundant edges improves the score. This is in line with the minimality assumption in the

literature for DAGs [94, 92].

Theorem 14. Under Assumption 8, the global minimizer of (5.3) with � = 0.5 log n outputs

Ĝ ⇠= G⇤ asymptotically.

Hence, by Prop. 14 and Theorem 14, the score (5.3) is consistent, i.e., it asymptotically

achieves the extent of identifiability.

Structure Search

We solve the outer optimization problem in (5.3) via local search over the structures. We

choose the search space to contain all DGs and use the standard operators (i.e., local changes)

of edge addition, deletion, and reversal. See [14] for a discussion regarding the necessity of

these operators. Two main issues arise when cycles are allowed in the structure:

Virtual edges. There exists a virtual edge between non-adjacent vertices Xi and Xj if

they have a common child Xk which is an ancestor of Xi or Xj [79]. If a greedy search

algorithm does not find Xk and Xi (or Xj) to be on a cycle, it can significantly increase

the likelihood by adding an edge at the location of the virtual edge. The algorithm would

therefore be trapped in a local optimum with one more edge than the ground truth. To

resolve this issue, we propose adding the following fourth search operator: Suppose we have

a triangle over three variables Xi, Xj and Xk, and there exists an additional sequence of

88

edges connecting Xj and Xk. In one atomic move, we perform a series of edge reversals to

form a cycle containing Xj ! Xk along the sequence, delete the edge connecting Xi to Xj,

and orient the edge Xi ! Xk. If the likelihood is unchanged, the edge deletion improves

the score. In the case that the oriented cycle is of length two, additional considerations are

needed; see Appendix C.16 for details as well as simulations justifying this fourth operator.

Score decomposability. When the DG is acyclic, the distribution generated by a linear

Gaussian structural equation model satisfies the local Markov property. This implies that

the joint distribution can be factorized into the product of the distributions of the variables

conditioned on their parents. The benefit of this factorization is that the computational

complexity of evaluating the e↵ect of operators can be dramatically reduced since a local

change in the structure does not change the score of other parts of the DAG. In contrast, for

the case of cyclic DGs the distribution does not necessarily satisfy the local Markov property.

However, the distribution still satisfies the global Markov property [73]. Therefore, our

search procedure factorizes the joint distribution into the product of conditional distributions.

Each of these distributions is over the variables in a maximal strongly connected subgraph

(MSCS), conditioned on their parents outside of the MSCS. After applying an operation, the

likelihoods of all involved MSCSs are updated; see the Appendix C for additional details.

5.5 Experiments

We generated 100 random ground truth DGs of orders p 2 {5, 20, 50}, all with maximum

degree 4. The DGs are constrained to have maximum cycle lengths 5, 5, and 10, respectively.

For each structure, we sampled the edge weights uniformly from Bi,j 2 [�0.8,�0.2][[0.2, 0.8]

and the exogenous noise variances uniformly from �2
i
2 [1, 3] to generate the data matrix X

of size 104⇥p. We constrained the ground truth B matrices to be stable via an accept-reject

approach; the modulus of all eigenvalues of B should be strictly less than one. The stability

of a model guarantees that the e↵ects of one-time noise dissipate. Our search algorithms

were also constrained to only output stable structures. We used the following standard local

search methods: 1. Hill climbing 2. Tabu search [14].

Evaluating the performance of a learning approach is not trivial for the case of general DGs.

As seen before, equivalent cyclic DGs may have very di↵erent skeletons. Hence, conventional

evaluation metrics such as structural Hamming distance (SHD) with the ground truth DG or

comparison of the learned and ground truth adjacency matrices cannot be used. We propose

the following evaluation methods:

89

1. SHD Evaluation. We enumerate the set of all DGs equivalent to the ground truth

DG using Algorithm 1 in the Appendix C to form the distribution equivalence class of the

ground truth. We then compute the smallest SHD between the algorithm’s output DG and

the members of the equivalence class as a measure of the performance.

2. Multi-Domain Evaluation. Suppose the input data is sampled from a distribution ⇥

generated by ground truth DG G⇤, and let Ĝ denote an algorithm’s output structure. Due

to finite sample size and the possible violation of Assumption 8, Ĝ may be able to maximize

the likelihood yet not be (quasi) equivalent to G⇤. In general, we expect such an output to

be compatible with only the given data and not with data sampled from other distributions

generated by G⇤. We therefore propose the following evaluation approach.

1. For ground truth structure G⇤, generate d distributions {⇥1, ..., ⇥d} by sampling edge

weights and variances.

2. For each ⇥i, run the algorithm to obtain Ĝi.

3. For each Ĝi, optimize its edge weights and variances to generate distributions

{⇥̂i,1, ..., ⇥̂i,d} such that ⇥̂i,j minimizes the KL-divergence to ⇥j 2 {⇥1, ..., ⇥d}.

4. The success rate of Ĝi is the percentage of domains for which the minimizing KL-

divergence computed in step 3 is below a threshold ⌘.

Since domain distributions are generated randomly, if the success rate of output Ĝi is large,

there is a non-negligible subset of the distribution set of G⇤ that Ĝi can generate as well.

Hence, Ĝi is quasi equivalent to G⇤. In our evaluations, we used d = 50 and ⌘ = p ⇥ 10�3.

We emphasize that multi-domain data is only used for evaluation. In the learning stage,

only one distribution is used.

We cannot compare the performance of our approach with the performance of methods

based on CI relationships (such as CCD), since those approaches return a PAG representing

all I-equivalent DGs, which usually represents a much larger set of DGs than the distribution

equivalence class. We therefore only compared our approach with an `1-regularized maximum

likelihood estimator which directly solves the optimization problem minB,⌦ L(X : B, ⌦) +

�kBk1, which does not need a separate structure search. The results are given in Figure 5.6.

The figure shows that our proposed approach successfully finds DGs capable of generating

distributions generated by the ground truth structure. While the SHD evaluation shows that

the outputs are not always distribution equivalent, the multi-domain evaluation provides

90

0 25 50 75 100
0

20

40

60

80

100
Tabu

Hill
`1

0 4 8 12 16
0

20

40

60

80

100

Tabu

Hill
`1

0 25 50 75 100
0

20

40

60

80

100
Tabu

Hill
`1

0 17 34 51 68

0

20

40

60

80

100

Tabu

Hill
`1

0 25 50 75 100
0

20

40

60

80

100
Tabu

Hill
`1

0 32 64 96 128

0

20

40

60

80

100

Tabu

Hill
`1

Figure 5.6: Results for p = 5, 20, 50, top to bottom. Left column: multi-domain
evaluation. The percentage of outputs with success rate larger than a certain value is
plotted vs. success percentages; e.g., for p = 20, 80% of the outputs could generate more
than 25% of the distributions generated by their corresponding ground truth. Right
column: SHD evaluation. The percentage of outputs with SHD less than or equal to a
certain value is plotted vs. SHD.

evidence that many are quasi equivalent to the ground truth. We also evaluated the e↵ect

of sample size on the performance in Appendix C.

91

CA3/DG

CA1

Sub

ERC

PHC

PRC

Figure 5.7: Ground truth structure for the fMRI hippocampus dataset.

5.5.1 fMRI hippocampus data

We considered the fMRI hippocampus dataset [71], which contains signals from six separate

brain regions: perirhinal cortex (PRC), parahippocampal cortex (PHC), entorhinal cortex

(ERC), subiculum (Sub), CA1, and CA3/Dentate Gyrus (CA3) in the resting state. We

used the anatomical connections [72, 55] as the ground truth (Figure 5.7). We applied our

proposed method on one of the domains in the dataset and found that two out of eight

structures equivalent to the ground truth were (local) optima for the score even though

there is no evidence that the data are linear Gaussian.

5.6 Conclusion

We presented a general, unified notion of equivalence for linear Gaussian DGs and proposed

methods for characterizing the equivalence of two structures. We also proposed a score-based

structure learning approach that asymptotically achieves the extent of identifiability. Our

results are instrumental to the fields of causality and graphical models. From the causality

perspective, consider for example Figure 5.5. Our results guarantee a direct causal e↵ect

between X2 and X4 and show that a direct causal e↵ect does not necessarily exist between

X3 and X4. From the graphical models perspective, our results provide the tools to handle

distributions that lack a DAG representation but can be modeled by a cyclic DG. We hope

that this work spurs further research in the study of directed graphs.

92

CHAPTER 6

LINEAR NON-GAUSSIAN CAUSAL MODELS IN
THE PRESENCE OF LATENT CONFOUNDERS

As mentioned in the Introduction, if we have background knowledge about the data-generating

mechanism, we may learn the underlying structure from the observed data beyond Markov

equivalence [54, 23, 95, 55, 65, 9, 96, 8, 97]. For instance, [6] proposed a linear non-Gaussian

acyclic model (LiNGAM) discovery algorithm that can identify causal structure uniquely,

thanks to the assumption of non-Gaussian distributions for the exogenous noises in the lin-

ear structural equation model (SCM). However, LiNGAM algorithm and its regression-based

variant (DirectLiNGAM) [64] rely on the causal su�ciency assumption, i.e., no unobserved

common causes exist for any pair of variables that are under consideration in the model.

In the presence of latent variables, [98] showed that linear SCM can be converted to a

canonical form where each latent variable has at least two children and no parents. Such

latent variables are commonly called “latent confounders”. Furthermore, they proposed a

solution which casts the problem of identifying causal e↵ects among observed variables into

an overcomplete independent component analysis (ICA) problem [99] and returns multiple

causal structures that are observationally equivalent. The time complexity of searching such

structures can be as high as
�
p

po

�
where po and p are the number of observed and total

variables in the system, respectively. [100] proposed a method that identifies a partial causal

structure among the observed variables by recovering all the unconfounded sets1 and then

learning the causal e↵ects for each pair of variables in the set. However, their method may

return an empty unconfounded set if latent confounders are the cause of most of observed

variables in the system such as the simple example of Figure 6.1. [101] showed that a causal

order and causal e↵ects among observed variables can be identified if the latent confounders

have Gaussian distribution and exogenous noises of observed variables are simultaneously

super-Gaussian or sub-Gaussian. In [102], the ideas in DirectLiNGAM was extended to the

case where latent confounders exist in the system. The proposed solution first tries to find

1A set of variables is called unconfounded if there is no variable outside the set which is confounder of
some variables in the set. In Figure 6.1, variable V3 is a confounder of variables V1 and V2 but it is not
observable. Thus, the set of variables V1 and V2 is not unconfounded.

93

𝑉

𝑉

𝑉𝑉

𝑉

𝑉

(b)(a)Figure 6.1: An example of causal graphs: V1 and V2 are observed variables while V3 is
latent.

a root variable (a variable with no parents). Then, the e↵ect of such variable is removed

by regressing it out. This procedure continues until any variable and its residual becomes

dependent. Subsequently, a similar iterative procedure is used to find a sink variable and

remove its e↵ect from other variables. However, this solution may not recover causal order

in some causal graphs such as the one in Figure 6.1.2 [103] proposed a Bayesian approach

for estimating the causal direction between two observed variables when the sum of non-

Gaussian independent latent confounders has a multivariate t-distribution. They compute

log-marginal likelihoods to infer causal directions.

There are reports in the literature of attempts to recover causal structure among observed

variables in the presence of latent variables for the settings other than linear non-Gaussian

model. In general cases, [1] proposed Fast Causal Inference (FCI) algorithm that can identify

some causal paths in the presence of latent variables by performing conditional independence

test without assuming constraints on the causal mechanism (e.g., linearity). However, it can-

not guarantee the existence of causal paths in some cases such as the one where a pair of

observed variables has a direct causal influence from one to the other and there is also a con-

founder for them. [104] proposed a method to learn Bayesian networks with latent variables

based on information bottleneck concept. In the proposed method, the structure of network

is learnt for a given number of hidden variables by a scored based approach with a structural

expectation maximization approach. In the literature of exploratory factor analysis, there is

work such as [105], which proposed a bi-factor analysis for the case with at most two latent

variables in the system. In the field of Markov random model, [106] considered Gaussian

Markov random field model with latent variables and tried to identify conditional indepen-

dences between observed variables given all variables in the system by considering a sparsity

assumption on the conditional graphical model between the observed variables. [107] utilized

2In Figure 6.1, the root variable (V3) is latent and the regressor of sink variable V2 and the residual are
not independent without considering the latent variable V3 in the set of regressors. Thus, no root or sink
variable can be identified in the system.

94

an extension of “Verma constraints” to learn causal structures in nested Markov models with

latent variables. [108] proposed a method to learn causal structure by examining the rank

of submatrices of correlation matrix for the specific class of measurement model where each

observed variable has exactly one latent parent.

Rather surprisingly, although the causal structure is in general not fully identifiable in the

presence of latent variables, we will show that the causal order among the observed variables

is still identifiable under the faithfulness assumption. In order to obtain a causal order, we

first check whether there exists a causal path between any two observed variables. Subse-

quently, from this information, we obtain a causal order among them. Having established a

causal order, we aim to figure out whether the causal e↵ects are uniquely identifiable from

observational data. We show by an example that causal e↵ects among observed variables is

not uniquely identifiable even if the faithfulness assumption holds true and the exogenous

noises are non-Gaussian. We propose a method to identify the set of all possible causal

e↵ects e�ciently in time that are compatible with the observational data. Furthermore, we

present some structural conditions on the causal graph under which causal e↵ects among

the observed variables can be identified uniquely. We also provide necessary and su�cient

graphical conditions under which the number of latent variables is uniquely identifiable. One

of the applications of determining the number of latent variables from the observational data

is in psychometrics, where the analysis of testing data often requires to estimate how many

latent variables, the items are measuring [109, 108].

The rest of this chapter is organized as follows. In Section 6.1, we define the problem of

identifying causal orders and causal e↵ects in linear causal systems with latent variables. In

Section 6.2, we propose our approach to learn the causal order among the observed variables

and provide necessary and su�cient graphical conditions under which the number of latent

variables is uniquely identifiable. In Section 6.3, we present a method to find the set of all

possible causal e↵ects which are consistent with the observational data and give conditions

under which causal e↵ects are uniquely identifiable. We conduct experiments to evaluate the

performance of proposed solutions in Section 6.4 and conclude in Section 6.5.

The material in this chapter is taken from [110].

95

6.1 Problem Definition

6.1.1 Notations

The notation used in this chapter is di↵erent from the rest of the dissertation. We denote

the variables of the system with V = {V1, ..., Vp} (as opposed to V = {X1, ..., Xp}). In a

directed graph G = (V , E) with the vertex set V and the edge set E, we denote a directed

edge from Vi to Vj by (Vi, Vj). A directed path P = (Vi0 , Vi1 , · · · , Vik
) in G is a sequence of

vertices of G where there is a directed edge from Vij
to Vij+1 for any 0 j k � 1. We

define the set of variables {Vi1 , · · · , Vik�1
} as the intermediate variables on the path P . We

say that a path is a latent path if all the intermediate variables on the path are latent. We

use notation Vi Vj to show that there exists a directed path from Vi to Vj. If there is a

directed path from Vi to Vj, Vi is ancestor of Vj and that Vj is a descendant of Vi. More

formally, Anc(Vi) = {Vj|Vj Vi} and Des(Vi) = {Vj|Vi Vj}. Recall that each variable Vi

is an ancestor and a descendant of itself.

We denote vectors and matrices by boldface letters. The vectors Ai,: and A:,i represent

i-th row and column of matrix A, respectively. The (i, j) entry of matrix A is denoted by

[A]i,j. For n⇥m matrix A and n⇥ p matrix B, the notation [A,B] denotes the horizontal

concatenation. For n ⇥ m matrix A and p ⇥ m matrix B, the notation [A;B] shows the

vertical concatenation.

6.1.2 System Model

Consider a linear SCM among a set of variables V = {V1, · · · , Vp}:

V = AV + N, (6.1)

where the vectors V and N denote the random variables in V and their corresponding

exogenous noises, respectively. Note that we use A to denote the weighted adjacency matrix

as opposed to the notation B introduced in Section 2.2.1. The entry (i, j) of matrix A shows

the strength of direct causal e↵ect of variable Vj on variable Vi. We assume that the causal

relations among random variables can be represented by a DAG. Thus, the variables in V
can be arranged in a causal order, such that no latter variable causes any earlier variable.

We denote such a causal order on the variables by k in which k(i), i 2 {1, · · · , p} shows the

position of variable Vi in the causal order. A can be converted to a strictly lower triangular

96

matrix by permuting its rows and columns simultaneously based on the causal order.

Example 8. Consider the following linear SCM with four random variables {V1, · · · , V4}:
2

66664

V1

V2

V3

V4

3

77775
=

2

66664

0 e 0 d

0 0 0 0

0 a 0 0

0 b c 0

3

77775

2

66664

V1

V2

V3

V4

3

77775
+

2

66664

N1

N2

N3

N4

3

77775
,

where a, b, c, d and e are some constants (see Figure 6.2). A causal order in this SCM model

would be: k(1) = 4, k(2) = 1, k(3) = 2, k(4) = 3. Hence, matrix PAPT is strictly lower

triangular where P is a permutation matrix associated with k defined by the following non-

zero entries: {(k(i), i)|1 i 4}.

We split random variables in V into an observed vector Vo 2 Rpo and a latent vector Vl 2
Rpl where po and pl are the number of observed and latent variables, respectively. Without

loss of generality, we assume that first po entries of V are observable, i.e. Vo = [V1, · · · , Vpo
]T

and Vl = [Vpo+1, · · · , Vp]T . Therefore,

"
Vo

Vl

#
=

"
Aoo Aol

Alo All

#"
Vo

Vl

#
+

"
No

Nl

#
, (6.2)

where No and Nl are the vectors of exogenous noises of Vo and Vl, respectively. Further-

more, we have: A = [Aoo,Aol;Alo,All].

The causal order among all variables k induces a causal order ko among the observed

variables as follows: For any two observed variables Vi, Vj, 1 i, j po, ko(i) < ko(j) if

k(i) < k(j). Similarly, k induces a causal order among latent variables. We denote this

causal order by kl. It can be easily shown that Aoo and All can be converted to strictly

lower triangular matrices by permuting rows and columns simultaneously based on causal

orders ko and kl, respectively.

Example 9. In Example 8, suppose that only variables V1 and V2 are observable. Then, the

causal order among observed variables would be: ko(1) = 2 and ko(2) = 1. Thus, PAooPT

is a strictly lower triangular matrix where P = [0, 1; 1, 0]. For the latent variables, kl(3) = 1

and kl(4) = 2.

In the remainder of this section, we briefly describe LiNGAM algorithm, which is capable of

recovering the matrix A uniquely if all variables in the model are observable and exogenous

97

𝑉3

𝑉2

𝑉1

𝑉4

b

a

c

e

d

Figure 6.2: Causal graph of Example 8.

noises are non-Gaussian [6]. The vector V in Equation (6.1) can be written as a linear

combination of exogenous noises as follows:

V = BN, (6.3)

where B = (I �A)�1. The above equation fits into the standard linear Independent Com-

ponent Analysis (ICA) framework, where independent non-Gaussian components are all

variables in N. By utilizing statistical techniques in ICA [99], matrix B can be identified up

to scaling and permutations of its columns. More specifically, the independent components

of ICA as well as the estimated B matrix are not uniquely determined because permuting

and rescaling them does not change their mutual independence. So without knowledge of

the ordering and scaling of the noise terms, the following general ICA model for V holds:

V = B̃Ñ, (6.4)

where Ñ contains independent components and these components (resp. the columns of B̃)

are a permuted and rescaled version of those in N (resp. the columns of B). In what follows,

we use B for matrix B = (I � A)�1 while B̃ is the mixing matrix for the ICA model, as

given in (6.4). Hence B̃ can be written as:

B̃ = BP⇤,

where P is a permutation matrix and ⇤ is a diagonal scaling matrix. Yet the corresponding

causal model, represented by A, can be uniquely identified because of its acyclicity constraint.

In particular, the inverse of B can be converted uniquely to a lower triangular matrix having

all-ones on its diagonal by some scaling and permutation of the rows.

98

6.2 Identifying Causal Orders among Observed Variables

Since the graph with adjacency matrix A is acyclic, there exists an integer d such that

Ad = 0. Thus, we can rewrite B in the following form:

B = (I�A)�1 =
d�1X

k=0

Ak. (6.5)

It can be seen that there exists a causal path of length k from the exogenous noise of

variable Vi to variable Vj if entry (j, i) of matrix Ak is nonzero. We define [B]j,i as the total

causal e↵ect of variable Vi on variable Vj.

Assumption 9. (Faithfulness assumption) The total causal e↵ect from variable Vi to Vj is

nonzero if there is a causal path from Vi to Vj. Thus, we have: [B]j,i 6= 0 if Vi Vj.

In the following lemma, we list two consequences of the faithfulness assumption that are

immediate from the definition.

Lemma 9. Under the faithfulness assumptions, for any two observed variables Vi and Vj,

1 i, j po, the following holds:

(i) Suppose that Vi Vj. If [B]i,k 6= 0 for some k 6= j, then [B]j,k 6= 0.

(ii) If there is no causal path between Vi and Vj, then [B]i,j = 0 and [B]j,i = 0.

Based on Equation (6.2), we can write Vo in terms of No and Nl as follows.

