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ABSTRACT

Motivated by the failing of Moore’s law and Dennard scaling, as well as

increasingly large parallel tasks like machine learning and big data analysis,

processors continue to increase in area and incorporate more computational

cores. This growth requires innovation in manufacturing processes to build

larger systems, and architectural changes to enable performance to scale

acceptably. One significant architectural change is the shift from bus and

crossbar based processor interconnections to networks-on-chip (NoCs). This

thesis details the design of an NoC to enable a shared memory architecture

in a chiplet-based waferscale processor with architectural support for up to

14,336 cores.
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CHAPTER 1

INTRODUCTION

In pursuit of continued performance improvements despite the end of Moore’s

law and Dennard scaling, computer architects have turned to increasing

the parallel computation ability of processors by increasing the number of

cores. For the last several years, the number of cores in processors has grown

steadily. Coupled with the increasing popularity of workloads like machine

learning with large amounts of parallel computation, processors are likely to

continue to increase in core count and chip size.

A natural direction of this trend is the production of a waferscale processor

— that is, a processor with so many cores that it occupies the entirety of the

silicon wafer used in the manufacturing process. Typically, many separate

processors are manufactured on a silicon wafer, and the wafer is cut up

afterwards into the separate processors. The goal of a waferscale processor

is to use all the space on a wafer for a single processor with many cores. To

date, the commercial production of waferscale processors has not been viable

due to imperfections in the manufacturing process leading to yield issues.

When a wafer is divided into many processors, this results in some of the

processors being nonfunctional. But if the entire wafer is a single processor,

the imperfections make the entire wafer nonfunctional. Creating a waferscale

processor requires new manufacturing methods to address yield issues, and

new architectures to support the large number of cores in the processor.

Several chiplet-based manufacturing techniques have arisen to address the

manufacturing issues with large chips. Theses manufacturing techniques

break large chips up into a number of smaller chiplets and then connect

them together into a large chip. The chiplets are made through the tradi-

tional process of manufacturing many devices on a single wafer, and then

dicing the wafer. Individual chiplets can be tested for functionality, and

functional chiplets can be stitched together with a high-yield interconnection

method to create a single large chip.
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The rising importance of parallel workloads like neural networks, graph

processing, and cloud computing is continuing to push increases in processor

core counts and chip sizes. The traditional methods for interconnecting the

processors on a chip — buses and crossbars — scale poorly. Contention

issues, where nodes have to wait to access the interconnect, lead to limited

bandwidth. Additionally, as the number of nodes in these interconnects

increases and their area grows, their maximum clock speed shrinks due to

the length of the wires increasing.

As a result, architects are shifting away from buses and crossbars as inter-

connection methods and toward routed networks-on-chip (NoCs) in proces-

sors with a large number of cores. NoCs provide better scaling characteristics

by allowing more nodes to inject traffic at once and limiting the length of

the wires between nodes in the system. The use of NoCs in processors adds

new design parameters that must be considered when building large sys-

tems. This thesis studies this design process by examining the design of an

NoC for enabling shared memory computation in a waferscale processor with

architectural support for up to 14,336 cores.

In this thesis, we explore the trend of increasing core counts and processor

sizes, discuss the design of NoCs as an enabling technology for large scale

manycore processors, and present an implementation of an NoC for a wafer-

scale processor.

In Chapter 2, we discuss the motivation behind the trend toward higher

core counts and larger systems. The end of Moore’s law and Dennard scaling

has caused architects to look for improved performance through increased

parallelism. This parallelism also lends itself well to prominent workloads

like machine learning, big data, and cloud computing. We also describe

some of the manufacturing techniques being developed to support increasing

chip size.

In Chapter 3, we present the network-on-chip as an interconnection tech-

nology for enabling larger processors, and discuss some of its design parame-

ters. An architect designing a network-on-chip for a processor must consider

the topology, routing algorithm, and data transmission mechanisms. Com-

mon examples and techniques of each are described.

In Chapter 4, the author’s design of a network-on-chip for a shared memory

waferscale processor prototype is detailed as an example of what the next

generation of large scale processors may look like. The prototype is composed
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of tiles consisting of 14 ARM Cortex cores connected by a bus. An open

source NoC router is used to connect the tiles together. The author designed

custom logic for interfacing the bus on the tiles with the routers, enabling

globally shared memory among all the cores in the processor.

The work described in this thesis was part of a collaborative project un-

dertaken by the author, students in the NanoCAD Lab at UCLA, and other

students in the Passat Research Group at UIUC. The author was the pri-

mary developer of the RTL for interfacing between the on-tile bus and the

NoC routers, and was also responsible for creation of the basic test programs

used to assess functionality of the network. Other students assisted with

debugging of the RTL, developed the JTAG interface for programming and

debugging the prototype, designed power and clocking infrastructure for the

device, and wrote higher level programs that tested the processor’s ability to

perform useful work like the parallel breadth first search algorithm.

We propose waferscale processing as the next step in building large highly

parallel processors. The architecture proposed here, combined with the man-

ufacturing process being employed, demonstrates a promising direction for

practical waferscale integration, a decades old ambition in computer archi-

tecture.
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CHAPTER 2

MANYCORE ARCHITECTURES AND
LARGE SCALE SYSTEMS

2.1 Multicore Processor Architectures

Computer architects are constantly searching for ways to improve perfor-

mance. For many years, compute performance has doubled roughly every 18

months. This rate of improvement was largely explained by Moore’s law and

Dennard scaling. Moore’s law is a prediction that was made in 1965 that the

number of transistors in an integrated circuit would double approximately

every two years as manufacturing technology improved and transistor sizing

and spacing shrank [1]. Dennard scaling is a trend identified in 1974 that the

power density of transistors is roughly constant. This means that as transis-

tors reduce in size, the number of transistors that can be used at the same

power budget increases. Additionally, smaller transistors reduce propagation

delays, allowing for higher frequency of operation. When combined with the

observation by Moore about the rate at which transistors shrink, Dennard

Scaling predicts that performance per watt doubles approximately every 18

months [2].

