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ABSTRACT

Over the last decade, non-negative matrix factorization (NMF) has emerged
as one of the most popular approaches to modeling audio signals. NMF allows
us to factorize the magnitude spectrogram to learn representative spectral
bases that can be used for a wide range of applications. With the recent
advances in deep learning, neural networks (NNs) have surpassed NMF in
terms of performance. However, these NNs are trained discriminatively and
lack several key characteristics like re-usability and robustness, compared to

NMEF.

In this dissertation, we develop and investigate the idea of end-to-end non-
negative autoencoders (NAEs) as an updated deep learning based alternative
framework to non-negative audio modeling. We show that end-to-end NAEs
combine the modeling advantages of non-negative matrix factorization and
the generalizability of neural networks while delivering significant improve-

ments in performance.

To this end, we first interpret NMF as a NAE and show that the two
approaches are equivalent semantically and in terms of source separation
performance. We exploit the availability of sophisticated neural network ar-
chitectures to propose several extensions to NAEs. We also demonstrate that

these modeling improvements significantly boost the performance of NAEs.

In audio processing applications, the short-time fourier transform (STFT)
is used as a universal first step and we design algorithms and neural net-
works to operate on the magnitude spectrograms. We interpret the sequence
of steps involved in computing the STFT as additional neural network lay-
ers. This enables us to propose end-to-end processing pipelines that operate

directly on the raw waveforms. In the context of source separation, we show
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that end-to-end processing gives a significant improvement in performance
compared to existing spectrogram based methods. Furthermore, to train
these end-to-end models, we investigate the use of cost functions that are
derived from objective evaluation metrics as measured on waveforms. We
present subjective listening test results that reveal insights into the perfor-

mance of these cost functions for end-to-end source separation.

Combining the adaptive front-end layers with NAEs, we propose end-to-
end NAEs and show how they can be used for end-to-end generative source
separation. Our experiments indicate that these models deliver separation
performance comparable to that of discriminative NNs, while retaining the
modularity of NMF and the modeling flexibility of neural networks. Finally,
we present an approach to train these end-to-end NAEs using mixtures only,

without access to clean training examples.

iii



ACKNOWLEDGMENTS

As we tread through the grind of daily life and work, it is often easy to lose
ourselves in all the seeming clutter and apparent chaos that surrounds us.
It is only when we look back on our journey retrospectively that the real
magic reveals itself. It is only during these moments that we realize what
we've gained, how far we’ve traveled and how much we owe to the people
in our life: our advisors, our parents, our friends and our teachers. I take
this opportunity to thank you all; my achievements would not be possible

without each and every one of you.

First and foremost, I am extremely grateful to my guru Dr. Paris Smaragdis.
Right from the time I moved here, he has been a friend, a philosopher and a
guide in the truest sense of the terms. I realize now that he has led by exam-
ple every step of the way while allowing me to develop my own philosophies
and pursue my own interests with all the freedom I could have. Discussing
exciting ideas, projects and research in the office, facing heartbreaks over
rejected papers and lost opportunities, learning how to teach and guide stu-
dents, understanding how important it is to balance life and work, giddily
running to get green tea in Honolulu before the shops close for the day ...

I'm really gonna miss you and all of that, Paris.

I’d also like to thank the other members of my committee — Prof. Andrew
Singer, Prof. Mark Hasegawa-Johnson and my friend Dr. Minje Kim — for

all their time, effort and constructive feedback.

I’ve also had a great time and learned a great deal over four amazing in-
ternships. Thank you Dr. Gautham Mysore and Dr. Juan-Pablo Caceres for
being amazing mentors. Your feedback has always been extremely insightful

and productive and I've learned a great deal from you. I also really appre-

v



ciate the efforts of Dr. Jonathan Le Roux and Dr. Gordon Wichern for all
their guidance and insights during my time at MERL. I'd like to really thank
my dear friend Dr. Prem Seetharaman with whom I've shared thrilling dis-
cussions, amazing beers and a couple of desks at Adobe and at MERL. Last,
but not the least, I really appreciate the efforts of my mentors and soon-to-be
colleagues Dr. Umut Isik, Dr. Ritwik Giri and Dr. Arvindh Krishnaswamy.

Thank you for your trust and for the opportunity you've afforded me.

In my time here, I've also forged some deep friendships that I will cherish
for the entirety of my lifetime. I owe a great deal to my dearest lab-mates
Jonah, Thymios, Cem, Anny, Zhepei, Ryley, Ramin, Minje, Joh and Jeffrey
(Yu-Che). We've had exciting discussions, written some papers under gru-
elling deadlines and been through times when we wanted to possibly throttle
each other. Thank you guys, you have been my family and I will fondly

remember the times we've spent together for the rest of my life.

Through my TA-ships, I’ve had the pleasure of interacting with some bril-
liant students here. Thank you all for your patience, your time and your
questions. I'd also like to express my sincere gratitude to all my teachers

here. All of you have made me a better person.

My forays into audio and signal processing would not have been possible
without my advisors at II'T Bombay. I sincerely thank Dr. Preeti Rao and
Dr. Rajbabu Velmurugan for their guidance and efforts. I'm also indebted
to my friends and lab-mates Mayur, Amrita, Prateek, Hitesh, Kaustuv, Ved-
has, Nachiket, Parthe, Gaurang, Venkhat, Kumar and Suhas. You have

challenged me at every step and always made me better.

I owe the most to my parents — thank you for all your motivation, encour-
agement and everything you’ve given me in the 29 years of my life so far. I
also owe a tremendous amount to everyone in my family for their support.
Finally, to my dearest friends Rama, Aditya, Varun, Tanmay, Chintan, Dar-
shan, Sohan and Tiara, thank you for being there for me when I needed you

all. You guys are the best!



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . ... ... ... ... .......

CHAPTER 2 NEURAL NETWORK ALTERNATIVES TO NON-
NEGATIVE AUDIO MODELS . . . ... ... ... .. ......

2.1
2.2
2.3
24
2.5
2.6

Non-Negative Matrix Factorization (NMF) . . .. . ... ...
Non-negative Autoencoder (NAE) . . . ... .. .. ... ...
Single-channel Source Separation . . . .. ... .. ... ...
Advantages of NAEs . . . . . ... ... ... ... .. ...
NAE Extensions . . . . . . . . .. ...
Experiments . . . . . .. ..o

CHAPTER 3 END-TO-END MODELS FOR AUDIO SOURCE
SEPARATION . . . . . .

3.1
3.2
3.3
3.4
3.5

From STFTs to Adaptive Front-ends . . . . . ... ... ...
Cost functions for End-to-end Speech Separation. . . . . . ..
Experiments on Adaptive Front-Ends . . . . . .. .. ... ..

Experiments on Cost Functions . . . . . ... ... .. .. ..
Lessons for NAE Models . . . . .. ... ... ... ......

CHAPTER 4 END-TO-END NON-NEGATIVE AUTOENCODERS .

4.1
4.2
4.3
4.4

End-to-end Non-negative Autoencoder . . . . ... ... ...
Supervised Source Separation . . . . . .. ... ... ... ..
Experiments on End-to-end NAEs . . . . ... ... ... ...
Learning from Mixtures . . . . . .. .. ... ... ... ...

CHAPTER 5 CONCLUSIONS AND FUTURE WORK . . . . . . ..

5.1
5.2

OVErvIEW . . . . o o o
Future Directions . . . . . . . . . . ..

REFERENCES . . . . . . .

vi



CHAPTER 1

INTRODUCTION

With the current surge of deep learning (DL) and the recent advancements
in neural networks (NNs), NNs are being predominantly used to solve a wide
variety of tasks in different fields. These applications range from common
computer science topics like natural language processing, computer vision,
and computer audition to fields like astronomy and biomedical and civil en-
gineering. In addition, NNs have also been driving the state-of-the-art in

research with their impressive performances.

Even in the case of audio signals, NNs have been used for several appli-
cations. Some of these examples include source separation (SS) and speech
enhancement [1], speech recognition [2], audio classification [3], speech syn-
dissertation [4], music processing [5] etc. These NNs are typically trained
in a supervised or discriminative manner. The training set consists of large
amounts of input examples and their corresponding ideal targets. The input
examples are fed into the NN and the NN is trained to produce an out-
put the resembles the ideal target. This is done by training the network to
minimize a suitable measure of discrepancy between the output produced
by the network and the ideal target using back-propagation. For example,
in the context of speech denoising, the input to the NNs consists of noisy
or degraded mixtures and the NNs are trained to produce their correspond-
ing clean versions at the output. In the context of bandwidth extension, a
narrowband or filtered signal is given as the input and the NN is trained
to generate the corresponding wideband version. In the areas of polyphonic
music transcription or speech recognition, the speech/music samples are fed
as inputs and the corresponding music/text symbols are expected to be pro-

duced at the output of the network.

There are some significant drawbacks when training NNs in a discrimina-



tive manner.

e Training NNs discriminatively requires huge amounts of training data
and this is often performed by enormous amounts of data-augmentation
on the training set. As an illustrative example, in the context of speech
denoising, to have a practically usable network, we need to consider
input mixtures with a wide variety of possible interfering noises and

mixtures at varying signal-to-noise ratios (SNRs).

e The NN models we learn using discriminative training are often task
specific and not reusable. For example, speech denoising models trained
for extracting human speech from mixtures recorded on the street can-
not be used to extract human speech from mixtures recorded in a dif-
ferent ambient environment like the living room of a house. Likewise,
these models also cannot be extended to work on other problems like

bandwidth extension of speech signals.

e Finally, the discriminatively trained NNs are single-pass methods. In
other words, the test examples pass through the network only once
at inference time and the NNs are expected to produce the desired
outputs. Thus, there is no scope for fitting these models on slightly
varying test sounds. This lack of a fitting process at inference time

restricts the models from being extended to other related applications.

In contrast, a classical approach to modeling audio signals has been the
idea of non-negative matrix factorization (NMF). In the case of audio signals,
we apply NMF on the magnitude spectrogram of the audio signal to learn
representative spectral bases. Typically, we use these factorizations on clean
examples to get generative spectral bases for the sounds. An illustration of
applying NMF and the nature of these spectral bases are given in Section 2.1.
Also generative NMF models do not suffer from the drawbacks of discrim-
inatively trained NNs. The advantages of NMF models over discriminative

models can be itemized as follows:

e Generative NMF models trained on clean audio signals do not require

any data-augmentation when using them for various tasks.



NMF models are also reusable in nature. For example, NMF models for
human speech can be used to extract human speech from any mixture

irrespective of the nature of the interfering sounds.

Being a multi-pass method, NMF models are fitted iteratively on the
test examples at inference. This allows us to fit NMF models on related
but unseen test scenarios and leads to several novel applications like

querying and learning from mixtures [6].

At the same time, NMF suffers from a few drawbacks of its own.

It is very difficult to generalize NMF models to propose more sophisti-
cated extensions. Generalizing NMF models requires a significant effort

in re-working the model and deriving the update equations.

