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ABSTRACT

Improving crop management is an essential step towards solving the food

security challenge. Despite the advances in precision agriculture, new meth-

ods are needed to create decision-support systems to help farmers increase

productivity while accounting for environmental impacts and financial risks.

This dissertation presents a class of learning-based optimization algorithms

for spatial allocation of crop inputs, and a new framework for online coverage

path planning with potential use in tasks such as planting and harvesting.

The proposed algorithms use Multi-stream Convolutional Neural Networks

(MSCNN) to learn relevant spatial features from the environment and use

them to optimize the available control inputs. In the crop inputs optimiza-

tion problem, an MSCNN combines five input variables as in a regression

problem to better predict yield. The predictive model is then used as the

base of a gradient-ascent algorithm to maximize a custom objective function.

To leverage the applicability of this algorithm, a risk-aware version of this

method is also proposed. The predictive uncertainty is measured and used

as a constraint to comply with different levels of risk-aversion. Experiments

with real crop fields demonstrate that this method significantly reduces the

yield prediction errors when compared to the state of the art algorithms.

Results from the optimization algorithm show an increase in the expected

net revenue of up to 6.8% when compared with the status quo management

while providing safety bounds.
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In the coverage path planning framework, an MSCNN agent learns a con-

trol policy from demonstrations of paths obtained offline through heuristic

algorithms, by using imitation learning. The resulting control policy is fur-

ther improved through policy-gradient reinforcement learning. Simulations

show that the improved control policy outperforms the offline algorithms

used during the imitation learning phase, and that the proposed framework

can be easily adapted to different cost functions.

iii



“It’s a dangerous business, Frodo, going out your door. You step

onto the road, and if you don’t keep your feet, there’s no telling

where you might be swept off to.”

J.R.R. Tolkien

In dedication to my wife Dianna with whom I share an unexpected journey.
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ACRONYMS

Rn n-dimensional Euclidean space.
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| · | Absolute value.

∇ Gradient operator.

E Expectation operator.

N Gaussian distribution.

1A Indicator function of the event set A.

ANN Artificial Neural Network.

CPP Coverage Path Planning.

DDS Decision-Support System.

GA Genetic Algorithm.

GP Gaussian Process.

MSCNN Multi Stream Convolutional Neural Network.
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OFPE On-Farm Precision Experiment.

PA Precision Agriculture.

RA-CNN Risk Averse Convolutional Neural Network.

RF Random Forest.
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RMSE Root Mean Squared Error.
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CHAPTER 1

INTRODUCTION

Improving crop management is an essential step towards solving the food

security problem [1]. Traditional farm management practices have led to

several environmental and production problems, including excessive fertil-

ization of crops and soil compaction. The first generates a surplus nutrient

flow that pollutes the water system [2] and often reduces productivity, while

compaction has negative effects in the soil’s biotic activity [3]. Although

Precision Agriculture (PA) has been consolidated as a management strategy

to tackle some of these problems [4, 5], the improvement of decision tools

is yet to reach its full potential [6]. New methods are needed to take full

advantage of new field technologies (e.g., variable-rate applicators, RTK lo-

calization systems, and yield monitors) and create Decision-Support Systems

(DSS) to help farmers increase production while accounting for environmen-

tal impacts [7]. Also, the diffusion of new PA technologies has been limited

by a set of multidimensional factors ranging from socio-economic to techno-

logical [8]. Previous studies [9,10] have demonstrated that farmer’s financial

risk perception is one of the top reasons many PA solutions are not adopted,

even when they present significant expected profitability advantages. Then,

a technology that provides safety bounds when changing the status quo is

more likely to be adopted, even that it demonstrates a slightly reduced prof-

itability when compared to other emergent solutions.

To optimize crop fertilization rates, descriptive and predictive models of

1



yield response to crop input management are necessary. As the decision on

the rates of fertilizer and seeds is taken at the beginning of the growing sea-

son, a model for forecasting yield based on data available at such time is a

key element for improving crop management. Many models mapping envi-

ronmental and management variables to crop yield have been proposed [11].

They can be separated into statistical models [12, 13], and analytic crop

models [14]. While analytic crop models are dynamic system simulations

based on variables that may not be measurable by farmers, statistical mod-

els are constrained by the representativeness of the collected data. On-Farm

Precision Experimentation (OFPE) is often used to improve statistical mod-

els [15,16] by generating site-specific representative data. However, even at a

field scale, the spatial structure of environmental and management variables

may affect the yield through events such as nutrient and water transporta-

tion [17]. Therefore, the spatial structure of environmental and treatment

variables plays an important role when trying to create a predictive model

for yield. Moreover, the interaction between different explanatory variables

may depend on such spatial structures in a nonlinear way, and an efficient

way to extract relevant spatial features from the data is needed.

The intensive traffic of tractors is one of the main causes of soil com-

paction [18]. Optimizing the path used in area coverage tasks such as spray-

ing and harvesting is necessary to reduce the number of passes over the same

place, and hence reduce soil compaction. Besides, the level of compaction

also depends on the path’s slope, being high slopes usually associated with

high levels of soil compaction and erosion. Coverage algorithms are classi-

fied as online or offline, as proposed by [19]. Opposed to online, the offline

algorithms assume full prior knowledge and stationarity of the environment,

which may be an unfeasible assumption for crop fields. The optimality of
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paths obtained offline is often very sensitive to even slight changes in the

environment, which in case of crop fields may be a result of water accumu-

lation and other obstacles in the field. Nevertheless, they commonly achieve

better performance over online algorithms at the price of taking much longer

processing time. Online algorithms are, in general, based on offline heuristic

approximations. They use hand-crafted inference from the environment ’s

spatial structure to define a strategy [20], which may create limitations un-

der certain scenarios. Ideally, the performance of an offline solution should

be achieved by an online algorithm in similar environments.

Solutions for both problems rely on efficiently extracting features from

the spatial structure of the data/environment. A similar spatial feature ex-

traction problem is also present in image recognition software, where Con-

volutional Neural Networks (CNN) have demonstrated significantly higher

performance over other methods [21]. Convolutional layers can be trained to

encode relevant visual (and here we can also use the term ”spatial”) features

of varying complexity when combined with fully connected layers. When in-

put variables are not correlated, Multi-Stream Convolutional Neural Network

(MS-CNN) architectures have demonstrated potential benefits over more tra-

ditional CNN. To the best of author’s knowledge, MS-CNN have not been

used to learn relevant spatial features from different and weakly correlated

crop input variables as in a regression problem, and neither the structure of an

environment to design coverage algorithms. In this context, this dissertation

explores the use of MS-CNN as a base of DSS for crop input management.

Many studies have emerged in PA aiming to create data-driven DSS for

choosing crop inputs based on yield prediction models [22]. The quality of

such DSS heavily depends on the model’s accuracy on predicting yield, and on

the system’s ability to use this model to find the optimal input management
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to achieve the desired result. For instance, simple methods such as quadratic

[23] and piecewise linear [24] regression provide straightforward optimization

strategies, but present low accuracy when predicting yield. On the other

hand, Machine Learning (ML) approaches have higher prediction accuracy,

but pose a more challenging optimization problem due to their complex form.

Also, to increase the chances of diffusion of the DSS, the yield model, as well

as the optimization algorithm, must account for the uncertainty in both

data and predictions. Then, to take full advantage of the performance of

CNN in practical applications, we need a proper framework for uncertainty

quantification and optimization.

This dissertation proposes two learning-based optimization algorithms us-

ing MS-CNN architectures for improving fertilizer rates and the path used

in coverage tasks. First, a yield prediction model is designed to extract and

combine spatial features present in different environmental and manageable

crop input variables that are available at the beginning of the growing sea-

son. Then, this model composes the objective function of a gradient-ascent

optimization algorithm, that aims to find the optimal spatial distribution of

manageable input variables (i.e., fertilizer and seed maps). The final step

in this framework consists of an online CPP algorithm to optimally apply

the fertilizer and seeds in the field. This algorithm is based on an MS-CNN

agent that finds relevant features in the environment, mimics offline CPP al-

gorithms, and improves its performance through reinforcement learning [25].

Following the trade-off between prediction accuracy and optimization com-

plexity, the CNN yield prediction architectures pose a very challenging op-

timization problem since they have a much larger input space than other

methods. Increasing the input space without collecting more data makes

the optimization algorithm more likely to find a solution outside the domain
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of the data used to train the model, which may lead to overconfident so-

lutions that are unlikely to work in practice. Hence, this dissertation also

revisits the proposed solution to incorporate uncertainty and leverage the

applicability of the MS-CNN model into DSS. The vast majority of uncer-

tainty quantification research focuses on Bayesian formalism [26], where a

posteriori distribution over the network’s parameters is obtained from the

data. This approach is, however, often harder to implement and slower to

train when compared to non-Bayesian neural networks. A simpler and more

scalable solution for uncertainty quantification was proposed in [27], where

a deep ensemble of neural networks performed as well as Bayesian networks

in different datasets. The proposed approach requires few modifications to

non-Bayesian neural networks and is suitable for parallel computing, making

it attractive for our problem. Hence, the MS-CNN architecture is modi-

fied under the deep ensemble framework to provide uncertainty estimation

of predictions. The objective function of the optimization algorithm is also

reformulated to incorporate risk constraints and provide safety bounds on

the algorithm’s output.

1.1 Related Work

1.1.1 Yield Prediction Models

Many spatial econometrics models were developed to account for data’s

spatial structure [28]. For example, the Generalized Least Squares (GLS)

method [29] combines a geostatistical semivariogram with linear regressions.

This approach, however, uses a fixed kernel to model the influence of neigh-

bor data in a particular sample, based only on the distance between them,

rather than on the spatial structure of the data. Another example can be
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found in [30], which used spatial econometrics to estimate yield response to

fertilizer rates across the studied fields.

Most Machine Learning algorithms applied to yield prediction don’t con-

sider information from the spatial distribution of the input variables. Instead,

they assume only local information from the variables as each sample in the

field is independent of the others. For instance, methods such as Artifi-

cial Neural Networks (ANN) [13], Support Vector Machines (SVM) [31, 32]

and Random Forest (RF) [33] have previously been used for predicting yield

with reasonable accuracy. In one of the few works considering the spatial

data, [34] proposed a deep learning framework for real-time yield forecast-

ing. Authors use a dimensionality reduction based on histograms over remote

sensing images. Then a Deep Gaussian Process is implemented to integrate

spatiotemporal information present in the histograms. This work, although

interesting, uses temporal information for predicting yield, making it not

suitable for optimizing fertilization rates. Also, the model is designed to

work on a larger field-scale than the one proposed in this dissertation.

In agriculture, applications of CNNs [35] usually focus on disease [36, 37]

and plant [38] classification, and on image-based estimation, such as soybean

leaf defoliation level [39]. Also, [40] used a CNN to estimate yield based

on multispectral imagery collected during the growing season, not provid-

ing actionable pre-season information. Some of the concepts of MS-CNN

were explored in different problems. A CNN was proposed in [41] for flower

grading, where three images are necessary to fully describe a flower, and au-

thors concatenate the result of independent convolutions from each image in

the first layer before performing subsequent convolutions. Different architec-

tures are also present in the literature related to human action identification

in video data. A multi-stream architecture is proposed in [42], in which in-

6



puts are combined late in the network, demonstrating better performance

than architectures using stacked frames as inputs [43]. A 3D CNN was pro-

posed by [44], which uses 3D filters convolved with adjacent input frames,

demonstrating results as good as the state of the art techniques.

1.1.2 Optimization of Fertilizer Rates

The concept of management zones is one of the most common approaches

to optimize fertilization rates. In this framework, the field is divided into

different zones according to the variability observed in the soil’s properties

and historical yield. Then, crop simulations or regression methods are used

to define the optimal rate for each zone. Two good examples of this approach

are given by [45] and [46]. Although simple, this method is limited by a small

number of management zones.

Neural Networks (NN) have previously been used to optimize levels of

fertilizer. In [47], authors used a NN to create a yield model from independent

sampled data and choose rates from a finite and small set of possible fertilizer

rates. Although reasonable, this approach ignores the effect of the fertilizer

applied to other points in the field, works with a limited set of rates, and

doesn’t consider the potential advantages of a variable rate applicator.

Recently, [48] proposed a Bayesian numerical optimization framework based

on Gaussian Processes (GP) models. The authors account for uncertainty in

their recommendations by using Monte-Carlo sampling over simulated data

and provide a comprehensive optimization framework. However, the spatial

distribution of input variables is not considered, which can be a limiting fac-

tor in prediction accuracy. Moreover, the uncertainty is obtained a posteriori,

and predictions are not risk-aware, providing only expected values but not

their variance.
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1.1.3 Coverage Path Planning

Coverage path planning (CPP) is the task of finding an efficient path that

passes overall desired points of an environment’s area [49]. This task is

present in applications such as automated harvesting [50], inspection of me-

chanical structures [51], painter robots [52], vacuum cleaners [53], among

many others [54]. Due to the NP-hardness of CPP [55], coverage algo-

rithms are heuristic and often achieve a sub-optimal solution for the problem.