While the trends of Moore’s law and Dennard scaling held, architects used

the additional transistors to add extra features and make deeper pipelines,

while running their chips at higher clock speeds. However, as transistors have

continued to become smaller, leakage current has overcome switching power

as the performance limit. Reducing transistor size does not reduce energy

consumption (and heat generation) as much. This has caused the breakdown

of Dennard scaling, and slowed the rate of performance improvement [3].

In an attempt to maintain regular performance gains in spite of the break-

down of Dennard scaling, architects turned their focus from increasing sin-

gle core performance to increasing parallel performance [4]. Although clock

speeds have stalled, increasing the number of compute units allows perfor-
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mance to keep improving, particularly in parallelizable workloads. Instead

of using additional transistors to improve the speed at which a single core

executes instructions, additional transistors are now being dedicated to ad-

ditional cores, which programmers can take advantage of by writing parallel

programs [5], [6].

The Piranha system was a prototype that explored the idea of trading

compute core complexity for quantity, citing the abundance of thread-level

parallelism in commercial workloads as a motivator [7]. Published in 2000,

it was one of the first systems to be designed with scalability of core count

and number of chips in mind. IBM released the first commercially available

multicore processor, the Power4, about a year after the Pirnaha paper was

published [8]. Consumer manufacturers Intel and AMD followed suit with

their first multicore processors in 2005 [9], [10]. Today, processors in all do-

mains from low power microcontrollers, to consumer electronics like phones,

tablets, laptops, and desktops, and all the way up to server processors and

supercomputers use multicore processors.

2.2 Manycore Processor Architectures

The shift from uniprocessors to multicore processors provided clear perfor-

mance benefits, increasing computational throughput despite the relative

stagnation of clock speeds. As a result, architects have continued to work in

this direction, moving from multicore architectures with a few very power-

ful cores and specialized interconnections to manycore architectures with a

vast number of cores connected in a regular and scalable fashion. Processor

designs continue to grow in parallelism and number of cores [11]. Manycore

systems have proved especially valuable for the trends of machine learning

and big data processing. These operations are easily decomposed into many

threads that can be run simultaneously by a large number of cores [12].

Architects are continuing to push the number of cores in a system, par-

ticularly for datacenter and supercomputing applications. Intel’s single-chip

cloud computer (SCC) and many integrated core architecture (MIC) are ex-

amples of the trend to increase the number of cores on a chip [13], [14].

Intel’s SCC aimed to shrink data centers and improve their performance

by condensing the resources of multiple servers onto a single chip. It took
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inspiration from data center clusters, connecting a series of compute tiles

with a network like nodes in a server farm. The MIC architecture took a

slightly different approach, aiming to increase core counts while focusing on

maintaining compatibility with programming paradigms used in multicore

chips. It implemented a shared memory model between a large number of

cores on an accelerator card aimed to replace a GPU in scientific or compute

applications.

The trend of growing chip sizes and core counts can also be seen in GPUs

and high-performance computing. The exascale APU from AMD and MCM-

GPU from NVIDIA are both examples of projects aimed at growing core

counts [15], [16]. The exascale APU proposes the tight integration of a CPU

and GPU into a single compute module for improved performance and power

efficiency. The MCM-GPU is a method for coupling multiple GPU modules

into a single larger device to keep up with the demand for increased perfor-

mance scaling. Taking the idea one step farther is the proposed waferscale

GPU, which uses the same GPU module idea as the MCM-GPU. However,

instead of combining GPU modules by 3D integration in a package, many

GPU modules are integrated on a single silicon wafer [17].

Especially in high performance computing, designs are moving from more

connected computers or servers to much larger processors. Larger proces-

sors benefit parallelism by providing lower communication energy and in-

creased compute per volume. Because the distance between cores is reduced

when there are more cores present on a single chip (as compared to cores

on separate chips or even in separate computers), less energy must be spent

transmitting information between the cores. Larger chips also reduce the

computer volume required to achieve the same number of cores in a system.

The area cost of increasing the chip size to support more cores is much lower

than the cost of adding more chips.

This trend is headed toward waferscale processors, which are processors the

size of the entire silicon wafer used in the manufacturing process. Waferscale

integration was first pursued in 1980 by Gene Amdahl’s Trilogy Systems [18].

Within the next four years, at least two other companies, Mosaic Systems

Inc. and Waferscale Integration Inc., had also started work on waferscale

processors [19]. However, none of these companies ever released a waferscale

processor product, as yield issues in the manufacturing process prevented

them from creating one in a commercially viable manner. However, recent
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innovations in manufacturing techniques have shown that scaling chips up to

the size of a wafer may now be viable.

To support this ever-increasing number of cores and size of chips, architec-

tural changes must be made. Traditionally, the interface between cores and

memory has been implemented by a bus, where a single node broadcasts mes-

sages to all other nodes. As core count and chip size grow, the bus becomes

increasingly impractical. As the size of the bus grows, the energy necessary to

drive it increases, and the maximum speed at which it can be run decreases.

Additionally, as core count increases, the rate at which data must be retrieved

from memory in order to keep the cores from stalling must increase. The bus

becomes a bottleneck limiting memory bandwidth. As a result, networks-on-

chip are replacing buses as the mechanism for interconnecting the cores in a

processor. Networks allow multiple nodes to send messages simultaneously,

reduce the maximum distance information must travel in a single hop, and

allow for increased memory bandwidth by splitting the memory into multiple

nodes.

2.3 Building Large Scale Processors

In addition to new architectural techniques, large scale processors also require

new manufacturing techniques, as the physical size of the silicon chip grows

with the number of cores. Interest in constructing processors the size of a

silicon wafer has existed for decades. However, manufacturing issues have

prevented successful commercialization thus far due to yield limitations [20].