Traditional NMF approaches use fixed audio representations like the
magnitude spectrogram or the Mel spectrogram which also completely
discard the underlying phase information. Learning a representation
optimal to the data and the task can be beneficial in improving the

performance of these models.

To train NMF based models, we have been restricted to using simple
cost functions that allow us to derive suitable updates for the factoriza-
tion. Thus, complicated perceptual metrics like Short-term Objective
Intelligibility [7] and waveform based metrics like the BSS_eval met-

rics [8] have not been explored as cost functions.

NMF based models only deliver a modest performance when compared

to neural networks and significantly lag behind state-of-the-art results.

Thus, the goal of this dissertation is introduce a new framework to model

audio signals such that we retain the advantages of NMF and NNs, while

simultaneously alleviating their drawbacks. We do so by interpreting NMF

as a NN and then generalizing the architecture further. The availability of

automatic differentiation tools and NN toolboxes would then allow us to pro-

pose and explore the use of meaningful metrics as cost functions themselves.

Being generatively trained, the resulting models are multi-purpose in nature

and can be reused for different test conditions and tasks.

The contributions and the outline of this dissertation are as follows:



1. By interpreting NMF as a non-negative autoencoder (NAE), we first
provide a suitable NN based alternative to modeling audio signals. We
then show how we can generalize and deploy these NAE models to
extract the sources from a mixture. These ideas are explored in Chap-
ter 2.

2. To relax the constraints involved and learn a trainable representa-
tion for the audio signals, we interpret the short-time fourier trans-
form (STFT) as a NN. These NN based transforms allow us to operate
directly on the waveforms and use representations that are optimal for
the data and task at hand. We also show how we can interpret per-
ceptual and waveform based metrics as cost functions to train NNs.
This allows us to propose several new previously infeasible cost func-
tions that boost the performance of our networks. Chapter 3 deals with

these explorations.

3. Combining these ideas, we can update and improve upon the modeling
capabilities of NAE models to propose end-to-end NAEs. We show that
these end-to-end NAEs can compete with discriminatively trained NNs
in the context of single-channel source separation. NMF models can be
easily tweaked and adapted to perform querying and learn directly from
mixtures without access to clean training examples. We demonstrate
capabilities similar to those of our end-to-end NAEs and show how they
can be easily adjusted to learn without clean examples. We discuss
these in Chapter 4

This dissertation primarily uses single-channel source separation as the
application of choice. However, the ideas developed are general and can
be used as a potential replacement to NMF in several allied applications
like dereverberation, bandwidth expansion, and declipping that use similar

algorithms.



CHAPTER 2

NEURAL NETWORK ALTERNATIVES TO
NON-NEGATIVE AUDIO MODELS

Over the last decade, non-negative modeling of audio signals and non-negative
matrix factorization (NMF') [9] has emerged as one of the most popular tools
to perform audio source separation. More recently, with the advent of neural
networks (NN) and deep learning, NN based approaches to source separa-
tion have steadily grown in popularity and have resulted in state-of-the-art
source separation performance. A primary contributing factor is the ability
of neural networks to generalize and learn complex multi-layer models by
exploiting the modeling flexibility that comes with NNs. However, unlike
generative modeling approaches like NMF, these models are often trained as
discriminative models. Thus, the resulting models are not transferable and
cannot be reused when there is a mismatch between the training and test
conditions. The goal of this chapter is to develop a neural network that can
be used as an equivalent to NMF based generative models and show how

they can be used for single-channel source separation.

2.1 Non-Negative Matrix Factorization (NMF)

Given a matrix X, the goal of NMF is to approximate the input matrix X

as a product of two low-rank matrices given as

X~W-H (2.1)

Here, the input matrix X € R%XN is a matrix of non-negative real numbers
of size M x N. The matrices W € RY** and H € RE;" represent the
two low-rank non-negative factor matrices and K denotes the rank of the
decomposition. In the case of audio signals, we apply NMF on the magnitude
spectrogram. In such a setting, the matrix W is known as the basis matrix

while the matrix H is known as the activation matrix. The reason for such a



naming convention becomes clear when we consider the application of NMF

on a simple audio signal consisting of a sequence of piano notes.
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Figure 2.1: The top-right image represents the magnitude spectrogram of a
sequence of piano notes. We see that the given audio snippet consists of 3
distinct piano notes. We thus perform a rank 3 NMF decomposition. The
columns of W and the corresponding rows of H are shown as the NMF
bases (top-left) and the NMF activations (bottom-right). The resulting
approximation of the input spectrogram is also shown as the reconstruction
(bottom-left) in the figure.

We minimize the Kullback-Leibler divergence between the input X and its
factorization Y = W - H,

KL(X||Y) = X ® log (é) X4y (2.2)

Here, ® represents an element-wise multiplication operation and the divi-
sion is also element-wise. To solve the optimization problem, we particularly
prefer the use of multiplicative updates as described in [10]. The main ad-
vantage of using multiplicative updates is that once we set a non-negative

initialization for the W and H, the non-negativity of the successive updates
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are automatically guaranteed.

Figure 2.1 shows the NMF decomposition of the magnitude spectrogram
of a music signal comprising a sequence of 3 distinct piano notes. As shown
in the figure, the columns of W begin to look like the individual magnitude-
spectra of the different notes of the piano. For example, the third column
of W is representative of the first and third piano notes played in the given
audio signal. Similarly, component 2 represented by the second column of W
indicates the last three piano notes in the given signal. Thus, the columns
of W act as representative bases for the different notes of the piano itself
and the matrix is consequently known as the “basis” matrix. The rows of
H begin to indicate when the corresponding bases are activated over time in
the input spectrogram and hence H is also known as the “activation” matrix.
Such a factorization technique has been the core idea behind several source

separation approaches over the past few years [11, 12].

The idea of NMF has been extensively used for a wide variety of audio
applications. Popular examples of these applications in the domain of au-
dio signals are single-channel [13] and multi-channel [14] source separation,
speech enhancement [15], speech dereverberation [16], audio inpainting [17],
audio compression [18], polyphonic music transcription [9] and many more.
NMEF has also found several applications outside the audio domain. In video
processing, NMF has been used for video compression [19], video fingerprint-
ing [20], action recognition [21], video summarization [22] and several others.
NMF has also found wide applicability in the case of EEG data [23], text

mining [24], bio-informatics [25] and many others.

2.2 Non-negative Autoencoder (NAE)

Now that we understand the application of NMF in the context of modeling
audio signals, we can begin to consider the problem of interpreting NMF as
a neural network. As shown in [26], we can generalize the idea of NMF by

interpreting NMF' as a neural network in the following way:



1 layerr H=W#. X

A (23
2 layerr X =W -H

such that W, H > 0. We have thus interpreted NMF as a linear, two-layered
neural network. The first layer linearly transforms the input magnitude spec-
trogram X to get the activation matrix H. The second layer applies a linear
transformation W on the activation matrix to give X which is an approxi-
mation of the X. The weights of the first layer given by W+ act as a version
of the pseudo-inverse of W to estimate a non-negative H. This formulation
does not functionally improve upon the existing NMF model and is also not
in agreement with classical neural network architectures. We can relax and
generalize this model into a neural-network like formulation by incorporating

a non-linearity ¢(.) into the neural network.

layerr H=yg (VV:t . X)

N . B ' (2.4)
2" Jayer: X =g (W -H)

Here g : RM*N R%XN denotes an element-wise function that maps from
the domain of real numbers to the domain of non-negative real numbers. Pop-
ular examples of such functions in the neural network literature include the
rectified linear unit g(x) = max(x, 0), the softplus function g(x) = log(1+e*)
or even the absolute value function g(z) = |z|. Incorporating such a non-
linearity into the neural network automatically ensures the non-negativity
of the activation matrix H and the reconstruction X. We use the softplus

non-linearity for all our plots and experiments.

To train the autoencoder, we use a suitable cost function that measures
the discrepancy between the network output X and the input X and seek
to minimize it through back-propagation. In the case of NMF, several such
cost functions have been proposed and used to learn NMF decompositions
in the case of audio signals. Popular cost functions include the Frobenius
norm [10], the Kullback-Leibler (KL) divergence [10] and the Itakura-Saito
(IS) divergence [27]. Due to its overwhelming popularity, we will use KL

divergence as our preferred cost function for all our experiments and figures.

In the case of NAEs, we also relax the constraint of the basis matrix W
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Figure 2.2: The learned basis and activation matrices for a non-negative
autoencoder. As in the case of NMF, we minimize the KL divergence
between the input and its reconstruction, K L(X||X). We see that the
columns of the basis matrix acquire negative values and cross-cancel unlike
the case of NMF.

compared to NMF. In fact, as shown in Figure 2.2, the weights of the decoder
can indeed take up negative values and this allows for cross-cancellations
between the bases when representing the input spectrograms. Consequently,
the activation matrix H indicates that multiple bases are often activated in
trying to best approximate the input spectrogram. This can be alleviated by
introducing a sparsity constraint into the cost function in the form of an L-1
loss on the activation matrix. As shown in Figure 2.3, we see that the basis
and activation matrices are now qualitatively similar to NMF. Like NMF, we
can now use this modeling strategy to learn suitable generative models for

the sources in a mixture and use them for source separation.

2.2.1 Fitting a model on unseen inputs

We now turn our attention to the problem of fitting a trained NMF or NAE

model on an unseen example. Figure 2.4 shows the block diagram of the
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Figure 2.3: The learned basis and activation matrices for a non-negative
autoencoder. As in the case of NMF, we minimize the KL divergence
between the input and its reconstruction. In addition, we also incorporate a
sparsity constraint on the activation matrix and incorporate it into the cost
function. Thus, we minimize the overall cost function given by

KL(X||X) + ||H]||;. We see that the columns of the basis and the rows of
the activation matrix are now qualitatively similar to NMF'.

fitting process in the case of NMF models. As shown in the figure, the first
step is to use the available training data to learn suitable models for the
audio signals. Thus, given the training spectrogram S, we learn an NMF
decomposition of the input training spectrogram to learn the basis matrix
W, and the activation matrix H;. The columns of W; act as the represen-
tative bases for the sounds. Thus, we discard the activation matrix H; and
reuse the basis matrix Wy in the fitting step. In the fitting step, given an
unseen spectrogram X and the model Wy, the goal is to estimate a suitable

activation matrix Hy, such that the unseen spectrogram is approximated as

X ~ W, - Hy, (2.5)

In terms of the optimization procedure, this is a simplified problem where

we use similar multiplicative updates only for the activation matrix of NMF,
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Figure 2.4: lustration of how we can fit a pre-trained NMF model on an

unseen test example. Fitting the NMF model amounts to estimating the
activation matrix, while keeping the basis matrix fixed.

while keeping the basis matrix fixed.
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Figure 2.5: Illustration of how we can fit a pre-trained NAE on an unseen
test example. Fitting the NAE amounts to training for the right input to
the NN while keeping the weights fixed.

To avail such a fitting procedure for our NAE models, we re-interpret this
problem in an NAE setting. Figure 2.5 shows the block diagram of the fitting
process in the case of NAE models. As before, the first step is to use the
available training spectrogram to learn a suitable NAE model. We first train
a NAE on the input training spectrogram. In this case, the weights of the
decoder act as the model for the sounds in the input audio signal. In the
fitting step, we reuse this trained decoder to construct a new fitting NN.