Vo = (I�D)�1No + (I�D)�1Aol(I�All)
�1Nl, (6.6)

where D = Aoo + Aol(I�All)�1Alo. Let Bo := (I�D)�1, Bl := (I�D)�1Aol(I�All)�1,

and N := [No;Nl]. Thus, Vo = B0N where B0 := [Bo,Bl]. This equation fits into a linear

over-complete ICA where the exogenous noises are non-Gaussian and the number of observed

variables is less than the number of variables in the system. The following proposition asserts

when the columns of matrix B0 are still identifiable up to permutations and scaling.

Definition 24. (Reducibility of a matrix) A matrix is reducible if two of its columns are

linearly dependent.

Proposition 15. ([111], Theorem 3) In the linear over-completer ICA problem, the columns

of mixing matrix can be identified up to some scaling and permutation if it is not reducible.

99

Lemma 10. The columns of B0 corresponding to any two observed variables are linearly

independent.

Although columns of B0 corresponding to the observed variables are pairwise linearly

independent, a column corresponding to a latent variable Vi might be linearly dependent on

a column corresponding to an observed or latent variable Vj (see Example 10). In that case,

we can remove the column [B0]:,i and Ni from matrix B0 and vector N, respectively and

replace Nj by Nj + ↵Ni where ↵ is a constant such that [B0]:,i = ↵[B0]:,j. We can continue

this process until all the remaining columns are pairwise linearly independent. Let B00 and

N00 be the resulting mixing matrix and exogenous noise vector, respectively. According to

Lemma 10, all the columns of B0 corresponding to observed variables are in B00. We utilize

matrix B00 to recover a causal order among the observed variables.

Since matrix B00 is not reducible, its column can be identified up to some scaling and

permutation according to Proposition 15. Let B̃00 be the recovered matrix containing columns

of B00. Consider any two observed variables Vi and Vj, i.e., 1 i, j po. We extract two

rows of B̃00 corresponding to variables Vi and Vj. Let n0⇤ be the number of columns in

[B̃00
i,:; B̃

00

j,:] whose first entries are zero but second entries are nonzero. Similarly, let n⇤0 be

the number of columns that their first entries are nonzero but their second entries are zero.

The following lemma asserts that the existence of a causal path between Vi and Vj can be

checked from n0⇤ and n⇤0 (or equivalently, B̃00).

Lemma 11. Under the faithfulness assumption, the existence of a causal path between any

two observed variable can be inferred from matrix B̃00.

We can construct an auxiliary directed graph whose vertices are the observed variables and

a directed edge exists from Vi to Vj if Vi Vj (which we can infer from n⇤0 and n0⇤). Any

causal order over the auxiliary graph is a correct causal order among the observed variables

Vo.

Example 10. Consider the causal graph in Figure 6.3. Suppose that variables V3 and V4

are latent. B0 would be: "
1 0 0 a

d 1 e c + ad + be

#
.

We can remove the third column from B0 and update the vector N to [N1; N2 + eN3; N4].

Thus, matrix B00 is equal to: "
1 0 a

d 1 c + ad + be

#
,

100

𝑉1

𝑉4

𝑉3

𝑉2

c

a

d

b

e

Figure 6.3: Causal graph of Example 10.

which is not reducible. Without loss of generality, assume that the recovered matrix B̃00 is

equal to B00. Therefore, n0⇤ = 1 and n⇤0 = 0. Hence, we can infer that there is a causal path

from V1 to V2.

Recovering the Number of Variables in the System

According to Proposition 15, the number of variables in the system can be recovered if and

only if matrix B0 is not reducible. Furthermore, Equation (6.6) implies that matrix B0 is

not reducible if and only if the columns of matrix [Ipo⇥po ,Aol(I � All)�1] are not linearly

independent. In the rest of this section, we will present equivalent necessary and su�cient

graphical conditions under which the number of variables in the systems can be uniquely

identified. But before that, we present a simple example where [Ipo⇥po ,Aol(I � All)�1] is

reducible and give a graphical interpretation of it.

Example 11. Consider a linear SCM with three variables V1, V2, and V3 where V3 = N3,

V1 = ↵V3 + N1, and V2 = �V1 + N2. Thus, the corresponding causal graph would be:

V3 ! V1 ! V2. Suppose that V3 is the only latent variable. Hence, All = 0, Aol = [↵; 0], and

Aol(I �All)�1 = [↵; 0] which is linearly dependent on the first column of I. In fact, latent

variable V3 can be absorbed in variable V1 by changing the exogenous noise of V1 from N1 to

N1 + ↵N3. Thus, the number of variables in this model cannot be identified uniquely in this

model.

Definition 25. (Absorbing) Variable Vi is said to be absorbed in variable Vj if the exogenous

noise of Vi is set to zero Ni 0, and the exogenous noise of Vj is replaced by Nj
Nj + [B]j,iNi. We define absorbing a variable in ; by setting its exogenous noise to zero.

Definition 26. (Absorbablity) Let P 0
Vo

be the joint distribution of the observed variables after

absorbing Vi in Vj. We say Vi is absorbable in Vj if P 0
Vo

= PVo
.

101

𝑉1

𝑉5

𝑉8

𝑉2

𝑉3𝑉4

𝑉7

𝑉6

𝛼

𝛾
𝛽

Figure 6.4: Causal graph of Example 12. V1 and V2 are the only observed variables.

The following theorem characterizes the graphical conditions where a latent variable is

absorbable.

Theorem 15.

(a) A latent variable is absorbable in ; if and only if it has no observable descendant.

(b) A latent variable Vj is absorbable in variable Vi (observed or latent), if and only if all

paths from Vj to its observable descendants go through Vi.

Example 12. Consider a linear SCM with corresponding causal graph in Figure 6.4 where

V1 and V2 are the only observed variables. V7 satisfies condition (a) and its exogenous noise

can be set to zero. Furthermore, V3 and V4 satisfy condition (b) with respect to V5 and they

can be absorbed in V5 by setting the exogenous noise of V5 to N5+(↵�+�)N3+�N4. Finally,

V6 satisfies condition (b) and it can be absorbed in V2. Note that V8 and V5 cannot be absorbed

in V1 or V2.

Definition 27. We say a causal graph is minimal if none of its variables are absorbable.

Based on above definition, a causal graph is minimal if none of the latent variables satisfy

the conditions in Theorem 15. We borrowed the terminology of minimal causal graphs from

[94] for polytree causal structures. In [94], a causal graph is called minimal if it has no

redundant latent variables in the sense that the joint distribution without latent variables

remains a connected tree. Later, [112] showed that in minimal latent directed information

polytrees, each node has at least two children. The following lemma asserts that the same

argument holds true for the non-absorbable latent variables in our setting.

Lemma 12. A latent variable is non-absorbable if it has at least two non-absorbable children.

102

The next theorem gives necessary and su�cient graphical conditions for non-reducibility

of matrix B0.

Theorem 16. B0 is not reducible almost surely if and only if the corresponding causal graph

G is minimal.

Corollary 4. Under faithfulness assumption and non-Gaussianity of exogenous noises, the

number of variables in the system is identifiable almost surely if the corresponding graph is

minimal.

6.3 Identifying Total Causal E↵ects among Observed Variables

In this section, first, we will show by an example that total causal e↵ects among observed vari-

ables cannot be identified uniquely under the faithfulness assumption and non-Gaussianity

of exogenous noises.3 However, we can obtain all the possible solutions. Furthermore, under

some additional assumptions on linear SCM, we show that one can uniquely identify total

causal e↵ects among observed variables.

6.3.1 Example of non-Uniqueness of Total Causal E↵ects

Consider the causal graph in Figure 6.5 where Vi and Vj are observed variables and Vk is a

latent variable. The direct causal e↵ects from Vk to Vi, from Vk to Vj, and from Vi to Vj are

↵, �, and �, respectively. We can write Vi and Vj based on the exogenous noises of their

ancestors as follows:

Vi = ↵Nk + Ni,

Vj = �Ni + (↵� + �)Nk + Nj.
(6.7)

Now, we construct a second causal graph depicted in Figure 6.5 where the exogenous

noises of variables Vi and Vk are changed to ↵Nk and Ni, respectively. Furthermore, we set

the direct causal e↵ects from Vk to Vi, from Vk to Vj, and from Vi to Vj to 1, ��/↵, and

�+(�/↵), respectively. It can be seen that equations in (6.7) do not change while the direct

causal e↵ect from Vi to Vj becomes � + (�/↵) in the second causal graph. Thus, we cannot

identify causal e↵ect from Vi to Vj merely by observational data from Vi and Vj. In Appendix

3This example has also been studied in [98].

103

𝑉𝑖

𝑉𝑘

𝑉𝑗

𝑁𝑘𝑁𝑖

𝑁𝑗

𝛼

𝛽
𝛾

𝑉𝑖

𝑉𝑘

𝑉𝑗

𝑁𝑖𝛼𝑁𝑘

𝑁𝑗

1

𝛼𝛽 + 𝛾
𝛼

- 𝛾
𝛼

Figure 6.5: An example of non-identifiability of causal e↵ects from observed variable Vi to
observed variable Vj.

D, we extend this example to the case where there might be multiple latent variables on the

path from Vk to Vi and Vj, and from Vi to Vj.

The above example shows that causal e↵ects may not be identified even by assuming

non-Gaussianity of exogenous noises if we have some latent variables in the system. In the

following, we first show that the set of all possible total causal e↵ects can be identified.

Afterwards, we will present a set of structural conditions under which we can uniquely

identify total causal e↵ects among observed variables.

6.3.2 Identifying the Set of All Possible Total Causal E↵ects

Since the subgraph corresponding to All is a DAG, there exists an integer dl such that

All
dl = 0. Hence, we can rewrite matrix D given in (6.6) as follows.

D = Aoo +
dl�1X

k=0

AolAll
kAlo. (6.8)

Lemma 13. Matrix D in (6.6) can be converted to a strictly lower triangular matrix by

permuting columns and rows simultaneously based on the causal order ko.

Previously, we showed that existence of a causal path between any two observed variables

Vi and Vj can be determined by performing over-complete ICA. Let deso(Vi) be the set of

all observed descendants of Vi, i.e., deso(Vi) = {Vj|Vi Vj, 1 j po}. We will utilize

deso(Vi)’s to enumerate all possible total causal e↵ects among the observed variables.

Remark 9. From Lemma 10, we have: deso(Vi) 6= deso(Vj) for any 1 i, j po.

104

As we discussed in Section 6.2, under non-Gaussianity of exogenous noises, the columns

of B00 can be determined up to some scalings and permutations by solving an overcomplete

ICA problem. Let pr be the number of columns of B00. Furthermore, without loss of general-

ity, assume that variables Vpo+1, Vpo+2, · · · , Vpr
are the latent variables in the system whose

corresponding columns remain in B00.

Theorem 17. Let ri := |{j : deso(Vi) = deso(Vj), 1 j pr}|, for any 1 i po. Under

the assumptions of faithfulness and non-Gaussianity of exogenous noises, the number of all

possible D’s that can generate the same distribution for Vo according to (6.2), is equal to

⇧po

i=1ri.

Comparing our results with [98], we can obtain all sets deso(Vi)’s and determine which

columns can be selected as corresponding columns of observed variables in O(p2
o
pr) and then

enumerate all the possible total causal e↵ects while the proposed algorithm in [98] requires

to search a space of
�
pr

po

�
di↵erent possible choices. Moreover, we can identify a causal order

uniquely with the same time complexity by utilizing the method proposed in Section 6.2.

6.3.3 Unique Identification of Causal E↵ects under Structural Conditions

Based on Theorem 17, in this part, we propose a method to identify total causal e↵ects

uniquely under some structural conditions.

Assumption 10. Assume that for any observed variables Vi and any latent variable Vk, we

have: deso(Vk) 6= deso(Vi).

Assumption 10 is a very natural condition that one expects to hold for unique identifiability

of causal e↵ects. This is because if Assumption 10 fails, then based on Theorem 17, there

are multiple sets of total causal e↵ects that are compatible with the observed data.

Theorem 18. Under Assumptions 9-10, and non-Gaussianity of exogenous noises, the total

causal e↵ect between any two observed variables can be identified uniquely.

The description of the proposed solution in Theorem 18 is given in Algorithm 11. It is

noteworthy that the example in Section 6.3.1 (given in Figure 6.5) violates the conditions

in Theorem 18 since deso(Vk) = deso(Vi). We have shown for this example that the causal

e↵ect from Vi to Vj cannot be identified uniquely.

105

Algorithm 11

1: Input: Collection of the sets deso(Vi), 1 i po.
2: Run an over-complete ICA algorithm over observed variables Vo and obtain matrix B̃00.
3: for i = 1 : pr do
4: Ii = {k|[B̃00:,i]k 6= 0}
5: for j = 1 : po do
6: if Ii = deso(Vj) then
7: [B̂o]:,j = B̃00:,i/[B̃

00

:,i]j
8: end if
9: end for
10: end for
11: Output: B̂o

6.4 Experiments

In this section, we first evaluate the performance of the proposed method in recovering

causal orders from synthetic data, generated according to the causal graph in Figure 6.1.

Our experiments show that the proposed method returns a correct causal order while, as

we mentioned in Introduction section, previous methods proposed for linear non-Gaussian

SCM with latent variables, might require additional assumptions in order to recover causal

relations. More specifically, they do not have theoretical guarantee to recover the causal

order or checking the existence of causal paths in our setting. Nevertheless, we evaluated

the performances of lvLiNGAM [98], Pairwise lvLiNGAM [100], ParceLiNGAM [102], ICA-

LiNGAM [6], Direct-LiNGAM [64] and FCI algorithm [1]. We also consider another causal

graph which satisfies Assumption 10 and demonstrate that the proposed method can return

the correct causal e↵ects. Next, we evaluate the performance of the proposed method for

di↵erent number of variables in the system. Afterwards, for real data, we consider the daily

closing prices of four world stock indices and check the existence of causal paths between

any two indices. The results are compatible with common beliefs in economy.

6.4.1 Synthetic data

First, for the causal graph in Figure 6.1, we generated 1000 samples of observed variables V1

and V2 where nonzero entries of matrix A is equal to 0.9. We utilized the Reconstruction

ICA (RICA) algorithm [113] to solve the over-complete ICA problem as follows: Let vo be

a po ⇥ n matrix containing observational data where [vo]i,j is j-th sample of variable Vi and

106

n is the number of samples. First, the sample covariance matrix of vo is eigen-decomposed,

i.e., 1/(n � 1)(vo � v̄o)(vo � v̄o)T = U⌃UT where U is the orthogonal matrix, ⌃ is a

diagonal matrix, and v̄o is the sample mean vector. Then, the observed data is pre-whitened

as follows: w = ⌃�1/2U(vo � v̄o). The RICA algorithm tries to find matrix Z that is the

minimizer of the following objective function:

minimize
Z

nX

i=1

prX

j=1

g(ZT

:,jw:,i) +
�

n

nX

i=1

kZZTw:,i �w:,ik22,

where parameter � controls the cost of penalty term. We estimated matrix B̃00 by U⌃1/2Z⇤

where Z⇤ is the optimal solution of the above optimization problem.

In order to estimate the number of columns of B̃00, we held out 250 of samples for model

selection. More specifically, we solved the over-complete ICA problem for di↵erent number

of columns, evaluated the fitness of each model by computing the objective function of

RICA over the hold-out set, and selected the model with minimum cost. In order to check

whether an entry is equal to zero, we used the bootstrapping method [114], which generates

10 bootstrap samples by sampling with replacement from training data. For each bootstrap

sample, we executed RICA algorithm to obtain an estimation of B̃00. Since in each estimation,

columns are in arbitrary permutation, we need to match similar columns in estimations of

B̃00. To do so, in each estimation, we divided all entries of a column by the entry with the

maximum absolute value in that column. Then, we picked each column from the estimated

mixing matrix, computed its l2 distance from each column of another estimated mixing

matrix, and matched to the one with a minimum distance. Afterwards, we used a t-test

with confidence level of 95% to check whether an entry is equal to zero from the bootstrap

samples. An estimation of B̃00 from a bootstrap sample is given as follows:

"
�0.0272 0.5238 1

1 1 0.8579

#
.

Moreover, experimental results showed the correct support of B̃00, i.e.,

[0, 1, 1; 1, 1, 1] can be recovered with merely 10 bootstrap samples. Thus, there is a causal

path from V1 to V2. Furthermore, for the causal graph V1 V3 ! V2 in which V3 is only

the latent variable, we repeated the same procedure explained above. An estimation of B̃00

from one of the bootstrap samples is given as follows:

107

𝑉

𝑉

𝑉

𝑉

Figure 6.6: An example of causal graphs satisfying structural conditions.

"
1 �0.046 0.9838

�0.031 1 1

#
.

From experiments, the estimated support of B̃00 from bootstrap samples was: [0, 1, 1; 1, 0, 1].

Thus, we can conclude that there is no causal path between V1 and V2. Next, we considered

the causal graph in Figure 6.6 where V4 is the only latent variable. The direct causal e↵ects

of all directed edges are equal to 0.9. An estimation of B̃00 from one of the bootstrap samples

is given as follows:

2

64
�0.049 0.892 1 1

�0.024 1 0.523 �0.042

1 �0.02 0.527 �0.032

3

75 .

Thus, we can deduce that there is only a causal path from V2 to V1. We can also estimate

total causal e↵ects between observed variables since this causal graph satisfies Assumption

10. The output of Algorithm 11 is:

2

64
1 0.892 �0.049

�0.042 1 �0.024

�0.032 �0.02 1

3

75 ,

which is close to the true causal e↵ects. We evaluated previous methods for learning the

causal graphs in Figure 6.1, Figure 6.6, and the causal graph V1 V3 ! V2. Table 6.1

shows whether each of them can find all causal paths correctly. It can be seen that only

the proposed algorithm is successful in recovering the causal paths in all considered causal

graphs.

We generated 1000 DAGs of size p by first selecting a causal order among variables ran-

domly and then connecting each pair of variables with probability c/(p� 1), where c is the

108

Table 6.1: Comparison of methods in recovering causal paths for the causal graphs in
Figure 6.1, Figure 6.6, and the causal graph V1 V3 ! V2.

Figure 6.1 Figure 6.6 V1 V3 ! V2

lvLiNGAM [98] X ⇥ X
Pairwise lvLiNGAM [100] ⇥ ⇥ X

ParceLiNGAM [102] ⇥ ⇥ ⇥
ICA-LiNGAM [6] X ⇥ ⇥

Direct-LiNGAM [64] X ⇥ ⇥
FCI [1] ⇥ ⇥ ⇥

Proposed algorithm X X X

Table 6.2: Running time (in seconds) of Algorithm 11 for di↵ernet number of variables in
the system and di↵erent graph densities c = 2, 3.

p 10 15 20 25 30
c = 2 0.7 1.41 1.66 3.09 3.48
c = 3 0.76 1.48 1.75 3.33 3.84

average degree of each node. We generated data from a linear SCM where nonzero entries

of matrix A were drawn uniformly from the range [�0.9,�0.5][[0.5, 0.9] and the exogenous

noises followed a uniform distribution. In the remainder of this part, we assume that the

number of latent variable is known. We first evaluated the running time of Algorithm 11 and

compared it with the proposed algorithm in [98], which can provide all possible total causal

e↵ects. In the experiments, we selected pl = p/2 variables randomly as latent variables. The

running time of Algorithm 11 is given in Table 6.2 for c = 2, 3. In our experiments, the

algorithm in [98] did not return any output in 10 minutes and it is only feasible on small

graphs with fewer than six variables.

We evaluated the performance of the proposed algorithm and compared it with the pre-

vious ones, including Pairwise lvLiNGAM [100], ParceLiNGAM [102], LiNGAM [6], and

Direct-LiNGAM [64], in the presence of latent variables. More specifically, we define pre-

cision of an algorithm as the fraction of correctly recovered causal paths among recovered

causal paths between any two observed variables. We also define its recall as the fraction

of recovered causal paths among actual causal paths between any two observed variables.

Figure 6.7 shows precisions and recalls of the mentioned algorithms for di↵erent number of

variables p = 10, 15, 20, di↵erent number of observed variables, and di↵erent average de-

grees c = 4, 7. One can see that none of the algorithms has the best performance in all

109

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.7: Precisions/Recalls of Pairwise lvLiNGAM [100], ParceLiNGAM [102],
ICA-LiNGAM [6], Direct-LiNGAM [64] and the proposed algorithm in the presence of
latent variables: (a) Precisions for p = 10, c = 4, (b) Recalls for p = 10, c = 4, (c)
Precisions for p = 10, c = 7, (d) Recalls for p = 10, c = 7, (e) Precisions for p = 15, c = 4,
(f) Recalls for p = 15, c = 4, (g) Precisions for p = 15, c = 7, (h) Recalls for p = 15, c = 7,
(i) Precisions for p = 20, c = 4, (j) Recalls for p = 20, c = 4, (k) Precisions for p = 20,
c = 7, (l) Recalls for p = 20, c = 7.

settings. However, the proposed algorithm and Pairwise lvLiNGAM [100] are the top two

algorithms in terms of precision. Moreover, LiNGAM [6] and Direct-LiNGAM [64] have the

best performance in terms of recall.

6.4.2 Real data

We considered the daily closing prices of the following world stock indices from 10/12/2012 to

10/12/2018, obtained from Yahoo financial database: Dow Jones Industrial Average (DJI)

in USA, Nikkei 225 (N225) in Japan, Euronext 100 (N100) in Europe, Hang Seng Index

(HSI) in Hong Kong, and the Shanghai Stock Exchange Composite Index (SSEC) in China.

