

NEURAL NETWORK MODELING OF THE DYNAMICS OF AUTONOMOUS

UNDERWATER VEHICLES FOR KALMAN FILTERING AND IMPROVED

LOCALIZATION

BY

SHARAN BALASUBRAMANIAN

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Industrial Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Adviser:

 Clinical Associate Professor William Robert Norris

ii

ABSTRACT

Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles are used for

a variety of underwater operations and deep-sea explorations. One of the major challenges faced

by these vehicles is localization i.e., the ability these vehicles to identify their location with respect

to a reference point. The kinematic Extended Kalman filters have been used in localization in a

method known as dead reckoning. The accuracy of the localization systems can be improved if a

dynamic model is used instead of the kinematic model. The previously derived dynamic model

was implemented in real time in UUVSim, a simulation environment. The dynamic model was

tested against the kinematic model on various test courses and it was found that the dynamic model

was more stable and accurate than the kinematic model. One of the major drawbacks of the

dynamic model was that it required the use of numerous coefficients. The process of determining

these coefficients was extensive, requiring significant experimentation time. This research

explores the use of a Neural Network architecture to replace these dynamic equations. Initial

experiments have showed promising results for the Neural Network although modifications will

be required before the controller can be made universally applicable.

iii

ACKNOWLEDGEMENT

I would like to express my gratitude to Dr. William Robert (Bob) Norris for his invaluable

support during my degree. His guidance helped me to grow both professionally and personally in

the last two years. I would like to thank Dr. Michael Dyer from the department of Finance for

taking me in as his Teaching Assistant and providing me with an opportunity to teach for the last

two semesters. I would also like to thank Dr. Richard Sowers and Dr. Ramavarapu RS Sreenivas

from the department of Industrial and Systems Engineering for their advice.

I would like to thank my parents for providing the necessary moral and financial support

for pursuing a Master of Science degree. I would also like to thank my roommate and my friend

Mr. Gnanendra Reddy for putting up with me and taking care of me during tough times.

My thesis research would not be possible without the contribution of my project group,

nicknamed the “Submarine Bois”. Rodra Wikan Hascaryo, one of the predecessors of this research

played a huge role by my side to help me understand and design the dynamic model. The support

provided by Sandeep Srikonda and Ayush Rajput during the implementation phase of the Kalman

Filter cannot be overstated. Two hard working undergraduate students, Chirag Rastogi and Justin

Yurkanin played a vital role in the data collection phase.

Finally, I would like to acknowledge the members of the Autonomous and Unmanned

Vehicle Systems Laboratory and my friends for their help and motivation during the last two years.

This research has been funded through a generous gift grant from Schilling Robotics, a

subsidiary of Technip FMC.

iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION …………………………………………………………………1

1.1 BACKGROUND ... 1

1.2 METHODOLOGY ... 3

1.3 THESIS ORGANIZATION ……………………………………………………………… . 3

CHAPTER 2: DYNAMIC MODEL DERIVATION FOR RexROV ... 5

2.1 COORDINATE SYSTEMS AND CONVENTIONS ... 5

2.2 COMPONENTS OF THE DYNAMIC MODEL .. 6

2.2.1 KINETIC FORCES .. 7

2.2.2 HYDRODYNAMIC FORCES ... 9

2.2.3 HYDROSTATIC FORCES .. 10

2.2.4 THRUSTER FORCES ... 10

2.3 DYNAMIC MODEL DERIVATION ... 11

2.4 REDUCED DYNAMIC MODEL FOR RexROV .. 12

2.5 IMU ACCELERATION TEST ... 15

CHAPTER 3: COMPARISION OF DYNAMIC AND KINEMATIC KALMAN FILTER 18

3.1 KALMAN FILTERS... 18

3.2 EXTENDED KALMAN FILTER FOR RexROV .. 21

3.3 PURE PURSUIT CONTROLLER.. 23

3.4 TEST COURSES .. 25

3.4.1 BEHAVIOR EVALUATION 1.. 25

3.4.2 BEHAVIOR EVALUATION 2.. 26

3.4.3 BEHAVIOR EVALUATION 3.. 27

CHAPTER 4: NEURAL NETWORK DYNAMIC MODEL ... 29

4.1 MULTI-LAYER NEURAL NETWORKS ... 29

v

4.2 ACTIVATION FUNCTIONS ... 30

4.3 GRADIENT DESCENT ... 32

4.4 BACK PROPAGATION... 32

4.5 NEURAL NETWORK DYNAMIC MODEL .. 33

4.6 RESULTS ON THE TEST DATASET .. 34

4.7 ARCHITECTURE SELECTION .. 36

4.8 NEURAL NETWORK MODEL VS DYNAMIC MODEL ... 37

4.8.1 BEHAVIOR EVALUATION 1.. 37

4.8.2 BEHAVIOR EVALUATION 2.. 38

4.8.3 BEHAVIOR EVALUATION 3.. 39

CONCLUSION ... 41

REFERENCES ... 43

1

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

The planet Earth consists of 71% water and 29% land. Recent scientific advancements have

enabled us to put satellites on space to monitor various events on Earth. These geo-spatial satellites

can provide us information about the surface temperature of oceans, the direction of ocean currents,

color of ocean bodies etc. But what these satellites lack is their ability to look deeper into the

oceans in 3D. According to Gene Feldman, we have more knowledge about the surface of Mars

than that of our ocean bodies [1]. At deeper depths, the pressure exerted by these cold and dark

waters is enormous. Luckily, we have Autonomous Underwater Vehicles (AUVs) and Remotely

Operated Vehicles (ROVs) for underwater and deep-sea explorations.

The most basic type of ROV is the RexROV and it is based on the SF 30k ROV [2]. It has

four lateral thrusters and four vertical thrusters for maneuvering purposes. The four lateral thrusters

are responsible for its movement along the x and y axis. The four vertical thrusters ensure that the

vehicle remains floating when it is stationary and are responsible for movement along the z-axis.

The RexROV with the thrusters is shown below.

Figure 1: RexROV with thrusters

Experimentation with an AUV was difficult since it was hard to control the nature of the

environment in which they were operated. A realistic simulation will greatly help in reducing the

risks and costs involved in validating several aspects of a project. There are two major simulator

environments used in reference to underwater robotics. One is UWSim [2] and the other is

2

UUVSim. The UWSim is a kinematic simulator which is primarily used as a visualization tool [3].

UWSim has been used as a part of the Trident project and it renders high quality graphics with the

help of OpenSceneGraph (OSG) and osgOcean. The UUVSim package contains the

implementation of Gazebo plugins and ROS nodes necessary for the simulation of unmanned

underwater vehicles. The UUVSim plugin consists of several sensors and allows for simulating

the hydrodynamics of an AUV. For our purposes, UUVSim has the most applicable packages and

plugins required to simulate the underwater environment. Gazebo runs the UUVSim plugin as

shown below.

Figure 2 : UUVSim running on Gazebo

One of the key aspects in operating an autonomous vehicle is knowing its position with

respect to the environment. The process by which a vehicle can figure out where it is in the

environment is called localization and there are several methods applicable to the problem. One of

the most prominent localization techniques is using a Kalman filters [4]. The Kalman filter uses a

system model to predict the position of the vehicle. Romagos used a kinematic model of an

underwater vehicle to predict the system states [6]. The kinematic model deals with the motion of

the vehicle without taking the forces acting on the vehicle into account. It has been suggested the

use of a dynamic model instead of a kinematic model would yield better results in terms of

3

accuracy, since it considers the forces acting on the vehicle. Hascaryo has provided a detailed

derivation of the dynamic model and provided the preliminary results in his thesis [7]. This

research involves improving the work done by Hascaryo with the use of neural networks as an

alternative for modeling the dynamics of the underwater vehicle.

1.2 METHODOLOGY

Based on the work of Fossen, a dynamic model which has been observed to the de facto

standard has been implemented [2][8][9][10]. First, a generic 6 degrees of freedom (DoF) dynamic

model for an underwater vehicle was developed and then simplified into a 4 DoF model for

RexROV. 2 DoF were eliminated due to the inherent stability of the vehicle which helped in

reducing the 6x6 matrix to a pseudo 4x4 matrix thereby improving computing power. The 4 DoF

model incorporating the values derived by Berg [8], was used in the Extended Kalman filter (EKF)

equations and the output was used as input to a pure pursuit controller. The output of the dynamic

model was compared to the sensor values for verification. The pure pursuit controller provided the

steering angle required to drive the RexROV in a Robotic Operating System (ROS) Gazebo based

simulation environment, UUVSim [2]. Three behavior evaluation test courses, as suggested by

Norris [11], were used to evaluate the performance of kinematic and dynamic model driven

controllers.