Given the pre-trained decoder weights, the goal is to estimate a suitable

11



activation matrix Hy, such that the unseen spectrogram X is approximated

as

X ~ g(W, - Hy,) (2.6)

In other words, instead of training for the weights of a neural network,
we now train to find the appropriate input to the neural network so as to
approximate the given unseen spectrogram. In terms of coding complexi-
ties, this is as straightforward as a regular neural network and only requires

switching the inputs to be trainable symbolic variables.

2.3 Single-channel Source Separation

We now consider some applications of our NAE models. Given the popular-
ity of NMF for source separation, we now show how we can use NAEs as an
alternative to NMF for supervised single-channel source separation. Given
a mixture of concurrently active sounds, the goal of single-channel source
separation is to extract the underlying sounds in the mixture. To do so, we
assume that we have clean training examples available for each of the sources
in the mixture. We use these training examples to build suitable models for

our sources.

We now show how we can use our NAE models to perform supervised
single-channel source separation. Figure 2.6 briefly describes the separation
procedure. As shown in the figure, the source separation problem uses a
modified version of the fitting problem described in Section 2.2.1. As an
example, we consider that the given mixture consists of two sources and the
goal is to isolate the individual sources from the mixture. Like NMF [13, 28],
source separation using NAEs is a two-step procedure. The first step is to
learn suitable NAE models for the sources in the mixture. We use the clean
training examples for the sources and train NAEs for each of the sources.
The decoders of these NAEs now act as representative models for the sources.
The second-step of the procedure involves constructing a new separation-NN
using these pretrained decoders. The goal now is to estimate the unknown

activation matrices Hy, and Hy, such that the unseen mixture spectrogram

12
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Figure 2.6: Single-channel source separation using NAEs.
X can be approximated as
X~ g(Wi-Hy ) +9(W2-Hy,) (2.7)

Generalizing this idea, the goal of the separation procedure is to estimate
the activation matrices (decoder inputs) Hy, and Hy, such that the decoder
outputs add up to approximate the spectrogram of the unseen mixture. In
order to evaluate our NAE models and see how they compare to NMF mod-
els, we evaluate the separation performance of NAE and NMF models on
a source separation experiment. The details of our experiments and their

results are discussed in Section 2.6.
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2.4 Advantages of NAEs

We now consider the advantages NAE models offer over discriminative NN
models and NMF models, particularly in the context of source separation.
However, we note that these advantages are general and hold for other ap-

plications as well.

In the case of NAEs, we primarily learn generative models using clean
training examples for the sounds. Unlike discriminative separation models,
these models do not require any mixing or additional data augmentation for
their training. The availability of a trainable inference (fitting) step allows
the model to automatically adapt to mixtures at different SNRs. In addi-
tion, NAEs are neural network interpretations of NMF and they retain the
“modularity” and “reusability” of NMF models. Once we have the models
for the sources, these models can be used to extract the sources from any
mixture containing the sources, irrespective of the interfering sources. This
ability of NAE models to adapt to unseen mixing conditions is evaluated in
Section 4.3.3.

NAEs also offer a very significant advantage over NMF based generative
models. We can exploit the available diversity of sophisticated neural net-
work architectures to propose multi-layered, convolutional and recurrent ex-
tensions to our NAEs. Proposing such extensions in the case of NMF re-
quires a significant re-working of the model and the corresponding update

equations [29]. We discuss these extensions further in Section 2.5.

2.5 NAE Extensions

To further explore the generalizations of our NAE models, we consider the

following extensions.

2.5.1 Multi-layer NAEs

The first extension to the single-layer NAEs described in Section 2.2 is to

replace the encoders and decoder by multi-layered neural networks. We im-
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Figure 2.7: Block diagram of CNN-CNN autoencoder.

plement the multi-layered NAE as follows:

Y,=X
Yi: WZYZ, ,i:1,2,...,2L
9l 2 (2.8)
H=Y,
X =Y

Thus, the multi-layered NAE uses a total of 2L layers with L layers each
for the encoder and the decoder. In this formulation, the layers are enforced
to be symmetric about the latent representation. In other words, if the ¥
layer of the encoder W; € RM*¥ then the (2L + 1 — )™ layer of the decoder
Wi € RV*M_ 1n this case, the output the encoder, i.e., the output of
the L™ layer, is regarded as the latent representation. As before, the goal
of the decoder is to produce an approximation of the input X. To train
the network, we minimize the discrepancy between the network’s output X
and input X, and train using the same methods as before. We compare
the separation performance of multi-layer NAEs to single-layer NAEs in our

experiments in Section 2.6.

2.5.2 Convolutional NAEs

The single- and multi-layer NAE models do not consider the spectro-temporal
relationships present in an audio spectrogram. To do so, we can replace the

dense layers in our NAE by convolutional layers as follows:
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1°" layer: H(i, t) (Aimzlw X(j,t— k))
2 Jayer: X(f,t) =g (Z > Wik, f) - H(i,t — k)) (2.9)

i=1

Here, barring the non-linearity ¢(.), each column of the latent representa-
tion is now given as a linear combination of T" previous columns of the input
spectrogram. These cross-frame relationships now allow the model to learn
spectro-temporal bases and activations. Effectively, we have now replaced the
column vectors of W by matrices of size M xT', where T' represents the depth
of the convolution and M denotes the height of the input matrix X. W; and
H correspond to the i*® basis matrix and the activation matrix respectively.
As before, the filters of the encoder convolutional neural network (CNN) act
as inverse filters. We will refer to this NAE as the CNN-CNN autoencoder
(CCAE) in the following sections. Figure 2.7 shows the block diagram of our
CCAE.
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Figure 2.8: CCAE trained on a magnitude spectrogram of a sequence of
drum sounds. We see that the decoder filters capture spectro-temporal
bases that resemble the different drums in the audio signal.

The ability of our CCAE to learn spectro-temporal basis functions can be

understood better by training a CCAE on the magnitude spectrogram of an
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Figure 2.9: A subset of decoder filters obtained by training the CCAE on
magnitude-spectrograms of the utterances of a male speaker. The
decomposition uses a rank of 80 and a filter width of 8 frames. We see that
the filters approximately resemble snippets of a speech spectrogram and
capture harmonic information.

audio signal consisting of drum sounds. Drum sounds are characterized by an
impulsive burst followed by a temporal decay. Depending on the resonances
of the drum, some frequencies are sustained longer than the others. The
spectrogram of the audio example is shown in Figure 2.8. As before, we
perform a rank-3 NMF decomposition. The 3 decoder filters are shown in
the figure as components and their corresponding activations are also shown
alongside. To train the autoencoder we use the KL divergence with an added
sparsity regularizer on the activations. We see that the filters learn spectro-
temporal bases that look like the magnitude spectra of the drum sounds. For
example, the mid-range portion of component-3 clearly indicates the snare
drum. Likewise, the sustained low-frequency part in component-1 indicates
a bass drum. As shown in Figure 2.9, training on speech spectrograms also
allows the CCAEs to learn spectro-temporal filters that resemble snippets of

the spectrogram of speech itself.

2.5.3 Recurrent NAEs

The third extension we consider is the use of a hybrid NAE where the encoder
consists of a recurrent NN and the decoder consists of a convolutional NN.
From a signal processing perspective, the inverse of a finite impulse response

filter has an infinitely long impulse response. Since the filters of the encoder
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act as inverse filters to the decoder, the use of (theoretically) infinitely long
temporal dependencies can be beneficial to the NAE. Thus, we consider the

recurrent-convolutional autoencoder (RCAE) next.

The block diagram of the recurrent encoder is shown in Figure 2.10. The
goal of this construction is to have K independent recursive channels where
K is the rank of the NAE latent representation. The k" recursion in the

encoder is given as

Kin
Z(ki,t,k) = tanh ( ST WH (ko) Z (koo t — 1K)+

ko=1

ZUi’“(k:l,Z)X(l,t)>, kell,... K}, (2.10)

Here, Z(:,t, k) € R¥» denotes the hidden vector of the £*® RNN at frame ¢.
The dimensionality of this hidden state is denoted by K,. The recurrent and
projection matrices of the k" RNN are given by Wik, and U respectively.
Although these equations indicate the use of a vanilla-recursion, there is no
limitation on the type of recursion we could use. In our experiments, we use
the LSTM architecture [30, 31]. The encoder output H(i, t) is then obtained
by adding the outputs of the recurrent network over the latent dimension

(first dimension).

H(i t) = Y Z(ky,t,1) (2.11)

More recently, probabilistic variants of these autoencoders obtained by us-

ing variational autoencoders (VAEs) have also been considered [32].
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2.6 Experiments

We now present some experiments and results to evaluate the performance
of our NAE models in the context of source separation. We primarily discuss
the results of three of our experiments. The first experiment is aimed at
comparing the separation performance of one-layer and two-layer NAEs to
NMF'. Here, the numbers represent the number of layers in both the encoder
and decoder. The second experiment aims to compare the separation per-
formance of one-layer and two-layer NAEs for varying decomposition ranks
(size of the latent representation). The final experiment compares CCAE
and RCAE models to one-layer NAEs. We begin with a description of the

experimental setup used.

2.6.1 Experimental setup

For our experiments, we use speaker utterances from the TIMIT database [33].
The database consists of 10 clean utterances per speaker. We use a randomly
selected subset of 9 of these sentences for training and the remaining utter-
ance is used for testing. For the evaluation, we use 32 such mixture pairs of
randomly selected users from the database. The test utterances are mixed
at a SNR of 0 dB for these experiments. To compute the magnitude spectro-
gram of these utterances, we use a 512-pt DF'T, a square-root Hann window,
and a hop size of 25%. The training examples are used to train NMF, NAE,
CCAE and RCAE models for the sources. To transform the separated mag-
nitude spectrograms back into their waveform representations, we use the

overlap-and-add inverse STF'T operation as follows:
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si(t) = STFT™! ( —OX06 e“"> (2.12)

Here, X; denotes the estimated magnitude spectrogram of the i** source,
X represents the magnitude spectrogram of the mixture and ® represents
the matrix containing the mixture phase. As before, the operator ® denotes

element-wise multiplication and the division is also element-wise.

The separation performance is measured in terms of the BSS_eval met-
rics [8] viz., signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR)
and signal-to-artifacts ratio (SAR). The results are shown in the form of a
box-plot. The solid line at the center indicates the median value and the
extremities of the box indicate the inter-quartile range (25 percentile and

the 75 percentile points).

2.6.2 Experiment 1: NMF vs shallow NAE vs multi-layer
NAE

The first experiment aims to compare the separation performance of single-
layer (L = 1) and multi-layer NAEs (L = 2) with that of NMF. Figure 2.11
shows the results of the experiments. The top figure compares the perfor-
mance of the NAEs with NMF for a decomposition rank K = 20. We see
that both these versions are comparable to NMF in terms of source sepa-
ration performance. The bottom figures show the same comparison for a
decomposition rank of K = 100. Here, the multi-layer NAE significantly
outperforms NMF and single-layer NAEs.