New manufacturing techniques aim to solve these issues through chiplet-

based designs with interposers and/or redundancy.

Chip-on-wafer-on-substrate (CoWoS) is an interposer-based approach to

multi-chip modules which enables the construction of larger chips using

micro-bumps and through-silicon vias to connect multiple smaller chips to the

larger interposer [21]. The embedded multi-die interconnect bridge (EMIB)

is also an interposer-based technology for the creation of large processors.

The EMIB aims to increase interconnect wire density through the creation

of small fine-pitch bridges that can be used to connect chips [22]. Researchers

have also developed techniques for working with faulty silicon, such as rout-

ing the network connecting individual processing units around faulty cores
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[23]. The Cerebras processor uses redundant cores to account for manufac-

turing errors at large scale, allowing a percentage of the cores on the chip to

be nonfunctional without causing the whole chip to fail [24].

Another emerging technology is the silicon interconnection fabric, or Si-

IF. Si-IF is an interposer technology like TSMC’s CoWoS, but instead of

microbumps it uses solderless thermal compression bonding of copper pillars

to attach the smaller dies to the wafer [25]. This provides more mechanical

rigidity and easier scaling to larger sizes than other interposer approaches

[26]. The Si-IF approach can improve performance up to 20x compared to

dies in separate packages on a PCB, and can approach the performance of

single die interconnections [25].
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CHAPTER 3

NETWORKS-ON-CHIP FOR MANYCORE
PROCESSORS

3.1 Network-on-Chip Design

As the number of cores on a chip increases, the effects of the interconnection

method on system design and performance increase [27]. When the number

of cores in a system exceeds a certain point, it becomes infeasible to use a bus

or crossbar to communicate with the memory subsystem. Cores spend too

much time waiting to be granted control of the bus, and the larger the bus

gets the more slowly it must be run due to propagation delays and increased

capacitance. Networks-on-chip, or NoCs, are one way to replace buses in

manycore architectures [28]. The use of NoCs introduces a whole set of

design parameters and tradeoffs that are not present when systems utilize

buses. Designers must now make decisions about network topology, routing

algorithms, and data transmission mechanisms.

3.2 Network Topology

The first major design decision for a network-on-chip is the topology — that

is, determining the connection pattern between different nodes in the net-

work. Common topologies include mesh, torus, binary tree, and butterfly

tree. Topologies differ in the number of routing units required per compute

unit, the connection pattern between routing units, and the minimum, aver-

age, and maximum number of connections or hops between any two compute

units. Diagrams of these network topologies appear in Figure 3.1.

In a mesh, the number of compute and routing units is equal, with each

compute unit paired with a single routing unit. Routing units are designed

with five ports: one for the connection to the processing unit and four for

9



(a) mesh topology

(b) torus topology

(c) binary tree topology

(d) butterfly tree topology

Figure 3.1: Common NoC Topologies
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connections to other routing units, one in each cardinal direction. The com-

pute and routing unit pairs are arranged in a grid, with each routing unit

connecting to up to four neighboring routing units. Routing units on the

edge of the grid have one or more unconnected ports. In this configuration,

the minimum number of hops between two compute units is three, and the

maximum number of hops is the width of the grid, plus the height of the

grid, plus two.

A torus is also similar in design to a standard mesh, but with additional

routes connecting the edges of the mesh to one another. Routers on the top

edge are directly connected to routers on the bottom edge, and routers on

the left edge are directly connected to routers on the right edge. This reduces

the maximum number of hops that separate two nodes. In this configuration,

the largest number of hops it takes to get between two compute nodes is one

half of the width of the grid, plus one half of the height of the grid, plus

two. However, the torus is much more difficult to manufacture, because the

connections between the edges become long traces that are difficult to route.

Additionally, the length of these traces limits the maximum clock speed.

Binary tree topologies consist of routers which have only three ports. Each

router has a single parent and two children. The compute units form the

leaves of the tree, and the routing units form all of the intermediate nodes

in the tree structure. For N compute nodes, this topology requires N − 1

routing units. The minimum number of hops is two, between compute units

connected to the same router. The maximum number of hops is 2log2 (N).

This topology could be beneficial in cases where traffic is known to be very

regular, and high traffic paths can be split onto different branches of the

tree where they will not cause congestion by sharing a router. Additionally,

because each router has fewer ports, the required density of interconnect

wires between routers is lower.

Butterfly tree topologies are similar to binary tree topologies, but each

node has more children, and there are cross-connections between the branches.

In the butterfly tree network, routing units have four ports for connecting

to child nodes, and two ports for connecting to parent nodes. The com-

pute nodes are the leaves, and are connected in groups of four to a single

router. Each group of four routers on one level are connected by two different

routers on the level above. For N compute nodes, this topology uses N
2
− 2

routers. The tree will have log2 (N)−2 layers of routers. This means that the
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maximum number of hops between any two nodes is 2 [log2 (N)− 2]. This

topology therefore requires fewer routers than the binary tree, and has a lower

maximum hop count, at the cost of more difficult routing algorithms. This

also requires more complicated physical routing to connect all the routers on

the chip.

3.3 Routing Algorithms

After the network topology has been selected, the routing algorithm to use

must be determined. Applicable algorithms are governed, and in some cases

completely determined, by the topology chosen. When a binary tree is used,

there is only a single possible path between any two nodes, so network per-

formance can only be affected by router arbitration scheme, as there is no

variation in path selection. For mesh, torus, and butterfly tree topologies,

there are multiple paths between points in the network, and routing algo-

rithms must have some way to pick between the different paths available.