110

DJI N100

HSI

SSEC N225

Figure 6.8: The causal relationships among five world stock indices obtained from the
proposed method in Section 6.2.

Let ci(t) be the closing price of i-th index on day t. We define the corresponding return

by Ri(t) := (ci(t)� ci�1(t))/ci�1(t). We considered the returns of indices as an observational

data and applied the proposed method in Section 6.2 in order to check the existence of a

causal path between any two indices. Figure 6.8 depicts the causal relationships among the

indices. In this figure, there is a directed edge from index i to index j if we find a causal path

from i to j. As can be seen, there are causal paths from DJI to HSI, N225, and N100 which

is commonly known to be true in the stock market [115]. Furthermore, HSI is influenced by

all other indices and SSEC only a↵ects HSI which these findings are compatible with the

previous results in [115].

6.5 Conclusion

We considered the problem of learning causal models from observational data in linear non-

Gaussian acyclic models with latent variables. Under the faithfulness assumption, we pro-

posed a method to check whether there exists a causal path between any two observed

variables. Moreover, we gave necessary and su�cient graphical conditions to uniquely iden-

tify the number of variables in the system. From the information about the existence of a

directed path, we could obtain a causal order among the observed variables. Additionally,

we considered the problem of estimating total causal e↵ects. We showed by an example

that causal e↵ects among observed variables cannot be identified uniquely even under the

assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we can iden-

tify all possible set of total causal e↵ects that are compatible with the observational data

111

e�ciently in time. Furthermore, we presented structural conditions under which we can learn

total causal e↵ects among observed variables uniquely. Experiments on synthetic data and

real-world data showed the e↵ectiveness of our proposed algorithms on learning causal mod-

els. One of our future research directions is to extend the results to the case of cyclic linear

SCMs. We believe that methods similar to the one proposed can recover some of the causal

paths in the system. Another direction of future work entails developing causal structure

learning algorithms for nonlinear SCM with latent variables by exploiting recent progress

in non-linear ICA. In addition, it is desirable to develop a principled, e�cient approach to

selecting the optimal number of latent variables.

112

APPENDIX A

APPENDIX OF CHAPTER 3

A.1 Example of Comparison with the Influence Maximization
Problem

!" !#

!$!%
Figure A.1: Example of comparison with the influence maximization problem.

Suppose k = 1. Figure A.1 depicts a graph for which the optimal solution to the influence

maximization problem is di↵erent from the optimal solution to the budgeted experiment

design problems. Clearly, influencing vertex X1 leads to influencing all the vertices in the

graph, and hence, this vertex is the solution to the influence maximization problem. But,

intervening on X1 leads to discovering the orientation of only 3 edges, while intervening on,

say X2, leads to discovering the orientation of 5 edges.

A.2 Proof of Lemma 3

From the passive observational stage, the set of all edges incident with Xi is known. Suppose

Xj is adjacent with Xi with unknown edge direction. If this edge in the ground truth

structure has direction Xi ! Xj, then in the interventional distribution, there exists a

subset of vertices XS containing Xi, for which Wi ? Xj|XS, where Wi is the intervention

variable corresponding to the singleton intervention on Xi. On the other hand, if this edge

113

in the ground truth structure has direction Xi Xj, then in the interventional distribution,

for all subsets of vertices XS containing Xi, we have Wi 6? Xj|XS.

The proof above works for both cases of hard and soft interventions. [27] provided an

alternative proof for the case of hard interventions, and [18] provided alternative proofs for

both cases of soft and hard interventions.

A.3 Proof of Lemma 5

Suppose the root vertex is X. Since T̃ is a tree, there is a unique path from X to every other

vertex. For every vertex with path length 1 from the root, i.e., every vertex adjacent to the

root, by definition, the edge is from X to that vertex. For every vertex Xj with path length

2 from the root, we have the induced subgraph X ! Xi�Xj, and hence, since there cannot

be any v-structures in the graph, the edge Xi �Xj should be oriented as Xi ! Xj. As the

induction hypothesis, assume that for every vertex Xi with path length m from the root,

we have the induced subgraph X ! · · · ! Xi. Now for every vertex Xj with path length

m + 1 from the root, we have the induced subgraph X ! · · ·! Xi�Xj. Again, since there

cannot be any v-structures in the graph, the edge Xi �Xj should be oriented as Xi ! Xj.

Therefore, the location of the root variable identifies the direction of all the edges.

A.4 Proof of Lemma 6

We use the following lemma for the proof.

Lemma 14. For a tree UCEG T̃ on variable set V , an intervention on a variable Xk 2 V

only determines the direction of all the edges incident to Desc(Xk), where descendants of a

variable are defined with respect to the ground truth directed tree.

Proof. By Lemma 3, an intervention on Xk identifies the direction of all edges incident to Xk.

Since T̃ is a tree, there is a unique path from X to every other vertex. For every vertex for

which the path from Xk to that vertex goes through a child of Xk, similar to Lemma 5, the

direction of incident edges to that vertex will be identified. Therefore, we learn the direction

of all the edges incident to Desc(Xk). Now, suppose Xi is a parent of Xk. Therefore, for

every vertex Xj adjacent to Xi, we have the induced subgraph Xj � Xi ! Xk. Hence the

edge Xj � Xi can have either of the directions without creating a v-structure, and hence,

114

the direction of such edge cannot be identified. Therefore, the direction of any of the edges

incident to Xj cannot be identified either. Consequently, we do not learn the direction of all

any of the edges incident to Non-Desc(Xk).

Suppose the ground truth directed tree is TX

r
. By Lemma 14, after an experiment with

target set Ir, the edges whose directions are remained unresolved are those which are incident

only to \Xk2Ir
Non-Desc(Xk), which are the edges of the component Cj(Ir), where X 2

Cj(Ir). Noting that the size of a tree of order p is p � 1 concludes that the number of

unresolved edges are |Cj(Ir)| � 1. If X 2 Ir, then \Xk2Ir
Non-Desc(Xk) = ;, i.e., the

direction of all the edges are identified and the gain will be D(Ir, TX

r
) = |T̃r|� 1. Otherwise

the gain will be D(Ir, TX

r
) = |T̃r|� 1� |Cj(Ir)| + 1 = |T̃r|� |Cj(Ir)|.

A.5 Proof of Proposition 1

We can write the average gain D(I) as follows:

D(I) =
1

pu

RX

r=1

X

X2V (T̃r)

D(Ir, T
X

r
)

(a)
=

1

pu

RX

r=1

X

X2Ir\V (T̃r)

(|T̃r|� 1) +
1

pu

RX

r=1

J(Ir)X

j=1

X

X2Cj(Ir)

|T̃r|� |Cj(Ir)|

=
1

pu

RX

r=1

|Ir|(|T̃r|� 1) +
1

pu

RX

r=1

J(Ir)X

j=1

|T̃r||Cj(Ir)|� |Cj(Ir)|2

(b)
=

1

pu

RX

r=1

|Ir|(|T̃r|� 1) +
1

pu

RX

r=1

|T̃r|(|T̃r|� |Ir|)�
1

pu

RX

r=1

J(Ir)X

j=1

|Cj(Ir)|2

=
1

pu

RX

r=1

|T̃r|2 �
k

pu
� 1

pu

RX

r=1

J(Ir)X

j=1

|Cj(Ir)|2,

where (a) is due to Lemma 6 and (b) follows from the fact that vertices which belong to

component, only exclude vertices in I.

115

A.6 Proof of Theorem 1

We use the following lemma for the proof.

Lemma 15. Among all algorithms achieving a threshold mid, Algorithm 1 uses the least

number of vertex removals.

Proof. Proof by induction. We show for each subtree, the smallest number of vertex removal

is used. Since the proposed algorithm removes a vertex only if not doing so results in having

a subtree with the order larger than the threshold, it delays a removal as much as possible.

Now suppose for vertex Xj, we have used the smallest number of removals, say l, in subtrees

rooted at the children of Xj. Because in each of those subtrees, the removals have been

delayed the most, the order of remaining part for the subtree rooted at Xj with l removals

is minimum. Therefore the subtree rooted at Xj also contributes the least value (zero if it

is chosen to intervene on) to the order of the subtree rooted at its parent.

Now, suppose for the optimum experiment target set I⇤
r
, that is,

I⇤
r

= arg min
Ir:Ir✓V (T̃r)

max
1jJ(Ir)

|Cj(Ir)|,

with |I⇤
r
| = kr we have M⇤ := max1jJ(I⇤

r) |Cj(I⇤r)| < minXi
mid(Xi). In this case, in the

binary search in Algorithm 1, when the threshold is set to mid such that M⇤�1 < mid M⇤,

then by Lemma 15, Algorithm 1 should have used less than or equal to kr vertex removals.

If it has used less than kr vertex removals, it means that it can achieve M⇤ with |Îr| < kr,

and hence, can achieve a value less than M⇤ with kr vertex removals, which implies that I⇤
r

is not optimum. Therefore, we should have

min
Xi

mid(Xi) = min
Ir:Ir✓V (T̃r)

max
1jJ(Ir)

|Cj(Ir)|.

A.7 Proof of Proposition 2

Monotonicity. Consider I1 ✓ I2. Target set I2 divides some of the components of target

set I1 into smaller components, or removes vertices from some of them, and keeps the rest un-

changed. Suppose Cj is a changed component. Therefore, corresponding to this component,

for I1 we have the term |Cj|2, and for I2 we have
P

L

l=1 |Cjl|2 such that
P

L

l=1 |Cjl| < |Cj|.

116

Basic algebra and induction on L indicates that under this condition
P

L

l=1 |Cjl|2 is always

less that |Cj|2. Hence, D(I1) D(I2).

Submodularity. We first show that the for every root vertex Xi, the set function D(I, TXi)

is submodular. i.e., for I1 ✓ I2, vertex X,

D(I1 [{X}, TXi)�D(I1, TXi) � D(I2 [{X}, TXi)�D(I2, TXi).

By Lemma 6, the value of the function D(I, TXi) only depends on the component containing

the root. Suppose under experiment I1 the root vertex falls in component CI1 , and under

experiment I2 the root vertex falls in component CI2 . If CI1 = CI2 , the result is immediate,

as without intervening on X, I1 and I2 result in the same value for function D, and inter-

vening on X will also have the same result in both experiments. Otherwise, since I1 ✓ I2,

we have CI2 ✓ CI1 . Hence, the cardinality of the set of the edges which are incident to

Desc(X) in CI1 is larger than the cardinality of the set of the edges which are incident to

Desc(X) in CI2 . This implies that we have a larger gain by intervening on X starting from

I1 compared to I2, i.e., D(I1 [{X}, TXi)�D(I1, TXi) � D(I2 [{X}, TXi)�D(I2, TXi).

Finally, using equality D(I) = 1
pu

P
R

r=1

P
X2V (T̃r)

D(Ir, TX

r
), since a non-negative linear

combination of submodular functions is also submodular, the desired result is concluded.

A.8 Proof of Proposition 3

First we show that for a given directed graph Gi 2 MEC(G⇤) the function D(I, Gi) is a

monotonically increasing function of I. In the proposed method, intervening on elements

of I, we first discover the orientation of the edges in A(I, Gi), and then applying the Meek

rules, we possibly learn the orientation of some extra edges. Having I1 ✓ I2 implies that

A(I1, Gi) ✓ A(I2, Gi). Therefore using I2, we have more information about the direction of

edges. Hence, in the step of applying Meek rules, by soundness and order-independence of

Meek algorithm, we recover the direction of more extra edges, i.e., R(I1, Gi) ✓ R(I2, Gi),

which in turn implies that D(I1, Gi) D(I2, Gi). Finally, from the equation D(I) =
1

|MEC(G⇤)|

P
Gi2MEC(G⇤) D(I, Gi), the desired result is immediate.

117

A.9 Proof of Lemma 7

The direction R(I1, G⇤)[R(I2, G⇤) ✓ R(I1[I2, G⇤) is proved in the proof of Proposition 3.

Define A(G̃⇤) as the set of directed edges in G̃⇤, and let R(M, G⇤) be the set of undirected

edges of G̃⇤ whose directions can be identified by applying Meek rules starting from A(G̃⇤)[
R(I1, G⇤)[R(I2, G⇤). Again by the reasoning in the proof of Proposition 3, we have R(I1[
I2, G⇤) ✓ R(M, G⇤). Therefore, in order to prove that R(I1[I2, G⇤) ✓ R(I1, G⇤)[R(I2, G⇤),

it su�ces to show that R(M, G⇤) ✓ R(I1, G⇤)[R(I2, G⇤), for which it su�ces to show that

for every directed edge e, if e 62 R(I1, G⇤) and e 62 R(I2, G⇤), then e 62 R(M, G⇤).

Proof by contradiction. Let e 62 R(I1, G⇤) and e 62 R(I2, G⇤), but its orientation is learned

in the first iteration of applying Meek rules to A(G̃⇤)[R(I1, G⇤)[R(I2, G⇤). Then, we have

learned the orientation of e due to one of Meek rules [116]:

• Rule 1. e = A � B is oriented as A ! B if there exists C such that e1 = C ! A 2
A(G̃⇤) [R(I1, G⇤) [R(I2, G⇤), and C � B 62 skeleton of G⇤.

• Rule 2. e = A � B is oriented as A ! B if there exists C such that e1 = A ! C 2
A(G̃⇤) [R(I1, G⇤) [R(I2, G⇤), and e2 = C ! B 2 A(G̃⇤) [R(I1, G⇤) [R(I2, G⇤).

• Rule 3. e = A� B is oriented as A! B if there exist C and D such that e1 = C !
B 2 A(G̃⇤) [R(I1, G⇤) [R(I2, G⇤), e2 = D ! B 2 A(G̃⇤) [R(I1, G⇤) [R(I2, G⇤),

A� C 2 skeleton of G⇤, A�D 2 skeleton of G⇤, and C �D 62 skeleton of G⇤.

• Rule 4. e = A�B is oriented as A! B and e = B�C is oriented as C ! B if there

exists D such that e1 = D ! C 2 A(G̃⇤) [R(I1, G⇤) [R(I2, G⇤), A�C 2 skeleton of

G⇤, A�D 2 skeleton of G⇤, and B �D 62 skeleton of G⇤.

In what follows, we show that the orientation of e cannot be learned due to any of the

Meek rules unless directed edge e belongs to R(I1, G⇤) or R(I2, G⇤).

Rule 1.

Without loss of generality, assume e1 2 A(G̃⇤) [R(I1, G⇤). Therefore, we should have

the condition of rule 1 satisfied when only intervening on I1 as well, which implies that

e 2 R(I1, G⇤), which is a contradiction.

Rule 2.

If both e1 and e2 belong to A(G̃⇤)[R(I1, G⇤) (or A(G̃⇤)[R(I2, G⇤)), then we should have

the condition of rule 2 satisfied when only intervening on I1 (or I2) as well, which implies

118

that e 2 R(I1, G⇤) (or e 2 R(I1, G⇤)), which is a contradiction. Therefore, it su�ces to

show that the case that e1 belongs to exactly one of A(G̃⇤)[R(I1, G⇤) or A(G̃⇤)[R(I2, G⇤)

and e2 belongs only to the other one, does not happen. To this end, it su�ces to show

that there exists no experiment target set I such that e1 2 A(G̃⇤) [R(I, G⇤), and e, e2 62
A(G̃⇤)[R(I, G⇤), i.e., there exists no experiment target set I that has structure S0, depicted

in Figure A.2, as a subgraph of G̃⇤ after applying the orientations learned from R(I, G⇤).

!

"#
$%

&'
Figure A.2: Structure S0.

If e1 2 A(I, G⇤), then A 2 I or C 2 I, which implies e 2 A(I, G⇤) or e2 2 A(I, G⇤),

respectively, and hence, e 2 R(I, G⇤) or e2 2 R(I, G⇤), respectively. Therefore, in either

case, e 2 R(I, G⇤), and S0 will not be a subgraph. Therefore, e1 62 A(I, G⇤), and hence,

e1 was learned by applying one of the Meek rules. We consider each or the rules in the

following:

• If we have learned the orientation of e1 from rule 1, then we should have had one of the

structures in Figure A.3 as a subgraph of G̃⇤ after applying the orientations learned

from R(I, G⇤). In case of structure S1, using rule 1 on subgraph induced on vertices

{X1, A, B}, we will also learn A ! B. In case of structure S2, using rule 4, we will

also learn B ! C. Therefore, we cannot learn only the direction of e1 and hence, S0

will not be a subgraph.

!

"#
$%

&%
'%

!

"#
$%

&(
'%

Figure A.3: Rule 1.

119

• If we have learned the orientation of e1 from rule 3, then we have had one of the

structures in Figure A.4 as a subgraph of G̃⇤ after applying the orientations learned

from R(I, G⇤). In case of structures S3 and S4, using rule 1 on subgraph induced on

vertices {X2, C, B}, we will also learn C ! B. In case of structure S5, using rule 3 on

subgraph induced on vertices {B, X2, C, X1}, we will also learn B ! C. Therefore, we

cannot learn only the direction of e1 and hence, S0 will not be a subgraph.

!

"

#

$%

&'
(%

()
!

"

#

$%

(%

()

&*

!

"

#

$%

(%

()

&+
Figure A.4: Rule 3.

• If we have learned the orientation of e1 from rule 4, then we have had one of the

structures in Figure A.5 as a subgraph of G̃⇤ after applying the orientations learned

from R(I, G⇤). In case of structures S6, using rule 1 on subgraph induced on vertices

{X1, C, B}, we will also learn C ! B. In case of structure S7, using rule 1 on subgraph

induced on vertices {X2, X1, B}, we will also learn X1 ! B, and then using rule 4 on

subgraph induced on vertices {B, A, X2, X1}, we will also learn A ! B. In case of

structures S8, using rule 4 on subgraph induced on vertices {B, X2, X1, C}, we will

also learn B ! C. Therefore, we cannot learn only the direction of e1 and hence, S0

will not be a subgraph.

!

"#

$%

&'

(%
()!

"#

$%

(%
()

&*

!

"#

$%

(%
()

&+
Figure A.5: Rule 4.

120

• If we have learned the orientation of e1 from rule 2, then we should have had one of the

structures in Figure A.6 as a subgraph of G̃⇤ after applying the orientations learned

from R(I, G⇤). In case of structure S9, using rule 1 on subgraph induced on vertices

{X1, C, B}, we will also learn C ! B and hence, S0 will not be a subgraph. In case of

structure S10, if X1 2 I, then the direction of the edge X1 � B will be also known. If

the direction of this edge is X1 ! B, then using rule 2 on subgraph induced on vertices

{A, X1, B}, we will also learn A! B; otherwise, using rule 2 on subgraph induced on

vertices {B, X1, C}, we will also learn C ! B. Therefore, X1 62 I. Also, as mentioned

earlier, A 62 I. Therefore, we have learned the orientation of A ! X1 from applying

Meek rules.

In the triangle induced on vertices {X1, B, A}, we have learned only the orientation of

one edge, which is A ! X1. But as seen in structures S1 to S9, all of them lead to

learning the orientation of at least 2 edges of a triangle. In the following, we will show

that a structure of form S10, does not lead to learning the orientation of only A! X1

and making S10 a subgraph either.

!

"#
$%

&'

(%

&%)

!

"#
$%

(%

Figure A.6: Rule 2.

Suppose we had learned A ! X1 via a structure of form S10, as depicted in Figure

A.7(a). Using rule 4 on subgraph induced on vertices {X2, X1, C, B}, we will also

learn B ! C. Therefore, we should have the edge X2 � C too. Also, using rule 2

on triangle induced on vertices {X2, X1, C}, the orientation of this edges should be

X2 ! C. Therefore, in order to have S10 as a subgraph, we need to have the structure

depicted in Figure A.7(b) as a subgraph. As seen in Figure A.7(b), we again have a

structure similar to S10: a complete skeleton K5, which contains Xj ! C, A ! Xj,

Xj � B, for j 2 {1, 2} and X2 ! X1, with a triangle on vertices {X2, B, A}, in which

we have learned only the orientation of A! X2.

We claim that this procedure always repeats, i.e., at step i, we end up with skeleton

Ki, which contains Xj ! C, A ! Xj, Xj � B, for j 2 {1, ..., i} and Xk ! Xj, for

1 j < k i, with a triangle induced on vertices {Xi, B, A}, in which we have

121

!

"#

$%

(')

)%
)*!

"#

$%

)%
)*

(+)
Figure A.7: Step of the induction.

learned only the orientation of A ! Xi. We prove this claim by induction. We have

already proved the base of the induction above. For the step of the induction, suppose

the hypothesis is true for i � 1. Add vertex Xi to form a structure of form S10 for

A ! Xi�1. Xi should be adjacent to Xj, for j 2 {1, ..., i � 2}; otherwise, using

rule 4 on subgraph induced on vertices {Xi, Xi�1, Xj, B}, we will also learn B ! Xj.

Moreover, using rule 2 on triangle induced on vertices {Xi, Xi�1, Xj}, the direction

of Xi � Xj should be Xi ! Xj. Also, using rule 4 on subgraph induced on vertices

{Xi, Xi�1, C, B}, we will also learn B ! C. Therefore, we should have the edge Xi�C

too.

We showed that S0 is a subgraph only if S10 is a subgraph, and S10 is a subgraph only

if the structure in Figure A.7(b) is a subgraph, and this chain of required subgraphs

continues. Therefore, since the order of the graph is finite, there exist a step where

since we cannot add a new vertex, it is not possible to have one of the required sub-

graphs, and hence we conclude that S0 is not a subgraph.

