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ABSTRACT 

 

Multiple Sclerosis (MS) is a chronic, progressive neurogenerative disease that affects one 

million people in the United States (Wallin et al., 2019). Common MS symptoms include 

impaired coordination, poor walking and balance, and fatigue, and these symptoms put people 

with MS (pwMS) at a higher risk for falls (Cameron & Nilsagard, 2018). Falls are highly 

prevalent among pwMS and can result in detrimental consequences including bone fractures and 

even death (Matsuda et al., 2011). To prevent falls and fall related injuries, it is important to first 

assess for multiple risk factors and then intervene through targeted treatments (Palumbo et al., 

2015).  

 Fall risk can be assessed through self-report measures, clinical performance tests, or with 

technology such as force plates and motion capture systems (Kanekar & Aruin, 2013). However, 

clinicians have time constraints, technology is expensive, and trained personnel is needed. 

Moreover, due to the COVID-19 pandemic, access to in-person clinical visits is limited. As a 

result, pwMS may not receive fall risk screening and remain vulnerable to fall related injuries. 

Mobile technology offers a solution to increase access to fall risk screening using an affordable, 

ubiquitous, and portable tool (Guise et al., 2014; Marrie et al., 2019). Therefore, the overarching 

goal of this study was to develop a usable fall risk health application (app) for pwMS to self-

assess their fall risk in the home setting. Four studies were performed: 1) smartphone 

accelerometry was tested to measure postural control in pwMS; 2) a fall risk algorithm was 

developed for a mobile health app; 3) a fall risk app, Steady-MS, was developed and its usability 

was tested; and 4) the feasibility of home-based procedures for using Steady-MS was 

determined. Results suggest that smartphone accelerometry can assess postural control in pwMS. 

This information was used to develop an algorithm to measure overall fall risk in pwMS and was 
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then incorporated into Steady-MS. Steady-MS was found to be usable among MS users and 

feasible to use in the home setting. The results from this project demonstrate that pwMS can 

independently assess their fall risk with Steady-MS in their homes. For the first time, pwMS are 

equipped to self-assess their fall risk and can monitor and manage their risk. Home-based 

assessments also opens the potential to offer individualized and targeted treatments to prevent 

falls. Ultimately, Steady-MS increases access to home-based assessments to reduce falls and 

improve functional independence for those with MS.  
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CHAPTER 1. BACKGROUND 

 

Multiple Sclerosis  

 

Multiple Sclerosis (MS) is a chronic, neurodegenerative disease of the central nervous 

system (CNS) that affects approximately one million individuals in the United States.1 MS is 

characterized by the breakdown of the blood-brain barrier, resulting in migration of T cells, B 

cells, and macrophages into the CNS that cause inflammation and demyelination.2 Lesions form 

in both white and gray matter, and can be found in the brain, optic nerve, and/or spinal cord.3 

The location and total volume of lesions, however, vary among individuals, making MS a 

heterogenous disease that is difficult to treat and manage.  

There are three forms of MS: relapse-remitting, primary progressive, and secondary 

progressive (Figure 1.1).4 Relapse-remitting is characterized by relapses that last from a day to 

approximately two months, followed by periods of remissions lasting months to years.4 Relapses 

result from inflammation and cause an onset of new symptoms or worsening of current 

symptoms. Remissions, on the other hand, are periods of stability without new symptoms 

developing. Relapse-remitting is the most common form of MS. In secondary progressive form, 

relapses stop occurring, and there is a gradual progression of symptoms and increased disability. 

In primary progressive MS, there are no relapses, but instead a steady increase in disability and 

symptoms.4 Depending on the type of MS, symptoms fluctuate frequently over time, making MS 

a difficult disease to treat and manage.   
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Figure 1.1. The three different types of multiple sclerosis: relapse-remitting, secondary 

progressive, and primary progressive.  

Source: Cameron, M. H., & Nilsagard, Y. (2018).  

 

MS affects areas of the brain, brainstem, spinal cord, and optic nerves, and resulting in a 

range of symptoms from sensory (i.e., pain, reduced proprioception), motor (i.e., spasticity, 

mobility impairment), to cognitive (i.e., slowed processing speed) symptoms.2,5 Symptoms differ 

from one individual to the other, and depending on the type of MS, new symptoms may develop 

throughout the course of the disease. Motor, cognitive, and sensory MS symptoms put those with 

MS at a higher risk for falls. For instance, symptoms such as spasticity, loss of coordination, 

decline in sensation, and cognitive impairment can largely affect an individual’s ability to walk 

and maintain balance.4 People with MS (pwMS), therefore, are at a significant risk for falls.  
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Falls in Individuals with Multiple Sclerosis  

Falls are a significant health concern for pwMS. One in two pwMS fall in any six-month 

period.6 Falls can also result in detrimental consequences. For instance, up to 50% of falls result 

in an injury such as contusions or fractures, and 23% of those falls require medical care.7 Falls 

can also result in fear of falling, which can lead to activity restriction and social isolation.8 

Therefore, preventing falls in pwMS is critical to improve overall quality of life.  

A widely adopted paradigm for falls prevention is to screen for fall risk by assessing 

multiple risk factors and then to intervene with tailored treatment strategies.9 Indeed, a 

systematic review from Sosnoff et al.10 and a meta-analysis from Gunn et al.11 demonstrated that 

exercise interventions can improve mobility and reduce fall risk in pwMS. Paired with fall risk 

screening by assessing multiple fall risk factors, targeted treatments can maximize functional 

independence for pwMS (Figure 1.2).  

 

 Assessing fall risk factors is a critical component of screening. Falls in MS stem from a 

complex interplay of pathological, psychosocial, and environmental factors.12 Therefore, when 

screening for falls, it is important to assess for multiple risk factors. For instance, MS can impair 

vision, walking function, and/or balance confidence which may result in a fall. MS symptoms 

also vary from one individual to another depending on lesion location and volume, and MS 
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symptoms fluctuate within an individual over time. Screening is critical to identify multiple risk 

factors unique to each individual.  

 There are multiple factors that contribute to falls in pwMS. One of the most significant 

contributing factor for falls that affects 50-80% of pwMS is impaired postural control.4 

Maintaining control of the body in response to perturbations is imperative to prevent falls. 

Postural control involves processing input from the visual, vestibular, and somatosensory 

systems and executing movement through the musculoskeletal system to maintain upright 

posture.13 However, due to its disease pathology, pwMS display postural control deficits. MS can 

impair proprioception and vision which alters the body’s internal orientation in relationship to 

the environment.14 Moreover, MS may also cause in delays in motor output, resulting in 

difficulty re-establishing upright posture. Several studies have shown impaired postural control 

in pwMS. PwMS have performed worse on the Berg Balance Scale,15-17 functional reach,18,19 and 

time on tandem stance18,20 compared to healthy individuals. Moreover, when measuring Center 

of Pressure (COP), pwMS have a greater COP path length, COP velocity, and 95% confidence 

ellipse during quiet stance, indicating impaired postural stability.21 Over 16 studies also 

examined postural stability during quiet stance with eyes closed in pwMS and found greater COP 

displacement and COP velocity compared to age-matched controls, suggesting worse 

somatosensory and/or vestibular function in pwMS.21 Overall, scientific evidence over the last 

decade has demonstrated reduced postural control in pwMS due to mechanisms from MS 

pathology.  

 Walking impairments are also common and affect approximately 80% of pwMS.22 Falls 

often occur during walking, and improving walking function is important to prevent falls.23   

PwMS walk slower, shorter distances, and less in their daily lives than healthy individuals. This 
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is demonstrated with slower times with the Timed 25 Foot Walk Test and Timed Up and Go 

(TUG),19 shorter distances with the 6-minute walk test,24 and fewer steps as measured with 

pedometers.25 PwMS also demonstrate greater gait variability than healthy controls,26,27 and their 

gait variability is distinctively different than that of other neurological disorders (i.e., Parkinson’s 

disease, Huntington’s disease, Alzheimer’s disease).28  Healthy gait involves a combination of 

vestibular, proprioceptive, and visual input to activate lower extremity muscle and control center 

of mass trajectory while walking.29 Additionally, ankle torque and quadricep strength are needed 

support the body to initiate and maintain gait.30 Gait impairments in pwMS may result from MS 

symptoms. For instance, poor walking endurance may be a result of fatigue,31 while slowed 

walking speed may result from impaired muscle coordination or spasticity.27,32 Elevated gait 

variability may also result from poor proprioception and reduced muscle strength.33 Gait 

impairments are common in those with MS and appear to result from mechanisms underlying 

MS pathology. Moreover, gait impairments in MS appear to differ than those of other 

neurological diseases.28  

  While balance and gait impairments are strong predictors for falls in pwMS, there are 

many other fall risk factors. Psychosocial factors such as poor balance confidence and fear of 

falling have a 69% and 66% accuracy, respectively, in predicting fallers from non-fallers.34 

Those with moderate disability as measured with the Expanded Disability Status Scale (EDSS) 

are three times more likely to fall than those of mild disability.35 Men with MS are 1.2 times 

more likely to fall in a three-month period than women with MS, and those who use a walking 

aid are two times more likely to fall than those without a walking aid.35 Fatigue alone can also 

predict fallers with a 68% accuracy.36 Therefore, while balance and gait impairments largely 

contribute to pwMS’s increased fall risk, fall risk is multidimensional. Thus, when assessing for 
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fall risk, it is critical to perform multifactorial screening to identify modifiable risk factors (i.e., 

factors that can be changed) for each individual.  

 

Smartphone Technology and Fall Risk Assessment 

There are multiple methods to assess for fall risk, ranging from self-report measures to 

clinic-based measures to laboratory-based measures. Self-report measures can assess factors such 

as fatigue with the Modified Impact Fatigue Scale37 or walking with the Multiple Sclerosis 

Walking Scale.38 While self-report measures are simple to assess, a major limitation is subjective 

bias.39  Clinical measures include tests such as the Timed Up and Go or Berg Balance Scale. The 

advantages of these tests is that they require little instrumentation and can be quick to perform.40 

However, they lack sensitivity and can be prone to ceiling or floor effects, and they may not 

capture underlying mobility impairments in clinical populations.17 Laboratory-based measures, 

such as using force plates, motion capture systems, or wearable sensors, are highly sensitive to 

minute changes in movement. However, these technologies are expensive and not feasible to 

have outside of the lab setting.41,42 Fall risk assessments also require trained personnel to 

administer the tests, analyze outcomes, and share results.  

Smartphone technology offers potential to overcome current limitations to fall risk 

assessment. Smartphones are affordable, ubiquitous, and portable.43 Smartphone ownership is 

also at an all-time high. 77% of all Americans own a smartphone, and approximately 90% of 

Americans between 18-50 years old own a smartphone.44 By embedding expert knowledge in a 

native smartphone application (app), users are able to understand their fall risk with minimal 

equipment and without the need of trained personnel. Moreover, individuals are able to self-
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administer these assessments in their own homes, increasing the likelihood for independent and 

continued fall risk monitoring.  

The evidence for smartphone usage for assessing fall risk has increased over the past 

several years. Several studies have examined the ability of the accelerometer and gyroscope 

embedded within smartphones and tablets to measure standing balance and walking.43,45 Our 

systematic review found that five studies validated a smartphone or tablet accelerometer with 

gold standard equipment (i.e., motion capture, force plate) during standing or walking tasks.46 

Fewer studies, however, examined reliability and none examined usability. Our study validating 

a smartphone accelerometer to a force plate also found root mean square acceleration to 

discriminate between high and low fall risk older adults.47 Evidence suggests that not only are 

smartphone accelerometers and gyroscopes comparable to lab-based technologies, but they are 

capable of distinguishing between different levels of fall risk. However, most of these studies 

included healthy young or healthy older adults, and there is less evidence on how smartphone 

technology is used among clinical populations at risk for falls.  

Different groups have also developed and tested mobile applications (app) to measure fall 

risk. uTUG is an app that measures performance on the Timed Up and Go (TUG).48 Another fall 

risk app is based on the Aachen Falls Prevention Scale and determines fall risk based on a set of 

questionnaires and a single balance task.49 FallCheck is another app that is a checklist of 

environmental factors in the home that may be fall hazards.50 This includes factors such as poor 

lighting, clutter in rooms, and lack of handrails on staircases. This app does not provide an 

individualized fall risk score, but rather provides information on how to reduce fall risk through 

environmental factors. While these studies provide an important foundation for using smartphone 

apps to assess fall risk, they rely on a single measure or a single questionnaire. They do not 
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provide a comprehensive measure of fall risk, which is critical for pwMS given the multiple fall 

risk factors. Furthermore, most of the apps developed for fall risk are targeted towards older 

adults. There are few fall risk apps developed for neurological populations such as MS that 

measure their unique fall risk factors.  

Our lab developed and tested a smartphone app, SteadyTM to measure fall risk in older 

adults. SteadyTM consists of two components to compute a fall risk score.51 The first is a 13-item 

questionnaire of health history assessing age, gender, number of falls in the last year, and 

perceived balance confidence. The second component is a progressive postural stability test 

wherein the device guides participants through five balance tasks of progressive difficulty. These 

include four 30-second balance tasks (eyes open, eyes closed, tandem, single leg), plus a 30-

second sit-to-stand test. The algorithm utilizes information inputted from the health history and 

completion on the balance tasks to calculate a fall risk score ranging from 0-100. This algorithm 

was developed based on previous literature of fall risk factors among older adults. We tested the 

usability of the app through two groups semi-structured interviews with older adults. Older 

adults reported that the app had high ease of use and found the app to be useful.51 We also found 

the algorithm of the app to be comparable to clinical fall risk measures, including the TUG, 

Physiological Profile Assessment, Berg Balance Scale, and Activities Balance Scale.52 

While SteadyTM is a usable and valid app for older adults, this and other developed apps 

do not accurately measure fall risk in pwMS because of their unique fall risk factors resulting 

from MS symptoms. The current algorithm does not include MS factors such as fatigue, 

disability level, and walking impairment that contribute to fall risk. Additionally, cut-offs for 

these factors also differ from older adults to pwMS. Therefore, while there is evidence 

supporting smartphone accelerometry and smartphone apps to assess fall risk in older adults, 
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pwMS do not have an accessible tool to self-asses their risk of falling. Without understanding 

their fall risk, pwMS remain at risk for fall-related injuries.  