The dynamic model required several coefficients, whose estimation can be difficult for real

time operations. A Neural Network based architecture in Tensor Flow [12] and Pytorch [13] was

developed to emulate the performance of the dynamic model. The fully connected network was

used to calculate the dynamic model values and fed to the Kalman filter and its performance was

compared with the dynamic model. The architecture was experimental, and several modifications

were made to improve the performance of the neural network based on the input parameters.

1.3 THESIS ORGANIZATION

This thesis was organized to demonstrate the performance of the dynamic model and how

Neural Networks can be used to overcome the drawbacks of a dynamic model. The introduction

chapter presents the motivation behind the research and the methodology. The research was

conducted on RexROV, a type of submarine, in a Gazebo based simulator called UUVSim.

Chapter 2 outlines the derivation of a generic dynamic model for an underwater vehicle.

The derivation was based on the “The Handbook of Marine Craft and Hydrodynamics” by Fossen.

4

The dynamic model was simplified for a RexROV and it was implemented in UUVSim. The results

of the dynamic model were compared with the IMU sensor values for evaluation.

Chapter 3 provides a brief introduction to the Kalman filter algorithm and the results of the

performance comparison between the dynamic model and the kinematic model on various test

courses using a pure pursuit controller. Chapter 4 demonstrates various Neural network

architectures that were used to model the dynamics of RexROV and their performance on various

test courses. Lastly the conclusion was provided in chapter 5. Future work and further

modifications to improve the performance of Neural Networks were suggested.

5

CHAPTER 2: DYNAMIC MODEL DERIVATION FOR RexROV

2.1 COORDINATE SYSTEMS AND CONVENTIONS

As discussed in the previous chapters, this research used the UUVSim based Gazebo

simulation environment. The simulation environment consisted of two bodies – the environment

(here it was the sea) and the vehicle. The environment was in North-East-Down (NED) frame [14]

while the vehicle was in BODY frame which follows the Society of Naval Architects and Marine

Engineers (SNAME) 1950 convention [14]. The BODY axes x, y and z and SNAME 1950

convention for RexROV are shown in figure 3.

Figure 3: RexROV SNAME convention

The terms used in the 1950 SNAME convention are listed in table 1.

Table 1 : SNAME Convention for marine vehicle

Term
Position/Euler

Angle
Velocity

Forces and

Moments

Surge x u X

Sway y v Y

Heave z w Z

Roll φ p K

Pitch θ q M

Yaw ψ r N

6

The transformation from BODY to NED coordinates is done using the following equation.

 𝜂𝑏/𝑛
𝑛 ̇ = 𝐽𝑏

𝑛(Θ)𝑣𝑏/𝑛
𝑏 (1)

Here, 𝜂𝑏/𝑛
𝑛 ̇ represents the transformed velocity variables in NED coordinates, 𝑣𝑏/𝑛

𝑏 are the linear

and angular velocities of the submarine in BODY coordinates and 𝐽𝑏
𝑛(Θ) represents the

transformation matrix. The transformation matrix, 𝐽𝑏
𝑛(Θ) was given by,

 𝐽𝑏
𝑛(Θ) = [

𝑅𝑏
𝑛(Θ) 03𝑥3

03𝑥3 𝑇𝑏
𝑛(Θ)

] (2)

In the above matrix, 𝑅𝑏
𝑛(Θ) represents a 3x3 rotation matrix for the linear velocities, 𝑇𝑏

𝑛(Θ)

represents the 3x3 rotation for the angular velocities and 03𝑥3 represents a 3x3 zero-matrix. The

𝑅𝑏
𝑛(Θ) and 𝑇𝑏

𝑛(Θ) matrices were calculated as shown below. For simplicity, angle A’s cosine, sine

and tangent values were represented as cA, sA and tA, respectively. The underlying condition for

these rotation matrices was cosA≠0 i.e, A was not
π

2
 or

3𝜋

2
.

 𝑅𝑏
𝑛(Θ) = [

𝑐ψcθ 𝑠ϕsθcψ − 𝑠ψcϕ 𝑠ψsϕ + 𝑐ψcϕsθ
𝑠ψcθ 𝑐ψcϕ + 𝑠ϕsθsψ 𝑠θsψcϕ − 𝑠ϕcψ
−𝑠θ 𝑠ϕcθ 𝑐θcψ

] (3)

 𝑇𝑏
𝑛(Θ) = [

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] (4)

2.2 COMPONENTS OF THE DYNAMIC MODEL

The forces acting on an underwater vehicle can be classified into five categories namely,

• Kinetic forces

• Hydrodynamic forces

• Hydrostatic forces

• Actuator forces

• Disturbances

The 6 Degrees of Freedom (DoF) model for an underwater vehicle can be represented as follows

[14].

 �̇� = 𝐽(𝜂)𝑣 (5)

7

All of these forces were modeled separately and then added together to determine the dynamics of

the underwater vehicle.

 𝑀�̇� + 𝐶(𝑣)𝑣 + 𝐷(𝑣)𝑣 + 𝑔(𝜂) + 𝑔0 = 𝜏 + 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑤𝑎𝑣𝑒 (6)

The terms used in the equation were:

𝜂 - Vehicle position and pose

v - Vehicle velocity

J - Transformation matrix between NED and BODY coordinate systems

M - inertial matrix

C(v) - Coriolis forces

D(v) - Damping matrix

g(𝜂) - Buoyancy force

𝜏, 𝜏𝑤𝑖𝑛𝑑 𝑎𝑛𝑑 𝜏𝑤𝑎𝑣𝑒 – Actuator, Wind and Wave forces respectively.

2.2.1 KINETIC FORCES

The underwater vehicle was considered as a rigid body and it does not undergo any

deformation during its operation. For the purpose of simplicity, it was assumed that the center of

mass coincided with the center of gravity (CG). The kinetic force was the force required to move

the submarine from its state of rest. The kinetic force (τ𝑅𝐵) consisted of the inertial component

(𝑀𝑅𝐵) and Coriolis component (𝐶𝑅𝐵(𝑣)) as shown. Here the subscript RB represents rigid body.

 τ𝑅𝐵 = 𝑀𝑅𝐵�̇� + 𝐶𝑅𝐵(𝑣)v (7)

Here v and �̇� represent the velocity and acceleration vectors. The velocity and acceleration vectors

comprise both the linear and angular components as shown.

8

 v =

[

𝑢
𝑣
𝑤
𝑝
𝑞
𝑟]

 (8)

 v̇ =

[

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�]

 (9)

Newton’s first law of motion defines inertia as the tendency of the body to remain in its state of

rest or of uniform motion unless an external force acts on it to change its state. The inertial

component for a rigid body with 6 DoF was represented as shown below.

 𝑀𝑅𝐵 =

[

𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

0 0 0 𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧

0 0 0 𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧]

 (10)

Coriolis effect was the effect experience by a moving body in a rotating system and it acts

perpendicular to the direction of motion and towards the center of rotation. The Coriolis

component for an underwater vehicle was given below.

 𝐶𝑅𝐵(𝑣) = [
𝑚𝑆(𝑣2) −𝑚𝑆(𝑣2)𝑆(𝑟𝑔

𝑏)

𝑚𝑆(𝑟𝑔
𝑏)𝑆(𝑣2) −𝑆(𝐼𝑏𝑣2)

] (11)

Here 𝑆 represents the skew matrix, 𝑣2 represents the vessel velocity vector and 𝐼𝑏 represents the

moment of inertia matrix. Since the center of mass coincides with the center of gravity, the skew

matrix (𝑆(𝑟𝑔
𝑏) for the CG vector becomes null. This yield, 𝐶𝑅𝐵(𝑣)𝑣 as shown below [9].

 𝐶𝑅𝐵(𝑣)v = −

[

𝑚(𝑞𝑤 − 𝑟𝑣)

𝑚(𝑟𝑢 − 𝑝𝑤)

𝑚(𝑝𝑣 − 𝑞𝑢)

𝑞𝑟(𝐼𝑦𝑦 − 𝐼𝑧𝑧)

𝑟𝑝(𝐼𝑧𝑧 − 𝐼𝑧𝑧)

𝑞𝑝(𝐼𝑥𝑥 − 𝐼𝑦𝑦)]

 (12)

9

2.2.2 HYDRODYNAMIC FORCES

The hydrodynamic forces include three components: the hydrodynamic drag (D(𝑣)v),

Coriolis-centripetal force (𝐶𝐴(𝑣)v) and inertial force (𝑀𝐴�̇�). This was represented as,

 τℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 = −D(𝑣)v − 𝐶𝐴(𝑣)v − 𝑀𝐴�̇� (13)

The hydrodynamic drag was the damping force acting on the body and was comprised of linear

and quadratic drag as shown.