For mesh and torus networks, the simplest routing algorithm is dimension

order routing (DOR). In dimension order routing, each router is assigned co-

ordinates for its location in the mesh in a standard (X,Y) manner. Packets

are routed between the source and destination with two straight lines, trav-

eling to the appropriate dimension in first one coordinate, then the other. In

XY DOR, the packet first travels to the appropriate column, and then the

appropriate row. The opposite is true for YX DOR. Strict dimension order

routing utilizes only a single path for traffic going between two nodes in a

given direction.

Variations on dimension order routing can provide mechanisms for man-

aging network congestion. Packets can be switched between XY and YX

routing schemes midway while still traveling a path with a minimum num-

ber of hops. Additionally, if packets are allowed to take a non-minimum

length route, even more paths between any two nodes can be considered.

However, in this case algorithms must be carefully designed to ensure overall

forward progress, as packets must be allowed to move farther away from their

destination in order to travel on non-minimum length paths.

A basic binary tree algorithm assigns each compute node a single address

value, with each layer in the tree corresponding to a different bit of the
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address. The top router has all compute nodes whose addresses begin with

a zero on one branch, and all the compute nodes whose addresses have a

one as the most significant bit on the other branch. The routers on the next

layer down have a similar property, but for the second most significant bit.

Packets leaving a compute node are routed up the tree until they reach a

point where the most significant bits of their destination match the router,

then they begin traveling back down. The path down the tree is effectively

a binary search for the destination address.

Butterfly tree networks will use routing algorithms similar to those of bi-

nary tree networks, except that each hop between routers has two different

potential paths, because each node is connected to two different nodes on the

layer above it. Nodes must have some arbitration mechanism for selecting

which path they will use to send their packets. Options include round-robin,

priority, and congestion-based. In round-robin arbitration, nodes simply cy-

cle through the different options each time they send a packet. The priority

method entails nodes defaulting to one option every time, and only changing

if they are unable to send a message due to congestion. Congestion-based

methods require more advanced flow control schemes, in which the destina-

tion routers have some way of indicating how busy they are, allowing source

routers to select the less busy destination option.

3.4 Data Transmission

The final design area for a network-on-chip is data transmission mechanisms.

Each network packet will consist of some number of bits of information, and

the designer must determine how the physical channels will transmit these

bits. Important design choices are the physical width of the channel, and the

number of virtual channels to support.

The physical width of the channel refers to how many bits of information

move between two network nodes in parallel. If this number is less than the

number of bits of information in a packet, the packet must be broken up

into smaller transmission units known as flits. The use of flits can reduce

the required number of wires between two nodes, but adds additional control

overhead and latency. At a minimum, to achieve proper reassembly at the

destination, each flit must indicate whether it is the start, middle, or end of
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a packet. Routing algorithms for NoCs generally restrict all flits in a packet

to traveling the same path through the network, so the destination does not

have to handle out-of-order flit arrival. Routing nodes must also be designed

carefully to keep the flits of a packet together. If a router is transmitting

flits from one packet to its neighbor, and a new packet arrives with the same

destination, its arbitration scheme must be sure to send all the flits from the

first packet before sending any flits from the new packet.

If the network uses multiple flits for at least some packets, the designer

may also choose to implement virtual channels. Virtual channels allow flits

from different packets to be interleaved on the same physical channel. All flits

from a single packet travel between two nodes on the same virtual channel,

in order relative to the other flits in their packet. But the physical link

between two routers can change which virtual channel it is servicing mid-

packet. Assigning different priorities to the virtual channels can allow more

important packets to interrupt the transmission of less important packets

and overtake them. Virtual channels increase router complexity by requiring

the routers to keep track of which virtual channel buffered messages belong

to, either by having separate buffers for each virtual channel or doing extra

bookkeeping on a single set of buffers.
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CHAPTER 4

NETWORK DESIGN FOR THE
WAFERSCALE SYSTEM

4.1 Overview

To explore the impacts of a network-on-chip approach to the interconnection

of cores in a processor and demonstrate the feasibility of an ultra-large-

scale device, we designed the waferscale processor. Additionally, we wanted

to answer the question of whether any aspects of network-on-chip design

must be re-thought when increasing the size of the chip to the scale of a

wafer. The processor we designed is intended to occupy an entire silicon

wafer and has architectural support for 14,336 cores. It is made up of a

series of small tiles which are bonded onto a full wafer interconnection device

using copper pillar bonding. Each tile has an ARM AMBA AHB bus for

intra-tile communication, and a network-on-chip approach is used to connect

the different tiles together.

The waferscale processor is composed of a two-dimensional array of tiles.

The tiles are connected using a mesh topology, with each tile serving as a

single routing node in the mesh. Physical channel width in the network is

equal to packet size, so no flits are necessary and no virtual channels are

used. Each of the tiles in the system has 14 ARM Cortex M3 cores, a series

of memory banks, and routers for the on-chip network. Each core in a tile

has a 64kB private instruction and data memory bank. Tiles also have five

128kB memory banks that are shared among all the cores. Four of these

banks belong to the shared memory region accessible by every core on the

wafer, making a total of 512kB of system shared memory per tile. The fifth

bank is called the bookkeeping bank and is used for holding return values of

memory requests made to other tiles in the system. This bank is only directly

accessible by cores on the same tile. An AMBA AHB bus is used to connect

all the components on the tile. The bus has 16 masters: the 14 ARM cores
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Figure 4.1: Block Diagram of a Single Tile

and two custom components for interfacing with the routers. There are seven

slaves on the bus: the five memory banks, a set of registers for configuring

various functions on the tile, and another custom component for interfacing

with the routers. A block diagram of a single tile appears in Figure 4.1.

In the waferscale processor, we use two networks for tile interconnection.