 

Health Technology in People with Multiple Sclerosis 

 MS is commonly diagnosed in individuals between 20-40 years of age and is one of the 

most prevalent neurological diseases among young adults.53 There is no cure for MS, and instead 

clinicians focus on managing the disease and its symptoms. PwMS may visit their doctor every 

six or 12-months for routine check-ups.54 However, due to the chronic, progressive nature of MS, 

mild relapses or symptom changes in between this period may go unnoticed and unreported.54 As 

a result, electronic health technologies such as computer and mobile apps have become popular 

to help pwMS track and manage their MS symptoms.55    

 Technology usage is high in pwMS, and electronic health technology has been commonly 

proposed as a way to monitor their health. It is estimated that 90% of pwMS use a personal 

computer,56 and 86% of pwMS use either a smartphone or tablet.57 Additionally, about 46% of 

pwMS use a health app, and 98% of users found the app to be beneficial for their health needs.57 

PwMS use electronic health technology for a multiple purposes. 84% of pwMS have exchanged 

medical information with a health professional and seek interest in sharing vital signs and 

diagnostic information through eHealth technology.57 PwMS also use the internet learn more 

information about MS and search for medical support systems.58 Mobile apps are also commonly 

used to for symptom management, such as recording and tracking symptoms of fatigue.59  

 A recent review discussed the available digital health technologies available for pwMS.54 

Most tools focus on treatment, self-management of symptoms, disease monitoring, or 
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rehabilitation.54 However, there are a lack of tools that focus on screening and assessment, which 

is the first step in falls prevention. Furthermore, another review of mobile apps identified 30 

different health apps for pwMS, and most apps were used for disease management or for 

treatment information.60 PwMS reported that health apps are beneficial in that they help them 

reach a health goal, ask questions to their doctors, and inform how to treat their MS.57 However, 

a main criticism reported by pwMS is that most apps were poorly designed which resulted in 

poor user experience.60 Therefore, improving usability is critical to improve adoption and 

engagement of mobile apps. Given the few apps that focus on assessments, along with the 

adverse consequences of falls, it is critical to develop a usable fall risk app that provides falls 

screening and fall risk assessment to help pwMS manage their risk for falls.  

 Mobile apps are commonly used by pwMS to treat and manage their symptoms. 

However, because there is a dearth of apps that provide screening and assessment, a fall risk app 

increases access to falls screening and improves self-monitoring and management of fall risk. 

Furthermore, unlike currently available apps, designing a fall risk app to fit the unique needs of 

pwMS increases the potential for technology acceptance and adoption. A usable fall risk app 

brings falls screening to the hands of pwMS, equipping them with a tool to self-assess their fall 

risk and improve their functional independence.   

 The overarching goal of this project is to leverage the power of smartphone technology to 

provide pwMS with usable mobile app to self-assess their risk for falls in the home setting. 

Smartphone technology can overcome constraints in fall risk screening and bring self-

assessments to the hands of the individual. Additionally, a mobile health app offers potential to 

improve self-management of fall risk and provide targeted treatments to prevent falls and 

maximize functional independence.    
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CHAPTER 2. ASSESSING POSTURAL CONTROL WITH SMARTPHONE 

ACCELEROMETRY IN INDIVIDUALS WITH MULTIPLE SCLEROSIS 

 

Introduction 

 Falls are a major public health concern for people with Multiple Sclerosis (pwMS). One 

in two pwMS will fall in a six-month period, and up to 50% of falls result in an injury, ranging 

from bruises to fractures.4 Aside from physical injuries, falls may result in a fear of falling which 

can cause activity curtailment and social isolation.7 Because of the high prevalence and 

detrimental consequences of falls in pwMS, it is critical to prevent falls in this population.  

 Understanding risk factors related to falls is important in developing effective fall 

prevention treatments. Impaired postural stability is one of the most important risk factors for 

falls in MS and affects over 50% of pwMS.61,62 PwMS are often reported to take longer to 

respond to perturbations, have greater sway, and have a limited boundary of stability compared 

to their healthy counterparts.21,63 Postural stability can be assessed with clinical tests, such as the 

Berg Balance Scale or Timed Up and Go.17,18 These tests, however, are prone to floor or ceiling 

effects and do not always capture underlying balance impairments.17 Lab-based assessments, 

such as assessing postural sway with a force plate or motion capture system, can capture minute 

changes in posture but require expensive equipment.21,62 Wearable sensors are another 

increasingly popular approach to assess mobility given that they are portable, but they still 

require trained expertise to operate and analyze.41   

 One alternative solution to measure posture is to leverage the power of smartphone 

technology. Smartphones are embedded with an accelerometer and gyroscope that can 

potentially be used to assess postural control.64 Smartphones are also affordable, ubiquitous, and 

portable, offering potential for home-based assessments. Previous studies have suggested that 
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smartphone and tablet-based accelerometry can assess postural control in older adults and 

individuals with Parkinson’s disease.47,65 However, the mechanism underlying postural 

instability differs for those with MS,62 and there is limited knowledge of whether smartphone-

based accelerometry can accurately assess postural control in pwMS. Understanding the 

effectiveness of smartphone accelerometry to measure postural control can help inform the 

development of mobile health applications to improve self-monitoring and self-management of 

MS and its symptoms.  

 The purpose of this study was to determine whether smartphone accelerometry can 

measure postural control in pwMS compared to a research grade accelerometer and force plate 

measures during standing balance tasks. We also determined whether smartphone accelerometry 

was capable of discriminating between assisted device users and non-assisted device users, as 

assisted device usage is a strong predictor of impaired balance and falls in pwMS.66 We 

hypothesized that smartphone accelerometry outputs would be comparable to research grade 

accelerometry and force plate outputs, and that smartphone accelerometry would be capable of 

discriminating between assisted device users and non-assisted device users.  

 

Methods 

Participants 

Participants were recruited from the research lab’s database. Twenty-seven individuals 

with MS participated in this study. Participants were included if they were: a) 18 years or older; 

b) had a physician confirmed diagnosis of MS; b) normal or corrected to normal hearing and 

vision; c) capable of standing unaided for at least one minute; and d) scored ≤6.5 on the 
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Expanded Disability Status Scale (EDSS). Participants were excluded if they had any 

neurological disorder other than MS.  

 

 Experimental Protocol 

 All participants underwent static balance assessments while standing on a force plate 

(Bertec Inc, Columbus, OH) and holding a smartphone (Samsung Galaxy S6, Seoul, South 

Korea) medially against the chest along the sternum. A research grade accelerometer (Opals, 

APDM, Portland, OR) was attached to the smartphone (Figure 2.1). Researchers ensured that 

participants held the phone to the proper orientation aligned to the anteroposterior (AP), 

mediolateral (ML), and vertical axes for each trial. The force plate was sampled at 1000 Hz, the 

accelerometer from the smartphone was sampled at an average of 200 Hz, and the Opal was 

sampled at 128 Hz.  
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Five standing balance tasks were performed on the following order for 30 seconds each: 

1) eyes open, 2) eyes closed, 3) semi-tandem, 4) tandem, and 5) single leg. Two trials of each 

task were performed. These balance tasks were chosen to challenge participants’ sensorimotor 

systems and base of support and have distinguished fallers and non-fallers with MS in the past.63 

Acceleration from the smartphone and Opal in the mediolateral (ML), anteroposterior (AP), and 

vertical directions were exported, downsampled to 100 Hz, and processed with a 4th order, low 

pass Butterworth filter at a cutoff frequency of 5 Hz using a custom MATLAB script 

(Mathworks Inc., Natick, MA). Root mean square (RMS) acceleration in the ML and AP 

directions and 95% area ellipse were calculated, as these measures have shown to be valid and 

reliable in assessing postural control through smartphone accelerometry.46 Center of Pressure 

(COP) data from the force plate was exported, downsampled to 100 Hz, and processed with a 4th 

order, low pass Butterworth filter at a cutoff frequency of 10 Hz using a custom MATLAB 

script. Parameters included RMS in the ML and AP directions and 95% area ellipse to match 

those extracted from the smartphone.  

 

 Statistical Analysis 

Statistical analyses were performed using IBM Statistical Package for the Social Sciences 

(SPSS) for Windows, version 26 (IBM Corp, Armonk, NY). COP and acceleration measures 

were averaged for the two trials for each condition. Validity between measures derived from the 

force plate, smartphone accelerometer, and Opal accelerometer were assessed with Spearman’s 

correlations for all balance conditions. Correlations coefficients of 0.3-0.5 were considered low, 

0.5-0.7 were considered moderate, 0.7-0.9 were considered high, and 0.9-1.0 were considered 

very high.67 Receiving operating characteristic (ROC) curves were constructed and the area 
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under the curve (AUC) was calculated to determine the level of discrimination between assisted 

device users and non-assisted device users. Not all participants could complete the more 

challenging balance tasks, and there was missing data for tandem and single leg conditions. 

Therefore, ROC curves were only constructed for eyes open, eyes closed, and semi-tandem 

conditions. Statistical significance was set at α = 0.05.  

Results 

 Demographic information of all participants is presented in Table 2.1. Twenty-seven 

pwMS participated, and 12 were assisted device users and 15 were non-assisted device users. 

Assisted device users had significantly greater EDSS scores (p = 0.01). There were no 

differences in age between groups (p = 0.11).  

Table 2.1. Demographic information for all participants.  

 

 
Assisted Device Users (n=12) Non-Assisted Device Users (n=15) 

Age 

Mean  SD 
62.1  8.1 years 46.5  12.2 years 

Gender 9 females; 3 males 13 females; 2 males 

Expanded 

Disability Status 

Scale 
Median (IQR) 

6 (5.3-6.4) 2.5 (2.5-3.5) 

MS Type  7 Relapse-Remitting 

1 Primary Progressive 

4 Secondary Progressive 

14 Relapse-Remitting 

1 Unsure  

MS Duration  

Mean  SD 
18.6  10.1 years 12.9  11.6 years 
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From the Opal accelerometer, RMS ML acceleration ranged from 0.038 to 0.987 m/s2, 

RMS AP acceleration ranged from 0.061 to 0.600 m/s2, and 95% area ellipse ranged from 

0.034E-3 to 0.177 m/s2. From the smartphone accelerometer, RMS ML acceleration ranged from 

0.036 to 0.974 m/s2, RMS AP acceleration ranged from 0.064 to 0.869 m/s2, and 95% area 

ellipse ranged from 0.042E-3 to 0.185 m/s2. From COP outputs from the force plate, RMS ML 

ranged from 0.435 to 60.97 mm, RMS AP ranged from 0.174 to 23.98 mm, and 95% area ellipse 

ranged from 26.72 mm2 to 5371.55 mm2.  

 Table 2.2 depicts Spearman’s correlations between smartphone accelerometer outputs 

and Opal accelerometer outputs, and Table 2.3 depicts Spearman’s correlations between 

smartphone accelerometer outputs and force plate outputs. Scatter plots for correlations for each 

balance task for the smartphone and Opal outcomes are presented in Appendix A, and scatter 

plots for correlations for the smartphone and force plate outcomes are presented in Appendix B. 

There were moderate to strong correlations between the smartphone accelerometer to Opal 

accelerometer for RMS ( = 0.66 – 0.97; p = 0.001 – <0.001) and 95% area ellipse ( = 0.72 – 

0.94; p = <0.001). There were weak to moderate correlations between the smartphone 

accelerometer and force plate for RMS ( = 0.33 – 0.87; p = 0.02 - <0.001) and 95% area ellipse 

( = 0.48 – 0.72; p = 0.01 - <0.001).  

 



 

 
17 

Table 2.2. Spearman’s correlations (rho) between the smartphone and Opal for root mean square 

(RMS) acceleration and 95% confidence ellipse area.  

  Smartphone Outcomes 

 Eyes Open RMS 

Mediolateral 

RMS 

Anteroposterior  

95% ellipse 

area 

Opal 

Outcomes 

RMS Mediolateral 0.86 (p <0.001)   

RMS  

Anteroposterior 

 0.90 (p  = 0.001)  

95% ellipse area   0.83 (p < 0.001) 

Eyes Closed    

RMS Mediolateral 0.88 ( p <0.001)   

RMS  

Anteroposterior 

 0.90 (p  < 0.001)  

95% ellipse area   0.91 (p < 0.001) 

Semi Tandem    

RMS Mediolateral 0.89 (p < 0.001)   

RMS  

Anteroposterior 

 0.97 (p < 0.02)  

95% ellipse area   0.94 (p < 0.001) 

Tandem    

RMS Mediolateral 0.66 (p = 0.001)   

RMS  

Anteroposterior 

 0.77 ( p <0.001)  

95% ellipse area   0.72 (p < 0.001) 

Single Leg    

RMS Mediolateral 0.96 (p < 0.001)   

RMS  

Anteroposterior 

 0.99 (p  < 0.001)  

95% ellipse area   0.99 (p < 0.001) 
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Table 2.3. Spearman’s correlations (rho) between smartphone outcome measures and force plate 

outcome measures for Root Mean Square (RMS) and 95% confidence ellipse area.  