 D(𝑣) = 𝐷𝑙𝑖𝑛𝑒𝑎𝑟 + 𝐷𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 (14)

Where 𝐷𝑙𝑖𝑛𝑒𝑎𝑟 and 𝐷𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 were diagonal matrices comprising of the linear and quadratic

damping components respectively. Adding the two matrices and multiplying them with the

velocity vector gives the damping force as shown.

 D(𝑣) = −

[

(𝑋𝑢 + 𝑋𝑢|𝑢||𝑢|)𝑢

(𝑌𝑣 + 𝑌𝑣|𝑣||𝑣|)𝑣

(𝑍𝑤 + 𝑍𝑤|𝑤||𝑤|)𝑤

(𝐾𝑝 + 𝐾𝑝|𝑝||𝑝|)𝑝

(𝑀𝑞 + 𝑀𝑞|𝑞||𝑞|)𝑞

(𝑁𝑟 + 𝑁𝑟|𝑟||𝑟|)𝑟]

 (15)

The Coriolis-centripetal force (𝐶𝐴(𝑣)v) and inertial force (𝑀𝐴�̇�) were obtained from Fossen [15]

using the low speed assumption as shown below.

 𝐶𝐴(𝑣)v = −

[

𝑌�̇�𝑣𝑟 − 𝑍�̇�𝑤𝑞
𝑍�̇�𝑤𝑝 − 𝑋�̇�𝑢𝑟
𝑋�̇�𝑢𝑞 − 𝑌�̇�𝑣𝑝

(𝑌�̇� − 𝑍�̇�)𝑣𝑤 + (𝑀�̇� − 𝑁�̇�)𝑞𝑟

(𝑍�̇� − 𝑋�̇�)𝑢𝑤 + (𝑁�̇� − 𝐾�̇�)𝑝𝑟

(𝑋�̇� − 𝑌�̇�)𝑢𝑣 + (𝐾�̇� − 𝑀�̇�)𝑝𝑞]

 (16)

10

 𝑀𝐴�̇�̇ =

[

𝑋�̇��̇�
𝑌�̇��̇�
𝑍�̇��̇�
𝐾�̇��̇�

𝑀�̇��̇�

𝑁�̇��̇�]

 (17)

2.2.3 HYDROSTATIC FORCES

The hydrostatic forces consisted of two forces: buoyancy and gravitational force(weight).

It was assumed that the Center of Buoyancy (CB) and Center of Gravity (CG) were on the z-axis

and zB was the distance of the CB to the CG for simplicity as the assumption holds for most of the

cases. Buoyancy was the upward force caused when immersing a body into a liquid and was a

factor of the volume of the liquid displaced by the body. In the case of a fully submerged vehicle

(AUV), the volume of liquid displaced was equal to the total volume of the vehicle. Hence

buoyancy (B) and the weight (W) of the vehicle, are as shown.

 B = ρgV (18)

 W  =  mg (19)

Here, ρ was the density of water and V was the volume of the vehicle. The sum of the two forces

gives the hydrostatic force (g(η)) which in vector form was as shown.

 g(η) = −

[

−(𝑊 − 𝐵) sin θ
(𝑊 − 𝐵) cos θ sinϕ
(𝑊 − 𝐵) cos θ cosϕ

𝑧𝐵 cos θ sinϕ
𝑧𝐵 sin θ

0]

 (20)

2.2.4 THRUSTER FORCES

The final component of the dynamic model involves the thruster forces and other

disturbances. Deep underwater, the effects of wind and ocean currents were minimal and hence

𝜏𝑤𝑖𝑛𝑑 and 𝜏𝑤𝑎𝑣𝑒 were equivalent to zero. The thrust forces were the vector sum of the individual

thruster forces in the respective axes and given by,

11

 𝑇𝑖 =

[

𝑇𝑥

𝑇𝑦

𝑇𝑧

𝑇ϕ

𝑇θ

𝑇ψ]

 (21)

2.3 DYNAMIC MODEL DERIVATION

Substituting the individual components into the equation 6 and decomposing them to their

corresponding acceleration components, we have the dynamic model as follows:

�̇� = (
1

𝑚 − 𝑋�̇�
) ((𝑋𝑢 + 𝑋𝑢|𝑢||𝑢|)u + (𝐵 − 𝑊) sin θ + m(𝑟𝑣 − 𝑞𝑤) − 𝑌�̇�rv + 𝑍�̇�qw

+ 𝑇𝑥)

(22)

�̇� = (
1

𝑚 − 𝑌�̇�
) ((𝑌𝑣 + 𝑌𝑣|𝑣||𝑣|)v − (𝐵 − 𝑊) sinϕ cos θ + m(𝑝𝑤 − 𝑟𝑢) − 𝑋�̇�ru

+ 𝑍�̇�pw + 𝑇𝑦)

(23)

ẇ = (
1

m − Zẇ
) ((Zw + Zw|w||w|)w − (B − W) cos θ cosϕ + m(qu − pv) − Xu̇qu

+ Yv̇pv + Tz)

(24)

�̇� = (
1

𝐼𝑥 − 𝐾�̇�
) ((𝐾𝑝 + 𝐾𝑝|𝑝||𝑝|)p − (𝑀�̇� − 𝑁�̇�)qr + (𝐼𝑦𝑦 − 𝐼𝑧𝑧)qr + (𝑍�̇� − 𝑌�̇�)vw

+ B𝑧𝐵 cos θ sinϕ + 𝑇θ)

(25)

�̇� = (
1

𝐼𝑦 − 𝑀�̇�
) ((𝑀𝑞 + 𝑀𝑞|𝑞||𝑞|)q − (𝑁�̇� − 𝐾�̇�)pr + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)pr + (𝑋�̇� − 𝑍�̇�)uw

+ B𝑧𝐵 sin θ + 𝑇ϕ)

(26)

12

�̇� = (
1

𝐼𝑧 − 𝑁�̇�
) ((𝑁𝑟 + 𝑁𝑟|𝑟||𝑟|)r − (𝐾�̇� − 𝑀�̇�)pq + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)pq + (𝑌�̇� − 𝑋�̇�)uv

+ 𝑇ψ)

(27)

These six dynamic equations were generic to an underwater vehicle with 6 DoF. For our purpose,

we modified them based on the configuration of the RexROV before using them in the Extended

Kalman Filter.

2.4 REDUCED DYNAMIC MODEL FOR RexROV

A Creo based CAD model, as shown in figure 4, was developed based on the information

from the UUVSim [2] website.

Figure 4: RexROV Thruster Configuration

Table 2 shows the Thruster IDs and their respective location from the CG including their

orientations.

13

Table 2: RexROV Thruster Positions and Orientations

Thruster

ID

Location w.r.t. Body Center (m) Orientation (deg)

lx ly lz φ θ ψ

0 -0.890895 0.334385 -0.528822 0 74.53 -53.21

1 -0.890895 -0.334385 -0.528822 0 74.53 53.21

2 0.890895 0.334385 -0.528822 0 105.47 53.21

3 0.890895 -0.334385 -0.528822 0 105.47 -53.21

4 -0.412125 0.505415 -0.129 0 0 45

5 -0.412125 -0.505415 -0.129 0 0 -45

6 0.412125 0.505415 -0.129 0 0 135

7 0.412125 -0.505415 -0.129 0 0 -135

Through the inherent configuration of the RexROV, the submarine was stable with no pitch

and roll due to its structure. From an operations perspective, there was no need for the RexROV

or similar vehicles to possess pitch and roll capabilities. Thus 2 DoF can be eliminated and the 6

DoF model can be reduced to a pseudo 4 DoF model similar to works performed in [16] and [17].

This means that φ and θ were always 0. Likewise, their corresponding velocities, p and q, and

accelerations, �̇� and �̇�, components were always 0. The individual thruster forces 𝑇0 to 𝑇7 were

resolved into their respective components along x, y and z axis based on their orientations and

locations from the center of mass to calculate the thrust forces needed for the dynamic model. The

thrust forces of RexROV was given by the following equations.