2.6.3 Experiment 2: NAE performance for varying
decomposition ranks

Figure 2.12 compares the performance of single and multi-layer NAEs over
varying decomposition ranks. The points show the median value of the sepa-

ration performance over all the 32 test mixtures. We see that the multi-layer
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Figure 2.11: Comparison of source separation performance on

speech /speech mixtures between NMF, shallow NAEs (L = 1) and
multi-layer NAEs (L = 2). The top figure shows this comparison for a
decomposition rank of 20 (top). The bottom figure shows the same
comparison for a decomposition rank of 100.

NAE consistently outperforms single-layer NAEs and the separation perfor-

mance improves with higher decomposition ranks. These generalizations and

improvements are not easily possible in the case of NMF models.
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Figure 2.12: Comparison of single-layer NAEs (left) and multi-layer NAEs

(right) over varying decomposition ranks. We also include a comparison in

terms of Short-term Objective Intelligibility [7] in addition to the BSS_Eval
metrics [8].
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Figure 2.13: Comparison of separation performance of NAE, CCAE and
RCAE models for varying decomposition ranks. The SAR values for all the
models seem to be comparable. However, the suppression of interfering
sources improves significantly in the case of CCAE models (SIR). This gives
a significant boost in overall separation performance (SDR).

22



2.6.4 Experiment 3: NAE vs CCAE vs RCAE

The final experiment compares the separation performance of CCAEs and
RCAEs with single-layer NAEs and the results are shown in Figure 2.13. For
clarity and interpretability reasons, we show a plot of the median values of the
metrics for varying decomposition ranks (number of filters in the decoder).
Here again, we see that there is a significant improvement in separation
performance using sophisticated neural networks over single-layer NAEs. Of
all the three models, the CCAE model gives the best results in terms of
overall separation performance across all the metrics. The RCAE also gives a
significant improvement over NAEs. This improvement is not as pronounced
as the CCAE model. All the models are comparable in terms of their SAR
values. These experiments indicate the importance of generalizability to NAE

performance, particularly in the context of single-channel source separation.
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CHAPTER 3

END-TO-END MODELS FOR AUDIO
SOURCE SEPARATION

In Chapter 2, we have introduced the idea of non-negative audio modeling
and non-negative autoencoders (NAEs). We have also seen that these NAE
models offer significant modeling advantages compared to discriminatively
trained neural networks (NNs) and non-negative matrix factorization (NMF)

models.

However, all of these models continue to operate on magnitude spectro-
grams of the audio signal. For example, in several discriminative source
separation models, the magnitude spectrogram of the mixture is given as an
input to the neural network and the neural network is trained to estimate
the magnitude spectrograms of the clean sounds. Even in the case of gen-
erative models like NMF and NAEs, we continue to model the magnitude
spectrograms of the clean sounds as a low-rank factorization or an autoen-
coder respectively. In doing so, we are completely neglecting the phase of

the audio signal in all the approaches.

In the case of audio signals, the short-time Fourier transform (STFT) is
used as a universal front-end transformation for almost all the applications.
Consequently, the representation of the audio signal may not necessarily be
optimal for all the tasks. In other allied audio applications like speech recog-
nition [34] and music information retrieval (MIR) [35], the use of data-driven
representations has been shown to improve performance. These data-driven
representations can be trained with the rest of the model to learn represen-
tations optimal to the dataset and the application. More recently, even in
the case of NMF, the use of a trainable audio representation has been shown

to significantly boost modeling and source separation performance [36].
Audio applications like speech recognition and MIR operate on the audio
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signal to learn underlying information. Thus, these applications do not re-
quire a strategy to invert the data-driven representations of the audio signal
back into the waveform domain. In the applications primarily of our in-
terest (source separation, de-reverberation, audio enhancement, bandwidth
extension etc.), we aim to reconstruct the enhanced version of the audio sig-
nal from the latent representation. Consequently, these applications demand
the availability of trainable forward and inverse transforms in order to learn

data-driven front-ends.

To this end, we interpret the operations involved in computing the STFT
as a neural network and use the resulting model as a trainable transform
layer. This allows us to develop models that operate directly on the audio
waveforms and learn invertible optimal representations. Several evaluation
metrics are often defined on the domain of waveforms. With the availability
of such end-to-end networks, these evaluation metrics can also be interpreted
as suitable cost functions to train our networks. Modeling the STFT as a neu-
ral network also allows us to propose interesting generalizations to the STFT
that outperform existing front-end representations. We primarily explore
these ideas in the current chapter. In particular, we explore these topics in
the context of discriminative end-to-end source separation. The extendable

ideas that can be used to improve NAE models are summarized in Section 3.5

3.1 From STFTs to Adaptive Front-ends

3.1.1 Complex valued STFT representation

The STFET converts the audio signal into a complex-valued time-frequency
(TF) representation. Figure 3.1 denotes the block diagram of the STFT-
based source separation network. Given the audio waveform z, the general-

ized short-time transform of the audio signal can be written as

P

X(n, k) = x(nh+1t)-w(t)-bk,t) (3.1)

t

Il
=)
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Here, X(n, k) represents the frequency domain coefficient corresponding to
the k™ component in the n' time frame of z, N represents the size of the
window function w, and h denotes the hop size used. b(k,t) represents the

basis functions used for the representation.

For the STFT representation, the basis functions b(k, t) are complex expo-

nentials defined by the complex DFT operation. These basis functions can

b(k,t) = exp <j2”—’”> (3.2)

be written as

N

where integers k,t denote the frequency and time indices such that, 0 <
k,t < N — 1. Thus,

=

2w - k-t
XSTFT(n, k) = x(nh + t) . w(t) - exp (]WT>
t

Il
o

From the complex valued STFT representation, we compute the magnitude

and phase components as follows:

MSTFT(na k’) = ’XSTFT(na k)‘
PSTFT(”a k) = €xXp (j : 4XSTFT(na k))

Complex valued Magnitude
STFT Spectrogram
X M
STFT DNN X ISTET
’ Abs ||
Input Target
P=X/M 9

Complex Phase

Figure 3.1: Source separation using the STFT. Magnitude and phase are
initially separated, then a neural network operates on the magnitudes, and
phase is used to modulate the network’s output in order to produce the
resulting source waveform.
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As shown in Figure 3.1, the magnitude component (Mgrgr) of the STFT
representation is now fed as the input to the neural network. The network
is trained to estimate the magnitude spectrogram of the source given the
mixture spectrogram. The mixture phase is multiplied element-wise to the
estimated source spectrogram. We then transform the separated source to

the time domain using the inverse STFT operation.

3.1.2 Smoothed STFT representation

Until recently, the optimization of deep complex-valued neural networks
had not been explored in detail [37]. In the case of audio signals, this
would mean that the phase component would have to be truncated, result-
ing in significant loss of information. In addition, the lack of availability of
automatic-differentiation toolboxes and coding support meant that develop-
ing and training these networks from scratch required an enormous amount
of coding. To circumvent these numerical challenges, we can retain all the
information in the STFT by stacking the real and imaginary coefficients into
a real-valued vector of size 2N, for every frame. As shown in Eq. (3.1), the
STFT coefficient X,,;, can be written as a convolution between the current
frame [Tpn, Tuhits - - - Tonen—1] and the k' basis, weighted by the window
function. Thus, the real and imaginary parts of the STFT coefficients can be
written as the output of a convolutional layer. The convolutional layer filters
are set to B which is obtained by stacking the real and imaginary parts of
the STFT bases as follows:

27%” ) 0<kt<N—1

27r~k~t)
N Jo<kt<N-1

B — COS(

sin (

Instead of computing the magnitudes of the STF'T representation, we could
directly train the neural network to operate on these real-valued coefficients.
We note here that the representation now contains 2N coefficients as opposed
to the N STFT magnitude coefficients. To obtain a representation akin to
STFT magnitudes, we use an abs(-) non-linearity at the output of the con-

volutional layer.

In order to get an intuitive understanding of the real-valued representation,
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Figure 3.2: (a) Absolute value of the first 15 STFT coefficients for a
sequence of piano notes. (b) Modulus of equivalent real and imaginary
parts of STFT coefficients. Note that we now deal with the first 30
coefficients instead. The unsmoothed coefficients rapidly vary and have to
be smoothed across time to resemble what we would expect as a magnitude
spectrogram. (¢) Modulus of real and imaginary parts of STFT coefficients
after smoothing by a rectangular filter of length 5.

we compare the absolute value of the output of the front-end convolutional
layer (|X]|) with the STFT magnitudes for a simple audio signal consisting
of a sequence of piano notes. The plots of this comparison are shown in
Figure 3.2. Unlike the STFT magnitudes, the outputs of the convolutional
layer exhibit rapid variability as a consequence of incorporating the phase
into the representation. These variations could potentially be dependent on
the frequency of the STFT bases, the frame-size and hop-size of the front-
end transform. To obtain a smooth representation that resembles the STFT
magnitudes, we apply a temporal smoothing operation on |X|. The effect of
smoothing the real and imaginary STFT coefficients using a rectangular win-
dow of duration 5 samples is shown in Figure 3.2. We see that the smoothed

coefficients are now similar to the STFT magnitudes.

The temporal smoothing operation can also be implemented as a convolu-

tion operation across time and hence as a convolutional layer.
M= |X]|*p (3.3)

Here, |- | represents the element-wise modulus operator, p represents a filter-

bank of smoothing filters and % denotes the one-dimensional convolution
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operation which operates only along the time axis. Replacing this smoothing
operation by a convolutional layer would allow us to learn smoothing filters
tailored to each frequency component. We follow the smoothing layer with
a softplus non-linearity to obtain a carrier/modulator representation of the
audio signal, similar to the STF'T coefficients. The output of the smoothing
layer is denoted as the modulation component (M) and captures the smooth
aspects of the STFT representation. The carrier component captures the
information lost by the abs(-) and temporal smoothing operation and is given

as

== (3.4)

where the division is element-wise.

Synthesis
‘ conv layer

Smoothing
layer

Softplus

Input Target

C=X/M

Figure 3.3: Taking the model in Figure 3.1, we implement it as a
convolutional network with a skip connection. The analysis layer
implements a real-valued version of the STFT by computing its real and
imaginary components as separate dimensions. Subsequent steps extract
their corresponding amplitude, process it, and recombine it with the original
phase. The final layer implements the inverse transform that produces the
output waveform. We additionally use a smoothing layer to compensate for
the complementary modulations between the sine and cosine coefficients.

Figure 3.3 gives the block diagram of an end-to-end source separation
network using the smoothed STFT front-end. Similar to the STFT setting,
the modulation component is fed to the network. The carrier component of
the mixture is multiplied with the estimated source modulation and inverted
into time using a transposed convolution layer. We initialize the transposed
convolutional layer as the front-end to get perfect reconstruction. For the
current model, these layers are held fixed during training. From Figure 3.6,
we see that the smoothed STFT model is comparable to STFT magnitudes in
terms of source separation performance. This indicates that there is possibly

no loss of information in using a smoothed STF'T representation over the
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magnitude STFT.