  Smartphone Outcomes 

 Eyes Open RMS 

Mediolateral 

RMS 

Anteroposterior  

95% ellipse 

area 

Force Plate 

Outcomes 

RMS Mediolateral 0.45 (p = 0.015)   

RMS  

Anteroposterior 

 0.47 (p = 0.017)  

95% ellipse area   0.48 (p = 0.013) 

Eyes Closed    

RMS Mediolateral 0.65 (p < 0.001)   

RMS  

Anteroposterior 

 0.73 (p < 0.001)  

95% ellipse area   0.72 (p <0.001) 

Semi Tandem    

RMS Mediolateral 0.78 (p < 0.001)   

RMS  

Anteroposterior 

 0.33 (p = 0.11)  

95% ellipse area   0.69 (p < 0.001) 

Tandem    

RMS Mediolateral 0.67 (p = 0.001)   

RMS  

Anteroposterior 

 0.87 (p < 0.001)  

95% ellipse area   0.63 (p = 0.002) 

Single Leg    

RMS Mediolateral 0.83 (p = 0.001)   

RMS  

Anteroposterior 

 0.89 (p <0.001)  

95% ellipse area   0.89 (p < 0.001) 
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 ROC curves were constructed to determine the classification accuracy between assisted 

device users and non-assisted device users. The Area Under the Curves (AUC) are depicted in 

Table 2.4. For RMS ML, AP and 95% confidence ellipse acceleration from the smartphone, the 

AUC was statistically significant for eyes open, eyes closed, and semi-tandem stance (p <0.001 – 

0.02; Figure 2.2). For RMS AP and 95% confidence ellipse acceleration from the Opal 

accelerometer, the AUC was statically significant for eyes open, eyes closed, and semi-tandem 

stance (p = 0.002 – 0.03; Figures 2.2 and 2.3). There was no statistical significance for RMS ML 

from the Opal accelerometer. For COP outputs from the force plate, the AUC was statistically 

significant for eyes open, eyes closed, and semi-tandem stance (p = 0.004 – 0.05; Figure 2.2 and 

2.3).  

Table 2.4. Area under the curve for Receiving Operating Characteristics curves for smartphone 

outputs, Opal outputs, and force plate outputs. ML = mediolateral; AP = anteroposterior  
 

Opal Smartphone Force plate 

Condition -  

Root Mean Square 

Area p-value Area p-value Area p-value 

Eyes Open ML  0.70 0.08 0.79 0.01 0.77 0.02 

Eyes Open AP  0.86 0.002 0.83 0.01 0.84 0.004 

Eyes Closed ML  0.71 0.07 0.85 0.003 0.73 0.05 

Eyes Closed AP  0.87 0.002 0.91 <0.001 0.84 0.004 

Semi-Tandem ML  0.71 0.07 0.76 0.02 0.76 0.03 

Semi-Tandem AP 0.76 0.03 0.84 0.003 0.72 0.07 

95% Confidence 

Ellipse 

      

Eyes Open 0.76 0.02 0.81 0.01 0.81 0.01 

Eyes Closed 0.81 0.008 0.88 0.001 0.86 0.002 

Semi-Tandem 0.78 0.02 0.81 0.01 0.78 0.02 
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Discussion 

 The purpose of this study was to determine if a smartphone accelerometer could measure 

postural control in pwMS, and if a smartphone accelerometer could discriminate between pwMS 

who use an assisted device and pwMS who do not use an assisted device. The results support our 

hypothesis. We found moderate to strong, significant correlations between RMS and 95% area 

ellipse acceleration from the smartphone and Opal, and we found moderate, significant 

correlations between RMS and 95% area ellipse acceleration from the smartphone and RMS and 

95% area ellipse COP from the force plate. We also found that smartphone accelerometry could 

discriminate between assisted device users and non-assisted device users, and our results were 

comparable to those from the Opal and force plate.  

We found high correlations ( > 0.7) for RMS AP and ML and for 95% area ellipse 

between the smartphone and Opal and moderate correlations between the smartphone and force 

plate, suggesting that smartphone accelerometry is comparable to measure postural control 

compared to gold-standard devices in pwMS. As anticipated, we found stronger correlations 

between smartphone and Opal accelerometry than between smartphone and force plate measures. 

This is as expected since both accelerometers capture a proxy of center of mass while the force 

plate captures center of pressure. Force plates are traditionally used to measure posture, 68 but 

with the growing development of tri-axial accelerometers, our results suggest that smartphone 

accelerometry may also be used to measure posture. We also found that correlations were 

stronger as balance conditions became more difficult. This suggests that smartphone 

accelerometry may be more accurate with greater postural sway.  

High AUC (AUC > 0.8) for smartphone accelerometry demonstrate that RMS and 95% 

confidence ellipse can be used to classify MS assisted deviser users and MS non-assisted device 
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users. PwMS who use assisted devices demonstrate impaired postural control compared to those 

who do not use assisted devices,69 and assisted device usage is a strong predictor of falls.66 

Therefore, assessing postural control with smartphone accelerometry may provide insight to 

understanding those who are at high risk for falls. ROC curves and the AUC for smartphone 

accelerometry was also comparable to that of the Opal and force plate, indicating similar 

classification accuracy to gold-standard devices.  

 Our results are comparable to previous studies that examined the use of smartphone 

accelerometry to assess postural control. Past studies have demonstrated that smartphone 

accelerometers are comparable to force plate and motion capture outputs in clinical populations 

with impaired postural control including older adults and individuals with Parkinson’s 

disease.52,65 Another study found that smartphone accelerometer and gyroscope outputs were 

comparable to clinical assessments (Berg Balance Scale) in stroke survivors.70 Despite the 

differing pathological mechanism that contributes to postural instability in pwMS,4 our results 

suggest that smartphone accelerometers can be used to quantify postural control in this 

population. Because postural instability is a key predictor of falls in pwMS,71,72 smartphone 

accelerometry offers potential to assess fall risk outside of a lab-based setting.  

 These results suggest that there is potential to leverage smartphone accelerometry to 

provide an objective assessment of standing balance in pwMS. Because of the affordable, 

ubiquitous, and portable nature of smartphones, there is potential to utilize smartphone 

accelerometers to increase balance assessments in pwMS.57 Smartphone accelerometry can 

capture underlying characteristics of balance impairment in pwMS without the expense of force 

plates or subjective bias of clinical tests. Due to the nature of MS, new symptoms can develop or 

current symptoms can worsen over time.2 Smartphones offer potential for pwMS to track and 



 

 
24 

manage their balance that may change as a result of their symptoms. Over 80% of pwMS own 

smartphones, and approximately 45% of pwMS have used a health application.57 With the 

dynamic nature of MS, a smartphone application may allow pwMS to assess their postural 

control as they notice their symptoms changing and initiate early treatment strategies. Indeed, 

there is one health application (Floodlight Open) developed to monitor MS symptoms, including 

mood, manual dexterity, and balance and walking.73 However, there is limited research on the 

validity and reliability the mobility measures. Future research should integrate smartphone 

accelerometry into health apps to improve self-management of MS symptoms.  

 The results of this study also suggest that there is potential to provide objective postural 

assessments outside of the research setting. Previous studies have found that even pwMS without 

clinical disability have balance impairments as measured with force plates or motion capture 

systems.19 Therefore, early assessment of postural control paired with targeted treatment can 

prevent falls before balance impairment worsens. However, it is difficult to identify balance 

impairment, especially among those with minimal disability, without force plates or motion 

capture systems.74 The results of this study suggest that a smartphone accelerometer can assess 

postural control, and future studies should determine if smartphone accelerometry can identify 

balance impairment in pwMS with minimal disability. Using a smartphone to assess balance in a 

clinical setting can help clinicians identify balance impairment early in the course of the disease.  

 This study is the first to understand smartphone accelerometry in pwMS, but there are 

also limitations to this study. The smartphone used for this study was a Samsung Galaxy S6, and 

it is unclear if results are similar for different types of phones. With the quick advancements in 

technology, future studies should understand if accelerometers differ between types of 

smartphones. Participants in this study also held the phone against their chest, and it is unclear if 
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other locations provide similar results. A future step is to determine if pwMS can self-assess their 

postural control, and using the chest is a location that pwMS can easily identify and use. In 

addition, this study examined standing postural control in pwMS. For pwMS who are non-

ambulatory, it is unclear whether smartphone accelerometry can assess seated postural control. 

Future studies should examine the use of smartphone accelerometry for pwMS who are non-

ambulatory. It also remains unclear if smartphone accelerometry is sensitive to changes in 

postural stability following treatment interventions. Smartphones may offer potential to track 

individual progress following treatment, and understanding its sensitivity to these changes is 

warranted.    

 In conclusion, this study suggests that RMS and 95% confidence ellipse from a 

smartphone accelerometer is comparable to that from a research-grade accelerometer and force 

plate in pwMS. Furthermore, RMS and 95% confidence ellipse from a smartphone can 

discriminate between pwMS who are assisted device users and non-assisted device users. This 

evidence suggests that an embedded smartphone accelerometer can be used to measure standing 

postural control in pwMS. These findings provide preliminary results to support the use of 

smartphone technology as a tool to assess postural control when technology such as force plates 

or research grade accelerometers are not available. Levering an affordable and ubiquitous tool 

may increase access to objective postural control assessments.  
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CHAPTER 3. A FALL RISK ALGORITHM FOR A MOBILE HEALTH APP FOR 

INDIVIDUALS WITH MULTIPLE SCLEROSIS 

 

Introduction 

 Falls are a major health concern for individuals with Multiple Sclerosis (MS). Over half 

of people with MS (pwMS) will fall in a six month period, and a significant portion of those falls 

will result in a serious injury.4,7 Fall-related injuries can range from contusions to fractures and 

even death.7 In addition to injuries, falls can result in fear of falling, which may lead to activity 

restriction and social isolation.8,75 Therefore, preventing falls is critical to increase functional 

independence in those with MS.  

 Falls in those with MS stem from an interplay of physiological and psychological risk 

factors. For instance, postural instability, assisted device usage, high fatigue levels, and low self-

efficacy are all associated with falls in pwMS.21,31,72,75 With the large number of risk factors 

related to falls, several studies have aimed to identify the most important risk factors to inform 

treatment strategies.34,35,61,76 For instance, results from a meta-analysis of over 1,000 pwMS 

demonstrated that balance impairments, progressive MS, and use of walking aids were most 

associated with increased fall risk.77 These results highlight that fall risk is multifactorial, and 

that assessing multiple risk factors is critical to reduce fall-related injuries through tailored 

treatments.   

 Fall risk factors can be assessed through a variety of methods. Certain factors are 

assessed through validated self-report questionnaires, such the Modified Impact Fatigue Scale to 

assess fatigue,37 the Falls Efficacy Scale to assess fear of falling,78 and the Multiple Sclerosis 

Walking Scale to assess perceived walking ability.38 Mobility is assessed through balance and 

walking performance measures, and can be measured through clinical scales or through 
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technology. Clinical scales such as the Berg Balance Scale or Timed Up and Go involve little 

instrumentation, but they are prone to ceiling effects and may not always capture underlying 

mobility impairments in those with MS.17 Technology such as force plates or motion capture 

systems are more robust and can capture minute changes in movement, but they are expensive 

and require trained personnel.62 Fall risk is multifactorial, and it is recommended to measure both 

MS symptoms and objective mobility performance for an accurate measure of fall risk.4,77 

However, assessing multiple risk factors takes time, technology to assess mobility is not always 

feasible to have in clinical settings, and there is need for trained personnel.  

Mobile health technology can overcome these limitations by assessing multiple risk 

factors using widely available and affordable technology. Moreover, with smartphone 

applications (apps), users can self-assess and monitor their risk for falls. Questionnaires 

assessing factors such as fatigue or fear of falling can be implemented within a health app. 

Smartphones are also embedded with accelerometers and gyroscopes that can be leveraged to 

measure posture.43,45 Previous evidence has suggested that smartphone accelerometers can assess 

postural control in pwMS and distinguish between assisted device users and non-assisted device 

users (see Chapter 2). Therefore, there is potential to use smartphone technology to objectively 

measure posture and assess self-reported symptoms that are related to fall risk.  

Approximately 85% of pwMS own a mobile device, and ~45% of pwMS use a health 

app.57 Mobile health apps are rapidly growing to improve monitoring and management of MS. 

With the high usage of health apps among the MS population, a fall risk app offers high potential 

increase accessibility to falls screening and improve treatment practices. Prior to developing a 

fall risk app, the first step is to develop an algorithm that can be employed in mobile technology 

and accurately measures fall risk in pwMS. Therefore, the purpose of this study was to develop 
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an algorithm with the most influential risk factors associated with falls in pwMS that can be 

implemented through a smartphone app, and to determine the classification accuracy of the final 

algorithm. It was hypothesized that a multifactorial model will have greater classification 

accuracy in predicting fall status than a single risk factor.   

 

Methods 

 Participants 

Twenty-seven individuals with MS participated in the current study and are the same 

participants as study 1 (see Chapter 2). Participants were included if they were: a) 18 years or 

older; b) had a physician confirmed diagnosis of MS; b) normal or corrected to normal hearing 

and vision; c) capable of standing unaided for at least one minute; and d) scored ≤6.5 on the 

Expanded Disability Status Scale (EDSS). Participants were excluded if they had any 

neurological disorder other than MS.  

 

Experimental Protocol  

Participants completed standing balance tasks while holding a smartphone against their 

chest and standing on a force plate. Five standing balance tasks were performed on the following 

order for 30 seconds each: 1) eyes open, 2) eyes closed, 3) semi-tandem, 4) tandem, and 5) single 

leg. Two trials of each task were performed. Participants also completed two trials of the TUG 

and two trials of the 9-hole peg test with each hand. 