 𝑇𝑥 = ∑𝑇𝑖 cos θ𝑖 cosψ𝑖

3

𝑖=0

+ ∑𝑇𝑗 cosψ𝑗

7

𝑗=4

 (28)

 𝑇𝑦 = ∑𝑇𝑖 cos θ𝑖 cosψ𝑖

3

𝑖=0

+ ∑𝑇𝑗 sinψ𝑗

7

𝑗=4

 (29)

 𝑇𝑧 = ∑𝑇𝑖 sinψ𝑖

3

𝑖=1

 (30)

 𝑇ψ = ∑𝑇𝑖(𝑙𝑥𝑖 sinψ𝑖 − 𝑙𝑦𝑖 cosψ𝑖)

7

𝑖=0

 (31)

14

The dynamic model for RexROV reduced to the following set of equations (32) to (35).

 �̇� = (
1

𝑚 − 𝑋�̇�
) ((𝑋𝑢 + 𝑋𝑢|𝑢||𝑢|)u + mrv − 𝑌�̇�rv + 𝑇𝑥) (32)

 �̇� = (
1

𝑚 − 𝑌�̇�
) ((𝑌𝑣 + 𝑌𝑣|𝑣||𝑣|)v + mru + 𝑋�̇�ru + 𝑇𝑦) (33)

 �̇� = (
1

𝑚−𝑍�̇�
) ((𝑍𝑤 + 𝑍𝑤|𝑤||𝑤|)𝑤 − (𝐵 − 𝑊) + 𝑇𝑧) (34)

 �̇� = (
1

𝐼𝑧 − 𝑁�̇�
) ((𝑁𝑟 + 𝑁𝑟|𝑟||𝑟|)r + (𝑌�̇� − 𝑋�̇�)uv + 𝑇ψ) (35)

The physical parameters and the coefficient terms for RexROV in the dynamic equations were

given in table 3 and table 4, respectively.

Table 3: RexROV Physical Parameters

Parameter Value

Length(x-axis) 2.6 m

Width(y-axis) 1.5 m

Height(z-axis) 1.6 m

Mass(m) 1.863 kg

Volume(V) 1.838 m3

B 18393.9972 N

g 9.81 m/s

r 1000 kg/m3

Izz 691.23 kg m2

15

Table 4: RexROV Coefficients

Coefficient Value

𝑋�̇� 779.79

𝑌�̇� 1222

𝑍�̇� 3959.9

𝐾�̇� 534.9

𝑀�̇� 842.69

𝑁�̇� 224.32

Xu -74.82

Yv -69.48

Zw -782.4

Kp -268.8

Mq -309.77

Nr -105

Xu|u| -748.22

Yv|v| -992.53

Zw|w| -1821.01

Kp|p| -672

Mq|q| -774.44

Nr|r| -523.27

2.5 IMU ACCELERATION TEST

As presented in equations (32) to (35), the dynamic model for RexROV involves

calculating the acceleration values. The accuracy of the modeling can be verified by comparing it

to the acceleration values generated by the IMU sensor on UUVSim. The IMU sensor

accommodates drifting bias, following a random walk with zero-mean white Gaussian noise as the

rate. Its model includes zero-mean Gaussian noise as well. The following figures 5 and 6, shows

the acceleration values generated by the model and the acceleration values given by the IMU

sensor in the simulation in the x-axis and y-axis for behavior evaluation 3 test course [11].

16

Figure 5 : Acceleration in x-axis

Figure 6 : Acceleration in y-axis

Our model performs similarly to the IMU sensor. It was also important to note that the

IMU sensor modeled in the simulation had a very high level of accuracy with a variance of

0:004m/s2. However, in practice, the IMU sensors have a higher variance than the one in

simulation. In general, IMUs were prone to drift, which results in error accumulation over time.

17

This results in divergence with actual values in practice while calculating position. As seen in

figure 3 and 4, the dynamic model provided a change in the value where there was a change in the

trajectory. The positive acceleration values calculated by the model were consistent with the IMU

sensor values. Further research will be conducted to understand the inconsistency on the negative

acceleration values calculated by the model. The dynamic model has an edge over the IMU sensor

in the fact that it uses velocity and thrust forces for calculation. The thrust forces can be reliably

received from the generated look-up table based on the thruster RPM. The velocity, being the first

derivative, gives a reliable estimate for the position calculation as opposed to acceleration, which

is the second derivative.

18

CHAPTER 3: COMPARISION OF DYNAMIC AND KINEMATIC KALMAN FILTER

3.1 KALMAN FILTERS

Kalman filter-based localization techniques have been prevalent since the 1960s [4]. The

Kalman Filter was an iterative mathematical tool used to estimate the position of a system based

on a system of equations and measurements. The Kalman filter has three steps namely

Initialization, Prediction and Update step.

Initialization: Initialize the state of the filter and the belief in the state

Prediction:

1. Use the process model to predict the state of the system in the next time step

2. Adjust belief to account for uncertainty in prediction

Update:

1. Get a measurement from the sensor and associated belief about its accuracy

2. Compute residual between predicted state and measurement

3. Compute Kalman Gain based on whether the measurement or prediction was more accurate

4. Set state between the prediction and measurement based on scaling factor

5. Update belief in the state based on how certain we were in the measurement

Initialization was a one-time process while the prediction and update were iterative. The Kalman

filter has two major conditions in order to work:

1. The Kalman Filter works with Gaussian Distribution

2. The prediction and the update equations were linear

These two conditions go hand in hand. A linear system fed to a gaussian produces a

gaussian output while a nonlinear system produces a non-gaussian output. Hence Kalman Filters

work well with linear systems of equations. However, most of the real-time systems that we

encounter were often nonlinear. One way to apply a Kalman Filter to these non-linear systems was

to approximate them to linear systems using Taylor series around the mean of the nonlinear

Gaussian. This version of the Kalman filter is referred to as the Extended Kalman filter (EKF).

While the equations remain the same from the Kalman Filter, one major change was that we used

the Gauss Jacobian Matrix instead of the State transition matrix for linear approximations. At each

19

time step, the Jacobian was evaluated with current predicted states. These matrices were used in

the Kalman filter equations. This process linearizes the nonlinear function around the current

estimate. The EKF algorithm mentioned below was a first order EKF. Higher order EKF can be

obtained by retaining higher order terms in the Taylor series. The EKF algorithm was as shown

below.

Algorithm 1 Extended Kalman Filter

Result: State Matrix x

Initialization: Initialize the state of the filter (P, Q) and the belief in the state (K)

 While New Datapoint do

 Predict:

 𝑥�̂� = 𝑓(𝑥, 𝑢)

 𝐹𝑘 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
|𝑥,𝑢

 𝑃�̂� = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄

 Update:

 𝑦𝑘 = 𝑧𝑘 − ℎ(𝑥�̂�)

 𝐻𝑘 =
𝜕ℎ(�̂�)

𝜕𝑥
|𝑥

 𝑆𝑘 = 𝐻𝑘𝑃�̂�𝐻𝑘
𝑇 + 𝑅

 𝐾𝑘 = 𝑃�̂�𝐻𝑘
𝑇𝑆𝑘

−1

 𝑥𝑘 = 𝑥�̂� + 𝐾𝑘𝑦𝑘

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃�̂�

 end

The terms used in algorithm 1 are listed below.

x - State Matrix

�̂� - State Prediction

f (x, u) - Function to predict the states

F - State Transition Matrix

�̂� - Predicted Covariance

P - Process Noise Covariance

Q - Measurement Noise Covariance

20

z - Measurement from Sensors

h(�̂�) - Prediction to Measurement coordinate

y - Difference between Prediction and Measurement

H - Jacobian Matrix

R - Measurement Noise Covariance

K - Kalman Gain

I - Identity Matrix

k - Represents the current time step

k-1 - Represents the previous time step

Another version of Kalman filter that exists was the Unscented Kalman Filter (UKF. A

UKF differs from an EKF in that it takes a defined set of multiple points from the nonlinear system,

including the mean, for approximation while an EKF considers only the mean to approximate the

system [5]. Thus, UKF offers a better approximation of the non-linear system than the EKF. The

defined set of multiple points were called the sigma points and each of these points have a weight

associated with them. The sigma points were representative of the whole distribution. The number

of sigma points taken per dimension was given by (2N+1), where N was the number of dimensions

of the system. After selecting the sigma points, the weights associated with each of the points were

calculated. These points were then transformed using a nonlinear function. The gaussian of the

resulting transformed points were calculated and its mean and variance are computed. This method

is known as the Unscented method. To summarize, the Unscented method consists of the following

five steps:

1. Compute Set of Sigma Points

2. Assign Weights to each sigma point

3. Transform the points through nonlinear function

4. Compute Gaussian from weighted and transformed points

5. Compute Mean and Variance of the new Gaussian.

While taking all the points from the nonlinear system would give a better approximation

compared to taking a defined set of points, the method fails in terms of computation power and

optimality. So, for our purposes, the Extended Kalman filter was used. The EKF uses a process

model to predict the system states.