Some examples of offline algorithms are cellular decomposition [56], spanning

trees [57], genetic algorithms [58], and the wavefront algorithm [59]. Online

algorithms are usually approximations of the offline heuristics. For example,

a topological coverage algorithm is proposed by [60], which uses landmarks

in the environment to determine reachable sub-regions to be covered by a

back and forth motion. This solution has limited efficiency when the number

of connections between reachable sub-areas is high.

Some studies have already explored the concept of learning-based path

planning. In [61], authors propose an imitation learning framework for plan-

ning a path from point A to B. They use an oracle of optimal solutions

based on full-state representation to train an agent that imitates the optimal

actions using partial observations of the environment. They condense the

state’s representation based on a set of heuristics. This approach is not di-

rectly applicable to the problem of CPP since the last has a much bigger input

space, and the heuristic representations are not easily derived. An inverse

reinforcement learning was proposed by [62] to represent the cost model un-

derlying the desired driving behaviors. The method is demonstrated to infer

suitable cost functions for long-term planning on traversing problems.

An end-to-end RL approach to CPP is presented in [63]. In this work,

8



authors use a CNN as a feature extractor and decision network for a policy

gradient algorithm. They demonstrate full coverage of maps with the min-

imal cost associated with the energy required by a tetromino robot. The

findings suggest promising use of RL on CPP problems but are not scalable

since the size of the map is limited by the size of CNN’s inputs. Moreover,

the technique is not directly applicable to the problem in this dissertation.

In our case, the cost of overlapping a previously covered node is much greater

than the cost of energy, which brings the optimization problem to a much

longer time horizon.

1.2 Dissertation Outline

This dissertation has six chapters for which a brief overview is given below:

• Chapter 2 details the CNN architectures used to create the yield pre-

diction model based on environmental and manageable variables. Four

different CNN architectures combining the inputs at different stages in

the network are compared. Data from nine cornfields across the US are

used to test and compare the proposed architectures. Such fields are

part of an OFPE with randomized nitrogen and seed rates prescription.

The models are trained in a supervised fashion, tested, and compared

with a linear model, a fully connected neural network, a random forest

regression, and a support vector machine. The results presented in this

chapter are published in [64].

• In Chapter 3, inspired by the backpropagation algorithm, the gradient

of the MS-CNN is used to derive the gradient of the expected net rev-

enue with respect to the manageable input variables, taking network
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weights as constants. This gradient is further used in a gradient ascent

optimization algorithm for finding the best spatial distribution of man-

ageable input variables (i.e., fertilizer and seed maps). The proposed

method is compared with an evolutionary algorithm, and experiments

are conducted to demonstrate the profitability potential of this solu-

tion over traditional farm management. This chapter also presents a

sensitivity index to account for input variable importance on yield pre-

diction. The results shown in this chapter are published in [65].

• Chapter 4 presents the incorporation of uncertainty quantification into

our previously proposed CNN yield prediction model and a new risk-

averse optimization algorithm. The CNN architecture is redesigned

under the Deep Ensemble framework, so the predictive model outputs

a probability distribution instead of a single value. Then, the objec-

tive function of the previous optimization algorithm is reformulated

to reduce the uncertainty in the solutions, and satisfy risk-constraints

that can be easily adjusted to match different levels of the farmers’ risk

aversion. This chapter also demonstrates how uncertainty maps can be

created to give insights to farmers regarding areas of their fields that

present higher variability that is not explained by the collected data.

• Chapter 5 proposes a novel learning framework for online coverage

path planning. We train an agent to find relevant features in the

environment, mimic offline algorithms, and improve its performance

through reinforcement learning [25]. There are three steps in this

framework. First, the software generates grid-based maps containing

different shapes and obstacles and solves them for coverage using offline

techniques that minimize the path’s cost. We use Boustrophedon cel-
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lular decomposition [66] for solving planar maps and a novel heuristic

Dijkstra’s algorithm for solving non-planar maps (i.e., a grid projec-

tion of 3D surfaces). Next, a CNN agent is trained in a supervised

fashion, using examples from paths obtained by the offline algorithms

(i.e., imitation learning [67]). Each example comprises an action along

the path and its respective observation of the state. When trained, the

agent maps an observed state from the environment to a probability

distribution over possible actions in the grid. The agent’s path is then

constructed greedily by following the actions with the highest proba-

bility of being optimal. Finally, the agent’s policy is refined using a

reinforcement learning algorithm.

• Concluding this dissertation, Chapter 6 makes some final remarks and

presents possible future directions.

11



CHAPTER 2

MODEL OF YIELD RESPONSE TO
NUTRIENT MANAGEMENT

In this chapter, we propose a Convolutional Neural Network (CNN) for learn-

ing relevant spatial structures from different fields’ attributes and combine

them to create a model to predict yield. Four different CNN architectures

combining the inputs at different stages in the network are compared using

data from nine corn fields across the US. Such fields are part of an OFPE with

randomized fertilizer and seed rates prescription. The models are trained in a

supervised fashion, tested, and compared to a linear model, a fully connected

neural network, a random forest regression, and a support vector machine.

The models proposed in this chapter will serve as the base for further opti-

mization algorithms.

2.1 Dataset Construction

New field technologies for site-specific management have become available to

farmers in recent decades. They include but are not limited to yield monitor-

ing, remote sensing imaging, and variable rate input application. Data from

these machines are easily visualized by the farmer and bring insightful infor-

mation for site-specific crop management. Such technology makes it possible

to design large-scale OFPE, generating large amounts of data to model yield

response to the spatial distribution of input variables.

12



Figure 2.1: OFPE design in a field with irregular boundaries.

The traditional approach for OFPE is the design of a ”checkerboard” con-

taining rectangle cells with the same width as the variable-rate applicator.

Each cell is an experimental unit in which different treatments are applied.

This approach works well on rectangular fields, but when the boundaries

have irregular shapes, it may result in a lower coverage of the field. This

dissertation uses data from the Data Intense Farm Management (DIFM)

project [68], recorded during the 2017 season. The database contains geo-

referenced management and environmental data from OFPE conducted on

fields averaging 40 ha and 200 experimental units represented by 85 m long

and 18 m wide polygons. As some fields have irregular shapes, we use a

different method for designing the experiments. We sequentially create each

experimental unit along the path previously used by the farmer. This path

is usually available from harvesting logs and ensures that most of the field

will be covered by experimental cells. Figure 2.1 depicts an OFPE design for

a large and irregular field.

Nine fields were selected, from which six are rain-fed fields in Illinois (Fields

13



2, 4, 7, 8, and 9) and Ohio (Field 5), and three are irrigated fields in Ne-

braska (Fields 3 and 6) and Kansas (Field 1). Nitrogen and seed rates were

randomly assigned from four different levels to each experimental unit in a

field, except for field 1, where the nitrogen rate is constant. The explanatory

variables chosen for this study are nitrogen fertilizer and seed rates prescrip-

tion maps, elevation map, and soil’s shallow electroconductivity (EC). Soil’s

EC measurements are proxies of chemical and physical properties, including

texture, bulk density, soil organic carbon, water content, salinity, and cation

exchange capacity [69]. In general, in fields as the ones we are evaluating, it is

expected to observe a positive association between EC and soil’s capacity to

supply water and nutrients to crops. Information about EC is also valuable,

given that it is more spatially detailed than that of soil samples [70]. Addi-

tionally, a single cloud-free satellite image was used to characterize the bare

soil variability of each field. Only the surface reflectance of the red band

from a 3m spatial resolution Planet Labs [71] PSSE4 multispectral image

was used. The image was taken after soil tillage, approximately one week

before planting, when the field was clear from any vegetation and the soil

was exposed. The bare soil reflectance has been shown to correlate with soil

attributes such as organic matter content and particle size distribution [72],

and may work as a proxy to explain yield and nitrogen mineralization poten-

tial. Yield data is used as the response variable and was collected by yield

monitors during harvesting. Notice that all explanatory variables are avail-

able at the beginning of the season, so one can use the model for optimizing

nitrogen and seed rates before applying them.

As each field had its data recorded using different equipment and software,

a way to put each variable from all fields into the same support is first needed.

The smallest unit of analysis is defined as a square with a side of five meters
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and is represented by a single element in a large raster spanning the field.

Variables stored as polygon data (e.g., prescription maps) were sampled and

converted to each element in the raster by using the mean method, while the

ones stored as points (e.g., elevation map and soil’s electroconductivity) were

first interpolated using kriging [29] and rasterized to the desired support (5

× 5m cell). The satellite picture was resampled to the desired support since

it is already a raster.

The key assumption in this chapter is that the yield at a single unit of

analysis depends on the spatial structure of observed explanatory variables

around it. It is fair to assume, however, that the influence of neighbor data

over a unit is limited to a certain range. So, by finding this range, the

model’s complexity can be reduced without losing valuable data, which makes

the model easier to train and more data-efficient. Therefore, a variogram

(Figure 2.2) containing the averaged variability from all explanatory variables

is constructed to compute the range that better describes the data. For the

selected fields, the computed range is approximately 100m, indicating that no

significant higher variability is obtained when considering a greater distance

between two points.

Then, a sample used as input for the proposed models described in the

next section is defined as a set of 21 × 21 elements rasters (one for each of

the five explanatory variables), spanning a square of 100 × 100m around the

unit where the yield value is being predicted (Fig. 2.3). Then, to construct

a dataset, rasters (with dimension equal to 21 × 21) are cropped from the

original raster variables around each non zero cell in the yield map. Such

procedure results in a set of samples containing five rasters each and the

value of yield at their respective center cell.
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Figure 2.2: Averaged variogram from fields’ attributes.

Figure 2.3: Rasters representing five different input variables at the same
point: nitrogen rate (a), seed rate (b), elevation map (c), soil’s
electroconductivity (d), and satellite image (e).

When considering the yield data collected closer than 50m from the field’s

boundaries, the rasters centered at such cells cover an area where data is not

available. Trying to sample such data would assign null values to these cells,

resulting in a non-representative sample. Depending on the size of the field,

a considerable number of data points in the yield map lies within 50m from

the border, and eliminating such points from the dataset would considerably

reduce the amount of data. We address this problem by creating a buffer

around the rasters of each explanatory variable (Fig. 2.4) and padding them

accordingly to each variable. The seed and nitrogen maps are padded with
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Figure 2.4: Example of a buffer created to assign values to areas with no
data on an EC map.

zero since neither of them was applied at the buffer’s area. The elevation

map and soils’ shallow electroconductivity values were extrapolated using

kriging, while the satellite picture is taken already considering the buffer.

Finally, the data is standardized variable-wise to make the model’s training

process easier, and samples in which yield data is more than three standard

deviations from the mean were removed from the dataset.

2.2 CNN Model

This dissertation uses five different fields’ attributes to create a model for

yield prediction. Two of them are manageable variables (i.e., nitrogen fertil-

izer and seed rates), and three are environmental (i.e., elevation map, soil’s

electroconductivity, and satellite image). Figure 2.5 depicts the maps of in-

put variables and the resulting yield in field 7. Defining how these different

sources of information are combined through the network is a crucial step

towards obtaining efficient modeling.
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Figure 2.5: Example of input maps and yield response.

Four CNN architectures combining the inputs in different ways are pro-

posed and tested in this work. The first combines the inputs as in the most

commonly used convolutional neural networks, by stacking (we call it ST)

them as a multi-channel image (Fig. 2.6). Sixteen 3 × 3 filters are used in

the first convolutional layer with stride one, followed by a 2 × 2 max-pooling

layer with stride two. Then, outputs are flattened and fed to two sequential

fully connected ReLU layers with 512 neurons each. Finally, outputs are

connected to an output neuron with a linear activation function. The sec-

ond proposed architecture is a multi-stream Early-Fusion (EF) network. In

this network, each input is connected to an independent convolutional layer

(defining a multi-stream network) with eight 3 × 3 filters each with stride

one, followed by a 2 × 2 max-pooling layer with stride two (Fig. 2.7). The

outputs of the max-pooling layers are then flattened, concatenated, and fed

to a fully connected ReLU layer with sixteen neurons, followed by an output

neuron with a linear activation function. The third architecture is also a

multi-stream network named Late Fusion (LF). We add a fully connected

ReLu layer with sixteen neurons to each stream after the max-pooling layer,

followed by a single ReLu neuron (Fig. 2.8). Then, the five resulting neurons

are concatenated and fed to the last two layers, as in the EF architecture. The

last proposed architecture is a 3D CNN (named 3D for short) very similar
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Figure 2.6: CNN-ST architecture.

to ST, except the convolutional layer has sixteen 3 × 3 × 1 filters convolved

also in the channel dimension with stride one (Fig. 2.9).