Both are mesh networks using dimension order routing. One of the networks

performs X then Y dimension order routing, and the other network performs

Y then X dimension order routing. A mesh network was chosen for ease of

implementation and straightforward routing of wires on the interconnection

wafer. Having two networks provides redundancy, reducing the effect of a

tile being nonfunctional. Additionally, the traffic can be distributed between

the two networks to reduce congestion. The redundancy motivation for us-

ing two networks to serve the same function is unique to particularly large

chips like the waferscale processor. A smaller chip might achieve acceptable

yields without having to implement a redundant network. And the fact that

smaller chips do not use chiplet-based designs means that there is no worry

about potential manufacturing issues in the mechanism connecting the chips

together.

The system supports up to 128MB of shared memory that can be accessed

by any core. Each tile holds 512kB, and the waferscale processor can contain

up to 1024 tiles. The 128MB of memory occupy a 29-bit address space,

with 10 bits used to indicate which tile the memory resides on, and 19 bits

indicating the memory address on that tile. The 10 bits for tile location are

further divided into two 5-bit fields, indicating the X and Y coordinate of
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Table 4.1: Remote Write Address Ranges

start address end address
remote write over XY network 32’h80000000 32’h9FFFFFFF
remote write over YX network 32’hA0000000 32’hBFFFFFFF

Table 4.2: Memory Address Mapping for Remote Writes

bit 31..30 29 28..24 23..19 18..0
value 2’b10 network dest x dest y memory address

the tile in the mesh network. Therefore, the maximum dimensions of the tile

grid are 32x32.

4.2 Inter-Tile Communication

When a core needs to write to the shared memory, it performs a store op-

eration on an appropriate address. The Cortex M3 has a 32-bit address

space, and a contiguous 256MB section of this address space is reserved for

performing writes to the shared memory. This 256MB section is divided in

half, with half of the addresses used to perform writes over the XY network,

and the other half used to perform writes over the YX network. The store

operation is put onto the tile’s AHB bus matrix, where it is routed to one of

the pieces of custom logic for interfacing with the router, the packetizer. The

packetizer takes the AHB bus message and reformats it as a network packet

which it sends to either the XY or YX router on the tile, as indicated by

the address used in the write. The packet travels through the network until

it reaches the destination tile. The router at the destination then sends the

message to another of the pieces of custom logic on the tile, the depacketizer.

The depacketizer reformats the network message as an AHB write to the

appropriate location in the memory on that tile. Tables 4.1 and 4.2 show the

address ranges and memory mapping for writes to shared memory.

Reading from and performing CAS operations on shared memory requires

a more complicated process. Because it would be impractical for a core to

maintain ownership of its tile’s bus matrix until it receives a response from

memory on a tile that could be very far away, all reads and CAS operations

are performed using a DMA-like method. To perform one of these operations,
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Table 4.3: Memory Address Mapping for Bookkeeping Memory

bit 31..20 19..17 16..13 12..3 2 1..0
value 12’h200 3’b100 core bucket flag/data 2’b00

a core must execute a series of writes to a set of registers inside the packetizer.

These registers indicate the address that the operation is to be performed on,

a location in the bookkeeping memory to store the results of the operation,

and the compare and swap values for CAS operations. This mechanism was

particularly motivated by the scale of the processor. Because the maximum

latency of a memory request increases with the size of the network/chip, it

is unreasonable for a core in the waferscale processor to hold the bus for

the entire duration of a request. In a smaller processor, however, it may be

reasonable for a core to have exclusive access for the entire duration of a

request, because the latency is smaller.

The 128kB of bookkeeping memory is divided up among the cores on the

tile, so that requests from different cores will not interfere with one another.

The bookkeeping memory has 17 bits of address space. Four bits are used

as an indication of which core the section belongs to. Two of the bits are

reserved for keeping memory accesses word aligned. The remaining memory

is divided into logical buckets. A bucket consists of two memory words; one

is for holding the return data from a request, and the other is a valid flag.

One bit of the address is used for indicating whether a location is a data or

flag address. The remaining 10 bits of address space indicate the index of

the bucket. This allows each core to have up to 1024 requests in flight at

once. Table 4.3 shows the address mapping for the bookkeeping memory.

We designed the packetizer so that each core has its own set of registers

for configuring memory requests. This allows writes to the configuration

registers from different cores to be interleaved while still producing correct

operation. There are three registers for each core, with each register acces-

sible from two different addresses. The three registers indicate the address

to be accessed (with a similar mapping scheme to remote writes), the index

of the bucket in the bookkeeping memory to put the response in, and the

compare/swap values for CAS operations. There is a single 32-bit register for

both the compare and swap values, and CAS operations are limited to 16-bit

values. The two different addresses for each register are used to indicate
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Table 4.4: Packetizer Register Address Mapping

bit 31..12 11..9 8 7..6 5..2 1..0
value 20’h60000 3’b000 send register core 2’b00

Table 4.5: Packetizer Register Address Ranges

start address end address
data registers, message not sent 32’h60000000 32’h6000003F
address registers, message not sent 32’h60000040 32’h6000007F
bucket registers, message not sent 32’h60000080 32’h600000BF
reserved 32’h600000C0 32’h600000FF
data registers, send message 32’h60000100 32’h6000013F
address registers, send message 32’h60000140 32’h6000017F
bucket registers, send message 32’h60000180 32’h600001BF
reserved 32’h600001C0 32’h600001FF

when the request configuration is complete and a network message should be

generated. One address is used for modifying the register without generating

a message, and the other is used for assigning the value and then generating

a message on the network. This allows for more efficient operation if the core

does not need to modify the values in every register between two requests.

Tables 4.4, 4.5, and 4.6 indicate the memory address mapping scheme for the

registers, the address ranges of the registers, and the mapping for the values

written to the address configuration register.

After the core has set the register values, the packetizer generates a net-

work message and sends it to the appropriate router on the tile. This message

travels through the network to the destination tile, where it is received by

the final piece of router interface logic, called the depacketizer2. The depack-

etizer2 will then use the bus matrix to perform the read or CAS operation,

and generate a response message which it sends to the router on its tile.