21

3.2 EXTENDED KALMAN FILTER FOR RexROV

Applying the EKF algorithm 1 to the RexROV submarine, we have our state matrix for 4

DoF as shown below.

 𝑥 = [

𝑥
𝑦
𝑧
ψ

] (36)

The state transition matrix F was as follows.

 𝐹 =

[

∂𝑓(𝑥)

∂𝑥

∂𝑓(𝑥)

∂𝑦

∂𝑓(𝑥)

∂𝑧

∂𝑓(𝑥)

∂ψ

∂𝑓(𝑦)

∂𝑥

∂𝑓(𝑦)

∂𝑦

∂𝑓(𝑦)

∂𝑧

∂𝑓(𝑦)

∂ψ

∂𝑓(𝑧)

∂𝑥

∂𝑓(𝑧)

∂𝑦

∂𝑓(𝑧)

∂𝑧

∂𝑓(𝑧)

∂ψ

∂𝑓(ψ)

∂𝑥

∂𝑓(ψ)

∂𝑦

∂𝑓(ψ)

∂𝑧

∂𝑓(ψ)

∂ψ]

 (37)

For simplification purpose, we assume that the other axis elements do not affect the current axis

elements. Using the previously discussed stability assumption, the non-diagonal elements of the

F-matrix become null as shown,

 𝐹 =

[

∂𝑓(𝑥)

∂𝑥
0 0 0

0
∂𝑓(𝑦)

∂𝑦
0 0

0 0
∂𝑓(𝑧)

∂𝑧
0

0 0 0
∂𝑓(ψ)

∂ψ]

 (38)

The state transition matrix can be obtained using Newton’s equations of motion.

 𝑓(𝑥) = 𝑥𝑘−1 + 𝑣𝑘Δ𝑡 +
𝑣�̇�Δ𝑡2

2

(39)

Here, 𝑣𝑘 was the velocity matrix and 𝑣�̇� was the acceleration matrix as shown in equations (8) and

(9). We derived the first term in the F-matrix and generalize for the other three terms.

∂𝑓(𝑥)

∂𝑥
= 1 +

∂𝑢

∂𝑥
Δ𝑡 +

∂�̇�

∂𝑥

Δ𝑡2

2

(40)

22

∂𝑓(𝑥)

∂𝑥
= 1 +

∂𝑢

∂𝑡

∂𝑡

∂𝑥
Δ𝑡 +

∂�̇�

∂𝑡

∂𝑡

∂𝑥

Δ𝑡2

2

(41)

The filter we were considering for the simulation worked at a frequency of 10Hz. For such a small

change in time, the partial derivative term was taken as shown below.

∂𝑓(𝑥)

∂𝑥
= 1 + �̇�

1

𝑢
Δ𝑡 +

Δ�̇�

Δ𝑡

1

𝑢

Δ𝑡2

2

(42)

This can be further simplified to,

∂𝑓(𝑥)

∂𝑥
= 1 +

�̇�

𝑢
Δ𝑡 +

Δ�̇�Δ𝑡

2𝑢

(43)

Similarly, the other three terms for the F-matrix were derived.

∂𝑓(𝑦)

∂𝑦
= 1 +

�̇�

𝑣
Δ𝑡 +

Δ�̇�Δ𝑡

2𝑣

(44)

∂𝑓(𝑧)

∂𝑧
= 1 +

�̇�

𝑤
Δ𝑡 +

Δ�̇�Δ𝑡

2𝑤

(45)

∂𝑓(ψ)

∂ψ
= 1 +

�̇�

𝑟
Δ𝑡 +

Δ�̇�Δ𝑡

2𝑟
 (46)

In the simulation, the velocity values were obtained from the Doppler Velocity Log (DVL) sensor

while the acceleration values were obtained from the Inertial Measurement Unit (IMU) sensor.

The Global Positioning System (GPS) sensor provided the x and y measurements. The pressure

sensor gave the z measurements and the compass built into the IMU sensor gave the ψ update. It

was important to note that both the predictions (ℎ(�̂�)) and the measurements (�̂�) were in the same

coordinates. This rendered the Jacobian matrix (H) as an Identity matrix of size 4.

 𝐻 =
∂ℎ(�̂�)

∂�̂�
=

∂�̂�

∂�̂�
= 𝐼4

(47)

The update equation was further simplified as shown.

 𝑆𝑘 = 𝑃�̂� + 𝑅 (48)

 𝐾𝑘 = 𝑃�̂�𝑆𝑘
−1 (49)

23

 𝑥𝑘 = 𝑥�̂� + 𝐾𝑘𝑦𝑘 (50)

 𝑃𝑘 = (𝐼 − 𝐾𝑘)𝑃�̂� (51)

The Extended Kalman filter algorithm for RexROV after applying the simplifications is shown

below.

Algorithm 1 Extended Kalman Filter for RexROV

Result: State Matrix x

Initialization: Initialize the state of the filter (P, Q) and the belief in the state (K)

 While New Datapoint do

 Predict:

 𝑥�̂� = 𝑓(𝑥, 𝑢)

 𝐹𝑘 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
|𝑥,𝑢

 𝑃�̂� = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄

 Update:

 𝑦𝑘 = 𝑧𝑘 − (𝑥�̂�)

 𝐻𝑘 =
𝜕ℎ(�̂�)

𝜕𝑥
|𝑥

 𝑆𝑘 = 𝑃�̂� + 𝑅

 𝐾𝑘 = 𝑃�̂�𝑆𝑘
−1

 𝑥𝑘 = 𝑥�̂� + 𝐾𝑘𝑦𝑘

 𝑃𝑘 = (𝐼 − 𝐾𝑘)𝑃�̂�

 end

The following algorithm was implemented in real-time in UUVSim and the Kalman filter

prediction values were used in a pure pursuit controller implemented by the Submarine Bois team

to drive the submarine on a predetermined path [11].

3.3 PURE PURSUIT CONTROLLER

For a given set of waypoints, a pure pursuit algorithm approaches the target waypoint

ignoring the dynamics/kinematics of the environment and the vehicle (except vehicle length). Once

24

in the vicinity (user defined) of the target waypoint, the algorithm generates the steering command

for the next waypoint until the system reaches the last waypoint [25]. For our purposes, we were

generated the steering command while the linear velocity remained constant.

Figure 7: Pure Pursuit Model

Considering RexROV as a point mass [26], Pure Pursuit aims to align the Center of Mass

(in our case) along the reference trajectory through generating steering commands using the

following formulations.

 𝐾 =
2 ∗ 𝑠𝑖𝑛(α)

𝐿𝑑
 (52)

 δ = 𝑡𝑎𝑛−1(𝐾 ∗ 𝐿) (53)

The vehicle length (L) and the look ahead distance (Ld) were taken as unity as well. was

the difference between vehicle pose and the slope of the line connecting the target point and the

last waypoint. xk in the EKF algorithm 2 gives the current pose of the RexROV. Both slope and

pose were converted within a 0 to 2p range. Output δ was published to the cmdvel Rostopic with

a gain of 0.3.

25

3.4 TEST COURSES

In this section, the performance of the kinematic and the dynamic model driven pure pursuit

controllers were compared on various test courses adopted from [11]. The figure shows the actual

path followed by the vehicle as opposed to the output of the dynamic model and kinematic model.

The results from the test courses were summarized as a table. Total was the mean of the Cartesian

distance between the reference path and the path taken by the RexROV when using the controllers.

X-Kalman gives the mean squared error (MSE) between the value predicted by the Kalman filter

and the actual path traced by the RexROV. Likewise, Y-Kalman gives MSE on the y-axis.

3.4.1 BEHAVIOR EVALUATION 1

The first test course involved moving along a straight line followed by a fixed turning

radius and a sharp turn.

Figure 8: Behavior Evaluation 1

As seen in figure 6, the kinematic filter followed the reference path much closer than the

dynamic filter. Initially, there was no divergence from the path. After the simple turn, both the

filters converge at the same rate.

26

Table 5: Results of Behavior Evaluation 1

Error Dynamic Filter Kinematic Filter

Total 0.1166m 0.09880m

X-Kalman 0.0825m 0.3432m

Y-Kalman 0.2665m 1.024m

From table 5, the total error of the kinematic filter was less than the dynamic filter.