To create a baseline, commonly used models for yield estimation are com-

pared with the proposed CNN architectures. Such models are the multi-

ple linear regression (MLR), a fully connected neural network (FC), a ran-

dom forest (RF) regression, and a support vector machine (SVM). Fully

connected neural networks have received significant attention over the last

decade [73–75] for being a powerful tool when modeling both linear and

nonlinear relations between explanatory and response variables. A broad

comparative study is presented by [76], in which random forest demon-

strates higher performance over machine learning competitors when predict-

ing yield. [77] explores SVM as a comprehensible methodology for accurate

yield prediction. Even so, all these models do not consider the spatial struc-

ture of the data, while having as inputs the values of each variable at the

exact cell where yield is estimated.
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Figure 2.7: CNN-EF architecture.
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Figure 2.8: CNN-LF architecture.

20



Input
5x21x21

C1
16@5x19x19

S1
16@5x9x9

F1
512@1x1

Output
1@1x1

3x3	Convolution 2x2	Max-Pooling Full	Connections

F1
512@1x1

Figure 2.9: CNN-3D architecture.

2.3 Experiments and results

Yield response to nutrient management also depends on other environmen-

tal factors and management practices with whole field impact (e.g., solar

radiation, planting date, seed genetics, among others). These factors vary

from one field to another while being constant within the same field. Using

site-specific data is a way to reduce the input space and increase the rep-

resentativeness of the data aiming better recommendations to each farmer

individually. So, we train and test a different model for each of the nine fields

(described in Section 2) rather than creating a single model to work in all

fields. However, data within a single field is often spatially autocorrelated

and may lead to model over-fitting depending on the way the test set is cho-

sen. For instance, a random partition of the data results in training and test

sets with very similar samples, which overcasts the generalization power of

the model. So, we spatially partition the data to account for this problem,

as proposed by [78].

Data from each field was spatially partitioned in five stripes perpendicu-

larly to the longest dimension of the field to maximize the distance between
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samples from two different partitions. Three stripes (60% of the data) were

used for training the model, one (20% of the data) for validation, and one

(20% of the data) for tests. We performed a grid search to define hyper-

parameters, including the number of filters in the convolutional layers, the

number of neurons in the fully connected layers, and also the dropout reg-

ularization probability for all models. Each architecture was trained over

the same database using Adam optimizer [79], and the validation set was

used online as an early stop criterion (allowing at most eight consecutive

iterations of increase in the validation loss) to avoid over-fitting the data.

The loss function is given by the Mean Squared Error (MSE) between yield

predictions and true yield values at every raster’s position in the batch.

Cross-validation was used to evaluate the model using five folds according

to the spatial partitioning. Table 2.1 shows the averaged Root Mean Squared

Error (RMSE) over the five test sets for each model in each field. Notice that

since yield data is standardized, the RMSE value represents a fraction of the

standard deviation from the original yield data (shown in the most right

column) in each field. The best results are formatted in bold.

The LF model is the one with the lowest RMSE value for eight of the nine

tested fields, being field eight the only in which the SVM had a lower value.

We show further in this section that this field is the one where the variability

is the least explained by the spatial structure of the data. The random forest

regression shows the second-best results in four of the fields.

The better performance of LF over other CNN may be explained by the way

each architecture combines the input variables in the network. The ST model

linearly combines the inputs element-wise at the very first convolutional layer,

suppressing any possible nonlinear interaction between different attributes in

the field. To make this statement clear, consider a n × n filter convolved with
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Field
RMSE Yield [Kg/ha]

MLR FC LF EF 3D ST SVM RF Stdv. Mean
1 1.53 0.97 0.66 0.73 0.75 0.69 0.86 0.92 3240 12500
2 1.29 0.88 0.83 0.86 0.87 0.88 0.86 0.90 2290 10700
3 1.90 0.63 0.58 0.58 0.59 0.60 0.86 0.59 1230 14400
4 1.03 0.76 0.75 0.78 0.77 0.77 0.77 0.76 900 12200
5 0.74 0.72 0.70 0.72 0.75 0.73 0.76 0.70 1360 14500
6 1.09 0.51 0.48 0.51 0.53 0.56 0.58 0.52 1140 14700
7 0.75 0.72 0.69 0.70 0.71 0.73 0.76 0.73 1150 15700
8 1.11 0.94 0.94 0.94 0.94 0.94 0.89 0.96 2267 14100
9 1.10 0.69 0.63 0.65 0.66 0.66 0.67 0.63 1140 12600

Avg. 1.17 0.76 0.70 0.72 0.73 0.73 0.78 0.75 1635 13489

Table 2.1: Crossvalidation averaged RMSE over test dataset (in terms of
yield standard deviation from each field), yield standard deviation, and
yield mean [Kg/ha].

stacked input with L different variables (each one is a channel in the stacked

frame). Now let wi,j be the filter’s weights, yu,v be the convolution output

at position (u, v), and xk,i,j be the value at variable k aligned with position

(i, j) in the filter. Then we have that yuv is given by equation (2.1):

yuv =
L∑
k=1

n∑
i=1

n∑
j=1

(wijxkij) (2.1)

Figure 2.10 shows an example where two stacked inputs are convolved with

a single 2D filter with stride equal to one. It is evident in this example that

the output of the convolutional layer only contains a linear combination of

the values from each input, and that the information from each separate

input is not preserved. As a consequence, any nonlinear interaction between

the input variables will not be modeled at the fully connected layers (that

work as function approximators).

One possible solution to overcome this limitation is to convolve the filter
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Figure 2.10: Two stacked inputs convolved with a 2D filter.
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Figure 2.11: Two stacked inputs convolved with a 3D filter.
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input-wise, so the information from each input is carried separately through

the convolutional layer. The proposed 3D architecture considers the stacked

inputs as a third dimension to convolve the filter, carrying the information

from each input to be combined in the fully connected layers. However, this

method leads to an unnecessary increase in the number of parameters in the

network, once the same filter may not be relevant (as feature extractors) for

all input variables, resulting in a model with a lower data efficiency.

The multi-stream architecture addresses both problems discussed above.

It performs independent convolutions with the inputs while using a different

set of filters for each one. When comparing the LF and EF models it is

reasonable to say that LF focuses on better feature extraction from inputs,

while EF can model more complex interaction between variables. Also, by

reducing the dimension of each input before combining them, the LF model

becomes easier to train, leading to higher data efficiency.

When looking to Table 2.1, one can notice that the CNN models have

a modest advantage over their competitors in some fields, while in others,

this advantage is much higher. To investigate the possible cause of this

difference, the variability of the response variables is observed. For that,

spherical models were fitted to the variogram. Let’s define c0 as the nugget

variance and (c0 + c1) as the sill variance. Then, c0 represents the variance

observed at a lag distance of 0m, and is a function of stochastic effects and

measurement error [80], while c1 accounts for the additional variance that

comes from the spatial structure of the data for a given range. Since the

CNN framework focuses on modeling unknown spatial structures of the data,

we propose to estimate how much of the total variability observed in each

field comes from such structure. This resembles the Cambardella metric [81]

used to calculate spatial dependence, except here we use a ratio of c1 to total
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Figure 2.12: True yield, predicted yield using CNN-LF, predicted yield
using FC, residuals for both models, and difference of residuals for field 4
[Kg/ha]

variance, given by equation (2.2):

Cindex = 1− c0

c0 + c1

(2.2)

Table 2.2 shows the Cindex calculated for the yield data of all nine fields

and the RMSE reduction of the LF architecture when compared to MLR,

FC, SVM, and RF. It is clear and also expected that in fields with high

Cindex (i.e., yield variability is highly dependent on the spatial structure of

the data), the proposed model presents a higher reduction on the RMSE

value when compared to FC and MLR. On the other hand, in fields with

low Cindex, a simpler model as FC or even MLR also has good performance,

getting closer to CNN model, which results in a lower improvement when

comparing them.
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Field
Decrease in RMSE [%]

CindexMLR FC SVM RF

1 57 32 24 29 0.47
2 36 5 3 8 0.36
3 70 8 33 3 0.18
4 27 1 3 1 0.10
5 5 3 8 1 0.12
6 56 6 17 8 0.50
7 7 3 8 4 0.29
8 16 0 -5 2 0.04
9 43 8 6 0 0.33

Avg. 35 7 11 6 0.27

Table 2.2: Percent decrease in RMSE value using CNN-LF when compared
to FC and MLR for each field, and their respective C index for the yield
map

Then, data from yield or even from an explanatory variable can be used

to assess the expected improvement on yield prediction before using the pro-

posed framework, which is more computationally expensive than commonly

used methods.

Figure 2.12 shows a qualitative comparison between predicted yield maps

using the LF and FC models in field four. It is possible to observe that the

spatial structure of the data is better captured by the LF model, while FC

results in a ”blurrier” map. The difference between the residual maps from

both models shows a spatial structure that resembles the one observed on

the true yield map. This indicates that the main difference between the two

models lies in their ability to capture spatial features in the data. Moreover,

one can observe that most of the high values in the residuals maps are located

close to the field’s borders. The data in such regions are expected to have

more noise, due to yield monitoring system errors caused by the change

in harvester speed and direction, and cannot be explained by the selected

explanatory variables.
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2.4 Discussion

A CNN model for yield prediction based on pre-season treatments and en-

vironmental variables was proposed. Four different architectures based on

convolutional neural networks were tested on nine corn fields and compared

to a multiple linear regression model, a fully connected neural network, a sup-

port vector machine, and a random forest regression. Tests were conducted

using data from the same field in which each model was trained, and after

computing the RMSE values for the test sets, the LF architecture demon-

strated the best performance among all. This model has the advantage of

allowing nonlinear combinations among input variables, while keeping the

model with a relatively low number of parameters.

Fields with yield variability highly associated with the spatial structure of

the data get the most benefit from this framework, and this can be estimated

beforehand using the proposed Cindex. The index is a proxy for the level of

variability explained by the spatial structure of the input data and uses

information from a variogram of the response variable.

The generalization power and low predictive error make this model suitable

for nitrogen and seed rates optimization to maximize expected yield or profit.

All variables used are available at the beginning of the season when the

farmers must decide on which fertilization rates to apply in the field.

The proposed CNN framework brings the power of neural networks to

geospatial problems. It allows creating models with no need of handcrafting

features or making spatial distribution assumptions, which are incorporated

into the learning process. This framework can be also easily extended to

incorporate more input variables and also information on climate conditions

when data from different years become available.
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CHAPTER 3

OPTIMIZATION OF FERTILIZATION
RATES

Choosing the optimal rates of nitrogen and seeds is one of the main reasons to

create a good yield prediction model, and the complexity of optimizing these

rates depends on the chosen model. In Chapter 2, we proposed a Multi-

Stream Convolutional Neural Network with Late Fusion (MSCNN-LF) for

predicting yield. This model has a much larger input search space when

compared to other ML models since it maps patches of the input maps to a

predicted yield value at a single point in the field. Also, such patches overlap

between themselves, making the sequential optimization of each point in the

field not possible. Then this chapter presents an optimization framework for

the MSCNN-LF model to find the spatial allocation of nitrogen and seeds

that result in the maximum expected net revenue to the farmer. We propose

a gradient ascent with a momentum term algorithm under the assumption

that this is a non-convex optimization problem. An evolutionary algorithm

is also explored and detailed in this chapter.

3.1 Gradient of Net Revenue

The first step is to derive the gradient of the net revenue (i.e., the total yield

value discounting nitrogen and seed costs) with respect to nitrogen and seed

rate maps.

Let N,S ∈ Rm×n be the matrices representing the applied nitrogen and
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seed rates maps respectively. Now, let C,S ∈ Rl×l be sets of matrices

cropped from matrices N and S such that l < n < m. We define a function

f̃(N̄ , S̄) : Rl×l × Rl×l −→ R, with N ∈ C and S ∈ S, that represents the

MSCNN-LF model, mapping a patch from nitrogen and seed rate maps to

a yield value, taking environmental attributes as constants. The total crop

yield is then given by f(N,S) =
∑i f̃(N̄i, S̄i), where i ∈ N is the index of

each element in the yield map. We want to derive ∇f(N,S) as:

𝑙

𝑙

𝑚

𝑛

(𝑁, 𝑆)

(𝑁)!, 𝑆!̅)

Figure 3.1: Yield as a function of a cropped patch from the nitrogen and
seed maps.

∇f(N,S) =

(
∂
∑i f̃(N̄i, S̄i)

∂N
,
∂
∑i f̃(N̄i, S̄i)

∂S

)
. (3.1)

The result of each partial derivative also belongs to Rm×n. However, as

f̃(N̄ , S̄) is a function of just a cropped patch of the input map, the partial

derivative at all elements outside the patch will be equal to zero. We also
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define a zero padding function z(C, i) : Rl×l × N −→ Rm×n that centers the

l × l C matrix (i.e. a patch cropped from the input map) at element i in a

m × n matrix, and completes the remaining elements with zero. Thus, we

have:

∂
∑i f̃(N̄i, S̄i)

∂N
=

i∑
z

(
∂f̃(N̄i, S̄i)

∂N̄i

, i

)

=
i∑
z



∂f̃(N̄i,S̄i)

∂N̄i11
. . . ∂f̃(N̄i,S̄i)

∂N̄i1l
...