Rule 3.

Since edges e1 and e2 form a v-structure, they should appear in A(G̃⇤) as well. Therefore,

we should have the condition of rule 3 satisfied when only intervening on I1 as well, which

implies that e 2 R(I1, G⇤), which is a contradiction.

Rule 4.

Without loss of generality, assume e1 2 R(I1, G⇤) [A(G̃⇤). Therefore, we should have

the condition of rule 4 satisfied when only intervening on I1 as well, which implies that

e 2 R(I1, G⇤), which is a contradiction.

122

The argument above proves that there is no edge e such that e 62 R(I1, G⇤) and e 62
R(I2, G⇤), but e 2 R(M, G⇤).

A.10 Proof of Theorem 2

Due to Proposition 3, it su�ces to show that for I1 ✓ I2 ✓ V , and Xi 2 V , we have

D(I1[{Xi})�D(I1) � D(I2[{Xi})�D(I2). First we show that for a given directed graph

Gi 2 MEC(G⇤) the function D(I, Gi) is a submodular function of I. From Lemma 7, we

have R(I1 [{Xi}, Gi) = R(I1, Gi) [R({Xi}, Gi). Therefore,

D(I1 [{Xi}, Gi)�D(I1, Gi) = |R(I1 [{Xi}, Gi)|� |R(I1, Gi)|

= |R(I1, Gi) [R({Xi}, Gi)|� |R(I1, Gi)|

= |R({Xi}, Gi)|� |R(I1, Gi) \R({Xi}, Gi)|.

Similarly,

D(I2 [{Xi}, Gi)�D(I2, Gi) = |R({Xi}, Gi)|� |R(I2, Gi) \R({Xi}, Gi)|.

Since I1 ✓ I2, as seen in the proof of Proposition 3, R(I1, Gi) ✓ R(I2, Gi). Therefore,

�|R(I1, Gi) \R({Xi}, Gi)| � �|R(I2, Gi) \R({Xi}, Gi)|, which implies that

D(I1 [{Xi}, Gi)�D(I1, Gi) � D(I2 [{Xi}, Gi)�D(I2, Gi).

This together with the fact that the function D(I, Gi) is a monotonically increasing function

of I (observed in the proof of Proposition 3) shows that D(I, Gi) is a submodular function

of I.

Finally, we have D(I) = 1
|MEC(G⇤)|

P
Gi2MEC(G⇤) D(I, Gi). Since a non-negative linear

combination of submodular functions is also submodular, the proof is concluded.

A.11 Proof of Proposition 4

The worst case in terms of computational complexity happens when H = G̃, as it requires

maximum number of recursions. In function Counter, we set each vertex Xi as the root

and call the function Counter for the rooted essential graph G̃Xi

r
to compute the number

123

of DAGs in the MEC corresponding to G̃Xi

r
. Using Meek rules, the directed edges in G̃Xi

r

can be recovered in time O(p3).

Now, we show that the degree of each vertex Xj in G̃Xi

r
decreases at least by one after

removing directed edges. To do so, we prove that there exists a directed edge in G̃Xi

r
that

goes to vertex Xj. If Xj is a neighbor of Xi the proof is done, as edges are always directed

from the root vertex towards its neighbors. Otherwise, consider the shortest path from Xi

to Xj in G̃Xi

r
. This path must pass through one of the neighbors of Xj, say, Xk. Since the

distance from Xi to Xk is less than Xi to Xj, Xk � Xj should be oriented as Xk ! Xj

[19]. Therefore, the degree of each vertex Xj in G̃Xi

r
decreases at least by one after removing

directed edges in G̃Xi

r
.

Let t(�) be the computational complexity of Algorithm 3 on a graph with maximum

degree �. Based on what we proved above, we have

t(�) pt(�� 1) + Cp3,

where C is a constant. The above inequality holds true since we have at most p chain

component in G̃Xi

r
, where the maximum degree in each of them is at most �� 1. From this

inequality, it can be shown that t(�) is in the order of O(p�+1). Since we may have at most

p chain components in essential graph G̃, the computational complexity of Algorithm 3 is in

the order of O(p�+2).

A.12 Proof of Theorem 3

The objective is to show that for the input essential graph G̃, any DAG G in MEC(G̃) is

generated with probability 1/Size(G̃).

Proof by induction: The function Counter finds the size of a chain component recursively,

i.e., after setting a vertex X as the root and finding the orientations in G̃X

r
, it calls itself

to obtain the size of the chain components of G̃X

r
. We induct on the maximum number of

recursive calls required for complete orienting.

Induction base: For the base of the induction, we consider an essential graph with no

required recursive call: Consider essential graph G̃ with chain component set G, for which,

for all G̃r 2 G, for all X 2 V (G̃r), Size(G̃X

r
) = 1 (as an example, consider the case that G̃r

is a tree). Consider G in the MEC represented by G̃, and assume vertex X
G̃r

is required to

124

be set as the root in chain component G̃r 2 G for G to be obtained. We have

P (G) =
Y

G̃r2G

P (X
G̃r

picked) =
Y

G̃r2G

Size(G̃
X

G̃r

r)

Size(G̃r)

=
Y

G̃r2G

1

Size(G̃r)
=

1
Q

G̃r2G
Size(G̃r)

=
1

Size(G̃)
,

where, the last equality follows from equation (3.13).

Induction hypothesis: For an essential graph G̃ with maximum required recursions of

l � 1, any DAG G in the MEC represented by G̃ is generated with probability 1/Size(G̃).

Induction step: We need to show that for an essential graph G̃ with maximum required

recursions of l, any DAG G in the MEC represented by G̃ is generated with probability

1/Size(G̃). Assume vertex X
G̃r

is required to be set as the root in chain component G̃r 2 G,

and V
G̃

X
G̃r

r

is the set of vertices required to be set as root in the next recursions in obtained

chain components in G̃
X

G̃r

r for G to be obtained. We have

P (G) =
Y

G̃r2G

P (X
G̃r

picked)P (V
G̃

X
G̃r

r

picked)

=
Y

G̃r2G

Size(G̃
X

G̃r

r)

Size(G̃r)
P (V

G̃

X
G̃r

r

picked).

By the induction hypothesis,

P (V
G̃

X
G̃r

r

picked) = 1/Size(G̃
X

G̃r

r).

Therefore,

P (G) =
Y

G̃r2G

Size(G̃
X

G̃r

r)

Size(G̃r)

1

Size(G̃
X

G̃r

r)

=
1

Q
G̃r2G

Size(G̃r)

=
1

Size(G̃)
,

125

where, the last equality follows from equation (3.13).

A.13 Proof of Corollary 1

For any chain component G̃, for calculating Counter(G̃, G̃) we are required to calculate

the size of all possible subsequent rooted classes. Therefore, we do not need to calculate the

size of any rooted subclasses anymore. Hence, by Proposition 4, we obtain all probabilities

of the from Counter(G̃X
,G̃

X)

Counter(G̃,G̃)
in O(p�+2). After selecting one of the vertices in G̃ as the root,

say X, we recover all directed edges in G̃X in O(p3) and obtain chain components of G̃X .

Similar to the proof of Proposition 4, let t(�) be the running time of the algorithm on a

chain component in G with maximum degree of �. We have

t(�) pt(�� 1) + Cp3,

where C is a constant. It can be shown that t(�) is in the order of O(�p�+1). Since we may

have at most p chain components in G, the computational complexity of uniform sampler

would be in the order of O(p�+2). Therefore, the computational complexity of the approach

is O(p�+2 + p�+2) = O(p�+2).

A.14 Proof of Theorem 4

Proposition 16 (Cherno↵ Bound). Let X1, ..., XN be independent random variables such

that for all i, 0 Xi 1. Let µ = E[
P

N

i=1 Xi]. Then

P (|
NX

i=1

Xi � µ| � ✏µ) 2 exp(� ✏2

2 + ✏
µ).

Proof of Proposition 5. For i 2 {1, ..., N}, define Xi = D(I,Gi)

|Ā(G̃)|
. We note that for the estima-

tor in Algorithm 4, we have E[D(I, Gi)] = D(I), where Gi is a random generated DAG in

126

the sampler in Algorithm 4. This can be proven as follows:

E[D(I, Gi)] =
X

G
0
i
2MEC(G⇤)

P (Gi = G0
i
)D(I, G0

i
)

=
X

G
0
i
2MEC(G⇤)

1

|MEC(G⇤)|D(I, G0
i
)

= D(I).

Therefore, E[Xi] = 1
|Ā(G̃)|

D(I).

Using Cherno↵ bound we have

P (|
NX

i=1

Xi �
N

|Ā(G̃)|
D(I)| � ✏

N

|Ā(G̃)|
D(I)) 2 exp(� N✏2

|Ā(G̃)|(2 + ✏)
D(I))

 2 exp(� N✏2

|Ā(G̃)|(2 + ✏)
).

Therefore,

P (| 1

N

NX

i=1

D(I, Gi)�D(I)| � ✏D(I)) 2 exp(� N✏2

|Ā(G̃)|(2 + ✏)
).

Hence,

P (|D̂(I)�D(I)| < ✏D(I)) > 1� 2 exp(� N✏2

|Ā(G̃)|(2 + ✏)
).

Setting N > |Ā(G̃)|(2+✏)
✏2

ln(2
�
), upper bounds the right hand side with 1� � and concludes the

desired result.

127

A.15 Proof of Theorem 5

Let I⇤ = {X⇤1 , ..., X⇤k} 2 arg maxI:I✓V,|I|=k D(I). We have

D(I⇤)
(a)

 D(I⇤ [Ii) = D(Ii) +
kX

j=1

[D(Ii [{X⇤1 , ..., X⇤j })�D(Ii [{X⇤1 , ..., X⇤j�1})]

(b)

 D(Ii) +
kX

j=1

[D(Ii [{X⇤
j
})�D(Ii)],

(A.1)

where (a) follows from Proposition 3, and (b) follows from Theorem 2. Define D̂i,X,1 and

D̂i,X,2 as the first and second calls of the estimator in i-th step for variable X, respectively.

By the assumption of the theorem we have

D(Ii [{X⇤
j
})� ✏D(Ii [{X⇤

j
}) < D̂i,X

⇤
j
,1(Ii [{X⇤

j
}),

with probability larger than 1� �. Therefore,

D(Ii [{X⇤
j
}) < D̂i,X

⇤
j
,1(Ii [{X⇤

j
}) + ✏D(I⇤),

with probability larger than 1� �. Similarly

D̂i,X
⇤
j
,2(Ii) < D(Ii) + ✏D(Ii) w.p. > 1� �,

) �D(Ii) < �D̂i,X
⇤
j
,2(Ii) + ✏D(I⇤) w.p. > 1� �,

Therefore,
D(Ii [{X⇤

j
})�D(Ii) < D̂i,X

⇤
j
,1(Ii [{X⇤

j
})

� D̂i,X
⇤
j
,2(Ii) + 2✏D(I⇤) w.p. > 1� 2�.

(A.2)

Also, by the definition of the greedy algorithm,

D̂i,X
⇤
j
,1(Ii [{X⇤

j
})� D̂i,X

⇤
j
,2(Ii)

 D̂i,Xi+1,1(Ii [{Xi+1})� D̂i,Xi+1,2(Ii)

= D̂i,Xi+1,1(Ii+1)� D̂i,Xi+1,2(Ii),

(A.3)

128

and similar to (A.2), we have

D̂i,Xi+1,1(Ii+1)� D̂i,Xi+1,2(Ii) < D(Ii+1)

�D(Ii) + 2✏D(I⇤) w.p. > 1� 2�.
(A.4)

Therefore, from equations (A.2), (A.3), and (A.4) we have

D(Ii [{X⇤
j
})�D(Ii) < D(Ii+1)�D(Ii) + 4✏D(I⇤), (A.5)

with probability larger than 1� 4�. Plugging (A.5) back in (A.1), we get

D(I⇤) < D(Ii) +
kX

j=1

[D(Ii+1)�D(Ii) + 4✏D(I⇤)]

= D(Ii) + k[D(Ii+1)�D(Ii)] + 4k✏D(I⇤),

with probability larger than 1� 4k�. Therefore,

D(I⇤)�D(Ii)

< k[D(I⇤)�D(Ii)]� k[D(I⇤)�D(Ii+1)] + 4k✏D(I⇤),

with probability larger than 1 � 4k�. Defining ai := D(I⇤) � D(Ii), and noting that a0 =

D(I⇤), by induction we have

ak = D(I⇤)�D(Ik)

< (1� 1

k
)kD(I⇤) + 4✏D(I⇤)

k�1X

j=0

(1� 1

k
)j

< [
1

e
+ 4✏k]D(I⇤) w.p. > 1� 4k2�.

It concludes that

D(Ik) > (1� 1

e
� 4✏k)D(I⇤) w.p. > 1� 4k2�.

Therefore, for ✏ = ✏
0

4k and � = �
0

4k2 , Algorithms 2 is a (1 � 1
e
� ✏0)-approximation algorithm

with probability larger than 1� �0.

129

A.16 Proof of Proposition 5

We require the following lemma for the proof.

Lemma 16. If a directed chordal graph has a directed cycle then it has a directed cycle of

size 3.

Proof. If the directed cycle is of size 3 itself, the claim is trivial. Suppose the directed

cycle Cn is of size n > 3. Relabel the vertices of Cn to have Cn = (X1, ..., Xn, X1). Since

the graph is chordal, Cn has a chord and hence we have a triangle induced on vertices

{Xi, Xi+1, Xi+2} for some i. If the direction of Xi � Xi+2 is Xi+2 ! Xi, we have the

directed cycle (Xi, Xi+1, Xi+2, Xi) which is of size 3. Otherwise, we have the directed cycle

Cn�1 = (X1, ..., Xi, Xi+2, .., Xn, X1) on n�1 vertices. Relabeling the vertices from 1 to n�1

and repeating the above reasoning concludes the lemma.

Proof of Proposition 5. All the components in the undirected subgraph of G̃ are chordal [28].

Therefore, by Lemma 16, to insure that a generated directed graph is a DAG, it su�ces to

make sure that it does not have any directed cycles of length 3, which is one of the checks

that we do in the proposed procedure. For checking if the generated DAG is in the same

Markov equivalence class as G⇤, since they have the same skeleton, it su�ces to check if they

have the same set of v-structures [16], which is the other check that we do in the sampler in

Algorithm 5.

130

APPENDIX B

APPENDIX OF CHAPTER 4

B.1 Proof of Theorem 6

For the choice of XS = Pa(Xk), we have X(i)
k
� (�(i)

k|S
)>X(i)

S
= N (i)

k
. Therefore, if the variance

of Nk is not changed, then for this choice of XS, we have

E[(X(i)
k
� (�(i)

k|S
)>X(i)

S
)2] = E[(X(j)

k
� (�(j)

k|S
)>X(j)

S
)2].

To prove the only if side, define Anc(Xi) as the set of ancestors of vertex Xi. For any set

XS ✓ N(Y) such that �(i)
k|S

= �(j)
k|S

, using representation (2.3), we have:

X(i)
k

=
X

Xa2Anc(Xk)\{Xk}

caN
(i)
a

+ N (i)
k

,

(�(i)
k|S

)>X(i)
S

=
X

Xa2Anc(Xk)\{Xk}

baN
(i)
a

+
X

Xa2Anc(SCH)\Anc(Xk)

b0
a
N (i)

a
+ bkN

(i)
k

,

where SCH := XS \Ch(Xk). Moreover, coe�cients ba’s and ca’s are functions of B and �k|S,

which are fixed across the two domains. Therefore,

X(i)
k
� (�(i)

k|S
)>X(i)

S
=

X

Xa2Anc(Xk)\{Xk}

(ca � ba)N
(i)
a
�

X

Xa2Anc(SCH)\Anc(Xk)

b0
a
N (i)

a
+ (1� bk)N

(i)
k

.

(B.1)

If the variance of Nk varies, then by PIC, E[(X(i)
k
� (�(i)

k|S
)>X(i)

S
)2] 6= E[(X(j)

k
� (�(j)

k|S
)>X(j)

S
)2]

for all XS ✓ N(Xk) almost surely.

131

B.2 Proof of Theorem 7

We first prove that for a pair of domains (D(i), D(j)) with target set �ij and for every target

variable Xk 2 �ij, we have �(i)
k|S
6= �(j)

k|S
almost surely if Pa(Xk) (XS where XS ✓ N(Xk).

We know that the regression coe�cients can be obtained as follows:

�k|S = E[XSXT

S
]�1E[XSXk].

Moreover, for any invertible matrix A, we have: A�1 = adj(A)/det(A) where (i, j)-th entry of

adj(A) is equal to (�1)i+jMji where Mij is the determinant of a matrix resulted by deleting

i-th row and j-th column of A. Furthermore, for any matrix A, det(A) is a multivariate

polynomial function of its entries. For any Xi, Xj 2 Ch(Xk), it can be easily seen that the

corresponding entry to (Xi, Xj) in E[XSXT

S
] has a term var(Nk). Thus, any entry of �k|S is

a polynomial fraction of the form f(var(Nk))/g(var(Nk)) where f and g are two polynomial

functions. About the function g(.), the constant term of g(.) is the determinant of E[XSXT

S
]

by setting the term var(Nk) to zero. We will prove that the constant term of g(.) is equal

to zero if it is corresponded to a child entry of �k|S. We need to show that the regression

coe�cients of such entries are zero if var(Nk) = 0. This is true since by setting the regression

coe�cients of Pa(Xk) to their true values in the model and the rest to zero, the mean square

error would be zero. Since for a polynomial fraction corresponding to a child variable, the

constant of function in numerator is zero while the one in denominator is nonzero, the value

of fraction will change almost surely by changing the value of var(Nk).

For the cases that Pa(Xk) 6✓ XS, we consider the following assumption:

Assumption 11. Let cf
r
and cg

r
be the constant coe�cients of the term varr(Nk) in polyno-

mial functions f and g. We assume that there exist coe�cients cf
u
, cg

u
, cf

w
, and cg

w
such that

c
f

u

c
g

u

6= c
f

w

c
g

w

.

Based on the above assumption, the polynomial fraction f(var(Nk))/g(var(Nk)) cannot

be a constant by varying var(Nk). To see this, suppose that this fraction is equal to some

constant �. However, the equation f��g = 0 has finite roots due to fundamental theorem of

algebra (note that all the coe�cients of f��g are not zero due to Assumption 11). Thus, the

polynomial fraction cannot remain unchanged by varying var(Nk) and the proof is complete.

132

B.3 Proof of Theorem 9

We first note that if for domains D(i) and D(j), V (i,j)
(C,E) 6= 0, then at least one of the variables

a, �2
C
, or �2

E
has varied across the two domains and hence, by faithfulness assumption,

V (i,j)
(E,C) = 3. Noting that 0 V (i,j)

⇡ 3, this implies that

V (i,j)
(C,E) V (i,j)

(E,C), 8i, j.

Summing up over {i, j}, it implies that T MC

(C,E)(D) = 0, and hence T MC

(C,E)(D) T MC

(E,C)(D).

If there exists a pair of domains {D(i), D(j)} for which 1 V (i,j)
(C,E) 2, then since V (i,j)

(E,C) = 3,

we have V (i,j)
(C,E) < V (i,j)

(E,C). Therefore, T MC

(E,C)(D) � 1. Also, as mentioned earlier, T MC

(C,E)(D) = 0.

Therefore, in this case, we have T MC

(C,E)(D) < T MC

(E,C)(D).

B.4 Proof of Theorem 10

We relabel variables according to ⇡c to have ⇡c(i) = Xi, that is, in the causal order, any

variable with smaller label proceeds variables with larger labels. Since ⇡c is causal, B̂⇡c
= B,

and ⌦̂⇡c
= ⌦. Therefore, �0

⇡c
is exactly the set of parameters of the system. Therefore,

for a pair of domains {D(i), D(j)}, V (i,j)
⇡c

denotes exactly how many of the parameters of the

system have changed across domains D(i) and D(j).

On the other hand, since ⇡0 is not causal, there exist parent variables who are regressed

on their children, and hence, the corresponding elements of B̂⇡0 and ⌦̂⇡0 will be functions

of more than one parameter of the system. Therefore, by faithfulness assumption, they will

vary by a change in any of the involved parameters across any two domains D(i) and D(j).

Therefore, an argument similar to the one in the proof of Theorem 9 implies that

T⇡⇤(D) T⇡0(D).

Also, since ⇡0 is not causal, there exist indices i and j, such that Xi ! Xj 2 G, but

(⇡0)�1(Xi) > (⇡0)�1(Xj). Having ⇡0 as the order, we regress Xi on a set XS including Xj.

We denote the coe�cient corresponding to Xj by �, and the variance of the residual of the

regression by �2.

First, we note that � will be non-zero, as Xj is in the Markov blanket of Xi. Applying

133

the result of [117], � and �2 can be written as follows:

� =
B̃i,j�̃

�2
j
�
P

k:Xk2S
B̃i,kB̃j,k�̃

�2
k

�̃�2
i

+
P

k:Xk2S
B̃2

i,k
�̃�2
k

,

and

�2 = (�̃�2
i

+
X

k:Xk2S

B̃2
i,k
�̃�2
k

)�1,

where �̃2
i

and B̃i,j are the variance of the residual and the coe�cient in the subgraph induced

on {Xi}[XS. Due to the faithfulness assumption, the correlations will not be cancelled out,

and hence, � and �2 depend on �̃2
i

and B̃i,j, which in turn depend on �2
i

and Bi,j. Therefore,

if , say, Bi,j remains fixed and �2
i

varies across two domains D(i) and D(j), then similar to

the proof of Theorem 9, we will have

T⇡⇤(D) < T⇡0(D).