(a) Source separation using
AET

Filter: B Filter: B

Analysis M Synthesis
DNN
npu @ Target
C=X/M

(b) Source separation using
Full AET
Filter: B, Filter: B,

Analysis
conv layer

Figure 3.4: Block diagrams of end-to-end source separation networks using
the AET (a), and the fulllAET (b). In contrast to before, these models
have a trainable front-end as opposed to using a fixed Fourier-related
filterbank. In the case of the fulllAET, the final layer has an independent
trainable filterbank, whereas the AET is using the transpose of the learned
analysis filterbank.

Synthesis
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—
Input

Target

C=X/M

3.1.3 Adaptive Front Ends

We can now make the convolutional and smoothing layers learnable to learn
a fully trainable TF representation for the audio signals. Making the front-
end and smoothing layers adaptive allows the network to learn basis and
smoothing functions directly from the raw waveform of the signal. Thus,
these functions would be optimal for the separation task. The transposed
convolutional layer acts as an adaptive reconstruction step that transforms
the audio signal back into the waveform domain. We refer to this as the
autoencoder transform (AET) front-end. This allows us the possibility to
explore two possible configurations of the AET networks. In the first con-
figuration, the front-end and synthesis convolutional layers share the same
filters. The second configuration is to allow the front-end and synthesis
convolutional layers to be independently trainable. We refer to these config-
urations as the AET and full-AET respectively. Figure 3.4 gives the block
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diagrams of the AET and full-AET architectures.
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Figure 3.5: (a) A modulation spectrogram obtained of a speech mixture
consisting of a male and female speaker, front-end convolutional layer filters,
and their corresponding normalized magnitude spectra for the full-AET
model (top) (b) A modulation spectrogram obtained for a speech mixture
consisting of a male and female speaker, front-end convolutional layer
filters, and their corresponding normalized magnitude spectra for the AET
model (bottom). The front-end and synthesis layers share the filters in the
AET model while the fulll-AET model allows the front-end and synthesis
layers to have independent weights. The filters are ordered according to
their dominant frequency component (from low to high). In the middle
subplots, we show the waveforms for a subset of the first 32 filters.

Figure 3.5 shows the AET and full-AET front-end filters learned on male-
female mixtures. We plot these filters in time and frequency. We see that the
filters are frequency selective like the STEFT. Also, the filters are concentrated
towards the lower frequencies and spread out at the higher frequencies, sim-
ilar to the Mel filter bank. Unlike the STF'T, the filters of the front-end and
synthesis convolutional layers are not restricted to be orthogonal or inverse
versions of each other. In addition, the stride of the convolutional layers also
plays a role in developing trainable architectures. The effect of striding on
AET and full-AET models is shown in Figure 3.7.
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3.2 Cost functions for End-to-end Speech Separation

Previously, magnitude spectrograms have been interpreted as probability
density functions of random variables with varying characteristics. This has
led to the use of divergence-based cost functions for single-channel source sep-
aration. Some of these examples include mean squared error (MSE) [38], KL
divergence [26, 39] and IS divergence [39]. However these are often used as
proxies to the performance metrics we ultimately measure, which are almost
always waveform based. For end-to-end architectures, statistical metrics like
mean squared error [40, 41] and 1-1 loss [42, 43] have been tried. Cross-
entropy and its modified versions have also been tried out [44]. In source
separation, however, we most often evaluate the performance of source sepa-
ration algorithms using BSS_Eval metrics viz., SDR, SIR, SAR [8] and Short-
term Objective Intelligibility (STOI)[45] metrics. Thus, a logical step is to
interpret these metrics as cost functions themselves. In these cost functions,
we denote the network output waveform as x. This output should ideally
match the source waveform y and suppress the interference z. Thus, y and

z are fixed constants with respect to the optimization.

3.2.1 BSS_Eval cost functions

The distortions in the network output x can result from the effects of the
interfering source z or from the artifacts introduced by the processing al-
gorithm. SDR incorporates the overall effect of distortions in the network
output. The effects of the interfering sources are observed in the SIR score.
The processing artifacts are measured by SAR. Maximizing SDR with respect

to x can be given as

max SDR(xy) = max <}§§’>_2 T (3.5)
_ e ) (>Z>y>—2 (xy)* (3.6)
~ min <y<yx>;;c2x> = Eg; (3.7)
o min g;é (3.8)
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Thus, maximizing the SDR maximizes the correlation between x and y
and simultaneously minimizes the energy of x to produce a minimum energy

solution.

Maximizing the SIR cost function can be given as

o W) L a?
max SIR(x,y,2) = (yy)2(xz)2 ~  (xy)?

(3.9)

Thus, maximizing the SIR maximizes the correlation of the network out-
put x with the desired source y and minimizes the correlation between x
and the interference z. Removing the minimum energy constraint makes the
network focus predominantly on time-frequency bins that are dominated by

y and do not contain z. Thus, SIR as a cost function needs to be supported

by SAR.

For the SAR cost function, we assume that the clean target source y
and the clean interference z are orthogonal in waveform domain. Thus, the
corresponding inner-products zero out and we can then derive the following

simplification for maximizing SAR:

|2y +

(zz)

max SAR(x,y,z) = max - — (3.10)
e — &y — g
|x — (xy>y _ <;(§>Z||2
= min ) 5 (3.11)
1633y + <zz ol
2
(xx) — (xy)? <xzzz>
= min <Xy>2<yy><xz>2< ) (3.12)
oy T )
)
O Min —s— (3.13)
oy T )

The SAR cost function does not distinguish between y and z and cannot
be used to train a network to separate the source from the interferences.

However, in combination with SIR, it can be used for end-to-end separation.
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3.2.2  Short-term Objective Intelligibility (STOI)

The drawback of BSS_Eval metrics is that they do not necessarily reflect the
amount of intelligibility of the resulting output. STOI is a popular metric
that correlates with subjective speech intelligibility. The first step of comput-
ing the STOI metric is to transform the audio signals into the time-frequency
domain using a 512-point STFT with a “Hann” window size of 256 samples
and a hop of 128 samples. The STF'T representations are transformed into
an octave band representation using 15 (1/3)rd octave bands that extend
up to 10,000 Hz. These steps are applied on the network output x and the
source of interest y to obtain X and Y respectively. Here, ij corresponds

to the energy of x in the j -th one-third octave band at the m -th time frame.

Given X and Y, the intermediate STOI measure for one bin, denoted by
d;m, depends on a neighborhood of N previous bins. To do so, we construct
new vectors X;,, and Y., consisting of N = 30 previous frames before the

m -th time frame as follows:

A~ A~ A~

T
Xj,m - [Xj,m—N—i-la Xj,m—N+27 (ERE) X] m]

)

We scale and clip X, ,,, to construct )_(j,m as follows:

_ Y,

Xj,m(n) = min <H){j7 H Xj,m(TL), (]. + 10_5/20)Yj7m(n))
7,m

In this equation, X;,,(n) denotes the n'™ value of X;,, and § is set to

—15 dB. The intermediate intelligibility matrix, d;,, can be calculated as

the correlation between )_(jym and Y ,,. This can be written as

(Xj,m - :U“)_(j,m)T(Yjum - lqu,m)

l (3.14)
1Xim = 1% o |- (Y i = 10

j?m =
The overall STOI metric is given as the average of d; ,,, over all time-frames

and all octave bands. Thus, maximizing STOI as a cost function maximizes

the correlation between the octave band representations of x and y.
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3.3 Experiments on Adaptive Front-Ends

We now describe the experiments used for our evaluations. The goal of the
experiments in this chapter is two-fold: (i) To evaluate the separation per-
formance of adaptive front-end based separation models and compare them
with models that use fixed front-ends [41]. (ii) To compare the various
performance-based cost functions and evaluate them on end-to-end source
separation performance [46]. Considering the broad scope of these exper-
iments, we divide this section into two parts and deal with each of them

individually.

We begin with evaluating our adaptive front-ends in the context of end-to-
end source separation and compare its performance with the fixed front-ends
for the same task. The experimental setup is described next. In particular,
we compare the separation performance of STFT, smoothed STFT, AET
and full-AET models.

3.3.1 Experimental setup

For our experiments, we used the training folders (si_tr_s) of the Wallstreet
Journal 0 (WSJ0) [47] corpus. For training our networks, 25 male and 25
female speakers were selected at random. For the evaluations, we selected a
different set of 10 male and 10 female speakers. Thus, the evaluation is truly
speaker independent because the evaluation speakers and mixtures were not
a part of the training set. For training, we randomly selected a pair of male
and female speakers from the training set speakers. An audio utterance was
selected at random for each speaker and a 2-sec snippet was drawn at ran-
dom from each utterance. These snippets were mixed at 0 dB to generate
the mixture waveform. The female utterance was selected as the source of
interest and all the networks were trained to separate the female speech from
the mixture. For the evaluations, we constructed similar male-female speaker

mixtures at 0 dB from speakers selected for testing.

We now describe the parameters of our network architecture. For the

STFT front-end, the coefficients were computed using a Hann window of du-
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ration 1024 samples at a hop of 16 samples. For the smoothed STF'T version,
the front-end consisted of 1024 coefficients with 512 real and 512 imaginary
components each. For these coefficients, a smoothing operation of duration
5 samples resulted in a smooth modulation spectrogram as shown in Fig-
ure 3.2. Thus, smoothing layer filters were set to a length of 5 so as to
average over 5 previous frames. For the AET networks, a front-end convo-
lutional layer was set to have a stride of 16 samples so as to enable a fair
comparison with the fixed front-end networks. The separation network con-
sisted of a cascade of 3 dense layers, each followed by a softplus non-linearity.
Each of these hidden layers were selected to have a depth of 512 neurons.
For these experiments, all the networks were trained using SDR as the cost
function. For the evaluation, we compare the separation performance of 4
models described in this dissertation. These models are briefly summarized

below.
(i) STEFT: uses STFT magnitudes for source separation (Figure 3.1).

(ii)) STFT smoothed: uses smoothed real and imaginary STFT coefficients

for source separation (Figure 3.3).

(iii) AET: uses autoencoder like convolutional layers to learn adaptive

bases. The front-end and synthesis layers share the weights (Figure 3.4(a)).

(iv) Full-AET: uses autoencoder like convolutional layers to learn adaptive
bases. The front-end and synthesis layers have independent weights (Fig-
ure 3.4(b)).

These networks are trained to separate the female speaker from a 0 dB

mixture consisting of a male and a female speaker.

The first experiment aims to compare the separation performance of the
proposed end-to-end architectures. We construct a training dataset of 200
minute duration. All the networks were trained on this dataset and evaluated
on a testset of duration 20 minutes. We compare the models in terms of the
BSS_Eval metrics: SDR, SIR and SAR computed on the test set. Figure 3.6

gives the results of the experiment in the form of a box plot that shows the
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Figure 3.6: Comparison of the separation performance of the proposed
models in terms of BSS_Eval metrics: SDR, SIR and SAR. The use of
end-to-end neural networks to learn adaptive front-ends also boosts
separation performance.

median (solid line in the middle) and the 25 percentile and the 75 per-

centile points as the box extremities.