. . .
...

∂f̃(N̄i,S̄i)

∂N̄il1
. . . ∂f̃(N̄i,S̄i)

∂N̄ill

 , i
 .

Similarly,

∂
∑i f̃(N̄i, S̄i)

∂S̄
=

i∑
z



∂f̃(N̄i,S̄i)

∂S̄i11
. . . ∂f̃(N̄i,S̄i)

∂S̄i1l
...

. . .
...

∂f̃(N̄i,S̄i)

∂S̄il1
. . . ∂f̃(N̄i,S̄i)

∂S̄ill

 , i
 .

Fortunately, all elements of ∂f̃(N̄i,S̄i)

∂N̄i
and ∂f̃(N̄i,S̄i)

∂S̄i
are easily obtained from

the MSCNN-LF model’s gradients computed for the backpropagation algo-

rithm. With (3.1) derived, our final goal is to maximize the crop yield return

discounting the costs from nitrogen and seeds, which can be formulated as:

max
N,S

(
pV f(N,S)− pN

i∑
Ni − pS

i∑
Si

)
(3.2)

subject to: Nmin ≤ Ni ≤ Nmax,∀ i

Smin ≤ Si ≤ Smax, ∀ i,
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where pV , pN , and pS are the prices per smallest unit area of corn, nitrogen,

and seed, respectively, and the rates of nitrogen and seed are bounded by

minimum and maximum values. The boundary values come from the rates

applied during the on-farm experiment, since the MSCNN-LF model is not

trained with values above or below them. Finally, let PN and PS be m × n

matrices containing all their elements equal to pN and pS respectively. Then

we write the gradient of (3.2) as:

∇Y (N,S) =

(
pV

i∑
z

(
∂f̃(N̄i, S̄i)

∂N̄i

, i

)
− PN ,

pV

i∑
z

(
∂f̃(N̄i, S̄i)

∂S̄i
, i

)
− PS

)
. (3.3)

3.2 Gradient Ascent

With the model’s gradient derived in (3.3), we propose a gradient ascent

algorithm with momentum term to maximize the expression in (3.2). Maps

N and S are initialized with the status quo rates usually applied by farmers

and then updated according to Algorithm 1.

Algorithm 1 Pseudocode for the gradient ascent algorithm with momentum.

[N,S]← status quo rate
V ← 0
for i = 1 : max iterations do

compute ∇Y (N,S) for the current [N,S]
V = αV +∇Y (N,S) (compute the momentum)
[N,S] = [N,S] + λV (update the input maps)
λ = λdr (decrease the step size)

end for
return [N,S]
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The momentum term α is used to prevent the algorithm from converging

to local maxima or saddle points [82]. This term is adjusted for optimizing

each field since they represent different problems with different search spaces.

The term λ is the step size, and it is decreased over the iteration for a more

refined search for the global maxima.

3.3 Sensitivity Index

In order to ensure our optimization algorithm is based on a model where the

manageable variables (i.e., nitrogen fertilizer and seed rates) are really rele-

vant and not vanished by more relevant environmental inputs, a sensitivity

index based on partial derivatives [83] is obtained as follows:

ζv =
1

L

√√√√ L∑
i=1

(
∂f̃

∂vi
(N̄i, S̄i)

)2

, (3.4)

where L is the number of available training samples, and v is the input label.

In our experiment, v indexes the set {NR, SR,Elev.,EC., Soil}. As the value

of the partial derivative depends on the point of the input space it is being

evaluated, our sensitivity index takes in account the partials for every sample

in our training dataset. Notice that each element vi in the input map v has

its gradient dependent on all cropped inputs (Figure 3.2), with N̄i and S̄i

being the only manageable inputs. Table 3.1 shows the index ζ for each

input for the nine studied fields, revealing that the model is in fact sensitive

to the selected manageable variables. Field 1 is an exception, showing an

index of zero for nitrogen rate, which is expected since a constant rate was

used for this field during the OFPE.

33



Map 𝑣

𝑣𝑖 cropped inputs

Figure 3.2: Region for gradient evaluation of vi.

Table 3.1: Sensitivity index ζ for each input.

Field NR SR Elev. EC. Soil

1 0.00 2.86 0.84 0.14 0.45

2 1.98 1.54 1.22 0.65 0.71

3 1.22 5.23 0.11 0.25 0.56

4 0.86 1.11 1.48 0.74 0.31

5 0.76 0.22 0.83 0.47 0.38

6 2.81 3.51 0.17 0.29 0.29

7 1.45 0.92 0.38 0.22 0.46

8 0.63 0.55 2.32 0.02 0.17

9 1.16 0.50 0.04 0.32 0.06
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3.4 Genetic Algorithm

As shown in Chapter 2, the yield value at one point in the field depends on

a limited area around it. Then, if we consider a larger scale, the problem of

optimizing fertilization rates on part of a field becomes more decoupled from

optimizing the remaining areas. In this sense, Genetic Algorithms (GA) are

a promising solution to our problem. As new solutions in a generation are a

result of combinations and mutations of previous solutions, this algorithm can

explore the input space more efficiently by keeping parts of previous solutions

that are close to optimal for the next generation. Genetic algorithms have

been used before in spatial allocation problems [84, 85] and demonstrated

good performance when compared to other optimization methods.

Using the rate of nitrogen and seed at each unit of analysis in the field

(i.e., 5 × 5m) is the most obvious choice for encoding a solution. However,

preliminary experiments revealed the algorithm did not converge to a solution

due to the high number of genes in each individual. Hence, we propose using

control points to encode a candidate solution in the algorithm. We define a

grid of control points spaced 50 meters between them. This spacing is big

enough to reduce the solution’s size by a factor of a hundred. To construct

the nitrogen and seed maps corresponding to a solution, we interpolate the

control points using kriging.

The fitness function used to evaluate each individual in a generation (i.e.,

a candidate solution) is given by the same expression as in (3.2). Each

population has 30 individuals from which the best three are kept for the

next generation. The probabilities of crossover and mutation were set to

0.8 and 0.2 respectively. The constant rate from status quo management

and the nitrogen and seed maps used during the OFPE are included in the
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initial population to provide the algorithm with good candidates. Algorithm

2 shows the pseudo-code for the GA.

Algorithm 2 Pseudocode for the genetic algorithm.

Initialize a random population.
Replace 2 individuals with status quo and OFPE rates.
for n = 1 : max generations do
for j = 1 : population size do

[N,S] = kriging(j)
Yj = pV f(N,S)− pN

∑iNi − pS
∑i Si

end for
Perform Crossover operation.
Perform Mutation operation.
Reproduce the best five individuals.
Generate the next population.

end for

3.5 Experiments and Results

Experiments were conducted with the same nine fields used in Chapter 2 to

demonstrate the monetary potential of the proposed optimization algorithms.

The total net revenue (i.e., yield value discounting costs of nitrogen and seed)

is estimated for the initial condition (status quo rates applied by the farmer)

and for the resulting maps from the gradient ascent algorithm and GA. Table

3.2 shows the total percent change on expected net revenue, nitrogen, seed,

and yield values after optimization.

Results show a 3.5% average increase in the expected net revenue when

using the gradient ascent algorithm, with field 2 going up to 5.2%. It can be

observed that the increase in the net revenue is obtained through different

strategies, depending on the field. For some fields, the rate of nitrogen and

seeds was increased to generate more yield, while others showed to be un-

responsive to high rates of nutrients. In such cases, the algorithm was able
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Table 3.2: Change in net revenue, nitrogen, seed and yield after
optimization.

Field
Gradient Ascent Genetic Algorithm

N.R. N Seed Yield N.R. N Seed Yield
1 3.6% 0% 10.5% 4.6% 1.3% 0% 15.1% 2.4%
2 5.2% -17.3% -18.2% -0.9% 4.1% -9.5% -15.6% -0.2%
3 3.8% 18.0% 13.4% 5.6% 2.1% 18.7% 15.4% 5.1%
4 4.2% -20.8% -11.4% -0.2% 3.9% -17.9% -10.1% 0.1%
5 2.7% -12.8% -11.8% 0.0% 2.3% -10.2% -11.1% 0.2%
6 1.8% 10.1% 4.6% 2.4% 0.4% 16.1% 7.9% 3.2%
7 2.2% -30.4% -17.6% -0.7% 1.3% -28.0% -15.7% -0.1%
8 3.7% -42.3% -13.0% 0.1% 3.2% -40.1% -11.6% 0.4%
9 4.1% -12.7% -11.7% -0.2% 3.3% -10.1% -9.7% 0.2%

Figure 3.3: Optimized nitrogen map (UAN28/acre) showing low response
areas on field 7.
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to select areas where nutrients could be reduced without reducing the yield.

Field 7 is a good example of how the algorithm reduced the nitrogen rate in

unresponsive areas. Figure 3.3 shows the final nitrogen map for this field.

With tested values for the step size and momentum terms, the algorithm

converged within an average of 30 iterations. Additional experiments were

made initializing the input maps with random values. In such experiments,

the optimization algorithm also converged within 30 iterations to very similar

maps to the ones obtained with different initial conditions. These results

indicate that the algorithm can find either the global maxima or a flat local

maxima. The second case could be considered even better than a sharp global

maxima since it is more robust to undesired variations during the nitrogen

application process.

As we use control points with a lower resolution in the genetic algorithm,

it is natural to observe a less detailed map when compared with the one

from gradient ascent. To illustrate this, Figure 3.4 compares the nitrogen

and seed maps obtained from the gradient ascent algorithm with the ones

obtained through GA in field 6. Notice that the difference between the

algorithms goes beyond the chosen resolution. As Table 3.2 reveals, the

genetic algorithm resulted in a lower increase in the expected net revenue.

The algorithm took, on average, 150 generations to converge. Figure 3.5

shows the convergence in field 6.

3.6 Discussion

This chapter presented an optimization framework to find the manageable

inputs of the MSCNN-LF that maximize the expected crop’s net revenue.

When compared to traditional farming practices, this framework showed an

38



Nitrogen Map − Genetic Algorithm

10

15

20

25

30

35

40

Seed Map − Genetic Algorithm

30000

35000

40000

Nitrogen Map − Gradient Ascent

10

15

20

25

30

35

40

Seed Map − Gradient Ascent

30000

35000

40000

Figure 3.4: Comparison between maps obtained by gradient ascent and
genetic algorithm on field 6.

Figure 3.5: Net revenue in USD over the generations in field 6.

39



increase in crop yield return discounting the costs for all fields. The benefits

of decreasing nitrogen while maintaining yield are of great importance to

subdue the environmental impact caused by water pollution.

We also proposed a method to calculate a sensitivity index that can be

used for ranking the importance of each input variable in the CNN trained

model. Having this information allows farmers to understand the causes of

productivity losses and variability in their fields.

Notice that the results depend on the initial conditions and are based on

the model’s predictions, rather than on real experiments. Nevertheless, this

experiment aims to evaluate the optimization framework regarding its ability

to drive the output of the yield prediction model to maximize an objective

function. The performance of this algorithm in real experiments will depend

on the model’s accuracy, which was evaluated in Chapter 2 and showed to

be better than other machine learning methods.
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CHAPTER 4

UNCERTAINTY QUANTIFICATION AND
RISK AVERSE-OPTIMIZATION.

This chapter proposes two complementary solutions to leverage the applica-

bility of the previously proposed CNN models into DSS. Firstly, the model

with the best performance proposed in Chapter 2 is modified under the deep

ensemble framework to provide uncertainty estimation of predictions. Then,

a gradient-based optimization algorithm is proposed to find the nitrogen and

seed maps that maximizes the farmer’s net revenue with safety bounds. We

formulate a tractable objective function in which the risk constraints are

easily adjusted according to each farmer’s risk aversion. Data from six corn-

fields in the US were used to train the models and compare the results of the

proposed optimization algorithm against the status quo management.

4.1 Uncertainty Quantification of the MSCNN Model

We consider two sources of uncertainty: epistemic and aleatoric [86]. The

first corresponds to the ”lack of knowledge” in our data, meaning that there

are unconsidered hidden variables in the process we are modeling. It results

in an ambiguity in the response variable for a given input over the training

dataset. The aleatoric uncertainty is the inherent variability in the modeled

phenomena combined with the randomness in the training process of the

MSCNN model. The last causes high variability in the predictions from

out-of-distribution inputs. In a general sense, one can reduce the epistemic
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Figure 4.1: RA-CNN-LF with prediction’s mean and variance.

uncertainty using additional information, but not the aleatoric [87].