B.5 An Example For Requirement of considering both orders
⇡X,�1 and ⇡X,�2 in Algorithm 10

Suppose the ground truth structure is X1 ! X2 ! X3 ! X4 ! X5, and suppose we

start with initial ordering ⇡t = {1, 5, 4, 2, 3}. If Algorithm 10 does not consider ⇡X,�2, the

following can happen:

Round 1: Algorithm 10 forms ⇧X1 = {⇡t, ⇡X1,�1}. We have ⇡t = arg min⇡2⇧X1
T MC

⇡
(D).

Therefore, the ordering will not change.

Round 2: Algorithm 10 forms ⇧X5 = {⇡t, ⇡X5,�1}. We have ⇡X5,�1 = arg min⇡2⇧X5
T MC

⇡
(D).

Therefore, the ordering will change to ⇡t = {1, 4, 2, 3, 5}.
Round 3: Algorithm 10 forms ⇧X4 = {⇡t, ⇡X4,�1}. We have ⇡X4,�1 = arg min⇡2⇧X4

T MC

⇡
(D).

Therefore, the ordering will change to ⇡t = {1, 2, 3, 5, 4}.
Round 4: Algorithm 10 forms ⇧X2 = {⇡t, ⇡X2,�1}. We have ⇡t = arg min⇡2⇧X2

T MC

⇡
(D).

Therefore, the ordering will not change.

Round 5: Algorithm 10 forms ⇧X3 = {⇡t, ⇡X3,�1}. We have ⇡t = arg min⇡2⇧X3
T MC

⇡
(D).

Therefore, the ordering will not change.

Therefore Algorithm 10 outputs ⇡t(�1) = 4 as a sink variable while it is not a sink.

134

B.6 Proof of Theorem 11

Since Xs is a sink variable, by moving it to the last position in the order, none of its

ancestors will be regressed on it, and hence, this move minimizes the dependencies among

estimated regression parameters, which in turn minimizes the number of varying parameters.

Therefore, for all ⇡ 2 ⇧Xs
, T MC

⇡Xs,�1
(D) T MC

⇡
(D).

Suppose in the initial order ⇡t, there is a sink variable Xs as ⇡t(�1). Then for any other

variable Xv, moving it to ⇡t(�1) either increases the dependencies or if , say, Xv is also

a sink variable, will not change it. Therefore, based on our prioritization, Xs will remain

in position ⇡t(�1) until the end of the round. If in the initial order there is a non-sink

variable as ⇡t(�1), when we are checking its source ancestor Xs, since there exists a pair of

domains across which at least 1 and at most 2 of variables Var(Xv), Bv,s, �2
s

varies, moving

Xs below Xv will increase the value of the causal order indicator; that is, for all ⇡ 2 ⇧Xs
,

T MC

⇡Xs,�1
(D) > T MC

⇡
(D). Therefore, Xs will move to the bottom of the order, and similar to

the previous case, it will remain at that position until the end of that round. Therefore, in

either case, at the end of round, ⇡t(�1) will be a sink variable.

135

APPENDIX C

APPENDIX OF CHAPTER 5

C.1 Proof of Proposition 6

Two DAGs are I-equivalent if and only if they have the same skeleton and v-structures [16].

Therefore, it su�ces to show that two DAGs G1 and G2 are distribution equivalent if and

only if they have the same skeleton and v-structures.

By Corollary 3, DAGs G1 and G2 are equivalent if and only if there exist sequences

of parent exchanges that map them to one another. Suppose G1 and G2 are distribution

equivalent. Therefore there exists a sequence of parent exchanges mapping one to another.

Since DAGs do not have 2-cycles, parent exchange for them will only result in flipping an

edge, and since the other parents of the vertices at the two ends of that edge should be

the same, it does not generate or remove a v-structure. Therefore, the sequence of parent

exchanges does not change the skeleton or change the set of v-structures. Therefore, G1 and

G2 are I-equivalent.

If two DAGs G1 and G2 have the same skeleton and v-structures, then their di↵erence

can be demonstrated as a sequence of edge flips such that in each flip, all the parent of the

two ends have been the same, which means this flip is a parent exchange. Therefore, by

Corollary 3, DAGs G1 and G2 are distribution equivalent.

C.2 Proof of Proposition 7

If side:

If supp(Q1U (1)) ✓ supp(QG2), then we can simply choose the entries of Q1U (1) as the entries

of Q2 (as they are all free variables). Therefore,

Q2Q
>

2 = Q1U
(1)(U (1))>Q>1 = Q1Q

>

1 .

136

That is, Q2 can generate the distribution which was generated by Q1. Since this is true for

all choices of Q1, and since the reverse (i.e., starting with Q2) is also true, by definition, G1

is distribution equivalent to G2.

Only if side:

If G1 is distribution equivalent to G2, then for all choices of Q1, generating Q1Q>1 = ⇥, there

exists Q2 generated by G2, such that Q2Q>2 = ⇥. Since Q2 is generated by G2, by definition,

supp(Q2) ✓ supp(QG2). Also, since Q1Q>1 = ⇥ and Q2Q>2 = ⇥, we have Q2 = Q1U , for some

orthogonal transformation U , due to the fact that the generating vectors of a Gramian matrix

can be determined up to isometry. Therefore, since Q2 = Q1U and supp(Q2) ✓ supp(QG2),

we conclude that supp(Q1U) ✓ supp(QG2). It remains to show that there exists a rotation

U (1), for which supp(Q1U (1)) ✓ supp(QG2). Note that U is an orthogonal transformation

and hence, UU> = I and det(U) = 1 or �1.

• If det(U) = 1, it means that U is a rotation and we are done by choosing U (1) = U .

• If det(U) = �1 (i.e., U is an improper rotation), all we need is to find an orthogonal

transformation V , such that (a) supp(Q1U) = supp(Q1UV), i.e., it does not change

the support, (b) det(V) = �1, which implies that det(UV) = 1. That is, adding the

transformation V to U does not change the support but makes the combination UV

into a rotation. Finding such a V is easy: simply choosing a diagonal matrix with

an odd number of diagonal entries equal to �1 and the rest equal to 1. This will not

change the support and only changes the sign of a subset of the entries. Therefore,

we are done by choosing U (1) = UV . Note that we are not forced to add a specific

reflection at the end; we just add a particular one to do a sign flipping to show that

the improper rotation can be changed into a rotation.

C.3 Proof of Proposition 8

• If ⇠i,j = 0, then by definition, the Givens rotation corresponding to A(i, j, k) is a zero

degree rotation. Therefore, applying A(i, j, k) has no e↵ect.

• If ⇠i,j = ⇠i,k = ⇥, then there exists a matrix Q for which zeroing ⇠i,j is an acute rotation

and the other rows of Q either have no element in the (j, k) plane, or if they do, they

will not become aligned with either j or k axis in the (j, k) plane after the rotation.

Therefore, support (0, 0) will stay at (0, 0), and any other support will become (⇥,⇥).

137

• If ⇠i,j = ⇥ and ⇠i,k = 0, then the i-th row has been aligned with the j axis in the

(j, k) plane before the rotation and since the rotation is planar, will become aligned

with the k axis after the rotation, and hence we have a ⇡/2 rotation. Therefore, all

other rows aligned with one axis will become aligned with the other axis, and any

vector not aligned with either axes will remain the same. Therefore, we have support

transformations (⇥, 0)! (0,⇥), (0,⇥)! (⇥, 0), (⇥,⇥)! (⇥,⇥), and (0, 0)! (0, 0),

which is equivalent to switching columns j and k.

C.4 Proof of Theorem 12

We first prove the following weaker result:

Theorem 19. Let ⇠1 and ⇠2 be the support matrices of directed graphs G1 and G2, respec-

tively. G1 is distribution equivalent to G2 if and only if both following conditions hold:

• There exists a sequence of support rotations that maps ⇠1 to a subset of ⇠2.

• There exists a sequence of support rotations that maps ⇠2 to a subset of ⇠1.

We need the following lemma for the proof.

Lemma 17. Consider a matrix Q and a support matrix ⇠. If the support matrix of Q is

a subset of ⇠, then for all i, j, k, the support matrix of QG(j, k, ✓) is subset of ⇠A(i, j, k),

where,

✓ =

8
>>>>>><

>>>>>>:

0, if Qi,j = Qi,k = 0 and ⇠i,j = ⇠i,k 6= 0,

0, if Qi,j = Qi,k = 0 and ⇠i,k 6= ⇠i,j = 0,

⇡/2, if Qi,j = Qi,k = 0 and ⇠i,j 6= ⇠i,k = 0,

tan�1(�Qi,j/Qi,k), otherwise.

Proof. The rotation and the support rotation do not alter any columns except the j-th and

k-th columns. Hence we only need to see if the desired property is satisfied by those two

columns. If the support of Q and ⇠ are the same on those two columns, the desired result

follows from the definition of support rotation. Otherwise,

• If the support of (Qi,j, Qi,k) is the same as (⇠i,j, ⇠i,k), then the e↵ect of the rotation on

Q is the same as the e↵ect of the support rotation on ⇠, except that if we are in the

second case of Proposition 8, the support rotation cannot introduce any extra zeros

138

in rows [p] \ {i}, while this is possible for the rotation on Q. Therefore, the support

matrix of QG(j, k, ✓) is subset of ⇠A(i, j, k).

• If Qi,j 6= 0 and Qi,k = 0, and (⇠i,j, ⇠i,k) = (⇥,⇥), then the rotation is a ±⇡/2 while we

have an acute rotation for ⇠ (second case of Proposition 8). Hence, if a zero entry of

Q in a row in [p] \ {i} has become non-zero after the rotation, ⇠ has non-zero entries

in both entries of that row. Therefore, the support matrix of QG(j, k, ✓) is subset of

⇠A(i, j, k).

• If [Qi,j = 0 and Qi,k 6= 0, and (⇠i,j, ⇠i,k) = (⇥,⇥)], or [Qi,j = 0 and Qi,k = 0, and

(⇠i,j, ⇠i,k) = (0,⇥)], or [Qi,j = 0 and Qi,k = 0, and (⇠i,j, ⇠i,k) = (⇥,⇥)], then the

rotation has no e↵ect on Q, while the support rotation can only turn some of the zero

entries in rows [p] \ {i} to non-zero. Therefore, the support matrix of QG(j, k, ✓) is

subset of ⇠A(i, j, k).

• Finally, if [Qi,j = 0 and Qi,k = 0, and (⇠i,j, ⇠i,k) = (⇥, 0)], then by the statement of the

lemma, the rotation on Q will be ⇡/2. Due to this fact and part three of Proposition

8, for both Q and ⇠, columns j and k will be flipped. Therefore, the support matrix

of QG(j, k, ✓) is subset of ⇠A(i, j, k).

Proof of Theorem 19. By Propositions 7, it su�ces to show that there exists a sequence of

support rotations A1, · · ·Am, such that ⇠1A1, · · ·Am ✓ ⇠2 if and only if for all choices of

Q1, there exists a sequence of Givens rotations G1, · · ·Gm0 such that supp(Q1G1, · · ·Gm0) ✓
supp(QG2).

Only if side:

For any matrix Q1, by definition, the support matrix of Q1 is a subset of ⇠1. In the se-

quence of support rotations, use the first support rotation A1(i, j, k) to generate Givens

rotation G1(j, k, ✓), where ✓ is defined in the statement of Lemma 17. Therefore, by Lemma

17, the support matrix of Q1G1(j, k, ✓) is a subset of ⇠1A1(i, j, k). Repeating this proce-

dure, we see that the support matrix of Q1G1, · · ·Gm is a subset of ⇠1A1, · · ·Am. Now, by

the assumption, ⇠1A1, · · ·Am ✓ ⇠2, and by definition, supp(⇠2) = supp(QG2). Therefore,

supp(Q1G1, · · ·Gm) ✓ supp(QG2).

If side:

Consider Givens rotation G(j, k, ✓) applied to matrix Q. The e↵ect of this rotation is one of

the following:

139

1. For an acute rotation, zeroing a subset of entries in columns j and k.

2. For a ±⇡/2 rotation, swapping the support of columns j and k.

3. For an acute rotation, making no entries zero, while making a subset of the entries in

columns j and k non-zero.

4. For an acute rotation, no change to supp(Q).

Since the assumption is true for all Q, we focus on matrices with support matrix ⇠1 (i.e.,

none of the free parameters are set at zero). If in case 1 above the subset has more than one

element, more than one rows of Q have been aligned on the (j, k) plane, not on the j and

k axes. Therefore, there exists another Q (i.e., another choice of free parameters), in which

those rows are not aligned. Consider Q⇤ for which no such alignment happens, and hence,

each of the Givens rotations in its sequence of rotations that causes case 1 above, only makes

one entry zero. Therefore, its corresponding sequence of rotations acts exactly the same as

support rotations for e↵ects 1 and 2 above, in terms of their e↵ect on the support.

Hence, the proof is complete by showing that cases 3 and 4 can be ignored, because

we assumed that the support matrix of Q⇤ is ⇠1, and each not ignored Givens rotation

corresponds to a support rotation, and by definition, supp(QG2) = supp(⇠2). Clearly, case 4

can be ignored as it has no e↵ect on the support. For case 3, we note that this e↵ect only

adds elements to the support, and hence we want the support after rotations to be a subset

of supp(QG2), the rotations of this type do not serve for that purpose. Therefore, if we ignore

such rotations, the resulting support would be smaller compared to the case of considering

these rotations. Note that if due to such rotation entry Qi,j has become non-zero and later

in the sequence there exists a type 1 rotation making Qi,j zero again, we already have zero

in position (i, j) and that type 1 rotation should be ignored as well.

Similar to the notion of distribution set, for a support matrix ⇠ we define

⇥(⇠) := {⇥ : ⇥ = Q̃Q̃>, for any Q̃ s.t. supp(Q̃) ✓ supp(⇠)}.

Note that unlike Q, the matrix Q̃ is allowed to have zeros on its diagonal.

Definition 28. A support rotation mapping ⇠ to ⇠0 is lossless if ⇥(⇠) = ⇥(⇠0).

Similar to the test for distribution equivalence, losslessness can be evaluated by checking

if there exists a sequence of support rotations that maps ⇠0 back to a subset of ⇠. Clearly,

140

reduction, reversible acute rotation, and column swap are lossless, as they are reversible. In

most of the cases, irreversible acute rotations are lossy and lead to expansion of ⇥(⇠), as it

introduces capacity for having extra free variables. However, this is not necessarily the case.

We have the following observations regarding checking for distribution equivalence.

Lemma 18. All the support rotations for checking the distribution equivalence of two directed

graphs should be lossless.

We need the following lemma for the proof.

Lemma 19. If support matrix ⇠ is mapped to ⇠0 via a support rotation, then ⇥(⇠) ✓ ⇥(⇠0).

Proof. For reduction, reversible acute rotation, and column swap, we have ⇥(⇠) = ⇥(⇠0),

and irreversible acute rotation only introduces extra free variables, and hence, leads to

⇥(⇠) ✓ ⇥(⇠0). To make the argument regarding irreversible acute rotation rigorous, consider

irreversible acute rotation A(i, j, k), which zeros ⇠i,j. For all l 2 [p] \ {i}, if ⇠l,j 6= ⇠l,k, this

rotation results in (⇠l,j, ⇠l,k) = (⇥,⇥). Suppose (⇠i0,j, ⇠i0,k) = (0,⇥). A(i0, j, k) will be a

reversible acute rotation for ⇠0 and leads to ⇠00 such that ⇠ (⇠00. Therefore, ⇥(⇠) ✓ ⇥(⇠00) =

⇥(⇠0).

Proof of Lemma 18. If support matrix ⇠ is mapped to ⇠0 via a lossy support rotation, i.e.,

⇥(⇠) 6= ⇥(⇠0) then by Lemma 19, we have ⇥(⇠) (⇥(⇠0). Suppose we want to check the

equivalence of directed graphs G1 and G2 with support matrices ⇠1 and ⇠2, respectively.

We note that ⇥(G1) = ⇥(⇠1). Suppose ⇠1 is mapped to ⇠ through a sequence of support

rotations, including a lossy rotation, which in turn is mapped to ⇠0 ✓ ⇠2. Therefore,

⇥(G1) = ⇥(⇠1) (⇥(⇠) ✓ ⇥(⇠0) ✓ ⇥(⇠2) = ⇥(G2).

Therefore,

⇥(G1) 6= ⇥(G2).

Using Lemma 18, we can prove Theorem 12:

Proof. The if side is clear by Theorem 19. For the only if side, by Theorem 19 and Lemma

18 we show that if ⇠1 can be mapped to ⇠2 via a sequence of lossless support rotations

(i.e., ⇥(⇠1) = ⇥(⇠2)) including an irreversible acute rotation, then there exists a sequence of

141

support rotations which does not include any irreversible acute rotations that maps ⇠1 to a

subset of ⇠2.

We show that every irreversible acute rotation can be replaced by other types of support

rotation. Consider the first irreversible acute rotation A(i, j, k) in the sequence, which maps

⇠ to ⇠0. Applying this rotation, we have (⇠0
i,j

, ⇠0
i,k

) = (0,⇥), and columns ⇠0
·,j

and ⇠0
·,k

agree on

the rest of the entries. Suppose, prior to applying this rotation, columns ⇠·,j and ⇠·,k disagree

on m entries in rows with indices di↵ = {s1, · · · , sm}. Let

di↵
j
= {l : l 2 di↵, ⇠l,j = 0},

di↵
k

= {l : l 2 di↵, ⇠l,k = 0},

and

M =

8
<

:
max{mj, mk}, mj 6= mk,

mj + 1, otherwise.

where mj = |di↵
j
| and mk = |di↵

k
|. We can always swap two columns, hence, without loss

of generality, assume M = mj + 1{mj=mk}
.

Claim 1. ⇠ can be transformed via reduction and reversible acute rotation to a support

matrix, in which there exist columns with indices {t1, · · · , tM�1} such that the sub-matrix

of ⇠ on columns {t1, · · · , tM�1, j, k} and rows di↵ [{i} has a column with i zeros, for all

i 2 {0, 1, ..., M}, and the sub-matrix of ⇠ on columns {t1, · · · , tM�1, j, k} and the rest of the

rows has equal columns.

Proof of Claim 1. Since A(i, j, k) is lossless, we can map ⇠0 to a subset of ⇠. Therefore, we

should be able to introduce zeros in ⇠0 in indices di↵
j
of column j and indices di↵

k
of column

k, without removing the existing zeros, except potentially ⇠0
ij
. We first use a reversible acute

rotation on columns j and k to move the newly introduce zero in ⇠0
ij

to the first index in

di↵
j
, and we denote the resulting support matrix by ⇠(1). We note that reduction is the only

support rotation, which increases the number of zeros in the support matrix. Therefore, we

need one reduction for reviving each of the m� 1 other removed zeros in the transformation

of ⇠ to ⇠0.

The claim can be proven by induction. The base of the induction, i.e., for M = 2 can be

proven as follows:

• Case 1: mj = mk = 1. In order to have the zero in column k, we need to perform a

reduction, for which, we need another column ⇠(1)·,t1
equal to ⇠(1)

·,k
, i.e., dH(⇠(1)·,t1

, ⇠(1)
·,k

) = 0,

142

where dH(·, ·) denotes the Hamming distance between its two arguments. Since the

original irreversible acute rotation was on the (j, k) plane and did not a↵ect other

columns, the column t1 with the aforementioned property exists in the original support

matrix ⇠ as well, i.e., ⇠·,t1 = ⇠(1)·,t1
. Now, a reversible acute rotation can be performed

on columns t1 and k to set dH(⇠·,j, ⇠·,j) = 0, and then a reduction can be performed to

introduce another zero in column j of ⇠. The resulting support matrix has the desired

property stated in the claim.

• Case 2: mj = 2, mk = 0. In order to have the zero in the second index of di↵
j
, we

need to perform a reduction, for which, we need another column equal to ⇠(1)
·,j

. This

can be obtained by one of the following cases:

– There already exists a column t1, such that dH(⇠(1)·,t1
, ⇠(1)

·,j
) = 0. Similar to Case 1,

This implies that column t1 also exists in ⇠. Therefore, ⇠ has the desired property.

– There exists a column t1, such that dH(⇠(1)·,t1
, ⇠(1)

·,j
) 6= 0, but dH(⇠(1)·,t1

, ⇠(1)
·,k

) = 1.

Similar to Case 1, This implies that column t1 also exists in ⇠. Therefore, a

reversible acute rotation can transform ⇠ to a support matrix with the desired

property.

– There exists a column t1, such that dH(⇠(1)·,t1
, ⇠(1)

·,k
) = 0. Similar to Case 1, This

implies that column t1 also exists in ⇠. Therefore, two reductions, one on columns

(t1, k), and then one on columns (t1, j) can transform ⇠ to a support matrix with

the desired property.

• Case 3: mj = 2, mk = 1. In order to have the zero in column k, we need to perform a

reduction, for which, we need another column t1 equal to column k, i.e., dH(⇠(1)·,t1
, ⇠(1)

·,k
) =

0. Similar to Case 1, This implies that column t1 also exists in ⇠. Therefore, ⇠ has the

property desired in the claim.