We observe that the smoothed STF'T model is comparable to the STFT
model in terms of median separation performance. However, it results in a
higher variance compared to the STFT front-end. The results also demon-
strate a consistent improvement in the separation performance as we move
towards a completely trainable network with adaptive front-ends, with the

fullAET network significantly outperforming the rest.

3.3.2 Effect of stride

One of the advantages of the STFT is that STFTs allow us to perfectly
reconstruct the audio signal from a highly sub-sampled time-frequency rep-
resentation. Perfect reconstruction is achieved by using overlapping windows
and specific values of hop [48]. In case of the adaptive front-ends the STFT

hop has been replaced by the stride of the front-end convolutional layers.
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We now consider the effect of strides on source separation performance. As
before, we plot the variation in median SDR for different values of stride for
STFT, STFT smoothed, AET and full-AET models. To have a fair compar-
ison with the STFT model, we show the plots for hop/stride values that give
perfect reconstruction for a window-size of 1024 samples. The advantage of
using strided convolutional layers is that it reduces the number of computa-

tions required.

SDR vs Stride

10

SDR (dB)

H

o STFT
- STFT smoothed
= AET
e Full AET
4 8 16 32 64 128

Stride / Hop (no. of samples)

Figure 3.7: Plot of separation performance vs convolutional layer
stride/hop. In case of the STFT versions, the separation performance
remains consistent as it continues to have perfect reconstruction. In case of
these end-to-end models, the separation performance rolls off significantly if
we increase the stride beyond 32 samples. Thus, the adaptive latent
representation cannot be as highly subsampled as the STFT.

Figure 3.7 shows the variation in SDR for varying values of stride. There
are a few key differences in strided convolutions as compared to STFT front-
ends. (i) STFTs allow us to perfectly reconstruct the audio signal in time
only for specific values of the hop size [48]. In the case of end-to-end networks,
strided convolutional layers can be trained to reconstruct the waveforms for
all values of stride up to 32 samples. The window shape and bases are
adaptively learned to suit the stride without restrictions. (ii) There is no
significant improvement or deterioration in separation performance for strides
up to 16 samples. Increasing the stride beyond 32 samples results in a sharp

fall in separation performance. However, the STFT continues to perfectly
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reconstruct the audio signal if the hop size is appropriately chosen.

3.4 Experiments on Cost Functions

The second part of our experimentation deals with comparing the various
waveform-based cost functions for source separation. The contents of this
section have been published in [46]. Since we deal with interpreting source
separation metrics as a cost function, it is not reasonable to reuse the same
metrics for evaluation. Consequently, we use subjective listening tests tar-
geted at evaluating the separation performance, artifacts and intelligibility
of the separation results to compare the different loss functions. We use the
crowd-sourced audio quality evaluation (CAQE) toolkit [49] to set up the lis-
tening tests over Amazon Mechanical Turk (AMT). The details and results

of our experiments follow.

3.4.1 Experimental setup

For our experiments, we use the end-to-end network shown in Figure 3.4(b).
The separation was performed with a 1024 dimensional AET representation
computed at a stride of 16 samples. A smoothing of 5 samples was applied
by the smoothing convolutional layer. The separation network consisted
of 2 dense layers each followed by a softplus non-linearity. This network
was trained using different proposed cost functions and their combinations.
We compare the cost functions by evaluating their performance on isolating
the female speaker from a mixture comprising a male speaker and a female

speaker, using the above end-to-end network.

To train the network, we randomly selected 15 male-female speaker pairs
from the TIMIT database [33]. Ten (10) pairs were used for training and
the remaining 5 pairs were used for testing. Each speaker has 10 recorded
sentences in the database. For each pair, the recordings were mixed at 0 dB.
Thus, the training data consisted of 100 mixtures. The trained networks were
compared on their separation performance on the 50 test sentences. Clearly,
the test speakers were not a part of the training data to ensure that the

network learns to separate female speech from a mixture of male and female
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speakers and does not memorize the speakers themselves.

In the subjective listening tests we compare the performance of end-to-end

source separation under the following cost functions:

(i) Mean squared error

(ii) SDR

(iii) 0.75 x SDR + 0.25 x STOI
(iv) 0.5 x SDR+ 0.5 x STOI
(v) 0.75 x STR +0.25 x SAR
(vi) 0.5 x SIR+ 0.5 x SAR

(

vii) 0.25 x SIR +0.75 x SAR.

These combinations were selected to understand the effects of individual
cost functions on separation performance. We scale the value of each cost
function to unity before starting the training procedure. This was done to

control the weighting of terms in case of composite cost functions.

3.4.2 Evaluation

Using CAQE over a web environment like AMT has been shown to give con-
sistent results on listening tests performed in controlled lab environments [49].
Thus, we use the same approach for our listening tests. The details are briefly

described below.

Recruiting Listeners

For the listening tasks, we recruited listeners on Amazon Mechanical Turk
that were over the age of 18 and had no previous history of hearing im-
pairment. Each listener had to pass a brief hearing test that consisted of
identifying the number of sinusoidal tones within two segments of audio. If
the listener failed to identify the correct number of tones within the audio
clip in two attempts, the listener’s response was rejected. For the listening

tests, we recruited a total of 180 participants over AMT.
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Subjective Listening Tests

We assigned each of the accepted listeners to one of four evaluation tasks.
Each task asked listeners to rate the quality of separation based on one of
four perceptual metrics: preservation of source, suppression of interference,
absence of additional artifacts, and speech intelligibility. The perceptual
metrics such as preservation of source, suppression of interference, absence
of additional artifacts, and speech intelligibility directly correspond to objec-
tive metrics such as SDR, SIR, SAR, and STOI respectively.

Accepted listeners were given the option to submit multiple evaluations for
each of the different tasks. For each task, we trained listeners by giving each
listener an audio sample of the isolated target source as well as a mixture
of the source and interfering speech. We also provided 1-3 audio separation
examples of poor quality and 1-3 audio examples of high quality according to
the perceptual metric assigned to the listener. The audio files used to train
the listener all had exceptionally high or low objective metrics (SDR, SIR,
SAR, STOI) with respect to the pertaining task so that listeners could base

their ratings in comparison to the best or worst separation examples.

After training, the listeners were then asked to rate eight unlabelled, ran-
domly ordered, separation samples from 0 to 100 based on the metric as-
signed. The isolated target source was included in the listener evaluation as
a baseline. The other seven audio samples correspond to separation examples
output by a neural network trained with different cost functions enlisted in

section 3.4.1.

3.4.3 Results and discussion

Figure 3.8 gives the results of the subjective listening tests performed through
AMT for each of the four tasks. The results are shown in the form of a
bar-plot that shows the median value (solid line in the middle) and the 25-
percentile and 75-percentile points (box boundaries). The vertical axis gives
the distribution of listener-scores over the range (0-100) obtained from the
tests. The horizontal axis shows the different cost functions used for evalua-

tion, as listed in section 3.4.1. This also helps us to understand the nature of
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Figure 3.8: Listening test scores for different tasks. (a) Preservation of
target source. (b) Suppression of interfering sources. (c¢) Suppression of
artifacts. (d) Speech intelligibility over different cost functions. The
distribution of scores is presented in the form of a box-plot where, the solid
line in the middle gives the median value and the extremities of the box
give the 25" and 75" percentile values.

the proposed cost functions. For example, Figure 3.8(b) (bars 5,6,7) shows
that incorporating the SIR term into the cost function explicitly, helps the
network to suppress the interfering sources better. Similarly, the addition of
a STOI term into the cost function improves the results in terms of speech
intelligibility as seen in Figure 3.8(d). It is also observed that adding STOI
to the SDR cost function helps in preserving the target source better (Figure
3.8(a), bars 2,3 and 4). One possible reason for this could be that increasing
the intelligibility of the separation results in a perceptual notion of preserving
the target source better. The BSS_Eval cost functions appear to be compara-
ble in terms of preserving the target source (Figure 3.8(a), bars 2,5,6,7) and
slightly better than MSE. In terms of artifacts in the separated source, SDR
outperforms all the cost functions, all of which seem to introduce comparable
levels of artifacts into the separation results (Figure 3.8(c)). The use of SAR

in the cost function does not seem to have favorable or adverse effects on the
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perception of artifacts on the separation results.

3.5 Lessons for NAE Models

After our proposed AET models, several extended versions and neural net-
works have been proposed for discriminative end-to-end source separation.
Some popular extensions include Tasnet [50], ConvTasnet [51], time-dilated
convolutional networks (TDCNNs) [52] and two-step source separation [53,
54]. These extensions have led to state-of-the-art separation performance
in the case of multi-talker and multi-source source separation. A common
thread across these models is that the front-end transform is replaced by
convolutional layer and the inverse transform is replaced by a transposed
convolutional layer. In terms of the cost functions, SDR has become the cost
function of choice when it comes to models that operate directly in the wave-
form domain, particularly for source separation. We can incorporate these
ideas into our proposed NAE models to develop NAE models with end-to-end

generative modeling capabilities.
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CHAPTER 4

END-TO-END NON-NEGATIVE
AUTOENCODERS

As described in Chapter 1, neural networks (NNs) are typically discrimina-
tively trained and these networks require large amounts of training data and
data-augmentation to be practically useful. In addition, in the event of a
mismatch between the training and test conditions, these networks are unus-
able. Unlike these methods, generative approaches like non-negative matrix
factorization (NMF) and non-negative autoencoders (NAEs) learn models
from clean training examples. The availability of a trainable inference step

allows us to fit these pre-trained models on different test examples.

Replacing NMF by NAEs allows us to learn and easily generalize NMF
models. In addition, the availability of several NN toolboxes allows us to
easily crunch and learn from larger amounts of training data. In the case
of audio signals, we can combine NAEs to work with adaptive front-ends to
learn end-to-end NAE models that directly operate on the waveform and fur-
ther boost NAE performance. We explore this particular idea in this chapter
and demonstrate that these models are comparable to discriminative NNs
for source separation. Then, we also show that these models also retain the
modularity of NMF models. Finally, we explore the possibility of learning
these models directly from mixtures of sounds without clean training exam-

ples, similar to NMF models.

4.1 End-to-end Non-negative Autoencoder

As described in Section 2.2, we can generalize NMF models by interpreting
them as a neural network. In the case of NMF, we can replace it by a

two-layer NAE given by
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1" layer: (Encoder) H = g(W* . X)
2™ layer: (Decoder) X = ¢g(W - H)

In this equation, X represents the input spectrogram, the decoder weights
W give the equivalent of NMF bases and the encoder output H gives the
equivalent of the NMF activations. The weights of the encoder W+ represent
a form of a pseudo-inverse matrix that can be applied to the input spec-
trogram to get the activations. The non-linearity g(.) : R — R>( operates
element-wise and maps a real number to the space of positive-real numbers.
This allows the network to learn a non-negative H and a non-negative re-
construction X of the input X. Unlike NMF, the decoder weights need not
be strictly non-negative. But, under suitable sparsity constraints on the ac-

tivations H, they can be shown to be non-negative like NMF' bases.