In Chapter 2, we proposed a Multi-Stream Convolutional Neural Network

with Late Fusion of inputs (MSCNN-LF) to predict yield. It was trained

in a supervised fashion via backpropagation to minimize the Mean Squared

Errors (MSE) of predictions as in a regression problem. The model outputs

a single value that best represents the data from a set of similar or identical

inputs. It is evident, in this case, that predictive uncertainty quantification

is not considered.

To incorporate uncertainty quantification into the MSCNN-LF model, we

use the concept of Deep Ensembles proposed in [27]. We create a Risk-Aware

Convolutional Neural Network with Late Fusion of inputs (RA-CNN-LF) by

assuming our uncertainty follows a Gaussian distribution. We first change the

output layer of the MSCNN-LF architecture to have two neurons representing

the mean (µθ(x)) and variance (σ2
θ(x)) of the predicted distribution. The full

architecture is depicted in Figure 4.1.

We want – for a given input – the network to produce an output distri-
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bution that is consistent with the epistemic uncertainty in the training set.

For this, instead of optimizing the network’s weights by minimizing the MSE

value, we now minimize the Negative Log-Likelihood (NLL) between the dis-

tribution defined by the predicted mean and variance, and the samples from

the training set, considering them as sampled from a Gaussian distribution.

Then, the loss function used in the training process is given by:

−logpθ(yn|xn) =
logσ2

θ(x)

2
+

(y − µθ(x))2

2σ2
θ(x)

(4.1)

By training the new architecture with the above loss function, the model

makes predictions with uncertainty quantified by the value of σ2
θ(x). So, for

an input x, the model approximates the output distribution observed in the

training set. This is good but insufficient to safely explore the input space

looking for the optimal input management x. The epistemic uncertainty

quantification works well when inputs are close to the training set’s domain.

However, we want our model to also output high predictive uncertainty for

inputs not in the training set. Hence, we make use of the aleatoric nature

of the training process to estimate the uncertainty from the domain shift, as

explained next.

Instead of training and using a single network for our predictions, we train

an ensemble containing networks with identical architectures combined as

a mixture model. The difference between members of the ensemble comes

from the training process. Each member is initialized with a different set of

random weights and trained on different shuffled versions of the training set.

By following this procedure, the randomness injected in the process increases

the difference between predictions from each member given inputs far from
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the domain of the training set.

After training the members of the ensemble, we need to combine each

member to obtain the final prediction. The mean of the mixture model is

given by equation (4.2), and the variance by (4.3):

µ?(X) =

∑m µθm
M

(4.2)

σ2
?(X) =

∑m (σ2
θm

(X) + µ2
θm

(X))− µ2
?(X)

M
(4.3)

4.2 Risk-Averse Gradient Ascent

In this section, we describe how to use the RA-CNN-LF model to optimize

manageable input variables with risk estimation and constraints. Similar to

the optimization algorithm proposed in Chapter 3, the challenge posed by

the proposed model lies in the increased input space resulting from using

”patches” of the input maps instead of single points as inputs. In addition,

the patches that are used for predicting yield at two points close to each other

in the field have overlap between them, making the sequential and indepen-

dent optimization over the field impossible. As a result of this increased input

space, and for the previous experiments in Chapter 3, we opt for not using

numerical optimization algorithms. Instead, we propose a gradient ascent

method for maximizing an objective function yet to be defined.
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4.2.1 Problem Formulation

Remember that the predictive model has five input variables: nitrogen and

seed rate prescription maps, elevation map, soil’s shallow electroconductivity,

and a pre-season satellite image from the field. We train the RA-CNN-LF

model to map patches cropped from the input maps (i.e., a 21×21 raster for

each input variable representing a 100 × 100m area) to a predicted normal

distribution (defined by µ and σ2) of the yield at the patch’s center element.

A predicted yield map is then constructed by making predictions for each

element in the yield map. Notice that, again, only the nitrogen and seed maps

are manageable variables, so for our optimization algorithm, we consider the

other three inputs as constants.

More formally, we define a function f̃(N̄ , S̄) : R21×21×R21×21 −→ N (µ, σ2)

representing our RA-CNN-LF model, where N̄ and S̄ respectively represent

patches cropped from the nitrogen and seed maps. We also define the to-

tal productivity of a field as the sum of the yield predicted over the field:

f(N,S) =
∑i f̃(N̄i, S̄i), where i is the index of the position of each element

in the yield map, and N and S represent the entire nitrogen and seed maps

respectively. The expected farmer’s net revenue is defined in (4.4), where pv,

pN , and pS are the prices of the yield, nitrogen and seeds, respectively. In

addition, we define the standard deviation of net revenue in (4.5) to be used

as a measurement of risk:

µr(N,S) = pV E(f(N,S))− pN
i∑
Ni − pS

i∑
Si (4.4)

σr(N,S) = pV
√

var(f(N,S)) (4.5)

Then, our final objective function is a composition of µr and σ2
r , so we can
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maximize the expected net revenue while keeping a certain level of confidence

in our predictions. We propose to weigh the uncertainty by a constant β in

our objective function that can be defined according to each farmer’s risk

aversion. We also create a constraint on the Value at Risk (VaR) ρ [88],

which is, in this case, the minimum net revenue the farmer expects with

a confidence of 97% (z-score = 2). Finally, our optimization problem is

formulated as:

max
N,S

µr(N,S)− βσr(N,S) (4.6)

subject to: µr(N,S)− 2σr(N,S) ≥ ρ

Nmin ≤ Ni ≤ Nmax,∀ i

Smin ≤ Si ≤ Smax,∀ i.

The two additional constraints ensure that the search for rates of nitrogen

and seed stay bounded by the minimum and maximum value utilized during

the experiment that generated the data used to train the model. Notice that

such rates are chosen based on what the farmer considers safe and is willing

to test.

4.2.2 Gradient Ascent with Log Barrier Function

We propose a gradient-based solution for the posed optimization problem.

The log barrier method [89] is used to account for the first constraint, so we

need to re-write our objective function as in (4.7):
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Y = µr(N,S)− βσr(N,S)− 1

t
log(c) (4.7)

c = µr(N,S)− 2σr(N,S)− ρ (4.8)

The gradient of (4.7) is defined as ∇Y =
(
∂Y
∂N

, ∂Y
∂S

)
and is given by equa-

tions (4.9) and (4.10), where PN and PS are matrices of same size of the

yield raster, containing all elements equal to the price of nitrogen and seeds

respectively (i.e., resulting on an element-wise subtraction). The detailed

derivation of these equations can be found in the Appendix, as well as the

methodology to obtain the gradients of the expectation and variance of the

productivity w.r.t. the nitrogen and seed maps:

∂Y

∂N
=

(
pY

∂E(f(N,S))
∂N

− PN

)(
1 +

1

tc

)
−

(
pY

2
√

var(f(N,S))

∂ var(f(N,S))

∂N

)(
β +

1

tc

)
(4.9)

∂Y

∂S
=

(
pY

∂E(f(N,S))
∂S

− PS

)(
1 +

1

tc

)
−

(
pY

2
√
var(f(N,S))

∂ var(f(N,S))

∂S

)(
β +

1

tc

)
(4.10)

The incorporation of the VaR constraint into the objective function through

the log barrier function is conditioned by starting the optimization algorithm

from some point in the set of feasible solutions (i.e., [N0, S0] must satisfy the

constraint). Hence, we first need to find an initial solution that satisfies the

VaR constraint by having our algorithm look for it as a first step. Thus,

the first step of our algorithm maximizes the VaR itself, by maximizing the

expression in (4.8), the gradient of which is given by simply choosing t =∞

and β = 2 in the expressions (4.9) and (4.10).
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The multidimensional nature of the problem’s input space suggests that the

problem is unlikely to be convex, so a momentum term [82] is incorporated

to prevent the search from stopping in a local maxima or a saddle point. The

momentum term V is used by integrating the gradients’ values at every iter-

ation with a discount factor, so it works as a moving average of the gradient.

It is updated every time step using the expression Vi+1 = αVi +∇Y (N,S),

and the update of the input maps uses this term instead of the gradient

values. The overall optimization technique is summarized in Algorithm 4.

Algorithm 3 Pseudocode for the constrained gradient ascent with momen-
tum

1: [N,S]← constant rate ; V ← 0
2: while (µr(N,S)− 2σr(N,S) ≤ ρ) and (i ≤ max iterations) do
3: t←∞, β ← 2
4: V = αV +∇Y (N,S)
5: [N,S] = [N,S] + λV
6: i = i+ 1
7: end while
8: for i = 1 : max iterations do
9: t← 1, β ← desired β

10: V = αV +∇Y (N,S)
11: [N,S] = [N,S] + λV
12: t = t+ ε , λ = λdr
13: end for

By the end of the while loop (line 7 in Algorithm 4), the pair of nitrogen

and seed maps will be a solution for a VaR strictly greater than ρ, if such

solution exists. Once in the feasible set, the algorithm starts to maximize the

objective function (4.7). The term t is used to weigh the log barrier function

and must be increased at every iteration. By increasing t, the additional

term representing the constraint approximates an indicator function, and

the objective function becomes closer to its original form (eq. (4.6)). The

step size λ is reduced by a decay rate dr at every iteration to refine the search

for the global maxima.

48



4.3 Experiments and Results

The same fields and procedures from Chapter 2 were used to evaluate the pre-

dictive performance of the RA-CNN-LF model. Nine fields averaging 40 ha

were selected from the Data Intense Farm Management (DIFM) project [68]

dataset. The data from each field was recorded during On-Farm Precision

Experiments (OFPE) in the 2017 season with approximately 200 experimen-

tal units each, represented by 85 m long and 18 m wide polygons. Six fields

are rain-fed fields in Illinois (Fields 2, 4, 7, 8, and 9) and Ohio (Field 5),

and three are irrigated fields in Nebraska (Fields 3 and 6) and Kansas (Field

1). The nitrogen and seed rates in each experimental unit were randomized,

ranging from 20% below to 20% above the status quo rate usually applied

by the farmer.

As proposed in [78], partitions of the data were created by spatially divid-

ing each field in stripes perpendicularly to the longest field’s dimension to

maximize the physical distance between the data collected from each parti-

tion. Each field was divided into five partitions, four being used for training

the model, and one for testing. Experiments were conducted using cross-

validation over the five folds in each field. The members of the deep ensem-

ble were trained independently over the training sets, starting from random

initial weights, and using the Adam optimizer [79]. The metric used to

evaluate the predictive performance of the ensemble is the averaged RMSE

values between predicted mean and true values over the five test sets from

the cross-validation setup.
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4.3.1 Model’s Performance

The first experiment tests the influence of the number of members in the

ensemble and the number of epochs during the training process. Even the

NLL optimizes the weights of the network to approximate both µ and σ2, the

effect of overfitting affects them differently. The predicted mean is unlikely

to get worse generalization power due to the averaged prediction from the

members of the ensemble. On the other hand, the predicted variance is

affected by any disagreement between the members of the ensemble (see eq.

4.5). Table 4.1 shows the averaged RMSE between predicted means and true

values in the test sets for different numbers of members and training epochs.

Results suggest that using more than three members in the ensemble does

not increase the predictive performance of the mean values. Also, training

the model for more epochs does not decrease the predictive performance of

µ.

To assess the predicted variance over the training epochs, for each sample

in the test set we computed the distance between the predicted mean value

and the true value in terms of the predicted standard deviation (e = µ(x)−ȳ
σ(x)

).

This method provides a standardized residual, and we expect the distribution

of the residuals to follow a normal distribution with zero mean and unitary

variance. Figure 4.2 shows an example of the distribution of the standard-

ized residuals in three cases: (a) an underfitted model with ”conservative”

predictions; (b) a good model, and (c) an overfitted model with ”optimistic”

predictions.

The NLL between the ensemble’s predicted distributions and the valida-

tion data was computed online during training as a metric for early stopping.

Figure 4.3 shows the averaged NLL over fields’ test sets for different num-
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Figure 4.2: Distribution of the standardized residuals for (a) an under fitted
model, (b) a good model, and (c) an over fitted model.

bers of members in the ensemble. Although an ensemble with five members

demonstrated a similar predictive mean performance as one with three, the

first resulted in lower NLL on the test set. No significant reduction in the

NLL is observed in ensembles with more than five members, so we have

adopted this number in further experiments.
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Figure 4.3: Averaged negative log-likelihood over fields for different
numbers of members in the ensemble..

After following this procedure for training a model for each field, we com-

pared their RMSE with the ones from the MSCNN-LF. Table 4.2 shows the

averaged RMSE over the folds’ test sets for the CNN-LF and a five-members

RA-CNN-LF. The table also includes the observed mean and standard de-

viation of the true yield data. As the data was previously standardized for

training, all values must be multiplied by the standard deviation of the field

to get the absolute errors. Nevertheless, the standardized results help to

compare the model’s performance over the fields.