Now, suppose the property holds for M = n. To show that it also holds for M = n + 1, a

reasoning same as the one provided for the base case of the induction can be used, and it

can be shown that for the required extra reduction, an extra column tn should exist in ⇠.

By Claim 1, ⇠ can be transformed via reduction and reversible acute rotation to a support

matrix with the stated property. Therefore, we assume ⇠ has the property. Therefore, we

have columns {t1, · · · , tM�1, j, k} with any number of zeros 0 i M on rows di↵ [{i},

143

and it is easy to see the i zeros in these columns can be relocated to any other indices via

only reversible acute rotations amongst these columns. Therefore, any e↵ect sought to be

achieved via columns j and k of ⇠0, can be obtained via columns {t1, · · · , tM�1, j, k} of ⇠, and

hence, the irreversible acute rotation could have been replaced by other types of rotations.

C.5 Proof of Proposition 9

To show that the property holds for cycle C = (X1, · · · , Xm, X1), we note that our desired

support matrix is ⇠1, when columns 2 to m are all shifted to left by one, and column 1 is

moved to location m. Therefore, it su�ces to first flip columns 1 and 2, then 2 and 3, all

the way to m� 1 and m. For each flip, we use the third part of Proposition 8. For instance,

for flipping columns j and j + 1, we find row i such that ⇠i,j 6= ⇠i,j+1 (if there is no such

row, then no flip for those columns is needed as they are already the same). If, say ⇠i,j = ⇥,

we use support rotation A(i, j, j + 1) for flipping columns j and j + 1. Following the same

reasoning, we see that support rotation of ⇠2 leads to a subset of ⇠1.

C.6 Proof of Proposition 10

If side:

If columns of ⇠2 are permutation of columns of ⇠1, then ⇠1 can be mapped to ⇠2 and vice

versa via a sequence of column swap rotations. Therefore, by Theorem 12, G1 ⌘ G2.

Only if side:

If G1 ⌘ G2, the by Theorem 12, ⇠1 can be mapped to a subset of ⇠2 and ⇠2 can be mapped to

a subset of ⇠1, both via only reductions, reversible acute rotations and column swaps. If each

pair of column of ⇠1 are di↵erent in more than one entry, then we are not able to perform

any reversible acute rotations and reductions. Therefore, we have been able to perform the

mapping merely via column swaps. Therefore, columns of ⇠2 are permutation of columns of

⇠1.

144

C.7 Proof of Proposition 11

Only if side:

By definition, digraph G is reducible if there exists digraph G0 such that G ⌘ G0 and

⇠0 ⇢ ⇠. By Theorem 12, ⇠ can be mapped to a subset of ⇠0 via a sequence of support

rotations comprised of reductions, reversible acute rotations and column swaps. We note that

reduction is the only support rotation, which increases the number of zeros in the support

matrix. Therefore, there should be a reduction in the sequence. We can always swap any

two columns and the location of two columns does not influence the feasibility of reduction

or reversible acute rotations. Therefore, column swaps can be ignored in reducibility.

If side:

Suppose the performed reduction turns a non-zero entry in column j to zero, using a reduc-

tion on columns j and k. Note that prior to the reduction, these columns have the same

number of zeros and in order to be able to perform the reduction a sequence of reversible

acute rotations have been performed to prepare column k such that the hamming distance

of columns j and k be equal to zero. That is, its zeros have been moved to match the zero

pattern of column j. We can always assume that we only moved the zeros of column k, as

if there are columns to move the zeros of column j, they can be used to move the zeros of

column k as well. The only concern is that the zeroed entry may be on the diagonal. In this

case, a reversible acute rotation can be performed on columns j and k to move the new zero

to another index of column j. Also, entry (j, j) cannot be the only non-zero entry of column

j; otherwise, column k should also have only one non-zero entry, which should initially be

located at (k, k). Therefore, to perform a reversible acute rotation on any other column l

and k, column l should have only two non-zero entries, on (k, l) and (j, l), while one of them

should initially be located at (l, l). This reasoning can be repeated p times and leads to the

contradiction that the final column is not allowed to have a non-zero entry on the diagonal,

which contradicts the fact that ⇠ is the support matrix corresponding to a digraph. Finally,

all the performed reversible acute rotations can be done in the reverse direction to obtain

the initial zero pattern for columns [p] \ {j}.

145

C.8 Proof of Proposition 12

Using Proposition 11, we show that for directed graph G with support matrix ⇠, if there

exists a sequence of reversible support rotations that enables us to apply a reduction to ⇠,

then G has a 2-cycle. Suppose the reduction is performed on columns j and k, to turn a

non-zero entry of column j to zero. If no reversible support rotations prior to the reduction

is needed, it implies that already columns j and k are identical. Therefore, ⇠j,k = ⇠j,j = ⇥,

and ⇠k,j = ⇠k,k = ⇥. Therefore, there exists a 2-cycle between j and k and the proof is

complete. Therefore, we assume some reversible support rotations are needed.

Consider the first rotation in the sequence of reversible support rotations applied to column

k. Assume it is performed on columns t1 and k. Therefore, the support of column t1 has

one element more than the support of column k, and the Hamming distance between these

two columns is one. The only way that this does not cause a 2-cycle between t1 and k is

that ⇠t1,k = 0, and ⇠k,t1 = ⇥, and all the entries show be the same. This rotation is supposed

to move the extra zero in column k to an index, which is zero in column j (to reduce the

Hamming distance between columns j and k). Therefore, since after this rotation, ⇠t1,k will

become non-zero, we should have ⇠t1,j = ⇥. This will lead to a 2-cycle unless if ⇠j,t1 = 0.

Now, if ⇠j,t1 = 0, because all the entries of columns t1 and k where the same, we also have

⇠j,k = 0. This gives us two options for ⇠k,j:

• If ⇠k,j = 0, then we need another column t2 so that we perform a reversible acute

rotation on columns t2 and k to move ⇠j,k = 0 to entry ⇠k,k, which is currently non-

zero. This means that columns t2 and k should be the same on all the entries, except

that ⇠j,t2 = ⇥, but ⇠j,k = 0. Therefore, ⇠k,t2 = ⇠k,k = ⇥ and ⇠t2,k = ⇠t2,t2 = ⇥, which

implies that there is a 2-cycle between t2 and k.

• If ⇠k,j = ⇥, then in order for columns k and j to have the same number of non-zero

entries, there should exist index l such that ⇠l,k = ⇥, and ⇠l,j = 0. Now, we need

another column t2 so that we perform a reversible acute rotation on columns t2 and k

to move ⇠j,k = 0 to entry ⇠l,k. This means that columns t2 and k should be the same

on all the entries, except that ⇠j,t2 = ⇥, but ⇠j,k = 0. Therefore, ⇠k,t2 = ⇠k,k = ⇥ and

⇠t2,k = ⇠t2,t2 = ⇥, which implies that there is a 2-cycle between t2 and k.

146

C.9 Proof of Corollary 2

We first prove the following corollary:

Corollary 5. Irreducible directed graphs G1 and G2 with support matrices ⇠1 and ⇠2 are

equivalent if and only if there exist sequences of reversible acute rotations and column swaps

that map their support matrices to one another.

Proof. By Proposition 11, there exists no sequence of reversible acute rotations that enables

us to apply a reduction to the support matrix. Therefore, we only need to consider reversible

acute rotations and column swaps, and we need to map one support matrix to the other,

rather than mapping it to a subset of the other.

Proof of Corollary 2. DAGs do not have 2-cycles. Therefore, by Proposition 12, DAGs are

irreducible. Therefore, the result follows from Corollary 5.

C.10 Proof of Theorem 13

If side:

If there exist sequences of parent reduction, parent exchange, and cycle reversion, mapping

one graph to a subgraph of the other, then there exist sequences of reduction, reversible

acute rotation, and column swap mapping the support matrix of one graph to a subset of

the support matrix of the other. Therefore, by Theorem 12, G1 is distribution equivalent to

G2.

Only if side:

The proof of the only if side consists of two steps:

• Step 1. We note that

1. All support rotations of reduction type, that do not make a diagonal entry zero

are representable by a parent reduction. This is clear from the definitions of

reduction and parent reduction.

2. All reversible acute rotations, that do not make a diagonal entry zero are rep-

resentable by a parent exchange. This is clear from the definitions of reversible

acute rotation and parent exchange.

147

3. If we have a reversible acute rotation and a column swap on columns j and k such

that the reversible acute rotation makes the diagonal entry ⇠j,j zero and then the

column swap swaps columns j and k (we call such a pair a flip pair), then this

pair can be replaced by a reversible acute rotation that makes the non-diagonal

entry ⇠j,k zero, and hence, is representable by a parent exchange.

4. If we start with a support matrix with no diagonal entries equal to zero and

by performing a sequence of column swaps reach another support matrix with

no diagonal entries equal to zero, then this sequence is representable by a cycle

reversion. To see this, we note that if after the sequence of column swaps, column

j has moved to location k, it implies that its j-th and k-th elements are non-zero.

Therefore, the original support matrix corresponds to a graph containing the edge

j ! k, and the final support matrix corresponds to a graph containing the edge

k ! j. This reasoning identifies the cycle before, and the reversed cycle after the

transformation.

Step 1 implies that if we have a sequence of support rotations which includes 1. reduction

rotations, that do not make a diagonal entry zero, 2. reversible acute rotations, that do

not make a diagonal entry zero, 3. flip pairs, and 4. sequence of column swaps starting

and ending on a support matrix with non-zero diagonal entries, (we call such a sequence,

a representable sequence) then we can represent this sequence with a sequence of parent

reductions, parent exchanges, and cycle reversions.

• Step 2. If G1 is distribution equivalent to G2, then by Theorem 12, there exists a

sequence of reduction, reversible acute rotations, and column swap mapping the sup-

port matrix of one to the other. We show that in this case, there exists a representable

sequence as well that maps the support matrix of one to the other. Therefore, by Step

1 the only if side will be concluded.

We note that since ⇠1 is a support matrix of a directed graphs, it does not have any

zeros on the main diagonal. Given the sequence of support rotations, the column

swaps do not enable us or prevent us from performing reversible acute rotations and

reductions, and merely change the indices of the columns. Therefore, we can have

an equivalent sequence of support rotations, in which we have moved all the column

swaps, except those involved in flip pairs, to the end of the sequence. Consider the

first rotation in the sequence of the rotations which zeros out a diagonal entry. If this

rotation is of reduction type and has zeroed out ⇠i,i using columns i and j, then ⇠i,j

148

should have been non-zero. Therefore, we can instead replace it by zeroing ⇠i,j, and use

column j instead of column i in the next steps. If this rotation is of reversible acute

rotation type and has zeroed out ⇠i,i using columns i and j, then ⇠i,j should have been

non-zero. Therefore, again we can instead replace it by zeroing ⇠i,j, and use column

j instead of column i in the next steps. Therefore, we can perform all the reductions

and reversible acute rotations and from ⇠1 obtain ⇠01, which does not have any zeros on

the main diagonal, and via a sequence of column swaps can be mapped to a subset of

⇠2.

Now, we perform the reverse of that sequence of column swaps on ⇠2, which gives us

a superset of ⇠01 (call it ⇠002), and hence, does not have any zeros on the main diagonal.

Therefore, since ⇠2 is a support matrix of a directed graph and hence, it also does not

have any zeros on the main diagonal, by part 4 of Step 1, this is equivalent to a cycle

reversion. ⇠002 is a superset of ⇠01, and both ⇠002 and ⇠01 are graphically representable. By

Lemma 18, the corresponding directed graph of ⇠002 is the same (if the directed graph

corresponding to ⇠002 is irreducible) or reducible to the directed graph corresponding

to ⇠01. Therefore, by Proposition 11 we can perform the reduction via a sequence of

reversible acute rotations. Similar to the reasoning in the previous paragraph, since

we start with a support matrix with no zeros on the main diagonal, this can be done

without zeroing any element of the main diagonal, and hence, we can map ⇠002 to ⇠01.

Finally, reversing the reversible acute rotations of the sequence from ⇠1 to ⇠01, we obtain

a subset of ⇠1, and the whole sequence from ⇠2 to a subset of ⇠1 is a representable

sequence. Similarly, we can construct a representable sequence mapping ⇠1 to a subset

of ⇠2, which completes the proof.

C.11 Proof of Corollary 3

DAGs do not have 2-cycles. Therefore, by Proposition 12, DAGs are irreducible. Hence, a

parent reduction cannot be performed. Also, DAGs do not have cycles. Hence, there will

not be any cycle reversions. Therefore, the result follows from Theorem 13.

149

C.12 Proof of Proposition 13

To violate faithfulness, there are finite number of sets of hard constraints that should be

satisfied (since hard constraints are distributional constraints and hence limited). Let ✓i be

the set of values satisfying the i-th set of constraints. By the definitions of hard constraints,

✓i is Lebesgue measure zero. Therefore, the set of distributions not Gen-faithful to G, which

is the finite union is also Lebesgue measure zero.

C.13 Proof of Proposition 14

Suppose G⇤ is the ground truth DG and it generates distribution ⇥, and G1 is a candidate

DG which we want to decide whether it is the ground truth or not.

Suppose G1
⇠= G⇤. Then there exists a set of distribution with non-zero Lebesgue measure

that both G1 and G⇤ can generate. Suppose ⇥ is a distribution coming from this intersection

which also satisfies Assumption 8. Then clearly, since both DGs can generate ⇥, there is no

way to realize which one has been the ground truth, and hence, G1 is non-identifiable from

G⇤.

For the opposite direction, suppose G1 6⇠= G⇤ then either there is no distribution that they

can both generate, or the measure of such distributions is zero. In the first case, ⇥ is not

generatable by G1 and hence we can identify that G1 is not the ground truth. In the second

case, by Assumption 8, ⇥ cannot be from the intersection and hence again is not generatable

by G1 and hence we can identify that G1 is not the ground truth.

C.14 Proof of Theorem 14

Let G⇤ and ⇥ be the ground truth structure and the generated distribution, and for an

ML estimator, assume we are capable of finding a correct pair (B̂ML, ⌦̂ML), such that (I �
B̂ML)⌦̂�1

ML
(I � B̂ML)> = ⇥ and denote the directed graph corresponding to B̂ML by ĜML.

We have ⇥ 2 ⇥(ĜML), which implies that ⇥ contains all the distributional constraints of

ĜML. Therefore, under Assumption 8, we have H(ĜML) ✓ H(G⇤).

Let (B̂`0 , ⌦̂`0) be the output of `0-regularized ML estimator, and denote the directed graph

corresponding to B̂`0 by Ĝ`0 . Since the likelihood term increases much faster with the sample

size compared to the penalty term, asymptotically, we still have the desired properties that

150

⇥ contains all the distributional constraints of Ĝ`0 , and hence, under Assumption 8, we again

have H(Ĝ`0) ✓ H(G⇤).

Now, consider an irreducible equivalent of G⇤, denoted by G†. Since H(G⇤) = H(G†),

we have H(Ĝ`0) ✓ H(G†). Also, because of the penalty term we have |E(Ĝ`0)| |E(G†)|,
otherwise the algorithm would have outputted G†. Therefore, by Assumption 8, we have

H(Ĝ`0) = H(G†), and hence H(Ĝ`0) = H(G⇤). Therefore, by definition, Ĝ`0
⇠= G⇤.

C.15 Algorithm for Enumerating Members of a Distribution
Equivalence Class and Determining the Equivalence of Two
Structures

We first propose an algorithm for enumerating members of the distribution equivalence

class of a directed graph with support matrix ⇠, based on a depth-first traversal. The

algorithm is based on a search tree that is rooted at ⇠ and branches out via Reduction and

AcuteRotation operations. These two operations are defined in Algorithm 12. Since those

two rotation operations are independent of column swaps, we perform a similar depth-first

traversal of column swaps at the end, leveraging the graphical, cycle reversion representation

for e�ciency.

Algorithm 12 Reduction and Acute Rotation Operations
1: function Reduction(⇠, i, j)

2: Initialize ⇠0 ⇠

3: ⇠0i,j 0

4: return ⇠0

5: end function

6:

7: function AcuteRotation(⇠, i, j, k, `)

8: Initialize ⇠0 ⇠

9: ⇠0i,j 0

10: ⇠0`,j 1

11: ⇠0`,k 1

12: return ⇠0

13: end function

Each vertex in the search tree corresponds to a support matrix and each of its children

corresponds to the outputs of an admissible Reduction and AcuteRotation operation.

151

Algorithm 13 represents the pseudo-code of the function which compiles a set of those oper-

ations for a given support matrix.

Algorithm 13 Finding Legal Rotations
1: function FindRotations(⇠)

2: Initialize Rotations = ;
3: // Find Legal Reductions

4: for j, k such that k⇠·,j � ⇠·,kk1 = 0 do

5: for i such that ⇠i,j = 1 do

6: if i 6= j then

7: Rotations Rotations [{Reduction(⇠, i, j)}
8: end if

9: if i 6= k then

10: Rotations Rotations [{Reduction(⇠, i, k)}
11: end if

12: end for

13: end for

14: // Find Legal Acute Rotations

15: for j, k such that k⇠·,j � ⇠·,kk1 = 1 do

16: ` index such that ⇠`,j 6= ⇠`,k

17: for i 6= ` such that ⇠i,j = 1 do

18: if i 6= j then

19: Rotations Rotations [{AcuteRotation(⇠, i, j, k, `)}
20: end if

21: if i 6= k then

22: Rotations Rotations [{AcuteRotation(⇠, i, k, j, `)}
23: end if

24: end for

25: end for

26: return Rotations

27: end function

Algorithm 14 enumerates the equivalence class. The algorithm keeps track of the search

tree state using a stack S which contain sets of rotated support matrices. The first step

of the algorithm enumerates a subset of the equivalence class of ⇠⇤ by finding sequences of

Reduction and AcuteRotation operations. The second step enumerates column swaps

in a similar depth-first fashion. It is made e�cient by using the fact that sequences of legal

column swaps correspond to sequences of cycle reversions.

152

Algorithm 14 Enumerating equivalent structures
1: function ReverseCycles(⇠)

2: Reversed ;

3: C list of cycles in ⇠

4: for C in C do

5: ⇠
0
 Column-permuted ⇠ with cycle C reversed

6: Reversed Reversed [{⇠
0
}

7: end for

8: return Reversed

9: end function

10:
11: procedure EnumerateEquiv(p⇥ p support matrix ⇠

⇤)

12: Initialize Equiv {⇠
⇤
}.

13: Initialize empty stack S

14: S.push(FindRotations(⇠⇤))

15: while S is not empty do

16: Rotations S.pop()

17: if |Rotations| = 0 then

18: continue

19: else

20: ⇠ a support matrix in the set Rotations

21: Rotations Rotations \ {⇠}

22: S.push(Rotations)

23: if ⇠ not in Equiv then

24: Equiv Equiv [{⇠}

25: S.push(FindRotations(⇠))

26: end if

27: end if

28: end while

29: // Enumerate legal column swaps via cycle reversion

30: for ⇠̃ in Equiv do

31: Initialize empty stack S

32: S.push(ReverseCycles(⇠̃))

33: while S is not empty do

34: Reversals S.pop()

35: if |Reversals| = 0 then

36: continue

37: else

38: ⇠ a support matrix in the set Reversals

39: Reversals Reversals \ {⇠}

40: S.push(Reversals)

41: if ⇠ not in Equiv then

42: Equiv Equiv [{⇠}

43: S.push(ReverseCycles(⇠))

44: end if

45: end if

46: end while

47: end for

48: end procedure

153

!" !#

!$

!" !#

!$

!%

!" !#

!$

!" !#

!$

!" !#

!$

!%

!" !#

!$

!%

(') ()) (*)

Figure C.1: Virtual edge search operator.

Finally, the procedure EnumerateEquiv in Algorithm 14 may be used to determine

whether or not two DGs with respective support matrices ⇠1 and ⇠2 are equivalent by enu-

merating the equivalence class of ⇠1 and checking whether or not ⇠2 is in that equivalence

class.

C.16 Virtual Edge Search Operator

For acyclic DGs, under the Markov and faithfulness assumptions, a variable Xi is adjacent

to a variable Xj if and only if Xi and Xj are dependent conditioned on any subset of the

rest of the variables. This is not the case for cyclic DGs [79]. Two non-adjacent variables Xi

and Xj are dependent conditioned on any subset of the rest of the variables if they have a

common child Xk which is an ancestor of Xi or Xj. In this case, we say there exists a virtual

edge between Xi and Xj. Figure C.1(a) demonstrates two examples. In this figure, virtual

edges are shown with dashed red edges.

There are two cases that detecting a virtual edge as a real edge can trap the greedy search

into a local optima which can be improved.

154

Case 1. This case is shown in the first row of Figure C.1. If a greedy search algorithm finds

the edges between Xk and Xj but does not find Xk and Xj to be on a cycle, that is, if it

does not find the directions correctly, it can significantly increase the likelihood by adding an

edge at the location of the virtual edge between Xi and Xj. The algorithm would therefore

be trapped in a local optimum shown in Figure C.1(b) with one more edge than the ground

truth shown in Figure C.1(c). To resolve this issue, we propose adding the following search

operator: Suppose we have a triangle over three variables Xi, Xj and Xk, and there exists

an additional sequence of edges connecting Xj and Xk. In one atomic move, we perform a

series of edge reversals to form a cycle containing Xj ! Xk along the sequence, delete the

edge connecting Xi to Xj, and orient the edge Xi ! Xk. If the likelihood is unchanged, the

edge deletion improves the score.