Following the balance tasks, participants were asked to complete questionnaires related to 

their MS symptoms. Participants completed the Modified Impact Fatigue Scale (MIFS) which 
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assesses fatigue over the last month,37 Multiple Sclerosis Walking Scale (MSWS-12) which 

assesses perceived walking over the past two weeks,38 Patient Determined Disease Steps (PDDS) 

and Expanded Disability Status Scale (EDSS) which assesses disability level,79 Visual 

Functioning Questionnaire which assesses visual function,80 Falls Efficacy Scale which assesses 

fear of falling, and Activities Balance Confidence Scale (ABC) which assesses perceived balance 

confidence.81 Falls history over the last 6-months was also recorded, with a fall defined as an 

unintentional event in which a person coms to rest on the ground or lower level.82  

 

Statistical Analysis 

Statistical analyses were performed using IBM Statistical Package for the Social Sciences 

(SPSS) for Windows, version 26 (IBM Corp, Armonk, NY). Acceleration was extracted from the 

smartphone and processed through a custom MATLAB code that has been previously 

described.47 In brief, root mean square (RMS) acceleration was calculated from the smartphone 

for the anteroposterior and mediolateral directions for each condition. The Romberg Ratio, the 

ratio between eyes open and eyes closed conditions, was calculated for RMS acceleration. The 

Romberg Ratio was chosen because an elevated Romberg is an indicator of poor balance in 

pwMS83, and using the ratio minimizes differences in accelerometry outcomes when using 

different smartphone accelerometers.   

An independent samples t-test was performed to determine differences between fallers 

(1 fall) and non-fallers (<1 fall) for the Romberg Ratio and for self-reported MS symptoms. 

Outcomes that had a p value of 0.1 or below were inputted into a logistic regression model. A p 

value of 0.1 was chosen as opposed to the traditional 0.05 to avoid underfitting the model.84 
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A binary logistic regression analysis was performed to identify factors that are most 

associated with MS fallers. Model building was iterative and guided by interpretability and 

evaluation of the Wald statistic for each variable. This method is recommended over stepwise 

methods using p-value based decision making to improve the quality of the final model when 

using small data sets.85 In addition to the variables entered to the model, fall history was also 

added into the final model as it has shown to be a significant predictor of future falls,34 but was 

not entered into the regression analysis as it dampens the effect of other variables. After the 

model was created, coefficients for each variable were determined based on the beta value and 

Odds ratio.84 Sensitivity, specificity, and classification accuracy were calculated for the final 

model.  

 

Results 

 Demographic information and outcome measures of all participants is presented in Table 

3.1. Overall, there were 17 fallers and 10 non-fallers. Age ranged from 27 to 75 years, and EDSS 

ranged from 2.5 to 6.5.  
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Table 3.1. Demographic information of all participants. Values are expressed in mean (standard 

deviation).  

 

 From the independent samples t-test, fallers had a significantly greater mediolateral 

postural instability as measured through the Romberg Ratio (p = 0.03), had worse perceived 

walking ability as measured through the Multiple Sclerosis Walking Scale (p = 0.02), used an 

assisted device (p = 0.05), had worse balance confidence as measured from the ABC-6 (p = 

0.002), and had greater disability as represented through the PDDS (p = 0.04) and EDSS (p = 

0.01). There were no significant differences between fallers and non-fallers for number of 

medications, amount of physical activity, fatigue, or age (Table 3.2).  

 

 

 

 

 

 Mean (Standard Deviation) 

Age 

 

53.4 (13.4) years 

Gender 

 

 

22 Females 

5 Males  

Expanded Disability Status Scale  

(median (IQR)) 

 

3.5 (2.5-6)  

Assisted Device 12 Users 

15 Non-users 

 

Multiple Sclerosis Duration 

 

15.7 (11.1) years 

Type of Multiple Sclerosis 1 Primary Progressive 

4 Secondary Progressive 

22 Relapse Remitting  
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Table 3.2. Independent samples t-test of mobility measures and questionnaires to assess Multiple 

Sclerosis symptoms. Values are expressed in mean (standard deviation). RMS = Root Mean 

Square 

Measure Non-Fallers  Fallers  p – value  

Age 48.1 (15.8) 56.6 (11.1) 0.11 

Activities Balance Confidence 

Scale – Short Form 

 

72.9 (12.9) 45.1 (23.6) 0.002 

Falls Efficacy Scale 28.1 (9.2) 31.6 (9.2) 0.35 

Modified Impact Fatigue Scale 56.5 (9.5) 59.2 (11.5) 0.53 

Visual Functioning  91.9 (9.0) 91.6 (8.3) 0.94 

Multiple Sclerosis Walking Scale 

 

24.1 (27.5) 53.8 (31.2) 0.02 

Patient Determined Disease Steps 

 

1.4 (1.5) 2.7 (1.5) 0.04 

Number of Medications 3.9 (2.9) 6.4 (3.6) 0.08 

Timed Up and Go (sec) 

 

9.5 (2.2) 14.4 (5.4) 0.01 

9-Hole Peg Test (sec) 

 

26.5 (10.9) 31.7 (14.4) 0.34 

Assisted Device Usage 

 

2 AD users 

8 Non users 

 

10 AD users 

7 Non users 

0.05 

Romberg Ratio RMS 

Mediolateral 

 

0.9 (0.4) 1.4 (0.5) 0.03 

Romberg Ratio RMS 

Anteroposterior 

 

1.0 (0.2E-3) 1.0 (0.1E-2) 0.28 

 

 The MSWS-12, ABC-6, PDDS, mediolateral sway from the Roberg Ratio, number of 

balance tasks completed, number of medications, and assisted device usage were inputted into a 

logistic regression model to predict fallers from non-fallers. Because PDDS and walking ability 
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from the MSWS-12 were highly correlated and colinear ( = 0.85; p = <0.001), only the MSWS-

12 was inputted into the regression model. 

 Based on the Wald statistic and beta values of each variable, the final model from logistic 

regression analysis included the ABC-6, MSWS-12, RMS Romberg Ratio in the mediolateral 

direction, and number of balance tasks completed (Table 3.3). Medications added little 

significance to the model (Wald = 0.001; ß = 0.007). Additionally, although assisted device 

usage had a high beta value, the Wald statistic was small (Wald = 1.0), and its relationship with 

the MS Walking Scale was high. There are also individuals who may not use an assisted device 

even though it is recommend by a clinician, and RMS acceleration has shown to discriminate 

between assisted device and non-assisted device users. As a result, the final model is:  

Fall Risk = w1*Balance Confidence + w2*Walking Scale + w3*Mediolateral Sway + 

w4*Balance Tasks Completed + w5*Fall History 

 

Table 3.3. Output from a logistic regression model to predict MS fallers. ABC = Activities 

Balance Confidence; MSWS = Multiple Sclerosis Walking Scale; RMS = Root Mean Square   

 

Variable B S.E. Wald Odds Ratio p – value 

ABC – 6  

 

-0.33 0.24 2.11 0.72 0.15 

MSWS-12 

 

-0.34 0.25 1.89 0.74 0.17 

Medications 

 

0.01 0.21 0.001 1.007 0.98 

Romberg Ratio RMS  

Mediolateral 

3.39 2.38 2.02 29.64 0.16 

Balance Completion Tasks 

 

-5.30 3.86 1.87 0.005 0.17 

Assisted Device Usage 4.97 4.97 1.0 144.36 0.32 
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The coefficients for each variable was determined from beta values and odds ratio within the 

regression results. Variables with Larger beta values and odds ratios were given larger 

coefficient values. For this final model, the overall classification accuracy of identifying fallers 

to non-fallers was 81.5%, which is greater than the classification accuracy of each individual 

variable which ranged from 70-78% (Table 3.4). The sensitivity of the model was 82.4% and 

specificity was 72.7%. The model also had an adequate fit (Hosmer and Lemeshow Test = 0.81; 

Negelkrete R2 = 0.65).  

Table 3.4. Classification accuracy predicting fallers and non-fallers in those with Multiple 

Sclerosis (MS) with individual and combined variables. RMS = Root Mean Square 

Variable Classification Accuracy 

Activities Balance Confidence – 6 

 

74.1% 

MS Walking Scale 

 

70.4% 

Romberg Ratio RMS Mediolateral 

 

70.4% 

Balance Completion 

 

77.8% 

Activities Balance Confidence – 6 + Balance 

Completion + MS Walking Scale + Romberg Ratio 

81.5% 

 

 

Discussion 

 The purpose of this study was to develop a weighted algorithm to predict fall risk to 

embed within a mobile health app for individuals with MS. Results from a bivariate analysis and 

logistic regression analysis determined that balance confidence, self-reported walking ability, 

mediolateral sway, and the number of balance tasks completed from five balance tasks were the 

strongest predictors of fall status in those with MS. Moreover, postural stability as measured 

through mediolateral sway and number of completed balance tasks were the strongest predictors. 
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This weighted algorithm offers potential to be used to allow pwMS to self-assess and self-

manage their risk of falling. 

 Falls in those with MS stem from a complex interplay of physiological and psychological 

factors. Therefore, it is important to assess for multiple risk factors when understanding fall risk. 

An advantage to the algorithm developed here is that it integrates multiple risk factors that are 

related to falls in pwMS, including physiological factors (i.e., postural stability, balance 

performance), and self-reported factors (i.e., balance confidence, walking perception). 

Additionally, this algorithm examines objective performance using smartphone accelerometry 

which is more sensitive than self-reported or clinical balance measures.71 While there are 

additional measures that may be related to falls in pwMS, this algorithm is designed specifically 

to include factors that can be measured using a mobile health app.  

 Previous studies have also performed multivariate analysis to determine the best 

predictors of falls in pwMS. Our findings are in line with these previous studies. For instance, 

Tajali and colleagues76 found that a combination of self-reported and performance measures of 

mobility are most related to falls in pwMS. Nisagard et al.86 also found that the Multiple 

Sclerosis Walking Scale was a significant predictor of pwMS with a history of falls. Several 

studies have identified balance and walking as important predictors for falls.61,72,86 In addition to 

mobility, balance confidence and a past history of falls are associated with future falls in those 

with MS from multivariate analysis.34,76,87 Therefore, integrating both objective mobility 

measures and self-reported confidence measures in the final algorithm integrates multiple fall 

risk factors for those with MS.  

 There were also outcomes that did not significantly differ between fallers and non-fallers 

in our sample. For instance, fatigue and number of medications were not related to fall history in 
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the current sample. Past studies have found mixed results on fatigue, as some studies indicate a 

relationship between fatigue and falls,76,88 while others found no relationship.66,86 Future studies 

with larger sample sizes may better understand the relationship between falls and fatigue. There 

is also conflicting evidence on medication use and falls in pwMS. For instance, two studies 

found significant associations between number of medications and falls in MS,89,90 but others 

found no association86,91. The largest study to date of 100 pwMS found no significant 

relationship between number of medications and falls.91 Our results are in line with this study, 

but future work examining medication use, such as the types of medication, is warranted.  

 This study provides a foundation for integrating fall risk factors into a mobile health app 

specific for pwMS. Because of constraints in current fall risk screening practice (i.e., clinicians 

have limited time, equipment is expensive, need for trained expertise), mobile technology offers 

potential to overcome these limitations and improve accessibility to fall risk screening. 

Additionally, bringing fall risk assessment to the users offers potential for pwMS to self-monitor 

and self-manage their fall risk. The results of the study present the first algorithm that 

incorporates multiple risk factors measurable with a smartphone to measure fall risk in pwMS. 

As more data is collected, it is expected that the algorithm will become more enhanced. For 

instance, assistive device usage may become a stronger predictor for falls, while other factors 

such as fatigue and sit-to-stand may be included. With a greater sample size, the algorithm can 

be further analyzed using p-values along with the beta values and odds ratio to develop an 

accurate, sensitive, and specific model. This algorithm though, is the first algorithm that includes 

multiple modifiable risk factors. With this algorithm, pwMS can understand which areas put 

them at the greatest risk for falls. Currently, falls prevention interventions utilize a cookie-cutter 
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approach. By measuring multiple modifiable fall risk factors, this algorithm can guide 

personalized prescriptions to most effectively reduce fall risk in pwMS.  

 The results of this study are important to inform fall prevention practices, but this study is 

not without limitations. First, there was a small sample size used to develop the algorithm. While 

the sample size is small, the results are in agreement with previous studies. Future studies, 

though, should include a larger sample size to understand risk factors most important to integrate 

into a fall risk algorithm. Second, this study was limited to risk factors that could only be 

measured with a smartphone. While this algorithm did not include all risk factors related to falls, 

these risk factors can be measured outside a clinical setting and can potentially increase access to 

screening with mobile technology. Future directions include testing the validity of this weighted 

algorithm compared to standard fall risk assessments and understanding its reliability over time. 

This algorithm was also developed specifically for independent fall risk screening, but it can be 

modified for screening by a clinician or trained personnel. Tests such as the TUG or sit-to-stand 

can be added, and measuring postural control during these tests may provide a better fall risk 

measure than using time to completion.92 With continued testing, future steps will aim to 

improve the algorithm to best capture fall risk in individuals with MS.  

 In conclusion, the purpose of this study was to develop a weighted algorithm to measure 

fall risk in pwMS that can be integrated into a mobile health app. Results suggest that postural 

sway measured through smartphone accelerometry, balance confidence, the Multiple Sclerosis 

Walking Scale, number of balance tasks completed, and a past history of falls are the best 

predictors of falls in pwMS. This algorithm provides an important step to provide tailored fall 

risk screening to pwMS and measuring a person’s unique fall risk. Future steps are to integrate 
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this algorithm into a fall risk app and to test the validity and reliability of the algorithm in those 

with MS.  
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CHAPTER 4: USABILITY OF A FALL RISK MOBILE HEALTH APP FOR 

INDIVIDUALS WITH MULTIPLE SCLEROSIS 

 

Introduction 

Multiple Sclerosis (MS) is a chronic, neurodegenerative disease of the central nervous 

system (CNS) that affects over a million people in the United States.1 MS may affect the brain, 

spinal cord, brainstem, and/or optic nerves, and can result in a range of sensory (i.e., pain, loss of 

proprioception), motor (i.e., spasticity, muscle weakness, balance or gait impairments), and/or 

cognitive (i.e., slowed processing speed, memory loss) symptoms.2,3 Depending on which areas 

of the CNS are affected, symptoms vary from one individual to another.2,4 Furthermore, new 

symptoms may rise or current symptoms may worsen throughout the course of the disease.4 

There is currently no cure for MS, and clinicians focus on managing MS symptoms and 

minimizing disease progression. However, the heterogeneity of MS makes this a complex 

disease to treat and manage.  