However, this was attributed to the controller and not the filter itself as it can be inferred from the

other two entries in the table. To make further assessment of the filters, they were tested on the

behavior evaluation 2 test course.

3.4.2 BEHAVIOR EVALUATION 2

The second test course was a sinusoidal path which used curves of constant radius with

both clockwise and counterclockwise directions. This test course helps in determining if there were

handling and navigation issue.

Figure 9: Behavior Evaluation 2

27

As seen in figure 7, the dynamic filter does a much better job than the kinematic filter when

tracing a curve. The dynamic filter converged faster when there was a change in both x and y co-

ordinates.

Table 6 : Results of Behavior Evaluation 2

Error Dynamic Filter Kinematic Filter

Total 0.1659m 0.2482m

X-Kalman 0.1213m 0.39145m

Y-Kalman 0.3682m 4.336m

From table 6, the mean error of the dynamic filter was less than the kinematic filter. The

dynamic filter handled the simultaneous changes in the x-axis and y-axis much better than the

kinematic filter.

3.4.3 BEHAVIOR EVALUATION 3

The third test course was a U-shaped path with clockwise and counterclockwise curves and

straightaways. These curves were of equal radii and the straightaways were horizontal and vertical.

Only at the curves, both the x-axis and y-axis values change.

Figure 10: Behavior Evaluation 3

28

Table 7 : Results of Behavior Evaluation 3

Error Dynamic Filter Kinematic Filter

Total 0.0738m 0.1965m

X-Kalman 0.2462 0.4028

Y-Kalman 0.4003m 4.0014m

From figure 8 and table 7, in behavior evaluation course 3, which includes all possible

movements of the ROV, the dynamic filter converges to the path more quickly than its kinematic

counterpart.

29

CHAPTER 4: NEURAL NETWORK DYNAMIC MODEL

4.1 MULTI-LAYER NEURAL NETWORKS

Neural networks have been used to make classifications, predictions and a variety of other

applications [18][19]. Neural networks have an input later and an output layer. The layers in

between the input and output layers were referred to as hidden layers. Depending on the number

of hidden layers used, they can be classified as shallow and deep neural networks. Like any

machine learning algorithm, the neural network takes in a set of inputs and a set of target values

to make predictions. Graphically, a multi-layer neural network can be represented as shown.

Figure 11: Multi-layer neural network [20]

Mathematically, a multi-layer neural network can be expressed as follows.

 𝑍1 = 𝑊1𝑥 + 𝑏1 (48)

 𝐻1 = 𝜎(𝑍1) (49)

 𝑍𝑙 = 𝑊𝑙𝐻𝑙−1 + 𝑏𝑙 , l = 2, ……L (50)

 𝐻𝑙 = 𝜎(𝑍𝑙) (51)

 𝑈 = 𝑊𝐿+1𝐻𝐿 + 𝑏𝐿+1 (52)

The neural network takes an input x of size d and produces an output of size K. The matrix

Z ϵ ℝdH represents a linear transformation. W ϵ ℝdHxd represents the weight matrix and b ϵ ℝdH

30

was the bias matrix. dH was the dimension of the hidden layer. To learn the model, an element-

wise nonlinearity 𝜎(−) : ℝ → ℝ was applied to each element of matrix Z to obtain the hidden

layer H ϵ ℝdH. L was the number of hidden layers. 𝑈 ϵ ℝ𝐾 represents the output layer.

4.2 ACTIVATION FUNCTIONS

The common choices for the nonlinear activation functions, 𝜎(−) were:

Sigmoid - σ(𝑥) =
𝑒𝑧

1 + 𝑒𝑧

Tanh() - σ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Rectified Linear Units (ReLU) - σ(𝑥) = 𝑚𝑎𝑥(𝑥, 0)

Sigmoid function was one of the most used activation functions and is applicable to the

universal approximation theorem [21]. A sigmoid function graph is shown in figure 10.

Figure 12: Sigmoid Function and Derivative

The sigmoid function forces the value of x to stay between 0 and 1. Between -2 to +2 values of x,

the sigmoid function value changes rapidly and hence there was a bigger gradient in this region.

Towards the end of the function, the sigmoid reacts very slowly to changes in x and the gradient

is very minimal. In other words, towards the end of the function the gradient becomes negligible

and this was called the vanishing gradient problem.

The hyperbolic tangent function or tanh() function graph was shown below.

31

Figure 13: Tanh() function and its derivative

The tanh() function pushes the value of x between -1 and +1, thus giving a wider range of operation

compared to the sigmoid function. But the tanh() function also suffers from a similar vanishing

gradient problem as the sigmoid function, though not as pronounced.

Rectified Linear Units or ReLU activation functions address the vanishing gradient

problem to some extent. In deep neural networks, with lots of neurons, the sigmoid and tanh

functions activate every neuron in the same way and their activation was intense. In the case of

ReLU, some of the neuron values become zero and hence the computational speed was increased

considerably. Although the ReLU improves the computational speed, it suffers from a drawback

in that learning does not happen in the regions where the neuron values become zero. The ReLU

function was as shown.

Figure 14: ReLU function and its derivative

There were other activation functions such as leaky ReLU, Exponential Linear Units (ELU),

Scaled ELU and Swish functions. The effect of these nonlinear functions on our dynamic model

will be discussed.

32

4.3 GRADIENT DESCENT

Neural networks estimate a statistical model for the relationship between an input X and

an output Y. Assume there is dataset (X, Y) ϵ ℝ𝑑 x Y and a statistical model, f(x,θ) : ℝ𝑑 → ℝ𝐾.

θ ϵ Θ are the parameters in the model and must be estimated. We wish to find a model f(x,θ) such

that f(X,θ) is an accurate prediction for Y. We define our objective function as,

 ℒ(θ) = 𝐸𝑋,𝑌[ρ(𝑓(𝑋; θ), 𝑌)] (53)

θ is the set of parameters which minimizes the objective function.

 θ = arg min
θ′ ϵ Θ

ℒ(θ′) (54)

The objective function can be minimized using gradient descent, the most popular choice for

training neural networks to obtain parameters θ. The gradient descent method is as shown below.

 θ(𝑙+1) = θ(𝑙) − 𝛼(𝑙) ▽𝜃 (ℒ(θ(l))) (55)

Here, ▽ is the gradient of the objective function in the steepest direction. The following gradient

descent algorithms were popularly used.

• Stochastic gradient descent [21]

• RMSprop [23]

• ADAM [24]

• AdaGrad [22]

4.4 BACK PROPAGATION

The gradient descent algorithms require the calculation of the gradients of ρ with respect

to the parameter set θ. For a multi-layer neural network mentioned previously, the parameter set

was as follows

 θ = { 𝑊1, ,𝑊𝐿 , 𝑏1, , 𝑏𝐿 } (56)

Let ρ ∶= ρ(𝑓(𝑋; θ), 𝑌). We define,

 δ𝑙 ≔
∂ρ

∂𝐻𝑙

(57)

33

By chain rule, for l = 1,….,L-1,

 𝛿𝑖
𝑙 = ∑𝛿𝑗

𝑙+1
𝜕𝐻𝑗

𝑙+1

𝜕𝐻𝑖
𝑙

𝑑𝐻

𝑗=1

(58)

 = ∑𝛿𝑗
𝑙+1𝜎′(𝑍𝑗

𝑙+1)𝑊𝑗,𝑖
𝑙+1

𝑑𝐻

𝑗=1

(59)

 = (𝛿𝑗
𝑙+1 ⊙ 𝜎′(𝑍𝑗

𝑙+1))
𝑇
𝑊:,𝑖

𝑙+1
(60)

In matrix terms, for l = 1,….,L-1,

 δ𝑙   = (𝑊𝑙+1)𝑇(δ𝑙+1 ⊙ σ′(𝑍𝑙+1)) (61)

Similarly,

 δ𝐿 = (𝑊𝐿+1)𝑇
∂ρ

∂𝑈

(62)

Following the same pattern, we have for l = 1,….,L-1,

𝜕𝜌

𝜕𝑏𝑙
 = 𝛿𝑙 ⊙ 𝜎′(𝑍𝑙)

(63)

𝜕𝜌

𝜕𝑊𝑙
 = (𝛿𝑙 ⊙ 𝜎′(𝑍𝑙))(𝐻𝑙−1)𝑇

(64)

𝜕𝜌

𝜕𝑏𝐿+1
 =

𝜕𝜌

𝜕𝑈

(65)

𝜕𝜌

𝜕𝑊𝐿+1
 =

𝜕𝜌

𝜕𝑈
(𝐻𝐿)𝑇

(66)

These partial derivatives were used in the gradient descent algorithms previously discussed.