This response message will travel back through the network to the initial

tile, where it is processed by the depacketizer, which writes the data into the

indicated location in the bookkeeping memory then sets the bucket’s valid

flag.

Table 4.6: Address Register Memory Map

bit 31 30 29 28..24 23..19 18..0
value 1’b0 CAS/read network dest x dest y memory address
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Read and CAS operations use both networks to complete their tasks. The

response messages are sent on the opposite network from the request mes-

sage. This means that responses travel through the same set of tiles as their

requests. This is important for having the redundant networks increase reli-

ability of the system. If a tile is nonfunctional, it can break one of the two

paths that exist between any pair of tiles. If the request and response were

on the same network, it would require both paths to be functional for a read

or CAS operation to complete.

4.2.1 Network Message Format

We designed the network to carry monolithic packets containing all the re-

quired data and address information in a single flit. The routers use a simple

handshaking protocol with the transmitting router driving a valid signal, and

the receiving router driving a ready signal. The entire packet is transmitted

in parallel. The transmitting router puts the packet on the data lines and

asserts the valid signal. It will hold the packet and valid signal until the

receiving router asserts the ready signal. Packets in the system contain 99

bits of combined address and data information. The first three bits indicate

the size of the data to be put on the AHB bus in bytes. The next 32 bits are

only used for CAS messages and hold the two 16-bit values used in the CAS

operation (compare value and swap value). The next 32 bits have a different

purpose for each of the message types. For write messages, they contain the

data to be written. For read and CAS messages, they contain the bucket

index that the response is to be written into. For read response messages,

they contain the data that was read out of memory. For CAS response mes-

sages, they indicate whether the CAS operation succeeded or failed. Next

is a single bit indicating which network (XY or YX) the message will travel

on. This is used by the depacketizer2 for generating response messages on

the opposite network. After the network bit are two bits indicating packet

type. The next 19 bits hold the address inside the destination tile’s memory

banks that the operation is accessing. The final 10 bits hold the X and Y

coordinates of the destination tile. The upper five hold the Y coordinate,

and the lower five hold the X coordinate. Table 4.7 shows a breakdown of

the message format.
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Table 4.7: Packet Format

bit 98..96 96..64 63..32 31 30..29 28..10 9..5 4..0
value size CAS data pkt data ntwk type mem addr dest y dest x

4.2.2 Packetizer Design

The packetizer is responsible for generating three of the four types of network

messages the system uses: write messages, read request messages, and CAS

request messages. It is a slave on the AHB bus matrix and sends messages

to the routers to leave the tile. The bus matrix uses a two-phase approach

to transmit messages, where the first phase is used to send the address and

control signals for a message, and the second phase contains the message data.

These phases are permitted to overlap, so the address phase of a message can

occur concurrently with the data phase of the previous message. The routers

use only a single phase to transmit messages, where all the information is

transmitted at the same time. The packetizer control logic is governed by

a state machine shown in Figure 4.2 with four states: an initial state, a

state for generating write messages, a state for writing data to the request

configuration registers, and a state for generating request messages.

State transitions in the packetizer are governed by messages coming from

the bus matrix and by the availability of the router. Bus matrix messages

cause the packetizer to enter either the write state or the register store state,

depending on the destination address of the message. In the write state,

the packetizer presents a message to the router, and waits for the router

to indicate it has accepted the message. Once the router has accepted the

message, the packetizer returns to the initial state if no AHB transactions

are ready. If there is an AHB transaction waiting, the packetizer moves

directly to the register store state, or back into the write state. In the register

store state, the packetizer stores data from the bus matrix into one of the

request configuration registers. If the address used to access the register

was one of the designated transmission addresses, the packetizer moves into

the request generation state. Otherwise, the packetizer can move back to

the initial state, move to the write transmission state, or stay in the register

store state, depending on the presence of an AHB transaction. In the request

transmission state, the packetizer presents a message to the router, and waits

for the router to indicate receipt of the message. When the router indicates it
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Figure 4.2: Packetizer State Diagram

22



has accepted the message, the state will transition to either the initial state,

the register store state, or the write state, based on the presence of an AHB

bus message.

4.2.3 Depacketizer Design

The depacketizer is responsible for receiving two types of network messages:

writes and responses. It is a master on the AHB bus matrix and generates

messages to write data into the memory banks. Write messages have their

data written into one of the shared memory banks, according to the address

of the write. Response messages have their data written into the bookkeeping

memory bank, in the core and bucket location indicated when the request

was generated. Writes to the bookkeeping memory are made up of two

transactions, one to write the relevant data, and another to set the valid

flag. The depacketizer control logic is based on a state machine shown in

Figure 4.3 with six states: an initial state, a state for putting the address

of a write on the bus matrix, a state for putting the data of a write on the

bus matrix, a state for putting the address of a response bucket on the bus

matrix, a state for putting the data of the response and address of the valid

flag on the bus matrix, and a state for putting the data for the valid flag on

the bus matrix.

State transitions in the depacketizer are governed by messages coming into

the tile from the router and by the availability of the bus matrix. The write

address state is entered when a write message comes in from the router. In

this state, the depacketizer puts the address of the shared memory location

it needs to write to on the bus and waits for the bus to give a ready signal.

When the bus indicates ready, it puts the data from the write on the bus,

and again waits for a ready signal. When the ready signal is received, it will

either return to the initial state, go to the write address state, or go to the

first response address state, depending on the status of the router. The first

response address state is entered when a response message is received from

the router. In this state, the address of the data bucket in the bookkeeping

memory that is to be written to is placed on the bus, and the depacketizer

waits for the bus to give a ready signal. When the ready signal is received, the

depacketizer moves to the next state, where it puts the data of the response
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Figure 4.3: Depacketizer State Diagram
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and the address of the valid flag for the bucket on the bus, completing the

write of the data and beginning the write of the valid flag. Once the bus

indicates it is ready, the depacketizer moves to the second response data

state, where it puts the data for the valid flag on the bus, and again waits for

the bus’s ready signal. Once the bus indicates it is ready, the depacketizer

will either return to the initial state, go to the write address state, or go to

the first response address state, depending on the status of the router.