Mobile health applications (apps) have rapidly evolved in recent years to help individuals 

track, manage, and treat their health.93 For instance, health apps have been developed to help 

individuals track their physical activity,94,95 manage their medications,96 or treat disease 

symptoms.97,98 Due to the complexity of MS, there is increasing use of mobile health apps to 

support disease monitoring and symptom management.57,99 Indeed, over 85% of people with MS 

(pwMS) own a mobile device, and 45% of pwMS use a mobile health app to help manage or 

treat MS.57 Common health apps for pwMS include those that improve disease management or 

provide disease and treatment information.60  

While there are MS health apps developed for symptom management and medication 

tracking,54 there are limited health apps developed to assess and manage fall risk. Falls are a 
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significant health concern for pwMS, with half of those falling in a six-month period and up to 

50% of falls resulting in an injury.4 Risk factors for falls stem from multiple MS symptoms 

including impaired walking and balance, cognitive declines, and fatigue.100 While assessing fall 

risk can be performed clinically, clinicians have time constraints, may not have necessary 

equipment, and commonly only assess one aspect of fall risk.101 A fall risk app overcomes these 

constraints by providing self-assessments using affordable and ubiquitous technology. 

Additionally, MS symptoms fluctuate throughout the course of the disease,4 and changes in 

symptoms lead to changes in fall risk. A health app can help individuals measure and track 

changes in their fall risk. Moreover, due to the COVID-19 pandemic, there are even more 

barriers to access healthcare, and a health app can increase access to home-based screening.  

A fall risk health app for pwMS offers potential to increase fall assessment in the home 

setting, improve fall risk self-management, and reduce fall-related injuries. A health app can 

measure fall risk by leveraging smartphone accelerometry to objectively measure postural 

control and assess MS symptoms related to falls through self-reported questionnaires. A critical 

step in the development of a health app is to understand the usability of the app for its intended 

users.102 Usability testing ensures that those with MS can easily use and understand an app to 

improve their overall health. Moreover, a review of MS health apps indicated that most apps do 

not meet the needs of those with MS, leading to poor adherence and use.60 Applying a user 

centered approach in the development of health apps can help improve adoption and usage.103 

Therefore, the purpose of this study was to develop a fall risk app for pwMS and to test the 

usability of the app through an iterative design process. A user centered approach will improve 

the development of an app to facilitate the needs of those with MS to increase falls screening and 

ultimately reduce fall-related injuries.104  
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Methods 

 Application Development 

 This app, Steady-MS, was developed in Android Studio 3.1.2 and was developed as an 

extension of a validated fall risk app for older adults, SteadyTM.51 Steady-MS consists of two 

components: The first are 25 questions targeting demographic information and MS symptoms. 

These questions include age, gender, past history of falls, type of MS, history of MS, the 

Multiple Sclerosis Walking Scale (MSWS-12),38 and the short form of the Activities Balance 

Confidence Scale (ABC-6) (Figure 4.1).81 The second component is a progressive balance 

component, in which the app guides users through five progressively difficult standing balance 

tasks. In the following order, the tasks are: 1) eyes open, 2) eyes closed, 3) semi-tandem, 4) 

tandem, and 5) single leg. A text description and image guides users through each task (Figure 

4.2). Each task takes 30 seconds, and users are instructed to hold the phone against their chest for 

the duration of the task to measure their postural sway. These tasks were chosen because worse 

performance on these tasks are associated with falls in pwMS.21,71 After each task, users are 

asked to report if they completed the task, attempted but didn’t complete, or did not attempt. 

These data, along with responses to the 25-item questionnaire, is inputted into a weighted 

algorithm and covered into a score ranging from 0-100, in which higher scores represent a higher 

risk for falls.  
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Steady-MS was also developed with consideration for common MS symptoms that may 

influence usability. For instance, fatigue is a common symptom that affects ~70% of pwMS.105 

To prevent fatigue, we included within the 25 questions those needed for the fall risk algorithm 

and asked only important additional questions (i.e., MS duration, type of assisted device) that 

relate to falls. We also limited balance tasks to one trial of five tasks. Vision impairments are 

also a MS symptom affecting ~30% of pwMS and may influence reading questionnaire and 

instructions.106 Therefore, the font size was at least size 14, and all text was black text on a light 

background to improve contrast. Cognitive impairment including reduced processing speed and 

memory decline affects between 40-70% of pwMS.107 We aimed to prevent cognitive overload 

by presenting one set of instructions per screen and keeping consistency throughout the app.   

Participants 

 A total of 10 individuals with MS participated in two usability rounds. It has been 

recommended that small groups (n=~5) is suitable to identify usability issues.108  PwMS (n=5) 

interacted with Steady-MS and identified usability issues. Using their feedback, we improved the 

design of the app, and then another group of pwMS (n=5) interacted with the app to identify any 

additional usability issues. This iterative design approach centered around the user is most 

effective for identifying user challenges when developing health apps.103,104 Inclusion criteria for 

participants included: a) physician confirmed diagnosis of MS, b) age 18 years or older, c) self-

reported ability to use a touchscreen device, and d) ability to stand independently for at least one 

minute. Those with a neurological disorder other than MS were excluded from the study.  
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Procedures 

 An iterative design-evaluation process of videotaped, semi-structured interviews were 

used to determine the optimal usability of Steady-MS. Participants were presented with a 

smartphone (Samsung Galaxy S6) and asked to open the app and follow all instructions. 

Participants first completed the app independently with as little assistance as possible. They then 

completed the app a second time, but this time thinking aloud and narrating their thoughts. They 

were also encouraged to discuss their likes, dislikes, and recommendations for improvements. 

After receiving their fall risk score, participants were also asked to identify and draw different 

graphics of how they want to receive their score, such as on a circular chart or linear scale.  

Following the semi-structured interview, participants completed the Systematic Usability 

Scale (SUS) to understand the overall usability of the app. The SUS is widely used to quantify 

the usability of user-machine interfaces, consisting of 10 standard questions on a 5-point Likert 

scale.109 The SUS ranges from 0 to 100, with higher scores representing greater usability. 

Participants also completed the Mobile Device Proficiency Questionnaire (MDPQ) to understand 

general proficiency of using mobile devices. The MDPQ ranges from 5-40, with higher scores 

representing greater proficiency.110  

After the first iterative cycle, changes were made to the design of the app based on issues 

identified from the interviews. The second cycle of semi-structured interviews were performed 

on five new participants with MS. Due to COVID-19, interviews in the second round were 

performed remotely. The procedures followed the same format as the first round, but participants 

were delivered a smartphone with Steady-MS installed, and interviews were conducted over a 

video call. This format allowed us to understand how Steady-MS is used in the home 

environment.    
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Data and Statistical Analysis 

All videotapes and field notes taken during the interview were transcribed verbatim. 

Qualitative data from videotapes and field notes were analyzed to develop a coding system in 

MAXQDA (Version 12.3.3, Berlin, Germany). Based on their content, data was assigned with 

codes, and codes with similar content were grouped into themes. Codes and themes were 

reviewed and discussed by two researchers (KH and MF).  

Scores from the SUS were used to complement the qualitative results. SUS scores were 

averaged for each participant and transformed into a score out of 100.  

 

Results   

 

Iteration 1  

 

Usability Interviews  

Participant characteristics are displayed in Table 4.1. From the semi-structured interviews 

and coding analysis, three main themes were identified: 1) intuitive navigation; 2) efficiency of 

use; and 3) perceived value. Table 4.2 summarizes main issues identified from the interviews and 

subsequent changes made to Steady-MS. 
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Table 4.1. Demographic information of all participants in the first and second iterations. Values 

are presented in mean (years). EDSS = Expanded Disability Status Scale 
 

 

 

Intuitive Navigation 

 The most common usability issue during the first iteration was related to intuitive 

navigation. For example, when participants finish completing their self-reported questionnaires 

and moved onto the balance tasks, they are promoted to re-enter their ID. Two of the five 

participants had asked for clarification if they should re-enter their ID, or if the app was finished. 

It was not intuitive for these participants to re-enter their ID prior to moving onto the balance 

tasks. To address this issue, participants are no longer required to enter their ID to complete the 

balance tasks. Additionally, participants who use an assistive device asked for clarification 

whether the questionnaires referred to using or not using their assisted device. Therefore, for 

questions such as the short form of the ABC, we included instructions regarding assisted device 

usage.  

 Iteration 1 Iteration 2 

Age 53.2 (13.1) years 54.6 (8.7) years 

Gender 4 females; 1 male 3 females; 2 males 

EDSS  
median (IQR) 

 

3 (2.5-6) 2.5 (2.5-6) 

MS Duration 14 (5.9) years 16.2 (9.2) years 

Education 2 – Associate Degree 

3 – Bachelor’s Degree 

1 – High School Diploma 

1 – Associate Degree 

1 – Bachelor’s Degree 

2 – Master’s Degree 

 

Mobile Device Usage 5 – Owns smartphone 

2 – Owns tablet 

4 – Owns smartphone 

3 – Owns tablet 

 

Mobile Device Proficiency Scale 36.8 (3.3) 38.3 (1.1) 
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There was also difficulty navigating through the 5 balance tests. Two of the participants 

asked clarification if eyes were open or closed, while two different participants performed the 

semi-tandem and tandem conditions incorrectly. While there was a text description instructing 

each balance stance, these participants reported that preferred having a clear image rather than 

reading text. Additionally, following each balance task, participants are asked to rate if they 

completed each test with one of three options. Of these options, participants reported that the last 

option, “I did not attempt to complete the test”, was not intuitive. Participants indicated that if 

they were to select this option, they would have chosen to skip the test. To address these issues, 

we modified the images to indicate of eyes should be open or closed for each task (Figure 4.3). 

We also eliminated the option, “I did not attempt to complete the test”.  

 

 

 

Figure 4.3. Steady-MS guides users through progressive balance tasks. The top panel of 

screenshots depict the first iteration of images and text, and the bottom panel depict the 

second iteration of images and text. Images of eyes and re-wording of text were edited to 

improve clarity and reduce cognitive overload. 
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For the final fall risk score, participants also reported that they liked receiving an overall 

score, but using a scale to present their score would be the most intuitive to improve their 

understanding. Three of participants preferred using a horizontal or vertical scale as opposed to a 

circular chart. They reported that they understood their score better on a linear scale with “low 

risk” on one end and “high risk” at the opposite end. Therefore, we added a horizontal scale 

depicting user’s final fall risk score (Figure 4.4). The scale slides from 0-100, with a green color 

corresponding to lower fall risk, and a red color corresponding to higher fall risk.  

 

“I'm a visual person, and when I have to read something, I will default to looking at the picture. 

I mean, I can read an instruction manual all day and, but if you show me a picture or video on 

how to do it, I'll probably pick it up faster.” - Male, 36 years old 
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“You know, like they do on emojis. You just have those little circles for your eyes if they are 

closed or open. Maybe it's just me, but it's reading all these words or looking at the picture. I 

could see what I was supposed to do without reading all that. -Female, 57 years old 

 

 “I don't understand ‘I did not attempt to complete the test’ because if you didn't attempt to 

complete it, why wouldn't you just skip it?”  -Female, 46 years old 

 

“I enter my ID again and hit the ‘Get Started’?” -Female, 76 years old 

 

 Efficiency of Use 

 Overall, all participants found that Steady-MS was efficient and easy to use. Participants 

reported that the app walks them through each question and balance test, and they reported that 

they could use it independently on their own. One participant reported that the Multiple Sclerosis 

Walking Scale questionnaire felt redundant, but none of the participants felt that the total number 

of questions or number of balance tasks needed to be reduced.  

 

“I mean, it is pretty easy and seems to walk you through it, in my opinion. It’s pretty straight 

forward.” -Male, 36 years old 

 

“Everything was quite clear when I was going through that.” -Female, 51 years old 

 

“I could do that on my own.” -Female, 57 years old 
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Perceived Value 

 The last theme was related to the value of having a fall risk app. All of the participants 

reported that having an app would be beneficial for them to understand their risk of falling. Two 

of the participants found that having a fall risk score can provide confirmation or reassurance in 

their perceived changes in symptoms, especially during a relapse. These participants said that 

they would want to use Steady-MS to gauge their changes prior to seeing a physician. 

Participants with a higher fall risk found value in learning about their score, but they also wanted 

exercises or other prevention strategies. One participant also reported that she sees value in 

monitoring her fall risk at home rather than having to travel to a clinician.  

 Other participants reported that going through the app helped them realize factors that are 

related to falls. One participant, for instance, learned the importance of vision for fall risk and 

can be more aware of this in the future. Another participant reported that the tandem stance was a 

balance task she wanted to improve on.   

 

“I guess I didn't realize the factors if your eyes open or closed or your stance can increase your 

fall risk. I guess I can be more conscious about those types of things because it seems to me now 

with that feedback about my vision, it plays a pretty important role in my balance. – Female, 57 

years old 

 

“But when I get feeling bad, boy, that number [the fall risk score] shoots up. You know? It's not 

just my mind, you know, the app kind of confirms it. So maybe I’ll use a cane instead.” -Male, 36 

years old 



 

 
51 

 

“I like to gauge without having to go all the way to the doctor.” -Female, 46 years old 

Iteration 2 

 

Usability Interviews  

After the second round of interviews, transcript analysis and coding revealed three 

themes related to intuitive navigation, efficiency of use, and perceived value.  