Although we have defined our NAE to have a single dense layer in the
encoder and the decoder, we are not necessarily restricted by this formula-
tion. We can take advantage of the modeling flexibility of neural networks
and develop complex encoder and decoder architectures that adhere to the
above format. These extensions are covered in Section 2.5. As before, in
the generalized version, the weights of the decoder act as a representative
model for the source. The output of the encoder indicates the corresponding

activations.

4.1.1 End-to-end processing

To introduce end-to-end processing capabilities into our NAE, we replace
the front-end transform step by a 1D-convolutional layer. To get a non-
negative representation like the magnitude spectrogram, we use a softplus
non-linearity for the layer. To transform back into the waveform from the
latent representation, we use a transposed 1D-convolutional layer. The use
of these adaptive front-ends has been explored in detail in the context of

discriminative source separation in Section 3.1.3.

These modifications allow the network to accept a waveform and learn a
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trainable latent representation that is optimal for representing a particular
source. As we will show in Section 4.2, this also enables operating simulta-
neously on multiple customized latent representations corresponding to the
different sources in the mixture, to extract the sources. Figure 4.1b shows
the block diagram of our end-to-end NAE.
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Figure 4.1: Block diagrams for: (a) a non-negative autoencoder (NAE), (b)
an end-to-end NAE. Here, £ and D represent the encoder and decoder of
the NAE respectively. We append a 1D-convolutional layer as a front-end
and back-end to enable the network operate to on waveforms directly.
Thus, the end-to-end NAE encoder consists of the front-end layer and the
NAE encoder £. Similarly, end-to-end NAE decoder is made up of the NAE
decoder D and the back-end layer. In the training step, we build and train
an end-to-end NAE for every source we hope to encounter. The trained
model is then used in the inference step for separating the sources.

4.2 Supervised Source Separation

Having developed the end-to-end NAE architecture, we now show how we
can use it for end-to-end source separation. Like NMF, source separation

using end-to-end NAEs is a two-step process:

Step 1: Learn suitable end-to-end NAE models for all the sources we ex-
pect to encounter in the mixture. We refer to this as the “training” step.

Step 2: Given an unseen mixture, fit the trained models to explain the con-
tributions of the individual sources in the mixture. We refer to this as the

“inference” step.

To extract the sources, we use the pre-trained end-to-end NAEs from the

training step to construct an inference network. In this chapter, we consider
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Figure 4.2: Block diagram of source separation using end-to-end NAEs
during the inference step: estimating the non-negative model activations
Hy, of the sources (left) and estimating the time-domain waveforms of the
sources sy, (right). The subscript ¢ indicates that the corresponding
variable is a parameter of the inference network and we train to estimate its
values for the given mixture.

two distinct inference frameworks. As shown in Section 2.2, the decoders
of the pre-trained NAEs act as representative models. Extending the same
idea, the decoders of our pre-trained end-to-end NAEs can be used to sepa-
rate sources in the inference step. We emphasize here that when we refer to
the “decoder” in case of end-to-end NAESs, it contains the NAE decoder D
followed by the transposed-1D convolution layer. The block diagram of the
inference network using the pre-trained end-to-end decoders is shown in Fig-
ure 4.2a. At the outputs of the decoders, we can directly access the wave-
forms of the individual sources. Consequently, the goal of the inference step
is to extract the source waveforms s; for ¢« € 1,2,... K, given the mixture
waveform x,, and the pre-trained decoders. To get these decoder outputs,
we need to estimate the non-negative activations Hy, for all the sources in
the mixture. In other words, during the inference step, we optimize towards
finding the right inputs to the inference network. The subscript 6 serves to

denote the trainable parameters of our inference network.

The above inference procedure ignores the encoder in constructing the

inference network. Incorporating the pre-trained encoder could potentially
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improve separation performance. Thus, we consider an alternative approach
where the inference network uses the whole pre-trained end-to-end NAE. As
before, we optimize to find the right inputs sy, to the inference network such
that the outputs add up to explain the mixture. In this version of infer-
ence, we are optimizing on the space of waveforms as opposed to the space of

activations. Figure 4.2b describes this inference approach as a block diagram.

To develop an intuition on the complexity of the inference optimization,
we can compare the number of trainable parameters for the two inference
approaches for a 1-second test example. For a sampling rate of 16 kHz, a
64 dimensional activation matrix for each source and a stride of 32 samples
for the front-end 1D-convolutional layer, the number of trainable parameters
can be given by 16,000 - % = 32,000 parameters per source. The second
inference approach optimizes to estimate the waveforms as the parameters
and trains for 16, 000 parameters per source. Thus, the inference optimization
happens on a significantly smaller parameter space compared to training
standard neural networks. In addition, applying the inference step for longer
test examples can possibly be done in batches, reducing the inference time
further.

4.2.1 Cost function

In the case of end-to-end models, using cost functions motivated by SDR
have led to several promising results [46, 51]. We can use these waveform
based cost functions to train end-to-end NAEs, both during training and
inference. For a reference waveform y and a network output x, we maximize a
simplified version of SDR given by % Here, (x, y) represents the inner-
product operation. Intuitively, we ask to maximize the sample correlation
between x and y and while minimizing the energy of the solution. The
detailed derivations of SDR and other BSS_Eval metrics as waveform based

cost functions are described in detail in Section 3.2.1.
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4.2.2 Advantages of end-to-end NAEs

We now consider the advantages that end-to-end NAEs have to offer when
used for source separation. As stated previously, we can exploit the modeling
flexibility afforded by neural networks to construct complex architectures
that operate on the waveforms directly. In our experiments, we show that
end-to-end NAE models are comparable to discriminative models in terms
of separation performance. Although we require an optimization process
during inference, we gain a significant advantage. End-to-end NAEs are
developed as generalizations of NMF and we continue to retain its modular
nature. Consequently, once we learn a model for a source, we can use the
model on any mixture that contains the source and extract it, irrespective
of the interferences in the mixture. Also, we can directly use the pre-trained
models without the need for any data-augmentation, on a variety of test
examples with varying characteristics. We also evaluate this capability of
end-to-end NAEs in our experiments. In fact, the availability of an inference
step, where we try to optimally fit the pre-trained models on an unseen
mixture, allows us to use the same models for different test mixtures. In
other words, the modularity of end-to-end NAEs is a consequence of having
a trainable inference step. Finally, extending the model to operate on new
types of sounds becomes extremely easy. All we need to do is to train an
end-to-end NAE for the new source. We can then append the pre-trained

model to the inference network to separate that source from given mixtures.

4.3 Experiments on End-to-end NAEs

We now present some experiments and their results to evaluate the perfor-
mance of end-to-end NAEs for supervised single-channel source separation.
Primarily, we focus on two experiments: (i) The first experiment is aimed at
comparing end-to-end NAEs to end-to-end discriminative source separation
models, in terms of their separation performance. (ii) The second experiment
is directed towards evaluating their modular nature. We first describe our

experimental setup.
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4.3.1 Dataset

For our experiments, we use the Device and Produced Speech (DAPS) [55]
dataset. We use only the clean speech examples from the dataset for our
experiments. Of the 10 male and 10 female speakers, we use 8 male and 8
female speakers to construct the training set. We use the first 3 scripts to
construct the training examples out of the 5 scripts available per speaker.
This gives about 2 hours of training data for each class. To evaluate separa-
tion performance, we generate two test sets as follows: Test-set-1 is generated
from the unused recordings of the speakers that are a part of the training
set. The test examples in Test-set-2 come from the speakers not included in
the training set. We down-sample the recordings to 16 kHz and randomly

draw 2-sec snippets for training and testing.

4.3.2 Network

For the network configurations, we use a front-end 1D convolutional layer
consisting of 256 filters of width 64 samples and a stride of 32 samples. The
NAE encoder (€) is formed by a cascade of two 1D-convolutional layers. The
two layers have 128 and 64 filters respectively, a filter width of 5 taps and a
stride value of 1. Thus, the activation matrix for each source has a dimension-
ality of 64. The decoder architecture is constructed to invert the activation
matrix. Thus, the NAE decoder (D) is constructed using two 1D transposed-
convolutional layers of 128 and 256 filters, a filter width of 5 taps and a stride
value of 1. Each convolutional layer is followed by a softplus non-linearity
and a batch-norm operation. To transform the output of the NAE decoder D
back into the waveform domain, we use a 1D transposed-convolutional layer
having the same parameters as the front-end. In our experiments, we com-
pare the performance of NAEs to discriminatively trained source separation
models. For the discriminative model, we use the same architecture as an
end-to-end NAE.

4.3.3 End-to-end NAEs vs. discriminative models

The first experiment is designed to compare the separation performance of

end-to-end NAEs with discriminative source separation models. We train
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Figure 4.3: SISDR values for 0 dB test mixtures. We see that the
separation performance of end-to-end NAEs is comparable with
discriminatively trained models.

two end-to-end NAEs, one for the set of male speakers and the other for
the set of female speakers. Using these pre-trained models, we apply the
inference step on the test mixtures to get the separation results. The dis-
criminative model used for comparison is trained as a denoising autoencoder
that separates the female speaker from a 0 dB mixture consisting of a male
and a female speaker. We generate these 0 dB training examples by drawing
random snippets from the training sets and mixing them. For evaluation,
we generate 30 test mixtures mixed at 0 dB for each test set. To reiter-
ate, Test-set-1 is formed from speakers that are included in the training set.
Test-set-2 is generated from speakers that are not included in the training
set. The results are shown in Figure 4.3 as a box-plot of scale-invariant SDR
(SISDR) [56, 57] values. The solid line in the center of the box indicates the
median value and the box-boundaries show the inter-quartile range (25 and

75" percentile points).

As shown in Figure 4.3, we compare the separation performance of three
models: 1. End-to-end NAE with inference using decoder only (left), 2.
End-to-end NAE with inference using entire model (middle), and 3. End-
to-end discriminative source separation (right) over both the test-sets. We

see that the separation performance of end-to-end NAEs with decoder based
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Testing end-to-end NAEs at multiple SNRs
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Figure 4.4: SISDR values for test mixtures with SNR varying between —3
dB and 3 dB. We see that the inference step allows us to fit the models and
separate sources even for conditions unseen during the training step. The
discriminative model cannot deal with this mismatch between the training
and test sets.

inference is comparable with end-to-end discriminative models over both the
test sets. Using the entire model for inference results in a significant drop in
separation performance. This can be attributed to the fact that inference on
waveforms does not produce silences as effectively as inference on the acti-
vation matrices. Comparing with the performance on Test-set-2, we observe
a dip in median SISDR on end-to-end NAE models. Also, the variance in
SISDR values increases slightly. However, the separation performance looks

about the same overall.