Results show that the RA-CNN-LF outperformed its former architecture

in seven of the nine tested fields, and achieved equal performance in the

other two. The better result can be explained by the ensemble nature of the

RA-CNN-LF, which, as shown in [90], significantly increases the prediction’s

performance. The better predictive performance, although desirable, is not

the main result of this chapter, which focuses on incorporating predictive

uncertainty for optimizing the crop inputs.

We constructed maps for predicted yield mean and standard deviation by
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Table 4.2: Crossvalidation averaged RMSE over test dataset, yield standard
deviation, and yield mean.

Field
RMSE Yield [Kg/ha]

RA-CNN-LF CNN-LF Stdv. Mean

1 0.64 0.66 3240 12500
2 0.80 0.83 2290 10700
3 0.56 0.58 1230 14400
4 0.74 0.75 900 12200
5 0.70 0.70 1360 14500
6 0.47 0.48 1140 14700
7 0.68 0.69 1150 15700
8 0.92 0.94 2267 14100
9 0.63 0.63 1140 12600

Avg 0.68 0.70 1635 13489

making predictions for each element in the yield map, using the RA-CNN-

LF model. Figure 4.4 compares the predicted and true yield maps and also

shows the ”uncertainty map” based on the predicted standard deviation on

fields 4, 5, and 7. The uncertainty map may bring insightful information to

farmers regarding which parts of the fields present more variation resulting

from unobserved variables. Notice that higher uncertainty is predicted on

the borders of each field, where the data generated by the yield monitor is

not reliable due to changes in the harvester’s speed and direction.

4.3.2 Optimization Results

To evaluate the proposed optimization, we followed the steps described in

Algorithm 4 to find the optimal nitrogen and seed maps on fields 2, 3, 4, 5,

6, and 7. In all of the following experiments, the nitrogen and seed maps

were initialized with the status quo constant rate used by each farmer, so we

can demonstrate the profitability potential of our optimization algorithm.

We predicted the expected net revenue (i.e., revenue discounting nitrogen
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Figure 4.4: True yield, predicted yield, and predicted standard deviation
[Kg/Ha] in fields 4, 5, and 7.
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Table 4.3: Percent change in net revenue, predicted standard deviation,
total nitrogen and seed costs, and total yield.

Fields 2 3 4 5 6 7 Avg.

Net Revenue

β = 0 6.4 0.4 1.8 1.9 5.8 2.7 3.2
β = 1 5.8 -0.5 -0.9 1.2 5.4 2.9 2.3
β = 2 4.7 -0.7 -2.2 0.8 5 3.2 1.8
β = 5 3.3 -1 -2.3 0.3 4.6 2.7 1.3

Stdv

β = 0 -0.2 -4.6 -1 -0.3 -20.3 -1.3 -4.6
β = 1 -7.4 -10.9 -28.4 -5.7 -25.9 -13.7 -15.3
β = 2 -8.5 -11.2 -32.6 -6.2 -26.8 -16.5 -17.0
β = 5 -8.8 -10.5 -30.9 -6 -26.7 -17.6 -16.8

Nitrogen

β = 0 -15.4 -4.3 -4.8 -8.2 -4.9 -16.9 -9.1
β = 1 -7.3 12.2 -10.7 -7.6 8.9 -13 -2.9
β = 2 -4.5 12.9 -8.3 1.9 12.7 14.1 4.8
β = 5 -1.7 16 -11.3 3.2 17.4 25.1 8.1

Seed

β = 0 -10.2 12 -10.7 -7.6 8.9 -13 -3.4
β = 1 -16.9 6.5 -11.2 -11.6 7.7 -17.3 -7.1
β = 2 -6.8 14 -7.8 -5.2 9.6 -8.5 -0.8
β = 5 -3.3 15.9 -3.3 -1.7 11.1 -0.2 3.1

Yield

β = 0 0.9 0.6 -0.2 0.1 5.5 -0.2 1.1
β = 1 2.3 1.2 -3.1 0.3 5.8 1.5 1.3
β = 2 2.2 1.2 -3.3 0.3 5.7 2.2 1.4
β = 5 1.9 1.3 -3.1 0.3 5.6 2.7 1.5

and seed costs) for the initial condition and the maps obtained from the

optimization process for comparison. The prices used in the algorithm are

pS = $0.25/kseed, pN = $0.44/lb, and pY = $3.85/bushel.

We start testing the optimization algorithm with no VaR constraint and

different values of β to assess how the expected profitability changes when

more weight is given to minimize the uncertainty. Table 4.3 show the percent

change in expected net revenue, yield, nitrogen and seed costs, and also in

the total variance in such predictions. As expected, increasing β reduces the

predicted variance of the final solution, and, in most cases, results in lower

expected net revenue. Results also suggest that more confident solutions are

associated with higher rates of nitrogen and seeds.
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Figures 4.5 and 4.6 show the nitrogen and seed maps resulting from the

optimization algorithm with β = 1. As showed in Table 4.3, the nitrogen is

reduced in most parts of the fields, indicating that the status quo constant

rate is higher than necessary.

As Table 4.3 suggests, increasing β may reduce the expected net revenue.

We then provide an alternative way to match the farmer’s risk aversion by

including the VaR constraint. It sets a minimum net revenue, after which the

farmer is willing to take more risks to maximize the expected net revenue.

After finding a solution that satisfies the constraint, the expected net revenue

is maximized regardless of the increase in uncertainty (i.e., β = 0), unless it

gets close to violating the constraint. Figure 4.7 shows the evolution of the

net revenue during the optimization process for the constrained (with VaR

= $53.500) and the unconstrained (with β = 0) algorithms on field 6.

4.4 Discussion

A novel framework for risk-averse optimization of crop inputs was proposed.

It encompasses a powerful yield prediction model with uncertainty quantifi-

cation and a flexible optimization algorithm that can be tuned to match each

farmer’s risk aversion.

The MSCNN-LF architecture proposed in Chapter 2 was re-designed into

the Deep Ensemble framework and trained using the negative log-likelihood

loss function. The new model outputs a Gaussian probability distribution

defined by predicted mean and variance. Results show that the new ar-

chitecture not only incorporates uncertainty quantification measured by the

predicted variance but also outperforms its original version in seven out of

nine tested fields. The predicted variance in each element in the yield map
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Figure 4.5: Optimized nitrogen maps for fields 3, 4, 5, 6, and 7.
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Figure 4.6: Optimized seed maps for fields 3, 4, 5, 6, and 7.
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Figure 4.7: Net revenue over the iterations of the optimization algorithm
for the constrained and unconstrained cases on field 6.

was used to construct an uncertainty map that can give valuable insights

to farmers regarding the field’s areas with high variability associated with

unobserved variables.

The proposed optimization algorithm is based on the gradient ascent method

and maximizes the expected net revenue by changing the manageable crop

inputs while minimizing the predicted variance. A trade-off is observed be-

tween the increase in the expected net revenue and the level of confidence in

the obtained solution. To account for this trade-off, we created a constraint

on the value at risk. It prevents the algorithm from finding solutions with low

confidence that can result in a net revenue below a feasible chosen threshold.

We compared the expected net revenue from the optimization algorithm’s

solution with the one obtained from the status quo constant rate manage-

ment. Experiments show an average increase of 3.3% in the expected net

revenue and up to 6.8% in one of the tested fields. A significant reduction in

the nitrogen and seed rates was observed, while the expected yield remained
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almost at the same level. The obtained results demonstrate environmental

and economic benefits over the status quo management, which is character-

ized by the over-application of fertilizer and seeds. Results also suggest that

higher rates of nitrogen fertilizer and seeds result in less variability in the

yield response, which may explain the farmer’s choice for such rates.
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CHAPTER 5

COVERAGE PATH PLANNING BY
LEARNING FROM OFFLINE

ALGORITHMS.

This chapter proposes a three-step framework to learn online coverage con-

trol strategies using demonstrations from offline algorithms. We start by

constructing a grid representation for different planar and non-planar maps

and creating a coverage path using offline methods. Then, an agent based

on a CNN is trained in a supervised fashion over pairs state-action using a

condensed representation of the map centered at the agent’s position. The

final step consists of using a policy gradient reinforcement learning algorithm

to refine the learned strategy. The performance of this approach is tested on

different maps and compared with their offline planning.

5.1 Construction of a training set

A reasonable number of maps and their respective optimized paths must be

generated to create examples of state and action pairs and train the CNN

agent. The agent’s performance is expected to depend on the number of

training examples and on how representative the training maps are when

compared to the testing ones. In this dissertation, instead of using real crop

fields, we use a methodology to generate simulated maps for training and

testing. This choice comes from the fact that there is a limited number of

fields in our dataset, and they don’t have information regarding potential

obstacles. The simulated maps’ construction procedure is explained next.
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Each map is represented by a 20×20 square grid containing at least one

obstacle (i.e., nodes the agent cannot navigate through). We assume this

representation fully covers the map and that visiting every node in the grid

is sufficient to complete the task. The maps are constructed by randomly

choosing the number of obstacles, varying them from one to three. The ob-

stacles’ size is also defined by random sampling from a set containing integers

from one to ten. The obstacles are then constructed by choosing a starting

node in the map and setting the adjacent nodes as obstacles according to

a pre-defined probability distribution. Such distribution assigns a higher

probability for nodes that result in a straight line obstacle.

Two types of maps are generated: planar and non-planar. In planar maps,

the cost of moving from one node to its neighbor is homogeneous all over the

map, depending only on whether the agent makes a turn or overlaps a pre-

viously covered node. In non-planar maps, there is an extra cost associated

with the change in the elevation between two nodes. The elevation profile of

each generated map is defined automatically by a parametric linear function

with randomly selected parameters. Figure 1 shows an example of planar and

non-planar maps. For simplification purposes, the agent can perform only

four actions while navigating the map (UP, DOWN, LEFT, and RIGHT).

To calculate the cost of each action in a path, a cost function must first be

defined. In a general form, the cost function of moving from node i to node

j is defined as:

C(i,j) = kz · |zj − zi|+ kt · 1turn + ko · 1overlap, (5.1)

where 1turn and 1overlap are indicator functions on whether the step from i

to j was a turn and/or overlapped a previously covered node. The constants
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Figure 5.1: Examples of planar (left) and non-planar (right) maps.

kz, kt, and ko are used to weigh the elevation, turning and overlapping costs

respectively.

The offline solution for each planar map is obtained through cell decom-

position and Boustrophedon motion. The order in which each cell is visited

is determined using dynamic programming to minimize the cost function for

the final path. The same solution is not applicable for non-planar maps since

it doesn’t consider the costs associated with the change in elevation. Next,

we propose a heuristic Dijkstra’s algorithm to solve the non-planar maps.

5.1.1 Heuristic Dijkstra’s algorithm

A naive approach for this problem would be to create a tree in which each

child node contains all the sequence of visited nodes leading to it. This

approach would branch exponentially fast and is not scalable. Then, we

propose a branching reduction technique based on a heuristic function to

approximate this problem to the shortest path problem.

In the shortest path problem, the path from a node u to a node v in the

optimal global path is also optimal. In the coverage problem, an action at
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step t influences the cost of covering future nodes by modifying the map

and changing the agent’s position. In this case, a partition of the optimal

global path is not necessarily the optimal path to cover the corresponding

area (i.e., Bellman’s principle of optimality does not hold). However, if we

could estimate how much of the future cost is accounted for each action in

the past, we could make the principle of optimality hold.

Let Jk(u) be the cost-to-go of covering the k remaining nodes in the map

starting from u, and c(u,v|τ) be the edge cost of moving from node u to v given

the previous sequence of nodes τ such that the number of covered nodes is

increased by one. Then a Bellman equation is defined as:

Jk(u) = c(u,v|τ) + Jk−1(v) (5.2)

As mentioned before, Jk(u) depends on the previous actions that defined

the path τ leading to u. Choosing the next node v that minimizes Jk(u)

requires to minimize it over all possible paths. So, we propose to decompose

the edge cost as follows:

c(u,v|τ) = c̄(u,v) + L(τ), (5.3)

where the function L(τ) is the total extra cost created by all previous ac-

tions in the sequence τ , and c̄(u,v) is the edge cost ignoring the overlap cost.

Minimizing L(τ) at each step is the same as minimizing the expected extra

cost created by every previous action. Then we can re-write the Bellman

equation as
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Jk(u) = c̄(u,v) + f(v) + Jk−1(v) (5.4)

The function f(v) represents the expected extra cost in future steps as a

result of choosing the next node v. It differs from the heuristic function in

the A* algorithm [91], since it does not predict the total cost to the goal,

and predicts only the additional future cost caused by how the next choice

changes the map instead. We propose a heuristic approximation of f , based

on the intuition that we want to keep as many clear paths to cover the

remaining nodes as possible. We start by identifying a set of nodes that are

at the border of the remaining set of nodes to cover. Next, consider a border

containing N nodes. For each node in the border, the normal distance d(i)

to the next node in the border is computed for the actual map configuration,

and the one resulting from choosing the next node. The function is then

defined as:

f(v) = kf ·
N∑
i=1

1− d(i)t+1

d(i)t
(5.5)

This approximation penalizes actions that create narrow spaces, keeping

the remaining map with a higher number of possible paths to cover the

remaining nodes. The constant kf was obtained by testing different values

in a set of maps and choosing the one that resulted in the minimal averaged

total cost across them. Similar to the A* algorithm, a good approximation

for the function f considerably reduces the search space for the Dijkstra’s

algorithm and yields a near-optimal solution for the non-planar maps used
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as a demonstration for training the agent.