 

Intuitive Navigation 

After modifying Steady-MS, participants in the second round of interviews reported little 

difficulty navigating through the app. After editing images and text for the balance tasks, four of 

the five participants performed all of the balance tasks correctly. One participant asked for 

clarification for the semi-tandem stance to confirm if she was standing correctly. After 

completing the ‘About Me’ questions, one participant returned to the questionnaires again, 

realized there were no more additional questions, and proceeded to complete the balance tests. 

To indicate this section is completed, we dimmed the ‘About Me’ section after users are finished 

(Figure 4.5). Overall, participants reported that Steady-MS was intuitive and easy to navigate.    
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 “I didn't know if there was more about me, like if there were more categories within it. So I 

chose it again and then I kind of knew enough to be able to scroll through and go back.”  

-Female, 56 years old 

 

“[Referring to the fall risk scale] The green and the red colors pretty self-explanatory to me.” 

-Female, 53 years old 

 

Efficiency of Use 

Similar to the first round of interviews, participants reported that Steady-MS was 

efficient and simple to use. They found that navigating through the questions and balance tasks 

were straightforward. Participants reported that if there was any confusion on the balance tasks 

or questionnaires, they understood the instructions after re-reading a second time. Participants 

also reported that they could use Steady-MS independently on their own without additional 

guidance.   

Figure 4.5. After completing the ‘About Me’, this section is 

dimmed, and users are prompted to click on the ‘Test’ section.     
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“It seems simple enough to use and I’m not tech savvy as some are. There wasn’t anything if I 

read through it twice I wouldn’t understand.”  -Male, 61 years old 

 

“It's very easy to read. I liked that part, and the contrast is good too. I'm actually reading 

without my reading glasses, so that's a good sign” -Female, 53 years old 

 

“I thought it was pretty good and straightforward.” -Male, 64 years old  

 

Perceived Value 

All participants reported that Steady-MS can provide them many benefits. Participants 

indicated that the most beneficial component was seeing their fall risk score. One participant, for 

instance, said that when she sees her neurologist, she may be asked to perform static balance 

tasks, but doesn’t receive feedback on her performance. With Steady-MS, she can see a score 

that gives her measurable feedback. Another participant reported that Steady-MS may be useful 

to understand her changes in fall risk with lifestyle changes. Because of COVID-19, her yoga 

classes have been canceled. She can feel changes in her balance and walking as a result, but 

seeing a score to confirm these changes may motivate her to try online yoga.  

 

“I think it's neat to gauge your risk. Like when I go to the neurologist, she'll have me do stuff, 

and she'll say hmm or uh huh. And I don't know what any of that means. So it's kind of nice to 

have it be like, oh, your score is this.” -Female, 39 years old  
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“They're doing a lot of yoga online and whatnot. But we all know we don't do those, or I don't 

anyway, as much as I would if I were going to class. So it might be a way for me to say, hey, you 

need to do a little bit more with your yoga because your balances are getting a little bit more, 

you know, unstable, I suppose. -Female, 43 years old 

 

“You live with yourself all day, every day, and sometimes it's hard to tell if you feel like, you 

know, like I'm not getting around as well. And if you could look at [the app] and would it show 

you, oh yeah, it does say I have more of a fall risk.” -Female, 56 years old 
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Table 4.2. Summary of main issues identified in the first round of interviews, sample quotes 

from each issue, and solutions implemented to improve the app.  

 

System Usability Scale 

In the first iteration, the average SUS score was 95.5 with a standard deviation of 3.3. In 

the second iteration, the average SUS score was 95.5 with a standard deviation of 2.9. While the 

SUS score did not change between iterations, this is likely because of a ceiling effect with a 

maximum score of 100. Previous work has indicated that the average technology SUS score is 

Domain Issue Sample quotes Solution 

Intuitive 

Navigation 

 

Unclear if eyes 

are open or 

closed for 

balance tests 

I have to keep my eyes 

closed, don't I? 

Added eyes to icons to depict 

if eyes are open or closed.  

Confusion 

between semi-

tandem and 

tandem stances 

Maybe a picture or 

description because the 

one that said balance 

beam made more sense 

Modified pictures to clarify 

semi-tandem and tandem 

stances. Re-worded 

description of each stance.  

Re-entering ID 

prior to balance 

tests 

I just hit the ‘Get Started’ 

again? 

After completing ‘About Me’, 

users are no longer prompted 

to re-enter their ID.  

Redundant 

option of 

completing test  

I don't understand ‘I did 

not attempt to complete 

the test’ because if you 

didn't attempt to 

complete it, why 

wouldn't you just skip it? 

The ‘I did not attempt to 

complete the test’ option was 

removed, as users are able to 

skip any balance task.  

Assisted device 

usage 

This was to think about 

this as if I'm using my 

crutch, right?  

 

Added instructions to answer 

the Activities Balance 

Confidence Scale as if you 

were to have your assisted 

device.  

Efficiency of 

Use 

Easy to use I find that easy to use my 

own 

 

Perceived 

Value 

Tracking score 

over time 

If they can learn and 

improve their score, it 

would help them feel 

confident. 
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60, and scores of 80 or above indicate that users are more likely to recommend the device to 

others.111  

 

Discussion 

 The purpose of this study was to test the usability of a fall risk health application for 

individuals with MS through a user-centered design approach. After the first round of usability 

testing, participants identified issues navigating through the app, but reported that it was overall 

easy to use and found value in undergoing a fall risk assessment. We modified the app to 

improve navigation, and after the second round of testing, participants reported that the app was 

easy to navigate and could use the app on their own. These results suggest that Steady-MS is a 

usable health app that pwMS can use to self-assess their risk for falling. High scores on the SUS 

also indicate high usability among pwMS.  

 The main issues identified from semi-structured interviews were related to intuitive 

navigation. These were issues were related to understanding the entire instructions of a balance 

task (i.e., the position of the feet and if eyes are open or closed). Cognitive impairment is a 

common symptom resulting from MS,112 and the instructions for each balance task may have 

resulted in cognitive overload for pwMS. To reduce cognitive overload, we improved the visuals 

and text to depict each balance task. Indeed, during the second round of testing, 4 participants 

completed all balance tasks correctly without asking for clarification. For future developments, it 

is important to consider the cognitive demands on pwMS to prevent cognitive overload.  

 Participants in both rounds of testing reported that they found the app clear, simple to 

use, and useful in learning their risk for falling. This suggests that pwMS can independently use 

Steady-MS and learn about their fall risk. Participants also reported that they value receiving a 
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fall risk score, because they can identify if their score improves with exercise or declines with 

the onset of symptoms. Steady-MS offers potential for pwMS to self-assess and self-monitor 

their fall risk using a smartphone. Because MS symptoms fluctuate throughout the course of the 

disease, fall risk also changes.4 Therefore, tracking and monitoring fall risk can help pwMS 

increase their awareness in their fall risk and take part in prevention strategies before a fall 

occurs. Unlike traditional fall risk assessments performed in clinics or lab-based settings, Steady-

MS provides a tool to increase access to fall risk assessments that can be performed at home.  

 Steady-MS is designed and developed to measure fall risk specific to those with MS, but 

there are also additional features that can improve the quality of the app to prevent falls. Because 

participants reported the importance of tracking and monitoring their fall risk, a future feature is 

to develop a ‘history’ of scores that users can view. With a ‘history’ feature, users can compare 

their scores to a baseline level. Additionally, participants, particularly those at a higher risk for 

falls, reported they would want to receive exercises to complement their score. There are 

currently exercise apps specific to pwMS, such as MS Gym and NeuroNation. A feature that 

links Steady-MS to a validated and safe exercise app can allow pwMS to seek exercise based 

treatment strategies. Adding targeted treatments like exercise may be critical for those at higher 

fall risk to feel empowered from Steady-MS rather than fearful. Participants also reported that in 

addition to receiving an overall fall risk score, they wanted to understand their performance on 

each balance task and how they compare to others. As more data is collected on balance 

performance through the smartphone, a future addition may include adding performance on each 

task with a comparison to age and gender-matched individuals.    

 When developing future mobile health apps for pwMS, there are important aspects to 

ensure high usability. First, it is important to prevent cognitive overload in pwMS, as cognitive 



 

 
58 

impairment is a common MS symptom.112 Within Steady-MS, this was found when participants 

were asked to follow two separate instructions for a balance task. Using clear visuals and simple 

text is important to avoid cognitive overload. Second, when presenting a score or number to 

pwMS, it is important to make sure the score is easily understandable. Participants in the study 

reported that they preferred receiving a number because it is measurable, and they can track 

improvements over time. However, it is important that pwMS interpret scores accurately. When 

using a scale from 0-100, it was important to depict, both visually and through text, that 0 

represents low risk and 100 represents high risk. Following these two guidelines can improve the 

development of future health apps to maximize usability for pwSM.    

 While there are many health apps developed for pwMS, ranging from medication 

management to improving cognition, Steady-MS is the first health app designed to measure fall 

risk specific to the MS population.57 Because pwMS have unique fall risk factors and usability 

challenges, it is important to design an app that is specific for this population. There have been 

other fall risk apps developed for older adults113-115 and for those with Parkinson’s disease.116 

Unlike most fall risk apps, Steady-MS incorporates multiple fall risk factors into consideration 

rather than only one risk factor. This is important given that fall risk is multifactor for pwMS.77 

Moreover, unlike many of the health apps developed to improve self-management of MS 

symptoms, undergoing usability testing ensures that Steady-MS is usable for the targeted 

population.117 As demonstrated in a review of MS-related health apps, most health apps have low 

usage and adherence because they lack user-centered testing and design.60 By undergoing 

usability testing to ensure that pwMS find the app usable and useful, there is potential to increase 

fall risk self-assessments.   
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 This is the first study to develop and test a MS fall risk app, but there are also limitations 

to this study. The participants in this study have high mobile technology usage and scored high 

on the MDPQ. Those with less technology experience may have additional usability issues that 

were not identified in this study. However, MS commonly affects younger adults, and over 80% 

of pwMS own a smartphone.57 Therefore, it is likely that a person with MS will already have 

mobile device experience. Additionally, while Steady-MS measures overall fall risk, it currently 

does not offer fall prevention strategies. Seeking treatment after understanding individual risk is 

the next step to prevent falls, and future iterations of Steady-MS will aim to incorporate 

prevention strategies. Last, participants in this study have participated in pervious and falls 

prevention studies. Therefore, they may remember these balance tasks and how to perform them 

correctly. Future steps should include an additional usability round with participants without falls 

prevention research experience.  

 In conclusion, the purpose of this study was to determine the usability of a fall risk health 

app for pwMS. After one round of semi-structured interviews, we made modifications to 

improve users’ intuitive navigation when answering their health-related questionnaires and 

performing five balance tasks. After a second round of interviews, users reported that the app 

was straightforward to use, easy to navigate, and found value in learning about their fall risk. 

SUS scores averaged 95.5 after the second round of testing, suggesting high usability. These 

results provide support in using a fall risk app to provide pwMS a tool to self-assess and self-

manage their fall risk. With the numerous barriers in receiving fall risk screening (i.e., 

transportation, equipment, clinician time constraints), Steady-MS offers potential for home-

based, independent assessment.  
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CHAPTER 5: FEASIBILITY OF HOME-BASED PROCEDURES FOR INDEPENDENT 

FALL RISK SCREENING 

 

Introduction 

Multiple Sclerosis (MS) is a chronic, neurodegenerative disease of the central nervous 

system that affects over one million individuals in the United States.97 MS causes a range of 

symptoms, such as vision impairments, muscle spasticity, and impaired walking and balance.2 

Several MS symptoms put pwMS at a higher risk for falling.7 Indeed, falls are highly prevalent 

among pwMS, with one in two pwMS falling in a six-month period.4,7 Up to half of those falls 

will result in an injury, ranging from bruises to fractures.4  

A widely adopted paradigm for falls prevention involves screening for multiple fall risk 

factors followed by prescribing targeted treatment strategies.9 The first step of assessing risk 

factors can incorporate multiple types of measurement. For instance, fall risk factors may be 

assessed through validated self-report measures, such the Modified Impact Fatigue Scale to 

assess fatigue37 and the Multiple Sclerosis Walking Scale38 to assess perceived walking ability. 

While simple to use, self-report measures are prone to subjective bias.39 Fall risk factors may 

also be assessed through performance measures. The Berg Balance Scale or Timed Up and Go 

are tests that measure balance and mobility.118 They involve little instrumentation and can be 

performed in clinics, but they are prone to ceiling effects and may not always capture underlying 

mobility impairments in those with MS.17 Technology such as force plates, pressure sensitive 

mats, or motion capture systems also measure mobility.74 They are more robust and can capture 

minute changes in movement, but they are expensive and require trained personnel.62 In addition 

to these limitations, clinicians also have time constraints, and access to in-person clinical visits 

are restricted because of the COVID-19 pandemic. Because of these limitations, pwMS may not 
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receive appropriate screening. Without measuring fall risk factors, pwMS may not receive 

tailored prevention strategies and remain vulnerable to falls and fall related injuries. 

Mobile technology offers potential to increase access to falls screening and treatment 

strategies with affordable, portable, and ubiquitous technology. Mobile technology can also help 

individuals monitor changes in fall risk and improve self-management of symptoms from the 

home environment. As access to healthcare remains even more limited during the COVID-19 

pandemic,119 it is critical for pwMS to be able to objectively self-assess their symptoms and fall 

risk from their homes. Mobile technology offers potential to bring falls screening to the 

individual’s control.  

Health applications (apps) are also commonly used among those with MS. 