4.3.4 Testing end-to-end NAEs at multiple SNRs

The second experiment aims to evaluate the modular nature of our end-to-
end NAEs. We evaluate this by comparing the performance on mixtures
with varying signal-to-noise ratio (SNR) levels. In the case of discriminative
models, we cannot expect any reasonable separation results when there is a
mismatch between the training and test mixtures encountered by the mod-
els. But the model-fitting performed during the inference step for end-to-end

NAEs allows the use of the pre-trained models even in mismatched cases.
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We generate 30 test mixtures with SNR levels varying from —3 dB to 3 dB,
taking the male speech as the reference. As before, we construct two test
sets of 30 mixtures each: Test-set-1 from speakers included in the training
set and Test-set-2 from speakers that are not a part of the training exam-
ples. We compare across three models: 1. End-to-end NAE with decoder
inference (left) 2. End-to-end NAE with fill model inference (middle) and
3. End-to-end discriminative source separation (right). We use the same
models trained for the previous experiment in all the cases. The results are

shown in Figure 4.4.

We see that the end-to-end NAEs achieve a good separation even at these
varying SNR levels, something not possible in the case of discriminative sep-
aration models as shown by their extremely poor performance. However, we
also observe an increase in the range and variance of SISDR values for this
experiment. As before, we see a drop in the median SISDR values and an
increase in the variance, on Test-set-2 compared to Test-set-1. Despite this,
the separation performance falls in the same range overall, indicating the

efficacy of the trained model.

4.4  Learning from Mixtures

So far, we have focused on learning our end-to-end NAE models on clean
sounds. However, in the real world, there can be several use cases and appli-
cations where we may not have access to such clean training examples. Such
applications are also encountered in trying to train neural networks directly

in ambient settings without any human intervention.

In the absence of such clean training examples for the sources, one of the
main issues is to define what we mean by a “source” and pass that informa-
tion on to our separation network. In our case, we can relax the problem by
interpreting it as a weakly-supervised source separation problem. Essentially,
instead of the clean sounds, we assume that we have access to information
about when the sources are active in a given mixture. Locating the start and
stop times of the sources in a mixture can be easily done by a human listener

“hearing out” the mixture and marking the approximate start and stop times.
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Thus, the relaxation we propose is a significant one because we can now com-
pletely rely on the mixtures alone to learn our models. The NMF and NAE
activations contain information about the start and stop times of the sources.

Thus, we can use the start and stop times as priors for the model activations.

The problem of weakly supervised source separation has been addressed
for discriminatively trained networks [58]. We address a parallel problem in
the context of generative source separation. In order to develop the approach
to train our end-to-end NAEs in a weakly supervised setting, we consider the

training of weakly supervised NMF models first.

Spectral and temporal priors have been used extensively to learn suitable
NMF models in different forms. In [59, 60], the authors propose a method
where the user “hums” the sound and the resulting spectrogram is used as
a spectro-temporal prior to learn NMF models. In [61] and [62], Ozerov et
al. use temporal priors to identify the sources and learn NMF models from
mixtures. Spectro-temporal annotations have been used as priors in [6]. In
contrast to such prior based methods, Bryan and Mysore propose a pos-
terior regularized NMF model [63]. Posterior regularization generates an
approximate time-frequency mask for each source and multiplies the source
spectrograms by the masks in each step of the NMF updates. We use a

similar strategy to train our weakly supervised end-to-end NAEs.

Figure 4.5 shows the block diagram of our weakly supervised end-to-end
NAEs. To train this network, we need to perform additional modifications.
The mixture signal is given as an input to both the autoencoders, and the
autoencoders are expected to produce the source waveforms at their outputs.
However, we do not have access to these waveforms. In our case, we have
access to timing information about the sources in different mixtures. We
use these to generate a temporal mask for each source. The temporal mask
basically remains high for the duration when the source is active. To apply
this mask and push our end-to-end NAEs towards the desired solution, we
use a strategy similar to the posterior-regularized NMF approach [63]. In the
forward pass of the neural network, the output of each layer in the encoder
is multiplied by the corresponding temporal mask before passing it onto the

next layer. Thus, the information about the sources is conveyed through
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Figure 4.5: Learning end-to-end NAEs from mixtures.
their activity in the mixtures.

In addition, we also need to modify our cost function to suit the task at
hand. The first requirement is that the autoencoder outputs s; and s, should
add up to the mixture waveform x. To enforce this condition, we use the
SDR cost as the measure of discrepancy and minimize SDR(x, s1 +s2). Us-
ing the source activities as masks ensures that the succeeding layers receive
the right inputs from the previous layer. However, since we do not have ac-
cess to these masks at inference time, each layer is also expected to produce
an output that incorporates the masking information. This is ensured by
using additional terms to the cost function. Thus, we also include the terms
|Y; — m; ® Y;||? into the cost function. Here, Y; denotes the output of
the i layer, m;, denotes the temporal mask of the k" source broadcasted to
have the same size as Y; and ® represents the element-wise multiplication
operator. Essentially, we ask that the output of each layer be approximately

equal to the corresponding masked output of the same layer.
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4.4.1 Experiments and evaluation

To evaluate our weakly supervised end-to-end NAEs we perform speech de-
noising on the noisy ambient mixtures from the DAPS database [55]. In
particular, we use noisy mixtures from 3 room recordings: confrooml, of-
ficel, and livingrooml1. For each of these environments, we have a total of
10 male and 10 female speakers recording 5 scripts each. For our experi-
ments, we try to learn a separate model for male speech, directly from the
mixtures. To train these models, we set aside a training set consisting of 8
male speakers. For each of these speakers in the training set, we use the first
3 scripts for training. This amounts to about 2 hours of training mixtures to
learn our models. To generate the temporal masks, we use the corresponding
synchronized clean versions of the mixtures. We set a small threshold for the
noise floor in these clean examples and say that the speaker is active if the
energy of the current sample is greater than the selected noise threshold. As
described in the initial parts of Section 4.4, we can also obtain this informa-
tion by listening to the mixtures and manually marking the start and end
times of the speech signal. To train our models, we generate 2 second mix-
tures from the training set. To test these models, we use the test examples

to generate 32 mixtures of duration 2 seconds each.

Table 4.1: Denoising performance of end-to-end NAEs (denoted as NAE)
trained only from mixtures to spectral subtraction (denoted as SS). We see
that end-to-end NAEs consistently outperform spectral subtraction across
all the denoising evaluation metrics.

Environment Csig Chak Coul PESQ
SS [NAE | SS [NAE | SS [ NAE | SS | NAE
Confrooml | 1.51 | 2.35 | 1.42| 1.85 | 1.31 | 1.90 | 1.27 | 1.74
Officel 1.771 229 | 144 | 1.78 | 1.33 | 1.69 | 1.23 | 1.29
Livingroom1 | 1.82 | 2.31 | 1.52 | 1.87 | 141 | 1.74 | 1.32 | 1.32

We compare these results to those obtained from spectral subtraction (SS)
for a baseline comparison. The two methods are compared in terms of sig-
nal distortion (Csig), noise distortion (Cbak), overall quality (Covl) [64] and
perceptual evaluation of speech quality (PESQ) [65]. Of these metrics, Csig,
Cbak, Covl, and PESQ are closely related to human perception and are in-

tended to imitate a mean opinion score test. Csig indicates a measure of
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the distortions introduced into the output, Chak estimates the interferences
remaining due to the noise, Covl summarizes the overall quality of the de-
noised results, and PESQ finally estimates the speech quality. For all of these

metrics, higher is better.

The results of this comparison are shown in Table 4.1. The table gives the
mean value of these metrics computed across the 32 mixtures. We see that
the learning to denoise using NAEs results in improved performance over
spectral subtraction in all the selected environments. The use of end-to-end
NAEs allows us to learn models by using large amounts of training data and

this helps our models to significantly outperform SS.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Overview

In this dissertation, we developed a new neural network (NN) based frame-
work as an alternative to non-negative audio modeling. To this end, we
presented the use of end-to-end non-negative autoencoders (NAEs) as a suit-
able update to classical non-negative matrix factorization (NMF) models.
These end-to-end NAEs combine the advantages of classical methods like

NMF while retaining the generalizability and performance of NNs.

To develop end-to-end NAEs, in Chapter 2 we explored the idea of in-
terpreting NMF as a shallow NAE and showed that we can learn equiva-
lent representative models for audio signals through both the methods. The
equivalence between these models also extends to single-channel source sep-
aration where the models are shown to be comparable in terms of separation
performance. The advantages of using NAEs became very clear when us-
ing deeper and more complicated multi-layer architectures. These extended
versions significantly outperformed shallow NAEs and NMF in source sepa-

ration experiments.

In the Chapter 3, we showed how we can generalize the idea of short-time
Fourier transforms (STFT) to develop front-end and synthesis transform lay-
ers. These replacements allowed us to learn optimal and customized time-
frequency representations for the audio signal and develop end-to-end neural
networks that operate directly on the waveforms. Finally, we showed how
these architectures allow us to utilize cost functions that directly map to
perceived performance. Our experiments revealed that these models out-

perform existing architectures significantly in terms of separation perfor-
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mance. Through the listening tests, we also compared the separation results
of performance-based cost functions for end-to-end separation and drew the
following conclusions: (i) A SDR-STOI combination gives the best separation
performance in terms of preserving the target source. (ii) Maximizing the
SDR also produces the least artifacts among the cost functions tested. (iii) A

combination of SIR and SAR gives the best suppression of interfering sources.

In Chapter 4, we combined NAEs and adaptive front-ends to develop end-
to-end NAEs and investigated their use for single-channel source separation.
We showed that with such updates to their modeling capabilities, genera-
tively trained end-to-end NAEs are comparable to discriminatively trained
NNs in terms of separation performance. Although these models have a
more computationally intensive inference step, they allow for additional ex-
tensions that discriminative models cannot easily facilitate. In addition to
having an extensible architecture, the modular nature of end-to-end NAEs
allowed us to separate sources from mixtures over a range of signal-to-noise
ratio values using the same pre-trained generative models for the sources.
We also considered the problem of learning end-to-end NAE models directly
from mixtures of sounds. We interpreted the problem as a weakly supervised
source separation problem wherein, in addition to the mixtures, we had ac-
cess to information about when the sources are active in the given mixtures.
We used this timing information to generate masks for the sources and incor-
porate these masks in the forward pass of the network. The results of weakly
supervised denoising experiments on real ambient noisy mixtures indicated

that with these improvements, we can outperform spectral subtraction.

5.2 Future Directions

In terms of future directions, there appear to be several unexplored terri-
tories going forward. In this dissertation, we have particularly focused on
single-channel source separation to evaluate the performance of end-to-end
NAEs. Given the wide applicability of NMF, there are several allied applica-
tions that can potentially benefit significantly by the use of end-to-end NAEs.

One of the popular applications of NMF is its use in semi-supervised source
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separation where we only have clean training examples for a subset of the
sources in the mixture. NMF models have also been used for speech denois-
ing, bandwidth extension and audio imputation (restoring high-quality audio
from corrupted or clipped recordings). We can replace NMF by end-to-end
NAESs for these applications and potentially achieve better performance. We
can also put the ability of end-to-end NAEs to learn from mixtures to good

use to perform polyphonic music transcription.
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