4.5 NEURAL NETWORK DYNAMIC MODEL

A multi-layer neural network was used to model the dynamics of the system. The inputs to

the neural network were the same as the inputs given to the dynamic model discussed in Chapter

3. The neural network used the velocities of the system and the thrust forces to predict the

acceleration values. For training purpose, we could have used either the acceleration values from

the IMU or the output of the dynamic model. As the purpose of our neural network was to replace

the dynamic model, we used the acceleration values from the IMU. In the prediction process, we

34

had two types. One architecture, referred to as 4-D model, attempted to predict the four-

dimensional dynamic values, specifically, the four acceleration values simultaneously. The other

architecture involved four 1-D models and each model predicted an acceleration value. After

several empirical iterations, the following structure was selected.

Figure 15: 4 DoF Architecture

Figure 16: 1 DoF Architecture

After each fully connected network, a nonlinear function was applied and at the last fully connected

layer, the predictions were performed. The training dataset generated by making the RexROV

follow a random path using randomly generated velocity values. The number of epochs was

chosen based on the gradient descent algorithm used, since different algorithms require different

convergence times. After training the outputs from the model were used in the EKF algorithm 2

discussed in chapter 3.

4.6 RESULTS ON THE TEST DATASET

The performance of various gradient descent algorithms and nonlinear functions were

compared with each other to select the best architecture. A random test dataset obtained by sending

varying velocity inputs at the rate of 1 Hz was used to test the model. The outputs of the neural

networks were compared to the IMU sensor values and a mean squared error value (𝑚/𝑠2) was

presented in tabular form. The random test course used to evaluate the model is shown in figure

17.

Input

10
dimention

Fully
Connected

Layer

(16,50)

Fully
Connected

Layer

(50,100)

Fully
Connected

Layer

(100,20)

Fully
Connected

Layer

(20,4)

Input

9
dimention

Fully
Connected

Layer

(9,20)

Fully
Connected

Layer

(20,50)

Fully
Connected

Layer

(50,20)

Fully
Connected

Layer

(20,1)

35

Figure 17: Test Course path

The Mean squared error values for the one-dimensional model on different architecture was

presented below.

Table 8: MSE of 1-D model in 𝑚/𝑠2

Non-Linearity

Stochastic

Gradient

Descent

ADAM RMS Prop AdaGrad

Sigmoid 0.392789 0.358554 0.641691 0.590308

Tanh 0.474864 0.443763 0.595621 0.564026

ReLU 0.595786 1.374891 0.520794 0.609667

Leaky ReLU 1.336792 1.707493 0.748638 1.05258

ELU 1.847483 16.76965 0.579572 0.428673

Scaled ELU 0.528643 0.517554 0.505096 0.214801

Swish 1.504296 1.134492 1.749343 0.945114

The Mean squared error values for the four-dimensional model on different architecture is

represented in table 9. The MSE was obtained as an average of the output from the two models.

36

Table 9: MSE of 4-D model output in 𝑚/𝑠2

Non-Linearity

Stochastic

Gradient

Descent

ADAM RMS Prop AdaGrad

Sigmoid 0.344719 0.385645 0.594746 0.590196

Tanh 0.467479 0.398121 0.640974 0.589978

ReLU 0.520794 1.607941 0.517014 0.344869

Leaky ReLU 1.739374 5.101167 0.509121 0.494125

ELU 1.67696 1.118611 0.480766 0.238511

Scaled ELU 0.564937 1.209875 0.283453 0.211873

Swish 1.515001 2.00879 0.548072 0.50399

4.7 ARCHITECTURE SELECTION

From table 8, the MSE of the 1-D model for AdaGrad algorithm and Scaled ELU nonlinear

functions were the smallest value on the test dataset. Similarly, from table 9, the MSE of the 4-D

model for AdaGrad algorithm and Scaled ELU nonlinear functions were the smallest on the test

dataset. A deeper analysis of the two models for the three test courses mentioned in chapter 3 is

presented.

For the behavior evaluation 1 test course, the results are presented in table 10.

Table 10: 1-D model vs 4-D model for BE1

 �̇� �̇� �̇� �̇�

1-D Model 0.046861 0.022624 0.047363 0.042979

4-D Model 0.065858 0.055501 0.092417 0.093234

For the behavior evaluation 2 test course, the results are presented in table 11.

Table 11: 1-D model vs 4-D model for BE2

 �̇� �̇� �̇� �̇�

1-D Model 0.053512 0.053769 0.075860 0.044259

4-D Model 0.061972 0.086907 0.106740 0.0743459

37

For the behavior evaluation 3 test course, the results are presented in table 12.

Table 12: 1-D model vs 4-D model for BE3

 �̇� �̇� �̇� �̇�

1-D Model 0.051806 0.030311 0.060022 0.047931

4-D Model 0.058105 0.052425 0.078260 0.057432

A deeper analysis demonstrated that for the MSE for 1-D model was better than the 4-D model.

We proceeded with the outputs from the 1-D model for our EKF algorithm.

4.8 NEURAL NETWORK MODEL VS DYNAMIC MODEL

The neural network architecture outputs were compared to the dynamic model outputs. The

results for the three behavior evaluation test courses were presented in figures 16 to 18.

4.8.1 BEHAVIOR EVALUATION 1

Figure 16 demonstrates the path predicted by the dynamic filter and the neural network

filter for the behavior evaluation test course 1.

Figure 18: Behavior Evaluation 1

As seen in figure 18, the neural network filter predictions were closer to the truth value.

However, on further analysis using MSE values (m), it was observed that the neural network had

a few anomalies resulting in larger error compared to the dynamic filter.

38

Table 13: Results of Behavior Evaluation 1

Error (m) Dynamic Filter Neural Network Filter

Total 0.7572 1.5414

X-Kalman 0.5712 0.4148

Y-Kalman 0.4971 1.4846

From table 13, the total error of the dynamic filter was less than the neural network filter.

The neural network needs to be improvement in order to make better predictions for the Y-Kalman

values. In order to make further assessment of the filters, they were tested on the behavior

evaluation 2 test course.

4.8.2 BEHAVIOR EVALUATION 2

Figure 17 shows the path predicted by the dynamic filter and the neural network filter.

Figure 19 : Behavior Evaluation 2

As seen in figure 19, the neural network filter was closer to the true value compared to the

dynamic filter. The dynamic filter converged faster to the ground truth value while the neural

network values kept fluctuating on the y-axis values as seen at the beginning and end of figure 17.

39

This further supports our conclusion from table 14 that the neural network should be improved to

make better predictions on the y-axis.

Table 14 : Results of Behavior Evaluation 2

Error (m) Dynamic Filter Neural Network Filter

Total 0.6697 0.6254

X-Kalman 0.3419 0.2391

Y-Kalman 0.5759 0.5779

From table 14, the mean error of the neural network filter was almost equal to the dynamic

filter. Both filters can handle the simultaneous changes in the x-axis and y-axis.

4.8.3 BEHAVIOR EVALUATION 3

The third test course was a U-shaped path with clockwise and counterclockwise curves and

straightaways.

Figure 20: Behavior Evaluation 3

From figure 20, in behavior evaluation course 3, which includes all possible movements

of the ROV, the dynamic filter and neural network filter exhibit a similar performance.

40

Table 15 : Results of Behavior Evaluation 3

Error (m) Dynamic Filter Neural Network Filter

Total 0.7629 0.7974

X-Kalman 0.5799 0.4557

Y-Kalman 0.4958 0.6544

On further analysis, the results of the neural networks discussed above were not replicable

since the learning depended on the initial initialization of the weights. The performance of the

networks was almost the same as discussed but a fluctuation of the order of 10−2 𝑚/𝑠2 was

observed for the predicted acceleration values.

41

CONCLUSION

A simplified 4 DoF dynamic model was derived for a RexROV and it was implemented on

an EKF. The outputs from the EKF were fed to a pure pursuit controller to control the RexROV in

the simulation. From the figures 8 to 10 and the tables 5 to 7, the dynamic Kalman filter predictions

were very close to the ground truth values. On comparison of the individual values predicted by

the dynamic filter and the kinematic filter with the actual position of RexROV, the dynamic filter

was more stable and reliable than the kinematic filter.