Case 2. This case is shown in the second row of Figure C.1. This case involves the case

that the cycle over Xj and Xk in the ground truth is a 2-cycle. If a greedy search algorithm

finds one edges between Xk and Xj, it can significantly increase the likelihood by adding

edges at the location of the virtual edges between Xi and Xj and between Xl and Xk. The

algorithm would therefore be trapped in a local optimum shown in Figure C.1(b) with one

more edge than the ground truth shown in Figure C.1(c). To resolve this issue, we propose

adding the following search operator: Suppose we have triangles over three variables Xi, Xj

and Xk and Xl, Xj and Xk, as shown in the figure. In one atomic move, we delete the edge

connecting Xi to Xj and the edge connecting Xl to Xk, and add the edge Xk ! Xj. If the

likelihood is unchanged, the edge deletion improves the score.

In order to evaluate the proposed search operator, we performed two experiments. The

first involves the ground truth structure shown in Figure C.2b, Graph 1. This graph has one

equivalent structure, which is Graph 2 in the same figure. We run the tabu search algorithm

with and without the proposed search operator for 100 instantiations of the edge weights

and variances. The 5 most commonly found structures found by tabu search without and

with the proposed operator are shown in Figures C.2a and C.2b, respectively. While the

proposed algorithm finds an equivalent structure 89% of the time, the nominal tabu search

never finds an equivalent structure.

Next, we consider the ground truth structure shown in Figure C.3b, Graph 1. This

structure has one equivalent, which is Graph 2 in the same figure. While the nominal tabu

search algorithm finds an equivalent structure 45% of the time, the proposed algorithm is

155

0

1

2

3

Graph 1: 9.0 Percent

0

1

2

3

Graph 2: 8.0 Percent

01

2

3

Graph 3: 8.0 Percent

0

1

2

3

Graph 4: 7.0 Percent

01

2

3

Graph 5: 7.0 Percent

(a)

0

1

2

3

Graph 1: 80.0 Percent

0

1

2

3

Graph 2: 9.0 Percent

0

1

2

3

Graph 3: 2.0 Percent

0 1

2

3

Graph 4: 2.0 Percent

0
1

2

3

Graph 5: 1.0 Percent

(b)

Figure C.2: Example 1. Comparison of 5 most commonly learned structures.

much more reliable, finding an equivalent structure 83% of the time.

C.17 Score Decomposability

When the DG is acyclic, the distribution generated by a linear Gaussian structural equation

model satisfies the local Markov property. This implies that the joint distribution can be

factorized into the product of the distributions of the variables conditioned on their parents

as follows.

P (V) =
Y

Xi2V

P (Xi|Pa(Xi)).

The benefit of this factorization is that the computational complexity of evaluating the e↵ect

of operators can be dramatically reduced since a local change in the structure does not change

the score of other parts of the DAG.

In contrast, for the case of cyclic DGs the distribution does not necessarily satisfy the

local Markov property. However, the distribution still satisfies the global Markov property

[73]. Therefore, our search procedure factorizes the joint distribution into the product of

conditional distributions. Each of these distributions is over the variables in a maximal

156

0

12

3 4

5

Graph 1: 45.0 Percent

0

1

2

3

4

5

Graph 2: 11.0 Percent

0

1

2

3

4

5

Graph 3: 5.0 Percent

0

1

2
3

4

5

Graph 4: 2.0 Percent

0

1

2

3

4
5

Graph 5: 2.0 Percent

(a)

0

12

3 4

5

Graph 1: 77.0 Percent

0
1

2

3

4

5

Graph 2: 5.0 Percent

0

1

2

3

4
5

Graph 3: 2.0 Percent

0
1

2

3

4

5

Graph 4: 2.0 Percent

0

1

2

3

4

5

Graph 5: 1.0 Percent

(b)

Figure C.3: Example 2. Comparison of 5 most commonly learned structures.

strongly connected subgraph (MSCS), conditioned on their parents outside of the MSCS.

This can be shown as follows, where an MSCS is denoted by S.

P (V) =
Y

Si✓V

P (Si|Pa(Si)).

After applying an operation, the likelihoods of all involved MSCSs are updated. Note that

an operation can merge several MSCSs or break one into several smaller MSCSs. We perform

the updates as follows:

• If the change adds an edge from MSCS S1 to S2, These two MSCSs and any MSCS on

any path from S2 to S1 will fused into a new large MSCS.

• If the change is performed inside an MSCS, the score of the rest of MSCSs do not

change.

• If the change removes or reverses an edge inside an MSCS, we find the MSCSs in that

subset again, as it may be divided into smaller MSCSs.

157

0 25 50 75 100
0

20

40

60

80

100
Tabu

Hill
`1

0 4 8 12 16

0

20

40

60

80

100

Tabu

Hill
`1

0 25 50 75 100
0

20

40

60

80

100
Tabu

Hill
`1

0 3 6 9 12 15

0

20

40

60

80

100

Tabu

Hill
`1

0 25 50 75 100
0

20

40

60

80

100

Tabu

Hill
`1

0 3 6 9 12 15

0

20

40

60

80

100

Tabu

Hill
`1

Figure C.4: Results for n = 103, 104, 105, top to bottom. Left column: multi-domain
evaluation. The percentage of outputs with success rate larger than a certain value is
plotted vs. success percentages. Right column: SHD evaluation. The percentage of
outputs with SHD less than or equal to a certain value is plotted vs. SHD.

C.18 E↵ect of Sample Size on the Performance

In this section, we compare the performance of the discussed structure learning algorithms

in the case of p = 5 variables and three di↵erent sample sizes: n = 103, 104, and 105.

The results of the comparison are shown in Figure C.4. As can be seen in the figure, the

performance of the `0-regularized local search methods show marked improvement as sample

size is increased.

For all experiments, including those in the main text, we use the following hyperparameters

for the search algorithms. For the `1-regularized MLE, we use a regularization coe�cient of

0.1, and threshold the learned B matrix at 0.05. See [14] for details on greedy hill search

and tabu search and its parameters. For tabu search, we use a tabu length of 5 for the p = 5

case and 10 for the p = 20 and p = 50 cases. In all cases, we used a tabu search patience of

5.

158

APPENDIX D

APPENDIX OF CHAPTER 6

D.1 Proof of Lemma 10

Consider any two observed variables Vi and Vj. We know that [B0]i,i and [B0]j,j are non-zero.

Furthermore, B0 is a sub-matrix of B. Hence, based on Lemma 9 (ii), if there is no causal

path between Vi and Vj, we have: [B0]i,j = 0 and [B0]j,i = 0. Thus, [B0]:,i and [B0]:,j are not

linearly dependent. Furthermore, if one of the variable is the ancestor of the another one,

let say Vi 2 anc(Vj), according to Lemma 9 (i), [B0]j,i 6= 0 while [B0]i,j = 0. Thus, [B0]:,i and

[B0]:,j are also not linearly dependent in this case and the proof is complete.

D.2 Proof of Lemma 11

First, we show that if Vi Vj, then n0⇤ > 0 and n⇤0 = 0. We know that matrix [B̃00
i,:; B̃

00

j,:]

can be converted to [B00
i,:;B

00

j,:] by some permutation and scaling of its columns. Moreover, B00

contains some of the columns of B0 including all the columns corresponding to the observed

variables. Thus, from Lemma 9, we know that if [B00]i,k 6= 0 for any k 6= j, then [B00]j,k 6= 0.

Moreover, we have: [B00]j,j 6= 0 and [B00]i,j = 0. Hence, we can conclude that: n0⇤ > 0 and

n⇤0 = 0.

If n0⇤ > 0 and n⇤0 = 0, then Vi Vj. By contradiction, suppose that there is no causal

path between Vi and Vi or Vj Vi. The second case (Vj Vi) does not happen due to

what we just proved. Furthermore, from Lemma 9, we know that [B00]i,i 6= 0, [B00]i,j = 0.

Therefore, n⇤0 > 0 which is in contradiction with our assumption. Hence, we can conclude

that n0⇤ > 0 and n⇤0 = 0 if and only if Vi Vj.

159

D.3 Proof of Theorem 15

“if” part:

We say a directed path is latent if all the variables on the path except the endpoint are

latent. The “if” parts of conditions in Theorem 15 can be rewritten as follows:

(a) Latent variable Vpo+j, 1 j pl, is absorbable in ; if it has no observable descendant.

(b1) Latent variable Vpo+j, 1 j pl, is absorbable in observed variable Vi, 1 i po, if

Vi is the only observed variable influenced by Vpo+j through some latent paths.

(b2) Latent variable Vpo+j, 1 j pl, is absorbable in latent variable Vpo+k, 1 k pl, if

all latent paths from Vpo+j to observed variables go through Vpo+k.

It is easy to show that conditions (b1) and (b2) are equivalent to “if” part of condition (b)

in Theorem 15. From (6.6), we know that Vo = (I�D)�1[I,Aol(I�All)�1]N where entry

(i, j) of matrix (I �D)�1Aol(I �All)�1 is the total causal e↵ect of latent variable Vpo+j to

the observed variable Vi. This entry would be zero if no directed path exists from latent

variable Vpo+j to observed variable Vi. Now, we prove the correctness of above conditions:

(a) If a latent variable Vpo+j has no observable descendant, then the j-th column of Aol(I�
All)�1 is all zeros. Hence, there would be no changes in [I,Aol(I�All)�1]N by setting Npo+j

to zero. Therefore, there would be no change in PVo
.

(b1) Since latent variable Vpo+j only influences one observed variable through latent paths,

[Aol(I � All)�1]:,j has only one non-zero entry and therefore linearly dependent on one of

columns of identity matrix, let say i-th column. Moreover, the total causal e↵ect from

Vpo+j to Vi, i.e., [B]i,po+j is equal to [Aol(I � All)�1]i,j since there is no causal path from

Vpo+j to Vi that goes through an observed variable other than Vi. Thus, we replace Ni

by Ni + [Aol(I � All)�1]i,jNpo+j and set Npo+j to zero and there would be no change in

[I,Aol(I�All)�1]N.

(b2) Consider any observed variable Vi, 1 i po. If all latent paths of Vpo+j go though

Vpo+k, then [Aol(I�All)�1]i,j = [Aol(I�All)�1]i,k[B]po+k,po+j since all the paths from Vpo+j

to Vpo+k are latent. Thus, we can change Npo+k to Npo+k + [B]po+k,po+jNpo+j and set Npo+j

to zero and there would be no change in [I,Aol(I�All)�1]N.

“only if” part:

Now, we prove that the conditions (a), (b1), and (b2) are the only absorbable case. It can

be easily shown that an observed variable cannot be absorbed into any other observed or

latent variables. Thus, it is just needed to consider the following cases:

• Absorbing a latent variable in an observed variable: Suppose that a latent variable

160

Vj can be absorbed in an observed variable Vi. Furthermore, assume that Vj also

influences other observed variable Vk through latent path(s). That is, there exist some

paths that start from Vj and end in Vk without traversing, Vi. Let � 6= 0 be the causal

strength of such paths. Then, [B]k,j = [B]k,i ⇥ [B]i,j + �. To absorb Vj in Vi, � should

be zero which would contradict the faithfulness assumption.

• Absorbing a latent variable in another latent variable: Suppose that a latent variable

Vj can be absorbed in another latent variable Vi but for some observed variable Vk,

all latent paths from Vj do not go through Vi. Let � be the causal strength of such

paths. Then, [B]k,j = [B]k,i ⇥ [B]i,j + �. To absorb Vj in Vi, � should be zero which

contradicts the faithfulness assumption.

D.4 Proof of Lemma 12

Suppose that a latent variable Vi has at least two non-absorbable children such as Vj and

Vk. We need to consider three cases:

• If both of Vj and Vk are observed variables, then Vi is not absorbable according to

Theorem 15.

• Suppose that Vj and Vk are latent variables. Each of them must reach at least two

observed variables through latent paths (due to condition (b) in Theorem 15). Thus,

Vi also reaches those observed variables through latent paths. Furthermore, all latent

paths starting from Vi do not go through only one latent variable. Hence, none of the

conditions in Theorem 15 are satisfied and Vi is not absorbable.

• One of Vj or Vk, let say variable Vj, is observed. Vk must reach an observed variable

other than Vj through some latent paths. Otherwise, it is absorbable. Therefore, Vi is

not absorbable since it does not satisfy any conditions in Theorem 15.

D.5 Proof of Theorem 16

If G is not minimal, then it can be easily seen that B0 is also reducible. Now, suppose that G

is minimal. We want to show that B0 is also not reducible almost surely. By contradiction,

161

suppose that B0 is reducible. Then two columns of [I,Aol(I � All)�1] must be linearly

dependent. Now, two cases should be considered:

• One column of Aol(I � All)�1, let say i-th column, and one column of I are linearly

dependent. Hence, all the latent paths starting from latent variable Vpo+i influences

only one observed variable (Condition (b) in Theorem 15). Thus, G is not minimal

which is a contradiction.

• Two columns of Aol(I�All)�1, let say i, j are linearly dependent. If the correspond-

ing columns have only one non-zero entry, then both of them can be absorbed in an

observed variable (Condition (b) in Theorem 15). Thus, G is not minimal. Now, sup-

pose that these columns have more than one nonzero entry each, let say entries k and

l. Without loss of generality, suppose that Vpo+i is the ancestor of Vpo+j (the same

argument still holds true if neither is an ancestor of the other). Let hi be the maximum

length of latent paths starting from latent variable Vpo+i. By induction on hi, we will

show that i, j-th columns of Aol(I�All)�1 are linearly dependent with measure zero.

The case of hi = 1 is trivial. Suppose that for hi = r, the statement holds true. We

will prove it for hi = r + 1. Let latent variable Vpo+u be a child of Vpo+i and assume

some paths from Vpo+u do not go through Vpo+j. Let [C]i,j be the total causal strength

of only latent paths from Vj to Vi. We know that:

[C]k,po+j/[C]l,po+j = [C]k,po+i/[C]l,po+i. (D.1)

Furthermore,

[C]k,po+i = [C]k,po+u[C]po+u,po+i + c0, [C]l,po+i = [C]l,po+u[C]po+u,po+i + c00, (D.2)

for some values c0, c00. Moreover, [C]po+u,po+i = [A]po+u,po+i + c000 for some c000. Plugging

(D.2) into (D.1), we have:

([C]k,po+u[C]l,po+j � [C]k,po+j[C]l,po+u)[A]po+u,po+i =

[C]l,po+jc
0 � [C]k,po+jc

00 � ([C]k,po+u[C]l,po+j � [C]k,po+j[C]l,po+u)c
000.

The above equation holds with measure zero if [C]k,po+u[C]l,po+j� [C]k,po+j[C]l,po+u 6= 0

which is true with measure one from the induction hypothesis.

162

D.6 Proof of Corollary 4

Based on Theorem 16, we know that matrix B0 is not reducible almost surely if the corre-

sponding causal graph G is minimal. Furthermore, according to Proposition 15, the number

of variables in the systems is identifiable if matrix B0 is not reducible. This completes the

proof.

D.7 An Example of Non-Identifiability of Total Causal E↵ects

Let P = (Vi0 , Vi1 , · · · , Vir�1 , Vir
) be a causal path of length r from variable Vi0 to variable Vir

.

We define the weight of path P , denoted by !p , as the product of direct causal strengths of

edges on the path:

!P =
r�1Y

s=0

[A]is+1,is . (D.3)

Suppose that ⇧Vi,Vj
be the set of all causal paths from variable Vi to variable Vj. It can be

shown that the total causal e↵ect from Vi to Vj can be computed by the following equation:

[B]j,i =
X

P2⇧Vi,Vj

!P . (D.4)

Now, consider a causal graph in Figure 6.5 where Vi and Vj are observed variables and Vk

is latent variable. There exist causal paths from Vk to Vi and Vj, and from Vi to Vj with the

following properties:

• Let ⇧0
Vk,Vj

be the causal paths from variable Vk to variable Vj where Vi is not on any

of these paths. We assume that ⇧0
Vk,Vj

6= ;.

• All intermediate variables in ⇧Vk,Vi
, ⇧0

Vk,Vj
and ⇧Vi,Vj

are latent.

We can write Vi and Vj based on the exogenous noises of their ancestors as follows:

Vi = ↵Nk +
X

Vr2anc(Vi)\Vk

[B]i,rNr,

Vj = �Ni + �Nk +
X

Vr2anc(Vj)\{Vk,Vi}

[B]i,rNr,
(D.5)

where ↵ =
P

P2⇧V
k
,Vi

!P , � =
P

P2⇧Vi,Vj

!P , and � =
P

P2⇧0
V
k
,Vj

!P .

163

Now, we construct a causal graph depicted in Figure 6.5 where the exogenous noises of

variables Vi and Vk are changed to ↵Nk and Ni, respectively. Furthermore, we pick three

paths P1 2 ⇧Vk,Vi
, P2 2 ⇧0

Vk,Vj
, P3 2 ⇧Vi,Vj

where:

P1 = (Vk, Vu1 , · · · , Vi),

P2 = (Vk, Vu2 , · · · , Vj),

P3 = (Vi, Vu3 , · · · , Vj).

By our first property on the paths, we can find two paths P1 and P2 such that Vu1 6= Vu2 .

We also change matrix A to matrix A0 where all the entries of A0 are the same as A except

three entries [A0]u1,k, [A0]u2,k, and [A0]u3,i. We will adjust these three entries such that the

total causal e↵ects from Vk to Vi, from Vk to Vj, and from Vi to Vj become 1, ��/↵, and

� + �/↵, respectively. Moreover, these adjustments should not change the dependencies of

observed variables Vi and Vj to the exogenous noises of their ancestors given in Equation

(D.5). It can be shown that we can change the three mentioned causal e↵ects to our desired

values by the following adjustments:

[A0]u1,k =
1�

P
P2⇧V

k
,Vi

\{P1}
!P

!P1/[A]u2,k

,

[A0]u2,k =
��/↵�

P
P2⇧0

V
k
,Vj

\{P2}
!P

!P2/[A]u2,k

,

[A0]u3,i =
� + �/↵�

P
P2⇧Vi,Vj

\{P3}
!P

!P3/[A]u3,i

.

Now, consider any latent variable Vu which is on one of the paths in ⇧Vk,Vi
, ⇧0

Vk,Vj
, or

⇧Vi,Vj
. Changes in those mentioned three edges cannot a↵ect the total causal e↵ect from Vu

to Vi or Vj since the edges (Vk, Vu1), (Vk, Vu2), and (Vi, Vu3) are not a part of any paths from

Vu to Vi or Vj. Thus, equations in (D.5) do not change while the total causal e↵ect from

Vi to Vj becomes � + �/↵ in the second causal graph. It is noteworthy that changes in the

equations of latent variables are not important since we are not observing these variables.

164

D.8 Proof of Lemma 13

Let P be the permutation matrix corresponding to the causal order ko. We want to show

that PDPT is strictly lower triangular. It su�ces to prove PAolAll
kAloPT is strictly lower

triangular for any 0 k dl � 1. Suppose that there exists a nonzero entry, (i, j), in

PAolAll
kAloPT where j � i. Then, there should be a directed path from observed variable

V
k
�1
o (j) to V

k
�1
o (i) of length k + 2 through latent variables in the causal graph where k�1

o
(i) is

the index of an observed variable whose order is i in the causal order ko. This means variable

V
k
�1
o (j) should come before variable V

k
�1
o (i) in any causal order. But this violates the causal

order ko.

D.9 Proof of Theorem 17

According to Proposition 15, under non-Gaussianity of exogenous noises, the columns of B00

can be determined up to some scalings and permutations by solving an overcomplete ICA

problem. Furthermore, for the column corresponding to the noise Ni, 1 i po, we have

ri possible candidates with the same set of indices of non-zero entries where all of them are

pairwise linearly independent. Let B0o be a po⇥ po matrix by selecting one of the candidates

for each column corresponding to noise Ni, 1 i po. Thus, we have ⇧po

i=1ri possible

matrices.1 Now, for each B0o, we just need to show that there exists an assignment for Aoo,

Alo, Aol, and All such that they satisfy (6.6) and Aoo and All can be converted to strictly

lower triangular matrices with some simultaneous permutations of columns and rows.

Let Alo = 0pl⇥po
and All = 0pl⇥pl

. Assume that B0l consists of the remaining columns

which are not in B0o. We also add columns corresponding to latent absorbed variables to B0l.

Now, we set Aoo and Aol to I�B0o
�1 and B0o

�1B0l, respectively. By these assignments, the

proposed matrix A = [Aoo,Aol;Alo,All] satisfies in (6.6). Thus, we just need to show that

I � B0o
�1 can be converted to a strictly lower triangular matrix by some permutations. To

do so, first note that from Lemma 13, we know that matrix D can be converted to a strictly

lower triangular matrix by a permutation matrix P. Furthermore, based on this property of

1Note that diagonal entries of B0
o should be equal to one. Otherwise we can normalize each column to

its on-diagonal entry.

165

matrix D, we have: Dpo = 0. Thus, we can write:

P(I�D)�1PT =
po�1X

k=0

PDkPT =
po�1X

k=0

(PDPT)k.