4.2.4 Depacketizer2 Design

The depacketizer2 is responsible for receiving read and CAS request messages

from the router and generating response messages to send to the router. It

is an AHB bus master so that it can read data out of the shared memory

banks and write new data into them when performing CAS operations. The

depacketizer2 uses the ARM bus matrix’s master lock signal to prevent any

other memory operations between its read and write transactions. The de-

packetizer2 logic is governed by a state machine shown in Figure 4.4 with

eight states: an initial state, a state for putting the address of a CAS op-

eration on the bus matrix, a state for performing the compare in a CAS

operation, a state for writing the new data in a CAS operation, a state for

sending the CAS return message to the router, a state for putting the address

of a read operation on the bus matrix, a state for sending the data from a

read operation to the router, and a state for waiting for the router to be

ready to accept a response message.

State transitions in the depacketizer2 depend on messages coming into

the tile from the router, availability of the bus matrix, and availability of

the router to accept outgoing messages. An incoming read request from the

router will put the depacketizer2 into the read address state, where it puts

the address to be read onto the bus. It stays in this state until it receives

an acknowledgement from the bus, at which point the depacketizer2 enters

the read data state. It waits in this state for the bus to respond with the

data requested. If the router is not ready to accept a new outgoing message

when the bus responds with the data, then the router wait state is entered.

The depacketizer2 remains in the router wait state until it receives a ready

signal from the router, at which point it enters either the initial state, the
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Figure 4.4: Depacketizer2 State Diagram
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read address state, or the CAS address state, depending on the presence

and type of a new incoming request. If the router is ready when the bus

responds with the data, then the transition to the initial, read address, or

CAS address state happens directly from the read data state. When the

depacketizer2 gets a CAS request message, it enters the CAS address state,

where it puts the address on the bus and waits for the bus to acknowledge

it. Once the address has been acknowledged, the depacketizer2 waits in the

CAS compare state until the bus responds with the data. When it receives

the data, it transitions to either the CAS swap state or the CAS return

state, depending on the result of the compare. In the CAS swap state, the

depacketizer2 puts the address of the data to be modified on the bus and

waits for the bus to acknowledge it. On acknowledgement, it moves to the

CAS return state, where it puts the new data on the bus and again waits

for acknowledgement from the bus. If the router is not ready to accept an

outgoing message when the bus acknowledges the new data, the depacketizer2

enters the router wait state, where it stays until the router is ready to accept

an outgoing message. If the router is ready to accept an outgoing message

when the bus acknowledges the write, then the depacketizer2 moves from the

CAS return state to either the initial, read address, or CAS address states,

depending on presence and type of a new incoming request from the router.

4.3 Intra-Tile Message Routing

Because each tile has two routers on different networks, and three different

entities that can source or sink messages, we designed additional modules

for routing messages inside of the tiles. In order to improve performance,

messages generated by the packetizer and depacketizer2 with a destination

of the tile they are generated on are not actually sent to the routers, but

instead looped back locally. The network is also susceptible to deadlock, due

to the depacketizer2’s interaction with both incoming and outgoing messages.

It is possible for the depacketizer2 to be unable to send a message because

the network is full, and for the network to be stuck in a full state because

there are request messages waiting for the depacketizer2 to process them

blocking progress. To reduce the likelihood of this deadlock occurring, we

added queues to the tiles, allowing them to store incoming messages in the
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Figure 4.5: Network Interface Block Diagram

tile and free up the network. Figure 4.5 shows a block diagram with the

details of the network interface logic on each tile.

Behavior of each arbiter in the system is configurable by writing to the

tile’s configuration registers. Default behavior of the arbiters is to alternate

which input has priority every time there is a conflict. But the arbiters

can also be configured in two different priority modes. In strict priority

mode, one of the two inputs will always win the arbitration when there

is a conflict. In relaxed priority mode, a count value is written into the

configuration registers. A chosen input will win the arbitration the number

of times indicated, then arbitration will prioritize the other input for a single

conflict. This pattern will continue indefinitely. Priority arbitration can

also help reduce the likelihood of deadlock. Response messages can be given

higher priority to access the router than write and request messages, and the

priority of messages coming over the network from other tiles can be adjusted

relative to messages generated on the local tile.
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4.4 Testing

We tested the network through functional RTL simulation using several pro-

grams written for the ARM cores. Programs were written in C, and compiled

binaries were loaded into memory at the start of the simulation. We designed

the first program to test the functionality of the remote write capability us-

ing circular queues. The circular queues were used to implement a mailbox.

The transmitting tile was instructed to send a sequence of messages to the

mailbox, and the receiving tile would verify that it received the exact same

sequence of messages from the mailbox. A specific range of memory ad-

dresses in the shared memory on the receiving tile was designated for the

data items in the circular queue. Additionally, an address in shared mem-

ory on the receiving tile was designated to hold the tail index of the queue,

and an address in shared memory on the transmitting tile was designated

to hold the head index of the queue. The transmitting tile writes data into

the queue, and then adjusts the tail pointer accordingly. The receiving tile

reads data from the queue, and then adjusts the head pointer to indicate it

has processed the message. Both tiles can use the values of the head and

tail indices to determine when the queue is full or empty. The transmitter

performs an on-tile read to determine the value of the head index and knows

what value it has written to the tail index. The receiver performs an on-tile

read to determine the value of the tail index and knows what value it has

written to the head index. Cores write to digital I/Os, connected to LEDs

when the tests are run on an FPGA, to indicate whether the pattern matches

the expected one or not.