Since the dynamic model required the use of many coefficients, a neural network-based

approach was used to model the dynamics of the underwater vehicle. Several iterations, involving

four gradient descent algorithms and seven nonlinear activation functions, were performed to

choose the best architecture for the neural network. It was found that AdaGrad gradient descent

algorithm when used in combination with Scaled ELU activation function gave better results that

the other combinations. A comparison study was conducted on the three behavior test courses to

choose between the four 1-D models and 4-D model. It was found that the four 1-D models were

able to predict the acceleration values much more accurately than a single 4-D model. The

networks were trained to the maximum level without overfitting. The acceleration in y-axis(v̇) and

the acceleration in x-axis (u̇) were predicted to an accuracy of 0.05 𝑚/𝑠2 on a random test course.

The 1-D neural network models were used as an input to the EKF algorithm and the results

were compared to the dynamic filter. Both the neural-network and dynamic model were

implemented as a post-processing tool to maintain uniformity. The accuracy of the neural network

model was lower for the y coordinates on behavior evaluation test course 1. On further analysis, it

was found that the network was able to make better prediction on behavior evaluation test courses

2 and 3. The neural network was able to sufficiently replicate the dynamics of the vehicle although

a few more regularization and tuning needed to be performed to improve the network.

The neural network model was implemented as a post-processing tool and needs to be

implemented in the simulation in real-time to verify the performance. The neural network codes

were written in Pytorch and the controller codes on UUVSim used Cplusplus. Integrating the

Pytorch and Cplusplus environment should be done before the neural network model can be run

in real-time in UUVSim. The results were based on movement only in the two primary axes, x and

y, similar to a ground vehicle. Further research is being conducted on the simultaneous triaxial

42

movement to make the controller universal. It was expected that the movement on the z-axis should

not affect the performance of the dynamic Kalman filter and neural network filter.

Currently, the model uses GPS data to correct position estimation. However, research has

indicated that the strength of the electromagnetic waves for the GPS signal reduces significantly

underwater [27]. Methods such as station keeping, SONARSLAM and vision systems were

currently being explored as an alternative for position estimation. The results presented in this

thesis were obtained at a constant wave velocity. The wave velocity can be used as an input to the

neural network to better model the dynamics. The predictions were conducted at a frequency of

10Hz and the dynamic filter worked on the simulation without any performance issues. However,

the filters need to be implemented in real-time hardware to assess the actual computational

performance.

Another field of interest for the AUVSL group is prediction of the position of the vehicle

directly without the use of filters. Recurrent Neural Network algorithms such as LSTM can be

used to serve this purpose. One way to improve the Kalman filter predictions was to model the Q

and R matrix accurately. Generative Adversarial Nets (GANs) can be used to improve the accuracy

for Q and R. However, the GANs were limited by the availability of ground truth data for training.

The neural network modelling techniques discussed here were also applicable to the ground

vehicle which is currently explored by other members of AUVSL group. Alternative controller

techniques, such as sliding mode controller, were being researched to improve the performance of

the model.

43

REFERENCES

[1] Stillman, D. Oceans : The Great Unknown. Ed. by National Aeronautics and Space

Administration. 2009. url: https://www.nasa.gov/audience/forstudents/5-8/features/oceans-

the-great-unknown-58.html (visited on 06/29/2019).

[2] Manhaes, M.M.M.,et al.“UUV Simulator: A Gazebo-based package for underwater

intervention and multi-robot simulation”. In : OCEANS 2016 MTS/IEEE

Monterey.IEEE,Sept.2016.doi:10.1109/oceans.2016.7761080.

[3] Kermorgant, O., “A Dynamic Simulator for Underwater Vehicle-Manipulators”. In: vol. 8810.

Oct. 2014.doi:10.1007/978-3-319-11900-7_3.

[4] Kalman, R.E., “A New Approach to Linear Filtering and Pre-diction Problems”. In :

Transactions of the ASME–Journal of Basic Engineering 82.Series D (1960), pp. 35–45.

[5] Julier, S. J. and Uhlmann, J. K. "Unscented filtering and nonlinear estimation," in Proceedings

of the IEEE, vol. 92, no. 3, pp. 401-422, March 2004, doi: 10.1109/JPROC.2003.823141.

[6] Romagos, D., Ridao, P., and Neira, J. Underwater SLAM for Structured Environments Using

an Imaging Sonar. Vol.65. Jan.2010. isbn:978-3-642-14039-6.doi:10.1007/978-3-642-14040-

2.

[7] Hascaryo, R. W., 2019. “Reduced order extended Kalman filter incorporating dynamics of an

autonomous underwater vehicle for motion prediction”, Master’s Thesis, Department of

Aerospace Engineering, University of Illinois at Urbana Champaign, USA.

[8] Berg, V., 2012. “Development and commissioning of adp system for rov sf 30k”, Master’s

thesis, Department of Engineering Cybernetics, Norwegian University of Science and

Technology, Trondheim, Norway, 2012.

[9] Adam, A., and Erik, E., 2016. “Model-based design, development, and control of an

underwater vehicle”, Master’s thesis, Department of Electrical Engineering, Linkoping

University, Linkoping, Sweden, 2016.

[10] Govinda, L., Tomas, S., Bandala, M., Nava Balanzar, L., Hernandez-Alvarado, R., and

Antonio, J., 2014.“Modelling, design and robust control of a remotely operated

underwater vehicle”. International Journal of Advanced Robotic Systems,11, 01, p. 1.

[11] Norris, W.R., and Patterson, A.E., 2019. “System-level testing and evaluation plan for

field robots: A tutorial with test course layouts”. Robotics, 8(4).

44

[12] Abadi, M., Agarwal, A., Barham, P., et al TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[13] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … Chintala, S. (2019).

PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach, H.

Larochelle, A. Beygelzimer, F. d extquotesingle Alch'e-Buc, E. Fox, & R. Garnett

(Eds.), Advances in Neural Information Processing Systems 32 (pp. 8024–8035). Curran

Associates Inc. Retrieved from http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

[14] Fossen, T. I., Handbook of Marine Craft Hydrodynamics and Motion Control, 1st Ed., Wiley,

Chichester, United Kingdom, 2011, Chapters 1-7, 12.

[15] Fossen, T. I., “Nonlinear Modelling and Control of Underwater Vehicle”, PhD dissertation,

Department of Engineering Cybernetics, Norwegian University of Science and Technology,

Trondheim, Norway, 1991.

[16] Rosa, R., Zaffari, G., Evald, P., Drews-Jr, P., Botelho, S. (2017). “Towards Comparison of

Kalman Filter Methods for Localisation in Underwater Environments”, 10.1109/SBR-LARS-

R.2017.8215339.

[17] Manhaes, M., Scherer, S. A., Douat, L. R., Voss, M. and Rauschenbach, T. "Use of simulation-

based performance metrics on the evaluation of dynamic positioning controllers", OCEANS

2017 - Aberdeen, Aberdeen, 2017, pp. 1-8,doi: 10.1109/OCEANSE.2017.8084658.

[18] Kleene, S.C. (1956). "Representation of Events in Nerve Nets and Finite Automata". Annals

of Mathematics Studies (34). Princeton University Press. pp. 3–41. Retrieved 17 June 2017

[19] Schmidhuber, J. “Deep Learning in Neural Networks: An Overview”.In : CoRRabs/1404.7828

(2014). arXiv:1404.7828. url : http://arxiv.org/abs/1404.7828.

[20] Yiu, T., “Understanding Neural Networks. Ed. by Towards Datascience”, 2019. url :

https://towardsdatascience.com/understanding-neural-networks-19020b758230 (visited on

06/29/2019).

[21] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.

[22] Duchi, J., Hazan, E., and Singer, Y., 2011. “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”. J. Mach. Learn. Res., 12:2121–2159.

45

[23] Hinton, G. 2012. Neural Networks for Machine Learning - Lecture 6a - Overview of mini-

batch gradient descent.

[24] Kingma, D.P., and Ba, J. 2014. “Adam: A Method for Stochastic Optimization”. CoRR,

abs/1412.6980.

[25] Coulter, R. C., 1992. “Implementation of pure pursuit path tracking algorithm”. The Robotics

Institute, Carnegie Mellon University.

[26] Agudelo, J. G., 2015. “Contribution to the model and navigation control of an autonomous

underwater vehicle”, PhD thesis, PhD thesis, Departament d’Enginyeria Electronica,

Universitat Politecnica de Catalunya.

[27] Taraldsen, G., Reinen, T. A., and Berg, T., 2011. “The underwater gps problem”, In

OCEANS 2011 IEEE - Spain, pp. 1–8.