Since matrix (PDPT)k is a lower triangular matrix for any k � 0, (I � D)�1 can be

converted to a lower triangular matrix by permutation matrix P. Furthermore, the set of

nonzero entries of B0o is the same as the one of (I � D)�1. Thus, PB0oP
T is also a lower

triangular matrix where all diagonal elements of it are equal to one. Hence, we can write B0o
in the form of B0o = I + B00o where PB00oP

T is a strictly lower triangular matrix. Therefore,

we have:

P(I�B0o
�1)PT = P(I�

po�1X

k=0

(�1)kB00o
k)PT = P(

po�1X

k=1

(�1)k+1B00o
k)PT , (D.6)

where the last term shows that I � B0o
�1 can be converted to a strictly lower triangular

matrix and the proof is complete.

D.10 Proof of Theorem 18

Let matrix [B̃00]po⇥pr be the output of over-complete ICA problem whose columns are the

columns in matrix B00. We define Ii as the set of indices of nonzero entries of column B̃00:,i,

i.e. Ii = {k|[B̃00:,i]k 6= 0}. We know that Ii = deso(Vj) if B̃00:,i corresponds to the observed

variable Vj. Moreover, under Assumption 10, any observed variable Vi and any variable Vj

(observed or latent) have di↵erent sets deso(Vi) and deso(Vj). Thus, each set Ii is just equal

to one of deso(Vi)’s, let say deso(Vj). The column B̃00:,i normalized by [B̃00:,i]j shows the total

causal e↵ects from variable j to other observed variables.

166

REFERENCES

[1] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, Prediction, and Search. MIT
Press, 2000.

[2] T. Richardson, “A discovery algorithm for directed cyclic graphs,” in Proceedings of the
Twelfth International Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann Publishers Inc., 1996, pp. 454–461.

[3] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The
combination of knowledge and statistical data,” Machine Learning, vol. 20, no. 3, pp.
197–243, 1995.

[4] D. M. Chickering, “Optimal structure identification with greedy search,” Journal of
Machine Learning Research, vol. 3, no. Nov, pp. 507–554, 2002.

[5] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-climbing Bayesian
network structure learning algorithm,” Machine Learning, vol. 65, no. 1, pp. 31–78,
2006.

[6] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A linear non-Gaussian
acyclic model for causal discovery,” Journal of Machine Learning Research, vol. 7, no.
Oct, pp. 2003–2030, 2006.

[7] G. Lacerda, P. L. Spirtes, J. Ramsey, and P. O. Hoyer, “Discovering cyclic causal
models by independent components analysis,” in Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, 2008, pp. 366–374.

[8] P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, “Nonlinear causal
discovery with additive noise models,” in Advances in Neural Information Processing
Systems, 2009, pp. 689–696.

[9] K. Zhang and A. Hyvärinen, “On the identifiability of the post-nonlinear causal
model,” in Proceedings of the Twenty-fifth Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 2009, pp. 647–655.

[10] J. M. Mooij, D. Janzing, T. Heskes, and B. Schölkopf, “On causal discovery with cyclic
additive noise models,” in Advances in Neural Information Processing Systems, 2011,
pp. 639–647.

167

[11] J. Pearl, Causality. Cambridge University Press, 2009.

[12] S. A. Andersson, D. Madigan, and M. D. Perlman, “A characterization of Markov
equivalence classes for acyclic digraphs,” The Annals of Statistics, vol. 25, no. 2, pp.
505–541, 1997.

[13] S. L. Lauritzen, Graphical Models. Clarendon Press, 1996, vol. 17.

[14] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
MIT press, 2009.

[15] J. Pearl and T. S. Verma, “A theory of inferred causation,” in Studies in Logic and
the Foundations of Mathematics. Elsevier, 1995, vol. 134, pp. 789–811.

[16] T. Verma and J. Pearl, “Equivalence and synthesis of causal models,” in Proceedings
of Sixth Conference on Uncertainty in Artificial Intelligence, 1991, pp. 220–227.

[17] C. Meek, “Causal inference and causal explanation with background knowledge,” in
UAI 1995, 1995, pp. 403–410.

[18] Y.-B. He and Z. Geng, “Active learning of causal networks with intervention experi-
ments and optimal designs,” Journal of Machine Learning Research, vol. 9, no. Nov,
pp. 2523–2547, 2008.

[19] M. Bernstein and P. Tetali, “On sampling graphical Markov models,” arXiv preprint
arXiv:1705.09717, 2017.

[20] F. Eberhardt, “Causation and intervention,” Doctoral Dissertation, Carnegie Mellon
University, 2007.

[21] F. Eberhardt, “Almost optimal intervention sets for causal discovery,” arXiv preprint
arXiv:1206.3250, 2012.

[22] K. Shanmugam, M. Kocaoglu, A. G. Dimakis, and S. Vishwanath, “Learning causal
graphs with small interventions,” in Advances in Neural Information Processing Sys-
tems, 2015, pp. 3195–3203.

[23] A. Ghassami, S. Salehkaleybar, N. Kiyavash, and E. Bareinboim, “Budgeted exper-
iment design for causal structure learning,” in International Conference on Machine
Learning, 2018, pp. 1719–1728.

[24] A. Ghassami, S. Salehkaleybar, N. Kiyavash, and K. Zhang, “Counting and sampling
from Markov equivalent DAGs using clique trees,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, 2019, pp. 3664–3671.

[25] A. Ghassami, S. Salehkaleybar, and N. Kiyavash, “Interventional experiment design
for causal structure learning,” arXiv preprint arXiv:1910.05651, 2019.

168

[26] K. B. Korb, L. R. Hope, A. E. Nicholson, and K. Axnick, “Varieties of causal inter-
vention,” in Pacific Rim International Conference on Artificial Intelligence. Springer,
2004, pp. 322–331.

[27] F. Eberhardt, C. Glymour, and R. Scheines, “On the number of experiments su�cient
and in the worst case necessary to identify all causal relations among n variables,” in
Proceedings of the 21st Conference on Uncertainty and Artificial Intelligence (UAI-05),
2005, pp. 178–184.

[28] A. Hauser and P. Bühlmann, “Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs,” Journal of Machine Learning
Research, vol. 13, no. Aug, pp. 2409–2464, 2012.

[29] K. D. Yang, A. Katco↵, and C. Uhler, “Characterizing and learning equivalence classes
of causal DAGs under interventions,” arXiv preprint arXiv:1802.06310, 2018.

[30] A. Hyttinen, F. Eberhardt, and P. O. Hoyer, “Experiment selection for causal discov-
ery.” Journal of Machine Learning Research, vol. 14, no. 1, pp. 3041–3071, 2013.

[31] A. Hauser and P. Bühlmann, “Two optimal strategies for active learning of causal
models from interventional data,” International Journal of Approximate Reasoning,
vol. 55, no. 4, pp. 926–939, 2014.

[32] M. Kocaoglu, A. Dimakis, and S. Vishwanath, “Cost-optimal learning of causal
graphs,” in Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 1875–1884.

[33] E. Lindgren, M. Kocaoglu, A. G. Dimakis, and S. Vishwanath, “Experimental design
for cost-aware learning of causal graphs,” in Advances in Neural Information Processing
Systems, 2018, pp. 5279–5289.

[34] F. Eberhardt, C. Glymour, and R. Scheines, “N-1 experiments su�ce to determine the
causal relations among n variables,” in Innovations in Machine Learning. Springer,
2006, pp. 97–112.

[35] M. Kocaoglu, K. Shanmugam, and E. Bareinboim, “Experimental design for learning
causal graphs with latent variables,” in Advances in Neural Information Processing
Systems, 2017, pp. 7021–7031.

[36] S. Tong and D. Koller, “Active learning for structure in Bayesian networks,” in Inter-
national Joint Conference on Artificial Intelligence, vol. 17, no. 1. Citeseer, 2001, pp.
863–869.

[37] A. R. Masegosa and S. Moral, “An interactive approach for Bayesian network learning
using domain/expert knowledge,” International Journal of Approximate Reasoning,
vol. 54, no. 8, pp. 1168–1181, 2013.

169

[38] R. Agrawal, C. Squires, K. Yang, K. Shanmugam, and C. Uhler, “Abcd-strategy:
Budgeted experimental design for targeted causal structure discovery,” arXiv preprint
arXiv:1902.10347, 2019.

[39] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a
social network,” in Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2003, pp. 137–146.

[40] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance,
“Cost-e↵ective outbreak detection in networks,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
2007, pp. 420–429.

[41] W. Chen, Y. Wang, and S. Yang, “E�cient influence maximization in social networks,”
in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2009, pp. 199–208.

[42] F. Eberhardt and R. Scheines, “Interventions and causal inference,” Philosophy of
Science, vol. 74, no. 5, pp. 981–995, 2007.

[43] Y. He, J. Jia, and B. Yu, “Counting and exploring sizes of Markov equivalence classes
of directed acyclic graphs,” Journal of Machine Learning Research, vol. 16, no. 1, pp.
2589–2609, 2015.

[44] K. Dudziński and S. Walukiewicz, “Exact methods for the knapsack problem and its
generalizations,” European Journal of Operational Research, vol. 28, no. 1, pp. 3–21,
1987.

[45] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for
maximizing submodular set functions-I,” Mathematical Programming, vol. 14, no. 1,
pp. 265–294, 1978.

[46] S. B. Gillispie and M. D. Perlman, “The size distribution for Markov equivalence classes
of acyclic digraph models,” Artificial Intelligence, vol. 141, no. 1-2, pp. 137–155, 2002.

[47] M. Minoux, “Accelerated greedy algorithms for maximizing submodular set functions,”
Optimization Techniques, pp. 234–243, 1978.

[48] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause, “Lazier
than lazy greedy.” in AAAI, 2015, pp. 1812–1818.

[49] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, no. 5439, pp. 509–512, 1999.

[50] A.-L. Barabási, Network Science. Cambridge University Press, 2016.

170

[51] D. Marbach, T. Scha↵ter, C. Mattiussi, and D. Floreano, “Generating realistic in silico
gene networks for performance assessment of reverse engineering methods,” Journal of
Computational Biology, vol. 16, no. 2, pp. 229–239, 2009.

[52] K. Hoover, “The logic of causal inference,” Economics and Philosophy, vol. 6, pp.
207–234, 1990.

[53] J. Tian and J. Pearl, “Causal discovery from changes,” in Proceedings of the Seven-
teenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Pub-
lishers Inc., 2001, pp. 512–521.

[54] J. Peters, P. Bühlmann, and N. Meinshausen, “Causal inference by using invariant
prediction: Identification and confidence intervals,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 78, no. 5, pp. 947–1012, 2016.

[55] K. Zhang, B. Huang, J. Zhang, C. Glymour, and B. Schölkopf, “Causal discovery in
the presence of distribution shift: Skeleton estimation and orientation determination,”
in Proc. International Joint Conference on Artificial Intelligence (IJCAI 2017), 2017.

[56] B. Huang, K. Zhang, J. Zhang, R. S. Romero, C. Glymour, and B. Schölkopf, “Behind
distribution shift: Mining driving forces of changes and causal arrows,” in Proceedings
of IEEE 17th International Conference on Data Mining (ICDM 2017), 2017.

[57] A. Ghassami, S. Salehkaleybar, N. Kiyavash, and K. Zhang, “Learning causal struc-
tures using regression invariance,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 3015–3025.

[58] A. Ghassami, N. Kiyavash, B. Huang, and K. Zhang, “Multi-domain causal structure
learning in linear systems,” in Advances in Neural Information Processing Systems,
2018, pp. 6266–6276.

[59] H. Reichenbach, The Direction of Time. Dover Publications, 1999.

[60] P. Daniusis, D. Janzing, J. Mooij, J. Zscheischler, B. Steudel, K. Zhang, and
B. Schölkopf, “Distinguishing causes from e↵ects using nonlinear acyclic causal mod-
els,” in Proc. 26th Conference on Uncertainty in Artificial Intelligence (UAI2010),
2010.

[61] J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference: Foundations
and Learning Algorithms. MIT Press, 2017.

[62] K. Zhang, J. Zhang, and B. Schölkopf, “Distinguishing cause from e↵ect based on exo-
geneity,” in Proc. 15th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK 2015), 2015.

171

[63] H. Shimodaira, “Improving predictive inference under covariate shift by weighting the
log-likelihood function,” Journal of Statistical Planning and Inference, vol. 90, no. 2,
pp. 227–244, 2000.

[64] S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O.
Hoyer, and K. Bollen, “Directlingam: A direct method for learning a linear non-
Gaussian structural equation model,” Journal of Machine Learning Research, vol. 12,
no. Apr, pp. 1225–1248, 2011.

[65] J. Peters and P. Bühlmann, “Identifiability of Gaussian structural equation models
with equal error variances,” Biometrika, vol. 101, no. 1, pp. 219–228, 2013.

[66] Y. Wang, C. Squires, A. Belyaeva, and C. Uhler, “Direct estimation of di↵erences in
causal graphs,” arXiv preprint arXiv:1802.05631, 2018.

[67] C. Jutten and J. Herault, “Blind separation of sources, part I: An adaptive algorithm
based on neuromimetic architecture,” Signal Processing, vol. 24, no. 1, pp. 1–10, 1991.

[68] A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms and applica-
tions,” Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[69] S. Shimizu, “LiNGAM: Non-Gaussian methods for estimating causal structures,” Be-
haviormetrika, vol. 41, no. 1, pp. 65–98, 2014.

[70] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola, “A
kernel statistical test of independence,” in NIPS 20. Cambridge, MA: MIT Press,
2008, pp. 585–592.

[71] R. Poldrack, T. Laumann, et al., “Myconnectome dataset,” 2015,
https://openfmri.org/dataset/ds000031/.

[72] C. M. Bird and N. Burgess, “The hippocampus and memory: Insights from spatial
processing,” Nature Reviews Neuroscience, vol. 9, no. 3, p. nrn2335, 2008.

[73] P. Spirtes, “Directed cyclic graphical representations of feedback models,” in Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann Publishers Inc., 1995, pp. 491–498.

[74] A. Hyttinen, F. Eberhardt, and P. O. Hoyer, “Learning linear cyclic causal models
with latent variables,” Journal of Machine Learning Research, vol. 13, no. Nov, pp.
3387–3439, 2012.

[75] J. Tian and J. Pearl, “On the testable implications of causal models with hidden
variables,” in Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann Publishers Inc., 2002, pp. 519–527.

172

[76] I. Shpitser, R. J. Evans, T. S. Richardson, and J. M. Robins, “Introduction to nested
Markov models,” Behaviormetrika, vol. 41, no. 1, pp. 3–39, 2014.

[77] J. Pearl and R. Dechter, “Identifying independencies in causal graphs with feedback,”
in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelli-
gence. Morgan Kaufmann Publishers Inc., 1996, pp. 420–426.

[78] R. M. Neal, “On deducing conditional independence from d-separation in causal graphs
with feedback (research note),” Journal of Artificial Intelligence Research, vol. 12, pp.
87–91, 2000.

[79] T. Richardson, “A polynomial-time algorithm for deciding Markov equivalence of di-
rected cyclic graphical models,” in Proceedings of the Twelfth International Conference
on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1996,
pp. 462–469.

[80] A. Ghassami, A. Yang, N. Kiyavash, and K. Zhang, “Characterizing distribution equiv-
alence and structure learning for cyclic and acyclic directed graphs,” arXiv preprint
arXiv:1910.12993, 2020.

[81] E. V. Strobl, “A constraint-based algorithm for causal discovery with cycles, latent
variables and selection bias,” International Journal of Data Science and Analytics,
vol. 8, no. 1, pp. 33–56, 2019.

[82] A. Hyttinen, P. O. Hoyer, F. Eberhardt, and M. Jarvisalo, “Discovering cyclic
causal models with latent variables: A general sat-based procedure,” arXiv preprint
arXiv:1309.6836, 2013.

[83] A. Hyttinen, F. Eberhardt, and M. Järvisalo, “Constraint-based causal discovery: Con-
flict resolution with answer set programming,” in UAI, 2014, pp. 340–349.

[84] P. Forré and J. M. Mooij, “Constraint-based causal discovery for non-linear structural
causal models with cycles and latent confounders,” arXiv preprint arXiv:1807.03024,
2018.

[85] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU Press, 2012, vol. 3.

[86] C. Meek, “Strong completeness and faithfulness in Bayesian networks,” arXiv preprint
arXiv:1302.4973, 2013.

[87] M. Teyssier and D. Koller, “Ordering-based search: A simple and e↵ective algorithm
for learning Bayesian networks,” arXiv preprint arXiv:1207.1429, 2012.

[88] L. Solus, Y. Wang, L. Matejovicova, and C. Uhler, “Consistency guarantees for
permutation-based causal inference algorithms,” arXiv preprint arXiv:1702.03530,
2017.

173

[89] S. Van de Geer and P. Bühlmann, “`0-penalized maximum likelihood for sparse directed
acyclic graphs,” The Annals of Statistics, vol. 41, no. 2, pp. 536–567, 2013.

[90] F. Fu and Q. Zhou, “Learning sparse causal Gaussian networks with experimental in-
tervention: regularization and coordinate descent,” Journal of the American Statistical
Association, vol. 108, no. 501, pp. 288–300, 2013.

[91] B. Aragam and Q. Zhou, “Concave penalized estimation of sparse Gaussian Bayesian
networks.” Journal of Machine Learning Research, vol. 16, pp. 2273–2328, 2015.

[92] G. Raskutti and C. Uhler, “Learning directed acyclic graph models based on sparsest
permutations,” Stat, vol. 7, no. 1, p. e183, 2018.

[93] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “DAGs with NO TEARS:
Continuous optimization for structure learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 9472–9483.

[94] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Elsevier, 1988.

[95] S. Salehkaleybar, J. Etesami, N. Kiyavash, and K. Zhang, “Learning vector autoregres-
sive models with latent processes,” in International Conference on Machine Learning,
2018, pp. 4000–4007.

[96] S. Salehkaleybar, J. Etesami, and N. Kiyavash, “Identifying nonlinear 1-step causal
influences in presence of latent variables,” in 2017 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2017, pp. 1341–1345.

[97] D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel,
and B. Schölkopf, “Information-geometric approach to inferring causal directions,”
Artificial Intelligence, vol. 182, pp. 1–31, 2012.

[98] P. O. Hoyer, S. Shimizu, A. J. Kerminen, and M. Palviainen, “Estimation of causal
e↵ects using linear non-Gaussian causal models with hidden variables,” International
Journal of Approximate Reasoning, vol. 49, no. 2, pp. 362–378, 2008.

[99] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. John
Wiley & Sons, 2004, vol. 46.

[100] D. Entner and P. O. Hoyer, “Discovering unconfounded causal relationships using linear
non-Gaussian models,” in JSAI International Symposium on Artificial Intelligence.
Springer, 2010, pp. 181–195.

[101] Z. Chen and L. Chan, “Causality in linear non-Gaussian acyclic models in the presence
of latent Gaussian confounders,” Neural Computation, vol. 25, no. 6, pp. 1605–1641,
2013.

174

[102] T. Tashiro, S. Shimizu, A. Hyvärinen, and T. Washio, “ParceLiNGAM: A causal
ordering method robust against latent confounders,” Neural Computation, vol. 26,
no. 1, pp. 57–83, 2014.

[103] S. Shimizu and K. Bollen, “Bayesian estimation of causal direction in acyclic structural
equation models with individual-specific confounder variables and non-Gaussian dis-
tributions,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 2629–2652,
2014.

[104] G. Elidan and N. Friedman, “Learning hidden variable networks: The information
bottleneck approach,” Journal of Machine Learning Research, vol. 6, no. Jan, pp.
81–127, 2005.

[105] R. I. Jennrich and P. M. Bentler, “Exploratory bi-factor analysis,” Psychometrika,
vol. 76, no. 4, pp. 537–549, 2011.

[106] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent variable graphical model
selection via convex optimization,” in 2010 48th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton). IEEE, 2010, pp. 1610–1613.

[107] P. Spirtes, C. Meek, and T. Richardson, “Causal inference in the presence of latent
variables and selection bias,” in Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995, pp. 499–506.

[108] E. Kummerfeld and J. Ramsey, “Causal clustering for 1-factor measurement models,”
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016, pp. 1655–1664.

[109] R. Silva and R. Scheines, “Generalized measurement models,” Carnegie Mellon Uni-
versity, School of Computer Science, Tech. Rep. no. CMU-CALD-05-108, 2005.

[110] S. Salehkaleybar, A. Ghassami, N. Kiyavash, and K. Zhang, “Learning linear non-
Gaussian causal models in the presence of latent variables,” Journal of Machine Learn-
ing Research, vol. 21, no. 39, pp. 1–24, 2020.

[111] J. Eriksson and V. Koivunen, “Identifiability, separability, and uniqueness of linear
ICA models,” IEEE Signal Processing Letters, vol. 11, no. 7, pp. 601–604, 2004.

[112] J. Etesami, N. Kiyavash, and T. Coleman, “Learning minimal latent directed informa-
tion polytrees,” Neural Computation, vol. 18, no. 9, pp. 1723–1768, 2016.

[113] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, “ICA with reconstruction cost for
e�cient overcomplete feature learning,” in Advances in Neural Information Processing
Systems, 2011, pp. 1017–1025.

[114] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. CRC Press, 1994.

175

[115] A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer, “Estimation of a structural
vector autoregression model using non-Gaussianity,” Journal of Machine Learning Re-
search, vol. 11, no. May, pp. 1709–1731, 2010.

[116] T. Verma and J. Pearl, “An algorithm for deciding if a set of observed independencies
has a causal explanation,” in Proceedings of the Eighth International Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1992, pp.
323–330.

[117] M. Pourahmadi, “Covariance estimation: The GLM and regularization perspectives,”
Statistical Science, pp. 369–387, 2011.

176