We designed another program to test the functionality of remote reads and

CAS operations. In this program, each tile initialized several addresses in

its section of the shared memory with values based on tile coordinates and

memory address. Then, tiles can perform read and CAS operations on various

addresses and verify that the response is as expected. For CAS operations in

this program, the swap value was always set the same as the compare value

so that the value in memory did not actually change. This ensures that every

core in the system should always know what value to expect in memory, and

whether a CAS operation should return with success or failure. We wrote

this program in a highly configurable manner using preprocessor directives.

Changing some define statements at the top of the program before compiling
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could adjust the type of requests generated (read or CAS), the traffic pattern

(random uniform or hot spot), the ratio of network use (XY vs YX), and the

number of requests each core could have in-flight at a time. This test also

uses writes to digital I/O by the cores to provide an easy indication of success

or failure. Additionally, each core keeps track of the number of responses that

meet and fail expectations in locations in its private memory bank. These

values can be read via JTAG to determine whether the test was successful

or not.

For a higher level system test, we also used a program that runs a par-

allel breadth first search (BFS) algorithm on a graph and verified proper

behavior. Running the BFS algorithm demonstrates the processor’s ability

to perform useful work, and gave us the opportunity to begin developing a

programming model for the system. Additionally, the BFS algorithm relies

on CAS operations where the swap operation actually writes a new value,

covering a hole in the earlier test program.

4.5 Analysis

For analyzing the theoretical performance of our network, we chose the bi-

section bandwidth metric. This number represents the maximum bandwidth

between two halves of a bisected network. The network is bisected with the

minimum number of inter-node links cut, producing the minimum bandwidth

between the two halves.

The bisection of a mesh network with N nodes cuts through
√
N links.

Although our architecture supports a mesh size of 32x32, the physical area of

the tile design and the size of the wafer being used to construct our prototype

limit us to a mesh size of 25x25. Because our design uses two mesh networks,

a bisection partitioning will actually cut twice as many links, because we

are partitioning two networks at once. The links are bidirectional, and our

anticipated clock speed is 275 MHz. We can therefore calculate our bisection

bandwidth as follows:
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√
25× 25 = 25 links cut (4.1)

25 links

network
× 2 networks = 50 links (4.2)

50 links× 2 messages

bi-directional link
× 99 bits

message
= 9900 bits (4.3)

9900 bits

cycle
× 275× 109 cycles

second
=

309 gigabytes

second
(4.4)

This is the rate at which our network can transfer raw information, but

many of the bits in our messages are control and address bits. The actual

rate of data transmission is lower at only 32 bits per message:

50 links× 2 messages

bi-directional link
× 32 bits

message
= 3200 bits (4.5)

3200 bits

cycle
× 275× 109 cycles

second
=

100 gigabytes

second
(4.6)

By also calculating the theoretical maximum performance of the proces-

sor independent of the bandwidth, we can develop a roofline model for the

waferscale processor prototype. For our maximum performance model, we

assume each core in the system is able to complete a floating point operation

per cycle.

25× 25 tiles = 625 tiles (4.7)

625 tiles× 14 cores

tile
= 8750 cores (4.8)

8750 cores× 1 flop

cycle
× 275× 109 cycles

second
=

2187.5 gigaflop

second
(4.9)
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Figure 4.6: Roofline Model of the Waferscale Processor Prototype

We assume that each floating point operation requires two memory reads

and one memory write. Given our ARM cores are 32 bit cores, this means

each operation requires 96 bits or 12 bytes of data. Using this information,

we generate the roofline plot in Figure 4.6.
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CHAPTER 5

CONCLUSION

Core counts and processor sizes continue to increase. Moore’s law and Den-

nard scaling no longer provide the straightforward improvement in processor

performance they once did, so parallel performance is becoming increasingly

important. Additionally, important tasks such as machine learning, cloud

computation, and big data analysis are all highly parallelizable and benefit

easily from increased parallelism in processors.

To support this trend, new manufacturing methods like the silicon inter-

connection fabric and new architectural elements like networks-on-chip are

required. Current manufacturing standards do not support chips beyond

a certain size at acceptable yields, limiting the number of cores that they

can integrate on a chip. New techniques for composing chips out of smaller

modules called chiplets look to address this limitation. The NoC is an im-

portant design element of large processors, as it is responsible for providing

computational cores with the data they need, thereby governing the system’s

maximum throughput. To do meaningful work, processing cores must be able

to communicate with memory and with one another efficiently. NoCs are the

current state of the art for providing this communication in an efficient and

scalable way.

In this thesis, we presented the design of an NoC developed for enabling

shared memory processing on a waferscale processor. Through this design

process, we noted that considerations about redundancy in the network and

maximum latency of the network take on special importance when designing

a large processor like the waferscale prototype we developed. Several of the

design choices made for the NoC presented here were made with an eye to-

ward simplicity of developing a working prototype device. Future work could

examine the potential benefits of a torus topology, which would shorten the

maximum number of hops between two nodes in the system but complicate

the physical routing of the wafer and the network routing algorithm. Addi-

33



tionally, the use of smaller flits and virtual channels could be explored. This

would allow variation in packet sizes, different priority for different packet

types, and reduce the total number of physical wires necessary on the wafer.

Both of these changes would also complicate the design of the router, which

implements the routing algorithm and message buffering policies in hardware.

The prototype device developed here could also be used as a tool for ex-

ploring various parallel programming models. For example, transactional

memory is a model for shared memory computation that eliminates the need

for locks to protect data. It is generally proposed along with specific hard-

ware to monitor memory interactions and buffer values before committing

them to memory. The waferscale processor could implement a version of

this scheme using low-level firmware and the private memory bank each core

possesses.
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