5.1.2 State observation

Perceiving the environment and making inferences about its spatial structure

is a fundamental step in building an online coverage algorithm. In a learning

framework as the one proposed, having a high-dimensional input state will

result in the need for a higher number of examples to train a model that maps

such states into actions. Moreover, the model (here a CNN) will increase in

size and will be more prone to overfit the examples and lose generalization

power. Hence, as in many learning problems, it is desired to create a minimal

and sufficient representation of the input state. This is particularly important

for the policy improvement step since the reinforcement learning algorithm

may not converge due to having a high-dimensional input [92].

The observed state also depends on assumptions on the agent’s ability to

perceive the environment and is not easily defined. We start from the as-

sumption that the agent needs information regarding the map’s coverage and

obstacles, and the elevation of surrounding nodes. In this work, we assume

the agent (e.g, a harvester or a variable-rate applicator) can accurately scan

its surrounding area with a limited range sensor (e.g., a laser scanner or

ultrasonic sensors) and estimate the remaining area to cover with accuracy

inversely proportional to distance (e.g., a 360 degrees camera). Then, by

following such assumptions and trying to reduce the state’s dimension, we

propose the following state representation. The short-range scanner yields

two patches cropped from the original map around the agent, one containing

the information from coverage and obstacles, while the other containing the

elevation of each node in the patch. The first experiments have demonstrated

that 7×7 patches are sufficient for good convergence of the algorithm. The
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estimation of the remaining nodes to cover in the map is done through a

novel dimension reduction technique called ring-pooling, which is explained

in the next paragraph.

The ring-pooling is a condensed representation of the remaining area to

cover in the grid, and its resolution is inversely proportional to the distance

from the agent. This is a way to reduce the state dimension where the infor-

mation is less important. The ring-pooling is defined by the initial seed size

and the order of compaction. The seed size s determines the size of the seed

patch containing s× s nodes centered at the agent’s position. Subsequential

rings of nodes are constructed around the seed patch, such that each ring’s

width equals the previous ring’s width multiplied by the order c. So, the

width l of the ith ring is given by (5.6):

li = sci−1, i ∈ {1, 2, 3, ...} (5.6)

With the rings defined, the percent coverage of each li × li patch in the

ith ring is computed and stored into a square matrix with an odd number

of rows and columns. The center element in the matrix stores the percent

area coverage for the seed patch. The elements around it store the percent

coverage of patches in the subsequential ring, and so on. Notice that the ith

ring greater than one is stored in 8(i − 1) elements in the matrix. So the

stride di between the li × li patches in the ith ring is defined by (5.7):

di =
li + li−1

2(i− 1)
, i ∈ {2, 3, 4, ...} (5.7)

Figure 5.2 shows an example of state observation using the ring-pooling
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Figure 5.2: Example of the ring pooling with seed size s = 1 and order
c = 3.

technique with seed s = 1 and order c = 3. The size of the resulting pooled

matrix depends on the number of rings to be used, which is ideally chosen to

cover the entire map after the seed and order are defined. Once chosen, the

size of the pooled matrix must not change since it has to match the input of

the CNN.

The state observation is a set containing a 7 × 7 patch cropped from the

grid map centered at the agent containing the elevation of each node, a

patch with the same size containing detailed information from the coverage

and obstacles around the agent, and a square pooled matrix with 2n−1 rows

and columns, where n is the number of rings. Finally, for each of the maps

the training set is constructed to contain pairs state-action for each step in

the path defined by the offline algorithm.
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Figure 5.3: CNN architecture.

5.2 Imitation learning

Imitation learning is the first learning step in our framework. More precisely,

we use behavioral cloning [93] to learn a policy in a supervised fashion over

state-action pairs from demonstrations obtained offline. As mentioned before,

the coverage control problem is highly dependent on the spatial structure of

the environment. So, we propose a Convolutional Neural Network (CNN)

architecture to be able to learn the most relevant features in the observed

state to map it to a probability distribution over the possible actions. The

policy is then defined by taking the action with the highest probability of

being the optimal one.

5.2.1 CNN Architecture

As detailed in the previous section, our observation of the state contains three

different types of information. The pooled matrix contains low-resolution

information of the remaining nodes in the map; a cropped patch contains
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high-resolution information of coverage and obstacles around the agent, and

the remaining patch contains information regarding the elevation of each sur-

rounding node. Next, we define a multi-stream architecture (Figure 5.3), in

which each independent input is processed by at least one hidden layer be-

fore being combined. A grid search was performed to define hyperparameters

such as the number of filters in the convolutional layers, the number of layers

and neurons in the fully connected layers, and the dropout regularization

probability.

The pooled matrix contains a decreasing resolution representation of the

remaining nodes, so we assume that the only relevant spatial structure in

this information is the position of each element in the matrix. Then, no

convolutional layer is applied to this input, and it is fully connected to a

layer with four neurons. Each input patch, on the other hand, is connected

to a convolutional layer containing four 3×3 filters with stride equal to three.

The output of the convolutional layer is then fed to a fully connected layer

with four neurons. The intuition behind adding a layer with four neurons

in each stream is having a sufficient number of output neurons coming from

each stream to represent all desired actions. The layers are then concatenated

and fully connected to a new layer with 32 neurons. All neurons up to this

point in the network have ReLu as the activation function.

The output layer is designed to have four neurons, being one for each

possible action of the agent. Each neuron gives a probability of its respective

action being the optimal choice given the input state. A softmax function [94]

is used to create a probability distribution over the output neurons as:

σi(z) =
exp (zi)∑n
j=1 exp (zj)

, 1 < i < n (5.8)
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It takes the outputs zi of the linear activation from each output neuron and

assigns a probability to each action such that their sum equals one. In our

case, n equals 4.

5.2.2 Training

The state-action pairs from offline paths created for each map were mixed

into a single training dataset. We divided the training set into 80% of the

examples for training and 20% for validation. The network was trained using

Adam optimizer [79], and the validation set was used online as an early stop

criterion (allowing at most 15 consecutive iterations of increase in its RMSE

value) to avoid overfitting the examples provided. The weights values were

restored to the ones with the best performance on the validation data. In

this way, the network can generalize its predictions for different states than

the ones in the provided examples.

5.3 Policy improvement

The policy learned by behavioral cloning is at most as good as the offline

method used to generate the demonstration paths. Its performance depends

on the number of examples provided and on how well they represent the

search space. It is almost inevitable that many state-action pairs are very

similar to each other (e.g., the Boustrophedon motion in spaces far from

obstacles), while crucial decisions in the path appear fewer times in the ex-

amples. This unbalanced set of examples may lead to lower probabilities of

the right action for the least represented states. So we propose to improve

our previously learned policy using Reinforcement Learning (RL). Notice that

starting the RL algorithm with a pre-trained agent considerably reduces its
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Figure 5.4: Interaction between agent and environment during policy
improvement.

exploration space, which increases the chance and speed of convergence. Ear-

lier experiments conducted by the authors didn’t achieve convergence of the

RL algorithm when an end-to-end approach was used starting from a random

policy.

In this approach, the previously trained agent interacts with the same

grid maps, generating new paths by itself with no need to use the offline

algorithm. For each action performed by the agent, a cost and new state are

returned from the grid map. This iterative process is depicted in Figure 5.4.

Our objective is to minimize the expected total cost of a path τ when

following a policy π. In our case, the policy π is defined by the weights θ in

the CNN, so we define the expected total cost as:

J(θ) = Eπ[c(τ)]. (5.9)

More formally, we want to find the optimal set of weights θ∗ such that

J(θ) is minimal. Following the same approach used when first training the

CNN, we use a gradient descent algorithm to iteratively update the weights,

starting from θ0, which is the set of parameters resulting from the behavioral
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cloning phase. The iterative process evolves as follows:

θt+1 = θt − α∇J(θt). (5.10)

The problem now becomes to find the gradient of the expected total cost

of a path τ that covers the entire map. By (5.9) and the policy gradient

theorem [95] we have that:

∇J(θt) = Eπ[c(τ)∇logπθ(τ)]

= Eπ

[
c(τ)

(
T∑
t=1

∇logπθ(at|st)

)]
(5.11)

To approximate the expectation in (5.11), we use a Monte-Carlo approach,

in which a large number of simulations (each one is an episode) is conducted

to collect samples of the term inside the expectation. For each episode, we

sample five available grid maps, run the agent with the current policy, and

store the costs along the paths. During the simulations, an action is chosen

based on the probability distribution given by the current policy (i.e., actions

assigned with higher probability more likely to be chosen).

The term c(τ) is somehow problematic if we think of it as a source of

variance in our expectation. By definition, this term represents the total

cost accumulated along the path. However, not every decision contributed

equally to the final cost, especially if we consider the nature of our problem

where a wrong action may result in an immediate or delayed cost higher than

average. So, to minimize this effect, we replace the expectation of the total

cost along the path by the sum of discounted costs, as proposed in the classic

REINFORCE algorithm [96]. Then, we get::
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∇J(θt) = Eπ

[
T∑
t=1

Gt∇logπθ(at|st)

]
, (5.12)

where

Gt =
T∑

k=t+1

γ(k−t−1)Ck,

and γ is the discount factor, a parameter to weigh the effect of past action

on the actual cost. The discounted costs are then normalized to zero mean

and unitary variance to remove the bias in the gradient. Thus, the final

pseudo-code of our policy update becomes:

Algorithm 4 Policy gradient update

1: πθ ← πθ0
2: S ← grid maps
3: for episode = 1, M do
4: map← random sample(S)
5: while coverage < desired coverage, and t < Tlimit do
6: choose an action based on πθ(at|st)
7: save (at, st) and the returned cost(Ct)
8: end while
9: calculate discounted costs Gt(C(τ))

10: calculate the gradient of log probabilities
11: θ = θ − α∇J(θ)
12: end for

In practice, calculating the gradient of the log probabilities (line 10 of

our pseudo-code) is done by the backpropagation algorithm used to train

the CNN. Notice that the cross-entropy loss function used in multi-class

classification problems is given by:
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L = − 1

N

(
N∑
y=1

yi · ∇log(ŷi)

)
, (5.13)

where yi is the desired distribution, and ŷi is the one predicted by the net-

work. So, lines 9 to 11 in the pseudo-code are implemented by training the

neural network for one epoch using a batch of state-action pairs sampled

from the trajectories using a cross-entropy loss function. To account for Gt

in (5.12), we weigh the gradient of each sample by its respective discounted

cost calculated on line 9.

It is important to observe that, at each episode, different maps are ran-

domly sampled from the dataset. This process increases the generalization

power of the refined policy on unseen maps. However, if we always sample

the same map, we expect the resulting policy to converge to the optimal

solution for this map. The advantages of this approach will be explored in

future work.

5.4 Simulations and results

Experiments were conducted in a simulated environment. For the first step

in our framework, we generated 40 planar and 40 non-planar maps according

to the methodology described in Section 5.1. A path that minimizes the

cost function in equation (5.1) was defined for each map by using the offline

techniques also described in Section 5.1. This setup resulted in a dataset with

approximately 32K examples containing state-action pairs. The constants

chosen for the cost function are kz = 1, kt = 1, and ko = 5. They were

chosen such that overlapping a previously covered node has five times the
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cost of turning, simulating, for instance, the task of spraying fertilizer in a

field.

The CNN agent was trained using the resulting dataset as described in

Section 5.2.2, and its policy improved using the method in Section 5.3. The

policy improvement algorithm converged in around 450 episodes, as shown in

Figure 5.6, which corresponds to one hour when running on a Core i7 CPU

with 16Gb of RAM. This time can be significantly reduced when running this

algorithm using a Graphical Processing Unit (GPU). The convergence of the

policy improvement algorithm is considered achieved, when no significant

reduction in averaged cost is obtained in the last 100 episodes. The sudden

drop in the cost happens when the policy learns to identify the preferable

movement direction according to the obstacles in a way that the number

of overlapped nodes is reduced. An example of such improvement can be

observed in Figure 5.5, where a path sampled during the episode number 50

shows a higher cost due to overlaps when compared with the path for the

same map at episode 200.

Figure 5.5: Sample of a path from episode 50 (on the left) and episode 200
(on the right).