Approximately 80% of pwMS own a smartphone, and 45% use a health app.57 Providing pwMS 

with a familiar tool may improve their adoption and adherence.55 To measure fall risk, a health 

app can incorporate fall risk questionnaires, and the accelerometer embedded within smartphones 

can objectively measure postural control.46  

Indeed, we have developed a fall risk app, Steady-MS, that assesses multiple risk factors 

and measures overall fall risk for pwMS (see Chapter 3). We have tested the usability of the app 

with pwMS and ensured that it is both usable and useful (see Chapter 4). Ultimately, with 

Steady-MS, pwMS will be able to independently measure their fall risk in their homes and be 

equipped to manage their own fall risk. However, the feasibility of using Steady-MS in the home 

environment must first be determined. Additionally, with the increasing need to perform of 

remote-based testing to follow social distancing restrictions, the feasibility of performing remote 

study procedures must be understood. The purpose of this study was to understand the feasibility 

of pwMS independently using Steady-MS in the home-setting, examining aspects of recruitment, 
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suitability of study procedures, and study resources. The secondary aim was to determine the 

validity of the fall risk score calculated from Steady-MS as compared to validated self-report fall 

risk measures. This home-based study identifies challenges and barriers for pwMS using the app 

in their own homes, and it helps understand the advantages and challenges of performing home-

based research projects. We hypothesize that using Steady-MS is safe and feasible in the home 

setting, and we hypothesize that the fall risk score is comparable to fall risk questionnaires. 

 

Methods 

 Participants 

 Thirteen individuals with MS that were recruited from a convenience sample participated 

in this study. Participants recruited were different than those who participated in studies 1-3. 

Participant demographics are displayed in Table 1. Participants were included if they: a) have a 

physician confirmed diagnosis of MS, b) are 18 years or older, c) self-report the ability to use a 

touchscreen device, d) have ability to stand independently for at least 1 minute, and e) have 

access to home internet and a webcam. Participants included were separate from those who 

participated in study one and study three.   
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Table 5.1. Demographic information for 13 study participants. Values are presented in mean 

(standard deviation) 

Age 57.9 (9.0) years 

 

Gender 4 males; 9 females 

 

Highest Level of Education 1 – High school diploma 

3 – Associate’s degree 

6 – Bachelor’s degree 

1 – Master’s degree 

2 – PhD or equivalent  

  

Multiple Sclerosis Duration 19.1 (9.8) years 

 

Assisted Device Usage 8 – none 

4 - cane 

1 - walker 

 

Mobile Technology Usage 12 smartphone users 

8 tablet users 

 

 Procedures 

 Because of restrictions placed on human subject research due to the COVID-19 

pandemic, all testing procedures were performed in the participants’ home. The steps for the 

study procedures are depicted in Figure 1. Participants were recruited through emails to MS 

support groups in central Illinois and through emails from the research team’s database (Figure 

1A).  Following screening for inclusion and exclusion criteria (Figure 1B), a researcher hand 

delivered or mailed a smartphone (Samsung Galaxy) to all participants with the app, Steady-MS, 

installed (Figure 1C). For deliveries, the phone was dropped off at the participant’s front porch 

and picked back up following testing. For mailing, the phone was mailed through the United 

States post office to the participant. Participants were asked to mail the phone back in a supplied 

box following testing at their earliest convivence.  
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After delivering the phone, participants and a researcher met over a video call (Figure 

1D). After providing informed verbal consent, participants were asked to open Steady-MS on the 

smartphone and follow the guided instructions until they received a fall risk score. A researcher 

watched participants use Steady-MS through the video call, and any questions were addressed 

through video. Steady-MS first instructs participants to answer 25 questions related to their 

demographic information (i.e., age, gender), their MS (i.e., type of MS, MS duration), perceived 

walking ability through the Multiple Sclerosis Walking Scale-12,38 and balance confidence 

through the short form of the Activities Balance Confidence Scale.81 Steady-MS then instructs 

participants to complete 5 standing balance tasks in the following order for 30 seconds each: 1) 

eyes open, 2) eyes closed, 3) semi-tandem, 4) tandem, and 5) single leg. For participants’ safety, 

Steady-MS instructs them to stand near a sturdy object during these balance tasks (i.e., table, 

countertop). Participants also have the option to skip any balance task. After completing each 

task, participants are asked to rate if they completed the task or if they lost their balance. 

Performance on the balance tasks and responses to the 25-item questionnaire are inputted into a 

weighted algorithm and converted to score from 0-100, where higher scores represent greater fall 

risk.  

 After completing the balance tasks, participants completed questionnaires online that are 

related to fall risk (QualtricsXM, Provo, UT). Participants completed the Falls Efficacy Scale 

International (FES-I) to assess their fear of falling,78 the Multiple Sclerosis Walking Scale 

(MSWS-12) to assess their self-reported walking ability,38 and Patient Determined Disease Steps 

(PDDS) to determine disability level,79 and a falls survey about their past history of falls. These 

questionnaires were chosen because they have shown to be associated with fall risk in 

pwMS.34,86,120 
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 Data Analysis 

To determine the feasibility of the study, outcomes were grouped into four categories as 

recommended to evaluate feasibility121: 1) recruitment, 2) data collection procedures and 

outcome measures, 3) acceptability and suitability, and 4) evaluation of resources.  

To understand the validity of the fall risk score, statistical analyses were performed using 

IBM Statistical Package for the Social Sciences (SPSS) for Windows, version 26 (IBM Corp, 

Armonk, NY). Scores in the FES-I and MSWS-12 were summed and averaged across 

participants. Scores on the PDDS and the number of falls in the past year were averaged across 

all participants. Spearman’s correlations were performed between the fall risk score from Steady-

MS and scores on the FES-I, PDDS, MSWS-12, and number of falls in the past year. 

Significance was set at  = 0.05.  
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Results 

Recruitment 

 It was anticipated that recruiting the sample population would be simple, as participants 

could complete all testing procedures in their homes. The research team also has experience 

working with individuals with MS throughout the state. To reach a different sample apart from 

studies one, two, and three, support groups in Bloomington, IL, Peoria, IL, and Savoy, IL were 

contacted. Support group leaders emailed members of the support group regarding this study. 

Participants were also recruited from the research team’s database. Approximately 100 

individuals with MS were contacted for the study, and 13 individuals were screened and 

enrolled. Low recruitment is likely due to the COVID-19 pandemic. With concerns related to 

health, personal finances, and overall well-being during the global pandemic, it is likely that 

pwMS were not interested in volunteering for a research study. It is also possible that pwMS 

may be less interested in home-based studies compared to in-person lab-based studies. It is 

difficult to determine the direct cause of low recruitment, but given the high success of 

recruitment from study one, low recruitment is most likely to be related to COVID-19.   

 

 Data Collection Procedures and Outcome Measures 

 The remote procedures for this study were necessary due to social distancing restrictions, 

but it was unclear if these remote procedures were feasible. Overall, the procedures and outcome 

measures for this study were appropriate to conduct for pwMS. Hand delivering phones to 

participants was faster and more reliable than mailing phones. By delivering a phone, a single 

session was completed within a day. Delivering phones was also faster and more efficient for 
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participants, as they grabbed the phone from their front porch and left it on their front porch after 

finishing the study. However, delivering phones limited recruiting participants who live further 

away and puts more burden (i.e., time and effort) on the researchers. For example, internet was 

required for the researcher for the video call, and because coffee shops and restaurants with 

public internet were closed due to COVID-19, roundtrip visits were needed to both deliver and 

pick up the phone. This entailed up to 6 hours of driving for one session for those living out of 

town (recall Figure 1). Therefore, for participants out of town, it was more feasible to mail 

phones. Even though it took up to three days for mail delivery, there was substantially less time 

spent driving. Four phones were mailed, and all phones arrived back within ten days from data 

collection without damage or loss of data.  

  For video calls, Zoom Video Communications was used. Zoom was chosen over other 

software because of its simplicity. Participants clicked a link to open a video session and were 

not required to make a personal account. Approximately half of the participants reported using 

Zoom in the past and were familiar with its interface. Some participants, however, had technical 

issues with Zoom, such as enabling audio or enabling video. Therefore for some participants, 

extra time was spent configuring Zoom.  

 Using Steady-MS in the home setting was successful for pwMS. Participants had little to 

no issues or questions when navigating through the app. Participants followed instructions 

guided by the app to answer questions about their MS symptoms and safely performed the five 

balance tasks. Participants followed safety instructions to stand near a sturdy object, and 

participants skipped tasks if they felt unsafe. There were no adverse events reported. There were 

also few issues with answering the online questionnaires.    
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Acceptability and Suitability of Study Procedures 

The study procedures were both acceptable and suitable for the participants. Given the 

social distancing regulations, participants found it acceptable to perform the study procedures 

through video. The home-based procedures also reduced burden on participants (i.e., time, 

travel), increasing the acceptability of these procedures. After receiving the phone, participants 

had little difficulty using Steady-MS in their homes and obtaining their fall risk score. 

Participants were able to easily open Steady-MS on the phone, answer the 25 questions about 

their health, and perform the balance tasks while ensuring their safety. This suggests that pwMS 

may potentially be able to use Steady-MS independently in their homes. There was also little 

difficulty in answering questionnaires through QualtricsTM. Following phone delivery, the study 

was completed within 30-45 minutes, which was a suitable length for participants. Time spent 

delivering and picking up the phone ranged from 10-180 minutes for the researcher.  

    

Evaluation of resources and ability to manage and implement the study  

 To efficiently deliver and mail phones to multiple participants within a given week, the 

research team had multiple phones available to use. For this remote study, it was important to 

have at least five phones available. This allowed for multiple data collections to take place each 

week, as well as having at least one backup phone available. Additionally, the majority of the 

phones were hand-delivered rather than mailed due to concerns about phones being damaged or 

lost during the shipping process. After mailing and receiving four phones back without damages 

and with full data, having more phones available to mail can increase the number of sessions 

each week. A future procedure may also include sending participants the app to download on 
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their own phone. This reduces needing multiple phones. Because data is stored on the hardware 

of the phone, a simple way for participants to transfer data to the research team should first be 

investigated prior to sharing the app.  

 While all participants were able to use Zoom on their own personal devices, a future 

consideration may be to deliver a tablet with a video app installed. This may reduce technical 

difficulties with using a novel video app, and this may also increase recruitment of participants 

who do not own a personal webcam.  

 

 Validity 

 Outcome measures for the self-reported fall risk measures are displayed in Table 2. There 

was a moderate correlation between Steady-MS and disability level as measured through the 

PDDS (ρ = 0.64; p = 0.02; Figure 2A), perceived walking as measured through the MSWS-12 (ρ 

= 0.70; p = 0.01; Figure 2B). There were strong correlations between Steady-MS and falls in the 

last year (ρ = 0.82; p < 0.001; Figure 2C) and fear of falling as measured through the FES-I (ρ = 

0.88; p < 0.001; Figure 2D).  

Table 5.2. Mean and standard deviation of outcomes from fall risk questionnaires  

Questionnaire Mean (standard deviation) 

Patient Determined Disease Steps 
Median (IQR) 

 

3 (1-4) 

 

Fall Efficacy Scale International 31.54 (12.30) 

 

Multiple Sclerosis Walking Scale 31.69 (13.27) 

 

Falls in the past year 
Median (range) 

2 (0-17) 
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Figure 5.2. Scatter plots depicting the relationship between Steady-MS and the Patient 

Determined Disease Steps (A), Multiple Sclerosis Walking Scale (B), number of falls in the past 

year (C), and Falls Efficacy Scale (D).  

A. 

 

 

B. 
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Figure 5.2 (Cont.) 

C. 

 

D. 
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Discussion 

 The purpose of this study was to determine the feasibility of performing home-based 

procedures to use a MS fall risk mobile health app in the home setting. The secondary aim was to 

determine if the fall risk score is comparable to validated fall risk self-reports. Our results 

suggest that it is feasible for pwMS to independently use Steady-MS in their homes. Delivering 

smartphones and meeting over a video call was accepted by participants. While there were some 

difficulties for participants connecting to a video call, participants were able to answer a 25-item 

questionnaire about their health and undergo five balance tasks in their homes with minimal 

instructions. There is also preliminary evidence that the Steady-MS fall risk score is comparable 

to self-report measures.  

 The results suggest that the study procedures were suitable and appropriate for home-

based fall risk assessments in pwMS. While recruitment of participants was difficult, it is likely 

that recruitment issues were due to factors related to COVID-19 but may also be due to other 

factors. In the future as daily schedules return to normal, recruitment approaches should be re-

evaluated. Despite low recruitment, this study demonstrates that remote-based study procedures 

with pwMS can be performed successfully and safely, which may be critical if social distancing 

restrictions continue. In addition, pwMS independently and safely self-assessed their risk for 

falling, suggesting that there is potential that Steady-MS can be used for home-based fall risk 

assessments. With barriers in receiving fall risk screening in a clinic, and with the increasingly 

limited access to healthcare due to COVID-19,119 it is important for pwMS to have access to fall 

risk assessments from their homes. Moreover, not only does Steady-MS offer independent fall 

assessments, but Steady-MS also offers potential for home-based treatments targeted for each 

individual.   
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 The results of this study are comparable to other feasibility studies examining technology 

use for pwMS in the home setting. A previous study evaluated the feasibility of using a 

smartphone app to improve fatigue in a 12-week telerehabilitation intervention.122 PwMS 

reported that telerehabilitation was feasible, and their fatigue levels improved following the 

intervention. Another study performed a home-based computer program for cognitive 

rehabilitation, and pwMS reported enjoying the convivence of home training.123 These studies 

suggest that there is potential to deliver a telerehabilitation falls prevention intervention paired 

with Steady-MS. Steady-MS improves access to screening, and telerehabilitation may prevent 

falls through tailored treatment strategies. Performing these steps in the home setting adds 

convenience while reducing travel barriers.   