The offline algorithm, the behavioral cloning agent, and the agent with the

improved policy were tested on 12 additional maps, not in the training set:
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Figure 5.6: Averaged cost from paths simulated in each episode during
policy improvement.

six planar and six non-planar. The coverage path of each agent was obtained

by a greedy strategy that selects the action with the highest probability of

being optimal, given a state. The agents’ performance on two planar maps

(A and B) are shown in Figure 5.7, and on two non-planar maps (C and

D) are shown in Figure 5.8. The plots contain the accumulated cost as a

function of the number of covered nodes for the obtained path. We evaluate

the performance of our algorithm based on the cost of the path and the final

coverage, as shown in Tables 5.1 and 5.2.
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(A)

(B)

Figure 5.7: Performance of the offline algorithm, the behavioral cloning
agent, and the agent with improved policy on planar maps.
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(A)

(B)

Figure 5.8: Performance of the offline algorithm, the behavioral cloning
agent, and the agent with improved policy on non-planar maps.
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Map
Behavioral Cloning Improved Policy

Cost Cvg. Cost Cvg.

1 0.99 1 0.78 1

2 1.01 1 0.41 1

3 1.00 1 0.53 1

4 1.01 1 0.76 1

5 1.00 1 0.70 1

6 1.02 1 0.75 1

Table 5.1: Percent cost and coverage of behavioral cloning and improved
policy when compared with the offline algorithm on planar maps.

Map
Behavioral Cloning Improved Policy

Cost Cvg. Cost Cvg.

1 0.77 0.86 0.87 1

2 0.73 0.79 1.04 1

3 0.88 0.92 0.78 1

4 0.69 0.72 1.20 1

5 1.14 1 0.94 1

6 0.71 0.86 1.10 1

Table 5.2: Percent cost and coverage of behavioral cloning and improved
policy when compared with the offline algorithm on non-planar maps.

In all tested planar maps, the behavioral cloning strategy matched the

offline algorithm’s performance and achieved full coverage of the map. One

can observe that the small steps in the cost are caused by the turns generated

by the boustrophedon motion, while the big steps in the cost are caused

by overlapping nodes to reach the next decomposed cell. The agent with
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improved policy through reinforcement learning reduced, on average, by 35%

the cost to cover the maps, reducing by almost 60% the cost of map 2. This

result is explained in part by the fact the cellular-decomposition algorithm is

not a good heuristic for high overlapping costs. Nevertheless, the experiment

demonstrates that the policy improvement can generate a significantly better

policy by reducing the number of overlaps.

Results from the non-planar maps show that the behavioral cloning strat-

egy failed to achieve full coverage in five maps. In these cases, the agent

started a loop of actions without covering any other node on the map. How-

ever, after refining the agent’s policy, it was able to complete the map with

a lower cost than the heuristic Dijkstra’s algorithm in three fields, and with

a slightly higher cost in the remaining ones. The Dijkstra’s algorithm gen-

erates solutions closer to the optimal, which are not based on an evident

behavior as the cellular decomposition algorithm. Therefore, it is harder to

mimic this solution with the same number of demonstrations. Similar to the

planar maps, there are big steps in the accumulated cost for the offline solu-

tion and for the behavioral cloning agent that result from overlapping nodes

to reach non-covered areas. This result shows that the improved policy can

avoid creating areas only reachable by overlapping previously covered nodes

and hence reducing the accumulated cost.

5.5 Discussion

A novel framework for area coverage control was proposed. This framework

is based on designing an agent to learn an online policy using demonstrations

from offline algorithms and further refinement using a reinforcement learning

algorithm. After training the agent in a supervised fashion with demonstra-
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tions from 80 maps, the performance obtained was comparable to offline

algorithms when testing in six new planar maps. The policy improvement

strategy resulted in an agent with performance higher than the one obtained

from behavioral cloning and eventually outperforming the offline algorithm

even on non-planar maps. The main advantage of this framework lies in its

flexibility in learning different and possibly multiple heuristic strategies from

offline algorithms, improve their performances, and use them online. Also,

the cost function can be arbitrarily defined, not depending on the heuristic

that is usually focused on reducing specific costs.

The local and reduced representation of the observed state makes the al-

gorithm scalable. The size of the map is expected to influence only the time

required to obtain the offline solution and the duration of each episode in

reinforcement learning.
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CHAPTER 6

CONCLUSIONS

This dissertation presented a class of learning-based algorithms and meth-

ods for improving crop management. It started describing a novel spatial

dependency model for yield prediction based on pre-season treatments and

environmental variables. This model leverages a multi-stream architecture of

CNN in order to model nonlinear dependencies among input variables, while

accounting for variable-wise spatial feature extraction. We provided exper-

imental evidence to show the superior performance of the LF realization of

the MSCNN, achieving a reduction of up to 17% on the RMSE value when

compared to a conventional 2D CNN with stacked input channels, and up to

29% when compared to an RF, which was shown to be the model with the

best performance not using a CNN. An accurate yield prediction model is

the key element for making decisions on fertilization rates.

Besides better performance, the MSCNN-LF model introduces a more chal-

lenging optimization problem. We have detailed a gradient ascent algorithm

that maximizes the farmer’s net revenue by optimizing the input fertiliza-

tion maps. The proposed objective function focuses on farmer’s net revenue

to increase the chances of adoption of this method. However, the gradient

ascent framework is flexible to be used for different objectives. For instance,

since we have derived the gradient of the yield map with respect to the input

variables, the objective function can be easily adapted to maximize yield.

Experiments show that fertilization rates can be drastically reduced with no
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or small decrease in productivity, which subdue environmental impacts and

financial losses at almost no social costs.

To leverage the applicability of the proposed methods, the models and

algorithms were re-designed to incorporate uncertainty quantification. The

RA-CNN-LF model is trained following the deep ensemble framework and

outputs a probability distribution rather than a single value. The variance

of such distribution was used to construct an uncertainty map to provide

farmers with the information of areas of their fields that have high variability

associated to variables not in the dataset. The new architecture not only

provides uncertainty estimation but also outperforms its former version in

the experiments.

The proposed risk-averse optimization algorithm uses the RA-CNN-LF

model to maximize the expected net revenue while reducing the risk associ-

ated with the uncertainty of explored solutions. We proposed two methods

for avoiding risk. In the first, the output variance of the RA-CNN-LF is

factored in the objective function, and the optimization algorithm minimizes

it over the iterations. In the second approach, we created a constraint on the

value at risk, so the output variance is not factored in the objective function

until it gets close to the constraint. In this way, the net revenue is maxi-

mized regardless of the output variance as long as it complies with the level

of risk-aversion of each farmer. As the gradient ascent method may find solu-

tions that are too different from the training data domain, the risk-aversion

framework is important to avoid them, since they are unlike the work in

practice.

Finally, this dissertation proposed an online coverage control algorithm for

applying the resulting fertilization maps in the field. The algorithm uses

an MSCNN agent to learn a policy from offline algorithms, and solve the
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coverage problem online. The resulting policy is further improved through

RL, and experiments demonstrated its potential to outperform the offline

algorithms. Although we only presented simulated results, the grid repre-

sentation is easily transferable from simulation environments to real-world

problems. For instance, for creating CPP for agricultural fields, we can use

the elevation map of different fields and randomly place obstacles of the size

of tractors, harvesters, water ponds, and other obstacles typically found in a

field.

6.1 Future Work

The research and developments presented in this dissertation hold promise for

improving crop management in an accessible and scalable way. Nevertheless,

there is room for extending this work to many topics that require further

research.

6.1.1 Generalization of the Yield Prediction Model

The framework proposed for yield modeling uses site-specific data generated

through OFPE. However, not all farmers have access to this kind of data,

especially the ones that own small fields. Future work will explore the use of

transfer learning [97] to create models for fields where data is not available or

is limited. It is expected that filters trained with data from a field can learn

features also relevant to different ones. In this sense, additional research

should explore training the MSCNN model with data from different fields

and re-train only the fully connected layers with small-plot experiments [98]

data from the target fields.
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6.1.2 Use of Time Series Data for Yield Prediction

The residual nitrogen fertilizer in the soil from previous years is known to

affect the yield response to crop management [99]. Also, there is a great

interest in reducing the residual nitrogen in the soil to avoid water contami-

nation [100]. Having data from multiple years allows us to use the time-series

data from nitrogen application to better estimate yield. The time series may

be incorporated into the model by stacking nitrogen maps from past years

as a single multi-channel input in the MSCNN architecture. Moreover, the

optimization algorithm proposed in this dissertation will factor this informa-

tion, and it is expected that the level of residual nitrogen in the soil decreases

over the seasons.

6.1.3 Extension of the CPP Framework

Future work encompasses testing how the framework scales to bigger maps,

and how to obtain optimized offline solutions by always sampling the same

map during reinforcement learning. The algorithm still lacks some practical

features such as heuristics to avoid unexpected or wrong behaviors. Then, the

transition from the simulated environment to real crop fields should consider

potential failure scenarios where the online policy should be ignored and

improved. Besides, methods for transitioning from the grid environment to

continuous paths must be investigated.

6.1.4 Risk-Aware Online CPP

Although the proposed CPP converged to good control policy, the MSCNN

agent only outputs the expected probability of each action being optimal

at each state. Experiments demonstrate that during the imitation learning
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phase, the agent selected actions that resulted in an infinity loop not fully

covering the map. As the environment is only partially observable, the same

observed state may have different optimal actions, which may lead to these

unstable behaviors. Future work will incorporate uncertainty estimation into

the agent’s architecture using a deep ensemble. New policies can be explored

such that this ambiguity is modeled, and the risk is avoided at a certain

level [101,102].
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APPENDIX A

DERIVATIONS

A.1 Gradient of the Objective Function in Chapter 4

Let the mean and variance of the predicted net revenue be defined by:

µr(N,S) = pV E(f(N,S))− pN
i∑
Ni − pS

i∑
Si

σr(N,S) = pV
√

var(f(N,S))

We want to find the gradient of the expression given by Y w.r.t the nitrogen

and seed maps:

Y = µr(N,S)− βσr(N,S)− 1

t
log(c)

c = µr(N,S)− 2σr(N,S)− ρ

So, we have that the partials of ∇Y =
(
∂Y
∂N

, ∂Y
∂S

)
are given by:

∂Y

∂N
=
∂µr
∂N
− β∂σr

∂N
− 1

tc

(
∂µr
∂N
− 2

∂σr
∂N

)
=
∂µr
∂N

(
1 +

1

tc

)
− ∂σr
∂N

(
β +

1

tc

)
∂Y

∂S
=
∂µr
∂S
− β∂σr

∂S
− 1

tc

(
∂µr
∂S
− 2

∂σr
∂S

)
=
∂µr
∂S

(
1 +

1

tc

)
− ∂σr
∂S

(
β +

1

tc

)
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where

∂µr
∂N

= pY
∂E(f(N,S))

∂N
− PN

∂σr
∂N

=
pY

2
√

var(f(N,S))

∂ var(f(N,S))

∂N

and

∂µr
∂S

= pY
∂E(f(N,S))

∂S
− PS

∂σr
∂S

=
pY

2
√

var(f(N,S))

∂ var(f(N,S))

∂S

The partials of the yield map’s mean and variance w.r.t the nitrogen and

seed maps are obtained from the mixture model of the ensemble. Remember

that the mean (µ?) and var (σ2
?) of the mixture model are :

µ?(X) =

∑m µθm
M

σ2
?(X) =

∑m (σ2
θm

(X) + µ2
θm

(X))− µ2
?(X)

M

So, the partials of the mixture w.r.t to a cropped patch are:

∂µ∗
∂N̄

=
1

M

M∑
m=0

∂µθm
∂N̄

;
∂µ∗
∂S̄

=
1

M

M∑
m=0

∂µθm
∂S̄

σ2
∗

∂N̄
=

1

M

M∑
m=0

(
∂σ2

θm

∂N̄
+ 2µθm

∂µθm
∂N̄

− 2µ∗
∂µ∗
∂N̄

)
σ2
∗

∂S̄
=

1

M

M∑
m=0

(
∂σ2

θm

∂S̄
+ 2µθm

∂µθm
∂S̄
− 2µ∗

∂µ∗
∂S̄

)
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The partials
∂µθm
∂N̄

,
∂µθm
∂S̄

,
∂σ2
θm

∂N̄
, and

∂σ2
θm

∂S̄
are obtained using the backpropa-

gation algorithm (function tf.gradients in Tensorflow).

Finally, to combine the partials of the cropped patches into the full map

we need to define a zero padding function z(c, i) : Rl×l × N −→ Rm×n that

centers the 21 × 21 patch at element i in a m × n map, and completes the

remaining elements with zero. Then, we have that:

∂E(f(N,S))

∂N
=

i∑
z

(
∂µ∗
∂N̄

, i

)
;
∂E(f(N,S))

∂S
=

i∑
z

(
∂µ∗
∂S̄

, i

)
∂ var(f(N,S))

∂N
=

i∑
z

(
σ2
∗

∂N̄
, i

)
;
∂ var(f(N,S))

∂S
=

i∑
z

(
σ2
∗

∂S̄
, i

)
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