 This study suggests that home-based use of a fall risk mobile health app is feasible for 

pwMS. However, modifications to study procedures can improve the efficiency of conducting 

home-based studies. First, the majority of phones in this study were delivered by hand. Mailing 

phones to four participants was found to be safe and effective to those who lived further away. 

Therefore, to increase recruitment and enrollment for pwMS who live out of state, mailing 

phones should be considered as potential form of delivery. Second, access to internet was 

important for both participants and the research team to conduct video calls. Having a mobile 

hot-spot may greatly reduce time on the researcher when hand delivering phones. A mobile hot-

spot offers potential to perform a video call inside a car without needing to drive back to the 

researcher’s home. A hot-spot provided to participants may also help those who do not have 

access to internet. Third, one issue during home-based testing was that participants often did not 

show up to the video call on time. When the participant was called as a reminder, they often 
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reported that they lost track of time being at home all day. Therefore, reminders with 

notifications may improve on-time data collection.  

 The validity of the fall risk score was found to be moderate compared to the fall risk self-

reports. There were moderate, significant correlations between the fall risk score and disability 

level, fear of falling, self-reported walking ability, and number of falls in the past year. These 

questionnaires have previously shown to be associated with falls in pwMS.77,88,124 The moderate 

correlations suggest that the fall risk score is comparable to validated self-reports used to 

evaluate fall risk. However, a limitation to self-reported questionnaires is that they are prone to 

subjective bias and may not accurately reflect objective performance.39 For instance, pwMS may 

underreport the PDDS indicating that they have mild disability, but in actuality demonstrate 

walking impairments. Future studies should compare the fall risk score from Steady-MS to 

objective performance measures, such as the Physiological Profile Assessment, Timed Up and 

Go, or Berg Balance Scale to better understand the validity of the fall risk score.  

 While return-to-work policies are slowly being implemented, many remote studies will 

continue to be encouraged during the COVID-19 pandemic. There were important lessons 

learned from these remote study procedures that can apply to future remote studies. First, 

providing participants with a simple and clear health app minimized confusion. A video-call 

prohibits pointing or demonstrating to participants about specific instructions. Therefore, any 

instructions or clarifications were verbal. By using a health app that has been modified through 

two iterations, this minimized difficulties using the app that may have required seeing the 

participant’s phone. Second, clear communication was critical to successfully perform remote 

testing. Communication to participants about the date and time of a data collection, how to 

access the video call, and receiving and returning the phone is important to ensure a smooth data 
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collection. Confirming instructions with participants was helpful to ensure that each step would 

run smoothly. Third, flexibility and adaptability appeared more important during remote testing 

than in-person testing. Technology issues may arise, mailing phones may be delayed, and typical 

recruitment strategies may not be as effective. Being flexible, creative, and adaptable will help 

overcome these unique challenges during remote testing.   

 The results of this study suggest that these study procedures were feasible to perform, and 

that Steady-MS is feasible to use in home settings, but there are also limitations that should be 

considered. First is a small sample size. Thirteen participants were included in this study but may 

not be representative of the MS population. Feasibility with a larger and more diverse sample 

should be examined. Second, participants were delivered a phone with Steady-MS pre-installed. 

Future steps should determine whether pwMS are able to install Steady-MS from their own 

mobile device and use on their own. Third, this study was limited to those who had home 

internet access and access to a webcam. Providing participants with a tablet with mobile data 

may overcome the need for internet and a webcam for video calls. Last, while participants in this 

study were different than those in studies 1-3, these participants were previously recruited for fall 

prevention-related studies in the past. Therefore, they may have more experience with balance 

exercises and Steady-MS may have seemed more intuitive for these participants.    

 In conclusion, this study suggests that it is feasible for pwMS to meet over a video call 

and self-assess their fall risk with Steady-MS in their homes. With the growing demand for 

home-based research to follow social distancing restrictions, it was feasible to continue to collect 

data with mobile technology in the home environment. The fall risk score is also comparable to 

validated fall risk self-report measures. There is potential for pwMS to safely and independently 
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use a health app to assess their risk for falling. Steady-MS offers a critical step increase access to 

fall risk screening and improve self-management of their symptoms and fall risk.  
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CHAPTER 6: CONCLUSIONS 

 

Multiple Sclerosis (MS) is a chronic, progressive disease of the central nervous system 

that impairs the ability to walk and maintain balance, putting people with MS (pwMS) at a 

higher risk for falls.4 One in two pwMS fall in a six-month period, and up to half of those falls 

lead to injuries, ranging from contusions to fractures.7 The first step in falls prevention is to 

assess multiple risk factors specific to pwMS.9 However, pwMS seldomly receive fall risk 

screening due to clinician time constraints, expensive equipment, and the need for trained 

personnel. Moreover, pwMS need routine screening throughout the course of the disease. 

Mobility technology is affordable, ubiquitous, and offers a solution to increase access to 

screening in the home setting.57,60 The overarching purpose of this study was to leverage the 

power of smartphone technology to develop a fall risk mobile health app for pwMS to 

independently assess their risk for falling. Bringing individualized and independent falls 

screening to the hands of those with MS is a critical step in the falls prevention paradigm to 

improve overall function and quality of life.   

Four studies were performed contributing to the development a fall risk app for pwMS. In 

study one, results demonstrated that smartphone accelerometry can be used to measure postural 

control in pwMS. These results were also used to develop an algorithm in study two to measure 

overall fall risk incorporating risk factors measured with a smartphone. This algorithm included 

assessing postural control, balance confidence, walking ability, and past fall history. In study 

three, the health application, Steady-MS, was developed integrating the fall risk algorithm, and 

usability testing identified challenges for pwMS. After making iterative changes to the app, 

Steady-MS was found to be both usable and useful for the targeted population. Feasibility testing 
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in study four found that not only were remote study procedures using Steady-MS accepted 

among pwMS, but it was also it is feasible for pwMS to independently and safely use Steady-MS 

in the home environment. Overall, results from these four studies suggest that pwMS can 

independently use a smartphone app to measure their risk for falls from their homes.  

Because of multiple constraints in receiving fall risk assessments (i.e., time, equipment 

costs, trained personnel), Steady-MS offers strong potential for pwMS to self-assess and self-

monitor their risk for falling. Because MS symptoms fluctuate throughout the course of the 

disease,2 monitoring these changes as they relate to fall risk can prevent falls before symptoms 

become severe. Moreover, with limited access to healthcare due to the COVID-19 pandemic, 

there is an increasing need for telehealth and telecare to maintain overall health and well-

being.119 Steady-MS provides, for the first time, a home-based tool for pwMS to self-assess their 

fall risk. Moreover, Steady-MS assesses multiple risk factors to provide pwMS their overall fall 

risk. With a fall risk app, pwMS can both measure and manage their fall risk from their homes.   

The aim of this project was to develop a usable fall risk health app for pwMS, but the 

results of the studies also provide important falls prevention information for researchers and 

clinicians. Study 1 demonstrated that RMS and CEA as measured through a smartphone 

accelerometer discriminated assisted device users and non-assisted device users. Smartphone 

accelerometry can potentially be used in clinical settings to objectively identify balance 

impairments before a fall occurs. PwMS with minimal disability have shown to have balance 

impairments as measured with COP outputs from a force plate, 21,125 and levering smartphone 

accelerometry can potentially identify those with balance deficits. Early treatment can reduce 

future falls and injuries. In study 2, a fall risk algorithm was developed to include modifiable fall 

risk factors most associated with falls in pwMS. This algorithm provides a tool that can be used 
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to provide personalized and tailored treatments for pwMS. Rather than providing broad 

interventions for all pwMS, this algorithm provides an important start to identify specific areas to 

target. Additionally, this algorithm can be further modified to fit the needs of clinicians and 

researchers who may want to include additional tests (i.e., walking, vision, manual dexterity). In 

study 3, the usability of Steady-MS was determined. From this study, it was found that cognitive 

overload was a critical usability consideration. In developing mobile health apps for pwMS, 

user-centered design to prevent cognitive overload is critical to ensure high usability. Last, from 

study 4, it was found that clear communication and using user-center designed technology 

improved the feasibility of performing remote study procedures.  

Not only does Steady-MS bring fall risk assessment to the hands of the individual, but 

Steady-MS also provides potential to improve the quality of care for pwMS. As telehealth and 

telecare is becoming more prevalent, Steady-MS can help clinicians objectively assess postural 

control and measure overall fall risk.126,127 With information that Steady-MS provides, clinicians 

can offer recommendations to improve their overall health. Additionally, Steady-MS offers 

potential for targeted telerehabilitation. Home-based exercise has shown to improve balance and 

overall function in pwMS.128,129 Paired with Steady-MS, targeted rehabilitation specific for each 

individual can be prescribed and may improve fall prevention treatment. Additionally, 

intervention studies can take place in homes as Steady-MS can measure fall risk and functional 

outcomes for pre and post-assessments. PwMS can also gauge participants’ progress during an 

intervention using the app. Steady-MS opens opportunities to improve overall function and well-

being in the home setting.  

There are also limitations of this project to consider. The population that participated in 

the development of the algorithm and usability testing was a small sample that has also 



 

 
80 

participated in previous fall-prevention based studies. This may have influenced the usability 

results and the fall risk factors incorporated into the algorithm. Steady-MS was also designed 

specifically for independent testing in the home setting. Therefore, the algorithm may not be the 

best algorithm for clinic-based or research-based fall risk assessments. As more data is collected 

to improve the algorithm, factors to include for clinical testing should be incorporated. Steady-

MS also does not include environmental fall risk factors. A future home environment check list 

may help pwMS identify areas within their home to improve to reduce their fall risk.  

Future steps will further improve the use of Steady-MS. First, the validity and reliability 

of the fall risk score should be determined. The fall risk score calculated Steady-MS should be 

compared to clinical fall risk assessments (i.e., Physiological Profile Assessment, Berg Balance 

Scale). This will determine how the fall risk score compares to scores on clinical fall risk tests.46 

Test re-test reliability of the score should also be examined. Second, as more data is collected 

with Steady-MS, the fall risk output could provide both an overall score and scores on individual 

components of the test with comparisons to age and gender-matched individuals. This will 

inform users of their performance and individual risk factors to improve upon. Last, in addition 

to measuring fall risk, prevention strategies should be included to empower pwMS to reduce 

their fall risk. Home-based exercise programs or home modification strategies can be included as 

treatment plans. Therefore, not only will pwMS be able to self-assess their fall risk, but they can 

also take part in strategies to prevent fall-related injuries.  

 In conclusion, Steady-MS is a usable mobile health app that measures overall fall risk in 

pwMS. There is evidence that pwMS can self-assess their fall risk in their homes, giving 

potential to improve self-management and monitoring of MS symptoms and fall risk. Steady-MS 

overcomes limitations to current falls screening and brings fall risk assessment to the hands of 
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the individual. Moreover, Steady-MS offers potential for targeted telerehabilitation to prevent 

fall related injuries. This important tool increases access to fall risk assessments, and with future 

steps to further enhance its use, Steady-MS can help prevent fall related injuries and maximize 

functional independence in pwMS.  
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APPENDIX A: SMARTPHONE ACCELEROMETRY AND OPAL SCATTER PLOTS  

 

Figure A1. Scatter plots for root mean square and confidence ellipse area acceleration derived 

from the smartphone and Opal accelerometer during eyes open condition for 27 participants. ML 

= mediolateral; AP = anteroposterior 
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Figure A1 (Cont.) 
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Figure A2. Scatter plots for root mean square and confidence ellipse area acceleration derived 

from the smartphone and Opal accelerometer during eyes closed condition for 27 participants. 

ML = mediolateral; AP = anteroposterior 
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Figure A2 (Cont.) 
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Figure A3. Scatter plots for root mean square and confidence ellipse area acceleration derived 

from the smartphone and Opal accelerometer during semi-tandem condition for 27 participants. 

ML = mediolateral; AP = anteroposterior 
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Figure A3 (Cont.) 
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Figure A4. Scatter plots for root mean square and confidence ellipse area acceleration derived 

from the smartphone and Opal accelerometer during tandem condition for 23 participants. ML = 

mediolateral; AP = anteroposterior 
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Figure A4 (Cont.) 
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Figure A5. Scatter plots for root mean square and confidence ellipse area acceleration derived 

from the smartphone and Opal accelerometer during singe leg condition for 12 participants. ML 

= mediolateral; AP = anteroposterior 
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Figure A5 (Cont.) 
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APPENDIX B: SMARTPHONE ACCELEROMETRY AND FORCE PLATE SCATTER 

PLOTS 

 

Figure B1. Scatter plots for root mean square and confidence ellipse area derived from the 

smartphone accelerometer and force plate during eyes open condition for 27 participants. ML = 

mediolateral; AP = anteroposterior 
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Figure B1 (Cont.) 

 

 
 

Figure B2. Scatter plots for root mean square and confidence ellipse area derived from the 

smartphone accelerometer and force plate during eyes closed condition for 27 participants. ML = 

mediolateral; AP = anteroposterior 
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Figure B2 (Cont.) 
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Figure B3. Scatter plots for root mean square and confidence ellipse area derived from the 

smartphone accelerometer and force plate during semi-tandem condition for 27 participants. ML 

= mediolateral; AP = anteroposterior 
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Figure B3 (Cont.) 

 
 

Figure B4. Scatter plots for root mean square and confidence ellipse area derived from the 

smartphone accelerometer and force plate during tandem condition for 23 participants. ML = 

mediolateral; AP = anteroposterior 
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Figure B4 (Cont.) 
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Figure B5. Scatter plots for root mean square and confidence ellipse area derived from the 

smartphone accelerometer and force plate during single leg condition for 12 participants. ML = 

mediolateral; AP = anteroposterior 
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Figure B5 (Cont.) 

 

 
 

 


